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Comparing branh-and-prie algorithms forThe Multi-Commodity k-splittable Maximum Flow ProblemM. Gamst⋆ and B. Petersen⋄DTU Management Engineering, Produktionstorvet 426, DK-2800 Kgs. Lyngby, Denmark
⋆ gamst�man.dtu.dk, ⋄ bjop�man.dtu.dkAbstratThe Multi-Commodity k-splittable Maximum Flow Problem onsists in routing asmuh �ow as possible through a apaitated network suh that eah ommodity uses atmost k paths and the apaities are satis�ed. The problem appears in teleommuniations,spei�ally when onsidering Multi-Protool Label Swithing. The problem has previouslybeen solved to optimality through branh-and-prie. In this paper we propose two exatsolution methods both based on an alternative deomposition. The two methods di�er intheir branhing strategy. The �rst method, whih branhes on forbidden edge sequenes,shows some performane di�ulty due to large searh trees. The seond method, whihbranhes on forbidden and fored edge sequenes, demonstrates muh better performane.The latter also outperforms a leading exat solution method from the literature. Further-more, a heuristi algorithm is presented. The heuristi is fast and yields good solutionvalues.Keywords: Branh and bound; Combinatorial optimization; Multi-ommodity �ow; k-Splittable; Dantzig-Wolfe deomposition; Heuristi1 IntrodutionThe Multi-Commodity k-splittable Maximum Flow Problem (MCkMFP) onsists in maximiz-ing the amount of routed �ow through a apaitated network suh that eah ommodity usesat most k paths and the apaities are satis�ed. The MCkMFP appears in teleommunia-tions, spei�ally when onsidering Multi-Protool Label Swithing (MPLS). In MPLS, severaldata pakets are gathered under a single label in order to limit the size of the routing tablesand to inrease the quality of data transmission. Also, enapsulating pakets of di�erent net-work protools and only onsidering the labels eliminates the need for the network to supportseveral data link layer tehnologies. The ost of sending data inreases with the number ofLabel Swith Paths (LSP). By limiting the number of used labels (i.e. paths) the total ost anbe redued. However, we must still ensure that all or as muh data as possible is transmitted.This orresponds to the MCkMFP; given an upper bound on the number of paths to use,we try to maximize the total throughput in the network. See Evans and Fils�ls [7℄ for moredetails on the MPLS.When k = 1 the MCkMFP ollapses to the Multi-Commodity unsplittable Maximum FlowProblem for whih speialized algorithms exists, see e.g. Alvelos and de Carvalho [1℄, Barnhartet al. [3℄ and Kleinberg [9℄. We thus assume that k > 1.1



The Multi-Commodity k-splittable Flow Problem (MCkFP) was presented by Baier et al.[2℄, who solved the Maximum Budget-Constrained Single- and Multi-Commodity k-splittab-le Flow Problems using approximation algorithms. The authors proved that the MaximumSingle-Commodity k-splittable Flow Problem is NP-hard in the strong sense for diretedgraphs. Finally, they noted that for k ≥ |E|, a k-splittable (s, t) �ow problem degenerates toan ordinary (s, t) �ow problem.Koh et al. [11℄ proved that the MCkMFP is NP-hard in the strong sense for direted aswell as undireted graphs, and showed that when P 6= NP, the best possible approximationfator is 5
6 . Koh et al. [10℄ onsidered the MCkMFP as a two-stage problem, where the �rststage onsists of the deision on the k paths (routing) and the seond of the amount of �owon the paths (paking). If k is a onstant then it su�es to onsider a polynomial number ofpaking alternatives, whih an be onstruted in polynomial time. If k is part of the input,they proposed an approximation algorithm having approximation fator (1− ǫ), ǫ > 0.Martens and Skutella [14℄ onsidered a variant of the MCkFP with extra onstraints onthe amount of �ow on paths and where the objetive was to minimize the network ongestion.They showed that when reduing the problem to an unsplittable �ow problem, only a onstantfator is lost in the performane ratio.Kolliopoulos [12℄ onsidered the single-soure Minimum Cost 2-splittable �ow problemwith budget onstraints and with the assumption that the minimum edge apaity is largerthan the maximum ommodity demand. The author presented an approximation algorithmwith fator (2, 1). This result was generalized to the k-splittable problem by Salazar andSkutella [15℄ with a resulting approximation fator of (1 + 1

k
+ 1

2k−1 , 1).Caramia and Sgalambro [5℄ proposed a heuristi for the Maximum Conurrent k-splittableFlow Problem, where ommodities are �rst routed using an augmenting path algorithm andthen a loal searh routine re-routes part of the paths. The solution quality of the heuristiwas shown to inrease with the size of k.Tru�ot and Duhamel [16℄ used branh-and-prie to solve the Single-Commodity k-splittableMaximum Flow Problem (SCkMFP). A 3-index edge-path model and a orresponding branh-and-prie algorithm were presented. The priing problem for the olumn generation is a short-est path problem solvable in polynomial time. Furthermore, Tru�ot et al. [17℄ applied their3-index branh-and-prie algorithm to the MCkMFP.Tru�ot et al. [18℄ also onsidered a non-linear variant of the MCkFP with end-to-enddelay bounds on eah path and quality of servie (QoS) requirements. The problem wassolved using branh-and-prie. The results showed that QoS requirements and CPU time areorrelated and that minimizing the delay on edges improves the solution value and dereasesthe omputation time.Gamst et al. [8℄ used branh-and-prie to solve the Minimum Cost Multi-Commodity k-splittable Flow Problem (MCMCkFP). They applied the algorithm of Tru�ot et al. [17℄ tothe MCMCkFP and proposed a new branh-and-prie algorithm based on a 2-index model.The latter showed very good performane and outperformed the existing branh-and-priealgorithm.A di�erent exat solution approah from the literature onsists of solving an edge-basedformulation of the Maximum Conurrent k-splittable Flow Problem in a branh-and-boundsheme, see Caramia and Sgalambro [4℄. Branhing �xes usage of edges and bounding onsistsof solving the LP-relaxed edge-based formulation with branhing onstraints on used edges.The approah outperformed standard MIP-solvers, but su�ered from large branh-and-boundtrees. 2



