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Spin waves in terbium. III. Magnetic anisotropy at zero wave vector
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Danish Atomic Energy Commission Research Establishment Risd, Roskilde, Denmark

P. Touborg
Technical University, Lyngby, Denmark
(Received 6 May 1974)

The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic Tb has been
studied by inelastic neutron scattering. The energy was measured as a function of temperature and
applied magnetic field, and the dynamic anisotropy parameters were deduced from the results. The axial
anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal
plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the
magnetic anisotropy at zero wave vector. With the exception of the sixfold basal-plane anisotropy of the
unstrained lattice, the dynamic anisotropy parameters deduced from our results agree with macroscopic
measurements both with respect to the magnitudes (at zero temperature) and the temperature
dependences. The deviations observed cannot be explained by existing theories which include the effects
of zero-point deviations from the fully aligned ground state, and we tentatively propose

polarization-dependent two-ion couplings as their origin.

I. INTRODUCTION

In this paper we shall study the behavior of the
energy gap which is present at zero wave vector
in the spin-wave spectrum of Tb as a consequence
of magnetic anisotropy. We shall utilize some of
the results obtained in the two preceding papers
concerning the spin waves in Th, to be referred
to as I and II (I: two-ion magnetic anisotropy; II:
magnon-phonon interaction).

Because of the importance for the magnon en-
ergies of single-ion anisotropy in the long-wave-
length limit, the general single-ion Hamiltonian
for an hcp lattice is examined in detail. An ex-
plicit account of the magnetoelastic effects for a
basal-plane ferromagnet is given, in which two-
ion magnetoelastic couplings are also included.
We touch on the discussion of a “frozen”- versus
a “flexible”-lattice model, and it is argued that
the frozen-lattice model is correct when zero-
point deviations due to magnon-magnon and mag-
non-phonon interactions are neglected. Including
anisotropic two-ion couplings in the spin Ham-
iltonian, we deduced a general expression for the
energy gap of a basal-plane ferromagnet in I.
Here we derive an expression for the energy gap
in terms of static parameters which are deter-
mined by macroscopic experiments.

We have studied the spin-wave energy gap in Tb
by inelastic neutron scattering. The energy gap
as a function of magnetic field applied in the easy
and hard directions in the basal plane was mea-
sured in a temperature range from 4.2 to 130 K.
The results were corrected for the field depen-
dence of the relative magnetization at finite tem-
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peratures. The dynamic anisotropy parameters
deduced by a least-squares fitting to the experi-
mental results are comparable with the corres-
ponding static parameters obtained from other
measurements. Only the static and the dynamic
values for the hexagonal anisotropy of the un-
strained lattice fail to agree, which may be due
to zero-point deviations. However, we suggest
an alternative explanation. Finally, we discuss
the possibility of large contributions to the mag-
netic anisotropy in the long-wavelength limit from
anisotropic two-ion couplings and conclude that
such contributions are very likely to occur.

II. SINGLE-ION AND TWO-ION ANISOTROPY

Starting from a general spin Hamiltonian of I
an expression for the energy gap at zero wave
vector in the spin-wave spectrum was deduced,
Egs. (21)-(25) of I, valid for a basal-plane ferro-
magnet. The different terms describing the pro-
perties of the energy gap in Tb, which we ob-
tained by studying the field dependence of the en-
ergy, may be classified according to the expres-
sions derived in I. Because of the importance of
the single-ion terms in the long-wavelength limit
of the magnons, we shall here examine explicitly
the single-ion Hamiltonian, bearing in mind that
two-ion anisotropic couplings may influence the
energy gap, as is apparent from Egs. (22) and
(23) of 1.

The electrostatic field in which the ions are
situated affects the energy levels of the system.
Because the crystal-field energies are small com-
pared to the spin-orbit coupling of the 4f elec-
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trons of the rare-earth ions, the electrostatic
energy of these electrons may be written

1 ~ m ~
:‘Ccr_'lfz Z 'S—;[Vlmol,m(Ji)"}'("l) Vikmoz,-m(Ji)],
i m

m=0,

®

using the Wigner-Eckart theorem. V,, are the
crystal-field parameters [corresponding to
K372(0) in Eq. (7) of I]. The various other quan-
tities occuring in (1) have been defined in I.
Time-reversal symmetry requires [ to be even,
and in the case of f electrons only terms for
which / is smaller than or equal to 6 will be
present. The symmetry of the electric field,
which corresponds to the symmetry of the lattice,
allows a reduction of (1). The structure of the
heavy-rare-earth metals implies that V,,, is real
and m is equal to O or 6 in these metals, which
reduces the number of independent crystal-field
parameters to four.

If the angular moments in the crystal are mag-
netically ordered, the total magnetoelastic energy
of the system may be reduced by deformations of
the lattice. Mason' has derived a macroscopic
expression for the magnetostriction, while Callen
and Callen® have developed a phenomenological
theory based on group-theoretical representations
for the allowed strains. Following the notation of
Callen and Callen and of Cooper,® we may write
the homogeneous strains which transform accord-
ing to the irreducible representations I'y, I‘y, and
T, of the point group of the hcp lattice:

€Ml =€) + €+ €y, €5%z€y—Le™t (2a)
67=§(eu —€y) + 1€y, (2b)
€f=€,+ 1€y, (2¢)

where the strains €;; are defined as usual in
terms of the elastic displacements U(%, £),

e = Loy duy
) ox; 0x;/’

3)

where the Cartesian 1, 2, and 3 axes are along
ana, b, and c direction of the hep lattice, re-
spectively. The a strains are then symmetry-
preserving dilatations along the ¢ axis and in the
basal plane, the y strains are distortions of hexa-
gonal symmetry of the basal plane, and the €
strains are c-axis shear modes. The elastic
density associated with the homogeneous strains
is .

3o =3 (€% 4 cSeBte™2 4 ¢S (e™2)?
+ % cYe? (e)’)* + % CGGG(EE)* ,

(4)

where the five independent elastic constants can

III.

MAGNETIC ANISOTROPY... 333

be expressed in terms of the Cartesian elastic
constants c;;, as in Cooper® and Goodings and
Southern.* For the present purposes we shall
define the reduced elastic constants

¢, = (1/NJ) ¢7= (1/NJ) 2(cy, - ¢35,

c.=(1/NJ)c¢=(1/NJ)4c,,, (5)

where N is the number of ions per unit volume.

