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Comparing bran
h-and-pri
e algorithms forThe Multi-Commodity k-splittable Maximum Flow ProblemM. Gamst⋆ and B. Petersen⋄DTU Management Engineering, Produktionstorvet 426, DK-2800 Kgs. Lyngby, Denmark
⋆ gamst�man.dtu.dk, ⋄ bjop�man.dtu.dkAbstra
tThe Multi-Commodity k-splittable Maximum Flow Problem 
onsists in routing asmu
h �ow as possible through a 
apa
itated network su
h that ea
h 
ommodity uses atmost k paths and the 
apa
ities are satis�ed. The problem appears in tele
ommuni
ations,spe
i�
ally when 
onsidering Multi-Proto
ol Label Swit
hing. The problem has previouslybeen solved to optimality through bran
h-and-pri
e. In this paper we propose two exa
tsolution methods both based on an alternative de
omposition. The two methods di�er intheir bran
hing strategy. The �rst method, whi
h bran
hes on forbidden edge sequen
es,shows some performan
e di�
ulty due to large sear
h trees. The se
ond method, whi
hbran
hes on forbidden and for
ed edge sequen
es, demonstrates mu
h better performan
e.The latter also outperforms a leading exa
t solution method from the literature. Further-more, a heuristi
 algorithm is presented. The heuristi
 is fast and yields good solutionvalues.Keywords: Bran
h and bound; Combinatorial optimization; Multi-
ommodity �ow; k-Splittable; Dantzig-Wolfe de
omposition; Heuristi
1 Introdu
tionThe Multi-Commodity k-splittable Maximum Flow Problem (MCkMFP) 
onsists in maximiz-ing the amount of routed �ow through a 
apa
itated network su
h that ea
h 
ommodity usesat most k paths and the 
apa
ities are satis�ed. The MCkMFP appears in tele
ommuni
a-tions, spe
i�
ally when 
onsidering Multi-Proto
ol Label Swit
hing (MPLS). In MPLS, severaldata pa
kets are gathered under a single label in order to limit the size of the routing tablesand to in
rease the quality of data transmission. Also, en
apsulating pa
kets of di�erent net-work proto
ols and only 
onsidering the labels eliminates the need for the network to supportseveral data link layer te
hnologies. The 
ost of sending data in
reases with the number ofLabel Swit
h Paths (LSP). By limiting the number of used labels (i.e. paths) the total 
ost 
anbe redu
ed. However, we must still ensure that all or as mu
h data as possible is transmitted.This 
orresponds to the MCkMFP; given an upper bound on the number of paths to use,we try to maximize the total throughput in the network. See Evans and Fils�ls [7℄ for moredetails on the MPLS.When k = 1 the MCkMFP 
ollapses to the Multi-Commodity unsplittable Maximum FlowProblem for whi
h spe
ialized algorithms exists, see e.g. Alvelos and de Carvalho [1℄, Barnhartet al. [3℄ and Kleinberg [9℄. We thus assume that k > 1.1



The Multi-Commodity k-splittable Flow Problem (MCkFP) was presented by Baier et al.[2℄, who solved the Maximum Budget-Constrained Single- and Multi-Commodity k-splittab-le Flow Problems using approximation algorithms. The authors proved that the MaximumSingle-Commodity k-splittable Flow Problem is NP-hard in the strong sense for dire
tedgraphs. Finally, they noted that for k ≥ |E|, a k-splittable (s, t) �ow problem degenerates toan ordinary (s, t) �ow problem.Ko
h et al. [11℄ proved that the MCkMFP is NP-hard in the strong sense for dire
ted aswell as undire
ted graphs, and showed that when P 6= NP, the best possible approximationfa
tor is 5
6 . Ko
h et al. [10℄ 
onsidered the MCkMFP as a two-stage problem, where the �rststage 
onsists of the de
ision on the k paths (routing) and the se
ond of the amount of �owon the paths (pa
king). If k is a 
onstant then it su�
es to 
onsider a polynomial number ofpa
king alternatives, whi
h 
an be 
onstru
ted in polynomial time. If k is part of the input,they proposed an approximation algorithm having approximation fa
tor (1− ǫ), ǫ > 0.Martens and Skutella [14℄ 
onsidered a variant of the MCkFP with extra 
onstraints onthe amount of �ow on paths and where the obje
tive was to minimize the network 
ongestion.They showed that when redu
ing the problem to an unsplittable �ow problem, only a 
onstantfa
tor is lost in the performan
e ratio.Kolliopoulos [12℄ 
onsidered the single-sour
e Minimum Cost 2-splittable �ow problemwith budget 
onstraints and with the assumption that the minimum edge 
apa
ity is largerthan the maximum 
ommodity demand. The author presented an approximation algorithmwith fa
tor (2, 1). This result was generalized to the k-splittable problem by Salazar andSkutella [15℄ with a resulting approximation fa
tor of (1 + 1

k
+ 1

2k−1 , 1).Caramia and Sgalambro [5℄ proposed a heuristi
 for the Maximum Con
urrent k-splittableFlow Problem, where 
ommodities are �rst routed using an augmenting path algorithm andthen a lo
al sear
h routine re-routes part of the paths. The solution quality of the heuristi
was shown to in
rease with the size of k.Tru�ot and Duhamel [16℄ used bran
h-and-pri
e to solve the Single-Commodity k-splittableMaximum Flow Problem (SCkMFP). A 3-index edge-path model and a 
orresponding bran
h-and-pri
e algorithm were presented. The pri
ing problem for the 
olumn generation is a short-est path problem solvable in polynomial time. Furthermore, Tru�ot et al. [17℄ applied their3-index bran
h-and-pri
e algorithm to the MCkMFP.Tru�ot et al. [18℄ also 
onsidered a non-linear variant of the MCkFP with end-to-enddelay bounds on ea
h path and quality of servi
e (QoS) requirements. The problem wassolved using bran
h-and-pri
e. The results showed that QoS requirements and CPU time are
orrelated and that minimizing the delay on edges improves the solution value and de
reasesthe 
omputation time.Gamst et al. [8℄ used bran
h-and-pri
e to solve the Minimum Cost Multi-Commodity k-splittable Flow Problem (MCMCkFP). They applied the algorithm of Tru�ot et al. [17℄ tothe MCMCkFP and proposed a new bran
h-and-pri
e algorithm based on a 2-index model.The latter showed very good performan
e and outperformed the existing bran
h-and-pri
ealgorithm.A di�erent exa
t solution approa
h from the literature 
onsists of solving an edge-basedformulation of the Maximum Con
urrent k-splittable Flow Problem in a bran
h-and-bounds
heme, see Caramia and Sgalambro [4℄. Bran
hing �xes usage of edges and bounding 
onsistsof solving the LP-relaxed edge-based formulation with bran
hing 
onstraints on used edges.The approa
h outperformed standard MIP-solvers, but su�ered from large bran
h-and-boundtrees. 2



