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Abstract— Future mobile communication systems such as
IEEE 802.16 are expected to deliver a variety of multimedia
services with diverse QoS requirements. To guarantee the QoS
provision, appropriate scheduler architecture and scheduling
algorithms have to be carefully designed. In this paper, we
propose an adaptive bandwidth distribution algorithm for the
aggregate scheduler in a two-level hierarchical scheduler, which
can provide more organized service differentiation among dif-
ferent service classes. By taking the backlogged traffic, the
spectral efficiency in terms of modulation efficiency, and the
QoS satisfaction into account, the proposed algorithm adaptively
allocates bandwidth to each service class with the objective
of increasing the spectral efficiency while satisfying the QoS
requirements. Through system-level simulation, it is shown that
the proposed algorithm can adapt to the performance of the
class schedulers and distribute the bandwidth among them more
efficiently than the conventional schemes.

I. INTRODUCTION

Throughout the world, the demand for broadband wireless
access has increased exponentially in the last few years. Future
mobile communication systems are designed towards a high-
date-rate, low-latency and packet-optimized radio access tech-
nology. One example is the IEEE 802.16 wireless metropolitan
area networks. The key feature of future mobile communica-
tion systems is the ability to deliver a variety of multimedia
services with different Quality-of-Service (QoS) requirements,
such as throughput, delay, delay jitter, fairness and loss rate.
Radio resource allocation and scheduling algorithms play an
important role in QoS provision.

Many packet scheduling algorithms have been proposed to
support real-time and non-real-time traffics for mobile and
wireless networks. Max C/I and Proportional Fair (PF) [4]
are first proposed with the design objective of improving the
overall system throughput and proportional fairness among
users, respectively. Since neither Max C/I nor PF can guar-
antee any QoS requirements, they can not support RT ser-
vices such as voice and video streaming. Instead, Modified-
Largest Weighed Delay First (M-LWDF) [5] and Exponential
(EXP) [3] scheduling algorithms are proposed to support a
mixed service of RT and NRT traffics. In addition, other
scheduling algorithms with different design objectives have
been proposed in [6]-[9].

The above mentioned works can be categorized into one-
level priority-based scheduling algorithms. In such approach,
each connection is assigned a priority value based on some

criterion and the connection with the highest priority is
scheduled each time. This approach has the advantage of low
implementation complexity. However, due to different traffic
characteristics and diverse QoS requirements among RT, NRT
and BE service classes, it is hard to well define a unified
priority criterion. Thus, it is desirable to individually design
the scheduling algorithm for each service class and separate
the resource allocation from the packet scheduling. The first
paper proposing the idea of a two-level hierarchical scheduler
is in [1]. Performance comparisons between one-level and two-
level schedulers are evaluated in [2]. However, so far little
work has been done in the design of an efficient aggregate
scheduler, which is critical on the performance of a two-level
hierarchical scheduler and should be carefully designed.

In this paper, we propose an adaptive resource allocation
algorithm of the aggregate scheduler. For each service class,
the proposed algorithm first estimates the required amount of
bandwidths based on the backlogged traffic and the modulation
efficiency. Then with respect to the QoS satisfaction, an
exponentially smoothed curve is applied to adjust the esti-
mated amount of bandwidth in order to increase the spectral
efficiency while maintaining a guaranteed QoS performance.
After the bandwidth estimation procedure is done in each
service class, the aggregate scheduler distributes the bandwidth
among the class schedulers according to the class priority.

The rest of the paper is organized as follows. In Section II,
the structure of a two-level hierarchical scheduler is intro-
duced, followed by the design of the class scheduler and the
proposed algorithm of the aggregate scheduler. Section III
presents the system and traffic models used in the simula-
tion. The simulation results and discussions are presented in
Section IV. Finally, a conclusion is drawn in Section V.

II. STRUCTURE OF A TWO-LEVEL HIERARCHICAL

SCHEDULER

Fig. 1 depicts the structure of a two-level hierarchical sched-
uler in a base station (BS) for IEEE 802.16 systems. Arriving
packets from the upper layer are classified by the connection
classifier according to their connection identifications (CID),
and traffic types, and are sent to the corresponding service
class and get queued. The scheduler consists of an aggregate
scheduler and four class schedulers. The aggregate scheduler
distributes bandwidth to each class scheduler. When the class
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scheduler receives bandwidths from the aggregate scheduler,
it serves packets of its flow queues. As the incoming flows
in each class scheduler have similar traffic patterns and QoS
requirements, the class scheduler can independently choose
its own scheduling algorithm which can best meet the QoS
requirements. Therefore, the two-level scheduler can have
multiple scheduling criteria and better schedule packets in each
service class than the one-level scheduler.
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Fig. 1. Structure of a two-level hierarchical scheduler for IEEE 802.16

A. Class Scheduler Design

In this section, we apply the appropriate packet scheduling
algorithm to each class scheduler.