In the limit of small deformations, we can trun-
cate a power expansion of the change of the crys-
tal field at the first term linear in the strains. In
this approximation, the modification of the crys-
tal-field energy introduced by distortions of the
lattice is exhaustively described by means of 17
independent single-ion parameters:

: 1
3cct‘-.ez--%z Z _g— ( E (Bﬁr)lea'l
i 1 ! m=0,6
+BR)e®)[0, ) +0, _n1)]
+ D Bi[€0, uld)) - (€9%0, _n1)]

m=-1,5
+ m=Zz4Blm[€761,m(Ji)+(€Y)*O~1'_m(Ji)]> )

(6)

As in (1) we use a coordinate system with the z
axis along the c¢ direction, and [ is again re-
stricted to the value 2, 4, and 6. The effect on
the energy gap of the magnetoelastic terms for
which [ is equal to 2 was first considered by
Turov and Sharov® and was later discussed at
length by Cooper.?

The total magnetoelastic single-ion Hamilto-
nian is then a sum of the crystal field energy of
the unstrained lattice, the elastic energy, and
the energy of the coupling between the spin sys-
tem and the lattice,3C ... In the presence of an
external magnetic field, we must add the Zeeman
energy 3¢; [Eq. (28) of I], and the single-ion Ham-
iltonian is then given by

3C; =3C (+3C, +3C ., +3C5 . (7
If anisotropic two-ion interactions between the
magnetic moments are neglected, the presence
of magnetic anisotropy is related to the single-
ion anisotropy only. In most experiments and
theoretical calculations on heavy-rare-earth
metals, the two-ion coupling is assumed to be
an isotropic Heisenberg interaction, [Eq. (1) of
I]. We shall start with this assumption and con-
sider later the possible effects of two-ion aniso-
tropy.

In equilibrium the derivatives of the free energy
with respect to the strains must be zero, e.g.,
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<(Z_Secyl)_*> =cm“,,m>;_z’4_%l3m<iz 6,,_m(J,~)> =0.

(8)

The y and € strains are zero unless the moments
are ferromagnetically ordered, or, put in another
way, the equilibrium strains are always homo-
geneous throughout the crystal. This is called
the “lattice-clamping” effect and has been treated
in detail by Evenson and Liu.® The y and € con-
tributions to the free energy are then zero in a
conical or helically ordered phase. The lowering
of the magnetoelastic energy in passing from the
helical to ferromagnetic state is the basic driving
force behind the ferromagnetic transition in” Dy
and probably also in Th, as proposedby Cooper.>®

In the ferromagnetic phase of Th, where the
moments lie in the basal plane, the y strains are
related to the magnetostriction coefficients de-
fined by Mason® in the following way:

€ =Ce?'? ~5Ae~4?, (9)

where ¢ is the angle between the direction of mag-
netization and the 1 axis. Combining (8) and (9),
we obtain at zero temperature

1
czIfE; ;B,ZI‘,’Z, (10a)

1
AZ'ZZITY ;BMF,A, (10b)

using the expectation values deduced in I for the
Racah operators [(11)-(13)]. The magnetostric-
tion coefficients, which have been determined ex-
perimentally for Tb by Rhyne and Legvold,® are
proportional to certain linear combinations of the
coupling parameters defined in (6).

The e-strain part of (6) vanishes for a basal-
plane ferromagnet, which follows from the fact
that I + m is odd in this case. If B} in the a-
strain part of (6) is neglected, this part may be
taken into account by introducing the effective
crystal-field parameters:

Vie=V,o— (B & + B2)€™2) (11)
Later we shall see that this approximation is
acceptable in the case of Tb.

When the equilibrium strains are introduced in

(7), the reduced magnetoelastic energy (in the
case 6=37 and T=0K) is

1 1
E;= 5500 = 7 Zr,,ov,'o- 3¢,C? - ¢ A
i

1
+ (:f Ts6 V66+%CYAC>

xcos6¢ —gugH cos(d - ¢), (12)

where 0 is the angle between the direction of the
applied field and the 1 axis. The sign of the co-
efficient of cos6¢ determines the easy planar
axis. This coefficient is positive in the case of
Tb, which corresponds to an alignment of the
moments parallel with a b axis (¢ =7/6+ pn/3)
in the absence of an external field. If a field is
applied along a hard planar axis (6 =0) then the
magnetization is pulled towards this direction,
as described by the equation

glgH = gugH,(sin6¢)/6 sing
=gupH, $(3 - 16 sin*¢ + 16 sin*¢) cos¢, (13)

as long as the field is smaller than the critical
field H,,

gHpH,=36(1/J) Ty ¢ Vg +18c, AC . (14)

At this field the moments are pulled fully around
to the hard axis (¢ =0).

Because of the presence of magnetic anisotropy,
the spin-wave dispersion relation in Tb exhibits
an energy gap, 4, at zero wave vector. This en-
ergy gap may easily be calculated by using the
expansion in spin deviation operators of the Racah
operators introduced in I [Egs. (16) and (17)]:

A=¢(0)={[A(0) + B(0)+ gusHcos(5 - ¢)]
X[A(0) = B0) + gugHcos(d — ¢)]} V2,

(15)
where we shall define the following quantities:

A(0) £ B(0)= Py(x) —P4(+) cosbo . (16)
We then have

Po(+)=-3 ST ¢ 14C IT,.By
+36C }I‘S'ZBSZ -114 (171*6,4364
+2¢,C* +c,A* + N gups M, (17a)
Py(+)=6(1/J)T (Ve +3c,AC+AM, (17b)
Po(=)=4c,(C*+ A*)+ N, gug M, (17c)
Py(=)=10c, AC +36(1/)T; (V. (117d)

The parameter AM in (17b) which is defined as
the difference between Py(+) and ¢ gpH, was in-
troduced by Lindgard!® and in the present approxi-
mations is given by

AM :Ps(+)_%g“BH¢
1 1 1 :
=TA j'r4'2B42+18A :jFG,ZBGz -22C jI‘GABM .
(18)

In (17) we have included the effect of the demag-
netization field as deduced by Keffer."* N, and
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N, are the demagnetization factors, respectively,
in the c¢ direction and in the basal plane perpen-
dicular to the magnetization M. The field which
enters into (13) and (15) is then the internal field.
B, which has been neglected, would have given
rise to terms proportional to cos?6¢ in both A(0)
+B(0) and A(0) - B(0).

