

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Schedulability-Driven Frame Packing for Multi-Cluster Distributed Embedded Systems

Pop, Paul; Eles, Petru; Peng, Zebo

Publication date:
2003

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pop, P., Eles, P., & Peng, Z. (2003). Schedulability-Driven Frame Packing for Multi-Cluster Distributed
Embedded Systems. Abstract from Association-for-Computing-Machinery SIGPLAN Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES 03), San Diego, (CA), United States.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13782446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/schedulabilitydriven-frame-packing-for-multicluster-distributed-embedded-systems(8c4d3215-6f99-4723-9aa5-23b566caeca5).html

1

ABSTRACT
We present an approach to frame packing for multi-cluster distrib-
uted embedded systems consisting of time-triggered and event-trig-
gered clusters, interconnected via gateways. In our approach, the
application messages are packed into frames such that the applica-
tion is schedulable, thus the end-to-end message communication
constraints are satisfied. We have proposed a schedulability analysis
for applications consisting of mixed event-triggered and time-trig-
gered processes and messages, and a worst case queuing delay anal-
ysis for the gateways, responsible for routing inter-cluster traffic.
Optimization heuristics for frame packing aiming at producing a
schedulable system have been proposed. Extensive experiments and
a real-life example show the efficiency of our frame-packing
approach.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management–scheduling

General Terms
Algorithms, Performance, Design, Theory

1. INTRODUCTION
Embedded real-time systems have to be designed such that they
implement correctly the required functionality. In addition, they
have to fulfill a wide range of competing constraints: development
cost, unit cost, reliability, security, size, performance, power con-
sumption, flexibility, time-to-market, maintainability, correctness,
safety, etc. Very important for the correct functioning of such sys-
tems are their timing constraints: “the correctness of the system
behavior depends not only on the logical results of the computations,
but also on the physical instant at which these results are produced”
[13].

Real-time systems have been classified as hard real-time and soft
real-time systems [13]. Basically, hard real-time systems are systems
where failing to meet a timing constraint can potentially have cata-
strophic consequences. For example, a brake-by-wire system in a car
failing to react within a given time interval can result in a fatal acci-
dent. On the other hand, a multimedia system, which is a soft-real
time system, can, under certain circumstances, tolerate a certain
amount of delays resulting maybe in a patchier picture, without seri-
ous consequences besides some possible inconvenience to the user.

The techniques presented in this paper are aimed towards hard-real
time systems that implement safety-critical applications where tim-
ing constraints are of utmost importance to the correct behavior of
the application.

Many such applications, following physical, modularity or safety
constraints, are implemented using distributed architectures. An

increasing number of real-time applications are today implemented
using distributed architectures consisting of interconnected clusters
of processors (Figure 1). Each such cluster has its own communica-
tion protocol and two clusters communicate via a gateway, a node
connected to both of them [21, 18]. This type of architectures is used
in several application areas: vehicles, factory systems, networks on
chip, etc.

Considering, for example, the automotive industry, the way func-
tionality has been distributed on an architecture has evolved over
time. Initially, distributed real-time systems were implemented using
architectures where each node is dedicated to the implementation of
a single function or class of functions, allowing the system integra-
tors to purchase nodes implementing required functions from differ-
ent vendors, and to integrate them into their system [7]. There are
several problems related to this restricted mapping of functionality:

• The number of such nodes in the architecture has exploded,
reaching, for example, more than 100 in a high-end car, incur-
ring heavy cost and performance penalties.

• The resulting solutions are sub-optimal in many aspects, and do
not use the available resources efficiently in order to reduce
costs. For example, it is not possible to move a function from
one node to another node where there are enough available
resources (e.g., memory, computation power).

• Emerging functionality, such as brake-by-wire in the automo-
tive industry, is inherently distributed, and achieving an effi-
cient fault-tolerant implementation is very difficult in the
current setting.

This has created a huge pressure to reduce the number of nodes by
integrating several functions in one node and, at the same time, cer-
tain functionality has been distributed over several nodes (see

Figure 1. Distributed Safety-Critical Applications

...

...

Gateway

Functions of the first application

Functions of the second application

Functions of the third application

......

......

GatewayGateway

Functions of the first application

Functions of the second application

Functions of the third application

Functions of the first application

Functions of the second application

Functions of the third application

I/O Interface

Comm. Controller

CPU

RAM

ROM

ASIC

...

Sensors/Actuators

Schedulability-Driven Frame Packing
for Multi-Cluster Distributed Embedded Systems

Paul Pop, Petru Eles, Zebo Peng
Computer and Information Science Dept.

Linköping University
 SE-581 83 Linköping, Sweden

{paupo, petel, zebpe}@ida.liu.se

2

Figure 1). Although an application is typically distributed over one
single network, we begin to see applications that are distributed
across several networks. For example, in Figure 1, the third applica-
tion, represented as black dots, is distributed over two networks.

This trend is driven by the need to further reduce costs, improve
resource usage, but also by application constraints like having to be
physically close to particular sensors and actuators. Moreover, not
only are these applications distributed across networks, but their
functions can exchange critical information through the gateway
nodes.

Due to the complexity of embedded systems, hardware/software co-
synthesis environments are developed to assist the designer in find-
ing the most cost effective solution that, at the same time, meets the
design requirements [45].

Preemptive scheduling of independent processes with static priori-
ties running on single-processor architectures has its roots in the
work of Liu and Layland [19]. The approach has been later extended
to accommodate more general computational models and has also
been applied to distributed systems [39]. The reader is referred to [1,
3, 36] for surveys on this topic. Static cyclic scheduling of a set of
data dependent software processes on a multiprocessor architecture
has also been intensively researched [13, 44].

In [17] an earlier deadline first strategy is used for non-preemptive
scheduling of processes with possible data dependencies. Preemp-
tive and non-preemptive static scheduling are combined in the
cosynthesis environment described in [5, 6]. In many of the previous
scheduling approaches researchers have assumed that processes are
scheduled independently. However, this is not the case in reality,
where process sets can exhibit both data and control dependencies.
Moreover, knowledge about these dependencies can be used in order
to improve the accuracy of schedulability analyses and the quality of
produced schedules. One way of dealing with data dependencies
between processes with static priority based scheduling has been
indirectly addressed by the extensions proposed for the schedulabil-
ity analysis of distributed systems through the use of the release jit-
ter [39]. Release jitter is the worst case delay between the arrival of a
process and its release (when it is placed in the run-queue for the
processor) and can include the communication delay due to the
transmission of a message on the communication channel.

In [37] and [45] time offset relationships and phases, respectively,
are used in order to model data dependencies. Offset and phase are
similar concepts that express the existence of a fixed interval in time
between the arrivals of sets of processes. The authors show that by
introducing such concepts into the computational model, the pessi-
mism of the analysis is significantly reduced when bounding the
time behaviour of the system. The concept of dynamic offsets has
been later introduced in [23] and used to model data dependencies
[24].

Currently, more and more real-time systems are used in physically
distributed environments and have to be implemented on distributed
architectures in order to meet reliability, functional, and perfor-
mance constraints.

Researchers have often ignored or very much simplified the commu-
nication infrastructure. One typical approach is to consider commu-
nications as processes with a given execution time (depending on the
amount of information exchanged) and to schedule them as any

other process, without considering issues like communication proto-
col, bus arbitration, packaging of messages, clock synchronization,
etc. [45].

Many efforts dedicated to the synthesis of communication infra-
structure parameters do not consider hard real-time constraints and
system level scheduling aspects [10, 42]. We have to mention here
some results obtained in extending real-time schedulability analysis
so that network communication aspects can be handled. In [38], for
example, the controller area network (CAN) protocol is investigated
while the work reported in [39] deals with a simple time-division
multiple access (TDMA) protocol.

There are two basic approaches for handling tasks in real-time appli-
cations [13]. In the event-triggered approach (ET), activities are ini-
tiated whenever a particular event is noted. In the time-triggered
(TT) approach, activities are initiated at predetermined points in
time. There has been a long debate in the real-time and embedded
systems communities concerning the advantages of TT and ET
approaches [2, 13, 43]. An interesting comparison, from a more
industrial, in particular automotive, perspective, can be found in
[20]. The conclusion there is that one has to choose the right
approach depending on the characteristics of the processes. This
means not only that there is no single “best” approach to be used, but
also that inside a certain application the two approaches can be used
together, some processes being TT and others ET.

In [25] we have addressed design problems for systems where the
TT and ET activities share the same processor and TT/ET bus [11].
A fundamentally different architectural approach to heterogeneous
TT/ET systems is that of heterogeneous multi-clusters, where each
cluster can be either TT or ET:

• In a time-triggered cluster (TTC) processes and messages are
scheduled according to a static cyclic policy, with the bus
implementing a TDMA protocol such as, for example, the time-
triggered protocol (TTP) [40].

• On event-triggered clusters (ETC) the processes are scheduled
according to a priority based preemptive approach, while mes-
sages are transmitted using the priority-based CAN bus [4].