1) Scheduling UGS connections: In UGS service, the trans-
mission mode at the PHY layer is fixed during the whole ser-
vice time. The Adaptive Modulation & Coding (AMC) scheme
is not adopted for UGS connections. The time slots allocated
for UGS connections are fixed, based on their constant bit-rate
requirements negotiated in the initial service access phase [6].

2) Scheduling rtPS connections: The rtPS service is delay-
sensitive and has strict delay requirement. We apply the Ex-
ponential Rule (EXP) algorithm to schedule rtPS connections.
It was proposed to provide QoS guarantees over a shared
wireless link in terms of the average packet delay, expressed
as Pr(Wk > Tk,max) ≤ δk, where Wk is the head-of-line
packet delay of the kth user, Tk,max is the maximum allowable
delay, and δk is the maximum outage probability. It has been
analytically proved that the EXP algorithm is throughput-
optimal [3]. At each scheduling time-slot, the EXP algorithm
selects user i with the highest priority value as follows:

i = arg max
k

{
γk · µk(t) · exp

(akWk(t) − aW

1 +
√

aW

)}
(1)

where aW = 1
N

∑
k akWk(t), with γk = ak/µk, and ak =

− log δk/Tk,max. µk(t) is the instantaneous channel rate at
time t, µk is the mean channel rate, and subscript k denotes
parameters of the kth user.

3) Scheduling nrtPS connections: The nrtPS service can
tolerate longer delays, but requires a minimum throughput. We
apply the M-LWDF algorithm to schedule nrtPS connections.
The design objective of M-LWDF is to maintain the packet
delay within a predefined threshold value with certain proba-
bility. If the M-LWDF algorithm is used in conjunction with a
token bucket control, it can be used to guarantee a minimum

throughput rk,req to user k, expressed as Pr(Rk < rk,req) ≤
δk. We associate each queue with a virtual token bucket.
Tokens in each bucket k arrive at a constant rate rk,req , which
is the guaranteed minimum throughput to the kth user. Wk(t)
is the delay of the longest waiting token in token bucket k, cal-
culated as Wk(t) = [Number of tokens in bucket k/rk,req]. It
has also been analytically proved that the M-LWDF algorithm
is throughput-optimal [5]. At each scheduling time-slot, the
M-LWDF algorithm selects user i with the highest priority
value as follows:

i = arg max
k

{
γk · µk(t) · Wk(t)

}
(2)

where γk is the same as that of the EXP rule.
4) Scheduling BE connections: Since there is no QoS

guarantees for BE connections, we apply the Proportional Fair
(PF) algorithm to schedule BE connections. The PF algorithm
attempts to serve each user at his peak channel condition.
Hence the PF algorithm can utilize the radio resource effi-
ciently and give proportional fairness among users [4]. At each
scheduling time-slot, the PF algorithm selects user i with the
highest priority value as follows:

i = arg max
k

µk(t)
µk

(3)

B. Radio Resource Allocation in the Aggregate Scheduler

The bandwidth distribution algorithm of the aggregate
scheduler is a critical factor on the performance of the class
scheduler. If the aggregate scheduler does not allocate enough
bandwidth to the class scheduler, the QoS requirements in
the corresponding service class may not be guaranteed. On
the other hand, if the aggregate scheduler allocates too much
bandwidth to the class scheduler, the allocated radio resource
may not be utilized efficiently or even be wasted. So the
bandwidth distribution algorithm of the aggregate scheduler
has to be carefully designed.

1) Conventional Radio Resource Allocation Algorithms:
One possible resource allocation algorithm is that the aggre-
gate scheduler distributes bandwidth among service classes
following strict class priority, from highest to lowest: UGS,
rtPS, nrtPS and BE. By doing so, the aggregate scheduler
can differentiate the service class based on their priority. The
strict class priority discipline is simple, but one disadvantage
of this algorithm is that higher priority classes may starve the
bandwidth for lower priority classes.