If C and A are both zero, then P,(-)=0 (except
for the demagnetization contribution) and Py(-)
=gMpH,, and in this case the second-order transi-
tion at H=H, (H parallel to a hard axis) is accom-
panied by a vanishing of the energy gap A. The
y-strain contributions, which prevent the uniform
magnon mode from going soft, were first con-
sidered by Turov and Sharov,’ and, because only
the static parts of the strains have been intro-
duced, they called it the “frozen-lattice” approxi-
mation. The time dependence of the inhomogen-
eous parts of the strains in (6) may be expanded
in phonon operators and, as such, give rise to
magnon-phonon interaction.'? The homogeneous
strains are essentially classical quantities, which
result from the vanishing of the natural vibration
energy of the lattice. On this basis Jensen,'?
Chow and Keffer,'* and Liu'® have shown that the
presence of the phonons in the systems has neg-
ligible effect on the magnon energy gap. In an
attempt to explain the observation of ferromag-
netic resonances in Dy and Tb'® at much lower
frequencies than expected, Cooper® proposed a
flexible- or free-lattice model, which was based
on the free energy of the system. In this model
and in the equivalent one suggested by Vigren and
Liu'? the energy gap vanishes at H=H, even in the
case where the y strains are nonzero. The pre-
vious assumptions for the dynamics of the spin-
lattice system have been demonstrated to be in-
correct by the neutron-scattering experiment
performed on Th-10%-at.-Ho,'® and by the solu-
tion of the equations of motion'*~*° (see also II).
Although (when the phonons are introduced) the
lattice is completely “free,” the spins will per-
ceive the lattice as being “frozen.” This appar-
ent paradox is explained by the finite mass of
the ions or, completely equivalently, by the van-
ishing of the eigenfrequency of the lattice at zero
wave vector; the lattice cannot respond to a uni-
form spin precession at finite frequency.

As discussed, the uniform mode does not go
soft at the transition at H=H, if y-strain contri-
butions are present. Instead, it is predicted!®-!®
that the long-wavelength phonons corresponding
to the y strain go soft, in the sense that the sound
velocity (w,/q) goes to zero. The phonons in ques-
tion are the acoustic transverse phonons with
propagation and polarization vectors both lying
in the basal plane (parallel or perpendicular to
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the magnetization). The soft-phonon behavior
has been observed experimentally'®?° at the Jahn-
Teller phase transition in various rare-earth
salts which represent systems equivalent to the
one considered. Preliminary ultrasonic measure-
ments on Th indicate a softening of the phonons
at H=H,? These measurements are continuing,
and one of the purposes is to clarify further the
behavior of the basal-plane anisotropy in Tb de-
termined by the present work. The soft-mode
behavior in the metals may be affected by the
existence of two-ion exchange interactions.

Referring to the equilibrium conditions for the
strains, Eq. (8), it appears that the terms in the
general spin Hamiltonian (7) in I, for which A is
different from zero, account for the magnetoelas-
tic contributions. However, as described in I
[mechanism (v)], such terms may occur also be-
cause of the polarization and the spin-orbit cou-
pling of the conduction electrons, which modify
the susceptibility and thus the indirect exchange
interaction. Depending on the signs of the A terms
which are not of magnetoelastic origin, they may
either enhance or resist the softening of the pho-
nons. From the experimental results in Tbh we
isolate a contribution to the basal-plane anisotropy
which is tentatively explained by this mechanism
(v). The sign of this term is such as to enhance
the softening of the transverse-phonon mode.
The sound velocity may then vanish at a field
smaller than the critical field, suggesting a
structural change of the crystal at this field.
See Note added in proof.

The introduction of two-ion interactions, as
considered in I, still allows the energy gap to
be written in the form given by (15) and (16), if
terms in Egs. (22) and (23) of I for which
L+ m+m’ is greater than 6 are neglected. Two-
ion couplings for which A =0 may contribute to all
the energy-gap parameters, P;(+), with the ex-
ception of Py (-), for which m+ m’ in Eq. (23) of
Iis equal to zero. An explicit calculation of pos-
sible magnetoelastic contributions (A +# 0) to the
energy gap shows that the y-strain terms appear-
ing in gugH,, P,(-), and P4(-) can still be writ-
ten in terms of C and A as given by (14), (17c),
and (17d), where C and A defined by (9) include
the single-ion contributions (10) as well as two-
ion contributions. In this context we mention that
“optical” strain contributions can be neglected
because of the vanishing of the electric dipole
moment of the ions [see the mechanisms (vi) and
(vii) in I] and of the acoustic-optical coupling at
g =0, as discussed in II. Then within a linear
theory the strains of the two hcp sublattices will
have the same signs, and only “acoustic” strains
are present.
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In general it is not possible to distinguish be-
tween single-ion and two-ion contributions to the
energy gap or to the static magnetic anisotropy.
Only the strain-independent two-ion terms dis-
cussed above, for which X is nonzero, may show
up as differences between the energy-gap parame-
ters and the corresponding ones obtained from
macroscopic measurements. Torque or magneti-
zation measurements are in most cases inter-
preted in terms of the single-ion crystal-field
parameters of the undistorted lattice, Eq. (1).
The magnetic anisotropy energy is assumed to
depend on 6 and ¢ in the following way?:

F4(6, ¢) =K, P3(cosb) +K P2(cos) +KPi(cosb)
+K¢sin®6cosbo, (19)

where P7(cosf) are the Legendre polynomials.
Because of the strong axial anisotropy in Tb
(and Dy) it is possible to compare the effective
parameters defined by Eq. (19) with those derived
from a more general (and realistic) Hamiltonian
including terms whose angular dependences differ
from those introduced in (19). In a torque or mag-
netization experiment on Th or Dy the magnetic
moments are pulled only a few degrees out of the
basal plane towards the ¢ axis, and (19) can be
approximated by the expansion

FA(6, ¢)=FA(§ : ¢> + g—,an(g q>) 56°

1
79 20) o0, (20)

where 66=6 -3 7 and

m B 892F (6, ¢)
FSE)(E’ ¢> "< BAQZ >8=7r/2

=3K, -LK, +2K,-6K;cosb¢ .
(21)

The true anisotropy energy may be written as a
similar power expansion in 56, and the effective
axial anisotropy parameters determined by ex-
periments, K7, may be considered as a measure
of the second (and fourth) derivative of the free
energy as given by (21). F@) (3, ¢) will repre-
sent the second derivative of the actual anisotropy
also in cases where K, or K, and K, have been
neglected in the interpretation of the anisotropy
measurements.