In this context, in [28] we have proposed an approach to schedulabil-
ity analysis for multi-cluster distributed embedded systems. Starting
from such an analysis, in this paper we address the issue of frame
packing, which is of utmost importance in cost-sensitive embedded
systems where resources, such as communication bandwidth, have
to be fully utilized [14, 33, 35]. In both TTP and CAN protocols
messages are not sent independently, but several messages having
similar timing properties are usually packed into frames. In many
application areas, like automotive electronics, messages range from
one single bit (e.g., the state of a device) to a couple of bytes (e.g.,
vehicle speed, etc.). Transmitting such small messages one per frame
would create a high communication overhead, which can cause long
delays leading to an unschedulable system. For example, 65 bits
have to be transmitted on CAN for delivering one single bit of appli-
cation data. Moreover, a given frame configuration defines the exact
behavior of a node on the network, which is very important when
integrating nodes from different suppliers.

The issue of frame packing (sometimes referred to as frame compil-
ing) has been previously addressed separately for the CAN and the
TTP. In [33, 35] CAN frames are created based on the properties of

3

the messages, while in [14] a “cluster compiler” is used to derive the
frames for a TT system which uses TTP as the communication pro-
tocol. However, researchers have not addressed frame packing on
multi-cluster systems implemented using both ET and TT clusters,
where the interaction between the ET and TT processes of a hard
real-time application has to be very carefully considered in order to
guarantee the timing constraints. As our multi-cluster scheduling
strategy in Section 4.2 shows, the issue of frame packing cannot be
addressed separately for each type of cluster, since the inter-cluster
communication creates a circular dependency.

1.1 Contributions
In this paper, we concentrate on the issue of packing messages into
frames, for multi-cluster distributed embedded systems consisting of
time-triggered and event-triggered clusters, interconnected via gate-
ways. We are interested to obtain a frame configuration that would
produce a schedulable system.

The contributions of this paper are:

• We have addressed the issue of frame-packing in the context of
multi-cluster architectures consisting of time-triggered clusters
and event-triggered clusters.

• We have developed two new optimization heuristics that use
the schedulability analysis as a driver towards a frame configu-
ration that leads to a schedulable system.

• The schedulabiltiy of an application mapped on a multi-cluster
system cannot be addressed separately for each type of cluster.
Hence, we have proposed a multi-cluster scheduling algorithm
that handles the circular dependency due to the inter-cluster
communication.

• We have updated our schedulability analysis presented in [28]
to account for the frame packing.

The paper is organized in six sections. The next section presents the
hardware and software architectures as well as the application model
of our systems. Section 3 introduces more precisely the problem that
we are addressing in this paper. Section 4 presents our proposed
frame-packing optimization strategy, driven by the analysis pre-
sented in Section 4.2. The last two sections present the experimental
results and conclusions.

2. APPLICATION MODEL AND SYSTEM
ARCHITECTURE

2.1 Hardware Architecture
We consider architectures consisting of several clusters, intercon-
nected by gateways (Figure 1 depicts a two-cluster example). A
cluster is composed of nodes which share a broadcast communica-
tion channel. Let NT (NE) be the set of nodes on the TTC (ETC).
Every node Ni ∈ NT ∪ NE includes a communication controller and
a CPU, along with other components. The gateways, connected to
both types of clusters, have two communication controllers, for TTP
and CAN. The communication controllers implement the protocol
services, and run independently of the node’s CPU. Communication
with the CPU is performed through a Message Base Interface
(MBI); see Figure 4.

Communication between the nodes on a TTC is based on the TTP
[40]. The TTP integrates all the services necessary for fault-toler-

ant real-time systems. The bus access scheme is time-division
multiple-access (TDMA), meaning that each node Ni on the TTC,
including the gateway node, can transmit only during a predeter-
mined time interval, the TDMA slot Si. In such a slot, a node can
send several messages packed in a frame. A sequence of slots
corresponding to all the nodes in the architecture is called a
TDMA round. A node can have only one slot in a TDMA round.
Several TDMA rounds can be combined together in a cycle that is
repeated periodically. The sequence and length of the slots are
the same for all the TDMA rounds. However, the length and con-
tents of the frames may differ.

The TDMA access scheme is imposed by a message descriptor list
(MEDL) that is located in every TTP controller. The MEDL serves
as a schedule table for the TTP controller which has to know when to
send/receive a frame to/from the communication channel.

There are two types of frames in the TTP. The initialization frames,
or I-frames, which are needed for the initialization of a node, and the
normal frames, or N-frames, which are the data frames containing, in
their data field, the application messages. A TTP data frame
(Figure 2) consists of the following fields: start of frame bit (SOF),
control field, a data field of up to 16 bytes containing one or more
messages, and a cyclic redundancy check (CRC) field. Frames are
delimited by the inter-frame delimiter (IDF, 3 bits).

For example, the data efficiency of a frame that carries 8 bytes of
application data, i.e., the percentage of transmitted bits which are the
actual data bits needed by the application, is 69.5% (64 data bits
transmitted in a 92-bit frame, without considering the details of a

Figure 2. Time-Triggered Protocol

S
O
F

I
F
D

Control field, 8 bits
- 1 initialization bit
- 3 mode change bits

Data field, up to 16 bytes

CRC field, 16 bits

Example TTP data frame

TDMA Round
Cycle of two rounds

Slot

S0 S1 S2 S3 S0 S1 S2 S3

Frames

S
O
F

I
F
D

Data field, up to 8 bytes

Arbitration field, 12 bits
- 11 identifier bits
- 1 retransmission bit

CRC field,
- 4 data length code bits
- 2 reserved bits

Control field, 6 bits ACK field,
2 bits15 bits

EOF field,
7 bits

Figure 3. Controller Area Network Data Frame (CAN 2.0A)

4

particular physical layer). Note that no identifier bits are necessary,
as the TTP controllers know from their MEDL what frame to expect
at a given point in time. In general, the protocol efficiency is in the
range of 60–80% [41].

On an ETC, the CAN [4] protocol is used for communication. The
CAN bus is a priority bus that employs a collision avoidance mecha-
nism, whereby the node that transmits the frame with the highest pri-
ority wins the contention. Frame priorities are unique and are
encoded in the frame identifiers, which are the first bits to be trans-
mitted on the bus.

In the case of CAN 2.0A, there are four frame types: data frame,
remote frame, error frame, and overload frame. We are interested in
the composition of the data frame, depicted in Figure 2. A data
frame contains seven fields: SOF, arbitration field that encodes the
11 bits frame identifier, a control field, a data field up to 8 bytes, a
CRC field, an acknowledgement (ACK) field, and an end of frame
field (EOF).

In this case, for a frame that carries 8 bytes of application data, we
will have an efficiency of 47.4% [22]. The typical CAN protocol
efficiency is in the range of 25–35% [41].

2.2 Software Architecture
A real-time kernel is responsible for activation of processes and
transmission of messages on each node. On a TTC, the processes
are activated based on the local schedule tables, and messages are
transmitted according to the MEDL. On an ETC, we have a sched-
uler that decides on activation of ready processes and transmission
of messages, based on their priorities.

In Figure 4 we illustrate our message passing mechanism. Here
we concentrate on the communication between processes located
on different clusters. For message passing within a TTC the
reader is directed to [26], while the infrastructure needed for
communications on an ETC has been detailed in [38].

Let us consider the example in Figure 4, where we have an applica-
tion consisting of four processes and four messages mapped on two
clusters. Processes P1 and P4 are mapped on node N1 of the TTC,

while P2 and P3 are mapped on node N2 of the ETC. Process P1
sends messages m1 and m2 to processes P2 and P3, respectively,
while P2 and P3 send messages m3 and m4 to P4. All messages have
a size of one byte.

The transmission of messages from the TTC to the ETC takes place
in the following way (see Figure 4). P1, which is statically sched-
uled, is activated according to the schedule table, and when it fin-
ishes it calls the send kernel function in order to send m1 and m2,
indicated in the figure by the number (1). Messages m1 and m2 have
to be sent from node N1 to node N2. At a certain time, known from
the schedule table, the kernel transfers m1 and m2 to the TTP control-
ler by packing them into a frame in the MBI. Later on, the TTP con-
troller knows from its MEDL when it has to take the frame from the
MBI, in order to broadcast it on the bus. In our example, the timing
information in the schedule table of the kernel and the MEDL is
determined in such a way that the broadcasting of the frame is done
in the slot S1 of round 2 (2). The TTP controller of the gateway node
NG knows from its MEDL that it has to read a frame from slot S1 of
round 2 and to transfer it into its MBI (3). Invoked periodically, hav-
ing the highest priority on node NG, and with a period which guaran-
tees that no messages are lost, the gateway process T copies
messages m1 and m2 from the MBI to the TTP-to-CAN priority-
ordered message queue OutCAN (4). Let us assume that on the ETC
messages m1 and m2 are sent independently, one per frame. The
highest priority frame in the queue, in our case the frame f1 contain-
ing m1, will tentatively be broadcast on the CAN bus (5). Whenever
f1 will be the highest priority frame on the CAN bus, it will success-
fully be broadcast and will be received by the interested nodes, in
our case node N2 (6). The CAN communication controller of node
N2 receiving f1 will copy it in the transfer buffer between the control-
ler and the CPU, and raise an interrupt which will activate a delivery
process, responsible to activate the corresponding receiving process,
in our case P2, and hand over message m1 that finally arrives at the
destination (7).