The MCkMFP 
an be represented by a dire
ted graph G = (V,E,L), where V is the setof verti
es and E the set of edges. A positive 
apa
ity ue is asso
iated with every edge e ∈ E.The set of 
ommodities is denoted L and ea
h 
ommodity l ∈ L has a sour
e sl ∈ E and adestination tl ∈ E. The maximal number of routes ea
h 
ommodity may use is denoted k.In this paper three exa
t solution methods for the MCkMFP are presented and 
ompared.The 3-index bran
h-and-pri
e algorithm (3BP) by Tru�ot et al. [17℄ is extended with aheuristi
 proposed by Gamst et al. [8℄ to rea
h feasible solutions faster. The extended 3BP is
ompared to two algorithms based on a 2-index bran
h-and-pri
e formulation applied to theMCkMFP by Gamst et al. [8℄. The two algorithms for the MCkMFP di�er in their bran
hings
hemes. The �rst algorithm (2BP) uses a bran
hing strategy from the literature where 
ertainsubpaths are forbidden, and the se
ond algorithm (2BP+B) uses a new bran
hing strategywhere the use of 
ertain paths is either for
ed or forbidden and where bran
h 
uts are addedto the master problem.The main 
ontribution of this paper is to apply the 2BP algorithm to the MCkMFPand espe
ially to introdu
e the new bran
hing s
heme and the bran
h 
uts of the 2BP+Balgorithm. Furthermore, a heuristi
 use of the 2BP and 2BP+B algorithms is presented.The paper is organized as follows. In Se
tion 2 we summarize and extend methods fromthe literature. The 3BP algorithm is extended with a heuristi
 in Se
tion 2.1 and the 2BPalgorithm is presented in Se
tion 2.2. Then in Se
tion 3 the new algorithm 2BP+B is pro-posed. This is followed by Se
tion 4, whi
h transforms the exa
t methods into heuristi
s. Allalgorithms are 
ompared in Se
tion 5. Se
tion 6 gives �nal 
on
lusions. Note that throughoutthis paper, we refer to a �restri
ted master problem� simply as a �master problem�.2 Bran
h-and-pri
e algorithms from the literatureIn this se
tion we brie�y introdu
e two exa
t algorithms for the MCkMFP from the literature.First the 3-index bran
h-and-pri
e algorithm (3BP) by Tru�ot et al. [17℄ is presented. The3BP motivates the need for the 2-index bran
h-and-pri
e algorithm (2BP), whi
h was originallyapplied to the MCMCkFP.2.1 The 3-index bran
h-and-pri
e algorithm (3BP)Tru�ot et al. [17℄ solved the MCkMFP by applying Dantzig-Wolfe de
omposition [6℄, su
hthat the pri
ing problem generates paths for ea
h 
ommodity and the master problem mergesthe paths into an overall solution. We denote their bran
h-and-pri
e algorithm 3BP.Let L be the set of 
ommodities and h ∈ {1, . . . , k} be a path index indi
ating the �rst,se
ond, . . . , kth path used by a 
ommodity. A generated path p for 
ommodity l travels from
sl to tl, has 
apa
ity up = mine∈p ue, and is kept in the set P l. In the master problem, thevariable xhlp ≥ 0 denotes the amount of �ow on path p for the hth path of 
ommodity l andthe binary variable yhlp denotes whether or not path p is used as the hth path for 
ommodity
l. Furthermore, if δpe = 1 then path p travels on edge e, otherwise δpe = 0. The 3BP master

3



problem is:
max

∑

l∈L

k∑

h=1

∑

p∈P l

xhlps.t. ∑

l∈L

k∑

h=1

∑

p∈P l

δpex
hl
p ≤ ue ∀e ∈ E (1)

xhlp − upy
hl
p ≤ 0 ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P l (2)

∑

p∈P l

yhlp ≤ 1 ∀l ∈ L, h ∈ {1, . . . , k} (3)
xhlp ≥ 0 ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P l

yhlp ∈ {0, 1} ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P lThe obje
tive fun
tion maximizes the total amount of routed �ow. Constraints (1) ensure thatedge 
apa
ities are satis�ed. Constraints (2) for
e the de
ision variable yhlp to be set to one ifthere is �ow on the 
orresponding path xhlp . Constraints (3) ensure that at most one path isused as the hth path of a 
ommodity l. The path index h ∈ {1, . . . , k} 
auses symmetry inthe solution spa
e, hen
e a symmetry-breaking 
onstraint is added to the formulation:
∑

p∈P l

xh+1,l
p −

∑

p∈P l

xhlp ≤ 0 ∀h ∈ {1, . . . , k − 1},∀l ∈ L (4)The 
onstraint for
es the order of sele
ted paths to be su
h that the 
orresponding amountof path �ow is non-in
reasing. This eliminates many identi
al solutions, but does not preventsymmetri
 solutions where paths 
arry the same amount of �ow. The 3-index model is LP-relaxed and then the model is simpli�ed by substituting xhlp /up for yhlp , whi
h is feasiblea

ording to 
onstraints (2) and (3) and to the fa
t that up > 0. Constraints (2) and thebounds on the yhlp variables are removed from the formulation and 
onstraints (3) are rewrittenas:
∑

p∈P l

xhlp
up
≤ 1 ∀l ∈ L, h ∈ {1, . . . , k} (5)Let π ≥ 0 be the dual variables of 
onstraints (1), λ ≥ 0 the dual variables of 
onstraints(5), and ω ≥ 0 the dual variables of 
onstraints (4). Furthermore, let ω̄hl = −ωhl, h = 1, ω̄hl =

−ωhl + ω(h−1)l, h = 2, . . . , k − 1, and ω̄hl = ω(h−1)l, h = k. The redu
ed 
ost of a path p ∈ P lwith path index h ∈ {1, . . . , k} for a 
ommodity l ∈ L is:
chlp = 1−

∑

e∈E

δpeπe −
λhl

up
− ω̄hl ≥ 0The pri
ing problems generate 
olumns for ea
h 
ommodity l and path index h with positiveredu
ed 
ost, i.e., where the following holds true:

∑

e∈E

δpeπe < 1−
λhl

up
− ω̄hl4



The dual variables ω̄hl and λhl are thus 
onstants, while the path 
apa
ity up is not knownuntil the path has been generated. The pri
ing problem �xes the value of up, and then triesto generate a 
olumn with positive redu
ed 
ost for 
ommodity l by solving a shortest pathproblem from sl to tl with edge weights πe,∀e ∈ E : ue ≥ up. The path 
apa
ity up 
an be�xed to at most |E| di�erent values (one for ea
h di�erent ue : e ∈ E), hen
e the pri
ingproblem 
an be solved in polynomial time by 
onsidering at most |E| shortest path problems.The algorithm for solving the pri
ing problem is illustrated in Algorithm 1, where up is givenby cap.Algorithm 1 Algorithm for solving the pri
ing problem.1: CAP ← a list 
onsisting of edge 
apa
ities, ue, sorted in in
reasing order and withoutdupli
ates2: for (ea
h cap ∈ CAP ) do3: E′ ← E\{e : ue < cap}4: Solve shortest path problem from sl to tl on edges e ∈ E′ with edge weights πe5: Save path, if its redu
ed 
ost is positive6: end forGamst et al. [8℄ applied the 3BP algorithm to the MCMCkFP and improved the 3BPalgorithm by in
luding a heuristi
, whi
h merges 
ertain fra
tional 
olumns su
h that a feasiblesolution was possibly rea
hed. Spe
i�
ally, one of the following two situations may o

ur:1. For a 
ommodity, several identi
al paths are used but with di�erent values of h. In this
ase, the heuristi
 merges the paths into one single path.2. More than one path is used for a single value of h for a 
ommodity. Here, the heuristi
assigns a unique value of h to ea
h path, if possible.The heuristi
 improved the 3BP algorithm by redu
ing the size of the bran
h-and-bound treefor solved instan
es and by improving the bounds of unsolved instan
es [8℄.The heuristi
 is in
luded just before bran
hing, i.e., whenever a fra
tional lower bound isfound in a bran
h-and-bound node. This gives us the �nal 3BP algorithm.2.2 The 2-index bran
h-and-pri
e algorithm (2BP)The MCkMFP is Dantzig-Wolfe de
omposed su
h that the variables of the resulting masterproblem do not 
ontain the h-index. This de
omposition gives a pri
ing problem, whi
hgenerates a path for ea
h 
ommodity, and a master problem, whi
h merges the paths into anoverall feasible solution.Re
all the notation introdu
ed for the 3BP algorithm. Furthermore, let xlp ≥ 0 denote theamount of �ow on path p for 
ommodity l and let ylp ∈ {0, 1} denote whether or not path p is
5



used by 
ommodity l. The master problem is:
max

∑

l∈L

∑

p∈P l

xlp (6)s.t. ∑

l∈L

∑

p∈P l

δpex
l
p ≤ ue ∀e ∈ E (7)

xlp − upy
l
p ≤ 0 ∀l ∈ L,∀p ∈ P l (8)

∑

p∈P l

ylp ≤ k ∀l ∈ L (9)
xlp ≥ 0 ∀l ∈ L,∀p ∈ P l

ylp ∈ {0, 1} ∀l ∈ L,∀p ∈ P lThe obje
tive fun
tion maximizes the total amount of routed �ow. Constraints (7) ensureedge 
apa
ities are never violated and 
onstraints (8) for
e the de
ision variables to take onvalue 1, whenever the amount of �ow on the 
orresponding path is positive. Constraints (9)limit the number of paths for 
ommodity l to at most k.The binary variables ylp are LP-relaxed and ylp is repla
ed by xlp/up, whi
h is feasiblea

ording to 
onstraints (8) and (9). Constraints (8) and the bounds on ylp are redundant andthus removed from the formulation. Furthermore, 
onstraints (9) are reformulated to:
∑

p∈P l

xlp
up
≤ k ∀l ∈ L (10)Let π ≥ 0 and λ ≥ 0 be the dual variables for 
onstraints for (7) and (10). The redu
ed
ost of a path p ∈ P l for a 
ommodity l ∈ L is:

clp = 1−
∑

e∈E

δpeπe −
λl

up
, ∀l ∈ L, ∀p ∈ P l (11)Only paths with positive redu
ed 
ost will be 
onsidered, i.e., we seek to generate paths forea
h 
ommodity l where

∑

e∈E

δpeπe < 1−
λl

up
, ∀l ∈ L, ∀p ∈ P lThe dual variable λl is 
onsidered a 
onstant, while the path 
apa
ity up is not known untilthe path has been generated. The pri
ing problem is solved using Algorithm 1, whi
h runs inpolynomial time.Bran
hing s
heme � forbidding edge sequen
esThe bran
hing s
heme forbids edge sequen
es. Let the divergen
e vertex for a 
ommoditybe de�ned as the �rst vertex where at most one in
oming edge is visited and several outgoingedges are visited by the 
ommodity. If the number of paths emanating from the divergen
evertex for some 
ommodity l is greater than k then bran
hing 
an be applied.6



We 
onsider the set of all paths with positive �ow P̄ l of 
ommodity l. Let q(p) be thesubpath of p ∈ P̄ l starting at the divergen
e vertex. Also, let a pre�x path of q(p) be a subpathof q(p) beginning in the sour
e of q(p). Denote s(p) the smallest pre�x path of q(p) su
h that
s(p) is no pre�x of any other subpath q(p′), p′ ∈ P̄ l : p′ 6= p. Now, s(p) is the unique edgesequen
e for p. Ea
h unique edge sequen
e is forbidden in a bran
hing 
hild. The unique edgesequen
es are identi�ed by enumerating and 
omparing the subpaths of all p ∈ P̄ l.The number of bran
hing 
hildren is kept equal to k + 1, so if more than k + 1 pathsemanate from the divergen
e vertex, then we let some bran
hing 
hildren forbid more thanone unique edge sequen
e. The reason for this is to redu
e the width of the sear
h tree. Abran
hing 
hild 
an forbid several unique edge sequen
es, be
ause all 
ombinations of k pathsfrom the divergen
e vertex are available in at least one other bran
hing 
hild.An illustration of the bran
hing strategy is seen in Figure 1. A graph with four verti
es isgiven and a single 
ommodity with sour
e s and destination t is to be routed using at mosttwo paths. In the 
urrent solution three paths are used: p1 = (e1, e4, e5), p2 = (e1, e3, e5), and
p3 = (e2, e3, e5). Assume that the optimal solution 
onsists of path p1 and p3. The divergen
evertex is s and k + 1 subpaths emanating from s are found: (e1, e3), (e1, e4) and (e2). Theoptimal solution is found in the bran
hing 
hild, whi
h forbids the use of edge sequen
e (e1, e3).

