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monday, june 20, 2011

09:00 Registration

10:30 Opening: D. Stolten, Juelich Research Center, Germany

10:45 Address from the IEA: CCS: Global Potential, Status & Challenges: J. Lipponen, 
 International Energy Agency, France

11:00 Industry Perspectives on CCS: H. Altmann, T. Porsche, Vattenfall Europe Generation AG, 
Germany

11:15 Motivation for and Opportunities of CCS: K. Lackner, Columbia University, USA

11:30 Advanced Power Plant Technology: H. Spliethoff, TU München, Germany

11:55 Carbon Capture Options for Coal Power Plants: D. Stolten, Juelich Research Center, Germany

12:20 Physics and Chemistry of Absorption: P. Feron, CSIRo, Australia

12:45 Lunch

M1: Chemical Absorption Materials
Session Chair: K. Thomsen, TU Denmark, Denmark

14:00 Review Presentation on Chemical Absorption Materials
K. Thomsen, TU Denmark, Denmark

14:30 New Absorbents for an Efficient CO2-Separation – EffiCO2 –
A. Schraven, Evonik Degussa GmbH, Germany; K. Görner, University Duisburg-Essen,  
Germany; S. Rinker, J. Rolker, P. Schwab, Evonik Degussa GmbH, Germany;  
P. Wasserscheid, Universität Erlangen-Nürnberg, Germany

14

14:55 A Rational Approach to Amine Mixture Formulation for CO2 Capture Applications
G. Puxty, CSIRo, Australia

16

15:20 Carbon Capture with Low Environmental Impact: Siemens PostCap Technology
B. Fischer, D. Andrés-Kuettel, R. Joh, M. Kinzl, R. Schneider, H. Schramm,
Siemens AG, Germany

18

15:45 Development of Thermomorphic Biphasic Solvents for Low-Cost CO2 Absorption Process
J. Zhang, D.W. Agar, TU Dortmund, Germany

21

16:10 Coffee Break

Continuation of M1: Chemical Absorption Materials
Session Chair: K. Thomsen, TU Denmark, Denmark

16:40 The CO2-Post-Combustion Capture Development Program at Niederaußem 
P. Moser, S. Schmidt, RWE Power AG, Germany; G. Sieder, H. Garcia, BASF SE, Germany;  
T. Stoffregen, F. Rösler, Linde-KCA-Dresden GmbH, Germany

25

17:05 Mass Transfer Coefficients – Experimental Evaluation of CO2 Capture with Structure Packing 
R.H. Chavez, Instituto Nacional de Investigaciones Nucleares, México; J. J. Guadarrama, 
Instituto Tecnologico de Toluca, México

31

17:30 Pilot Plant Studies of New Solvents for Post-Combustion CO2 Capture 
I. Tönnies, H. P. Mangalapally, H. Hasse, TU Kaiserslautern, Germany

35

17:55
    –
18:20

Freezing Point Depression of Aqueous Solutions of DEEA, MAPA and DEEA-MAPA with 
and without CO2 Loading
M. W. Arshad, TU Denmark

18:30 Get-together, Poster Exhibition (Fingerfood & Beer)

20:00 End of First Conference Day

4

lecture programme



Page

monday, june 20, 2011

09:00 Registration

10:30 Opening: D. Stolten, Juelich Research Center, Germany

10:45 Address from the IEA: CCS: Global Potential, Status & Challenges: J. Lipponen, 
 International Energy Agency, France

11:00 Industry Perspectives on CCS: H. Altmann, T. Porsche, Vattenfall Europe Generation AG, 
Germany

11:15 Motivation for and Opportunities of CCS: K. Lackner, Columbia University, USA

11:30 Advanced Power Plant Technology: H. Spliethoff, TU München, Germany

11:55 Carbon Capture Options for Coal Power Plants: D. Stolten, Juelich Research Center, Germany

12:20 Physics and Chemistry of Absorption: P. Feron, CSIRo, Australia

12:45 Lunch

P7: Chemical Looping in Power Plants
Session Chair: B. Epple, TU Darmstadt, Germany

14:00 Review Presentation on Chemical Looping in Power Plants
B. Epple, TU Darmstadt, Germany

14:30 Carbon Stripping – A Critical Process Step in the Chemical Looping Combustion of Solid 
Fuels 
M. Kramp, A. Thon, E.U. Hartge, S. Heinrich, J. Werther, TU Hamburg-Harburg, Germany

36

14:55 Thermodynamic Analysis of a Base Case Coal-fired Chemical Looping Combustion Power 
Plant 
V. Kempkes, A. Kather, TU Hamburg-Harburg, Germany