The MCkMFP an be represented by a direted graph G = (V,E,L), where V is the setof verties and E the set of edges. A positive apaity ue is assoiated with every edge e ∈ E.The set of ommodities is denoted L and eah ommodity l ∈ L has a soure sl ∈ E and adestination tl ∈ E. The maximal number of routes eah ommodity may use is denoted k.In this paper three exat solution methods for the MCkMFP are presented and ompared.The 3-index branh-and-prie algorithm (3BP) by Tru�ot et al. [17℄ is extended with aheuristi proposed by Gamst et al. [8℄ to reah feasible solutions faster. The extended 3BP isompared to two algorithms based on a 2-index branh-and-prie formulation applied to theMCkMFP by Gamst et al. [8℄. The two algorithms for the MCkMFP di�er in their branhingshemes. The �rst algorithm (2BP) uses a branhing strategy from the literature where ertainsubpaths are forbidden, and the seond algorithm (2BP+B) uses a new branhing strategywhere the use of ertain paths is either fored or forbidden and where branh uts are addedto the master problem.The main ontribution of this paper is to apply the 2BP algorithm to the MCkMFPand espeially to introdue the new branhing sheme and the branh uts of the 2BP+Balgorithm. Furthermore, a heuristi use of the 2BP and 2BP+B algorithms is presented.The paper is organized as follows. In Setion 2 we summarize and extend methods fromthe literature. The 3BP algorithm is extended with a heuristi in Setion 2.1 and the 2BPalgorithm is presented in Setion 2.2. Then in Setion 3 the new algorithm 2BP+B is pro-posed. This is followed by Setion 4, whih transforms the exat methods into heuristis. Allalgorithms are ompared in Setion 5. Setion 6 gives �nal onlusions. Note that throughoutthis paper, we refer to a �restrited master problem� simply as a �master problem�.2 Branh-and-prie algorithms from the literatureIn this setion we brie�y introdue two exat algorithms for the MCkMFP from the literature.First the 3-index branh-and-prie algorithm (3BP) by Tru�ot et al. [17℄ is presented. The3BP motivates the need for the 2-index branh-and-prie algorithm (2BP), whih was originallyapplied to the MCMCkFP.2.1 The 3-index branh-and-prie algorithm (3BP)Tru�ot et al. [17℄ solved the MCkMFP by applying Dantzig-Wolfe deomposition [6℄, suhthat the priing problem generates paths for eah ommodity and the master problem mergesthe paths into an overall solution. We denote their branh-and-prie algorithm 3BP.Let L be the set of ommodities and h ∈ {1, . . . , k} be a path index indiating the �rst,seond, . . . , kth path used by a ommodity. A generated path p for ommodity l travels from
sl to tl, has apaity up = mine∈p ue, and is kept in the set P l. In the master problem, thevariable xhlp ≥ 0 denotes the amount of �ow on path p for the hth path of ommodity l andthe binary variable yhlp denotes whether or not path p is used as the hth path for ommodity
l. Furthermore, if δpe = 1 then path p travels on edge e, otherwise δpe = 0. The 3BP master
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problem is:
max

∑

l∈L

k∑

h=1

∑

p∈P l

xhlps.t. ∑

l∈L

k∑

h=1

∑

p∈P l

δpex
hl
p ≤ ue ∀e ∈ E (1)

xhlp − upy
hl
p ≤ 0 ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P l (2)

∑

p∈P l

yhlp ≤ 1 ∀l ∈ L, h ∈ {1, . . . , k} (3)
xhlp ≥ 0 ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P l

yhlp ∈ {0, 1} ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P lThe objetive funtion maximizes the total amount of routed �ow. Constraints (1) ensure thatedge apaities are satis�ed. Constraints (2) fore the deision variable yhlp to be set to one ifthere is �ow on the orresponding path xhlp . Constraints (3) ensure that at most one path isused as the hth path of a ommodity l. The path index h ∈ {1, . . . , k} auses symmetry inthe solution spae, hene a symmetry-breaking onstraint is added to the formulation:
∑

p∈P l

xh+1,l
p −

∑

p∈P l

xhlp ≤ 0 ∀h ∈ {1, . . . , k − 1},∀l ∈ L (4)The onstraint fores the order of seleted paths to be suh that the orresponding amountof path �ow is non-inreasing. This eliminates many idential solutions, but does not preventsymmetri solutions where paths arry the same amount of �ow. The 3-index model is LP-relaxed and then the model is simpli�ed by substituting xhlp /up for yhlp , whih is feasibleaording to onstraints (2) and (3) and to the fat that up > 0. Constraints (2) and thebounds on the yhlp variables are removed from the formulation and onstraints (3) are rewrittenas:
∑

p∈P l

xhlp
up
≤ 1 ∀l ∈ L, h ∈ {1, . . . , k} (5)Let π ≥ 0 be the dual variables of onstraints (1), λ ≥ 0 the dual variables of onstraints(5), and ω ≥ 0 the dual variables of onstraints (4). Furthermore, let ω̄hl = −ωhl, h = 1, ω̄hl =

−ωhl + ω(h−1)l, h = 2, . . . , k − 1, and ω̄hl = ω(h−1)l, h = k. The redued ost of a path p ∈ P lwith path index h ∈ {1, . . . , k} for a ommodity l ∈ L is:
chlp = 1−

∑

e∈E

δpeπe −
λhl

up
− ω̄hl ≥ 0The priing problems generate olumns for eah ommodity l and path index h with positiveredued ost, i.e., where the following holds true:

∑

e∈E

δpeπe < 1−
λhl

up
− ω̄hl4



The dual variables ω̄hl and λhl are thus onstants, while the path apaity up is not knownuntil the path has been generated. The priing problem �xes the value of up, and then triesto generate a olumn with positive redued ost for ommodity l by solving a shortest pathproblem from sl to tl with edge weights πe,∀e ∈ E : ue ≥ up. The path apaity up an be�xed to at most |E| di�erent values (one for eah di�erent ue : e ∈ E), hene the priingproblem an be solved in polynomial time by onsidering at most |E| shortest path problems.The algorithm for solving the priing problem is illustrated in Algorithm 1, where up is givenby cap.Algorithm 1 Algorithm for solving the priing problem.1: CAP ← a list onsisting of edge apaities, ue, sorted in inreasing order and withoutdupliates2: for (eah cap ∈ CAP ) do3: E′ ← E\{e : ue < cap}4: Solve shortest path problem from sl to tl on edges e ∈ E′ with edge weights πe5: Save path, if its redued ost is positive6: end forGamst et al. [8℄ applied the 3BP algorithm to the MCMCkFP and improved the 3BPalgorithm by inluding a heuristi, whih merges ertain frational olumns suh that a feasiblesolution was possibly reahed. Spei�ally, one of the following two situations may our:1. For a ommodity, several idential paths are used but with di�erent values of h. In thisase, the heuristi merges the paths into one single path.2. More than one path is used for a single value of h for a ommodity. Here, the heuristiassigns a unique value of h to eah path, if possible.The heuristi improved the 3BP algorithm by reduing the size of the branh-and-bound treefor solved instanes and by improving the bounds of unsolved instanes [8℄.The heuristi is inluded just before branhing, i.e., whenever a frational lower bound isfound in a branh-and-bound node. This gives us the �nal 3BP algorithm.2.2 The 2-index branh-and-prie algorithm (2BP)The MCkMFP is Dantzig-Wolfe deomposed suh that the variables of the resulting masterproblem do not ontain the h-index. This deomposition gives a priing problem, whihgenerates a path for eah ommodity, and a master problem, whih merges the paths into anoverall feasible solution.Reall the notation introdued for the 3BP algorithm. Furthermore, let xlp ≥ 0 denote theamount of �ow on path p for ommodity l and let ylp ∈ {0, 1} denote whether or not path p is
5



used by ommodity l. The master problem is:
max

∑

l∈L

∑

p∈P l

xlp (6)s.t. ∑

l∈L

∑

p∈P l

δpex
l
p ≤ ue ∀e ∈ E (7)

xlp − upy
l
p ≤ 0 ∀l ∈ L,∀p ∈ P l (8)

∑

p∈P l

ylp ≤ k ∀l ∈ L (9)
xlp ≥ 0 ∀l ∈ L,∀p ∈ P l

ylp ∈ {0, 1} ∀l ∈ L,∀p ∈ P lThe objetive funtion maximizes the total amount of routed �ow. Constraints (7) ensureedge apaities are never violated and onstraints (8) fore the deision variables to take onvalue 1, whenever the amount of �ow on the orresponding path is positive. Constraints (9)limit the number of paths for ommodity l to at most k.The binary variables ylp are LP-relaxed and ylp is replaed by xlp/up, whih is feasibleaording to onstraints (8) and (9). Constraints (8) and the bounds on ylp are redundant andthus removed from the formulation. Furthermore, onstraints (9) are reformulated to:
∑

p∈P l

xlp
up
≤ k ∀l ∈ L (10)Let π ≥ 0 and λ ≥ 0 be the dual variables for onstraints for (7) and (10). The reduedost of a path p ∈ P l for a ommodity l ∈ L is:

clp = 1−
∑

e∈E

δpeπe −
λl

up
, ∀l ∈ L, ∀p ∈ P l (11)Only paths with positive redued ost will be onsidered, i.e., we seek to generate paths foreah ommodity l where

∑

e∈E

δpeπe < 1−
λl

up
, ∀l ∈ L, ∀p ∈ P lThe dual variable λl is onsidered a onstant, while the path apaity up is not known untilthe path has been generated. The priing problem is solved using Algorithm 1, whih runs inpolynomial time.Branhing sheme � forbidding edge sequenesThe branhing sheme forbids edge sequenes. Let the divergene vertex for a ommoditybe de�ned as the �rst vertex where at most one inoming edge is visited and several outgoingedges are visited by the ommodity. If the number of paths emanating from the divergenevertex for some ommodity l is greater than k then branhing an be applied.6



We onsider the set of all paths with positive �ow P̄ l of ommodity l. Let q(p) be thesubpath of p ∈ P̄ l starting at the divergene vertex. Also, let a pre�x path of q(p) be a subpathof q(p) beginning in the soure of q(p). Denote s(p) the smallest pre�x path of q(p) suh that
s(p) is no pre�x of any other subpath q(p′), p′ ∈ P̄ l : p′ 6= p. Now, s(p) is the unique edgesequene for p. Eah unique edge sequene is forbidden in a branhing hild. The unique edgesequenes are identi�ed by enumerating and omparing the subpaths of all p ∈ P̄ l.The number of branhing hildren is kept equal to k + 1, so if more than k + 1 pathsemanate from the divergene vertex, then we let some branhing hildren forbid more thanone unique edge sequene. The reason for this is to redue the width of the searh tree. Abranhing hild an forbid several unique edge sequenes, beause all ombinations of k pathsfrom the divergene vertex are available in at least one other branhing hild.An illustration of the branhing strategy is seen in Figure 1. A graph with four verties isgiven and a single ommodity with soure s and destination t is to be routed using at mosttwo paths. In the urrent solution three paths are used: p1 = (e1, e4, e5), p2 = (e1, e3, e5), and
p3 = (e2, e3, e5). Assume that the optimal solution onsists of path p1 and p3. The divergenevertex is s and k + 1 subpaths emanating from s are found: (e1, e3), (e1, e4) and (e2). Theoptimal solution is found in the branhing hild, whih forbids the use of edge sequene (e1, e3).

❤ ❤ ❤ ❤s t

e2

e1

e4

e3
e5

Figure 1: A graph used to illustrate the branhing sheme. The graph onsists of four verties,the soure vertex is denoted s, and the destination vertex t. Edges are e1, e2, e3, e4, and e5.The branhing sheme hanges the priing problem. When solving the shortest pathproblem we need to ensure that we do not use the forbidden edge sequenes. The shortestpath problem with forbidden paths is a polynomial problem and an be solved by applying ashortest path algorithm on an extended graph, see Villeneuve and Desaulniers [19℄.3 New branhing sheme for the 2BPIn this setion we present the new branh-and-prie algorithm 2BP+B. The 2BP+B algorithmonly di�ers from the 2BP algorithm in the branhing sheme. The master problem (6),(7) and(10) is the same and the redued ost is given by (11).This branhing sheme is based on the idea of forbidding or foring the use of a ertain path
p′ for a �xed ommodity l ∈ L. This orresponds to setting ylp′ = 0 or ylp′ = 1, respetively, inthe non-relaxed master problem. In the remainder of this setion a �xed ommodity l ∈ L isassumed.The e�et of the branhing sheme on the non-relaxed master problem, spei�ally on-straint (9) is onsidered. Both when ylp′ = 0 and ylp′ = 1, the variable an be left out of the7