To overcome this problem, the aggregate scheduler may
separate the total bandwidth into four portions to satisfy
proportional fairness among service classes. This method can
prevent the starvation of low priority classes. There are static
and dynamic bandwidth allocation schemes in this method. In
the static scheme, the aggregate scheduler distributes a fixed
amount of bandwidth to each class scheduler, thus is suitable
when the traffic pattern in each service class is regular and
stable, which is not always the case in data communications.
Therefore, the dynamic scheme which can adapt to the traffic
pattern dynamically is believed to be a better solution.
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2) Proposed Adaptive Resource Allocation Algorithm: The
design objective of our proposed resource allocation algorithm
is to adaptively allocate bandwidth to each service class in
order to increase the spectral efficiency while satisfying the
diverse QoS requirements. In designing our resource allocation
algorithm, we have taken the following aspects in each service
class into account: (i) the amount of backlogged traffic; (ii)
the satisfaction of QoS requirement; (iii) the average spectral
efficiency in term of modulation efficiency.

We separate the bandwidth allocation of UGS class from the
others as UGS scheduling has been defined by the standard. At
the beginning of each frame, the aggregate scheduler allocates
a fixed amount of time slots NUGS =

∑
i∈{UGS} di to UGS

class based on their constant-bit-rate requirements, where di

is the number of time slots required by UGS connection i. Let
Ntotal be the total number of time slots in each frame, then the
residual time slots after serving UGS class Nrest = Ntotal −
NUGS are distributed among rtPS, nrtPS and BE classes, which
employs AMC scheme at the PHY layer.

For rtPS class, the amount of bandwidth is estimated upon
the backlogged traffic BrtPS(t) and the average modulation
efficiency µrtPS(t). As each packet in rtPS has rigid delay
requirement, the current queue size in rtPS class scheduler
QrtPS(t) =

∑
i∈{rtPS} qi(t) is an appropriate measure for

the backlogged traffic, where qi(t) is the number of bits in
queue i at time t. The average modulation efficiency µrtPS(t)
is defined as the number of bits carried per symbol over a
sliding time window tc. Then the estimated number of time
slots for rtPS class can be expressed as follows:

ErtPS = α(t) · BrtPS(t)
µrtPS(t)

(4)

where α(t) is a QoS-aware heuristic control parameter that
is updated on a frame by frame basis to adapt to the QoS
satisfaction of the class scheduler. The basic idea in adjust-
ing α(t) is that when the class scheduler experience good
QoS satisfaction, the value of α(t) is decreased to save the
bandwidth for other classes. Otherwise, the value of α(t) is
increased to guarantee the required QoS. Towards this end, an
exponentially smoothed curve is applied to adjust the value of
α(t). The adjustment, which is |∆α(t)| = |α(t) − α(t − 1)|,
is small if the QoS outage probability is around a predefined
threshold. Otherwise, |∆α(t)| is exponentially increased as
either to increase or reduce the allocated bandwidth to the class
scheduler. The calculation of ∆α(t) is specified as follows:

∆α(t) =

{
ξ · exp(β·d(t))−1

exp(β·Dmax)−1 if Pr(t) ≥ Th

−ξ · exp(β·d(t))−1
exp(β·Dmax)−1 if Pr(t) < Th

(5)

where d(t) = min{|Pr(t) − Th|, Dmax}, Pr(t) is the delay
outage probability at time t, defined as the proportion of
packets with delay exceeding the maximum allowable delay
Tmax within a certain time window, Th is the outage threshold,
Dmax is the truncated maximum value of d(t), β is a shape
factor which is used to tune the adaptation degree, and ξ is the
maximum value of ∆α(t). Term (exp(β · d(t))− 1)/(exp(β ·

Dmax) − 1) is a normalized utility function of (Pr(t) − Th).
When Pr(t) is close to Th, the normalized value is close to
zero; when |Pr(t)− Th| is large, it increases exponentially to
one. In real implementation, we set a maximum and minimum
value of α(t) to optimize the performance. In general, the
bandwidth estimation procedure for rtPS class is as follows:

• Step 1: At each scheduling instant, calculate the back-
logged traffic BrtPS(t), the average modulation efficiency
µrtPS(t), and the delay outage probability Pr(t). Update
the value of α(t):

α(t) =

{
min{α(t − 1) + ∆α(t), αmax} if Pr(t) ≥ Th

max{α(t − 1) + ∆α(t), αmin} if Pr(t) < Th

(6)
where ∆α(t) is specified in Exp. (5).

