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RECONSTRUCTION OF SINGLE-GRAIN ORIENTATION
DISTRIBUTION FUNCTIONS FOR CRYSTALLINE MATERIALS∗

PER CHRISTIAN HANSEN† , HENNING OSHOLM SØRENSEN‡ , ZSUZSANNA SÜKÖSD‡ ,

AND HENNING FRIIS POULSEN‡

Abstract. A fundamental imaging problem in microstructural analysis of metals is the recon-
struction of local crystallographic orientations from X-ray diffraction measurements. This work deals
with the computation of the 3D orientation distribution function for individual grains of the material
in consideration. We present an iterative large-scale algorithm that uses preconditioned regularizing
CGLS iterations with a stopping criterion based on the information available in the residual vectors.

Key words. materials science, polycrystals, orientation distribution function (ODF), regular-
izing iterations, preconditioning, stopping criterion.

AMS subject classifications. 65F22 (Ill-posedness, regularization), 65Z05 (Applications to
physics), 74E25 (Texture).

1. Introduction. Many materials including metals, rocks, ice, sand, bones, and
some drugs are poly-crystalline. Objects of this type are comprised of a set of space-
filling non-overlapping grains, each of which is a crystal, i.e., the atoms within each
grain are positioned in a regular 3D lattice. A basic property of a grain is the ori-
entation of the crystalline lattice, defined as a rotation with respect to a specified
external reference system; in this work the orientations are represented as Rodrigues
vectors [5]. The volume-averaged distribution of orientations inside an object is known
as the orientation distribution function (ODF) of the object [20]. In metallurgy, where
most of the work has been done, the ODFs encountered are typically smoothly varying
functions.

Traditionally, X-ray diffraction is the method of choice for determining ODFs.
Each measurement (typically the intensity in a pixel within a 2D detector) corresponds
to a projection of the ODF along a line in the Rodrigues representation. The inverse
problem of creating the ODF from the set of projections (measurements) is therefore
an inverse problem in tomography, similar to the reconstruction problem underlying
CAT scanners.

Within the last 10 years, a novel X-ray based diffraction technique has emerged,
called Three Dimensional X-Ray Diffraction (3DXRD) microscopy [23]. In contrast
to traditional X-ray diffraction this technique enables characterization not only of the
volume average but also of the individual embedded grains. As shown in a feasibility
study at the Advanced Photon Source at Argonne National Laboratory, one may
even determine an ODF for each of the grains [24]. Such a grain-specific ODF is a
function of the distribution of defects of the lattice inside the grain (and for a perfect
lattice the grain ODF is a delta function). Single-grain ODFs are of interest for
fundamental studies in metal deformation, cf. [23, Chapter 9], and their use has been
suggested in the context of a new approach to identifying the atomic structure of
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Fig. 2.1. The experimental setup used in the diffraction measurements. The cube represents a
crystal hit by an incoming X-ray in the direction k0, and the diffracted rays – represented by a ray in
the direction k – give rise to a diffraction pattern on the detector. The u,v-map and the associated
vector y0, cf. (2.3), are included for illustration only; they do not “live” in physical space. The
remaining quantities are introduced in §3.

pharmaceuticals [18, 29].
In this paper we propose an algebraic approach to the reconstruction of a single-

grain ODF. We use iterative regularization methods to solve the large sparse systems
of linear equations involved in this approach, and we develop a new robust stopping
criterion for these iterative methods. Three methods are considered: ART [7, 22],
conjugate gradient least squares (CGLS) [3, 19], and preconditioned CGLS (PCGLS)
[14]. The iterative regularization methods are compared by means of simulations, and
their dependence on noise and on the number of projections available is characterized.

Throughout the paper, letters in bold (such as u and v) denote vectors in R3,
while small and large italic letters (such as b ∈ Rm, x ∈ Rn, and A ∈ Rm×n) denote
the vectors and matrices involved in the discretized tomography problem solved by
the iterative methods.

2. The Inverse Problem of ODF Reconstruction. In this section we derive
equations for the transformations between the experimental data, intermediate quan-
tities called u,v-maps, and a single-grain ODF. A minimum of details of crystallogra-
phy, diffraction physics, and experimental set-up are provided; for more information
on these aspects we refer to [1], [6], and [23], respectively. The issue of how to single
out the diffraction data from a single grain among the data from hundreds of other
grains is outside the scope of this paper (see, e.g., [21] and [28] for details).

The experimental setup is shown in Fig. 2.1, where the small cube represents a
crystal hit by an incoming X-ray that gives rise to a diffraction pattern recorded on
the detector. The various elements of the figure are introduced in the text below.

2.1. Crystallography and Diffraction Measurements. A perfect crystal
consists of a set of atoms (molecules) positioned in a regular three-dimensional lattice
with the basis vectors a, b, and c. The space spanned by the basis vectors is called
the unit cell. It is defined by the lattice parameters: the norms (‖a‖2, ‖b‖2, ‖c‖2) of
the basis vectors and the angles (α, β, γ) between the vectors. For the purpose of this
paper, the lattice is completely defined by these parameters and by its orientation.