onstraint. If ylp′ = 1 the onstraint is rewritten as:
∑

p∈P l\{p′}

ylp ≤ k − 1Now, the e�et of the branhing sheme on the relaxed master problem, spei�ally on-straint (10) is onsidered. When path p′ is forbidden for ommodity l then xlp′ = 0. When theuse of path p′ is fored then we set xlp′ ≥ ǫ, where ǫ > 0 is a suitably small number. Constraint(10) is rewritten as:
∑

p∈P l\{p′}

xlp
up
≤ k − 1 (12)This is stronger than the original onstraint when xlp′ < up′ , hene the bound of the branhinghild is strengthened in this ase.The number of branhing hildren depends on the urrent frational solution. Assumethat the urrent solution onsists of k+α,α > 0 paths for ommodity l. At least α+1 pathsin the urrent frational solution have xlp < up, otherwise onstraint (10) would be violated.Let P̄ l denote these paths. An optimal solution may not inlude any of the paths in P̄ l, henewe propose the following branhing strategy. Generate |P̄ l|+ 1 branhing hildren. Usage ofeah path in P̄ l is respetively fored in the �rst |P̄ l| hildren. In the last hild, usage of anypath in P̄ l is forbidden.The �rst |P̄ l| hildren ause symmetry in the solution spae. Consider an example with

|P̄ l| + 1 = 4 branhing hildren b1, b2, b3 and b4, foring usage of path p1, p2, and p3, andforbidding all paths p1, p2, and p3, respetively. Now, a solution ontaining paths p1 and p3an be generated in both the subtree of branhing hild b1 and b3.To prevent suh symmetry in the branhing hildren, the branhing strategy is hangedinto letting the �rst |P̄ l| hildren fore and forbid usage of ertain paths. Reall the previousexample. Child b1 still fores the use of p1. Child b2 fores the use of p2 and forbids the useof p1. Similarly, hild b3 fores the use of p3 and forbids the use of p1 and p2. In this way, thesolution using p1 and p3 is only available in the subtree of b1.In pratie we would rather add a ut than rewrite onstraints (10) when the use of apath is fored. Constraints (10) are thus always kept in the master problem, even if strongeronstraints are added due to the branhing strategy. Reall inequality (12) when foring theuse of path p′. This inequality is denoted the branh ut. Branhing hildren whih fore theusage of paths, have the orresponding branh uts added to their master problem. The setof branh uts for ommodity l is denoted Bl. Let ωbl ≥ 0 be the dual of branh ut b ∈ Blfor ommodity l. The resulting redued ost for path p ∈ P l for ommodity l ∈ L is:
clp = 1−

∑

e∈E

δepπe −
λl

up
−

∑

b∈Bl

ωbl

up
= 1−

∑

e∈E

δepπe −
λl +

∑
b∈Bl ωbl

up
(13)When solving the priing problem for ommodity l the dual osts ωbl are onstants. Hene thebranh ut does not a�et the struture of the priing problem. The priing problem must,however, be able to avoid using forbidden paths as for the 2BP algorithm.8



4 Heuristi approahThe presented exat algorithms an be used as heuristis by only omputing the root node andthen returning the best feasible solution. The approah of only omputing the root node doesnot guarantee a polynomial running time, sine an exponential number of olumns potentiallyneeds to be added in the root. In pratie, however, we expet low running times.The heuristi usage of the 3BP algorithm is denoted 3HEUR. Beause no branhing oursthe heuristi usage of the 2BP and the 2BP+B algorithms is idential and is denoted 2HEUR.Tru�ot and Duhamel [16℄ argue that the 3-index and 2-index formulations are equivalent, alsoafter LP-relaxation and elimination of the binary variables. Even though the formulationsgive the same bounds, we may not reah the same feasible solutions in the root node. Henewe investigate the performane of 3HEUR and 2HEUR empirially.The 2HEUR may give infeasible solutions where more than k paths are used for eahommodity. In this ase we try to move the �ow between the paths in order to �nd a feasiblesolution using at most k paths for eah ommodity. The approah takes as input {G,P,X},where G is the graph representing the problem instane, P =
⋃

l∈L P l is the set of paths in theurrent frational solution with xp > 0, and X is the set of non-zero variables in the urrentfrational solution, i.e., xp > 0,∀xp ∈ X. The steps of the approah are seen in Algorithm 2.In line 1, an empty solution is initialized. Then, for eah ommodity l, the approah �rstAlgorithm 2 Flow-moving approah with {G,P,X} as input1: Initialize empty solution sol← ∅2: for (eah l ∈ L) do3: P̄ l ← list of p ∈ P l ⊆ P sorted aording to dereasing up : up ← mine∈p ue4: for (eah p ∈ P̄ l with mine∈p ue > 0) do5: x̄lp ← mine∈p ue6: ue ← ue − x̄lp, ∀e ∈ p7: sol← {p, x̄lp}8: if (Flow is assigned to k paths for ommodity l) then9: break10: end if11: end for12: end for13: Return solution solsorts path for the ommodity aording to dereasing path apaity. Then for eah path inthe sorted list, the approah identi�es the amount of �ow that an be sent on the path (line5), subtrats this �ow from the edges of the path (line 6) and stores the path and its �owin the solution (line 7). If k paths are stored for ommodity l the approah onsiders thenext ommodity (line 9-11). When all ommodities are onsidered, the approah returns thegenerated solution (line 13). Note that the order of paths in P̄ l does not hange in line 4-11,even though edge apaities are hanged in line 6.The �ow-moving approah has time omplexity O(|L|(|P | log |P | + |P ||E|)), where P =
∪l∈LP

l. This is polynomial in the input size of the approah. Inluding this �ow-movingapproah in 2HEUR gives the �nal heuristi denoted 2HEUR+FM.9