• Step 2: Calculate the estimated bandwidth for rtPS class
according to Exp. (4).

For nrtPS class, the bandwidth estimation procedure is the
same as rtPS class, except the definition of the backlogged
traffic and the outage probability. Packets in nrtPS can tolerate
longer delays, but need QoS guarantees in terms of the
minimum throughput. Hence we use the total number of virtual
tokens associated with each queue VnrtPS =

∑
i∈{nrtPS} vi(t)

as the backlogged traffic, where vi(t) is the number of virtual
tokens in bucket i at time t. Pr(t) in nrtPS is defined as
the probability that the average throughput is less than the
predefined minimum throughput within a certain time window.

For BE class, as there is no QoS guarantees, after serving
UGS, rtPS, and nrtPS classes, the residual bandwidth is
allocated to BE class.

After the aggregate scheduler calculates the estimated
amount of bandwidth for rtPS and nrtPS classes, it checks
the remaining bandwidth. If the remaining bandwidth is larger
than the estimated sum of rtPS and nrtPS, the aggregate
scheduler allocates ErtPS and EnrtPS to rtPS and nrtPS classes
respectively. Then the residual bandwidth is distributed to each
service class proportional to their queue size QrtPS, QnrtPS,
and QBE. Otherwise, if the remaining bandwidth is smaller
than the estimated sum of rtPS and nrtPS, the aggregate
scheduler first allocates ErtPS to rtPS class, the residual
bandwidth is allocated to nrtPS class. A detailed description
of the proposed algorithm is listed in pseudocode 1.

III. SIMULATION MODEL

To evaluate the performance of the proposed resource allo-
cation algorithm with other conventional algorithms, a system-
level simulation is performed in OPNET.

A. System Model

In this paper, we consider the downlink of a single-cell IEEE
802.16 OFDM/TDD system with cell radius of 2 km, where
subscriber stations (SSs) are randomly placed in the cell with
uniform distribution, and move with a speed of 3 km/h in a
random direction. The duration of a frame is set to be 1 ms
as recommended by the standard so that the channel quality
of each connection almost remains constant per frame, but is
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Algorithm 1 Adaptive Radio Resource Allocation in the
Aggregate Scheduler

1: Set initial Ntotal in each round
2: NUGS ← ∑

i∈{UGS} di

3: Nrest ← Ntotal − NUGS

4: if Nrest > 0 then
5: Update the heuristic value αrtPS(t) by Exp. (6)
6: Estimate the number of time slots allocated to rtPS class

scheduler ErtPS by Exp. (4)
7: Update the heuristic value αnrtPS(t) by Exp. (6)
8: Estimate the number of time slots allocated to nrtPS

class scheduler EnrtPS by Exp. (4)
9: if Nrest ≥ (ErtPS + EnrtPS) then

10: Nrest ← Nrest − ErtPS − EnrtPS

11: NrtPS ← ErtPS + Nrest · QrtPS
QrtPS+QnrtPS+QBE

12: NnrtPS ← EnrtPS + Nrest · QnrtPS
QrtPS+QnrtPS+QBE

13: NBE ← Nrest · QBE
QrtPS+QnrtPS+QBE

14: else
15: NrtPS ← min{ErtPS, Nrest}
16: NnrtPS ← Nrest − NrtPS

17: end if
18: end if

allowed to vary from frame to frame [11]. The propagation
model consists of path loss and large-scale shadowing. Path
loss is modeled according to the Okumura-Hata model. Large-
scale shadowing is modeled by log-normal distribution with
zero mean and a standard deviation of 8 dB.

Table I summarizes the system parameters used in the simu-
lation. We assume that all packets are transmitted and received
without errors and the transmission delay is negligible. We also
assume that the BS has perfect knowledge of channel state
information (CSI). The modulation order and coding rate is
determined by the instantaneous SNR. We follow the AMC
table shown in Table II, which specifies the minimum SNR
required to meet a target frame error rate, e.g., 1%.

