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Mobility of arrays of dissociated and superlattice
dislocations in an internally stressed solid

B. L. Karihaloo

Department of Solid Mechanics, The Technical University of Denmark, 2800 Lyngby, Denmark

(Received 12 May 1975)

A study is made of the mobility of planar arrays of dislocations of Burgers vector b that are either
separated into their component partials or are of the superlattice type and are contained in an internally
stressed solid, the stress being generated by a preexisting coplanar obstacle dislocation of Burgers vector
mb. The aim here is to estimate the effect of the internal stress and the fault energy on the separation
between the components of the first discrete dislocation since the latter plays an important part in a wide
range of physical phenomena. All the mobile complete dislocations except the leader are either smeared
into a continuous distribution or are replaced by a superdislocation of appropriate Burgers vector. These
two approaches, which lead to lower and upper bounds for the separation distance, are shown to give fairly

close results for small m.

PACS numbers: 61.70.M

I. INTRODUCTION

In practice, there are many situations in which planar
arrays of dislocations propagate through an internally
stressed solid, the internal stress being generated by
preexisting locked dislocations. In such situations the
internal stress may vary significantly over a distance
comparable with the spacing between leading mobile dis-
locations. Furthermore, recent interest in the yield and
fracture characteristics of alloys has led to the formula-
tion of theoretical models'™® in which complete disloca-
tions in the array are either separated into energetically
favorable partials or are of the superlattice type, a
complete mobile dislocation being associated in each
case with a faulted region characterized by an energy
parameter v, the aim being fo study the part played by
the latter in these physical phenomena.

As with the classical dislocation pileups, several
approaches are theoretically feasible for analyzing such
models. Thus, Li* used the discrete dislocation pileup
model® in studying the effect of alloy additions on the
relation between the yield stress and the grain size of
a polycrystalline material. This approach has the dis-
tinct advantage of preserving the physical reality of the
given situation but requires an appreciable computation-
al effort if the number of free dislocations is very large.
At the other extreme is the approach whereby all the
free dislocations are smeared into a continuous distribu-
tion, an appropriate distribution function describing the
resulting dislocation density. %" This approach, though
mathematically simple, deviates considerably from the
physical situation.®

With the distinct advantages of these two extreme ap-
proaches in mind, Smith® proposed an elegant mixed
discrete-continuous model in which a majority of the
free dislocations in the array are smeared into a con-
tinuous distribution, while those that are intimately con-
cerned with the particular physical phenomenon under
consideration are allowed to remain discrete, thereby
retaining the physical reality of the discrete model and
the mathematical simplicity of the continuous distribu-
tion approach. The mixed model has found many useful
applications. ¢

In the light of the above considerations it was thought
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clearly desirable to extend this approach to the case of
an array of superlattice and dissociated dislocations
propagating through an internally stressed solid. More-
over, an alternative approach has been employed where-
by all but the leading mobile complete dislocation are
replaced by a superdislocation of appropriate Burgers
vector. It is shown that the results of the two methods
are in good agreement for small m, mb being the
Burgers vector of the barrier dislocation.

1l. THEORETICAL ANALYSIS
A. Mixed model

The theoretical model illustrated in Fig. 1, consists
of n positive complete edge dislocations (screws are
briefly considered later) lying in the plane y=0. Each
dislocation has a Burgers vector b, and the associated
extra half-plane of atoms is in the positive y direction.
Each edge dislocation is dissociated into two energetical-
ly favorable partials that have Burgers vectors inclined
at an angle 0 to the vector of the complete dislocation
and that bound a ribbon of stacking fault whose energy
is ¥. The array of dissociated dislocations is moving
towards a locked coplanar complete edge dislocation of
Burgers vector mb under the action of an externally
applied shear stress p, =0. In accordance with the
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FIG. 1. Mixed continuous-discrete extended edge dislocation
model together with a locked edge dislocation.
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mixed model, the first complete mobile dislocation with
its leading and trailing partials situated at x=c +¢,, y
=0, and x=c + ¢, y=0, respectively, is allowed to
remain discrete, while the remaining (n ~ 1) complete
edge dislocations are smeared into a continuous dis-
tribution within the interval x| s¢, y=0, it being im-
plied that the latter possess no faults. The barrier dis-
location of the same orientation is situated at x=c +¢,,
y=0, Then the appropriate function f{x) describing the
distribution density of the smeared dislocations satisfies
the singular integral equation

“ AN dr Lo, 1
x-A2 A 2lx-(c+6)]

m
(c+¢)

-Cc

1
+§D€—(C+€3)]+x— =0 (1)
for |x| <c¢, the Cauchy principal value of the singular
integral being implied to avoid divergence at x=X; A is
equal to ub/27(1 — v), where u is the shear modulus and
v Poisson’s ratio. flx) is bounded at x =z ¢ provided
that!?