As considered in I, the spin-wave energy gap
is closely related to the second derivatives of
the free energy® [Eqs. (24) and (25) of I]. If we
neglect the terms in the general Hamiltonian (7)
of I proportional to cos12¢ and cosl8¢ (p+0,1)
and also the terms for which A is different from

zero but which do not contribute to the elastic en-
ergy, we obtain the following expressions for the
energy-gap parameters in terms of macroscopic

parameters:

A(0)+ B(0)=(1/NJ) FP (57, @) +1c HL+N glpM,

(22a)
A(0) - B(0)=4c,(C* +A?%) - [36(1/NJ)KE - SCYAC] cosb¢
+N, gus M, (22b)
where the basal-plane anisotropy is simply
related to the critical field
K3=% NJgusH, . (23)

In distinction to the « and y strains, the first
derivatives of the € strains with respect to 6

are different from zero at Gzén, which is the
reason for the presence of €-strain contributions
to (22a). H, is considered to be an effective mag-
netostriction coefficient given by

2
Ho= 7o Slu+2)P*1,,,,, By (24)

when two-ion contributions and Bg; in (6) are neg-
lected. The macroscopic expression for the en-
ergy gap, (22), is quite general because of the in-
clusion of two-ion interactions. The terms which
give rise to 12¢ and 18¢ dependences are pre-
sumably small and are neglected. They would
have modified the equilibrium equation determin-
ing ¢, (13), and hence the magnitude of the criti-
cal field, and the transition at this field could be
of first order.

The two-ion A terms, which are not of magneto-
elastic origin, are not necessarily negligible and
may lead to differences between the macroscopic
energy-gap parameters, as given by (22), and the
actual (microscopic) energy-gap parameters. De-
fining

61’(1) :[Pi(i)],mu - [Pi(i)]ma”_? i:O) 6 ’ (25)
we have, e.g.,
1 ’
65(-)=2. > > FEL (O rA2-p)
e im U'm?’
xrk,yrl,mrl',m’ ) (26)

using the notation introduced in I (i + m + m'=6).
The corresponding expressions for the other dif-
ferences may easily be obtained from the energy-
gap expressions deduced in I[(21)~(25)]. As
quoted in I [mechanism (iv)] the indirect exchange
interaction perturbs the energy gap so to give

rise to a relative shift of the order of 2.5%, which
will also appear in the differences 6;(+). At low
temperatures we may have additional contributions
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to 6;(¢) from the zero-point motion of the mag-
netic moments and of the ions. The zero-point
effects due to magnon-magnon interactions can
give rise to a deviation between static and dynam-
ic measurements. The importance of these con-
tributions increases with the strength of the aniso-
tropy and with the rank ! of the tensor spin oper-
ators considered. In the Hartree-Fock calcula-
tion by Lindgdrd and Danielsen,?® in which two-
ion anisotropy has been neglected, the contribu-
tions to §;(x) in Tb arising from the magnon-mag-
non interactions are found to be quite small, ex-
cept for the contributions to §;(~). The results
by Lindgird and Danielsen do not seem to con-
firm the proposal by Egami?* of a strong ¢ de-
pendence of the basal-plane anisotropy in Dy.
The two-magnon-one-phonon scattering pro-
cesses!'® may also give rise to zero-point contri-
butions (see II); however, they are probably not
as important as, and may hardly be distinguished
from, those due to magnon-magnon interactions.
The equations above, which describe the behav-
ior of the spin system at zero temperature, may
be generalized to the case of finite temperature
by the procedure outlined in I, (31)-(35). The
deviation of the relative magnetization o [Eq. (31)
of I] from unity may be taken into account by re-
placing J with oJ in all formulas. In Eqgs. (17) and
(22) the magnetization M is replaced by M(0)o 2/c
=M(T). The strong anisotropy of the basal-plane
ferromagnets Tb and Dy may in addition to a
modification of the Callen and Callen theory? [Eq.
(33) of I], introduce deviations from the simple
spin-wave renormalization theory of Cooper,?
which should be of an appreciable magnitude in
the case of P (-) according to the results obtained
by Lindgird and Danielsen.?®

III. ENERGY-GAP MEASUREMENTS

The spin-wave energy gap in Tb at zero wave
vector was studied by inelastic neutron scatter-
ing. Because of the finite energy of the long-wave-
length magnons (~1-2 meV), the Bragg reflection
does not disturb the observation of the neutrons
scattered by the magnons at zero wave vector. In
Fig. 1 is shown the neutron groups obtained at
¢ =0 (the scattering vector equals a reciprocal-
lattice vector) in zero magnetic field and at maxi-
mum field applied in the hard direction of Tb at
40 K. The sample was a monocrystalline disc with
a diameter of about 14 mm and a thickness of
about 5 mm and with the ¢ axis normal to the
faces. From the saturation magnetization of Th,?
the demagnetization field normal to the ¢ axis in
the sample is deduced to be N, M(T) =0 X 6.65 kOe.
The energy gap as a function of magnetic field ap-
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FIG. 1. Example of neutron groups obtained in Tb at
zero wave vector. The scattering vector is along the
c axis and equal to 47/c. The groups are measured at
(a) 40 K in zero field and (b) an internal field equal to
38 kOe applied in a hard direction.

plied along the easy and hard directions in the bas-
al plane was measured in a temperature interval
ranging from 4.2 to 130 K. In this temperature
range, which corresponds to a relative magnetiza-
tionbetween 1and 0.8, the field dependence of the
magnetization is quite well described by the molecu-
lar-field result[Eq. (34) of I| as indicated by the mag-
netization measurements.?® Further, we have cal-
culated the forced magnetostriction d(2C +A)/dH
based on the magnetostriction theory of Callen

and Callen® by using the value obtained from Eq.
(34) of I: do/dH=(1-0) 0.0027 kOe~!, and found

a fair agreement with the experimental results of
Rhyne and Legvold® for 0 >0.8 (Fig. 2).

d(2C+A)/dH (16%0e™")
~ o ® 3 B ®
T T T T T T
[ ]
[ ]
1 | 1 1 1 1

N
7
1

1 1 1
1 09 08 07
RELATIVE MAGNETIZATION o
FIG. 2. Forced magnetostriction d(2C +A)/dH in Tb
determined by experiments (Ref. 9) and calculated by
using the magnetostriction theory of Callen and Callen
(Ref. 2). The deviation at high temperatures (0<0.8) may
be due to contributions which are not linear in field.
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The experimental procedure and the treatment
of the results follow the lines discussed in I. The
interpretation is facilitated by the vanishing of the
direct coupling of magnons and phonons at zero
wave vector (II). The effective g value introduced
in I, (30), has not been used in the present treat-
ment, partly because of the smallness of the cor-
rection and partly because it is expected to be
cancelled by opposite contributions at ¢ =0 arising
from mechanism (iv) in I.