The diffracted intensity acquired in a diffraction experiment can be represented
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as a distribution over a 3D continuous space called the reciprocal space. For a perfect,
infinitely large crystal, the diffracted intensity will appear as a discrete set of nodes
in this space. In practice the recorded intensity will only be above the noise level in a
finite set of nodes close to the origin of reciprocal space; for the applications foreseen
within this paper the number is small, of the order of 100.

The nodes in reciprocal space form a regular three-dimensional lattice with basis
vectors a∗, b∗, and c∗ corresponding to the Fourier transform of the original lattice.
In analogy to the original crystal lattice, the reciprocal lattice is defined by six lattice
parameters (‖a∗‖2, ‖b∗‖2, ‖c∗‖2, α∗, β∗, γ∗). The nodes in reciprocal space – called
the Bragg nodes – are indexed by the so-called Miller indices (h, k, l), where h, k and
l are integers. The Cartesian position of the node (h, k, l) is then given by

gc
hkl =



‖a∗‖2 ‖b∗‖2 cos(γ∗) ‖c∗‖2 cos(β∗)

0 ‖b∗‖2 sin(γ∗) −‖c∗‖2 sin(β∗) cos(α)
0 0 ‖c∗‖2 sin(β∗) sin(α)







h

k

l


 . (2.1)

The matrix in this equation is the metric that orthonormalizes the (h, k, l) system.
When the crystal is rotated, the Bragg nodes will rotate with respect to k0.

Poly-crystalline samples comprise a set of finite mosaic crystals, so-called grains.
The individual grains vary only by their orientation of the lattice. We make the
fundamental assumption that the deviations in orientations within the grains from
the average orientation are small, and much smaller than the orientation difference
between average orientations of any two grains. It follows that the lattice parameters
and the metric underlying (2.1) are the same for all the grains and indeed provide a
characteristic of the crystal sample as such.

We now define the reciprocal space with respect to a sample reference system.
Vectors in this space – the diffraction vectors – are given by

gs
hkl = U gc

hkl, (2.2)

where the superscript “s” means sample space, and U is a 3× 3 orthogonal rotation
matrix associated with each of the individual grains.

The diffracted intensities from a certain mosaic grain are recorded by rotating
the sample around the z axis, and thereby each Bragg node will come into scattering
condition when the vector gs

hkl intersects the so-called Ewald sphere centered at the
crystal and with radius 2π/λ, where λ is the wavelength of the X-ray.

A perfect crystal gives rise to an infinitely small spot on the detector, while a
real non-perfect crystal gives an intensity that is spread out due to the orientation
spread of the grains. However, as the orientation spread is assumed small, each of the
intensity distributions – both on the detector and in Rodrigues space – are confined
to a small domain around the average position.

It follows that – for each grain and each (h, k, l) – we can project the intensity
distribution about each Bragg point onto a tangential plane to the orientation sphere.
This tangential plane is defined by unit vectors u and v as follows. Let gc,0

hkl represent
the diffraction vector associated with the average orientation of the grain. Then we
require (y0, u, v) to be an orthogonal coordinate system with

y0 = gc,0
hkl / ‖gc,0

hkl‖2 (2.3)

u =
y0 × z

‖y0 × z‖2 (2.4)

v = u× y0, (2.5)
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in which z = (0, 0, 1)T is the third axis in the sample reference system. Hence,
the diffracted intensity from a given grain may be represented in the form of a set
of localized distribution functions fhkl on the tangential plane, one for each of the
“visible” or measurable triplets (h, k, l). We refer to these distributions as u,v-maps,
and emphasize that each grain ODF is associated with a number of u,v-maps.

The intensity distribution from the complete crystal will appear around a set of
interpenetrating reciprocal lattices, one from each of the grains. In the following we
assume that these distributions do not overlap, and that we can extract information
from one grain independently of the others.

2.2. Transformation from Grain ODF to u,v-Maps. We represent orien-
tations with respect to a reference sample coordinate system by Rodrigues vectors
s = (s1, s2, s3)T [5]. Let the grain ODF ρ(s) for a given grain be confined to a
spherical region around the center-of-mass s0. It is convenient to perform a rotation,
represented by the translation −s0 in Rodrigues space, such that the the center-of-
mass is at the origin of Rodrigues space. This local Rodrigues space is parameterized
by r = s− s0. We assume that the range of the orientation spread within the grain
is so small that the local space, to a good approximation, is Euclidian.

We now use the fundamental assumption in diffraction physics that we are dealing
with kinematical scattering [6]. As a consequence, for a given grain and a given triplet
(h, k, l) we obtain a linear relationship between the grain ODF ρ(r) and the diffracted
intensity distribution (or u,v-map). Letting puu + pvv denote a position on the
u,v-map, the intensity distribution fhkl(pu, pv) on the u,v-map is given by [24]:

fhkl(pu, pv) =
∫ ∞

−∞
ρ
(
rhkl(t)

)
dt, (2.6)

where

rhkl(t) = 1
2 yhkl × (puu + pvv) + t yhkl, t ∈ R

defines a straight line through the grain, with yhkl being the normalized diffraction
vector in the sample reference system:

yhkl = gc
hkl / ‖gc

hkl‖2.