❤ ❤ ❤ ❤s t

e2

e1

e4

e3
e5

Figure 1: A graph used to illustrate the bran
hing s
heme. The graph 
onsists of four verti
es,the sour
e vertex is denoted s, and the destination vertex t. Edges are e1, e2, e3, e4, and e5.The bran
hing s
heme 
hanges the pri
ing problem. When solving the shortest pathproblem we need to ensure that we do not use the forbidden edge sequen
es. The shortestpath problem with forbidden paths is a polynomial problem and 
an be solved by applying ashortest path algorithm on an extended graph, see Villeneuve and Desaulniers [19℄.3 New bran
hing s
heme for the 2BPIn this se
tion we present the new bran
h-and-pri
e algorithm 2BP+B. The 2BP+B algorithmonly di�ers from the 2BP algorithm in the bran
hing s
heme. The master problem (6),(7) and(10) is the same and the redu
ed 
ost is given by (11).This bran
hing s
heme is based on the idea of forbidding or for
ing the use of a 
ertain path
p′ for a �xed 
ommodity l ∈ L. This 
orresponds to setting ylp′ = 0 or ylp′ = 1, respe
tively, inthe non-relaxed master problem. In the remainder of this se
tion a �xed 
ommodity l ∈ L isassumed.The e�e
t of the bran
hing s
heme on the non-relaxed master problem, spe
i�
ally 
on-straint (9) is 
onsidered. Both when ylp′ = 0 and ylp′ = 1, the variable 
an be left out of the7




onstraint. If ylp′ = 1 the 
onstraint is rewritten as:
∑

p∈P l\{p′}

ylp ≤ k − 1Now, the e�e
t of the bran
hing s
heme on the relaxed master problem, spe
i�
ally 
on-straint (10) is 
onsidered. When path p′ is forbidden for 
ommodity l then xlp′ = 0. When theuse of path p′ is for
ed then we set xlp′ ≥ ǫ, where ǫ > 0 is a suitably small number. Constraint(10) is rewritten as:
∑

p∈P l\{p′}

xlp
up
≤ k − 1 (12)This is stronger than the original 
onstraint when xlp′ < up′ , hen
e the bound of the bran
hing
hild is strengthened in this 
ase.The number of bran
hing 
hildren depends on the 
urrent fra
tional solution. Assumethat the 
urrent solution 
onsists of k+α,α > 0 paths for 
ommodity l. At least α+1 pathsin the 
urrent fra
tional solution have xlp < up, otherwise 
onstraint (10) would be violated.Let P̄ l denote these paths. An optimal solution may not in
lude any of the paths in P̄ l, hen
ewe propose the following bran
hing strategy. Generate |P̄ l|+ 1 bran
hing 
hildren. Usage ofea
h path in P̄ l is respe
tively for
ed in the �rst |P̄ l| 
hildren. In the last 
hild, usage of anypath in P̄ l is forbidden.The �rst |P̄ l| 
hildren 
ause symmetry in the solution spa
e. Consider an example with

|P̄ l| + 1 = 4 bran
hing 
hildren b1, b2, b3 and b4, for
ing usage of path p1, p2, and p3, andforbidding all paths p1, p2, and p3, respe
tively. Now, a solution 
ontaining paths p1 and p3
an be generated in both the subtree of bran
hing 
hild b1 and b3.To prevent su
h symmetry in the bran
hing 
hildren, the bran
hing strategy is 
hangedinto letting the �rst |P̄ l| 
hildren for
e and forbid usage of 
ertain paths. Re
all the previousexample. Child b1 still for
es the use of p1. Child b2 for
es the use of p2 and forbids the useof p1. Similarly, 
hild b3 for
es the use of p3 and forbids the use of p1 and p2. In this way, thesolution using p1 and p3 is only available in the subtree of b1.In pra
ti
e we would rather add a 
ut than rewrite 
onstraints (10) when the use of apath is for
ed. Constraints (10) are thus always kept in the master problem, even if stronger
onstraints are added due to the bran
hing strategy. Re
all inequality (12) when for
ing theuse of path p′. This inequality is denoted the bran
h 
ut. Bran
hing 
hildren whi
h for
e theusage of paths, have the 
orresponding bran
h 
uts added to their master problem. The setof bran
h 
uts for 
ommodity l is denoted Bl. Let ωbl ≥ 0 be the dual of bran
h 
ut b ∈ Blfor 
ommodity l. The resulting redu
ed 
ost for path p ∈ P l for 
ommodity l ∈ L is:
clp = 1−

∑

e∈E

δepπe −
λl

up
−

∑

b∈Bl

ωbl

up
= 1−

∑

e∈E

δepπe −
λl +

∑
b∈Bl ωbl

up
(13)When solving the pri
ing problem for 
ommodity l the dual 
osts ωbl are 
onstants. Hen
e thebran
h 
ut does not a�e
t the stru
ture of the pri
ing problem. The pri
ing problem must,however, be able to avoid using forbidden paths as for the 2BP algorithm.8



4 Heuristi
 approa
hThe presented exa
t algorithms 
an be used as heuristi
s by only 
omputing the root node andthen returning the best feasible solution. The approa
h of only 
omputing the root node doesnot guarantee a polynomial running time, sin
e an exponential number of 
olumns potentiallyneeds to be added in the root. In pra
ti
e, however, we expe
t low running times.The heuristi
 usage of the 3BP algorithm is denoted 3HEUR. Be
ause no bran
hing o

ursthe heuristi
 usage of the 2BP and the 2BP+B algorithms is identi
al and is denoted 2HEUR.Tru�ot and Duhamel [16℄ argue that the 3-index and 2-index formulations are equivalent, alsoafter LP-relaxation and elimination of the binary variables. Even though the formulationsgive the same bounds, we may not rea
h the same feasible solutions in the root node. Hen
ewe investigate the performan
e of 3HEUR and 2HEUR empiri
ally.The 2HEUR may give infeasible solutions where more than k paths are used for ea
h
ommodity. In this 
ase we try to move the �ow between the paths in order to �nd a feasiblesolution using at most k paths for ea
h 
ommodity. The approa
h takes as input {G,P,X},where G is the graph representing the problem instan
e, P =
⋃

l∈L P l is the set of paths in the
urrent fra
tional solution with xp > 0, and X is the set of non-zero variables in the 
urrentfra
tional solution, i.e., xp > 0,∀xp ∈ X. The steps of the approa
h are seen in Algorithm 2.In line 1, an empty solution is initialized. Then, for ea
h 
ommodity l, the approa
h �rstAlgorithm 2 Flow-moving approa
h with {G,P,X} as input1: Initialize empty solution sol← ∅2: for (ea
h l ∈ L) do3: P̄ l ← list of p ∈ P l ⊆ P sorted a

ording to de
reasing up : up ← mine∈p ue4: for (ea
h p ∈ P̄ l with mine∈p ue > 0) do5: x̄lp ← mine∈p ue6: ue ← ue − x̄lp, ∀e ∈ p7: sol← {p, x̄lp}8: if (Flow is assigned to k paths for 
ommodity l) then9: break10: end if11: end for12: end for13: Return solution solsorts path for the 
ommodity a

ording to de
reasing path 
apa
ity. Then for ea
h path inthe sorted list, the approa
h identi�es the amount of �ow that 
an be sent on the path (line5), subtra
ts this �ow from the edges of the path (line 6) and stores the path and its �owin the solution (line 7). If k paths are stored for 
ommodity l the approa
h 
onsiders thenext 
ommodity (line 9-11). When all 
ommodities are 
onsidered, the approa
h returns thegenerated solution (line 13). Note that the order of paths in P̄ l does not 
hange in line 4-11,even though edge 
apa
ities are 
hanged in line 6.The �ow-moving approa
h has time 
omplexity O(|L|(|P | log |P | + |P ||E|)), where P =
∪l∈LP

l. This is polynomial in the input size of the approa
h. In
luding this �ow-movingapproa
h in 2HEUR gives the �nal heuristi
 denoted 2HEUR+FM.9



