-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Comparing branch-and-price algorithms for the Multi-Commodity k-splittable Maximum
Flow Problem

Gamst, Mette; Petersen, Bjgrn

Published in:
European Journal of Operational Research

Link to article, DOI:
10.1016/j.ejor.2011.10.001

Publication date:
2012

Link back to DTU Orbit

Citation (APA):

Gamst, M., & Petersen, B. (2012). Comparing branch-and-price algorithms for the Multi-Commaodity k-splittable
Maximum Flow Problem. European Journal of Operational Research, 217(2), 278-286. DOI:
10.1016/j.ejor.2011.10.001

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13782548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejor.2011.10.001
http://orbit.dtu.dk/en/publications/comparing-branchandprice-algorithms-for-the-multicommodity-ksplittable-maximum-flow-problem(2ae75783-2a43-4486-903e-9f21b62a73b0).html

Comparing branch-and-price algorithms for
The Multi-Commodity k-splittable Maximum Flow Problem

M. Gamst* and B. Petersen®
DTU Management Engineering, Produktionstorvet 426, DK-2800 Kgs. Lyngby, Denmark
* gamst@man.dtu.dk, ¢ bjop@man.dtu.dk

Abstract

The Multi-Commodity k-splittable Maximum Flow Problem consists in routing as
much flow as possible through a capacitated network such that each commodity uses at
most k paths and the capacities are satisfied. The problem appears in telecommunications,
specifically when considering Multi-Protocol Label Switching. The problem has previously
been solved to optimality through branch-and-price. In this paper we propose two exact
solution methods both based on an alternative decomposition. The two methods differ in
their branching strategy. The first method, which branches on forbidden edge sequences,
shows some performance difficulty due to large search trees. The second method, which
branches on forbidden and forced edge sequences, demonstrates much better performance.
The latter also outperforms a leading exact solution method from the literature. Further-
more, a heuristic algorithm is presented. The heuristic is fast and yields good solution
values.

Keywords: Branch and bound; Combinatorial optimization; Multi-commodity flow; k-
Splittable; Dantzig- Wolfe decomposition; Heuristic

1 Introduction

The Multi-Commodity k-splittable Maximum Flow Problem (MCEMFP) consists in maximiz-
ing the amount of routed flow through a capacitated network such that each commodity uses
at most k paths and the capacities are satisfied. The MCEMFP appears in telecommunica-
tions, specifically when considering Multi-Protocol Label Switching (MPLS). In MPLS, several
data packets are gathered under a single label in order to limit the size of the routing tables
and to increase the quality of data transmission. Also, encapsulating packets of different net-
work protocols and only considering the labels eliminates the need for the network to support
several data link layer technologies. The cost of sending data increases with the number of
Label Switch Paths (LSP). By limiting the number of used labels (i.e. paths) the total cost can
be reduced. However, we must still ensure that all or as much data as possible is transmitted.
This corresponds to the MCEMFP; given an upper bound on the number of paths to use,
we try to maximize the total throughput in the network. See Evans and Filsfils [7] for more
details on the MPLS.

When k = 1 the MCEMFP collapses to the Multi-Commodity unsplittable Maximum Flow
Problem for which specialized algorithms exists, see e.g. Alvelos and de Carvalho [1], Barnhart
et al. [3] and Kleinberg [9]. We thus assume that k& > 1.

The Multi-Commodity k-splittable Flow Problem (MCkAFP) was presented by Baier et al.
[2], who solved the Maximum Budget-Constrained Single- and Multi-Commodity k-splittab-
le Flow Problems using approximation algorithms. The authors proved that the Maximum
Single-Commodity k-splittable Flow Problem is AP-hard in the strong sense for directed
graphs. Finally, they noted that for k > |E|, a k-splittable (s,¢) flow problem degenerates to
an ordinary (s,t) flow problem.

Koch et al. [11] proved that the MCKMFP is AP-hard in the strong sense for directed as
well as undirected graphs, and showed that when P # NP, the best possible approximation
factor is %. Koch et al. [10] considered the MCAMFP as a two-stage problem, where the first
stage consists of the decision on the k paths (routing) and the second of the amount of flow
on the paths (packing). If k is a constant then it suffices to consider a polynomial number of
packing alternatives, which can be constructed in polynomial time. If k is part of the input,
they proposed an approximation algorithm having approximation factor (1 — €), € > 0.

Martens and Skutella [14] considered a variant of the MCEFP with extra constraints on
the amount of flow on paths and where the objective was to minimize the network congestion.
They showed that when reducing the problem to an unsplittable flow problem, only a constant
factor is lost in the performance ratio.

Kolliopoulos [12] considered the single-source Minimum Cost 2-splittable flow problem
with budget constraints and with the assumption that the minimum edge capacity is larger
than the maximum commodity demand. The author presented an approximation algorithm
with factor (2,1). This result was generalized to the k-splittable problem by Salazar and
Skutella [15] with a resulting approximation factor of (1 + 1 + 5=, 1).

Caramia and Sgalambro [5] proposed a heuristic for the Maximum Concurrent k-splittable
Flow Problem, where commodities are first routed using an augmenting path algorithm and
then a local search routine re-routes part of the paths. The solution quality of the heuristic
was shown to increase with the size of k.

Truffot and Duhamel [16] used branch-and-price to solve the Single-Commodity k-splittable
Maximum Flow Problem (SCKMFP). A 3-index edge-path model and a corresponding branch-
and-price algorithm were presented. The pricing problem for the column generation is a short-
est path problem solvable in polynomial time. Furthermore, Truffot et al. [17] applied their
3-index branch-and-price algorithm to the MCEMFP.

Truffot et al. [18] also considered a non-linear variant of the MCKFP with end-to-end
delay bounds on each path and quality of service (QoS) requirements. The problem was
solved using branch-and-price. The results showed that QoS requirements and CPU time are
correlated and that minimizing the delay on edges improves the solution value and decreases
the computation time.

Gamst et al. [8] used branch-and-price to solve the Minimum Cost Multi-Commodity k-
splittable Flow Problem (MCMCEFP). They applied the algorithm of Truffot et al. [17] to
the MCMCEKFP and proposed a new branch-and-price algorithm based on a 2-index model.
The latter showed very good performance and outperformed the existing branch-and-price
algorithm.