A selection of the experimental results for the
energy gap at ¢ =0 is shown in Fig. 3. They are
qualitatively similar to earlier measurements'®
on Th-10%-at.-Ho, but they are made with con-
siderably greater precision, and in this experi-
ment the effect of the field dependence of ¢ is
taken into account. This correction introduces
changes of the magnetization exponents connected
with the A(0)+B(0) parameters, which are of the
order of +1. In the Th-10%-at.-Ho experiment
the number of independent parameters was re-
duced by adopting a particular model correspond-
ing to Egs. (14)-(18) if AM is neglected; an
attempt was made to isolate the magnetoelastic
contribution to the critical field, Eq. (14), by
neglecting the possibility of a difference 54(-)
between the macroscopic and microscopic para-
meters. The greater precision of the present ex-
perimental results for pure Tb allow us to avoid
such assumptions. The only assumption made is
that terms proportional to cos12¢ and cosl8¢
can be neglected. The parameters which are de-
duced from the energy-gap measurements are
then the four P;(+) defined by Eqgs. (15) and (16)

"T=42K |
T=63K
T=95K
o T=16K
>
(] =
E T=131K
2
NN
1
0 : - :
0 10 20 30 40 50

INTERNAL FIELD (kQe)

FIG. 3. Dependence of the square of the magonon en-
ergy gap on internal magnetic field in Th. Open symbols
represent results for the field in the hard direction, and
closed the easy direction. The full lines are least-
squares fits of the energy-gap expression, given in the
text, to the experimental results.

and the critical field, H,. The abrupt changes of
the field dependences of A? when the field is ap-
plied in a hard direction (Fig. 3) serve as a well-
defined determination of the critical field as a
function of temperature. The field dependence of
¢ is then obtained from Eq. (13). The o depen-
dence of P;(x) defined by

P;(z) xgi® (27)

implies corrections to the energy-gap expression,
(15) and (16), as given by

A(0)£B(0)=P(x) - Py(+) cosbg

+ Lo Pols) = 75(2) Py(a) cos60)]

X %(H—Ha), (28)

where H,=0 when the field is applied in an easy
direction, and when applying the field along a
hard axis H,=H for H <H, and H,=H, for H>H,
(do/dH is assumed to be zero as long as H<H,).
The energy-gap parameters P;(+) shown in
Fig. 4 were deduced from a least-squares fitting
of the experimental results to the Egs. (13), (15),
and (28). The o dependences of P;(+), which were
obtained in a self-consistent manner, show no
deviations from the simple power-law behavior
assumed by Eq. (27). The parameters so deduced,
together with their uncertainties, are given in
Table I, and it is apparent that Py(+) differs
substantially from ¢ g, upH,, implying that AM
is different from zero. The necessity for includ-
ing AM may be seen directly in the measurements

10 : : v 1000

ENERGY GAP PARAMETERS (meV)
TEMPERATURE T(K)

N o |
10 095 290 085 080
RELATIVE MAGNETIZATION ¢
FIG. 4. Anisotropy parameters P;(+) in Tb as a func-
tion of magnetization, deduced from the results of Fig.
3 and similar measurements at different temperatures.
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of Fig. 3, since it is responsible for the différence
between the slopes of the straight lines obtained
for fields applied in the easy and hard directions.
The appropriate g value for the macroscopic
hexagonal anisotropy is the effective value de-
fined by Eq. (30) of I as used in Table I, 8 MaH,.

IV. COMPARISON WITH STATIC EXPERIMENTS

Deviations from the simple spin-wave renor-
malization theory of Cooper® or the presence of
two-ion A terms, which are not of magnetoelastic
origin, may be detected by a comparison of the
energy-gap parameters P;(+) with the correspond-
ing macroscopic parameters deduced from static
measurements? as given by Eq. (22). The tem-
perature dependence of a parameter deduced from
static experiments is usually fitted to the tem-
perature law predicted by Callen and Callen® for
the (single-ion) term of lowest rank which con-
tributes to the parameter in question. The fits
which are obtained based on these assumptions
may be quite good, as is the case, e.g., for C
and A in Tb,® but deviations occur, especially in
the low-temperature region which we are con-
sidering (0>0.8). At low temperatures the terms
of higher rank may contribute appreciably to the
o dependence, and the applicability of the Callen-
Callen theory in the case of a highly anisotropic
system is questionable. Because of these limita-
tions we have fitted a simple power-law o depen-
dence to the experimental results obtained for
the magnetostriction parameters C, A,° and
H,,*®**" in the temperature interval correspond-
ing to 0>0.8. The results are given in Table II.
The standard deviations, which are also given,
are deduced from the statistical scatter of the
experimental results and do not include systema-

TABLE L Anisotropy parameters P;(+) and goqhzH,
for Tb derived from the energy-gap measurements as
described in the text. The zero-temperature values of
the parameters are given in meV, whereas the magne-
tization exponents, which describe the temperature de-
pendence of the parameters, are pure numbers. Param-
eters independent of the actual shape of the crystal may
be obtained by subtracting the dipolar contributions

N gupM and N, gugM from Py(+) and Py(-), respectively.

Anisotropy parameter Exponent
Py(+) 7.22 +0,07 3.07+0.1
Py(+) -1.34 +0.04 14.4 £0.9
Py(=) 0.361+ 0,008 4.3 £0.3
Py(-) 0.154+ 0,003 14,9 £0.8

Seir bpH,  0.290%0.005 15.0 +0.6
N.gugM  0.180 1
N, gugM  0.058 1
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tic experimental errors. The elastic constants
for Tb have been measured by Palmer ef al.?® as
function of temperature and in a field of 25 kQOe
applied along an easy axis, by which domain
effects are eliminated. ¢y, and hence ¢y is strongly
influenced by magnon-phonon interactions,?:13
and we use a value which is (7+4)% greater than
the one obtained from experiment. From the
magnetostriction coefficients and the elastic con-
stants, the magnetoelastic coupling parameters,
ocYC, etc., may be deduced, and they are also
given in Table II. Notice that we have included
implicitly a factor 1/0 in the definitions of ¢, and
¢, following from the factor 1/J in Eq. (5). We
remark that if a system is magnetoelastically
isotropic [3¢ .., (6), independent of a coordinate
transformation] then the parameters in (6) are
related. Among these relations are A =0 and
o0c.H,=40c,C, and it is interesting to notice that
the last relation is fulfilled almost exactly in Tb.
If terms of higher rank than I =2 for C and H
and ! =4 for A in the Eqgs. (10) and (24) and two-
ion magnetoelastic contributions are neglected
then the Callen-Callen theory predicts a renor-
malization of oc,C and oc H, proportional to o2
and of oc, A proportional to ¢'°. The low-tem-
perature theory of Lindgird and Danielsen? pre-
dicts somewhat higher exponents, 3.4 and 14.6
for oc,C and ocyA, respectively. The experi-
mental exponents given in Table II, which are
smaller than those suggested by the theories,
may indicate the importance of two-ion contri-
butions.