Name |V | |E| |L|Random5-35 5 35 1Random10-45 10 45 1Random15-60 15 60 1Random20-140 20 140 1tg10-2 12 40 1tg20-2 22 80 1tg40-1 42 154 1tg40-5 42 154 1tg80-1 82 322 1tg100-2 102 400 1Random10-40 10 40 3Random11-42 11 42 11Random20-80 20 80 20Random22-56 22 56 22Table 1: Sizes of test instanes. First olumn denotes the instane name, then follows thenumber of verties, the number of edges, and �nally the number of ommodities.5 Computational resultsA omputational evaluation is performed on a dual 2.66GHz IntelR© XeonR© X5355 mahinewith 16 GB of RAM. Note that CPU times in the following stem from using one ore only.We have tested the proposed algorithms; the 3BP extended with the heuristi to reahfeasible solutions faster, the 2BP, the 2BP+B, and the three heuristis: 3HEUR, 2HEUR,and 2HEUR+FM. We implemented all algorithms using the COIN framework [13℄ with ILOGCPLEX 10.2 as LP-solver. Computations onerning the seletion of branhing andidates andbranhing hildren are handled by COIN.The solution methods are tested on benhmark instanes from the literature [16℄: theRandom instanes are randomly generated and the tg instanes are generated by the TransitGrid generator1 using topologies from transportation networks. See Table 1 for details.Two di�erent types of tests have been performed. First the three exat algorithms areomputationally evaluated on the desribed instanes and results are ompared. Then we testthe performane of the heuristis, 3HEUR, 2HEUR and 2HEUR+FM, to investigate theirheuristi solution values and running times.5.1 Exat approahThe three algorithms are omputationally evaluated on the desribed instanes. Results forthe single-ommodity Random instanes are summarized in Table 2 and results for the single-ommodity tg instanes are summarized in Table 3. The multi-ommodity instanes are allof the Random type and results are summarized in Table 4.In the tables the �rst olumn holds the name of the problem instane, the seond olumnholds the value of k and the third olumn holds the optimal value. Then follows the size anddepth of the searh tree, the number of generated variables, the gap in perent between theupper and lower bound, and the time in seonds spent on solving the instane for the 3BP,the 2BP, and the 2BP+B algorithms, respetively. If a test run is marked with �-� then it hasrun out of memory. If the gap is also marked with �-� then no lower bound was found. The1http://www.informatik.uni-trier.de/~naeher/Professur/researh/generators/maxflow/tg/index.html 10



3BP 2BP 2BP+BProblem k z size depth vars gap time size depth vars gap time size depth vars gap timeRandom5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.002 128 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.003 182 1 0 27 0.00% 0.01 1 0 9 0.00% 0.00 1 0 9 0.00% 0.004 223 13 6 48 0.00% 0.01 1 0 12 0.00% 0.00 1 0 12 0.00% 0.005 262 19 9 60 0.00% 0.03 1 0 12 0.00% 0.00 1 0 12 0.00% 0.006 297 21 10 78 0.00% 0.03 1 0 14 0.00% 0.01 1 0 14 0.00% 0.007 326 67 12 98 0.00% 0.10 1 0 14 0.00% 0.00 1 0 14 0.00% 0.008 326 1 0 104 0.00% 0.00 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00Random10-45 1 73 1 0 6 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.002 142 5 2 15 0.00% 0.01 4 1 9 0.00% 0.01 8 2 9 0.00% 0.013 209 9 3 33 0.00% 0.02 21 3 15 0.00% 0.03 20 3 12 0.00% 0.024 260 45 17 68 0.00% 0.08 411 12 24 0.00% 0.56 34 4 20 0.00% 0.035 306 369 22 102 0.00% 0.80 23599 18 34 0.00% 44.96 40 4 20 0.00% 0.076 345 973 26 137 0.00% 2.90 >427099 >26 39 2.36% - 135 6 26 0.00% 0.227 381 4281 36 219 0.00% 16.55 >354551 >22 46 -% - 313 8 34 0.00% 0.648 413 22985 43 265 0.00% 102.51 >431299 >29 46 2.93% - 606 9 40 0.00% 1.319 429 >110199 >58 380 6.43% - >388228 >26 60 -% - 2507 11 46 0.00% 5.9710 451 >104999 >57 448 5.74% - >456699 >41 74 6.57% - 2355 12 46 0.00% 5.91Random15-60 1 86 1 0 5 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.002 163 1 0 16 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.003 221 9 3 34 0.00% 0.02 41 6 15 0.00% 0.06 12 2 12 0.00% 0.024 248 111 10 70 0.00% 0.32 >100454 >26 50 -% - 111 6 20 0.00% 0.225 268 557 18 101 0.00% 551.83 >176599 >29 52 2.86% - 322 7 29 0.00% 0.766 287 419 21 135 0.00% 1.59 >277801 >31 45 2.74% - 354 9 30 0.00% 0.797 295 19097 35 194 0.00% 72.91 >387565 >23 49 -% - 836 10 27 0.00% 1.748 301 >88799 >47 231 2.90% - >413343 >33 55 2.90% - 4995 11 30 0.00% 11.329 306 >153099 >51 229 1.29% - >547079 >28 48 -% - 2263 11 19 0.00% 4.42Random20-140 1 81 1 0 4 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.002 158 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.003 228 1 0 30 0.00% 0.02 1 0 11 0.00% 0.00 1 0 11 0.00% 0.004 253 9935 31 103 0.00% 75.25 >41444 >42 68 -% - 90 18 67 0.00% 1.045 274 >39999 >41 146 1.86% - >68299 >66 87 1.86% - 819 22 51 0.00% 12.656 294 >30199 >61 184 1.78% - >60299 >86 107 1.78% - >14106 >32 113 1.78% -7 - >28999 >70 227 1.81% - >75894 >46 91 -% - >14299 >32 109 1.69% -8 319 >30599 >80 267 1.91% - >94699 >101 120 1.91% - 4028 22 29 0.00% 52.959 325 >39599 >93 315 0.84% - >108990 >63 105 -% - 130 9 25 0.00% 0.3210 327 2907 109 326 0.00% 19.15 >272685 >49 68 0.61% - 17 3 22 0.00% 0.0211 327 1325 86 301 0.00% 8.75 49 3 22 0.00% 0.03 20 5 20 0.00% 0.03Best 11 14 36Table 2: Results from solving the single-ommodity Random instanes exatly.total number of times eah algorithm has best performane is found at the bottom of eahtable. Also, for eah instane the best performane is written in bold.The 2BP algorithm performs muh better than the 3BP algorithm for the MCMCkFP [8℄;however, this is generally not the ase for the MCkMFP. Although the number of times thealgorithm has best performane is larger for the 2BP, the 3BP algorithm is apable of solvingmore instanes. The hange of objetive funtion has a great impat on the problem; thealgorithms always try to push as muh �ow through the network as possible, thus potentiallyexploiting the somewhat weakly formulated bound on the number of used paths. The formu-lation has less impat on the minimum ost problem beause it may not always be bene�ialto inrease the number of used paths. The 2BP algorithm su�ers from large searh trees be-ause of the existene of potentially many solutions using more than k paths per ommodityand beause the branhing sheme allows muh symmetry in the branhing hildren. The 2BPalgorithm, however, performs somewhat better than the 3BP for the multi-ommodity Randominstanes with respet to running times.The 2BP+B algorithm generally performs muh better than the 3BP algorithm. Exep-tions are tg40-5, k = 4 and Random20-80, k = 5, for whih the 2BP+B algorithm spends moretime on solving. Furthermore, 2BP+B is unable to �nd an optimal solution for Random20-80,
k = 4. For the far majority of test instanes, however, the 2BP+B algorithm is apable of�nding an optimal solution in short time, even when the 3BP algorithm shows great di�ulty.11