Name |V | |E| |L|Random5-35 5 35 1Random10-45 10 45 1Random15-60 15 60 1Random20-140 20 140 1tg10-2 12 40 1tg20-2 22 80 1tg40-1 42 154 1tg40-5 42 154 1tg80-1 82 322 1tg100-2 102 400 1Random10-40 10 40 3Random11-42 11 42 11Random20-80 20 80 20Random22-56 22 56 22Table 1: Sizes of test instan
es. First 
olumn denotes the instan
e name, then follows thenumber of verti
es, the number of edges, and �nally the number of 
ommodities.5 Computational resultsA 
omputational evaluation is performed on a dual 2.66GHz IntelR© XeonR© X5355 ma
hinewith 16 GB of RAM. Note that CPU times in the following stem from using one 
ore only.We have tested the proposed algorithms; the 3BP extended with the heuristi
 to rea
hfeasible solutions faster, the 2BP, the 2BP+B, and the three heuristi
s: 3HEUR, 2HEUR,and 2HEUR+FM. We implemented all algorithms using the COIN framework [13℄ with ILOGCPLEX 10.2 as LP-solver. Computations 
on
erning the sele
tion of bran
hing 
andidates andbran
hing 
hildren are handled by COIN.The solution methods are tested on ben
hmark instan
es from the literature [16℄: theRandom instan
es are randomly generated and the tg instan
es are generated by the TransitGrid generator1 using topologies from transportation networks. See Table 1 for details.Two di�erent types of tests have been performed. First the three exa
t algorithms are
omputationally evaluated on the des
ribed instan
es and results are 
ompared. Then we testthe performan
e of the heuristi
s, 3HEUR, 2HEUR and 2HEUR+FM, to investigate theirheuristi
 solution values and running times.5.1 Exa
t approa
hThe three algorithms are 
omputationally evaluated on the des
ribed instan
es. Results forthe single-
ommodity Random instan
es are summarized in Table 2 and results for the single-
ommodity tg instan
es are summarized in Table 3. The multi-
ommodity instan
es are allof the Random type and results are summarized in Table 4.In the tables the �rst 
olumn holds the name of the problem instan
e, the se
ond 
olumnholds the value of k and the third 
olumn holds the optimal value. Then follows the size anddepth of the sear
h tree, the number of generated variables, the gap in per
ent between theupper and lower bound, and the time in se
onds spent on solving the instan
e for the 3BP,the 2BP, and the 2BP+B algorithms, respe
tively. If a test run is marked with �-� then it hasrun out of memory. If the gap is also marked with �-� then no lower bound was found. The1http://www.informatik.uni-trier.de/~naeher/Professur/resear
h/generators/maxflow/tg/index.html 10



3BP 2BP 2BP+BProblem k z size depth vars gap time size depth vars gap time size depth vars gap timeRandom5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.002 128 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.003 182 1 0 27 0.00% 0.01 1 0 9 0.00% 0.00 1 0 9 0.00% 0.004 223 13 6 48 0.00% 0.01 1 0 12 0.00% 0.00 1 0 12 0.00% 0.005 262 19 9 60 0.00% 0.03 1 0 12 0.00% 0.00 1 0 12 0.00% 0.006 297 21 10 78 0.00% 0.03 1 0 14 0.00% 0.01 1 0 14 0.00% 0.007 326 67 12 98 0.00% 0.10 1 0 14 0.00% 0.00 1 0 14 0.00% 0.008 326 1 0 104 0.00% 0.00 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00Random10-45 1 73 1 0 6 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.002 142 5 2 15 0.00% 0.01 4 1 9 0.00% 0.01 8 2 9 0.00% 0.013 209 9 3 33 0.00% 0.02 21 3 15 0.00% 0.03 20 3 12 0.00% 0.024 260 45 17 68 0.00% 0.08 411 12 24 0.00% 0.56 34 4 20 0.00% 0.035 306 369 22 102 0.00% 0.80 23599 18 34 0.00% 44.96 40 4 20 0.00% 0.076 345 973 26 137 0.00% 2.90 >427099 >26 39 2.36% - 135 6 26 0.00% 0.227 381 4281 36 219 0.00% 16.55 >354551 >22 46 -% - 313 8 34 0.00% 0.648 413 22985 43 265 0.00% 102.51 >431299 >29 46 2.93% - 606 9 40 0.00% 1.319 429 >110199 >58 380 6.43% - >388228 >26 60 -% - 2507 11 46 0.00% 5.9710 451 >104999 >57 448 5.74% - >456699 >41 74 6.57% - 2355 12 46 0.00% 5.91Random15-60 1 86 1 0 5 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.002 163 1 0 16 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.003 221 9 3 34 0.00% 0.02 41 6 15 0.00% 0.06 12 2 12 0.00% 0.024 248 111 10 70 0.00% 0.32 >100454 >26 50 -% - 111 6 20 0.00% 0.225 268 557 18 101 0.00% 551.83 >176599 >29 52 2.86% - 322 7 29 0.00% 0.766 287 419 21 135 0.00% 1.59 >277801 >31 45 2.74% - 354 9 30 0.00% 0.797 295 19097 35 194 0.00% 72.91 >387565 >23 49 -% - 836 10 27 0.00% 1.748 301 >88799 >47 231 2.90% - >413343 >33 55 2.90% - 4995 11 30 0.00% 11.329 306 >153099 >51 229 1.29% - >547079 >28 48 -% - 2263 11 19 0.00% 4.42Random20-140 1 81 1 0 4 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.002 158 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.003 228 1 0 30 0.00% 0.02 1 0 11 0.00% 0.00 1 0 11 0.00% 0.004 253 9935 31 103 0.00% 75.25 >41444 >42 68 -% - 90 18 67 0.00% 1.045 274 >39999 >41 146 1.86% - >68299 >66 87 1.86% - 819 22 51 0.00% 12.656 294 >30199 >61 184 1.78% - >60299 >86 107 1.78% - >14106 >32 113 1.78% -7 - >28999 >70 227 1.81% - >75894 >46 91 -% - >14299 >32 109 1.69% -8 319 >30599 >80 267 1.91% - >94699 >101 120 1.91% - 4028 22 29 0.00% 52.959 325 >39599 >93 315 0.84% - >108990 >63 105 -% - 130 9 25 0.00% 0.3210 327 2907 109 326 0.00% 19.15 >272685 >49 68 0.61% - 17 3 22 0.00% 0.0211 327 1325 86 301 0.00% 8.75 49 3 22 0.00% 0.03 20 5 20 0.00% 0.03Best 11 14 36Table 2: Results from solving the single-
ommodity Random instan
es exa
tly.total number of times ea
h algorithm has best performan
e is found at the bottom of ea
htable. Also, for ea
h instan
e the best performan
e is written in bold.The 2BP algorithm performs mu
h better than the 3BP algorithm for the MCMCkFP [8℄;however, this is generally not the 
ase for the MCkMFP. Although the number of times thealgorithm has best performan
e is larger for the 2BP, the 3BP algorithm is 
apable of solvingmore instan
es. The 
hange of obje
tive fun
tion has a great impa
t on the problem; thealgorithms always try to push as mu
h �ow through the network as possible, thus potentiallyexploiting the somewhat weakly formulated bound on the number of used paths. The formu-lation has less impa
t on the minimum 
ost problem be
ause it may not always be bene�
ialto in
rease the number of used paths. The 2BP algorithm su�ers from large sear
h trees be-
ause of the existen
e of potentially many solutions using more than k paths per 
ommodityand be
ause the bran
hing s
heme allows mu
h symmetry in the bran
hing 
hildren. The 2BPalgorithm, however, performs somewhat better than the 3BP for the multi-
ommodity Randominstan
es with respe
t to running times.The 2BP+B algorithm generally performs mu
h better than the 3BP algorithm. Ex
ep-tions are tg40-5, k = 4 and Random20-80, k = 5, for whi
h the 2BP+B algorithm spends moretime on solving. Furthermore, 2BP+B is unable to �nd an optimal solution for Random20-80,
k = 4. For the far majority of test instan
es, however, the 2BP+B algorithm is 
apable of�nding an optimal solution in short time, even when the 3BP algorithm shows great di�
ulty.11