The magnetostriction coefficient H, is derived
partly from the experiments of DeSavage and
Clark®® and Du Plessis,?” which were performed
in the paramagnetic phase, and partly from the
amplitude of the magnon-phonon interaction at
low temperatures as described in II. C and A
and the o strains were measured by Rhyne and
Legvold.® B{} in Eq. (6) and the corresponding

TABLE IL. y- and €-magnetostriction parameters of
Tb. C and A are obtained from Ref. 9 and H, is deduced
in II. The magnetoelastic coupling parameters, ocyC
etc., given in units of meV, are obtained by using the
measured elastic constants (from Ref. 27), as described
in the text. The exponents give the ¢ dependence of the
parameters for o >0.8.

Magnetostriction parameter Exponent
C x10° " 4.18%0.02 2,42+ 0.04

A x10% 2.11+0,02 7.5 +0.15
Hyx 103 18,5 +2 1.76+ 0.04
oc,C  15.0 0.6 2.65+ 0,04
oc A 7.6 0.3 7.7 0,16
oCc.H), 62 %7 1.99+0.04
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two-ion terms introduce a ¢ dependence of the

a strains. In the interpretation of their results,
Rhyne and Legvold neglected this possibility;
these terms would then appear as a difference
between C deduced from b-axis data and from
a-axis data, whereas A would be unaffected. In
their experiment Rhyne and Legvold® detected
such a difference for C, which we interpret as
arising from a ¢ dependence of €*:f, with a mag-
nitude of about 0.15X10-3X07-3. The appropriate
C value is the mean of the a- and b-axis data
which is the one given in Table II. The neglect
of a ¢p-dependent « strain of this magnitude will
appear in §,(~) in our results with a contribution
equal to —3X10™* meV, which is entirely neg-
ligible. Bartholin et al.?® have isolated the con-
tributions to the « strains from the (isotropic)
exchange interaction by studying the change of
the Néel temperature with uniaxial pressure.
Combining these measurements with the a-strain
measurements,® we deduce an o-strain contri-
bution to Py(+) equal to —0.43X o™ meV.

The magnetic anisotropy parameters K7', de-
fined by Eq. (19), have been measured by torque
and magnetization experiments. Rhyne and
Clark®® have determined K, in the easy direction
by torque measurements and deduced K¢ from the
magnetostriction measurements.® Feron et al®
have obtained K,, K,, and K% by magnetization
measurements, where K, and K, are the effec-
tive anisotropy parameters in the easy direction.
K¢ determined in these experiments should be
directly comparable with the critical field H,
obtained in the present experiment through the
relation (23). As shown in Fig. 5, the critical
fields deduced by the different techniques agree

100 ] , :
H, =32.3 kOe xa">® |
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FIG. 5. Critical field H, as function of magnetization.

The closed circles are the results obtained by the present

experiments on Tb. The open symbols are the results of
the measurements by Rhyne and Clark (4, Ref. 30) and
by Feron et al. {d, Ref. 31).

satisfactorily. From the experimental result
for the magnetic anisotropy parameters®:3 and
for the € strain (Table II) we have calculated
the macroscopic value for Py(+)+P4(+) accord-
ing to the Eqgs. (21) and (22a). P,(+)+P4(+) is
equal to A(0)+B(0) when the magnetization is
along an easy axis. The comparison is shown
in Fig. 6. The large absolute uncertainties of the
the static anisotropy parameters (of the order
of 25%) may disguise a difference of the order
do(+) +0645(+)~0.4+1.0 meV, but the similarities
of the ¢ dependence suggest that the difference
is probably quite small.

The static expression for A(0) — B(0) involves
only the y-strain contributions and the critical
field as given by Eq. (22b). In Table III we com-
pare the static and dynamic values for P;(-). The
agreement between the two values for Py(-) is
extremely good, with respect to both the absolute
magnitude at zero temperature and the tempera -
ture dependence. In the case of P¢(~) we obtain
a significant difference 8,(-). To elucidate this
difference further we have subtracted the (static)
magnetoelastic contribution IOCYAC from both the
microscopic and macroscopic results for Pg(-):

(pss) micr. :Ps(_) - lOc'yAC ’ (293-)
(Pse) macr. = & eff p'BHc - 8CyAC - IOCYAC . (Zgb)

The ratio between the dynamic and static hexagonal
anisotropies of the unstrained lattice is close to

2 and is practically independent of temperature.
Note that this part of the static anisotropy (Pg)
has the opposite sign to the total static basal-
plane anisotropy K§, and that it renormalizes
quite slowly with temperature, as ~o®,

macr.

LI A N B I B D SN NN SN B B B B |

R (+) 4R (+) (meV)

o
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I,
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FIG. 6. Comparison of the energy-gap parameter
A(0) +B(0) in the easy direction of Tb (closed circles)
with the static values deduced from the magnetic ani-
sotropy measurements as described in the text (A from
Ref. 30 and O from Ref. 31). The cross-hatched area
shows the probable region in which the macroscopic
parameter lies when combining the two different ani-
sotropy measurements.
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TABLE III. Comparison of static and dynamic energy-
gap parameters. The microscopic (dynamic) anisotropy
parameters are from Table I, and the macroscopic pa~
rameters are deduced from the parameters given in
Tables I and II according to Eq. (22b).

Anisotropy parameter Exponent
P2 {dyn. 0.361+0.008 4.3+0.3
0 sta. 0.367+0.011 4,2+0.13
8o(=) ~0 +0.014 oo
Pr(c) {dyn. 0.154+0.003 14.9+ 0.8
6 sta. ~0 £0.03
8g(=) 0.126+0.010 5.9+0.3
P {dyn. —0.167+0.013 5.6+ 0.5
66 sta. —0.292+0.024 5.8+ 0.4

V. DISCUSSION

From the measurements of the field dependence
of the energy gap at zero wave vector in the spin-
wave spectrum presented in this paper, some of
which have been published earlier,*? we deduce
a strong axial anisotropy in Tb, which has also
been observed by torque®® and magnetization®!
measurements. Further, we find that the axial
anisotropy depends sensitively on the orientation
of the magnetic moments in the basal plane. The
large value for P¢(+) which we obtain can hardly
be explained within a single-ion model for the
anisotropy, Eqs. (17) and (18), as AM = Pg(+)

-2 guwitpH, = -1.39X0'3 meV is an order of mag-
nitude larger than the y-strain terms in P;(-).

If C, A, and AM were all of magnetoelastic single-
ion origin, then the magnitude of AM would require
C and A to be differences between terms which
were 10 times larger and with different o depen-
dences. Most of the contributions to AM are pre-
sumably of two-ion origin. By the inclusion of
two-ion interactions a general expression for the
energy gap was deduced in I [Egs. (21)-(23)].