Evidently (2.6) is a line integral, or projection, along the line defined by yhkl, and the
equation has the form of a Radon transform.

The inverse problem of single-grain ODF reconstruction is thus to compute the
ODF ρ(r) from the data in the form of the measured u,v-maps fhkl(pu, pv) associated
with the grain, via the solution of (2.6) which is a Fredholm integral equation of the
first kind [12].

3. Discretization of the ODF Reconstruction Problem. In order to solve
the ODF reconstruction problem on a computer, it must be discretized. Several kinds
of errors are involved in this process – for example, the experimental conditions set a
lower limit on the resolution of the u,v-maps, and the size of the u,v-maps and the
resolution of the discretized ODF are determined by the available computer resources.

3.1. Transformation Between Experimental Data and u,v-Maps. To cre-
ate the u,v-maps from the X-ray measurements, we consider the transformation be-
tween each point puu + pvv in the u,v-map to a pixel on the a recorded diffraction
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image. The first step is to consider the scattering vector gc
hkl from Eq. (2.1) for the

point (pu ,pv ), given by

gc
hkl(pu, pv) = gc,0

hkl + ‖gc,0
hkl‖2 (puu + pvv), (3.1)

where gc,0
hkl is associated with the average orientation of the grain.

Since the grain is, in general, not oriented as the laboratory coordinate system,
the scattering vector is rotated to obtain gs

hkl = U gc
hkl, cf. (2.2). It was stated

earlier that a scattering vector can only give rise to diffraction at the point where it
coincides with the Ewald sphere. Therefore we need to determine the transformation
which will rotate the sample such that scattering conditions are met The scattering
vector is then calculated at this rotation by g`

hkl = Ω gs
hkl, where the superscript “`”

denotes the laboratory system, and Ω is the orthogonal rotation matrix associated
with the angle ω, cf. Fig. 2.1.

The position (ydet, zdet) on the detector in pixel units of the diffracted beam is
given by

ydet = y0
det + g`

hkl(2)
λL

2π cos(2θ)
1
Py

(3.2)

zdet = z0
det + g`

hkl(3)
λL

2π cos(2θ)
1
Pz

. (3.3)

Here y0
det and z0

det are detector coordinates of the incident beam passing the detector
(in pixel units), and g`

hkl(i) denotes the ith element of g`
hkl. The size of a pixel on the

detector is Py × Pz, and L is the distance between detector and sample. Moreover, λ
is the X-ray beam wavelength, and 2θ is the angle between the incoming beam and
the diffracted beam.

The above transformation leads to discretization errors due the limited size of the
u,v-map. Even if we had an infinite resolution of the u,v-map, the resolution is still
limited by the resolution (Py, Pz) of the detector and by the resolution of the rotation
angle ω of the sample for each diffraction image. The latter resolution is generally
the most crude, being of the order 0.1◦, while the resolution limit of the detector is
about 10 times finer. To minimize discretization errors, we use re-sampling where a
high-resolution image is produced and afterwards binned.

3.2. Setting Up the Linear System of Equations. The relation between
ρ(r) and each u,v-map was given in (2.6). We must discretize this integral equation
in order to obtain a system of linear equations Ax = b that can be solved on the
computer. The grain ODF ρ(r) is discretized as a volume of N ×N ×N equal-sized
voxels with the origin in the central voxel, and the edge size of each voxel being half
the size of the pixels in the u,v-maps [24]. The voxel values are collected in the vector
x ∈ Rn, with n = N3. The pixels of all the u,v-maps associated with the ODF are
collected in the vector b ∈ Rm, where m denotes the total number of pixels in the
collected set of u,v-maps. Specifically, if p denotes the number of u,v-maps available
then b consists of p sub-vectors, each corresponding to a single u,v-map.

The matrix A is then constructed such that Eq. (2.6) is satisfied using forward
projection of rays from the u,v-map and pointing in the direction y0. We use the fast
three-dimensional digital differential analyzer algorithm 3D-DDA [2] to determine the
voxels that contribute to a given pixel. The value of the matrix element aij is then
the path length of the ray from pixel bj though the voxel xi, and the matrix A is
sparse because only a small set of voxels are penetrated by each ray.
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Discretization errors will again be present, and the size of these will depend on
the orientation of the u,v-map and the direction of the projection. To minimize the
discretization errors without increasing the size of the matrix, we have included a
possibility to compute the pixel intensity by averaging over several rays (in patterns
of 3-by-3, 5-by-5, etc) from the same pixel. If we had chosen to subdivide either the
voxels in the ODF, the pixels in the u,v-maps, or both, this would have increased the
size of the matrices and hence increased the memory consumption substantially. The
results of this procedure are presented in §5.

4. Large-Scale Regularization Methods. The linear system Ax = b, which
represents our three-dimensional tomography problem, was obtained in the previous
chapter via discretization of a first-kind Fredholm integral equation. It is well known
that such systems are very ill conditioned and must be solved by means of regulariza-
tion methods [12], such as Tikhonov’s method in which we compute the solution xλ

to the regularized problem

min
{‖Ax− b‖22 + λ2 ‖x‖22

}
, (4.1)

for some value of the parameter λ. However, our system involves large amounts of
data and unknowns, and for this reason only iterative regularization methods are
feasible. In this chapter we discuss several practical aspects of such state-of-the-art
iterative regularization methods.