B. Traffic Model

In the simulation, three types of traffic streams are gen-
erated: VoIP, videoconference, and internet traffic. VoIP and
videoconference are served in UGS class and rtPS class,
respectively. Internet traffic is served in nrtPS class and
BE class. Each user generates one or several traffic types
independently. VoIP traffic is modeled as a two-state Markov
ON/OFF source [8]. A videoconference consists of a VoIP
and a video source [8]. Internet traffic can be web browsing
that requires large bandwidth and variable size bursty data. We
apply the WWW browsing model [9]. A summary of traffic
parameters for different traffic types are listed in Table III.

IV. PERFORMANCE EVALUATION

A. Performance Metrics

Since the performance of fixed bandwidth allocation for
UGS connections is well defined by the standard and BE

Parameters Value
System OFDM/TDD, TDM

Central frequency 3500 MHz
Channel bandwidth 10 MHz

Physical slots (downlink) 2000 PS/frame
User distribution Uniform

User speed 3 km/h in random direction
Beam pattern Omni-directional
Cell radius 2 km

Frame duration 1 ms
BS transmit power 10 W

Pass loss model Okumura-Hata model
Large-scale shadowing Log-normal distribution with

mean: 0, standard deviation: 8 dB
Maximum MAC PDU size 56 bytes

TABLE I

A SUMMARY OF SIMULATION PARAMETERS FOR SYSTEM MODEL

Modulation Coding bits/symbol Target SNR for
scheme rate 1% PER (dB)
BPSK 1/2 0.5 1.5
QPSK 1/2 1 6.4
QPSK 3/4 1.5 8.2

16QAM 1/2 2 13.4
16QAM 3/4 3 16.2
64QAM 1/2 4 21.7
64QAM 3/4 4.5 24.4

TABLE II

MODULATION AND CODING SCHEMES FOR 802.16 [10]

connections do not have any specific QoS requirements, here
we only focus on the performance evaluation of rtPS and
nrtPS connections. For rtPS service, the average packet delay
and the delay outage probability are the main performance
metrics, with QoS requirements of packet delay < 100 ms
and outage probability < 5%. For nrtPS service, the average
throughput and the throughput outage probability are the main
performance metrics, with QoS requirements of throughput
≥ 100 Kbits/sec and outage probability < 5%. In order to
evaluate the spectral efficiency, the modulation efficiency in
each class scheduler is also evaluated.

B. Results and Discussion

The performance of the proposed adaptive resource alloca-
tion algorithm is compared with that of conventional schemes,
e.g., strict priority-based scheme and static scheme. Some of
the parameters used in the adaptive scheme are set as follows:
β = 80, Th = 0.03, ξ = 0.05, Dmax = 0.1, αmin = 0.1, and
αmax = 0.4. In the static scheme, the proportions of the total
available bandwidth allocated to rtPS, nrtPS, and BE classes
are 40%, 40%, and 20% respectively.

Fig. 2 shows the average packet delay in rtPS of three
bandwidth allocation schemes. The average packet delay of
the proposed adaptive scheme and the priority-based scheme
remains almost constant regardless of the number of users in
the system, while in the static scheme, the average packet
delay increases sharply when the number of users is above
45. Similar phenomenon can be observed for the delay outage
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Type Characteristics Distribution Parameters
VoIP ON period Exponential Mean = 1.34 sec
VoIP OFF period Exponential Mean = 1.67 sec
VoIP Packet size Constant 66 bytes
VoIP Inter-arrival time Constant 20 ms

between packets
Video Packet size Log-normal Mean = 4.9 bytes

Std. dev. = 0.75 bytes
Video Inter-arrival time Normal Mean = 33 ms

between packets Std. dev. = 10 ms
Web Reading time Exponential Mean = 5 sec

between sessions
Web Number of packets Geometric Mean = 25 packets

within a packet call
Web Inter-arrival time Geometric Mean = 0.0277 sec

between packets
k = 81.5 bytes

Web Packet size Truncated Pareto α = 1.1
m = 2 M bytes

TABLE III

A SUMMARY OF TRAFFIC PARAMETERS
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Fig. 2. Average packet delay in rtPS