A different exact solution approach from the literature consists of solving an edge-based
formulation of the Maximum Concurrent k-splittable Flow Problem in a branch-and-bound
scheme, see Caramia and Sgalambro [4]. Branching fixes usage of edges and bounding consists
of solving the LP-relaxed edge-based formulation with branching constraints on used edges.
The approach outperformed standard MIP-solvers, but suffered from large branch-and-bound
trees.

The MCEMFP can be represented by a directed graph G = (V, E, L), where V is the set
of vertices and FE the set of edges. A positive capacity u. is associated with every edge e € F.
The set of commodities is denoted L and each commodity [€ L has a source s; € E and a
destination ¢; € E. The maximal number of routes each commodity may use is denoted k.

In this paper three exact solution methods for the MCEKMFP are presented and compared.
The 3-index branch-and-price algorithm (3BP) by Truffot et al. [17] is extended with a
heuristic proposed by Gamst et al. [8] to reach feasible solutions faster. The extended 3BP is
compared to two algorithms based on a 2-index branch-and-price formulation applied to the
MCEMFP by Gamst et al. [8]. The two algorithms for the MCEMFP differ in their branching
schemes. The first algorithm (2BP) uses a branching strategy from the literature where certain
subpaths are forbidden, and the second algorithm (2BP-+B) uses a new branching strategy
where the use of certain paths is either forced or forbidden and where branch cuts are added
to the master problem.

The main contribution of this paper is to apply the 2BP algorithm to the MCEMFP
and especially to introduce the new branching scheme and the branch cuts of the 2BP+B
algorithm. Furthermore, a heuristic use of the 2BP and 2BP+B algorithms is presented.

The paper is organized as follows. In Section 2 we summarize and extend methods from
the literature. The 3BP algorithm is extended with a heuristic in Section 2.1 and the 2BP
algorithm is presented in Section 2.2. Then in Section 3 the new algorithm 2BP+B is pro-
posed. This is followed by Section 4, which transforms the exact methods into heuristics. All
algorithms are compared in Section 5. Section 6 gives final conclusions. Note that throughout
this paper, we refer to a “restricted master problem” simply as a “master problem”.

2 Branch-and-price algorithms from the literature

In this section we briefly introduce two exact algorithms for the MCEMFP from the literature.
First the 3-index branch-and-price algorithm (3BP) by Truffot et al. [17] is presented. The
3BP motivates the need for the 2-index branch-and-price algorithm (2BP), which was originally
applied to the MCMCEFP.

2.1 The 3-index branch-and-price algorithm (3BP)

Truffot et al. [17] solved the MCKMFP by applying Dantzig-Wolfe decomposition [6], such
that the pricing problem generates paths for each commodity and the master problem merges
the paths into an overall solution. We denote their branch-and-price algorithm 3BP.

Let L be the set of commodities and h € {1,...,k} be a path index indicating the first,
second, ..., kth path used by a commodity. A generated path p for commodity [travels from
51 to t;, has capacity u, = minee), ue, and is kept in the set P! In the master problem, the
variable xlfjl > 0 denotes the amount of flow on path p for the hth path of commodity [and
the binary variable y;,‘l denotes whether or not path p is used as the hth path for commodity
I. Furthermore, if 8% = 1 then path p travels on edge e, otherwise 65 = 0. The 3BP master

problem is:

max Z Zk: Z fL';,Ll

lELh:lpePl
k
st > Y Y Stapt<u. VeeE (1)
leL h=1pecp!
zpl — upylt <0 Vie L,he{l,...,k},Vpe P! (2)
doyt<a Vie L,he{l,...,k} (3)
peP!
it >0 Vie L,he{l,...,k},Vpe P!
ynt € {0,1} VieL,he{l,...,k},Vpe P!

The objective function maximizes the total amount of routed flow. Constraints (1) ensure that
edge capacities are satisfied. Constraints (2) force the decision variable y]’;l to be set to one if
there is flow on the corresponding path w;fl. Constraints (3) ensure that at most one path is
used as the hth path of a commodity [. The path index h € {1,...,k} causes symmetry in
the solution space, hence a symmetry-breaking constraint is added to the formulation:

ST et oS M <0 Yhe (L. k- 1}Vl @
pEP! peP!

The constraint forces the order of selected paths to be such that the corresponding amount
of path flow is non-increasing. This eliminates many identical solutions, but does not prevent
symmetric solutions where paths carry the same amount of flow. The 3-index model is LP-
relaxed and then the model is simplified by substituting xlfjl Juy, for ygl, which is feasible
according to constraints (2) and (3) and to the fact that u, > 0. Constraints (2) and the
bounds on the ygl variables are removed from the formulation and constraints (3) are rewritten
as:

xhl
Zu—pg1 Vie L,he{l,...,k} (5)
peP! p
Let m > 0 be the dual variables of constraints (1), A > 0 the dual variables of constraints
(5), and w > 0 the dual variables of constraints (4). Furthermore, let @™ = —wh h =1, @" =
—wh =D =9 k—1, and o™ = w® DL 1 = k. The reduced cost of a path p € P
with path index h € {1,...,k} for a commodity [€ L is:

)\hl
cgl :1—255776———@}” >0
Up
eclE

The pricing problems generate columns for each commodity [and path index h with positive
reduced cost, i.e., where the following holds true:

)\hl
S om <1 A g
Up
eclE

The dual variables @™ and A are thus constants, while the path capacity Uy, is not known
until the path has been generated. The pricing problem fixes the value of wu,, and then tries
to generate a column with positive reduced cost for commodity [by solving a shortest path
problem from s; to t; with edge weights m.,Ve € E : ue > u,. The path capacity u, can be
fixed to at most |E| different values (one for each different u. : e € E), hence the pricing
problem can be solved in polynomial time by considering at most | F| shortest path problems.
The algorithm for solving the pricing problem is illustrated in Algorithm 1, where u, is given
by cap.

Algorithm 1 Algorithm for solving the pricing problem.

1: CAP < a list consisting of edge capacities, u., sorted in increasing order and without
duplicates
: for (each cap € CAP) do
E' + E\{e : u. < cap}
Solve shortest path problem from s; to ¢; on edges e € E' with edge weights
Save path, if its reduced cost is positive
end for

Gamst et al. [8] applied the 3BP algorithm to the MCMCEKFP and improved the 3BP
algorithm by including a heuristic, which merges certain fractional columns such that a feasible
solution was possibly reached. Specifically, one of the following two situations may occur:

1. For a commodity, several identical paths are used but with different values of h. In this
case, the heuristic merges the paths into one single path.

2. More than one path is used for a single value of h for a commodity. Here, the heuristic
assigns a unique value of h to each path, if possible.