°(z+ LN
J:c A 2x-(c+e)] 2[x-(c+e)]

+x_(67:l_61)>(02_d;€2)1/2=0’ 2)
the solution of (1) being
2 1/2
S0 = 27f(c + ez)gc— (:2712’)2[@ +6)-x]
N (c? - )12
27](c + &) = c*177[(c + €;)— x]
mic? — x2)*/2

e +€1)2 _ x] (3)

The existence condition (2) simplifies to

E12[(c+e,) -

o 1

A 2e;(2c + €)1/

A~ _[62(2c ¥ ez)] (4)

m
[el(Zc +e) 2

while the total number of complete mobile dislocations
is obtained from (3) as

n=1+fcﬂx)dx. (5)
-C
Since both the trailing and the leading partials of the
discrete extended edge dislocation are also in
equilibrium,

fc(ﬂx)dx _ 42 +2_y

cte)-x A DA
1

m
_m[l-(l—v)tanze] T (6a)
Ax)dx (_7__2_)/_
J.(c+€2) x A b
1
+§(E2—:g)‘[1 —(1 —V)ta.n 9]— )—0 (Gb)

If the number of mobile dislocations » is large, ¢,
and ¢, will both be small compared with ¢. Furthermore,
if n>> m, ¢, is also small in comparison with ¢ and ex-
pressions (4)—(8) are appreciably simplified. Now, if
the spacing between the partials of the discrete extended
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dislocation is designated by s =¢, ~ €;=k,¢, and the dis-
tance between the locked dislocation and the trailing
partial by s, =€, — €, = k,€,, relations (4) and (5), after
simplification, give

s = (ky A/ BnO)1 +(1+ &y ) /24 2m(1 4+ kp) ™ /2T, (M

while expressions (6) establish a relationship between
k,and &,

1/2 3/2
R ((1+k1)1/2+1+£1>=m(1+k1) pmrR) T
5 3 7, Fak,

(8)

Expression (7) gives the separation s between the
partials forming the discrete complete dislocation under
the action of an applied stress ¢ required to bring the
trailing partial to within a distance s, of the barrier dis-
location, s and s, being related through (8). On the other
hand, experimental data usually pertain to the equilib-
rium separation s, when the dissociated discrete edge
dislocation is alone in an otherwise unstressed solid,

27/bA=(25,)"'[1 - (1 - v)tan’6)], 9)

whereupon expressions (6a) and (9) give

(1 +R)M2 -3k, + Cmk/R)1+ ) 2=, (10)
where
N =s/s,+ (1 -0)(1-35/s,)tan®6. (11)

Furthermore, (7) and (9), together with (10), give the
stress ¢ required to bring the trailing partial to within
a distance s, =k,¢; of the obstacle:

nob

_ [1+ (1 +k)2+ 2m(1 + k)t 2Pk,
B 2[(1 + kl)-172 - %kl + (zmkl/kz )(l + kz)-llz - (1

~v)tan®6]
(12)

In practice, a value of A, (i.e., s/s, for given v and
6) is specified and the system of nonlinear equations
(8) and (10) is solved numerically subject to the condi-
tion %, > k,.'* The stress 0 required to achieve this state
is then calculated from (12). The preceding relations
are equally applicable in the case where both
extended mobile dislocations and the barrier are of the
screw orientation and are subjected to an external shear
stress p,,= 0. It is only necessary to set A equal to ub/
27 instead of pb/27(1 — v) and replace (1 - ») by (1 - )™
in all the relations.

From physical arguments'? it is clear that expression
(12) gives the lower bound for the stress o. It is also
known® that the upper bound for the stress o (or s/s,) is
analogous to that obtained by the superdislocation ap-
proach. That the superdislocation model should give an
upper bound seems to be in agreement with the results
of Hazzledine and Hirsch,'? who have shown that the
most effective obstacle action is confined to small re-
gions near the rear of the pileup, well removed from its
“center of gravity” (at which the superdislocation is as-
sumed to be situated).

B. Superdislocation model

As mentioned above, if all but the leading mobile
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FIG. 2. Upper and lower bounds for the separation distance
s between the partials of the leading extended edge disloca-
tion for various values of m. s is the spacing between the
partials in an unstressed lattice.

complete edge dislocations, instead of being smeared
into a continuous distribution, are replaced by a super -
dislocation of Burgers vector (z —-1)b, then the situation
(when x> m) is equivalent to that of a single complete
dislocation being subject to a stress which maintains the
superdislocation in equilibrium,

o=(m+1)4/d, (13)

where d is the distance between the superdislocation and
the trailing partial of the discrete complete dislocation
and is assumed to be much larger than ¢, ¢,, or ¢,.