4.1. Regularizing Iterations. In this work we focus on so-called regularizing
iterations. The basic idea is to use an iterative scheme originally designed for solving
the least-squares problem, and by stopping the iterations “prematurely” – before the
convergence to the least squares solution – we obtain the desired regularized solution.

Underlying this class of iterative methods is the concept of semi-convergence [22].
During the first iterations, we observe that the iterates behave as regularized solu-
tions, with the number of iterations controlling the regularity (or smoothness) of the
computed solution. The initial iterates are very smooth, and as we take more iter-
ations we include components with higher spatial frequencies, making the solutions
increasingly less smooth. In the early iterations, where we included a limited number
of spatial frequency components, we thus produce iterates that are regularized solu-
tions. After this phase, as we include components with still higher spatial frequencies,
the iterates start to converge towards the un-regularized – and therefore undesired –
least-squares solution to the problem. See, e.g., [12, Chapter 6] for a discussion of
these issues.

One of the classical iterative methods that exhibits semi-convergence, and which
has been used extensively in computerized tomography, is Kazcmarz’s method – per-
haps better known as the algebraic reconstruction technique (ART) [22]. The algo-
rithm, in its basic form, is very simple (and therefore it was particularly suited for
the small memory systems of earlier computers); each iteration consists of a “sweep”
through all the m rows of the matrix, of the form

x ← x +
bi − aT

i x

‖ai‖22
ai, i = 1, . . . ,m.

Here aT
i denotes the ith row of A, and bi is the ith element of the right-hand side b

(the “sweeps” can be arranged and selected in more sophisticated ways, and it is also
possible to introduce a relaxation parameter [17]). ART has good initial convergence
for the sparse systems of equations encountered in computerized tomography.
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Another iterative method with semi-convergence is CGLS, which is mathemat-
ically identical to applying the classical method of conjugate gradients (CG) to the
normal equations for the least-squares problem. CGLS is a Krylov subspace method,
in which the kth iterate x(k) minimizes the residual norm subject to lying in the
Krylov subspace Kk ≡ span{AT b, AT A AT b, . . . , (AT A)k−1AT b}, that is:

x(k) = argminx‖Ax− b‖2 subject to x ∈ Kk. (4.2)

The projection of the problem onto the k-dimensional Krylov subspace Kk (where k
is typically much smaller than the number of unknowns) has the desired regularizing
effect, because the basis vectors of Kk tend to include higher frequencies as k increases.
More details about the properties of these regularizing CGLS iterations can be found,
e.g., in [12, Chapter 6], [15], and [19].

A complete specification of the CGLS algorithm (with zero starting vector) takes
the simple form

x(0) = 0, r(0) = b, d(0) = AT r(0)

for k = 1, 2, . . .

ᾱk = ‖AT r(k−1)‖22/‖A d(k−1)‖22
x(k) = x(k−1) + ᾱk d(k−1)

r(k) = r(k−1) − ᾱk Ad(k−1)

β̄k = ‖AT r(k)‖22/‖AT r(k−1)‖22
d(k) = AT r(k) + β̄k d(k−1)

end

Here, r(k) is the residual vector associated with the kth iteration vector x(k) (i.e.,
r(k) = b−Ax(k)), and d(k) is an auxiliary vector of length n. Note that the core com-
putational operations are the multiplications with A and its transpose. The storage
requirements are – in addition to A and b – two vectors of length m and two vectors
of length n, see [3]. The CGLS iterates tend to be very similar to the solutions xλ

obtained by Tikhonov regularization, in the sense that for a given k there exists a λ
such that x(k) ≈ xλ (see [12] for details).

4.2. Preconditioning. Due to the similarity between CGLS and Tikhonov reg-
ularization, the smoothness in the CGLS solution x(k) in (4.2) is similar to the smooth-
ness obtained by solving (4.1). For several applications, including the one considered
here, we need to impose additional smoothness on the solution. In the Tikhonov
formalism this is achieved by replacing the regularization term ‖x‖2 in (4.1) with a
different term, typically of the form ‖D x‖2 where D represents some derivative op-
erator. For iterative methods based on Krylov subspaces, a similar effect is achieved
by modifying the basis vectors of the Krylov subspace to have the desired smoothness
properties, as described in [12].

Assume we are given a matrix D that represents a discrete approximation to a
derivative operator. Then we can compute reconstructions that seek to keep the norm
‖D x‖2 small by introducing the variable transformation ξ = D x and applying the
CGLS algorithm to the transformed problem minξ ‖(AD−1) ξ − b‖2, followed by set-
ting x = D−1ξ. Since the CGLS algorithm seeks to keep the norm of ξ small, it follows
immediately that this corresponds to keeping ‖ξ‖2 = ‖D (D−1ξ)‖2 = ‖D x‖2 small.
We see that D acts as a right preconditioner for CGLS, and the underlying mechanism
is known as standard-form transformation. Intuitively we can say that the smooth-
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ness is imposed by the integration, represented by D−1, in the back transformation
x = D−1ξ.