The heuristic improved the 3BP algorithm by reducing the size of the branch-and-bound tree
for solved instances and by improving the bounds of unsolved instances [8].

The heuristic is included just before branching, i.e., whenever a fractional lower bound is
found in a branch-and-bound node. This gives us the final 3BP algorithm.

2.2 The 2-index branch-and-price algorithm (2BP)

The MCEMFP is Dantzig-Wolfe decomposed such that the variables of the resulting master
problem do not contain the h-index. This decomposition gives a pricing problem, which
generates a path for each commodity, and a master problem, which merges the paths into an
overall feasible solution.

Recall the notation introduced for the 3BP algorithm. Furthermore, let xé > 0 denote the
amount of flow on path p for commodity [and let yzl) € {0, 1} denote whether or not path p is

used by commodity [. The master problem is:

max Z Z xé (6)

leL pEPl
st > Y 0Pal<u, VeeE (7)
leL pcp!
xé, - upyll, <0 VieLVpeP (8)
> <k VielL (9)
peP!
zh >0 vie LVpe P

yh e {0,1} vie L,Vpe P

The objective function maximizes the total amount of routed flow. Constraints (7) ensure
edge capacities are never violated and constraints (8) force the decision variables to take on
value 1, whenever the amount of flow on the corresponding path is positive. Constraints (9)
limit the number of paths for commodity [to at most k.

The binary variables yé, are LP-relaxed and yé, is replaced by xé,/up, which is feasible
according to constraints (8) and (9). Constraints (8) and the bounds on yll, are redundant and
thus removed from the formulation. Furthermore, constraints (9) are reformulated to:

,Il
Y <k Vel (10)
Up
pEP!
Let 7 > 0 and A > 0 be the dual variables for constraints for (7) and (10). The reduced
cost of a path p € P! for a commodity | € L is:

l

d=1-) 55776—1, VieL, Vpe P (11)
U
ecFE P

Only paths with positive reduced cost will be considered, i.e., we seek to generate paths for
each commodity [where

)\l
> me<1-=, VIeL, Vpe P
ecElR Up

The dual variable X' is considered a constant, while the path capacity Uy, is not known until
the path has been generated. The pricing problem is solved using Algorithm 1, which runs in
polynomial time.

Branching scheme — forbidding edge sequences

The branching scheme forbids edge sequences. Let the divergence vertex for a commodity
be defined as the first vertex where at most one incoming edge is visited and several outgoing
edges are visited by the commodity. If the number of paths emanating from the divergence
vertex for some commodity [is greater than k then branching can be applied.

We consider the set of all paths with positive flow P! of commodity . Let g(p) be the
subpath of p € P! starting at the divergence vertex. Also, let a prefix path of ¢(p) be a subpath
of q(p) beginning in the source of ¢(p). Denote s(p) the smallest prefix path of ¢(p) such that
s(p) is no prefix of any other subpath ¢(p'), p’ € P! : p' # p. Now, s(p) is the unique edge
sequence for p. Each unique edge sequence is forbidden in a branching child. The unique edge
sequences are identified by enumerating and comparing the subpaths of all p € P'.

The number of branching children is kept equal to k + 1, so if more than k + 1 paths
emanate from the divergence vertex, then we let some branching children forbid more than
one unique edge sequence. The reason for this is to reduce the width of the search tree. A
branching child can forbid several unique edge sequences, because all combinations of k paths
from the divergence vertex are available in at least one other branching child.

An illustration of the branching strategy is seen in Figure 1. A graph with four vertices is
given and a single commodity with source s and destination ¢ is to be routed using at most
two paths. In the current solution three paths are used: p; = (e1,e4,€5),p2 = (e1,e3,€5), and
ps = (e2, €3, e5). Assume that the optimal solution consists of path p; and ps. The divergence
vertex is s and k + 1 subpaths emanating from s are found: (eq,e3), (e1,e4) and (ez). The
optimal solution is found in the branching child, which forbids the use of edge sequence (e, e3).

€1 €
o e
€9 €4

Figure 1: A graph used to illustrate the branching scheme. The graph consists of four vertices,
the source vertex is denoted s, and the destination vertex ¢t. Edges are e, es, e3,eq, and es.

The branching scheme changes the pricing problem. When solving the shortest path
problem we need to ensure that we do not use the forbidden edge sequences. The shortest
path problem with forbidden paths is a polynomial problem and can be solved by applying a
shortest path algorithm on an extended graph, see Villeneuve and Desaulniers [19].

3 New branching scheme for the 2BP

In this section we present the new branch-and-price algorithm 2BP+B. The 2BP+B algorithm
only differs from the 2BP algorithm in the branching scheme. The master problem (6),(7) and
(10) is the same and the reduced cost is given by (11).

This branching scheme is based on the idea of forbidding or forcing the use of a certain path
p’ for a fixed commodity [€ L. This corresponds to setting yll), =0or yll), = 1, respectively, in
the non-relaxed master problem. In the remainder of this section a fixed commodity [€ L is
assumed.

The effect of the branching scheme on the non-relaxed master problem, specifically con-
straint (9) is considered. Both when yé, =0 and yIl), = 1, the variable can be left out of the

constraint. If y;,/ = 1 the constraint is rewritten as:

Yo gkl

peP\{p'}

Now, the effect of the branching scheme on the relaxed master problem, specifically con-
straint (10) is considered. When path p’ is forbidden for commodity I then wé, = (0. When the

use of path p’ is forced then we set xé, > €, where € > 0 is a suitably small number. Constraint
(10) is rewritten as:

> x—é’gk—1 (12)

peP\(p} P

This is stronger than the original constraint when mfv/ < uy, hence the bound of the branching
child is strengthened in this case.

The number of branching children depends on the current fractional solution. Assume
that the current solution consists of k 4+ a;, o > 0 paths for commodity [. At least a+ 1 paths
in the current fractional solution have xé < up, otherwise constraint (10) would be violated.
Let P! denote these paths. An optimal solution may not include any of the paths in P!, hence
we propose the following branching strategy. Generate |P!| + 1 branching children. Usage of
each path in P! is respectively forced in the first |P!| children. In the last child, usage of any
path in P! is forbidden.

The first |P!| children cause symmetry in the solution space. Consider an example with
|P!| + 1 = 4 branching children by, by, b3 and by, forcing usage of path p1, ps, and p3, and
forbidding all paths p1, p2, and p3, respectively. Now, a solution containing paths p; and ps
can be generated in both the subtree of branching child b; and bs.