Furthermore, since both the trailing and the leading
partials of the discrete complete edge dislocation are
also in equilibrium,

o (n-=-1) 2y 1 2 m

— - [1-(1= - -

A dte  bA 2(62-—63)[1 (1 - ) tan®e] € — € =0,
(14)

o n-1) 2¥ 1 m

_+ — — -— -_— 2 -_—————— e

A dtet+e bA +2(52—53) (1-(-»tan®s] € — 6

The comments made above regarding the screw disloca-
tions also hold good in the present case.

By using (14) and (9) it is easy to show that k=#k,/k,
is given by

BT O, TR S
k= om +(4m2 +m> ! (15)
where

A=(1-5/s)[1-(1-0v)tan?6]. (16)

Also using one of the two expressions (14) and (9) it
follows that

nob  4(sy/ )31 - (1 — ) tan?6]+ mk}
(m+1)y~  1-(1-v)tan®6 -

2. (am

As mentioned above, (17) gives the upper bound for the
stress o.
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FIG. 3. Upper and lower bounds for the separation distance
s between the partials of the leading extended screw disloca-
tion for various values of m. s is the spacing between the
partials in an unstressed lattice,

At this stage it is instructive to specialize the results
of the two approaches to particular cases of pileups of
dissociated dislocations in fee structure.

I1l. SPECIAL CASE OF THE fec STRUCTURE

A. Edge- and screw-type extended dislocations

When both the barrier and the mobile extended dis-
locations have edge (screw) orientation, then in fcc
materials total dislocations of Burgers vector (a/2)
[110] can dissociate into a pair of Shockley partial dis-
locations with Burgers vector (a/6) [121] and (a/6) [21T]
separated by a region of stacking fault on the (111) plane,
the angle 6 being equal to 30°. The equilibrium spacing
s, between the partials in the unstressed lattice for v
=3 1is given by (9):

2v/bA="1/18s,
= 1/480
¥ being the stacking fault energy.

(edges),

(screws), (18)

Furthermore, the parameters A, and A, are given by

N=2(1+Z1s/s,) (edges)

=3(1+s/s,) (screws), (19)
N=%(1-s/s;) (edges)

=3(1-s/s,) (screws).

The lower and upper bounds for ¢ (and by implication
for s/s,) for various values of m given by Egs. (12) and
(17) for dislocations of edge and screw orientations are
shown in Figs. 2 and 3, respectively. Results for m=0
were obtained earlier.! As the bounds are close to each
other for small values of m, the separation distance s

may be accurately estimated for a given applied stress
o,

B. Pileup of superlattice dislocations

If each superlattice dislocation consists of a pair of

B.L. Karihaloo 819

Downloaded 24 Jul 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



fower bound

-—.— upper bound

N
0 25 50 ogb
Y

FIG. 4. Upper and lower bounds for the separation distance
s between the components of the leading superlattice edge
dislocation for various values of m. s, is the spacing between
the components in an unstressed lattice.

perfect edge dislocations, 6 is equal to zero and the
antiphase boundary connecting the two dislocations cor-
responds to the stacking fault with energy ¥ given by
(Eq. (9)]

2v/bA=1/2s,.

Equations (7), (20), and (12) simplify to

(20)

S o1 <1+%L—(1+k1)'”2-2m%L(1+k2)'1/2), (21)

So 2
nob__ [1+ (1 +k)™M 2+ 2m(1+k,) 2 hy
y 20+ B2 - ik, + 2mlk, R, H £,

k, and k, being determined as before by (8) and (10)
with A, =s/s,.

The upper bound for the stress ¢ is given by the
superdislocation approach [Eq. (17)]:

nob/ (m +1)y=4(sy/s) (s + mk) - 2, (23)

k being determined as before by (15) with A, =(1 —s/s,).
[Note that if the superlattice dislocation with Burgers
vector b is composed of a pair of perfect screw dis-
locations, each with a Burgers vector 3b, the preceding
relations hold good with A taking the value ub/27 instead
of ub/2u(1 - v). ]

The upper and lower bounds for ¢ (and by implication
for s/s,) for various values of m are shown in Fig. 4.
As before, the bounds are fairly close to each other for
small values of m allowing the separation s between
the components forming the leading superlattice dis-
location to be determined rather accurately for a given
applied stress o in terms of the equilibrium spacing s,
between the components in an unstressed lattice. Here
it may be instructive to consider the special case when
there is no long-range order, i.e., ¥=0. In this case,
k, and k, may be calculated from (8) and (10) with A,
=0. The distance s,=¢, — €,= (&, — &, )¢, to within which
the leading component of the discrete superlattice dis-
location approaches the locked dislocation under a given