This kind of smoothing-norm preconditioning was developed in [8], [9], and [10],
and implemented in the Regularization Tools package [11], [13]. Further theoretical
and computational aspects are discussed in [14].

At the same time, we can use the matrix D to impose desired boundary condi-
tions on the solution, by incorporating these conditions into the specific formulation
of D. Since the algorithm seeks to keep ‖D x‖2 small, it follows that it must produce
solutions that seek to inherit the specified boundary conditions.

As we demonstrate below, the preconditioning with D is easy to implement for
Krylov subspace methods. We are not aware of similar preconditioning techniques for
preconditioning the ART methods such that it incorporates a smoothing norm.

The choice of D is problem dependent. For many tomography problems, including
the present one, the data carries less information about the regions near the boundaries
of the border than in the middle, because fewer “rays” penetrate these regions. To
ensure solutions that are smooth everywhere it is therefore advantageous to prefer
solutions that tend to zero towards the boundaries of the box. In addition, the
required solutions for the ODF of each grain can be assumed to decay smoothly to
zero. Hence, we are lead to using a matrix D that corresponds to using a low-order
derivative operator with zero boundary conditions.

These considerations – supported by extensive numerical experiments – lead to
the following choice. Let L1 ∈ R(N+1)×N and L2 ∈ RN×N be banded matrices that
approximate scaled first and second derivative operators in one dimension, and with
zero boundary conditions:

L1 =




1
−1 1

−1 1
. . . . . .

−1 1
−1




, L2 =




−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




. (4.3)

Moreover, let R1 and R2 denote the N×N upper triangular QR factors of L1 and L2,
respectively (i.e., L1 = Q1R1 and L2 = Q2R2, where Q1 and Q2 have N orthonormal
columns). Both R1 and R2 have full rank, and computations with their inverses are
fast because they are triangular and banded. Then the norms ‖R1 · ‖2 and ‖R2 · ‖2
are approximations to the norms of the first and second derivatives.

For our three-dimensional problem we then choose D to be one of the Kronecker
products

D1 = R1 ⊗R1 ⊗R1 or D2 = R2 ⊗R2 ⊗R2, (4.4)

for which we have D−1
i = R−1

i ⊗R−1
i ⊗R−1

i for i = 1, 2. In our Matlab implementation
the vector x is stored as a three-dimensional array X, and the corresponding three-
dimensional representation Z of the vector D−1ξ is computed by multiplying R−1

1 or
R−1

2 to all the “slices” of X as follows, where the matrix R represents R1 or R2:
Y = zeros(N,N,N); Z = Y;
for i=1:N

Y(:,:,i) = R\X(:,:,i)/(R’);
end
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for i=1:N
M = squeeze(Y(:,i,:));
Z(:,i,:) = M/(R’);

end

Each operation of R−1
i or R−T

i on an N × N “slice” involves a back-solve with the
banded Ri and therefore costs O(N2) flops. Since a total of 2N “slices” are processed,
the complete operation with D−1

i costs only O(N3) = O(n) flops. Hence, the com-
putational overhead for the preconditioning is small, compared to the matrix-vector
multiplication with A.

4.3. Stopping Criterion. The mechanism that underlies regularizing iterations
is sometimes referred to as semi-convergence: The early iterations produce solutions
that approach the desired, exact solution, while later in the process the solutions will
eventually converge to the undesired, highly perturbed (least squares) solution.

For this reason, it is important to use a robust stopping criterion that will stop
the iterations when a satisfactory regularized solution is obtained. Specifically, the
solution should have sufficient regularity/smoothness while at the same time it should
fit the data within the given noise. Several such stopping criteria have been proposed
over the years.

• The discrepancy principle stops the iterations immediately when the norm
of the residual, ‖r(k)‖2 drops below the norm of the errors in the right-hand
side. This method depends on a very accurate estimate of the error norm;
otherwise we may take too many iterations leading to a highly perturbed
solution. We have not been able to obtain such accurate estimates.

• Generalized cross-validation (GCV) is often very reliable, but it is not clear
if the GCV function to be minimized can be computed efficiently for our
regularizing iterations.

• The L-curve criterion sometimes works well, but for large-scale problems
solved by regularizing iterations we do not have good experience with this
method – basically because the “corner” of the L-curve (a plot of ‖x(k)‖2
versus ‖r(k)‖2) is not well localized.

• The recently developed NCP criterion (based on the normalized cumulative
periodogram) seeks to find the solution for which all useful information has
been extracted from the right-hand side, via a Fourier analysis of the residual
vector. This method has proven to work well for our tomographic problems,
and we will describe it in more details below.

To formulate the NCP criterion, which was developed in [16] and [26] (based on
ideas in [25]), we assume that the discrete Fourier basis provides a good description
of the problem. The underlying assumption about periodicity is not a difficulty here,
since our solutions are zero at the boundaries of the domain.