Message m3 (depicted in Figure 4 as a grey rectangle labeled “m3”)
sent by process P2 from the ETC will be transmitted to process P4 on
the TTC. The transmission starts when P2 calls its send function and
enqueues m3 in the priority-ordered OutN2 queue (8). When the

Figure 4. A Message Passing Example

b)

P1

P4

P2 P3

m1 m2

m3 m4

P1

P4

P2 P3

m1 m2

m3 m4

N1 N2

TTC ETC

TTP

CAN

NG
N1 N2

TTC ETC

TTP

CAN

NG

c)

CPUNG

O
ut

C
A

N

S1SG

Round2

P4P1

CPUN1

MBI

CPU

MBI

CPUN2

T

m1
m2

S1SG

O
ut

T
T

P

D

P2 P3

O
ut

N
2

m3

m3

TTC

ETC

Gateway

11

22

33

44

55

66

m1

77

88

99

1010

1111

1212

1313
1414

1515

TTP

CAN

m3

m
1

m
1

m
1

m1

m
1

m
1

m
3

m
3

m
3

m
3

m
3

a)

5

frame f3 containing m3 has the highest priority on the bus, it will be
removed from the queue (9) and broadcast on the CAN bus (10).
Several messages can be packed into a frame in order to increase the
efficiency of data transmission. For example, m3 can wait in the
queue until m4 is produced by P3, in order to be packed together with
m4 in a frame. When f3 arrives at the gateway’s CAN controller it
raises an interrupt. Based on this interrupt, the gateway transfer pro-
cess T is activated, and m3 is unpacked from f3 and placed in the Out-

TTP FIFO queue (11). The gateway node NG is only able to broadcast
on the TTC in the slot SG of the TDMA rounds circulating on the
TTP bus. According to the MEDL of the gateway, a set of messages
not exceeding sizeSG

 of the data field of the frame traveling in slot
SG will be removed from the front of the OutTTP queue in every
round, and packed in the SG slot (12). Once the frame is broadcast
(13) it will arrive at node N1 (14), where all the messages in the
frame will be copied in the input buffers of the destination processes
(15). Process P4 is activated according to the schedule table, which
has to be constructed such that it accounts for the worst-case com-
munication delay of message m3, bounded by the analysis in
Section 4.2, and, thus, when P4 starts executing it will find m3 in its
input buffer.

As part of our frame packing approach, we generate all the MEDLs
on the TTC (i.e., the TT frames and the sequence of the TDMA
slots), as well as the ET frames and their priorities on the ETC such
that the global system is schedulable.

2.3 Application Model
There is a lot of research in the area of system modeling and specifi-
cation, and an impressive number of representations have been pro-
posed. An overview, classification and comparison of different
design representations and modeling approaches is given in [8, 15].

Researchers have used, for example, dataflow process networks
(also called task graphs, or process graphs) [16] to describe interact-
ing processes, and have represented them using directed acyclic
graphs, where a node is a process and the directed arcs are depen-
dencies between processes.

In this paper, we model an application Γ as a set of process graphs
Gi ∈ Γ (see Figure 5). Nodes in the graph represent processes and

arcs represent dependency between the connected processes. A pro-
cess is a sequence of computations (corresponding to several build-
ing blocks in a programming language) which starts when all its
inputs are available. When it finishes executing, the process pro-
duces its output values. Processes can be pre-emptable or non pre-
emptable. Non pre-emptable processes are processes that cannot be
interrupted during their execution, and are mapped on the TTC. Pre-
emptable processes can be can be interrupted during their execution,
and are mapped on the ETC. For example, a higher priority process
has to be activated to service an event, in this case, the lower priority
process will be temporary pre-empted until the higher priority pro-
cess finishes its execution.

A process graph is polar, which means that there are two nodes,
called source and sink, that conventionally represent the first and last
process. If needed, these nodes are introduced as dummy processes
so that all other nodes in the graph are successors of the source and
predecessors of the sink, respectively.

The communication time between processes mapped on the same
processor is considered to be part of the process worst-case execu-
tion time and is not modeled explicitly. Communication between
processes mapped to different processors is performed by message
passing over the buses and, if needed, through the gateway. Such
message passing is modeled as a communication process inserted on
the arc connecting the sender and the receiver process (the black dots
in Figure 5).

Potential communication between processes in different applications
is not part of the model. Technically, such a communication is
implemented by the kernels based on asynchronous non-blocking
send and receive primitives. Such messages are considered non-criti-
cal and are not affected by real-time constraints. Therefore, commu-
nications of this nature will not be addressed in this paper.

Each process Pi is mapped on a processor M(Pi) (mapping repre-
sented by hashing in Figure 5), and has a worst case execution time
Ci on that processor (depicted to the left of each node). The designer
can provide manually such worst-case times, or tools can be used in
order to determine the worst-case execution time of a piece of code
on a given processor [32].

Figure 5. Application Model

P1

P2 P3

P4

m1

m2

m3 m4 P9

P10

P11

P6

P8

P7

P12

 G1

27

30
25

24

19

30

22

2

4
2

1m5

m7

m6

m8

 G2

 Application Γ1

 G3

30

30 30

30

1 1

1 1

6

For each message we know its size (in bytes, indicated to its left),
and its period, which is identical with that of the sender process. Pro-
cesses and messages activated based on events also have a uniquely
assigned priority, priorityPi for processes and prioritymi

 for mes-
sages.

All processes and messages belonging to a process graph Gi have the
same period Ti = TGi which is the period of the process graph. A
deadline DGi is imposed on each process graph Gi. Deadlines can
also be placed locally on processes. Release times of some processes
as well as multiple deadlines can be easily modelled by inserting
dummy nodes between certain processes and the source or the sink
node, respectively. These dummy nodes represent processes with a
certain execution time but which are not allocated to any processing
element.

3. PROBLEM FORMULATION
As input to our problem we have an application Γ given as a set of
process graphs mapped on an architecture consisting of a TTC and
an ETC interconnected through a gateway.

We are interested to find a mapping of messages to frames (a frame
packing configuration) denoted by a 4-tuple ψ = <α, π, β σ> such
that the application Γ is schedulable. Once a schedulable system is

found, we are interested to further improve the “degree of schedula-
bility” (captured by Equation (1)), so the application can potentially
be implemented on a cheaper hardware architecture (with slower
buses and processors).

Determining a frame configuration ψ means deciding on:

• The mapping of application messages transmitted on the ETC
to frames (the set of ETC frames α), and their relative priorities,
π. Note that the ETC frames α have to include messages trans-
mitted from an ETC node to a TTC node, messages transmitted
inside the ETC cluster, and those messages transmitted from
the TTC to the ETC.

• The mapping of messages transmitted on the TTC to frames,
denoted by the set of TTC frames β, and the sequence σ of
slots in a TDMA round. The slot sizes are determined based
on the set β, and are calculated such that they can accommo-
date the largest frame sent in that particular slot. We consider
that messages transmitted from the ETC to the TTC are not
statically allocated to frames. Rather, we will dynamically
pack messages originating from the ETC into the “gateway
frame”, for which we have to decide the data field length (see
Section 2.2).

Figure 6. Frame-Packing Optimization Example

P1

P4

P2 P3

m1 m2

m3 m4

P1

P4

P2 P3

m1 m2

m3 m4

d)

e)

N1

TTC

ETC

T
T

P

OutTTPOutTTP

OutCAN

NG T

P4

P1

N2

P3

P2

O
ut

N
2

O
ut

N
2

C
A

N

S1SG S1SG S1SG S1SG S1SGS1SG S1SG S1SG S1SG S1SG

P3

S1 SG S1 SG S1 SG S1 SG S1 SG S1 SG S1 SG S1 SGS1 SG S1 SG S1 SG S1 SG S1 SG S1 SG S1 SG S1 SG

P1

T T TT

P2 P2

P4

P3

P1

T TT

S1SG S1SG S1SG S1SG S1SG S1SGS1SG S1SG S1SG S1SG S1SG S1SG

P2

P4

P3

P1

T T

P4

P2

m
1

m
1

m
2

m
4

m
3

m
4

m
3

m
1

m
2

m
1

m
2

m
4

m
3

m
4

m
3

m
1

m
2

m
1

m
2

m
3

m
4

m
3

m
4

N1

TTP

CAN

N2

NGa)

N1

TTP

CAN

N2

NGb)

N1

TTP

CAN

N2

NGc)

Deadline

Missed

Met

Missed

O2

Round 2

m
2

Round 3

7

Let us consider the motivational example in Figure 6, where we have
the process graph from Figure 6d mapped on the two-cluster system
from Figure 6e: P1 and P4 are mapped on node N1 from the TTC,
while P2 and P3 are mapped on N2 from ETC. The data filed of the
frames is represented with a black rectangle, while the other frame
fields are depicted in with a grey color. We consider a physical
implementation of the buses such that the frames will take the time
indicated in the figure by the length of their rectangles.

We are interested to find a frame configuration such that the applica-
tion is schedulable.

In the system configuration of Figure 6a we consider that, on the
TTP bus, the node N1 transmits in the first slot (S1) of the TDMA
round, while the gateway transmits in the second slot (SG). Process
P3 has a higher priority than process P2, hence P2 will be interrupted
by P3 when it receives message m2. In such a setting, P4 will miss its
deadline, which is depicted as a thick vertical line in Figure 6.
Changing the frame configuration as in Figure 6b, so that messages
m1 and m2 are packed into frame f1 and slot SG of the gateway comes
first, processes P2 and P3 will receive m1 and m2 sooner and thus
reduce the worst-case response time of the process graph, which is
still larger than the deadline. In Figure 6c, we also pack m3 and m4
into f2. In such a situation, the sending of m3 will have to be delayed
until m4 is queued by P2. Nevertheless, the worst-case response
time of the application is further reduced, which means that the
deadline is met, thus the system is schedulable.