To prevent such symmetry in the branching children, the branching strategy is changed
into letting the first |P!| children force and forbid usage of certain paths. Recall the previous
example. Child b; still forces the use of p;. Child by forces the use of py and forbids the use
of p1. Similarly, child b3 forces the use of p3 and forbids the use of p; and po. In this way, the
solution using p; and p3 is only available in the subtree of b;.

In practice we would rather add a cut than rewrite constraints (10) when the use of a
path is forced. Constraints (10) are thus always kept in the master problem, even if stronger
constraints are added due to the branching strategy. Recall inequality (12) when forcing the
use of path p’. This inequality is denoted the branch cut. Branching children which force the
usage of paths, have the corresponding branch cuts added to their master problem. The set
of branch cuts for commodity [is denoted B'. Let wy > 0 be the dual of branch cut b € B!
for commodity I. The resulting reduced cost for path p € P! for commodity [€ L is:

A A+ w
Cézl_z(;;%__l_Zﬂzl_zggﬂe_w (13)
c€E Up e P e€E Up

When solving the pricing problem for commodity [the dual costs wy; are constants. Hence the
branch cut does not affect the structure of the pricing problem. The pricing problem must,
however, be able to avoid using forbidden paths as for the 2BP algorithm.

4 Heuristic approach

The presented exact algorithms can be used as heuristics by only computing the root node and
then returning the best feasible solution. The approach of only computing the root node does
not guarantee a polynomial running time, since an exponential number of columns potentially
needs to be added in the root. In practice, however, we expect low running times.

The heuristic usage of the 3BP algorithm is denoted SHEUR. Because no branching occurs
the heuristic usage of the 2BP and the 2BP-+B algorithms is identical and is denoted 2HEUR.
Truffot and Duhamel [16] argue that the 3-index and 2-index formulations are equivalent, also
after LP-relaxation and elimination of the binary variables. Even though the formulations
give the same bounds, we may not reach the same feasible solutions in the root node. Hence
we investigate the performance of 3SHEUR and 2HEUR empirically.

The 2HEUR may give infeasible solutions where more than k paths are used for each
commodity. In this case we try to move the flow between the paths in order to find a feasible
solution using at most k paths for each commodity. The approach takes as input {G, P, X },
where G is the graph representing the problem instance, P = J;, Pl is the set of paths in the
current fractional solution with x, > 0, and X is the set of non-zero variables in the current
fractional solution, i.e., x, > 0,Vx, € X. The steps of the approach are seen in Algorithm 2.
In line 1, an empty solution is initialized. Then, for each commodity [, the approach first

Algorithm 2 Flow-moving approach with {G, P, X} as input

1: Initialize empty solution sol + ()
2: for (each [€ L) do
3: P!« list of p € P! C P sorted according to decreasing Up @ Up ¢ Mileep Ue

4: for (each p € P! with mineep,ue > 0) do

5 fé) < MiNeep Ue

6: ue%ue—fé,, Ve €p

7 sol < {p, a?é}

8 if (Flow is assigned to k paths for commodity 1) then
9: break

10: end if

11: end for

12: end for

13: Return solution sol

sorts path for the commodity according to decreasing path capacity. Then for each path in
the sorted list, the approach identifies the amount of flow that can be sent on the path (line
5), subtracts this flow from the edges of the path (line 6) and stores the path and its flow
in the solution (line 7). If k paths are stored for commodity [the approach considers the
next commodity (line 9-11). When all commodities are considered, the approach returns the
generated solution (line 13). Note that the order of paths in P' does not change in line 4-11,
even though edge capacities are changed in line 6.

The flow-moving approach has time complexity O(|L|(|P|log |P| + |P||E])), where P =
User,P!. This is polynomial in the input size of the approach. Including this flow-moving
approach in 2HEUR gives the final heuristic denoted 2HEUR+FM.

Name V| |E| L]

Random5-35 5 35 1
Random10-45 10 45 1
Random15-60 15 60 1
Random?20-140 20 140 1
tgl10-2 12 40 1
tg20-2 22 80 1
tg40-1 42 154 1
tg40-5 42 154 1
tg80-1 82 322 1
tg100-2 102 400 1
Random10-40 10 40 3
Random11-42 11 42 11
Random?20-80 20 80 20

Random22-56 22 56 22

Table 1: Sizes of test instances. First column denotes the instance name, then follows the
number of vertices, the number of edges, and finally the number of commodities.

5 Computational results

A computational evaluation is performed on a dual 2.66GHz Intel® Xeon® X5355 machine
with 16 GB of RAM. Note that CPU times in the following stem from using one core only.

We have tested the proposed algorithms; the 3BP extended with the heuristic to reach
feasible solutions faster, the 2BP, the 2BP+B, and the three heuristics: 3HEUR, 2HEUR,
and 2HEUR+FM. We implemented all algorithms using the COIN framework [13| with ILOG
CPLEX 10.2 as LP-solver. Computations concerning the selection of branching candidates and
branching children are handled by COIN.

The solution methods are tested on benchmark instances from the literature [16]: the
Random instances are randomly generated and the tg instances are generated by the Transit
Grid generator! using topologies from transportation networks. See Table 1 for details.

Two different types of tests have been performed. First the three exact algorithms are
computationally evaluated on the described instances and results are compared. Then we test
the performance of the heuristics, SHEUR, 2HEUR and 2HEUR+FM, to investigate their
heuristic solution values and running times.

5.1 Exact approach

The three algorithms are computationally evaluated on the described instances. Results for
the single-commodity Random instances are summarized in Table 2 and results for the single-
commodity tg instances are summarized in Table 3. The multi-commodity instances are all
of the Random type and results are summarized in Table 4.