40

15:20 High Temperature CO2 Capture with CaO in a 200 kWth Dual Fluidized Bed Pilot Facility 
H. Dieter, C. Hawthorne, M. Zieba, G. Scheffknecht, University of Stuttgart, Germany

41

15:45 CFD-model of a Fluidized Bed Chemical Looping System: Design of a Heat and Mass Flow 
Control
H. Kruggel-Emden; S. Wirtz; V. Scherer, Ruhr-Universität Bochum, Germany

45

16:10 Coffee Break
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09:00 Physics of Membrane Separation: M. Wessling, RWTH Aachen, Germany

09:30 Change rooms

P4: Post-Combustion Capture with Membranes
Session Chair: T. Melin, RWTH Aachen, Germany

09:40 Review Presentation on Post-Combustion Capture with Membranes
T. Melin, RWTH Aachen, Germany

10:10 Coffee Break

10.35 Post- Combustion Processes Employing Polymeric Membranes 
T. Brinkmann, T. Wolff, J.R. Pauls, Helmholtz-Zentrum Geesthacht, Germany
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11:00 Cascaded Membrane Processes for Post-Combustion CO2 Capture
L. Zhao, E. Riensche, M. Weber, D. Stolten, Juelich Research Center, Germany

11:25 Carbon Molecular Sieve Membranes for Carbon Capture
B.T. Low, T.-S. Chung, National University of Singapore, Singapore
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11:50 Lunch and Poster Exhibition

P2: Post-Combustion Capture with Chemical Absorption 
Session Chair: H. Fahlenkamp, TU Dortmund, Germany

13:50 Review Presentation on Post-Combustion Capture with Chemical Absorption
H. Fahlenkamp, TU Dortmund, Germany

14:15 Modeling and Scale-up Study of Post-Combustion CO2 Absorption Using New Absorption 
Solvents 
C. Kale, A. Górak, TU Dortmund, Germany; I. Tönnies, H. Hasse, TU Kaiserslautern, Germany

87

14:40 Variants of Process Heat Extraction for Post-Combustion CO2-Capture Plants in Exergetic 
Comparison 
N. Pieper, M. Wechsung, Siemens AG, Germany
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15:05 Nonlinear Model Predictive Control for Operation of a Post-Combustion Absorption Unit 
J. Åkesson, Modelon AB, Sweden, Lund University, Sweden; G. Lavedan, K. Prölß,  
H. Tummescheit, S. Velut Modelon AB, Sweden
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Continuation of P2: Post-Combustion Capture with Chemical Absorption
Session Chair: H. Fahlenkamp, TU Dortmund, Germany

16:00 Absorption and Desorption Modelling United 
P. Fosbøl, K. Thomsen, TU Denmark, Denmark
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16:25 Development and Validation of a Process Simulator for Chilled Ammonia Process to 
Capture CO2 
R. Hiwale, J. Naumovitz, R. Agarwal, R. Kotdawala, F. Kozak, Alstom Power Inc., USA
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16:50 Commercial Scale Test Validation of Modern High Performance Structured and Random 
Packings for CO2-Capture Ranking 
M. Schultes, Raschig GmbH, Germany
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17:15 Step Change Adsorbents and Processes for CO2 Capture “STEPCAP”
T.D. Drage, L. Stevens, C.E. Snape, University of Nottingham;  A.I. Cooper, R. Dawson,  
J. Jones, University of Liverpool; J. Wood, J. Wang, University of Birmingham; Z. Guo,  
C. Cazorla Silva, W. Travers, University College London, United Kingdom

104

17:40 End of Conference Day

19:30 Conference Dinner with Reception and Poster Award
Dinner Speech: J. Heithoff, RWE Power AG, Germany 7
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New absorbents for an efficient CO2 separation -EffiCO2
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Energy Services GmbH, Essen; Stefanie Rinker, Evonik Degussa GmbH, Marl; Jörn 

Rolker, Evonik Degussa GmbH, Hanau; Klaus Görner, Universität Duisburg-Essen, 

Essen; Peter Wasserscheid, Friedrich-Alexander-Universität Erlangen-Nürnberg; 

Erlangen 

In 2009 the worldwide anthropogenic CO2 emissions were more than 30 billion tons 

and the European Union was solely responsible for about 4 billion tons of CO2 
1). The 

energy sector is the biggest industrial CO2 emitter with roughly 1.5 billion tons of CO2 

within the European Union in 20072). Studies forecast that significant proportions of 

energy supply will be based on fossil fuels within the next decades3)

Separation of CO

. 