However, packing more messages will not necessarily reduce the
worst-case response times further, as it might increase too much the
worst-case response times of messages that have to wait for the
frame to be assembled, like is the case with message m3 in Figure 6c.
We are interested to find a frame packing that leads to a schedulable
system.

Several details related to the schedulability analysis were omitted
from the discussion of the example. These details will be discussed
in Section 5.

4. FRAME PACKING STRATEGY
The general multi-cluster optimization strategy is outlined in
Figure 7. The MultiClusterConfiguration strategy has two steps:

1. In the first step, line 3, the application is partitioned on the TTC
and ETC clusters, and processes are mapped to the nodes of the
architecture using the PartitioningAndMapping function. The
partitioning and mapping can be done with an optimization
heuristic like the one presented in [31]. As part of the partition-
ing and mapping process, an initial frame configuration
ψ0 = <α0, π0, β0, σ0> is derived. Messages exchanged by pro-
cesses partitioned to the TTC will be mapped to TTC frames,
while messages exchanged on the ETC will be mapped to ETC
frames. For each message sent from a TTC process to an ETC
process, we create an additional message on the ETC, and we
map this message to an ETC frame. The sequence σ0 of slots
for the TTC is decided by assigning in order nodes to the slots
(Si = Ni). One message is assigned per frame in the initial set β0

of TTC frames. For the ETC, the frames in the set α0 initially
hold each one single message, and we calculate the message
priorities π0 based on the deadlines of the receiver processes.

2. The frame packing optimization, is performed as the second
step (line 7 in Figure 7). The FramePackingOptimization func-
tion receives as input the application Γ, the mapping M of pro-
cesses to resources and the initial frame configuration ψ0, and it
produces as output the optimized frame packing configuration
ψ. Such an optimization problem is NP complete [34], thus
obtaining the optimal solution is not feasible. In this paper, we
propose two frame packing optimization strategies, one based
on a simulated annealing approach, presented in Section 4.3,
while the other, outlined in Section 4.4, is based on a greedy
heuristic that uses intelligently the problem-specific knowledge
in order to explore the design space.

If after these steps the application is unschedulable, we conclude that
no satisfactory implementation could be found with the available
amount of resources.

Testing if the application Γ is schedulable is done using the
MultiClusterScheduling (MCS) algorithm (line 7 in Figure 7). The
multi-cluster scheduling algorithm, presented in Section 4.2, takes as
input an application Γ, a mapping M and an initial frame configura-
tion ψ0, builds the TT schedule tables, sets the ET priorities for pro-
cesses, and provides the global analysis.

The aim of such an analysis is to find out if a system is schedulable,
i.e., all the timing constraints are met. On the TTC an application is
schedulable if it is possible to build a schedule table such that the
timing requirements are satisfied. On the ETC, the answer whether
or not a system is schedulable is given by a response time analysis,
presented in the next section.

In order to drive our frame-packing optimization algorithms towards
schedulable solutions, we characterize a given frame packing config-
uration using the degree of schedulability of the application. The
degree of schedulability [27] is calculated as:

Figure 7. The General Frame Packing Strategy

 MultiClusterConfiguration(Γ)

 1 -- determine an initial partitioning and mapping M,

 2 -- and an initial frame configuration ψ0

 3 <M, ψ0> = PartitioningAndMapping(Γ)

 4 -- the frame packing optimization algorithm

 5 ψ = FramePackingOptimization(Γ, M, ψ0)

 6 -- test if the resulted configuration leads to a schedulable application

 7 if MultiClusterScheduling(Γ, M, ψ) returns schedulable then

 8 return M, ψ
 9 else

 10 return unschedulable

 11 endif

 end MultiClusterConfiguration

δΓ = (1)

c2 = , if c1 = 0ri Di–()
i 1=

n

∑

c1 = , if c1 > 0max 0 r, i Di–()
i 1=

n

∑

8

where n is the number of processes in the application, ri is the worst-
case response time of a process Pi, and Di its deadline. The worst-
case response times are calculated by the MultiClusterScheduling
algorithm using the response time analysis presented in the next sec-
tion.

If the application is not schedulable, the term c1 will be positive,
and, in this case, the cost function is equal to c1. However, if the pro-
cess set is schedulable, c1 = 0 and we use c2 as a cost function, as it
is able to differentiate between two alternatives, both leading to a
schedulable process set. For a given set of optimization parameters
leading to a schedulable process set, a smaller c2 means that we have
improved the worst-case response times of the processes, so the
application can potentially be implemented on a cheaper hardware
architecture (with slower processors and/or buses). Improving the
degree of schedulability can also lead to an improvement in the qual-
ity of control for control applications.

4.1 Schedulability Analysis for the ETC

For the ETC we use a response time analysis, where the schedulabil-
ity test consists of the comparison between the worst-case response
time ri of a process Pi and its deadline Di. Response time analysis of
data dependent processes with static priority preemptive scheduling
has been proposed in [23, 37, 45], and has been also extended to
consider the CAN protocol [38]. The authors use the concept of off-
set in order to handle data dependencies. Thus, each process Pi is
characterized by an offset Oi, measured from the start of the process
graph, that indicates the earliest possible start time of Pi. Such an
offset is, for example, O2 in Figure 6a, as process P2 cannot start
before receiving m1. The same is true for messages, their offset indi-
cating the earliest possible transmission time.

In [28] we have proposed an analysis for hard real-time applications
mapped on multi-cluster systems. We have, however, not addressed
the issue of frame packing. In this section we briefly present the
analysis developed in [28], showing how it can be extended to han-
dle frames. The analysis presented in this section works under the
following assumptions:

• All the processes belonging a process graph G have the same
period TG. However, process graphs can have different periods.

• The offsets are static (as opposed to dynamic [23]), and are
smaller than the period.

• The deadlines are arbitrary can be higher than the period.

In addition, our MultiClusterScheduling approach presented in
Section 4.2 assumes that the nodes of an ETC are synchronized. On
the TTC, the time-triggered protocol offers clock synchronization. If
the clocks are not synchronized on the ETC, overheads will have to
be added to account for the drifting of the clocks.

In this context, the worst-case response time of a process Pi on the
ETC1 is [37]:

 (2)

where TG the period of the process graph G, Oi and Oj are offsets of
processes Pi and Pj, respectively, and Ji and Jj are the jitters of Pi
and Pj. The jitter is the worst-case delay between the arrival of a pro-
cess and its release. In Equation (2), q is the number of busy periods
being examined, and wi(q) is the width of the level-i busy period
starting at time qTG [37]:

. (3)

In the previous equation, the blocking term Bi represents interference
from lower priority processes that are in their critical section and
cannot be interrupted, and Ci represents the worst-case execution
time of process Pi. The last term captures the interference Ii from
higher priority processes. The reader is directed to [37] for the
details of the interference calculation.

Although this analysis is exact (both necessary and sufficient), it is
computationally infeasible to evaluate. Hence, [37] proposes a feasi-
ble2 but not exact analysis (sufficient but not necessary) for solving
Equation (2). Our MultiClusterScheduling algorithm presented in
Section 4.2 uses the feasible analysis provided in [37] for deriving
the worst-case response time of a process Pi.

Regarding the worst-case response time of messages, we have
extended the analysis from [38] and applied it for frames on the
CAN bus:

. (4)

In the previous equation Jf is the jitter of frame f which in the worst
case is equal to the largest worst-case response time rS(m) of a sender
process S(m) which sends message m packed into frame f:

 . (5)

In Equation (4), Wf is the worst-case queuing delay experienced by f
at the communication controller, and is calculated as:

(6)

where q is the number of busy periods being examined, and wf(q) is
the width of the level-f busy period starting at time qTf.

Moreover, in Equation (4), Cf is the worst-case time it takes for a
frame f to reach the destination controller. On CAN, Cf depends on
the frame configuration and the size of the data field, sf, while on
TTP it is equal to the slot size in which f is transmitted.

The worst-case response time of message m packed into a frame f
can be determined by observing that rm = rf.

The worst-case queueing delay for a frame (Wf in Equation (4)) is
calculated differently for each type of queue:

1 Processes mapped on the ETC are pre-emptable, and are scheduled using
fixed-priority pre-emptive scheduling.

2 The implementation of this feasible analysis is available at:
ftp://ftp.cs.york.ac.uk/pub/realtime/programs/src/offsets/

ri
max

q 0 1,2...,=
max
Pj∀ G∈

wi q() Oj Jj

TG q
Oj Jj Oi– Ji–+

TG
---------------------------------------+

 – Oi–

+ +

=

wi q() Bi q 1+()Ci Ii+ +=

rf
max

q 0 1,2...,=
Jf Wf q() Cf+ +()=

Jf
max
m∀ f∈

rS m()()=

Wf q() wf q() qTf–=

9

1. The output queue of an ETC node, in which case Wf
Ni represents

the worst-case time a frame f has to spend in the OutNi queue on
ETC node Ni. An example of such a frame is the one containing
message m3 in Figure 6a, which is sent by process P2 from the
ETC node N2 to the gateway node NG, and has to wait in the
OutN2

 queue.