3BP 2BP 2BP+BProblemk z size depth vars gap time size depth vars gap time size depth vars gap timetg10-2 1 389 1 0 5 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.002 557 215 13 26 0.00% 0.21 355 14 10 0.00% 0.21 41 5 11 0.00% 0.043 716 553 19 58 0.00% 0.70 39505 20 28 0.00% 32.49 53 5 15 0.00% 0.064 815 83 17 52 0.00% 0.10 6 1 8 0.00% 0.00 5 1 8 0.00% 0.005 815 1 0 40 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.002 643 1 0 10 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.003 832 5 2 33 0.00% 0.04 1 0 10 0.00% 0.00 1 0 10 0.00% 0.004 853 1 0 40 0.00% 0.01 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01 1 0 5 0.00% 0.002 750 5 2 16 0.00% 0.07 4 1 10 0.00% 0.02 10 3 12 0.00% 0.073 908 >9999 >40 96 2.61% - >83282 >61 94 -% - 231 11 21 0.00% 3.324 994 >7799 >57 143 1.00% - >82770 >45 64 -% - 893 18 33 0.00% 25.155 1004 15 7 65 0.00% 0.09 703 27 20 0.00% 1.41 11 2 18 0.00% 0.036 1004 1 0 96 0.00% 0.03 29 3 13 0.00% 0.02 43 6 13 0.00% 0.07tg40-5 1 487 1 0 8 0.00% 0.01 1 0 6 0.00% 0.00 1 0 6 0.00% 0.002 828 >20599 >46 80 4.11% - >64248 >45 57 5.70% - 144 9 23 0.00% 1.493 1062 >17299 >59 139 0.28% - >77103 >44 65 -% - 276 8 22 0.00% 4.204 1078 181 47 68 0.00% 0.61 >148934 >22 50 -% - 1520 21 22 0.00% 26.535 1078 3 1 90 0.00% 0.03 61 4 16 0.00% 0.04 76 20 16 0.00% 1.72tg80-1 1 549 1 0 7 0.00% 0.04 1 0 6 0.00% 0.02 1 0 6 0.00% 0.022 984 1591 29 80 0.00% 65.22 2308 22 25 0.00% 59.16 288 11 39 0.00% 8.723 1411 >2199 >36 162 3.85% - >51476 >49 107 -% - 1914 10 38 0.00% 110.38tg100-2 1 530 1 0 7 0.00% 0.07 1 0 6 0.00% 0.03 1 0 6 0.00% 0.022 1007 3 1 16 0.00% 0.20 1 0 8 0.00% 0.04 1 0 8 0.00% 0.043 1407 >1099 >31 115 0.39% - >29087 >60 113 -% - 229 6 51 0.00% 29.144 1768 >1499 >72 234 1.51% - >56256 >40 167 -% - 2118 9 82 0.00% 284.41Best 7 12 23Table 3: Results from solving the tg instanes exatly.
3BP 2BP 2BP+BProblem k z size depth vars gap time size depth vars gap time size depth vars gap timeRandom10-40 1 110 5 2 18 0.00% 0.02 5 2 15 0.00% 0.00 4 1 14 0.00% 0.012 194 1 0 26 0.00% 0.00 34 5 21 0.00% 0.04 4 1 18 0.00% 0.013 258 183 18 80 0.00% 0.39 213 12 24 0.00% 0.18 50 6 23 0.00% 0.064 293 695 36 129 0.00% 2.23 2956 16 41 0.00% 4.25 112 7 32 0.00% 0.205 309 1989 30 176 0.00% 7.91 >253716 >25 56 1.24% 1.06 561 12 39 0.00% 1.066 318 15905 36 253 0.00% 73.84 >610006 >24 59 1.35% - 1294 13 60 0.00% 2.637 321 >153199 >56 286 0.01% - >335959 >26 54 -% - 26182 18 47 0.00% 57.108 323 113 37 299 0.00% 0.52 2008 14 37 0.00% 1.23 2051 15 36 0.00% 2.439 323 333 49 318 0.00% 1.38 11 1 32 0.00% 0.01 18 5 32 0.00% 0.02Random11-42 1 291 5 2 29 0.00% 0.02 7 3 28 0.00% 0.01 7 2 27 0.00% 0.022 343 1 0 50 0.00% 0.01 7 2 27 0.00% 0.01 6 1 27 0.00% 0.013 344 1 0 75 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.004 344 1 0 100 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00Random20-80 1 347 7 3 55 0.00% 0.06 3 1 51 0.00% 0.02 7 2 53 0.00% 0.042 553 3 1 100 0.00% 0.03 4 1 50 0.00% 0.02 4 1 51 0.00% 0.013 584 1063 24 188 0.00% 6.14 57 7 59 0.00% 0.16 1020 16 62 0.00% 3.454 601 5599 33 277 0.00% 40.05 1041 10 60 0.00% 2.02 >81550 >548 601 2.01% -5 617 13291 44 340 0.00% 117.96 4363 14 66 0.00% 7.35 49695 34 67 0.00% 198.616 621 >48999 >40 380 0.01% - 3998 11 63 0.00% 6.42 32552 29 58 0.00% 100.087 626 413 37 412 0.00% 3.48 17 2 57 0.00% 0.02 116 14 57 0.00% 0.228 626 1 0 440 0.00% 0.03 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01Random22-56 1 365 9 3 52 0.00% 0.02 7 3 42 0.00% 0.02 7 2 44 0.00% 0.022 389 11 4 81 0.00% 0.02 10 3 42 0.00% 0.02 9 3 42 0.00% 0.013 407 1 0 108 0.00% 0.01 1 0 41 0.00% 0.01 1 0 41 0.00% 0.014 407 1 0 144 0.00% 0.01 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00Best 7 17 14Table 4: Results from solving the multi-ommodity instanes exatly.12