2 with subsequent usage or storage has a potential for the reduction 

of CO2 emissions to the atmosphere in the future and is therefore a promising 

technology4). An efficient process design as well as new and innovative absorbent 

agents are necessary for reducing the energy losses in e.g. a power plant. These 

challenges are under examination in the BMBF funded project EffiCO2. Consortium 

manager of EffiCO2 is the Science-to-Business Center Eco² as part of the strategic 

research and development department Creavis of Evonik Degussa GmbH. Academic 

partners in EffiCO2 are the Friedrich-Alexander-University of Erlangen-Nürnberg and 

the University of Duisburg-Essen. The targets of the project EffiCO2 are the 

development and the investigation of new and more efficient absorbents for CO2 

separation compared to the state of the art technology (mono ethanol amine, MEA). 

Within the project new absorbents for CO2 separation are designed and tailor-made. 

Within initial screening experiments a structure-activity relationship was derived and 

new absorbents were designed on the basis of these results. 
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1) Energiedaten –Nationale und Internationale Entwicklung, Bundesministerium 

für Wirtschaft und Technologie, January 2011 

 lift by solvent weight was approximately doubled. 

For investigation of the new developed absorption agents with real process 

conditions a lab scale plant was erected in bypass of a coal fired power plant. Within 

that test plant thermodynamic and process parameters will be investigated and 

optimized.  

2) CO2

3) International Energy Outlook 2010, U.S. Energy Information Administration, 

2010 

 Emission from Fuel Combustion, International Energy Agency, 2010 

4) Utilisation and Storage of CO2 , Position paper, DECHEMA,VCI, Frankfurt 

2009.  
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A rational approach to amine mixture formulation for CO2 capture 
applications 

Graeme Puxty
 

, CSIRO Energy Technology, PO Box 330, Newcastle NSW 2300, Australia 

The desirable properties for an aqueous amine based CO2 capture solvent are rapid CO2 mass 
transfer, large CO2

 

 absorption capacity and small energy requirement for regeneration. No 
single amine can deliver good performance in all of these areas as from a chemical perspective 
these are competing objectives. As a consequence modern amine based solvents are mixtures 
of amines, each having good performance in at least one of these areas. It is hoped that overall 
performance of the resulting mixture is an improvement over any of its constituent amines. 
There is often a synergism between the amines that results in performance better than would be 
predicted if the individual amine properties were simply “added” together. 

The question answered in this work is, given the properties of a range of amines how do you 
rationally identify which amine mixtures will yield the best performance? A number of 
parameters define an amine’s performance in each category: 
 
 Mass transfer –amine-CO2 reaction rate; CO2 and amine diffusion; and CO2 equilibrium 
partial pressure (pCO2
 Absorption capacity – CO

) at absorber conditions (driving force) 
2

 Regeneration energy – enthalpy of absorption; CO

 equilibrium partial pressure (and loading) at absorber 
conditions 

2 equilibrium partial pressure (and 
loading) at absorber conditions; and CO2

 

 equilibrium partial pressure and loading at desorber 
conditions 

Aqueous amine solutions generally cover a small range of viscosities and thus diffusion 
coefficients. So if diffusion is neglected amines can be categorised by their performance for 
each parameter and structural class as follows: 
 
Table 1 Categorisation of amines according to performance for each parameter. Shading 
indicates desirable performance. 

Parameter Primary and Secondary 
Amines 

Tertiary and Sterically 
Hindered Amines 

Reaction Rate Fast Slow 
Absorption Capacity Small Large 

pCO2 in Absorber Small Large 
pCO2 Small  in Desorber Large 

Absorption Enthalpy Large Small 
 
Table 1 demonstrates why a mixture can yield improved overall performance relative to any 
single amine. However, this is not always the case and depends upon the priority given to each 
parameter. Given performance information for a range of individual amines, how is it possible to 
determine which amines will yield an optimal mixture and desirable trade-off between the 
parameters? Answering this question is complex and requires taking the details of amine-CO2

 

 
chemistry into account. 
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In this presentation it will be detailed how meaningful quantitative values can be derived from 
the amine-CO2

Table 1
 chemical mechanism to describe the performance of individual amines and 

amine mixtures for the parameters listed in . The values are summarised below: 
 
Table 2 The quantitative values used to describe each parameter. 