2. The TTP-to-CAN queue of the gateway node, in which case
Wf

CAN is the worst-case time a frame f has to spend in the
OutCAN queue of node NG. In Figure 6a, the frame containing
m1 is sent from the TTC node N1 to the ETC node N2, and has
to wait in the OutCAN queue of gateway node NG before it is
transmitted on the CAN bus.

3. The CAN-to-TTP queue of the gateway node, where Wf
TTP cap-

tures the time f has to spend in the OutTTP queue node NG. Such
a situation is present in Figure 6a, where the frame with m3 is
sent from the ETC node N2 to the TTC node N1 through the
gateway node NG where it has to wait in the OutTTP queue
before it is transmitted on the TTP bus, in the SG slot of node
NG.

On the TTC, the synchronization between processes and the TDMA
bus configuration is solved through the proper synthesis of schedule
tables, hence no output queues are needed. The frames sent from a
TTC node to another TTC node are taken into account when deter-
mining the offsets, and are not involved directly in the ETC analysis.

The next sections show how the worst queueing delays are calcu-
lated for each of the previous three cases.

4.1.1 Worst-case queuing delays in the OutNi
 and

OutCAN queues
The analyses for Wf

Ni and Wf
CAN are similar. Once f is the highest

priority frame in the OutCAN queue, it will be sent by the gateway’s
CAN controller as a regular CAN frame, therefore the same equation
for wf can be used:

. (7)

The intuition is that f has to wait, in the worst case, first for the larg-
est lower priority frame that is just being transmitted (Bf) as well as
for the higher priority fj ∈ hp(f) frames that have to be transmitted
ahead of f (the second term). In the worst case, the time it takes for
the largest lower priority frame fk ∈ lp(f) to be transmitted to its des-
tination is:

 . (8)

Note that in our case, lp(f) and hp(f) also include messages produced
by the gateway node, transferred from the TTC to the ETC.

4.1.2 Worst-case queuing delay in the OutTTP queue
The time a frame f has to spend in the OutTTP queue in the worst case
depends on the total size of messages queued ahead of f (OutTTP is a
FIFO queue), the size SG of the data field of the frame fitting into the
gateway slot responsible for carrying the CAN messages on the TTP

bus, and the period TTDMA with which this slot SG is circulating on
the bus [30]:

(9)

where If is the total size of the frames queued ahead of f. Those
frames fj ∈ hp(f) are ahead of f, which have been sent from the ETC
to the TTC, and have higher priority than f:

(10)

where the frame jitter Jj is given by Equation (5).

The blocking term Bf is the time interval in which f cannot be trans-
mitted because the slot SG of the TDMA round has not arrived yet.
In the worst case (i.e., the frame f has just missed the slot SG), the
frame has to wait an entire round TTDMA for the slot SG in the next
TDMA round.

4.2 Multi-Cluster Scheduling
Determining the schedulability of an application mapped on a multi-
cluster system cannot be addressed separately for each type of clus-
ter, since the inter-cluster communication creates a circular depen-
dency: the static schedules determined for the TTC influence
through the offsets the worst-case response times of the processes on
the ETC, which on their turn influence the schedule table construc-
tion on the TTC. In Figure 6b packing m1 and m2 in the same frame
leads to equal offsets for P2 and P3. Because of this, P3 will delay P2
(which would not be the case if m2 sent to P3 would be scheduled in
round 3, for example) and thus the placement of P4 in the schedule
table has to be accordingly delayed to guarantee the arrivals of m3
and m4.

In our analysis we consider the influence between the two clusters
by making the following observations:

• The start time of process Pi in a schedule table on the TTC is its
offset Oi.

• The worst-case response time ri of a TT process is its worst
case execution time, i.e. ri = Ci (TT processes are not preempt-
able).

• The worst-case response times of the messages exchanged
between two clusters have to be calculated according to the
schedulability analysis described in Section 4.1.

• The offsets have to be set by a scheduling algorithm such that
the precedence relationships are preserved. This means that, if
process PB depends on process PA, the following condition
must hold: OB ≥ OA + rA. Note that for the processes on a TTC
which receive messages from the ETC this translates to setting
the start times of the processes such that a process is not acti-
vated before the worst-case arrival time of the message from
the ETC. In general, offsets on the TTC are set such that all the
necessary messages are present at the process invocation.

The MultiClusterScheduling algorithm in Figure 8 receives as input
the application Γ, the frame configuration ψ, and produces the off-
sets φ and worst-case response times ρ.

wf q() Bf
wf q() Jj+

Tj
------------------------ Cj

fj∀ hp f()∈
∑+=

Bf
max

fk∀ lp f()∈
Ck()=

wf
TTP

q() Bf
q 1+()sf If wf q()()+

SG
-- TTDMA+=

If w() wf Jj+
Tj

fj∀ hp f()∈
∑ sj=

10

The algorithm sets initially all the offsets to 0 (line 1). Then, the
worst-case response times are calculated using the ResponseTime-
Analysis function (line 4) using the feasible analysis provided in
[37]. The fixed-point iterations that calculate the response times at
line 3 will converge if processor and bus loads are smaller than
100% [37]. Based on these worst-case response times, we determine
new values φnew for the offsets using a list scheduling algorithm
(line 6).

The multi-cluster scheduling algorithm loops until the degree of
schedulability δΓ of the application Γ cannot be further reduced
(lines 8–20). In each loop iteration, we select a new offset from the
set of φnew offsets (line 10), and run the response time analysis (line
11) to see if the degree of schedulability has improved (line 12). If
δΓ has not improved, we continue with the next offset in φnew.

When a new offset Oi
new leads to an has improved δΓ we exit the for-

each loop 9–19 that examines offsets from φnew. The loop iteration
8–20 continues with a new set of offsets, determined by ListSchedul-
ing at line 15, based on the worst-case response times ρnew corre-
sponding to the previously accepted offset.

In the multi-cluster scheduling algorithm, the calculation of offsets is
performed by the list scheduling algorithm presented in Figure 9. In
each iteration, the algorithm visists the processes and messages in
the ReadyList. A process or a message in the application is placed in
the ReadyList if all its predecessors have been already scheduled. The
list is ordered based on the priorities presented in [9]. The algorithm
terminats when all processes and messages have been visited.

In each loop iteration, the algorithm calculates the earliest time
moment offset when the process or message nodei can start (lines 5–
7). There are four situations:

1. The visited node is an ET message. The message mi is packed
into its frame f (line 9), and the offset Of of the frame is
updated. The frame can only be transmitted after all the sender
processes that pack messages in this frame have finished exe-
cuting. The offset of message mi packed to frame f is equal to
the frame offset Of.

2. The node is a TT message. In this case, when the frame is ready
for transmission, it is scheduled using the ScheduleTTFrame
function (presented in Figure 10), which returns the round and
the slot where the frame has been placed (line 6 in Figure 9). In
Figure 10, the round immediately following offset is the initial
candidate to be considered (line 2). However, it can be too late
to catch the allocated slot, in which case the next round is con-
sidered (line 4). For this candidate round, we have to check if
the slot is not occupied by another frame. If so, the communica-
tion has to be delayed for another round (line 7). Once a frame
has been scheduled, we can determine the offsets and worst-

Figure 8. The MultiClusterScheduling Algorithm

 MultiClusterScheduling(Γ, M, ψ)

 -- determines the set of offsets φ and worst-case response times ρ
 1 for each Oi ∈ φ do Oi = 0 end for -- initially all offsets are zero

 2 -- determine initial values for the worst-case response times

 3 -- according to the analysis in Section 4.1

 4 ρ = ResponseTimeAnalysis(Γ, M, ψ, φ)

 5 -- determine new values for the offsets, based on the response times ρ
 6 φnew = ListScheduling(Γ, M, ψ, ρ)
 7 δΓ = ∞ -- consider the system unschedulable at first

 8 repeat -- iteratively improve the degree of schedulability δΓ
 9 for each Oi

new ∈ φnew do -- for each newly calculated offset

 10 Oi
old = φ.Oi; φ.Oi = φnew.Oi

new -- set the new offset, remember old

 11 ρnew = ResponseTimeAnalysis(Γ, M, ψ, φ)

 12 δΓ
new = SchedulabilityDegree(Γ, ρ)

 13 if δΓ
new < δΓ then -- the schedulability has improved

 14 -- offsets are recalculated using ρnew

 15 φnew = ListScheduling(Γ, M, ψ, ρnew)
 16 break -- exit the for-each loop

 17 else -- the schedulability has not improved

 18 φ.Oi = Oi
old-- restore the old offset

 19 end for

 20 until δΓ has not changed or a limit is reached

 21 return ρ, φ, δΓ
 end MultiClusterScheduling

Figure 9. ListScheduling Algorithm

 ListScheduling(Γ, M, ψ, ρ) -- determines the set of offsets φ
 1 ReadyList = source nodes of all process graphs in the application

 2 while ReadyList ≠ ∅ do

 3 nodei = Head(ReadyList)

 4 offset = 0 -- determine the earliest time when an activity can start

 5 for each direct predecessor nodej of nodei do

 6 offset = max(offset, Oj + rj)

 7 end for

 8 if nodei is a message mi then

 9 PackFrame(mi, f) -- pack each ready message m into its frame f

 10 Of = max(Of, offset) -- update the frame offset

 11 if f is complete then -- the frame is complete for transmission

 12 if f ∈ α then -- f is an ET frame

 13 -- the offset of messages is equal to the frame offset

 14 for each mj ∈ f do Oj = Of end for

 15 else -- f is a TT frame

 16 <round, slot> = ScheduleTTFrame(f, offset, ψ)

 17 -- set the TT message offsets based on the round and slot

 18 for each mj ∈ f do Oj = round * TTDMA+ Oslot end for

 19 endif; endif

 20 else -- nodei is a process Pi

 21 if M(Pi) ∈ NE then -- if process Pi is mapped on the ETC

 22 Oi = offset -- the ETC process can start immediately

 23 else -- process Pi is mapped on the TTC

 24 -- Pi has to wait also for the processor M(Pi) to become available

 25 Oi = max(offset, ProcessorAvailable(M(Pi)))

 26 end if; end if;

 27 Update(ReadyList)

 28 end while

 29 return offsets φ
 end ListScheduling

11

case response times (Figure 9, line 18). For all the messages in
the frame the offset is equal to the start of the slot in the TDMA
round, and the worst-case response time is the slot length.