In the tables the first column holds the name of the problem instance, the second column
holds the value of k£ and the third column holds the optimal value. Then follows the size and
depth of the search tree, the number of generated variables, the gap in percent between the
upper and lower bound, and the time in seconds spent on solving the instance for the 3BP,
the 2BP, and the 2BP-+B algorithms, respectively. If a test run is marked with “” then it has
run out of memory. If the gap is also marked with “-” then no lower bound was found. The

"http://www.informatik.uni-trier.de/ nacher/Professur/research/generators/maxflow/tg/index.
html

10

3BP 2BP 2BP+B

Problem k =z size depth vars gap time size depth vars gap time size depth vars gap time
Random5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2128 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00

3 182 1 0 27 0.00% 0.01 1 0 9 0.00% 0.00 1 0 9 0.00% 0.00

4 223 13 6 48 0.00% 0.01 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00

5 262 19 9 60 0.00% 0.03 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00

6 297 21 10 78 0.00% 0.03 1 0 14 0.00% 0.01 1 0 14 0.00% 0.00

7 326 67 12 98 0.00% 0.10 1 0 14 0.00% 0.00 1 0 14 0.00% 0.00

8 326 1 0 104 0.00% 0.00 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00

Random10-45 1 73 1 0 6 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 142 5 2 15 0.00% 0.01 4 1 9 0.00% 0.01 8 2 9 0.00% 0.01

3 209 9 3 33 0.00% 0.02 21 3 15 0.00% 0.03 20 3 12 0.00% 0.02

4 260 45 17 68 0.00% 0.08 411 12 24 0.00% 0.56 34 4 20 0.00% 0.03

5 306 369 22 102 0.00% 0.80 23599 18 34 0.00% 44.96 40 4 20 0.00% 0.07

6 345 973 26 137 0.00% 2.90 >427099 >26 39 2.36% - 135 6 26 0.00% 0.22

7 381 4281 36 219 0.00% 16.55 >354551 >22 46 -% - 313 8 34 0.00% 0.64

8 413 22085 43 265 0.00% 102.51 | >431200 >20 46 2.93% - 606 9 40 0.00% 1.31

9429 | >110199 >58 380 6.43% - | >388228 >26 60 -% . 2507 11 46 0.00% 5.97

10 451 | >104999 >57 448 5.74% o | >456699 >41 74 6.57% . 2355 12 46 0.00% 5.91

Randoml15-60 1 86 1 0 5 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 163 1 0 16 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00

3 221 9 3 34 0.00% 0.02 41 6 15 0.00% 0.06 12 2 12 0.00% 0.02

4 248 111 10 700.00% 0.32 | >100454 >26 50 -% . 111 6 200.00% 0.22

5 268 557 18 101 0.00% 551.83 | >176599 >29 52 2.86% - 322 7 290.00% 0.76

6 287 419 21 135 0.00% 1.59 | >277801 >31 45 2.74% - 354 9 300.00% 0.79

7 205 19097 35 194 0.00% 72.91 | >387565 >23 49 -% - 836 10 27 0.00% 1.74

8 301 88799 >47 231 2.90% - | >413343 >33 55 2.90% . 4995 11 30 0.00% 11.32

9306 | >153099 >51 229 1.29% - | >547079 >28 48 % - 2263 11 19 0.00% 4.42

Random20-140 1 81 1 0 4 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 158 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00

3 228 1 0 30 0.00% 0.02 1 0 11 0.00% 0.00 1 0 11 0.00% 0.00

4 253 9935 31 103 0.00% 75.25 >41444 >42 68 -% - 90 18 67 0.00% 1.04

5 274 >39999 >41 146 1.86% - >68299 >66 87 1.86% - 819 22 51 0.00% 12.65

6 294 >30199 >61 184 1.78% - >60299 >86 107 1.78% - >14106 >32 113 1.78% -

7 - >28999 >70 227 1.81% - >75894 >46 91 -% - >14299 >32 109 1.69% -

8 319 >30599 >80 267 1.91% - >94699 >101 120 1.91% - 4028 22 29 0.00% 52.95

9 325 >39599 >93 315 0.84% - >108990 >63 105 -% - 130 9 25 0.00% 0.32

10 327 2907 109 326 0.00% 19.15 >272685 >49 68 0.61% - 17 3 22 0.00% 0.02

11 327 1325 86 301 0.00% 8.75 49 3 22 0.00% 0.03 20 5 20 0.00% 0.03

Best 11 14 36

Table 2: Results from solving the single-commodity Random instances exactly.

total number of times each algorithm has best performance is found at the bottom of each
table. Also, for each instance the best performance is written in bold.

The 2BP algorithm performs much better than the 3BP algorithm for the MCMCKFP [8];
however, this is generally not the case for the MCEMFP. Although the number of times the
algorithm has best performance is larger for the 2BP, the 3BP algorithm is capable of solving
more instances. The change of objective function has a great impact on the problem; the
algorithms always try to push as much flow through the network as possible, thus potentially
exploiting the somewhat weakly formulated bound on the number of used paths. The formu-
lation has less impact on the minimum cost problem because it may not always be beneficial
to increase the number of used paths. The 2BP algorithm suffers from large search trees be-
cause of the existence of potentially many solutions using more than k paths per commodity
and because the branching scheme allows much symmetry in the branching children. The 2BP
algorithm, however, performs somewhat better than the 3BP for the multi-commodity Random
instances with respect to running times.

The 2BP+B algorithm generally performs much better than the 3BP algorithm. Excep-
tions are tg40-5, k = 4 and Random20-80, k = 5, for which the 2BP+B algorithm spends more
time on solving. Furthermore, 2BP+B is unable to find an optimal solution for Random20-80,
k = 4. For the far majority of test instances, however, the 2BP+B algorithm is capable of
finding an optimal solution in short time, even when the 3BP algorithm shows great difficulty.