Two types of two-ion interactions may contribute
to Pg(+), those for which I+m and I’ +m’ are both
even, and those for which they are both odd. How-
ever, when ;g ugH, is subtracted from P (+),
the remaining part AM is mostly composed of two-
ion contributions for which I+m and I’ +m’ are
both odd; these are the same interactions which
give rise to the g-dependent anisotropy, ©(q) de-
rived in I. We found in I that €(q) gives rise to an
interplanar contribution to P,(+) equal to -1.6
meV at zero temperature. On the basis of this
strong correlation between €(q) and AM, both with
respect to their magnitudes and their o depen-
dences, combined with the arguments above we
conclude that AM is of two-ion origin. A possible
strain dependence of these couplings (A #0) will
not affect the ¥y or « strains or the difference
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84(+).

In I anisotropic two-ion couplings were found to
be important in Tb, giving rise to q-dependent
anisotropy, and there is therefore the possibility
of large two-ion contributions to the magnetic
anisotropy at ¢ =0. The evidence for the two-ion
origin of AM is convincing. The differentiation
between single-ion and two-ion contributions to
P,(+) is more uncertain. An attempt may be
based on the studies by Hdg and Touborg,*? who
have determined the crystal-field anisotropy by
magnetization measurements on single-crystal
alloys of rare-earth metals diluted in Y, Lu, and
Sc, and the equivalent torque measurements on
dilute alloys of rare-earth ions in Gd by Chikazumi
et al3* Asada®® has later corrected the Gd results
for the effect of finite concentration of the rare-
earth impurities. The remarkable consistency of
the crystal-field parameters obtained for a rare-
earth ion, when placed in the different systems,
supports a use of these parameters as a measure
of the single-ion anisotropy present in the pure
metal. The results of Hdg and Touborg® and of
Asada®® both suggest a single-ion contribution to
the axial anisotropy P,(+) in Tb of the order of
2 meV, leaving 5 meV as being of two-ion origin.
The single-ion magnetoelastic part of Py(+) is
probably small, as shown by the estimated o-
strain contribution which is compensated almost
exactly by c, (2C* +A?) and the dipolar term. The
§-dependent axial anisotropy in Tb, X(q) in I,
indicates that part of the interplanar contributions
to Py(+) is negative. Such negative contributions
may be connected to two-ion couplings of low rank
which would be consistent with the tendency found
by Boutron,*® who considered the two-ion couplings
for which I=1"=1. That the total two-ion axial
anisotropy at ¢=0 is found to be positive indicates
the importance of couplings of higher rank.

The only couplings which appear in P,(~) are
those for which p (and hence A) are different from
zero, Eq. (23) of I. By expressing P,(-), (17c),
in terms of C and A, which are defined by Eq. (9),
we have included all contributions of magneto-
elastic origin. Polarization and spin-orbit cou-
pling effects on the susceptibility of the conduc-
tion electrons may introduce terms for which X is
nonzero, when combined with the indirect s - f
exchange interaction, J9 (0)=8 meV in Tb. From
the order-of-magnitude estimate in I [mechanism
(v)] we expect contributions to the energy-gap pa-
rameters P;(-) of the order of (m +m’)? times
8x107®* meV. Two-ion terms arising from this
mechanism, for which u is different from zero,
would appear in 6,(-) and 8.,(~), Eq. (26). There
is no indication of such a contribution to 6,(-),
whereas 04(-) is different from zero, as appears
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from Table III. In fact, terms for which u is
equal to 1 or 2 would account for the factor of 2
between the dynamic and static values of Py, and
a term like K222(0) would, according to the simple
renormalization theory [Eqs. (32) and (33) of I],
be proportional to 0® —=0'%, which is fairly close
to the observed o dependence. A two-ion contri-
bution to Pa(-) of this order of magnitude is con-
sistent with the estimated interplanar term arising
from the §-dependent anisotropy, ®(q) in I

[= Py(-)].

The magnon-magnon interaction may intro-
duce zero-point deviations between static and dy-
namic variables. In the theory of Lindgard and
Danielsen® two-ion anisotropy is neglected, and
they predict a detectable deviation only in the
case of the sixfold basal-plane anisotropy Vg,
for which the dynamic value should be about half
the static one. This is in accordance with the
observed behavior of Py in Th, but introduces in
Dy an effect which is opposite in sign to the one
deduced from experiments.?” Further, the o-de-
pendence of Py, expected from the theory of Lind-
gard and Danielsen is inconsistent with the exper-
imental results. The low-temperature theory
predicts an exponent for the dynamic Vg which is
about twice the value of 20 given by the simple
3(1+1) -1 law. The small exponent observed for
P, allows us to draw the conclusion that the most
important contributions to Py, are of two-ion
origin. A two-ion origin of Py, or the small ¢
exponent obtained further indicates that the zero-
point difference between the dynamic and the static
Py (A +1+1'=6) should be considerably smaller
than the one deduced® for Vg (I=6). This leads
us to propose mechanism (v) in I for the observed
difference 0,(~) as a more probable explanation
than the magnon-magnon interaction.

The possibility of several types of contributions
to the deduced parameters does not allow any
definite conclusions about deviations from the
Callen-Callen theory,? generalized to the dynamic
case by Cooper,® which is predicted®®** for a
strongly anisotropic basal-plane ferromagnet. For
this purpose Dy may serve as a better candidate
than Th, because of the presence of a large basal-
plane anisotropy in Dy. Nicklow and Wakabayashi®
have observed an energy gap in Dy equal to 3.2
meV at zero temperature by neutron scattering,
whereas the value obtained from the static mea-
surements??+3! is 2.6 +0.4 meV. The large dif-
ference suggested by these numbers deserves
further study. By similar measurements of the
field dependence of the energy gap in Dy a distinc-
tion between the 0;(+) may be obtained, together
with a more reliable determination of the critical
field (~ 135 kOe at zero temperature). A ¢ de-

23,24

pendence of the susceptibility of the conduction
electrons which may explain the peculiar behavior
of Py in Th may not account for the large differ-
ence of the order of 0.6 meV in Dy. The softening
of the velocity of transverse sound waves propa-
gating in the basal plane at fields close to the
critical field is presumably not affected by the
magnon-magnon interaction (only dynamic param-
eters are involved), whereas the presence of
strain-independent A terms will influence the
critical behavior., Ultrasonic studies of the tran-
sition at the critical field in Tb and Dy could
clarify the origin of the discrepancies between

the static and the dynamic values for the energy
gaps. See Notle added in proof.