3BP 2BP 2BP+BProblemk z size depth vars gap time size depth vars gap time size depth vars gap timetg10-2 1 389 1 0 5 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.002 557 215 13 26 0.00% 0.21 355 14 10 0.00% 0.21 41 5 11 0.00% 0.043 716 553 19 58 0.00% 0.70 39505 20 28 0.00% 32.49 53 5 15 0.00% 0.064 815 83 17 52 0.00% 0.10 6 1 8 0.00% 0.00 5 1 8 0.00% 0.005 815 1 0 40 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.002 643 1 0 10 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.003 832 5 2 33 0.00% 0.04 1 0 10 0.00% 0.00 1 0 10 0.00% 0.004 853 1 0 40 0.00% 0.01 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01 1 0 5 0.00% 0.002 750 5 2 16 0.00% 0.07 4 1 10 0.00% 0.02 10 3 12 0.00% 0.073 908 >9999 >40 96 2.61% - >83282 >61 94 -% - 231 11 21 0.00% 3.324 994 >7799 >57 143 1.00% - >82770 >45 64 -% - 893 18 33 0.00% 25.155 1004 15 7 65 0.00% 0.09 703 27 20 0.00% 1.41 11 2 18 0.00% 0.036 1004 1 0 96 0.00% 0.03 29 3 13 0.00% 0.02 43 6 13 0.00% 0.07tg40-5 1 487 1 0 8 0.00% 0.01 1 0 6 0.00% 0.00 1 0 6 0.00% 0.002 828 >20599 >46 80 4.11% - >64248 >45 57 5.70% - 144 9 23 0.00% 1.493 1062 >17299 >59 139 0.28% - >77103 >44 65 -% - 276 8 22 0.00% 4.204 1078 181 47 68 0.00% 0.61 >148934 >22 50 -% - 1520 21 22 0.00% 26.535 1078 3 1 90 0.00% 0.03 61 4 16 0.00% 0.04 76 20 16 0.00% 1.72tg80-1 1 549 1 0 7 0.00% 0.04 1 0 6 0.00% 0.02 1 0 6 0.00% 0.022 984 1591 29 80 0.00% 65.22 2308 22 25 0.00% 59.16 288 11 39 0.00% 8.723 1411 >2199 >36 162 3.85% - >51476 >49 107 -% - 1914 10 38 0.00% 110.38tg100-2 1 530 1 0 7 0.00% 0.07 1 0 6 0.00% 0.03 1 0 6 0.00% 0.022 1007 3 1 16 0.00% 0.20 1 0 8 0.00% 0.04 1 0 8 0.00% 0.043 1407 >1099 >31 115 0.39% - >29087 >60 113 -% - 229 6 51 0.00% 29.144 1768 >1499 >72 234 1.51% - >56256 >40 167 -% - 2118 9 82 0.00% 284.41Best 7 12 23Table 3: Results from solving the tg instan
es exa
tly.
3BP 2BP 2BP+BProblem k z size depth vars gap time size depth vars gap time size depth vars gap timeRandom10-40 1 110 5 2 18 0.00% 0.02 5 2 15 0.00% 0.00 4 1 14 0.00% 0.012 194 1 0 26 0.00% 0.00 34 5 21 0.00% 0.04 4 1 18 0.00% 0.013 258 183 18 80 0.00% 0.39 213 12 24 0.00% 0.18 50 6 23 0.00% 0.064 293 695 36 129 0.00% 2.23 2956 16 41 0.00% 4.25 112 7 32 0.00% 0.205 309 1989 30 176 0.00% 7.91 >253716 >25 56 1.24% 1.06 561 12 39 0.00% 1.066 318 15905 36 253 0.00% 73.84 >610006 >24 59 1.35% - 1294 13 60 0.00% 2.637 321 >153199 >56 286 0.01% - >335959 >26 54 -% - 26182 18 47 0.00% 57.108 323 113 37 299 0.00% 0.52 2008 14 37 0.00% 1.23 2051 15 36 0.00% 2.439 323 333 49 318 0.00% 1.38 11 1 32 0.00% 0.01 18 5 32 0.00% 0.02Random11-42 1 291 5 2 29 0.00% 0.02 7 3 28 0.00% 0.01 7 2 27 0.00% 0.022 343 1 0 50 0.00% 0.01 7 2 27 0.00% 0.01 6 1 27 0.00% 0.013 344 1 0 75 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.004 344 1 0 100 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00Random20-80 1 347 7 3 55 0.00% 0.06 3 1 51 0.00% 0.02 7 2 53 0.00% 0.042 553 3 1 100 0.00% 0.03 4 1 50 0.00% 0.02 4 1 51 0.00% 0.013 584 1063 24 188 0.00% 6.14 57 7 59 0.00% 0.16 1020 16 62 0.00% 3.454 601 5599 33 277 0.00% 40.05 1041 10 60 0.00% 2.02 >81550 >548 601 2.01% -5 617 13291 44 340 0.00% 117.96 4363 14 66 0.00% 7.35 49695 34 67 0.00% 198.616 621 >48999 >40 380 0.01% - 3998 11 63 0.00% 6.42 32552 29 58 0.00% 100.087 626 413 37 412 0.00% 3.48 17 2 57 0.00% 0.02 116 14 57 0.00% 0.228 626 1 0 440 0.00% 0.03 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01Random22-56 1 365 9 3 52 0.00% 0.02 7 3 42 0.00% 0.02 7 2 44 0.00% 0.022 389 11 4 81 0.00% 0.02 10 3 42 0.00% 0.02 9 3 42 0.00% 0.013 407 1 0 108 0.00% 0.01 1 0 41 0.00% 0.01 1 0 41 0.00% 0.014 407 1 0 144 0.00% 0.01 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00Best 7 17 14Table 4: Results from solving the multi-
ommodity instan
es exa
tly.12