11

3BP 2BP 2BP+B
Problemk z size depth vars gap time size depth vars gap time size depth vars gap time
tgl0-2 1 389 1 0 5 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 557 215 13 26 0.00% 0.21 355 14 10 0.00% 0.21 41 5 11 0.00% 0.04
3 716 553 19 58 0.00% 0.70 39505 20 28 0.00% 32.49 53 5 15 0.00% 0.06
4 815 83 17 52 0.00% 0.10 6 1 8 0.00% 0.00 5 1 8 0.00% 0.00
5 815 1 0 40 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00
tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 643 1 0 10 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
3 832 5 2 33 0.00% 0.04 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
4 853 1 0 40 0.00% 0.01 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01 1 0 5 0.00% 0.00
2 750 5 2 16 0.00% 0.07 4 1 10 0.00% 0.02 10 3 12 0.00% 0.07
3 908 >9999 >40 96 2.61% - >83282 >61 94 -% - 231 11 21 0.00% 3.32
4 994 >7799 >57 143 1.00% - >82770 >45 64 -% - 893 18 33 0.00% 25.15
5 1004 15 7 65 0.00% 0.09 703 27 20 0.00% 1.41 11 2 18 0.00% 0.03
6 1004 1 0 96 0.00% 0.03 29 3 13 0.00% 0.02 43 6 13 0.00% 0.07
tg40-5 1 487 1 0 8 0.00% 0.01 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 828 >20599 >46 80 4.11% - >64248 >45 57 5.70% - 144 9 23 0.00% 1.49
3 1062 >17299 >59 139 0.28% - >77103 >44 65 -% - 276 8 22 0.00% 4.20
41078 181 47 68 0.00% 0.61 >148934 >22 50 -% - 1520 21 22 0.00% 26.53
5 1078 3 1 90 0.00% 0.03 61 4 16 0.00% 0.04 76 20 16 0.00% 1.72
tg80-1 1 549 1 0 7 0.00% 0.04 1 0 6 0.00% 0.02 1 0 6 0.00% 0.02
2 984 1591 29 80 0.00% 65.22 2308 22 25 0.00% 59.16 288 11 39 0.00% 8.72
3 1411 >2199 >36 162 3.85% - >51476 >49 107 -% - 1914 10 38 0.00% 110.38
tgl00-2 1 530 1 0 7 0.00% 0.07 1 0 6 0.00% 0.03 1 0 6 0.00% 0.02
2 1007 3 1 16 0.00% 0.20 1 0 8 0.00% 0.04 1 0 8 0.00% 0.04
3 1407 >1099 >31 115 0.39% - >29087 >60 113 -% - 229 6 51 0.00% 29.14
4 1768 >1499 >72 234 1.51% - >56256 >40 167 -% - 2118 9 82 0.00% 284.41
Best 7 12 23
Table 3: Results from solving the tg instances exactly.
3BP 2BP 2BP+B
Problem k =z size depth vars gap time size depth vars gap time size depth vars gap time
Random10-40 1 110 5 2 18 0.00% 0.02 5 2 15 0.00% 0.00 4 1 14 0.00% 0.01
2 194 1 0 26 0.00% 0.00 34 5 21 0.00% 0.04 4 1 18 0.00% 0.01
3 258 183 18 80 0.00% 0.39 213 12 24 0.00% 0.18 50 6 23 0.00% 0.06
4 293 695 36 129 0.00% 2.23 2956 16 41 0.00% 4.25 112 7 320.00% 0.20
5 309 1989 30 176 0.00% 7.91 >253716 >25 56 1.24% 1.06 561 12 39 0.00% 1.06
6 318 15905 36 253 0.00% 73.84 >610006 >24 59 1.35% - 1294 13 60 0.00% 2.63
7 321 >153199 >56 286 0.01% - >335959 >26 54 -% - 26182 18 47 0.00% 57.10
8 323 113 37 299 0.00% 0.52 2008 14 37 0.00% 1.23 2051 15 36 0.00% 2.43
9 323 333 49 318 0.00% 1.38 11 1 32 0.00% 0.01 18 5 32 0.00% 0.02
Random11-42 1 291 5 2 29 0.00% 0.02 7 3 28 0.00% 0.01 7 2 27 0.00% 0.02
2 343 1 0 50 0.00% 0.01 7 2 27 0.00% 0.01 6 1 27 0.00% 0.01
3 344 1 0 75 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
4 344 1 0 100 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
Random20-80 1 347 7 3 55 0.00% 0.06 3 1 51 0.00% 0.02 7 2 53 0.00% 0.04
2 553 3 1 100 0.00% 0.03 4 1 50 0.00% 0.02 4 1 51 0.00% 0.01
3 584 1063 24 188 0.00% 6.14 57 7 59 0.00% 0.16 1020 16 62 0.00% 3.45
4 601 5599 33 277 0.00% 40.05 1041 10 60 0.00% 2.02 >81550 >548 601 2.01% -
5617 13291 44 340 0.00% 117.96 4363 14 66 0.00% 7.35 49695 34 67 0.00% 198.61
6 621 >48999 >40 380 0.01% - 3998 11 63 0.00% 6.42 32552 29 58 0.00% 100.08
7 626 413 37 412 0.00% 3.48 17 2 57 0.00% 0.02 116 14 57 0.00% 0.22
8 626 1 0 440 0.00% 0.03 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01
Random22-56 1 365 9 3 52 0.00% 0.02 7 3 42 0.00% 0.02 7 2 44 0.00% 0.02
2 389 11 4 81 0.00% 0.02 10 3 42 0.00% 0.02 9 3 42 0.00% 0.01
3 407 1 0 108 0.00% 0.01 1 0 41 0.00% 0.01 1 0 41 0.00% 0.01
4 407 1 0 144 0.00% 0.01 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00
Best 7 17 14

Table 4: Results from solving the multi-commodity instances exactly.

12

The 2BP+B algorithm generally also generates smaller gaps for instances, which are not solved
to optimality. Reasons are that the search tree sizes are generally smaller for the 2BP+B,
the number of variables in the master problem is smaller, and much symmetry is eliminated
because of the lacking h-indices.

The 2BP+B algorithm generally also performs much better than the 2BP algorithm. Ex-
ceptions are Random20-80, & = 4,5, and 6 where the 2BP has overall best performance. The
reason for the generally superior performance of the 2BP+B algorithm is that the branch-
ing scheme gives better bounds in the branching children: forcing the use of a path is much
stronger than forbidding a path. Also forbidding the use of all paths with positive flow is
stronger than forbidding a subset of the paths.

All three algorithms suffer from the same weakness in the formulation, specifically the
bounding of the number of used paths per commodity: constraints (3) for the 3BP and (10)
for the 2BP and the 2BP+B algorithms. Because the objective is to maximize the total
amount of flow, the algorithms are very likely to exceed k paths per commodity whenever
the mentioned constraints are not tight. The constraints will rarely be tight, especially when
several paths share the same edges and the corresponding xé Jup < 1. The 2BP+B reduces
this problem to some extend with the branching cut (12).

Finally, it is noted that including the flow-moving approach from Algorithm 2 in the
exact 2BP and 2BP+B approaches does not improve performance; see the tables at http:
//wuw.diku.dk/~gamst/heuristic_results.pdf for documentation.

5.2 Heuristic approach

The three heuristics 3HEUR, 2HEUR, and 2HEUR-+FM are evaluated on the previously
described instances. Test results are summarized in tables 5, 6, and 7.

The first column of each table holds the name of the problem instance, the second column
holds the value of k, and the third column holds the optimal value. Then follows for each of
the algorithms 3HEUR, 2HEUR, and 2HEUR+FM; the number of iterations in the column
generation, the gap between the heuristic and the optimal value, and the time in seconds
spent on solving the instance. An entry marked with “-” indicates that no feasible solution
was found. The average number of iterations, gap, and time usage are given at the bottom of
each table.