3. The algorithm visits a process Pi mapped on an ETC node. A
process on the ETC can start as soon as its predecessors have
finished and its inputs have arrived, hence Oi = offset (line 22).
However, Pi might experience interference from higher priority
processes.

4. Process Pi is mapped on a TTC node. In this case, besides wait-
ing for the predecessors to finish executing, Pi will also have to
wait for its processor M(Pi) to become available (line 25). The
earliest time when the processor is available is returned by the
ProcessorAvailable function.

Let us now turn the attention back to the multi-cluster scheduling
algorithm in Figure 8. The algorithm stops when the δΓ of the appli-
cation Γ is no longer improved, or when a limit imposed on the num-
ber of iterations has been reached. Since in a loop iteration we do not
accept a solution with a larger δΓ, the algorithm will terminate when
in a loop iteration we are no longer able to improve δΓ by modifying
the offsets. For the experimental results in Section 5 we have
imposed a limit of ten iterations (line 20, Figure 8).

4.3 Frame Packing with Simulated Annealing
The first algorithm we have developed is based on a simulated
annealing (SA) strategy [34], and is presented in Figure 11. The
algorithm takes as input the application Γ, a mapping M and an ini-
tial frame configuration ψ0, and determines the frame configuration
ψ which leads to the smallest degree of schedulability δΓ (the
smaller the value, the more schedulable the system).

Determining a frame configuration ψ means finding the set of ETC
frames α and their relative priorities π, and the set of TTC frames β,
including the sequence σ of slots in a TDMA round.

The main feature of a SA strategy is that it tries to escape from a
local optimum by randomly selecting a new solution from the neigh-
bors of the current solution. The new solution is accepted if it is an
improved solution (lines 9–10 of the algorithm in Figure 11). How-
ever, a worse solution can also be accepted with a certain probability
that depends on the deterioration of the cost function and on a con-
trol parameter called temperature (lines 12–13).

In Figure 11 we give a short description of this algorithm. An essen-
tial component of the algorithm is the generation of a new solution
ψnew starting from the current one ψcurrent. The neighbors of the cur-
rent solution ψcurrent are obtained by performing transformations
(called moves) on the current frame configuration ψcurrent (line 8).
We consider the following moves:

• moving a message m from a frame f1 to another frame f2 (or
moving m into a separate single-message frame);

• swapping the priorities of two frames in α;

• swapping two slots in the sequence σ of slots in a TDMA
round.

For the implementation of this algorithm, the parameters TI (initial
temperature), TL (temperature length), ε (cooling ratio), and the
stopping criterion have to be determined. They define the “cooling
schedule” and have a decisive impact on the quality of the solutions
and the CPU time consumed. We are interested to obtain values for
TI, TL and ε that will guarantee the finding of good quality solutions
in a short time.

We performed long runs of up to 48 hours with the SA algorithm, for
ten synthetic process graphs (two for each graph dimension of 80,
160, 240 320, 400, see Section 5) and the best ever solution pro-
duced has been considered as the optimum. Based on further experi-
ments we have determined the parameters of the SA algorithm so
that the optimization time is reduced as much as possible but the
near-optimal result is still produced. For example, for the graphs
with 320 nodes, TI is 700, TL is 500 and ε is 0.98. The algorithm
stops if for three consecutive temperatures no new solution has been
accepted.

Figure 10. Frame Scheduling on the TTC

 ScheduleTTFrame (f, offset, ψ)

 -- returns the slot and the round assigned to frame f

 1 slot = the slot assigned to the node sending f -- the frame slot

 2 round = offset / TTDMA -- the first round which could be a candidate

 3 if offset – round * TTDMA > Oslot then -- the slot in this is missed

 4 round = round + 1 -- if yes, take the next round

 5 end if

 6 while slot is occupied do

 7 round = round + 1

 8 end while

 9 return round, slot

 end ScheduleTTFrame

Figure 11. The Simulated Annealing Algorithm

 SimulatedAnnealing(Γ, M, ψ0)

 1 -- given an application Γ finds out if it is schedulable and produces

 2 -- the configuration ψ = <α, π, β, σ> leading to the smallest δΓ
 3 -- initial frame configuration

 4 ψcurrent = ψ0

 5 temperature = initial temperature TI

 6 repeat

 7 for i = 1 to temperature length TL do

 8 generate randomly a neighboring solution ψnew of ψcurrent

 9 δ = MultiClusterScheduling(Γ, M, ψnew) -
MultiClusterScheduling(Γ, M, ψcurrent)

 10 if δ < 0 then ψcurrent = ψnew

 11 else

 12 generate q = Random (0, 1)

 13 if q < e- δ / temperature then ψcurrent = ψnew end if

 14 end if

 15 end for

 16 temperature = ε * temperature

 17 until stopping criterion is met

 18 return SchedulabilityTest(Γ, M, ψbest), solution ψbest
corresponding to the best degree of schedulablity δΓ

 end SimulatedAnnealing

12

4.4 Frame Packing Greedy Heuristic
The OptimizeFramePacking greedy heuristic (Figure 12) constructs
the solution by progressively selecting the best candidate in terms of
the degree of schedulability.

We start by observing that all activities taking place in a multi-clus-
ter system are ordered in time using the offset information, deter-
mined in the StaticScheduling function based on the worst-case
response times known so far and the application structure (i.e., the
dependencies in the process graph). Thus, our greedy heuristic out-
lined in Figure 12, starts with building two lists of messages ordered
according to the ascending value of their offsets, one for the TTC,
messagesβ, and one for ETC, messagesα. Our heuristic is to consider
for packing in the same frame messages which are adjacent in the
ordered lists. For example, let us consider that we have three mes-
sages, m1 of 1 byte, m2 2 bytes and m3 3 bytes, and that messages are
ordered as m3, m1, m2 based on the offset information. Also, assume
that our heuristic has suggested two frames, frame f1 with a data
field of 4 bytes, and f2 with a data field of 2 bytes. The PackMes-
sages function will start with m3 and pack it in frame f1. It continues
with m2, which is also packed into f1, since there is space left for it.
Finally, m3 is packed in f2, since there is no space left for it in f1.

The algorithm tries to determine, using the for-each loops in
Figure 12 the best frame configuration. The algorithm starts from the
initial frame configuration ψ0, and progressively determines the best
change to the current configuration. The quality of a frame configu-
ration is measured using the MultiClusterScheduling algorithm,
which calculates the degree of schedulability δΓ (line 13). Once a
configuration parameter has been fixed in the outer loops it is used
by the inner loops:

• Lines 10–15: The innermost loops determine the best size Sα
for the currently investigated frame fα in the ETC frame config-
uration αcurrent. Thus, several frame sizes are tried (line 11),
each with a size returned by RecomendedSizes to see if it
improves the current configuration. The Recomended-
Sizes(messagesα) list is built recognizing that only messages
adjacent in the messagesα list will be packed into the same
frame. Sizes of frames are determined as a sum resulted from
adding the sizes of combinations of adjacent messages, not
exceeding 8 bytes. For the previous example, with m1, m2 and
m3, of 1, 2 and 3 bytes, respectively, the frame sizes recom-
mended will be of 1, 2, 3, 4, and 6 bytes. A size of 5 bytes will
not be recommended since there are no adjacent messages that
can be summed together to obtain 5 bytes of data.

• Lines 9–16: This loop determines the best frame configuration
α. This means deciding on how many frames to include in α
(line 9), and which are the best sizes for them. In α there can be
any number of frames, from one single frame to nα frames (in
which case each frame carries one single message). Once a con-
figuration αbest for the ETC, minimizing δΓ, has been deter-
mined (saved in line 16), the algorithm looks for the frame
configuration β which will further improve δΓ.

• Lines 7–17: The best size for a frame fβ is determined similarly
to the size for a frame fα.

• Lines 6–18: The best frame configuration βbest is determined.
For each frame configuration β tried, the algorithm loops again
through the innermost loops to see if there are better frame con-
figurations α in the context of the current frame configuration
βcurrent.