The 2BP+B algorithm generally also generates smaller gaps for instanes, whih are not solvedto optimality. Reasons are that the searh tree sizes are generally smaller for the 2BP+B,the number of variables in the master problem is smaller, and muh symmetry is eliminatedbeause of the laking h-indies.The 2BP+B algorithm generally also performs muh better than the 2BP algorithm. Ex-eptions are Random20-80, k = 4, 5, and 6 where the 2BP has overall best performane. Thereason for the generally superior performane of the 2BP+B algorithm is that the branh-ing sheme gives better bounds in the branhing hildren: foring the use of a path is muhstronger than forbidding a path. Also forbidding the use of all paths with positive �ow isstronger than forbidding a subset of the paths.All three algorithms su�er from the same weakness in the formulation, spei�ally thebounding of the number of used paths per ommodity: onstraints (3) for the 3BP and (10)for the 2BP and the 2BP+B algorithms. Beause the objetive is to maximize the totalamount of �ow, the algorithms are very likely to exeed k paths per ommodity wheneverthe mentioned onstraints are not tight. The onstraints will rarely be tight, espeially whenseveral paths share the same edges and the orresponding xlp/up < 1. The 2BP+B reduesthis problem to some extend with the branhing ut (12).Finally, it is noted that inluding the �ow-moving approah from Algorithm 2 in theexat 2BP and 2BP+B approahes does not improve performane; see the tables at http://www.diku.dk/~gamst/heuristi_results.pdf for doumentation.5.2 Heuristi approahThe three heuristis 3HEUR, 2HEUR, and 2HEUR+FM are evaluated on the previouslydesribed instanes. Test results are summarized in tables 5, 6, and 7.The �rst olumn of eah table holds the name of the problem instane, the seond olumnholds the value of k, and the third olumn holds the optimal value. Then follows for eah ofthe algorithms 3HEUR, 2HEUR, and 2HEUR+FM; the number of iterations in the olumngeneration, the gap between the heuristi and the optimal value, and the time in seondsspent on solving the instane. An entry marked with �-� indiates that no feasible solutionwas found. The average number of iterations, gap, and time usage are given at the bottom ofeah table.The results show that the 3HEUR algorithm often gives poor heuristi solutions withgaps of up to 94%. For three multi-ommodity Random instanes the 3BP algorithm is evenunable to �nd a feasible solution in the root node. The 2HEUR algorithm generally �nds muhbetter solution values than the 3HEUR algorithm. The 2HEUR+FM, however, shows superiorperformane by solving the majority of the instanes to optimality and with the largest gapof those not solved being 20%. All heuristis have very low running times and terminate inless than a seond.6 ConlusionTwo new exat solution methods for the MCkMFP problem have been introdued. They areboth based on Dantzig-Wolfe deomposition, where the master problem is a 2-index formu-lation merging paths for ommodities into an overall solution. The two methods di�er intheir branhing shemes: the �rst method forbids subpaths (2BP), while the seond fores or13



3HEUR 2HEUR 2HEUR+FMProblem k z iter. gap time iter. gap time iter. gap timeRandom5-35 1 66 5 0.00 0.00 3 0.00 0.00 3 0.00 0.012 128 7 0.00 0.00 5 0.00 0.00 5 0.00 0.003 182 8 0.00 0.00 7 0.00 0.00 7 0.00 0.004 223 12 16.60 0.00 10 0.00 0.00 10 0.00 0.005 262 12 54.96 0.00 10 0.00 0.00 10 0.00 0.006 297 13 80.37 0.00 12 0.00 0.00 12 0.00 0.007 326 14 54.29 0.00 12 0.00 0.00 12 0.00 0.008 326 13 0.00 0.01 11 0.00 0.00 11 0.00 0.00Random10-45 1 73 6 0.00 0.00 4 0.00 0.00 4 0.00 0.002 142 7 12.68 0.00 6 12.68 0.00 6 0.00 0.003 209 10 22.00 0.01 10 15.31 0.00 10 0.00 0.004 260 13 65.38 0.01 13 18.08 0.00 13 0.00 0.005 306 15 75.82 0.01 17 46.73 0.00 17 0.00 0.006 345 17 73.91 0.02 19 43.48 0.00 19 0.00 0.007 381 23 76.38 0.02 21 47.77 0.00 21 8.40 0.018 413 24 78.21 0.02 23 48.18 0.00 23 6.78 0.019 429 30 79.02 0.04 30 37.06 0.00 30 1.40 0.0010 451 35 80.04 0.05 38 36.59 0.01 38 0.00 0.01Random15-60 1 86 5 0.00 0.00 6 0.00 0.00 6 0.00 0.002 163 8 0.00 0.01 8 0.00 0.00 8 0.00 0.003 221 10 55.24 0.01 11 85.52 0.00 11 16.74 0.004 248 13 87.50 0.01 18 56.04 0.01 18 10.01 0.005 268 16 57.49 0.02 20 51.49 0.00 20 5.97 0.006 287 18 93.38 0.02 22 50.52 0.01 22 6.62 0.007 295 20 85.05 0.02 23 46.44 0.01 23 13.90 0.008 301 19 59.47 0.01 21 46.84 0.00 21 17.94 0.009 306 18 60.13 0.01 18 39.87 0.00 18 19.93 0.00Random20-140 1 81 4 0.00 0.00 4 0.00 0.00 4 0.00 0.002 158 7 0.00 0.02 6 0.00 0.00 6 0.00 0.003 228 10 0.00 0.02 10 0.00 0.00 10 0.00 0.004 253 12 82.48 0.03 13 0.00 0.00 13 0.00 0.015 274 16 84.69 0.04 16 1.46 0.01 16 0.00 0.016 294 18 84.69 0.04 24 69.05 0.01 24 3.40 0.019 325 22 86.15 0.04 24 44.92 0.01 24 0.31 0.0110 327 21 86.24 0.01 19 3.67 0.00 19 3.67 0.0011 327 20 86.24 0.01 19 0.61 0.00 19 0.61 0.00Sum 14 49.40 0.01 15 22.29 <0.01 15 3.21 <0.01Table 5: Results from solving the single-ommodity Random instanes heuristially, where eahalgorithm terminates after having evaluated the root node only.3HEUR 2HEUR 2HEUR+FMProblem k z iter. gap time iter. gap time iter. gap timetg10-2 1 389 5 0.00 0.00 4 0.00 0.00 4 0.00 0.002 557 6 0.00 0.00 6 0.00 0.00 6 0.00 0.003 716 9 0.00 0.00 10 15.22 0.00 10 0.00 0.004 815 8 0.00 0.00 8 15.83 0.01 8 0.00 0.005 815 8 0.00 0.00 8 0.00 0.00 8 0.00 0.00tg20-2 1 385 4 0.00 0.00 4 0.00 0.00 4 0.00 0.002 643 5 0.00 0.00 6 0.00 0.00 6 0.00 0.003 832 11 18.03 0.00 10 0.01 0.00 10 0.00 0.014 853 10 0.00 0.01 10 0.00 0.00 10 0.00 0.00tg40-1 1 517 5 0.00 0.01 5 0.00 0.01 5 0.00 0.012 750 7 72.13 0.01 9 61.33 0.01 9 0.00 0.01tg40-5 1 487 8 0.00 0.00 6 0.00 0.00 6 0.00 0.01tg80-1 1 549 7 0.00 0.04 6 0.00 0.02 6 0.00 0.022 984 11 52.74 0.14 14 14.63 0.06 14 0.00 0.06tg100-2 1 530 7 0.00 0.07 6 0.00 0.02 6 0.00 0.022 1007 8 28.10 0.15 8 0.00 0.04 8 0.00 0.03Sum 7 10.69 0.03 8 6.69 0.01 8 0.00 0.01Table 6: Results from solving the tg instanes heuristially, where eah algorithm terminatesafter having evaluated the root node only. 14