The results show that the 3HEUR algorithm often gives poor heuristic solutions with
gaps of up to 94%. For three multi-commodity Random instances the 3BP algorithm is even
unable to find a feasible solution in the root node. The 2HEUR algorithm generally finds much
better solution values than the 3HEUR algorithm. The 2HEUR+FM, however, shows superior
performance by solving the majority of the instances to optimality and with the largest gap
of those not solved being 20%. All heuristics have very low running times and terminate in
less than a second.

6 Conclusion

Two new exact solution methods for the MCEMFP problem have been introduced. They are
both based on Dantzig-Wolfe decomposition, where the master problem is a 2-index formu-
lation merging paths for commodities into an overall solution. The two methods differ in
their branching schemes: the first method forbids subpaths (2BP), while the second forces or

13

3HEUR 2HEUR 2HEUR+4FM

Problem k z iter. gap time iter. gap time iter. gap time
Random5-35 1 66 5 0.00 0.00 3 0.00 0.00 3 0.00 0.01
2 128 7 0.00 0.00 5 0.00 0.00 5 0.00 0.00

3 182 8 0.00 0.00 7 0.00 0.00 7 0.00 0.00

4 223 12 16.60 0.00 10 0.00 0.00 10 0.00 0.00

5 262 12 54.96 0.00 10 0.00 0.00 10 0.00 0.00

6 297 13 80.37 0.00 12 0.00 0.00 12 0.00 0.00

7 326 14 54.29 0.00 12 0.00 0.00 12 0.00 0.00

8 326 13 0.00 0.01 11 0.00 0.00 11 0.00 0.00

Random10-45 1 73 6 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 142 7 12.68 0.00 6 12.68 0.00 6 0.00 0.00

3 209 10 22.00 0.01 10 15.31 0.00 10 0.00 0.00

4 260 13 65.38 0.01 13 18.08 0.00 13 0.00 0.00

5 306 15 75.82 0.01 17 46.73 0.00 17 0.00 0.00

6 345 17 73.91 0.02 19 43.48 0.00 19 0.00 0.00

7 381 23 76.38 0.02 21 47.77 0.00 21 8.40 0.01

8 413 24 78.21 0.02 23 48.18 0.00 23 6.78 0.01

9 429 30 79.02 0.04 30 37.06 0.00 30 1.40 0.00

10 451 35 80.04 0.05 38 36.59 0.01 38 0.00 0.01

Random15-60 1 86 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
2 163 8 0.00 0.01 8 0.00 0.00 8 0.00 0.00

3 221 10 55.24 0.01 11 85.52 0.00 11 16.74 0.00

4 248 13 87.50 0.01 18 56.04 0.01 18 10.01 0.00

5 268 16 57.49 0.02 20 51.49 0.00 20 5.97 0.00

6 287 18 93.38 0.02 22 50.52 0.01 22 6.62 0.00

7 295 20 85.05 0.02 23 46.44 0.01 23 13.90 0.00

8 301 19 59.47 0.01 21 46.84 0.00 21 17.94 0.00

9 306 18 60.13 0.01 18 39.87 0.00 18 19.93 0.00

Random20-140 1 81 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 158 7 0.00 0.02 6 0.00 0.00 6 0.00 0.00

3 228 10 0.00 0.02 10 0.00 0.00 10 0.00 0.00

4 253 12 82.48 0.03 13 0.00 0.00 13 0.00 0.01

5 274 16 84.69 0.04 16 1.46 0.01 16 0.00 0.01

6 294 18 84.69 0.04 24 69.05 0.01 24 3.40 0.01

9 325 22 86.15 0.04 24 44.92 0.01 24 0.31 0.01

10 327 21 86.24 0.01 19 3.67 0.00 19 3.67 0.00

11 327 20 86.24 0.01 19 0.61 0.00 19 0.61 0.00

Sum 14 49.40 0.01 15 22.29 <0.01 15 3.21 <0.01

Table 5: Results from solving the single-commodity Random instances heuristically, where each
algorithm terminates after having evaluated the root node only.

3HEUR 2HEUR 2HEUR+FM

Problem k z iter. gap time iter. gap time iter. gap time
tgl0-2 1 389 5 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 557 6 0.00 0.00 6 0.00 0.00 6 0.00 0.00

3 716 9 0.00 0.00 10 15.22 0.00 10 0.00 0.00

4 815 8 0.00 0.00 8 15.83 0.01 8 0.00 0.00

5 815 8 0.00 0.00 8 0.00 0.00 8 0.00 0.00

tg20-2 1 385 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 643 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00

3 832 11 18.03 0.00 10 0.01 0.00 10 0.00 0.01

4 853 10 0.00 0.01 10 0.00 0.00 10 0.00 0.00

tg40-1 1 517 5 0.00 0.01 5 0.00 0.01 5 0.00 0.01
2 750 7 72.13 0.01 9 61.33 0.01 9 0.00 0.01

tgd0-5 1 487 | 8 0.00 0.00 | 6 0.00 0.00 | 6 0.00 0.01
tg80-1 1 549 7 0.00 0.04 6 0.00 0.02 6 0.00 0.02
2 984 11 52.74 0.14 14 14.63 0.06 14 0.00 0.06

tg100-2 1 530 7 0.00 0.07 6 0.00 0.02 6 0.00 0.02
2 1007 8 28.10 0.15 8 0.00 0.04 8 0.00 0.03

Sum 7 10.69 0.03 8 6.69 0.01 8 0.00 0.01

Table 6: Results from solving the tg instances heuristically, where each algorithm terminates
after having evaluated the root node only.