(22)
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applied stress o may then be readily evaluated from an
expression similar to (7):

Sp=[lky = k)DA/8nOY[1 + (14 £)Y/2 + 2m(1 + k)M /22, (24)

The situation here is identical to the propagation of
edge dislocations, each of Burgers vector b, in an in-
ternally stressed solid. This model has been analyzed
exactly (all the dislocations allowed to remain discrete)
by Chou'® for n=8, the distance to which the leader in
the mobile group approaches the fixed dislocation being
given by Ag, /20, where ¢, , is the first zero of the
generalized Laguerre polynomial L2™'. With n=8, ¢, ,
has the values 0.41, 1,03, and 1.79 for m=1, 2, 3,
whereas the present technique gives s, (in units of 4/20)
as 0.35, 0.92, and 1.60, respectively. The agreement
is fairly good even for m=3.

IV. DISCUSSION

The primary objective of this paper has been to extend
the use of the mixed discrete-continuous (compromise)
dislocation model to situations where the complete dis-
locations in a planar array are either split into compo-
nents bounding a certain ribbon of fault characterized
by an energy parameter or are of the superlattice type.
The first complete dislocation was allowed to remain
discrete and to possess an associated fault, while the
remaining mobile dislocations in the array were
smeared into a continuous distribution as if their fault
energy were infinite, the aim being to study the in-
fluence of an externally applied shear stress and an in-
ternal stress (generated by a preexisting locked disloca-
tion) on the separation between the partials forming the
first complete dislocation. Additionally, a very simple
approach has also been employed in which all but the
leading complete dislocation in the mobile array, in-
stead of being smeared intc a continuous distribution,
are replaced by a superdislocation with an appropriate
Burgers vector. The results of these two approaches
were specialized to situations arising in the fcc struc-
ture and to the pileup of superlattice dislocations. These
two approaches give the lower and upper bounds for the
separation distance, it being demonstrated that the
bounds are close to each other for small values of m,
where m is the ratio of the Burgers vector of the locked
dislocation to that of the complete mobile dislocation,
thus allowing an accurate estimate to be made of the
separation distance between the partials of the discrete
mobile dislocation for a given applied shear stress,

The specific form of the barrier considered here,
namely a preexisting dislocation coplanar with and
parallel to the mobile dislocations, clearly plays a pro-
minent role in physical phenomena like cross-slip. Thus,
cross-slip is more difficult in this case than if the bar-
rier were the leading partial of the first complete dis-
location because the repulsive force due to the barrier
acts not only on the leading but also on the trailing
partial. The model is equally suited for investigating
crack nucleation and cross-slip phenomena in the vicin-
ity of other barriers like point defects, grain bounda-
ries, etc. Moreover, the strength of the barrier could
be varied so as to simulate residual stress and pre-
straining effects. In this connection it is worth noting
that stress-induced changes in the separation of the
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partial dislocations contribute to the energy storing
capacity of Cu-Al alloys, and the greater the Al content
the greater this capacity.!® As the stacking fault energy
of Cu-Al alloys decreases with increasing content of Al,
the results of the present investigation could be adopted
to study the change in the energy-storing capacity of
such alloys since this capacity evidently plays an im-
portant part in their observed yield behavior.

Here, it may be mentioned that there are situations
where the dislocations at the tail of a dislocations array
could have a direct role to play (for example, in work
hardening) through the back stresses created during
pileup. This would require an examination of the dis-
crete complete dislocations at the tail of a pileup. This
has been omitted in the present investigation mainly
because experimental evidence!® pertaining to Cu-Al
with the fcc structure suggests otherwise, namely that
the back stresses created during pileup are not large
enough to create a backward motion of disloecations
during unloading.

In addition, the lower bound procedure used here can
easily be extended to cover the case of unlike disloca-
tions!” whose mutual annihilation is a likely cause of the
low work-hardening rate in stage III. However, the
superdislocation approach can obviously not be applied.

Finally, it may be mentioned that the results obtained
by the lower bound procedure find a direct application®®
in estimating the stress needed by the mobile array of
dissociated (superlattice) dislocations to bypass a non-
coplanar obstacle. Such estimates are useful in discuss-

821 J. Appl. Phys., Vol. 47, No. 3, March 1976

ing the large strain flow behavior of fcc metals and
alloys. 8
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