Figure 12. The OptimizeFramePacking Algorithm

OptimizeFramePacking(Γ, M, ψ0) -- produces the frame configuration ψ leading to the smallest degree of schedulability δΓ
1 π0 = HOPA -- the initial priorities π0 are updated using the HOPA heuristic

2 -- build the message lists ordered ascending on their offsets

3 messagesβ = ordered list of nβ messages on the TTC; messagesα = ordered list of nα messages on the ETC

4 for each sloti ∈ σcurrent do for each slotj ∈ σcurrent ∧ sloti ≠ slotj do -- determine the best TTP slot sequence σ
5 Swap(sloti, slotj) -- tentatively swap slots sloti with slotj
6 for each βcurrent with 1 to nβ frames do -- determine the best frame packing configuration β for the TTC

7 for each frame fβ ∈ βcurrent do for each frame size Sβ ∈ RecomendedSizes(messagesβ) do -- determine the best frame size for fβ
8 βcurrent.fβ.S = Sβ
9 for each αcurrent with 1 to nα frames do -- determine the best frame packing configuration α for the ETC

10 for each frame fα ∈αcurrent do for each frame size Sα ∈ RecomendedSizes(messagesα) do -- determine the best frame size for fα
11 αcurrent.fα.S = Sα
12 ψcurrent = <αcurrent, π

0, βcurrent, σcurrent>; PackMessages(ψcurrent, messagesβ ∪ messagesα)
13 δΓ = MultiClusterScheduling(Γ, M, ψcurrent)

14 if δΓ(ψcurrent) is best so far then ψbest = ψcurrent end if -- remember the best configuration so far

15 end for; end for; if ∃ ψbest then αcurrent.fα.S = αbest.fα.S end if -- remember the best frame size for fα
16 end for; if ∃ ψbest then αcurrent = αbest end if -- remember the best frame packing configuration α
17 end for; end for; if ∃ ψbest then βcurrent.fβ.S = βbest.fβ.S end if -- remember the best frame size for fβ
18 end for; if ∃ ψbest then βcurrent = βbest end if -- remember the best frame packing configuration β
19 end for; if ∃ ψbest then σcurrent.sloti = σcurrent.slot end if; -- remember the best slot sequence σ; end for

20 return SchedulabilityTest(Γ, M, ψbest), ψbest

end OptimizeFramePacking

13

• Lines 4–19: After a βbest has been decided, the algorithm looks
for a slot sequence σ, starting with the first slot and tries to find
the node which, when transmitting in this slot, will reduce δΓ.
Different slot sequences are tried by swapping two slots within
the TDMA round (line 5).

For the initial message priorities π0 (initially, there is one message
per frame) we use the “heuristic optimized priority assignment”
(HOPA) approach in [12], where priorities in a distributed real-time
system are determined, using knowledge of the factors that influence
the timing behavior, such that the degree of schedulability of the sys-
tem is improved (line 1). The ETC message priorities set at the
beginning of the algorithm are not changed by our greedy optimiza-
tion loops. The priority of a frame fα ∈ α is given by the message
m ∈ fα with the highest priority.

The algorithm continues in this fashion, recording the best ever ψbest
configurations obtained, in terms of δΓ, and thus the best solution
ever is reported when the algorithm finishes.

5. EXPERIMENTAL RESULTS
For the evaluation of our algorithms we first used process graphs
generated for experimental purpose. We considered two-cluster
architectures consisting of 2, 4, 6, 8 and 10 nodes, half on the TTC
and the other half on the ETC, interconnected by a gateway. Forty
processes were assigned to each node, resulting in applications of
80, 160, 240, 320 and 400 processes.

We generated both graphs with random structure and graphs based
on more regular structures like trees and groups of chains. We gener-
ated a random structure graph deciding for each pair of two pro-
cesses if they should be connected or not. Two processes in the
graph were connected with a certain probability (between 0.05 and
0.15, depending on the graph dimension) on the condition that the
dependency would not introduce a loop in the graph. The width of
the tree-like structures was controlled by the maximum number of
direct successors a process can have in the tree (from 2 to 6), while
the graphs consisting of groups of chains had 2 to 12 parallel chains
of processes. Furthermore, the regular structures were modified by
adding a number of 3 to 30 random cross-connections.

The mapping of the applications to the architecture has been done
using a simple heuristic that tries to balance the utilization of proces-

sors while minimizing communication. Execution times and mes-
sage lengths were assigned randomly using both uniform and
exponential distribution within the 10 to 100 ms, and 1 bit to 2 bytes
ranges, respectively. For the communication channels we considered
a transmission speed of 256 Kbps and a length below 20 meters. All
experiments were run on a SUN Ultra 10.

The first result concerns the ability of our heuristics to produce
schedulable solutions. We have compared the degree of schedulabil-
ity δΓ obtained from our OptimizeFramePacking (OFP) heuristic
(Figure 12) with the near-optimal values obtained by SA
(Figure 11). Obtaining solutions that have a higher degree of schedu-
lability means obtaining tighter worst-case response times, increas-
ing the chances of meeting the deadlines.

Table 1 presents the average percentage deviation of the degree of
schedulability produced by OFP from the near-optimal values
obtained with SA. Together with OFP, a straightforward approach
(SF) is presented. The SF approach does not consider frame packing,
and thus each message is transmitted independently in a frame.
Moreover, for SF we considered a TTC bus configuration consisting
of a straightforward ascending order of allocation of the nodes to the
TDMA slots; the slot lengths were selected to accommodate the
largest message frame sent by the respective node, and the schedul-
ing has been performed by the MultiClusterScheduling algorithm in
Figure 8.

In Table 1 we have one row for each application dimension of 80 to
400 processes, and a header for each optimization algorithm consid-
ered. For each of the SF and OFP algorithms we have three columns
in the table. In the first column, we present the average percentage
deviation of the algorithm from the results obtained by SA. The per-
centage deviation is calculated according to the formula:

. (11)

The second column presents the maximum percentage deviation
from the SA result, and the third column presents the average execu-
tion time of the algorithm, in seconds. For the SA algorithm we
present only its average execution times.

Table 1. Evaluation of the Frame-Packing Optimzation Algorithms

No. of
Processes

Straightforward solution (SP) Optimize Frame Packing (OFP) Simulated Annealing (SA)

avgerage (%) max (%) time (sec.) average (%) max (%) time (sec.) time (sec.)

80 2.42 17.89 0.09 0.40 1.59 4.35 235.95

160 16.10 42.28 0.22 2.28 8.32 12.09 732.40

240 40.49 126.4 0.54 6.59 21.80 49.62 2928.53

320 70.79 153.08 0.74 13.70 30.51 172.82 7585.34

400 97.37 244.31 0.95 31.62 95.42 248.30 22099.68

deviation
δΓ

approach δΓ
SA–

δΓ
SA

------------------------------------ 100⋅=

14

Table 1 shows that when packing messages to frames, the degree of
schedulability improves dramatically compared to the straightfor-
ward approach. The greedy heuristic OptimizeFramePacking per-
forms well for all the graph dimensions, having run-times which are
under 100 seconds on average.

When deciding on which heuristic to use for design space explora-
tion or system synthesis, an important issue is the execution time. In
average, our optimization heuristics needed a couple of minutes to
produce results, while the simulated annealing approach had an exe-
cution time of up to 6 hours.

5.1 The Vehicle Cruise Controller
A typical safety critical application with hard real-time constraints,
is a vehicle cruise controller (CC). We have considered a CC system
derived from a requirement specification provided by the industry.
The CC delivers the following functionality: it maintains a constant
speed for speeds over 35 Km/h and under 200 Km/h, offers an inter-
face (buttons) to increase or decrease the reference speed, and is able
to resume its operation at the previous reference speed. The CC
operation is suspended when the driver presses the brake pedal.

The specification assumes that the CC will operate in an environ-
ment consisting of two clusters. There are four nodes which func-
tionally interact with the CC system: the Anti-lock Braking System
(ABS), the Transmission Control Module (TCM), the Engine Con-
trol Module (ECM), and the Electronic Throttle Module (ETM) (see
Figure 13).

It has been decided to map the functionality (processes) of the CC
over these four nodes. The ECM and ETM nodes have an 8-bit
Motorola M68HC11 family CPU with 128 Kbytes of memory, while
the ABS and TCM are equipped with a 16-bit Motorola M68HC12
CPU and 256 Kbytes of memory. The 16-bit CPUs are twice as fast
than the 8-bit ones. The transmission speed of the communication
channel is 256 Kbps and the frequency of the TTP controller was
chosen to be 20 MHz.

We have modeled the specification of the CC system using a set of
32 processes and 17 messages as described in [29], where the map-

ping of processes to the nodes is also given. The period was chosen
250 ms, equal to the deadline.

In this setting, the straightforward approach SF produced an end-to-
end worst-case response time of 320 ms, greater than the deadline,
while both the OFP and SA heuristics produced a schedulable sys-
tem with a worst-case response time of 172 ms.

This shows that the optimization heuristic proposed, driven by our
schedulability analysis, is able to identify that frame packing config-
uration which increases the schedulability degree of an application,
allowing the developers to reduce the implementation cost of a sys-
tem.

6. CONCLUSIONS
We have presented in this paper an approach to schedulability-
driven frame packing for the synthesis of multi-cluster distributed
embedded systems consisting of time-triggered and event-triggered
clusters, interconnected via gateways. We have also presented an
update of the schedulability analysis for multi-cluster systems to
handle frames, including determining the worst-case queuing delays
at the gateway nodes.