14

SHEUR 2HEUR 2HEUR+FM

Problem k z iter. gap time iter. gap time iter. gap time
Random10-40 1 110 6 31.82 0.00 5 20.00 0.01 5 17.27 0.00
2 194 6 0.00 0.00 9 60.82 0.00 9 0.00 0.00
3 258 11 80.62 0.01 11 69.38 0.00 11 6.59 0.00
4 293 14 66.21 0.02 15 36.52 0.01 15 7.17 0.01
5 309 16 67.96 0.02 19 34.95 0.00 19 8.41 0.01
6 318 21 68.89 0.03 25 33.02 0.00 25 5.97 0.01
7 321 17 84.42 0.02 21 24.61 0.00 21 1.56 0.01
8 323 21 84.52 0.01 20 22.29 0.00 20 4.34 0.00
9 323 20 84.52 0.01 21 9.29 0.00 21 0.00 0.00
Random11-42 1 291 6 6.19 0.01 6 6.19 0.00 6 0.00 0.01
2 343 4 0.00 0.00 5 19.53 0.00 5 4.08 0.00
3 344 4 0.00 0.00 5 0.00 0.01 5 0.00 0.00
4 344 4 0.00 0.00 5 0.00 0.00 5 0.00 0.00
Random20-80 1 347 6 25.36 0.01 6 16.14 0.01 6 0.00 0.01
2 553 7 35.80 0.02 7 15.91 0.01 7 0.00 0.01
3 584 9 - 0.02 9 7.53 0.00 9 0.00 0.01
4 601 12 - 0.03 12 7.65 0.01 12 0.00 0.01
5 617 14 - 0.04 16 4.05 0.02 16 2.27 0.00
6 621 12 58.29 0.03 14 0.64 0.01 14 0.00 0.01
7 626 12 58.63 0.03 14 0.96 0.01 14 0.80 0.01
8 626 12 0.00 0.03 14 0.00 0.01 14 0.00 0.01
Random22-56 1 365 6 0.00 0.01 5 0.00 0.00 5 0.00 0.00
2 389 6 1.54 0.00 5 1.54 0.00 5 0.00 0.00
3 407 6 0.00 0.01 5 0.00 0.00 5 0.00 0.01
4 407 6 0.00 0.00 5 0.00 0.01 5 0.00 0.01
Sum 9 34.31 0.01 11 15.64 <0.01 11 2.34 <0.01

Table 7: Results from solving the multi-commodity Random instances heuristically, where each
algorithm terminates after having evaluated the root node only. Sum only sums over the
instances where all heuristics found a feasible solution.

forbids the use of certain paths (2BP+B). The latter also adds branching cuts to the master
problem.

The 2BP and 2BP+B algorithms are implemented and compared with a leading exact
algorithm from the literature denoted 3BP. Results show that the 2BP-+B algorithm performs
significantly better than the 2BP and the 3BP algorithms both with respect to the number
of solved instances and with respect to the time usage. The main reason is that using the
2BP+B algorithm produces smaller search trees, reduces the number of variables in the master
problem, and eliminates some of the symmetry in the solution space.

Terminating the computations after having evaluated the root node transforms the 3BP
and the 2BP/2BP+B algorithms into heuristics denoted 3HEUR and 2HEUR, respectively.
Because no branching occurs in this heuristic approach, the 2BP and the 2BP+B algorithms
become identical. Test results for this approach show that the 3HEUR does not perform well,
with the majority of the solution values having gaps of up to 94%. The 2HEUR algorithm,
however, shows very promising performance when including a flow-moving approach, which
transforms some fractional solutions into feasible solutions. In most cases optimal solutions
are found and the average solution gaps never exceed 4%. Both heuristics terminate in less
than a second for all tested instances.

All algorithms suffer from weak formulations for bounding the number of used paths per
commodity. We believe that future work should concentrate on tightening these constraints.
The problem could for example be reformulated such that the number of used paths per
commodity is implicitly satisfied through pricing or primal convexification techniques. We
believe that the focus should be on cuts violated in the edge-based model or the original
master problem. Future work could also concentrate on finding better branching strategies
for the 2-index formulation in order to further reduce the size of the search tree.

15

Acknowledgement
We would like to thank GlobalConnect A/S for their support of this work.

References

1]

2]

3]

[5]

[6]

8]

[9]

[10]

[11]

[12]

[13]

[14]

F. Alvelos and J. M. V. de Carvalho. Comparing branch-and-price algorithms for the
unsplittable multicommodity flow problem. In International Network Optimization Con-
ference, pages 7-12, 2003.

G. Baier, E. Kohler, and M. Skutella. On the k-splittable flow problem. Algorithmica,
42:231-248, 2005.

C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to
solve origin-destination integer multicommodity flow problems. Operations Research,
48(2):318-326, 2000.

M. Caramia and A. Sgalambro. An exact approach for the maximum concurrent k-
splittable flow problem. Optimization Letters, 2:251-265, 2008.

M. Caramia and A. Sgalambro. A fast heuristic algorithm for the maximum concurrent
k-splittable flow problem. Optimization Letters, 4:37-55, 2010.

G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8:101-111, 1960.

J. W. Evans and C. Filsfils. Deploying IP and MPLS QoS for Multiservice Networks:
Theory and Practice. Morgan Kaufmann, 2007.

M. Gamst, P. N. Jensen, D. Pisinger, and C. E. M. Plum. Two- and three-index formula-
tions of the minimum cost multicommodity k-splittable flow problem. Furopean Journal
of Operations Research, 202(1):82-89, 2010.

J. Kleinberg. Single-source unsplittable flow. In 37th Annual Symposium on Foundations
of Computer Science (FOCS 96), 1996.

R. Koch, M. Skutella, and I. Spenke. Approximation and complexity of k-splittable flows.
In Approzimation and Online Algorithms, Third International Workshop, WAOA, pages
244-257, 2005.

R. Koch, M. Skutella, and I. Spenke. Maximum k-splittable s, t -flows. Theory of
Computing Systems, 43(1):1432-4350, 2008.

S. G. Kolliopoulos. Minimum-cost single-source 2-splittable flow. Information Processing
Letters, 94(1):15-18, 2005.

R. Lougee-Heimer. The common optimization interface for operations research. IBM
Journal of Research and Development, 47:57-66, 2003.

M. Martens and M. Skutella. Flows on few paths: algorithms and lower bounds. Net-
works, 48(2):68-76, 2006.

16

[15] F. Salazar and M. Skutella. Single-source k-splittable min-cost flows. Operations research
letters, 37:71-74, 2009.

[16] J. Truffot and C. Duhamel. A branch and price algorithm for the k-splittable maximum
flow problem. Discrete Optimization, 5(3):629-646, 2008.

[17] J. Truffot, C. Duhamel, and P. Mahey. Using branch-and-price to solve multicommodity
k-splittable flow problems. In Proceedings of International Network Optimization Con-
ference (INOC), 2005.

[18] J. Truffot, C. Duhamel, and P. Mahey. k-splittable delay constrained routing problem:
A branch-and-price approach. Networks, 55(1):33-45, 2010.

[19] D. Villeneuve and G. Desaulniers. The shortest path problem with forbidden paths.
European Journal of Operational Research, 165(1):97-107, 2005.

17