The 2BP+B algorithm generally also generates smaller gaps for instan
es, whi
h are not solvedto optimality. Reasons are that the sear
h tree sizes are generally smaller for the 2BP+B,the number of variables in the master problem is smaller, and mu
h symmetry is eliminatedbe
ause of the la
king h-indi
es.The 2BP+B algorithm generally also performs mu
h better than the 2BP algorithm. Ex-
eptions are Random20-80, k = 4, 5, and 6 where the 2BP has overall best performan
e. Thereason for the generally superior performan
e of the 2BP+B algorithm is that the bran
h-ing s
heme gives better bounds in the bran
hing 
hildren: for
ing the use of a path is mu
hstronger than forbidding a path. Also forbidding the use of all paths with positive �ow isstronger than forbidding a subset of the paths.All three algorithms su�er from the same weakness in the formulation, spe
i�
ally thebounding of the number of used paths per 
ommodity: 
onstraints (3) for the 3BP and (10)for the 2BP and the 2BP+B algorithms. Be
ause the obje
tive is to maximize the totalamount of �ow, the algorithms are very likely to ex
eed k paths per 
ommodity wheneverthe mentioned 
onstraints are not tight. The 
onstraints will rarely be tight, espe
ially whenseveral paths share the same edges and the 
orresponding xlp/up < 1. The 2BP+B redu
esthis problem to some extend with the bran
hing 
ut (12).Finally, it is noted that in
luding the �ow-moving approa
h from Algorithm 2 in theexa
t 2BP and 2BP+B approa
hes does not improve performan
e; see the tables at http://www.diku.dk/~gamst/heuristi
_results.pdf for do
umentation.5.2 Heuristi
 approa
hThe three heuristi
s 3HEUR, 2HEUR, and 2HEUR+FM are evaluated on the previouslydes
ribed instan
es. Test results are summarized in tables 5, 6, and 7.The �rst 
olumn of ea
h table holds the name of the problem instan
e, the se
ond 
olumnholds the value of k, and the third 
olumn holds the optimal value. Then follows for ea
h ofthe algorithms 3HEUR, 2HEUR, and 2HEUR+FM; the number of iterations in the 
olumngeneration, the gap between the heuristi
 and the optimal value, and the time in se
ondsspent on solving the instan
e. An entry marked with �-� indi
ates that no feasible solutionwas found. The average number of iterations, gap, and time usage are given at the bottom ofea
h table.The results show that the 3HEUR algorithm often gives poor heuristi
 solutions withgaps of up to 94%. For three multi-
ommodity Random instan
es the 3BP algorithm is evenunable to �nd a feasible solution in the root node. The 2HEUR algorithm generally �nds mu
hbetter solution values than the 3HEUR algorithm. The 2HEUR+FM, however, shows superiorperforman
e by solving the majority of the instan
es to optimality and with the largest gapof those not solved being 20%. All heuristi
s have very low running times and terminate inless than a se
ond.6 Con
lusionTwo new exa
t solution methods for the MCkMFP problem have been introdu
ed. They areboth based on Dantzig-Wolfe de
omposition, where the master problem is a 2-index formu-lation merging paths for 
ommodities into an overall solution. The two methods di�er intheir bran
hing s
hemes: the �rst method forbids subpaths (2BP), while the se
ond for
es or13



3HEUR 2HEUR 2HEUR+FMProblem k z iter. gap time iter. gap time iter. gap timeRandom5-35 1 66 5 0.00 0.00 3 0.00 0.00 3 0.00 0.012 128 7 0.00 0.00 5 0.00 0.00 5 0.00 0.003 182 8 0.00 0.00 7 0.00 0.00 7 0.00 0.004 223 12 16.60 0.00 10 0.00 0.00 10 0.00 0.005 262 12 54.96 0.00 10 0.00 0.00 10 0.00 0.006 297 13 80.37 0.00 12 0.00 0.00 12 0.00 0.007 326 14 54.29 0.00 12 0.00 0.00 12 0.00 0.008 326 13 0.00 0.01 11 0.00 0.00 11 0.00 0.00Random10-45 1 73 6 0.00 0.00 4 0.00 0.00 4 0.00 0.002 142 7 12.68 0.00 6 12.68 0.00 6 0.00 0.003 209 10 22.00 0.01 10 15.31 0.00 10 0.00 0.004 260 13 65.38 0.01 13 18.08 0.00 13 0.00 0.005 306 15 75.82 0.01 17 46.73 0.00 17 0.00 0.006 345 17 73.91 0.02 19 43.48 0.00 19 0.00 0.007 381 23 76.38 0.02 21 47.77 0.00 21 8.40 0.018 413 24 78.21 0.02 23 48.18 0.00 23 6.78 0.019 429 30 79.02 0.04 30 37.06 0.00 30 1.40 0.0010 451 35 80.04 0.05 38 36.59 0.01 38 0.00 0.01Random15-60 1 86 5 0.00 0.00 6 0.00 0.00 6 0.00 0.002 163 8 0.00 0.01 8 0.00 0.00 8 0.00 0.003 221 10 55.24 0.01 11 85.52 0.00 11 16.74 0.004 248 13 87.50 0.01 18 56.04 0.01 18 10.01 0.005 268 16 57.49 0.02 20 51.49 0.00 20 5.97 0.006 287 18 93.38 0.02 22 50.52 0.01 22 6.62 0.007 295 20 85.05 0.02 23 46.44 0.01 23 13.90 0.008 301 19 59.47 0.01 21 46.84 0.00 21 17.94 0.009 306 18 60.13 0.01 18 39.87 0.00 18 19.93 0.00Random20-140 1 81 4 0.00 0.00 4 0.00 0.00 4 0.00 0.002 158 7 0.00 0.02 6 0.00 0.00 6 0.00 0.003 228 10 0.00 0.02 10 0.00 0.00 10 0.00 0.004 253 12 82.48 0.03 13 0.00 0.00 13 0.00 0.015 274 16 84.69 0.04 16 1.46 0.01 16 0.00 0.016 294 18 84.69 0.04 24 69.05 0.01 24 3.40 0.019 325 22 86.15 0.04 24 44.92 0.01 24 0.31 0.0110 327 21 86.24 0.01 19 3.67 0.00 19 3.67 0.0011 327 20 86.24 0.01 19 0.61 0.00 19 0.61 0.00Sum 14 49.40 0.01 15 22.29 <0.01 15 3.21 <0.01Table 5: Results from solving the single-
ommodity Random instan
es heuristi
ally, where ea
halgorithm terminates after having evaluated the root node only.3HEUR 2HEUR 2HEUR+FMProblem k z iter. gap time iter. gap time iter. gap timetg10-2 1 389 5 0.00 0.00 4 0.00 0.00 4 0.00 0.002 557 6 0.00 0.00 6 0.00 0.00 6 0.00 0.003 716 9 0.00 0.00 10 15.22 0.00 10 0.00 0.004 815 8 0.00 0.00 8 15.83 0.01 8 0.00 0.005 815 8 0.00 0.00 8 0.00 0.00 8 0.00 0.00tg20-2 1 385 4 0.00 0.00 4 0.00 0.00 4 0.00 0.002 643 5 0.00 0.00 6 0.00 0.00 6 0.00 0.003 832 11 18.03 0.00 10 0.01 0.00 10 0.00 0.014 853 10 0.00 0.01 10 0.00 0.00 10 0.00 0.00tg40-1 1 517 5 0.00 0.01 5 0.00 0.01 5 0.00 0.012 750 7 72.13 0.01 9 61.33 0.01 9 0.00 0.01tg40-5 1 487 8 0.00 0.00 6 0.00 0.00 6 0.00 0.01tg80-1 1 549 7 0.00 0.04 6 0.00 0.02 6 0.00 0.022 984 11 52.74 0.14 14 14.63 0.06 14 0.00 0.06tg100-2 1 530 7 0.00 0.07 6 0.00 0.02 6 0.00 0.022 1007 8 28.10 0.15 8 0.00 0.04 8 0.00 0.03Sum 7 10.69 0.03 8 6.69 0.01 8 0.00 0.01Table 6: Results from solving the tg instan
es heuristi
ally, where ea
h algorithm terminatesafter having evaluated the root node only. 14