VI. SUMMARY

In the three papers I, II, and III we have pre-
sented a detailed experimental and theoretical
analysis of the magnetic excitations propagating
in the c direction of Tb. The ground state of the
ionic moments in Tb,?%:3® which are ferromagnet-
ically ordered at low temperatures, is presumably
close being a pure J,=J =6 state; so the spin-
wave approach is applicable. The description of
the spin waves propagating in the ¢ direction of a
hexagonal solid is especially simple because the
effective Hamiltonian is close to being invariant
with respect to a rotation of the magnetization
vector around the c¢ axis by an angle which is a
multiple of 7. If the ¢ axis is considered to be
an effective sixfold axis, then the absence of
acoustic-optical couplings implies that the double-
zone representation for the hep lattice is valid.
The direct mixing of spin space variables accom-
plished by the spin-orbit coupling of the conduc-
tion electrons causes a lowering of the effective
symmetry. The spin-orbit coupling introduces a
further complication, as it gives rise to a devia-
tion between the direction of magnetization and
the direction in which the conduction electrons
are polarized. This deviation may introduce
couplings violating the selection rules for a sim-
ple ferromagnet, as is the case for the acoustic-
optical magnon-phonon interaction observed in
Tb.

A general dispersion relation for spin waves
propagating in the c direction of a basal-plane
ferromagnet was derived. The different forces
acting on the ionic magnetic moments may be
divided into the three classes: single-ion, two-
ion, and polarization-dependent two-ion spin inter-
actions. Three- or many-ion interactions can be
decoupled into effective two-ion interactions. The
positional dependence of all three types of coupling
appears as static magnetostrictive contributions
to the magnon energies and as a dynamic inter-
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action between the magnons and the lattice vibra-
tions.

Different aspects of the magnetic anisotropy in
Tb were studied by measuring the change of the
magnon dispersion relation when an external mag-
netic field was applied along a symmetry direction
in the basal plane. By such an external perturba-
tion of the magnon spectrum it is possible to de-
termine the two Bogoliubov energy components
A(Q) + B(q) and A(Q) - B(q). If B(qQ) is nonzero, then
the total magnetization, which is the sum of the
z components of the ionic moments, does. not
commute with the spin-wave Hamiltonian. B(§)
vanishes identically for a c-axis magnet, whereas
deviations from the fully aligned ground state
assumed in a spin-wave approximation may be
important in a basal-plane magnet.>*?* For a c-
axis magnet, only terms for which p =0 and
m=-m’'=11in Eq. (7) of I can contribute to the
dispersion of the c-axis magnons, and A(§)+ B(§)
and A(Q) — B(q) are degenerate [B(§)=0]. The in-
formation about magnetic anisotropy which may be
obtained from the dispersion of the magnons in
this spin configuration is thus rather limited. The
basal-plane spin configuration which occurs in Tb
and Dy is more informative, and the possibility
of changing the orientation of the moments within
the basal plane of Tb has led to the observation of
spin couplings of high rank. X +1+1'>6 for the
terms which contribute to the ¢-dependent aniso-
tropy, Pg(+), and €(q) and D(q) derived in I.

In II we isolated the effects of the direct coupling
between magnons and transverse phonons at finite
wave vector. Within certain limitations, we de-
termined explicitly the terms in the energy gap at
zero wave vector arising from magnetoelastic
coupling (AM may include magnetostrictive two-
ion contributions). By this procedure we accounted
for most of the effects of coupling between the spin
system and the lattice. Magnetostrictive distor-
tions of the lattice may enhance existing two-ion
anisotropy, and this effect may in principle be
investigated by applying a uniaxial pressure.

By the determination of A(q) + B(§) at both zero
and finite wave vector we have separated the con-
stant and the q-dependent anisotropy. The results
indicate that all three types of spin couplings con-
tribute to the constant anisotropy. The single-
and two-ion contributions seem to be of comparable
importance, and the comparison between the static
and dynamic anisotropy suggests the presence of
a small polarization-dependent term. The q de-
pendence of the unperturbed energy parameters
A(d) + B@Q) reflects intrinsic properties of the spin
system and is due to two- (and many-) ion cou-
plings. The different kinds of spin interactions
present in Tb can be listed according to their

III.
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relative importance on the magnon energies at
zero temperature as follows: (i) Heisenberg in-
teraction, ~7 meV; (ii) two-ion anisotropy,

~3 meV; (iii) single-ion anisotropy, ~3 meV;

(iv) magnetoelastic coupling, ~0.5 meV; (v) po-
larization-dependent two-ion anisotropy, ~0.2
meV., The determination of the different contri-
butions to the energy suffers from considerable
uncertainty which is reflected in the typical ener-
gies listed above.

The behavior of the spin system in Tb is domi-
nated by two-ion couplings between the ionic
moments, (i) and (ii). In the heavy-rare-earth
metals the electric multipole interactions [mech-
anism (vi) in I, Zand ' #0] are of minor impor-
tance in comparison with the indirect exchange
interaction via the conduction electrons. The two-
ion anisotropy which has been observed to be
present in Th, Dy, and Er is presumably due to
the influence of mechanisms (i) and (ii), described
in I, on the exchange interaction. A theoretical
calculation of the indirect exchange interaction
from first principles would be extremely compli-
cated, as it requires a knowledge of the relativis-
tic wave function of both the localized 4f electrons
and the conduction electrons and a correct treat-
ment of screening. Relativistic effects such as
the spin-orbit coupling of the conduction elec-
trons, (ii), may turn out to be as important as the
Kaplan-Lyons terms, (i).

Utilizing the systematic behavior through the
heavy-rare-earth series, the microscopic origin
of magnetic anisotropy in these metals may be
further elucidated experimentally. The behavior
of the elementary excitations of a magnetically
ordered metal is determined by certain linear
combinations of general spin couplings which de-
pend on the orientation of the ordered moments.
When comparing the magnetic properties of the
rare-earth metals the terms appearing in the
linear combinations, A(Q)+ B(q), in identical spin
configurations may scale differently according
to the rank / and to the origin of the terms. A
rough estimate of the scaling of the anisotropy
energy E, in the heavy-rare-earth metals due to
orbital modifications (<L) of the exchange inter-
action (xS) is E, < LS=(2 - g)(g—1)J%. This ex-
pression should not be taken too literally, as,
e.g., the spin-orbit coupling, (ii), may give rise
to two-ion anisotropy in Gd (g=2), as mentioned
in I.
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Note added in proof. The polarization-dependent
two-ion coupling is most likely interpreted as a

dynamic effect which vanishes in the limit of zero
energy. The behavior of the long-wavelength pho-
nons (= zeroenergy) should be adequately described
by the macroscopic anisotropy parameters [see

a discussion by Jensen (to be published)].
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