Parameter Value 
Reaction Rate k – second-order amine-CO2 reaction rate constant  

Absorption Capacity 
AmCOO H

AmCOO B
CO2 Am

c c
K K

c c
=

, 
HCO3 H

HCO3 B
CO2 H2O

c c
K K

c c
=

, 
BH

B
B H

cK
c c

=
 

 - overall equilibrium constants of carbamate and bicarbonate 
formation and base protonation

 pCO2 in Absorber 

pCO2 AmCOO HCO3
abs AmCOO HCO3 CO2

CO2,tot CO2,tot

( ) ( )c c
H H H H

c c
∆ = ∆ + ∆ + ∆

 in Desorber 
 

Absorption Enthalpy 

 
This then provides a pathway for the rational design of amine mixtures based on the properties 
of individual amines. This approach will be described and discussed with examples for a range 
of amine mixtures. The primary two conclusions that result from this rational design process are: 
 

1) When formulating an amine mixture to maximise rate and capacity it is crucial that the 
basicity and/or concentration of any tertiary or sterically hindered amine is such that it is 
the primary proton acceptor in the system. This maximises the CO2 loading to which 
primary or secondary amines remain unprotonated and reactive towards CO2

2) As has been previously indicated
. 

i, focusing on simply reducing the enthalpy of reaction 
does not necessarily result in a reduction of regeneration energy requirement. This 
energy requirement consists of contributions from the enthalpy, solvent heat capacity, 
CO2 loading and the CO2 partial pressure at desorption conditions. Of particular note is 
that decreasing the enthalpy also decreases pCO2

 

 in the desorber and this effect can 
offset any benefit. 

i Oexmann, J.; Kather, A., International Journal of Greenhouse Gas Control 2010, 4, 36-43. 
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Carbon Capture with low environmental impact: Siemens PostCap 
Technology 

Björn Fischer; Diego Andrés-Kuettel; Dr. Ralph Joh, Dr. Markus Kinzl, Dr. Rüdiger 

Schneider, Dr. Henning Schramm  

Siemens AG, Energy Sector, Industriepark Hoechst, Frankfurt am Main, Germany 

1. Summary 

Siemens has developed a proprietary post-combustion carbon capture process 

(PostCapTM

Amino acid salts have numerous benefits as CO

) for the separation of carbon dioxide from power plant flue gases. This 

absorption-desorption process is based upon an amino acid salt solvent, and is ready 

for large-scale demonstration. 

2-absorption solvents, which are 

mainly outlined in this report. These positive properties have been validated by more 

than 4,000 operation hours in CO2

2. Use of AAS for CO2 removal 

-capture pilot plant retrofitted to a coal-fired power 

plant, as well as by a vast laboratory research program. 

Amino acid salts (short: AAS) are the salt form of natural amino acids. They are 

therefore formed by neutralizing an amino acid compound with an alkali metal 

hydroxide (see Figure 1). Thus the alkalinity of the amine group is increased, i.e. the 

amino acid is “activated” and reacts selectively with acid gases such as CO2. Due to 

their ionic nature, both AAS and their absorption products are conveniently 

nonvolatile. 

M+

R N
R

O

O –

RR
N

R
O H

OR
MOH

H2O
+

 
Figure 1: From amino acids to amino acid salts 

Amino acids derive from ammonia, from which one, two or three hydrogen atoms are 

substituted by alkyl and / or aryl groups. At least one of the substituents comprises a 

acidic group. All aqueous solutions of amines are of alkaline nature. Hence, they 

react with acid gases through their free electron pair. Amino acids are normally found 

in detergents, fertilizers and cosmetics. 
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As shown by Eide-Haugmo et al. (2009) 1

To sum up, the main advantages from AAS are: 

, AAS have a high biodegradability. The 

AAS ecotoxicity is an order of magnitude lower than any of the other alkanolamines, 

piperazine or ammonia, which are also often discussed as solvents for CO2 capture. 

 Fast CO2 absorption kinetics. 

 Low energy demand (demonstrated by current Siemens investigations). 

 Zero vapor pressure of the active substance, which yields neither solvent loss 

due to evaporation, nor an extra wash unit at the top of the absorber. 

 High biodegradability and zero toxicity. 

 High stability in degrading environments. 

 Mainly nonvolatile degradation products, which remain at all times in the liquid 

phase. 

2.7 GJ / ton CO2

Environmental 
Friendly Low Energy 

Demand

Solvent slip nearly zero, 
no additional washing 

unit required

 
Figure 2: Siemens CO2 capture process (PostCap) based on amino acid salts 

 

3. Pilot Plan Operating Experiences and Conclusions 

The Siemens PostCapTM CO2-capture process experiences in general have validated 

the numerous benefits amino acid salt based solvents potentially possess for the 

separation of CO2 from power plant flue gases. Due to the ionic nature of AAS, the 

PostCapTM

1 Eide-Haugmo, I. et al.: Invironmental impact of amines. Energy Procedia 1, 2009, p. 1297–1304 

 process does not have either solvent or reaction product emissions during 
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the operation of the capture plant. This significantly reduces the OpEx in comparison 

to standard ethanolamine processes. 