probability shown in Fig. 3. From Fig. 2 & 3, we can obviously
see that both the priority-based scheme and dynamic scheme
can meet the QoS requirement in rtPS. On the other hand,
the performance of the static scheme can not adapt to the
traffic load, thus is not suitable for load varying systems.
The advantage of the adaptive scheme over the priority-
based scheme is depicted in Fig. 6, which shows the spectral
efficiency of different bandwidth allocation schemes. For rtPS,
it is shown that the spectral efficiency of the adaptive scheme
is about two times than that of the priority scheme. This
is achieved due to the reason that instead of allocating all
the available bandwidth to rtPS in the priority scheme, the
proposed algorithm adaptively allocates a ”necessary” amount
of bandwidth to the class scheduler to keep its outage prob-
ability around a predefined threshold, which is 2.5% in our
scenario, so that the performance of the class scheduler can
be maximized. By doing so, the channel and QoS aware class
scheduler has more chances to serve a user in a good channel
state without sacrificing the QoS requirement (as we can see
in Fig. 2 that the average delay in the adaptive scheme is
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higher than that of the priority-based scheme, but is well kept
below a threshold), thus significantly increase the efficiency
of bandwidth utilization.

Fig. 4 shows the throughput in nrtPS of three bandwidth
allocation schemes. When the traffic load is light (the number
of users in the system is less than 34), the throughput in all
three schemes increases proportional to the number of users.
After that point, the priority-based scheme experiences band-
width starvation and the throughput is inverse proportional to
the number of users. In the adaptive scheme, the throughput
keeps increasing proportional to the number of users when
there are less than 52 users in the system. After that point, the
throughput decreases as the number of users increases. This
is because in the adaptive scheme, the aggregate scheduler
tries to balance the bandwidth distribution among different
class schedulers so as to increase the spectral efficiency while
satisfying the QoS requirements. If the system is unsaturated,
e.g., the total available bandwidth is larger than the estimated
sum (the number of users in less than 52), the aggregate
scheduler allocates the estimated bandwidth to each class
scheduler, thus the throughput in each service class increases
in proportion to the number of users. If saturation occurs, e.g.,
the total available bandwidth is not enough to serve all classes
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(the number of users in larger than 52), the aggregate scheduler
allocates the estimated bandwidth to the class scheduler from
high priority to low priority, thus the throughput in service
class with low priority decreases as the bandwidth balancing
scheme in the aggregate scheduler favors service class with
high priority when congestion occurs. However, in the priority-
based scheme, nrtPS class experiences severe bandwidth star-
vation due to the reason that much of the bandwidth allocated
to rtPS class is utilized of low spectral efficiency, thus the
residual bandwidth allocated to nrtPS class is not sufficient
to serve nrtPS connections. While in the static scheme, as
the amount of bandwidth allocated to each class is fixed, the
throughput remains on a steady level regardless of the number
of uses as expected. Fig. 5 shows the throughput outage
probability in nrtPS of three bandwidth allocation schemes.
It is obvious that the proposed adaptive scheme outperforms
over the other two schemes. The number of supportable users
under a predefined 5% outage probability in priority-based,
static and adaptive scheme are 36, 44 and 52 respectively.
From Fig. 6, we notice that for nrtPS, the spectral efficiency
of the adaptive scheme is lower than the priority-based scheme
when the number of users is greater than 34. This is because
in the priority-based scheme, the traffic in nrtPS class starts
experiencing congestion when there are more than 34 users,
which means that the nrtPS class scheduler in the priority-
based scheme can’t get enough bandwidth as in the adaptive
scheme, that in turn results a higher modulation efficiency due
to the scheduling mechanism of EXP algorithm.

V. CONCLUSIONS

In this paper, an adaptive resource allocation algorithm
of the aggregate scheduler in two-level hierarchical QoS
scheduling for IEEE 802.16 systems is proposed to increase
the spectral efficiency while satisfying the diverse QoS require-
ments in each service class. The proposed algorithm takes the
backlogged traffic, the modulation efficiency, as well as the
QoS satisfaction into account when estimating the amount of
bandwidths required in each service class. Through system-
level simulation, the performance of the proposed algorithm
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Fig. 6. Modulation efficiency in rtPS and nrtPS

is evaluated in terms of packet delay, throughput, outage
probability and modulation efficiency in rtPS and nrtPS service
classes. It is shown that the overall performance of the pro-
posed algorithm can be significantly improved compared with
the conventional schemes in terms of the maximum number
of supportable users under a predetermined outage probability.
As the bandwidth allocation module and the packet scheduling
module are loosely separated in our scheduler, the design of
the class scheduler is independent to the aggregate scheduler.
Our proposed algorithm of the aggregate scheduler is aware of
the performance of the class scheduler, thus can support and
adapt to various scheduling algorithms in the class scheduler.
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