Any iterative regularization method, including preconditioned CGLS, will pro-
duce solutions x(k) that are rich in low-frequency components, in such a way that the
number of included frequency components increases with the number of iterations.
At the same time, the corresponding low-frequency information is extracted from the
residual vector r(k). Eventually, all available information about the solution has been
extracted from the data, in which case the residual vector consists purely of noise
components (with the low frequencies missing). Hence, we wish to stop the iterations
precisely when the residual vector can be considered as noise.
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A statistical test for this situation can be formulated as follows. Let

r̂(k) =
[
r̂
(k)
0 , r̂

(k)
1 , . . . , r̂

(k)
n−1

]T = fft(r(k))

denote the discrete Fourier transform of the residual vector at iteration k. Then the
periodogram, or power spectrum, of r̂(k) is given by the vector

[
s
(k)
0 , s

(k)
1 , . . . , s

(k)
1

]
=

[ ∣∣r̂(k)
0

∣∣2,
∣∣r̂(k)

1

∣∣2, . . . ,
∣∣r̂(k)

q

∣∣2
]

, with q = bn/2c.

The normalized cumulative periodogram (NCP) for the residual vector r(k) is then
given by the vector c(k) of length q with elements

c
(k)
j =

∥∥[s(k)
1 , . . . , s

(k)
j ]

∥∥
2
/
∥∥[s(k)

1 , . . . , s(k)
q ]

∥∥
2
.

Note that the “DC component” s
(k)
0 is left out in this definition. The key use of the

NCP is to test if the residual is white noise; when this is the case then the plot of the
NCP is, ideally, a straight line between (0,0) and (q, 1). For a 5% significance level,
the NCP of a realization of the white-noise vector must lie within the Kolmogorov-
Smirnoff limit ±1.36q−1/2 of this straight line.

The NCP stopping criterion thus consists of stopping when the NCP is closest to
a straight line. Typically this is detected by taking a few extra iterations, needed to
discover the minimum distance.

For our ODF reconstruction problems, we need to modify the above generic ap-
proach to the particular form of our problem. Recall that the right-hand side b consists
of p sub-vectors, cf. §3, each corresponding to one of the u,v-maps involved in the
problem. Since the noise levels (and statistics) typically differ from one u,v-map to
the next, we must perform a separate NCP analysis for each of the p sub-vectors of b.
Consequently we may arrive at p different values k1, . . . , kp of the optimal number of
iterations, each optimal for one u,v-map. In order to reduce the risk of taking too
many iterations, we then select the number of iterations as the median of k1, . . . , kp.

5. Computer Simulations. A number of simulations were performed in order
to establish the robustness of the reconstruction algorithms described above, as well
as to study the influence of different parameters for the quality of the reconstructed
object. We performed two types of simulations. In the first set of simulations we used
a forward projection of the ODF to directly generate the u,v-maps, thus avoiding a
number of possible discretization errors – but leading to the phenomenon of “inverse
crime” where the forward and reconstruction models are identical.1 In the second set
we simulated the diffraction pattern on the CCD, in order to investigate the effect of
the discretization errors involved in transforming the diffraction spots to u,v-maps,
and thus avoiding to commit “inverse crime.”

To characterize the quality and the convergence of the reconstructions, the fol-
lowing Figure-Of-Merit (FOM) was used throughout:

FOM = ‖xorig − xrec‖1, (5.1)

in which xorig denotes the original discretized ODF, and xrec denotes the reconstructed
one. The reconstructions were computed employing the four different iterative meth-
ods discussion in the previous section:

1The inverse crime occurs when the same (or very nearly the same) theoretical ingredients are
employed to synthesize as well as to invert data in an inverse problem. Colton and Kress [4] qualified
this act as trivial and therefore to be avoided.
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ART Algebraic Reconstruction Technique,
CGLS Conjugate Gradient for Least Squares,
P1CGLS Precondition CGLS, 1. derivative smoothing,
P2CGLS Precondition CGLS, 2. derivative smoothing.

5.1. Simulations with “Inverse Crime”. A simulated ODF was created by
adding three 3D Gaussian function in order to create a non-spherical ODF, represented
on a 15×15×15 voxel grid, and scaled such that the sum of voxel values equals one (see
Fig. 5.6 below.). Using the 3D-DDA algorithm [2] the ODF was then projected directly
onto a total of 29 u,v-maps, each of dimension 21×21 pixels. By definition these data
are also scaled such that the pixels in each u,v-map sum to one. The data in each
u,v-map was then scaled by a factor S, background counts were added, and finally
Poisson noise was applied in order to mimic real experimental maps. We constructed
data to span a range of five different noise levels, obtained using a combination of
scaling and Poisson noise. We used a signal-to-noise ratio defined by

SNR =
∑

scaled pixel intensitites
st. dev. of Poisson noise

=
S√
S

=
√

S. (5.2)

Based on these sets of simulated data, we reconstructed the ODF using various subsets
(chosen at random) of the simulated u,v-maps, using from 3 to 18 u,v-maps. Each
reconstruction experiment was carried out 10 times with different subsets of the u,v-
maps.

Figure 5.1 shows the error histories for the four iterative reconstruction methods
applied to a problem with SNR = 120 and using 15 u,v-maps. The curves are averages
over 10 simulations. The number of iterations needed to reach the minimum FOM
depends heavily on the reconstruction method, with the extremes being CGLS and
P2CGLS reaching the minimum after 4 and 97 iterations, respectively. Both P1CGLS
and P2CGLS reach the same lower minimum FOM ≈ 0.10, which is evidently smaller
than the minimum FOM ≈ 0.24 reached by ART and CGLS.