The main contribution is the development of two optimization heu-
ristics for frame configuration synthesis which are able to determine
frame configurations that lead to a schedulable system. We have
shown that by considering the frame packing problem, we are able to
synthesize schedulable hard-real time systems and to potentially
reduce the overall cost of the architecture.

The greedy approach is able to produce accurate results in a very short
time, therefore it can be used for performance estimation as part of a
larger design space exploration cycle. Although the SA takes a very
long time to execute, it finds very good quality results, and thus can
be used for the synthesis of the final implementation of the system.

ACKNOWLEDGMENTS
The authors are grateful to the industrial partners at Volvo Technol-
ogy Corporation in Gothenburg, for their close involvement and
valuable feedback during this work.

REFERENCES
[1] N. Audsley, A. Burns, R. Davis, K. Tindell, A. Wellings,

“Fixed Priority Preemptive Scheduling: An Historical
Perspective,” in Real-Time Systems, 8(2/3), 173-198, 1995.

[2] N. Audsley, K. Tindell, A. Burns, “The End of Line for Static
Cyclic Scheduling?,” in Proceedings of the Euromicro
Workshop on Real-Time Systems, 36-41, 1993.

[3] F. Balarin, L. Lavagno, P. Murthy, A. Sangiovanni-Vincentelli,
“Scheduling for Embedded Real-Time Systems,” in IEEE
Design and Test of Computers, January-March, 71-82, 1998.

[4] Robert Bosch GmbH, CAN Specification, Version 2.0,
http://www.can.bosch.com/, 1991.

[5] B. P. Dave, N. K. Jha, “COHRA: Hardware-Software
Cosynthesis of Hierarchical Heterogeneous Distributed
Systems,” in IEEE Transactions on CAD, 17(10), 900-919,
1998.

ABS TCM

CEM

...

...ECM ETM

TTP bus

CAN bus

TT Cluster

ET Cluster

Figure 13. Hardware Architecture for the Cruise Controller

15

[6] B. P. Dave, G. Lakshminarayana, N. J. Jha, “COSYN:
Hardware-Software Co-Synthesis of Heterogeneous
Distributed Embedded Systems,” in IEEE Transactions on
VLSI Systems, 7(1), 92-104, 1999.

[7] EAST-EEA project, ITEA Full Project Proposal,
http://www.itea-office.org, 2002.

[8] S. Edwards, Languages for Digital Embedded Systems, Kluwer
Academic Publishers, 2000.

[9] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with Bus
Access Optimization for Distributed Embedded Systems,” in
IEEE Transactions on VLSI Systems, 472-491, 2000.

[10] R. Ernst, “Codesign of Embedded Systems: Status and Trends,”
in IEEE Design & Test of Computers, April-June, 1998.

[11] The FlexRay Group, FlexRay Requirements Specification,
Version 2.0.2, http://www.flexray-group.com/, 2002.

[12] J. J. Gutiérrez García, M. González Harbour, “Optimized
Priority Assignment for Tasks and Messages in Distributed
Hard Real-Time Systems,” in Proceedings of the Workshop on
Parallel and Distributed Real-Time Systems, 124-132, 1995.

[13] H. Kopetz, Real-Time Systems – Design Principles for
Distributed Embedded Applications, Kluwer Academic
Publishers, 1997.

[14] H. Kopez, R. Nossal, “The Cluster-Compiler – A Tool for the
Design of Time Triggered Real-Time Systems,” in Proceedings
of the ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Real-Time Systems, 108-116, 1995.

[15] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich,
“Models of Computation for Embedded System Design,” in
System-Level Synthesis, Kluwer Academic Publishers, pages
45–102, 1999.

[16] E. A. Lee, T. M. Parks, “Dataflow process networks,” in
Proceedings of the IEEE, volume 83, pages 773–801, May
1995.

[17] C. Lee, M. Potkonjak, W. Wolf, “Synthesis of Hard Real-Time
Application Specific Systems,” in Design Automation for
Embedded Systems, 4(4), 215-241, 1999.

[18] G. Leen, D. Heffernan, “Expanding automotive electronic
systems,” in Computer, Volume: 35, Issue: 1, Pages 88-93,
2002.

[19] C. L. Liu, J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” in
Journal of the ACM, 20(1), 46-61, 1973.

[20] H. Lönn, J. Axelsson, “A Comparison of Fixed-Priority and
Static Cyclic Scheduling for Distributed Automotive Control
Applications,” in Proceedings of the Euromicro Conference on
Real-Time Systems, 142-149, 1999.

[21] K. Melin, Volvo S80: Electrical System of the Future, Volvo
Technology Report, 1998.

[22] T. Nolte, H. Hansson, C. Norström, S. Punnekkat, “Using bit-
stuffing distributions in CAN analysis,” in Proceedings of the
IEEE/IEE Real-Time Embedded Systems Workshop, 2001

[23] J. C. Palencia, M. González Harbour, “Schedulability Analysis
for Tasks with Static and Dynamic Offsets,” in Proceedings of
the 19th IEEE Real-Time Systems Symposium, 26-37, 1998.

[24] J. C. Palencia, M. González Harbour, “Exploiting Precedence
Relations in the Schedulability Analysis of Distributed Real-
Time Systems,” in Proceedings of the 20th IEEE Real-Time
Systems Symposium, pages 328–339, 1999.

[25] T. Pop, P. Eles, Z. Peng, “Holistic Scheduling and Analysis of
Mixed Time/Event-Triggered Distributed Embedded Systems,”
in Proceedings of the International Symposium on
Hardware/Software Codesign, 187-192, 2002.

[26] P. Pop, P. Eles, Z. Peng, “Scheduling with Optimized
Communication for Time Triggered Embedded Systems,” in
Proceedings of the International Workshop on Hardware-
Software Codesign, 178-182, 1999.

[27] P. Pop, P. Eles, Z. Peng, “Bus Access Optimization for
Distributed Embedded Systems Based on Schedulability
Analysis,” in Proceedings of the Design Automation and Test
in Europe Conference, 567-574, 2000.

[28] P. Pop, P. Eles, Z. Peng, “Schedulability Analysis and
Optimization for the Synthesis of Multi-Cluster Distributed
Embedded Systems,” in Proceedings of Design Automation and
Test in Europe Conference, 184-189, 2003.

[29] P. Pop, Analysis and Synthesis of Communication-Intensive
Heterogeneous Real-Time Systems, Linköping Studies in
Science and Technology, Ph.D. Dissertation No. 833, 2003,
available at http://www.ida.liu.se/~paupo/thesis

[30] P. Pop, P. Eles, Z. Peng, “Schedulability-Driven
Communication Synthesis for Time-Triggered Embedded
Systems,” in Real-Time Systems Journal, No. 24, 297–325,
2004.

[31] P. Pop, P. Eles, Z. Peng, V. Izosimov, M. Hellring, O. Bridal,
“Design Optimization of Multi-Cluster Embedded Systems for
Real-Time Applications,” in Proceedings of Design,
Automation and Test in Europe Conference, 1028–1033, 2004.

[32] P. Puschner, A. Burns, “A Review of Worst-Case Execution-
Time Analyses,” in Real-Time Systems Journal, Vol. 18, No.
2/3, May 2000.

[33] A. Rajnak, K. Tindell, L. Casparsson, Volcano
Communications Concept, Volcano Communication
Technologies AB, 1998.

[34] C. R. Reevs, Modern Heuristic Techniques for Combinatorial
Problems, Blackwell Scientific Publications, 1993.

[35] K. Sandström, C. Norström, “Frame Packing in Real-Time
Communication,” in Proceedings of the International
Conference on Real-Time Computing Systems and
Applications, 399-403, 2000.

[36] J. A. Stankovic, K. Ramamritham, Advances in Real-Time
Systems, IEEE Computer Society Press, 1993.

[37] K. Tindell, Adding Time-Offsets to Schedulability Analysis,
Department of Computer Science, University of York, Report
No. YCS-94-221, 1994.

16

[38] K. Tindell, A. Burns, A. Wellings, “Calculating CAN Message
Response Times,” in Control Engineering Practice, 3(8), 1163-
1169, 1995.

[39] K. Tindell, J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems,” in Microprocessing &
Microprogramming, Vol. 50, No. 2-3, 1994.

[40] TTTech, TTP/C Specification Version 0.5, 1999, availabe at
http://www.tttech.com/

[41] TTTech, Comparison CAN–Byteflight–FlexRay–TTP/C,
Technical Report, availabe at http://www.tttech.com/

[42] W. Wolf, “A Decade of Hardware/Software Codesign,” in
Computer, 36/4, 38–43, 2003.

[43] J. Xu, D. L. Parnas, “On satisfying timing constraints in hard-
real-time systems,” in IEEE Transactions on Software
Engineering, 19(1), 1993.

[44] J. Xu, D. L. Parnas, “Priority Scheduling Versus Pre-Run-Time
Scheduling,” in Journal of Real Time Systems, volume 18, issue
1, pages 7–24, 2000.

[45] T. Y. Yen, W. Wolf, Hardware-Software Co-Synthesis of
Distributed Embedded Systems, Kluwer Academic Publishers,
1997.