3HEUR 2HEUR 2HEUR+FMProblem k z iter. gap time iter. gap time iter. gap timeRandom10-40 1 110 6 31.82 0.00 5 20.00 0.01 5 17.27 0.002 194 6 0.00 0.00 9 60.82 0.00 9 0.00 0.003 258 11 80.62 0.01 11 69.38 0.00 11 6.59 0.004 293 14 66.21 0.02 15 36.52 0.01 15 7.17 0.015 309 16 67.96 0.02 19 34.95 0.00 19 8.41 0.016 318 21 68.89 0.03 25 33.02 0.00 25 5.97 0.017 321 17 84.42 0.02 21 24.61 0.00 21 1.56 0.018 323 21 84.52 0.01 20 22.29 0.00 20 4.34 0.009 323 20 84.52 0.01 21 9.29 0.00 21 0.00 0.00Random11-42 1 291 6 6.19 0.01 6 6.19 0.00 6 0.00 0.012 343 4 0.00 0.00 5 19.53 0.00 5 4.08 0.003 344 4 0.00 0.00 5 0.00 0.01 5 0.00 0.004 344 4 0.00 0.00 5 0.00 0.00 5 0.00 0.00Random20-80 1 347 6 25.36 0.01 6 16.14 0.01 6 0.00 0.012 553 7 35.80 0.02 7 15.91 0.01 7 0.00 0.013 584 9 - 0.02 9 7.53 0.00 9 0.00 0.014 601 12 - 0.03 12 7.65 0.01 12 0.00 0.015 617 14 - 0.04 16 4.05 0.02 16 2.27 0.006 621 12 58.29 0.03 14 0.64 0.01 14 0.00 0.017 626 12 58.63 0.03 14 0.96 0.01 14 0.80 0.018 626 12 0.00 0.03 14 0.00 0.01 14 0.00 0.01Random22-56 1 365 6 0.00 0.01 5 0.00 0.00 5 0.00 0.002 389 6 1.54 0.00 5 1.54 0.00 5 0.00 0.003 407 6 0.00 0.01 5 0.00 0.00 5 0.00 0.014 407 6 0.00 0.00 5 0.00 0.01 5 0.00 0.01Sum 9 34.31 0.01 11 15.64 <0.01 11 2.34 <0.01Table 7: Results from solving the multi-ommodity Random instanes heuristially, where eahalgorithm terminates after having evaluated the root node only. Sum only sums over theinstanes where all heuristis found a feasible solution.forbids the use of ertain paths (2BP+B). The latter also adds branhing uts to the masterproblem.The 2BP and 2BP+B algorithms are implemented and ompared with a leading exatalgorithm from the literature denoted 3BP. Results show that the 2BP+B algorithm performssigni�antly better than the 2BP and the 3BP algorithms both with respet to the numberof solved instanes and with respet to the time usage. The main reason is that using the2BP+B algorithm produes smaller searh trees, redues the number of variables in the masterproblem, and eliminates some of the symmetry in the solution spae.Terminating the omputations after having evaluated the root node transforms the 3BPand the 2BP/2BP+B algorithms into heuristis denoted 3HEUR and 2HEUR, respetively.Beause no branhing ours in this heuristi approah, the 2BP and the 2BP+B algorithmsbeome idential. Test results for this approah show that the 3HEUR does not perform well,with the majority of the solution values having gaps of up to 94%. The 2HEUR algorithm,however, shows very promising performane when inluding a �ow-moving approah, whihtransforms some frational solutions into feasible solutions. In most ases optimal solutionsare found and the average solution gaps never exeed 4%. Both heuristis terminate in lessthan a seond for all tested instanes.All algorithms su�er from weak formulations for bounding the number of used paths perommodity. We believe that future work should onentrate on tightening these onstraints.The problem ould for example be reformulated suh that the number of used paths perommodity is impliitly satis�ed through priing or primal onvexi�ation tehniques. Webelieve that the fous should be on uts violated in the edge-based model or the originalmaster problem. Future work ould also onentrate on �nding better branhing strategiesfor the 2-index formulation in order to further redue the size of the searh tree.15
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