3HEUR 2HEUR 2HEUR+FMProblem k z iter. gap time iter. gap time iter. gap timeRandom10-40 1 110 6 31.82 0.00 5 20.00 0.01 5 17.27 0.002 194 6 0.00 0.00 9 60.82 0.00 9 0.00 0.003 258 11 80.62 0.01 11 69.38 0.00 11 6.59 0.004 293 14 66.21 0.02 15 36.52 0.01 15 7.17 0.015 309 16 67.96 0.02 19 34.95 0.00 19 8.41 0.016 318 21 68.89 0.03 25 33.02 0.00 25 5.97 0.017 321 17 84.42 0.02 21 24.61 0.00 21 1.56 0.018 323 21 84.52 0.01 20 22.29 0.00 20 4.34 0.009 323 20 84.52 0.01 21 9.29 0.00 21 0.00 0.00Random11-42 1 291 6 6.19 0.01 6 6.19 0.00 6 0.00 0.012 343 4 0.00 0.00 5 19.53 0.00 5 4.08 0.003 344 4 0.00 0.00 5 0.00 0.01 5 0.00 0.004 344 4 0.00 0.00 5 0.00 0.00 5 0.00 0.00Random20-80 1 347 6 25.36 0.01 6 16.14 0.01 6 0.00 0.012 553 7 35.80 0.02 7 15.91 0.01 7 0.00 0.013 584 9 - 0.02 9 7.53 0.00 9 0.00 0.014 601 12 - 0.03 12 7.65 0.01 12 0.00 0.015 617 14 - 0.04 16 4.05 0.02 16 2.27 0.006 621 12 58.29 0.03 14 0.64 0.01 14 0.00 0.017 626 12 58.63 0.03 14 0.96 0.01 14 0.80 0.018 626 12 0.00 0.03 14 0.00 0.01 14 0.00 0.01Random22-56 1 365 6 0.00 0.01 5 0.00 0.00 5 0.00 0.002 389 6 1.54 0.00 5 1.54 0.00 5 0.00 0.003 407 6 0.00 0.01 5 0.00 0.00 5 0.00 0.014 407 6 0.00 0.00 5 0.00 0.01 5 0.00 0.01Sum 9 34.31 0.01 11 15.64 <0.01 11 2.34 <0.01Table 7: Results from solving the multi-
ommodity Random instan
es heuristi
ally, where ea
halgorithm terminates after having evaluated the root node only. Sum only sums over theinstan
es where all heuristi
s found a feasible solution.forbids the use of 
ertain paths (2BP+B). The latter also adds bran
hing 
uts to the masterproblem.The 2BP and 2BP+B algorithms are implemented and 
ompared with a leading exa
talgorithm from the literature denoted 3BP. Results show that the 2BP+B algorithm performssigni�
antly better than the 2BP and the 3BP algorithms both with respe
t to the numberof solved instan
es and with respe
t to the time usage. The main reason is that using the2BP+B algorithm produ
es smaller sear
h trees, redu
es the number of variables in the masterproblem, and eliminates some of the symmetry in the solution spa
e.Terminating the 
omputations after having evaluated the root node transforms the 3BPand the 2BP/2BP+B algorithms into heuristi
s denoted 3HEUR and 2HEUR, respe
tively.Be
ause no bran
hing o

urs in this heuristi
 approa
h, the 2BP and the 2BP+B algorithmsbe
ome identi
al. Test results for this approa
h show that the 3HEUR does not perform well,with the majority of the solution values having gaps of up to 94%. The 2HEUR algorithm,however, shows very promising performan
e when in
luding a �ow-moving approa
h, whi
htransforms some fra
tional solutions into feasible solutions. In most 
ases optimal solutionsare found and the average solution gaps never ex
eed 4%. Both heuristi
s terminate in lessthan a se
ond for all tested instan
es.All algorithms su�er from weak formulations for bounding the number of used paths per
ommodity. We believe that future work should 
on
entrate on tightening these 
onstraints.The problem 
ould for example be reformulated su
h that the number of used paths per
ommodity is impli
itly satis�ed through pri
ing or primal 
onvexi�
ation te
hniques. Webelieve that the fo
us should be on 
uts violated in the edge-based model or the originalmaster problem. Future work 
ould also 
on
entrate on �nding better bran
hing strategiesfor the 2-index formulation in order to further redu
e the size of the sear
h tree.15
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