We note that P1CGLS and P2CGLS need more iterations to reach their minimum
than CGLS and ART, and also that the change in FOM around the minimum is much
smaller (leading to a flat minimum) for P1CGLS and P2CGLS than for CGLS and
ART. As a consequence, the preconditioned methods are much less sensitive to the
stopping criterion than the other methods.

The new NCP-based stopping criterion from §4.3 was applied to all our recon-
struction algorithms. To study the performance of this stopping criterion, Fig. 5.2
shows the minimum FOM together with the FOM obtained using the stopping cri-
terion (average over 10 simulations) for all four reconstruction methods, and for two
computer experiments with high and low noise in the data. It is clear that, apart
from the differences in the error histories (cf. Fig. 5.1), the optimal solution has a
lower FOM (about 2–3 times lower) for the precondition version of CGLS compared
to both ART and standard CGLS.

Regarding the performance of the stopping criterion, we see that for a large noise
level it is harder to compute a near-optimal solution than for a low noise level. In
the case of a high noise level, the FOM for the actual solutions are up to twice the
minimum value, and only P2CGLS stands out with a very small difference between
the FOMs for the optimal solution and the actual solution. For the low noise level the
stopping criterion is doing quite well for all four reconstruction methods, although
again the difference is lower for P1CGLS and P2CGLS than for ART and CGLS.
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Fig. 5.1. Error histories (FOM as a function of the number of iterations) for the four re-
construction methods, using simulations with “inverse crime.” The results are averaged over 10
experiments, using 15 u,v-maps and SNR = 120.
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Fig. 5.2. Comparison of the optimal FOM (orange) with those computed by the NCP-based
stopping criterion (purple). The results are averaged over 10 experiments, using 15 u,v-maps and
two different noise levels: SNR = 60 (left) and SNR = 1200 (right).

The reason for this behavior is related to the form of the error history. Having
a lower SNR moves the minimum out to higher iteration numbers, as well as making
the minimum very flat. This makes the FOM less sensitive if the stopping criterion
picks a solution further from the minimum. In conclusion the NCP-based stopping
criterion is a quite robust way to determine which iteration we should choose as the
best solution, especially if used on a reconstruction performed with P2CGLS.

5.2. Robustness of the Methods. The robustness of the four iterative recon-
struction methods was investigated by varying two parameters: the noise level (SNR)
in the data, and the number of u,v-maps (or projections) used in the reconstruction.
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Fig. 5.3. The FOM as function of the number of projections used in the reconstructions. Top:
the minimum FOM over all iterations. Bottom: the FOM for the reconstruction obtained with the
NCP-based stopping criterion. Same legend as in Fig. 5.1.

To evaluate the quality of the reconstructed ODFs by the four methods, for each com-
bination of SNR and number of projections we recorded the minimum FOM obtained
for each method, as well as the FOM for the solution obtained by the NCP-based
stopping criterion. The results are summarized in Figs. 5.3 and 5.4.

Consider first the results for the minimum FOM shown in the top part of Fig. 5.3.
As expected, we see that for all methods and independent of the SNR the minimum
FOM is improved by increasing the number of projections used in the reconstruc-
tion. The minimum FOM improves monotonically when the number of projections is
increased, but the gain for every extra projection included is minor after 8–10 projec-
tions, especially for P1CGLS or P2CGLS. Moreover, these preconditioned methods
perform much better than ART and CGLS. For the low SNR, using only 3 projections
in P1CGLS or P2CGLS we obtain a lower minimum FOM than can be obtained by
ART and CGLS with all 18 projections. For the high SNR the minimum FOM using
3 projections in P1CGLS or P2CGLS corresponds to the minimum FOM in ART and
CGLS with about 7 projections.

The corresponding results obtained using the NCP-based stopping criterion are
shown in the bottom part of Fig. 5.3. Clearly, the shape of the FOM-curve for CGLS
renders this method the least robust and therefore the least attractive. For the low
SNR, it is a bit surprising that P1CGLS with the NCP-based stopping criterion leads
to quite unreliable results (although the FOM is still lower than that of ART and
CGLS for all numbers of projections). We conclude that the NCP criterion does not
perform well for P1CGLS on low-level SNR data.

In Fig. 5.4 we have “reversed” the picture from Fig. 5.3, by showing the FOM
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Fig. 5.4. Minimum FOM as function of the SNR level. Top: the minimum FOM over all
iterations. Bottom: the FOM for the reconstruction obtained with the NCP-based stopping criterion.
Same legend as in Fig. 5.1.

as a function of SNR, reconstructed with 5 and 15 projections. Again it is clear
that P1CGLS or P2CGLS provide the same minimum FOM for all SNR levels and
number of projections used in the reconstruction. The NCP-based stopping criterion
performs mush better for P2CGLS than for P1CGLS lower SNR. Below SNR = 300
the best solution is lower for P2CGLS than P1CGLS, and above this SNR the solutions
are practically the same. This feature is independent of the number of projections
used in the reconstruction, if we consider the results presented in Fig. 5.4 (together
with Fig. 5.3). Finally, it is again clear that ART and CGLS are not competitive with
preconditioned CGLS, and it is also evident that P2CGLS is the most robust algorithm
providing the most consistent results over the range of number of projections and SNR
levels.

5.3. Simulations Without “Inverse Crime”. The same ODF used for the
simulations made in §5.1 and §5.2 was used to simulate an X-ray diffraction pattern
of a single aluminum grain with an arbitrary orientation. The diffraction images
were simulated with the software simul farfield [27]. To avoid introducing further
discretization errors in the forward computation, the ODF was here represented on a
very fine grid of 75× 75× 75 voxels. Data was then constructed to simulate the type
of data that is collected experimentally. Images in the ω rotation range of −90◦ to 90◦

with a step size of 0.25◦ were simulated. Each diffraction image in this simulation is
2048×2048 pixels with pixel size of 50×50 µm. For each image a background level of 8
counts was used, and finally Poisson noise was introduced. This leads to a theoretical
SNR of about 1000. In this case the SNR differs from projection to projection, as
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Fig. 5.5. Error histories (FOM as a function of the number of iterations) for the four recon-
struction methods using the data prepared without introducing the “inverse crime.” The data has
SNR ≈ 1000, and 15 u,v-maps were included in the reconstructions.

the intensity for each reflection differs because it is based on the aluminum crystal
structure.

We used the recipe described in §3 to transform the diffraction data into u,v-maps,
and when setting up the coefficient matrix A we used the possibility to send out more
rays from the same u,v-map. We use this feature to compute the intensity in a single
pixel on the u,v-map as the average over nine rays hitting the pixel in a 3-by-3 array;
this numerical integration of the intensity is superior to using a single ray, and using
more than 9 rays only resulted in minor improvements. The reconstruction was again
performed with the four iterative methods but only using 5, 10, or 15 projections.

Figure 5.5 shows the iteration histories for reconstructions using 15 projections.
The results are very similar to those for the simulations presented in §5.1, although
the minimum FOMs are a slightly higher. This difference is probably a consequence
of the added discretization errors. Especially the fairly crude ω-step chosen in the
simulation is most likely the cause for the this difference. Hence the results are closer
to results obtained for the “inverse crime” simulations having a SNR of about 300.
Again we concluded that P2CGLS together with the NCP stopping criterion leads to
good and robust ODF reconstructions.

5.4. A Closer Look at the Reconstructed ODFs. We conclude this section
with a brief study of the visual appearance of the reconstructions in the above example
without “inverse crime.” We have already seen that the minimum FOM for ART and
CGLS is higher than the minimum FOM for the preconditioned methods. The main
reason is that the ART and CGLS reconstructions have significant noise components
near the boundaries of the reconstruction domain, where the reconstructions are more
uncertain than in the center region, because fewer rays penetrate the pixels near the
boundaries. The preconditioners used with P1CGLS and P2CGLS ensure that these
oscillations are damped – without interfering with the quality of the ODF itself. Figure
5.6 illustrates this, by comparing the optimal CGLS and P2CGLS reconstructions with
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Fig. 5.6. Comparison of reconstructions. Left: the original discretized ODF. Middle: the
optimal CGLS reconstruction after 6 iterations, with a large amount of noise near the boundaries.
Right: the optimal P2CGLS reconstruction after 150 iterations, with much less noise.
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Fig. 5.7. “Evolution” of the CGLS and P2CGLS solutions. Each image shows the same layer,
index by (:,:,3), in the original ODF and the reconstructions. The top two lines show CGLS
reconstructions for k = 1, 2, . . . , 10, while the bottom two lines show P2CGLS reconstructions for
k = 20, 40, . . . , 180 together with the original discretized ODF.

the original ODF.

This point is further illustrated in Fig. 5.7, which shows the “slices” indexed by
(:,:,3) in the original ODF and the reconstructions, for a sequence of iterates. Two
observations can be made: There is significantly more noise in the CGLS reconstruc-
tions than in those by produced by P2CGLS, and the boundaries of the ODF are
much more well-defined for the latter method. Hence, the preconditioned methods
provide much more satisfactory reconstructions than ordinary CGLS.
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6. Conclusion. We have demonstrated that preconditioned regularizing itera-
tions are suited for large-scale ODF reconstruction problems. These methods are
fast because they only rely on sparse matrix-vector products, and the preconditioner
ensures that we obtain the needed filtering of propagated noise. Our methods in-
corporate the NCP-based stopping criterion, which uses the normalized cumulative
periodogram to stop the iterations when all available signal has been extracted from
the noisy data, and our simulations show that this stopping criterion works well –
especially for the method that uses the second-derivative preconditioner.

REFERENCES

[1] J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics, John Wiley & Sons,
West Sussex, 2001.

[2] John Amanatides and Andrew Woo, A fast voxel traversal algorithm for ray tracing, in
Eurographics ’87, Amsterdam, North-Holland, 1987, Elsevier Science Publishers, pp. 3–10.
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