Laboratory research has also determined that AAS is resistant to oxidative and 

thermal degradation, as well as to degradation by means of carbamate 

polymerization. The formation of heat-stable salts due to the impurities in the flue gas 

current is not a handicap for the PostCapTM

The more than 4,000 operation hours of the PostCap

 process. These HSS can be regenerated 

in an already demonstrated Siemens proprietary reclaiming process. 
TM

Now that the Siemens PostCap

 pilot plant experiences have 

demonstrated not only the aforementioned benefits of AAS, but also the appropriate 

use of AAS solvent, when considering CO2-capture performance. A low energy 

demand of 2.7 GJ/ton CO2 is achieved. For fossil-fired power plants, this means that 

the power plant efficiency decreases by only < 6% points. 
TM process has been thoroughly validated in pilot 

operation, it is ready for large-scale implementation. 
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Development of Thermomorphic Biphasic Solvents for  
Low-Cost CO2 Absorption Process 

 
Jiafei Zhang, Yu Qiao, David W. Agar 

Technische Universität Dortmund, D-44227 Dortmund, Germany 
 
1. Introduction 
Post-combustion capture (PCC) with chemical absorbents is probably one of the most feasible 
and dominated technologies for controlling greenhouse gas emission from fossil fuels 
combustion. Monoethanolamine (MEA) is the most common commercial absorbent widely 
used for fuel gas scrubbing. However, the unfavourable economics, primarily due to the energy 
required for solvent regeneration, is a major shortcoming for the alkanolamine-based CO2 
capture process [1,2]. Development of new solvents is hence crucial for improving the 
absorption efficiency and reducing energy consumption in the carbon capture process. Some 
proprietary solvents, which can allegedly cut the regeneration energy by 20-34% compared to 
MEA, have been reported, but the desorption still needs to be carried out at 120 °C [3-5].  
Thermomorphic biphasic solvent (TBS), comprising lipophilic amine as activated component, 
has been proposed to ameliorate such problem [6]. Potential advantages of using TBS 
absorbent for PCC, especially in low regeneration temperature and high cyclic CO2 loading 
capacity, have already been proven [7,8]. Due to the limited aqueous solubility, a 
thermomorphic (i.e. thermally induced) miscibility gap can be induced during regeneration. 
Extensive CO2 desorption is thus achieved at temperatures only slightly in excess of the critical 
phase transition temperatures, typically 60-80 °C, enabling the utilisation of low grade or waste 
heat for solvent regeneration. Concerning the advantages provided by liquid-liquid phase 
separation (LLPS), a new CO2 capture technology - DMXTM process - has also been developed 
by IFP Energies nouvelles to reduce the operating cost by demixing and phase splitting in 
decanter before thermal regeneration with steam stripping [9].  
 
2. Lipophilic amine and phase transition 
Lipophilic amine is a hybrid molecule with hydrophilic and hydrophobic functional groups, for 
example, Hexylamine (I), Dipropylamine (II) or N,N-Dimethylcyclohexylamine (III) . Due to the 
restricted miscibility, the characteristics of lower critical solution temperatures (LCST) 
behaviour were observed in mixtures of lipophilic amine and water [10]. The aqueous solubility 
of amine decreases with increasing temperature and the solution thus exhibits LLPS upon 
heating. At concentrations of 20-40 wt%, the LCST of aqueous fresh amine solutions is 
between 5 and 30 °C (see Figure 1). It can be increased by not only the enhancement of 
concentration but also the solubilisation effect of CO2 (see Figure 2), since the formatted 
aqueous soluble carbamate, carbonate and bicarbonate play a role of solubiliser for dissolving 
all the nonprotonated amines into water, which significantly provides more technical feasibility 
for regulating the phase transition behaviour in absorption process.  
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Figure 1. LCST of lipophilic amine solutions 
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Figure 2. Influence of loaded CO2 on LCST 
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The novel lipophilic amine solvents were mainly investigated as a means to circumvent the 
exergy demands through thermomorphic LLPS during regeneration. The regenerated 
aqueous lipophilic amine solutions exhibit biphasic behaviour at concentrations of 2-4 M and 
temperatures of 60-80 °C. The heterogeneous solution becomes homogeneous upon cooling 
after achieving the LCST. This process therefore permits to exploit the low value heat from 
network energy recovery system for desorption purpose.  
 
3. Solvent selection 
Absorption of CO2 into lipophilic amine solvents was initially developed by observing the 
miscibility of organic and aqueous phases and temperature dependent phase transition 
behaviour. According to the theoretical study and experimental measure on the physical and 
chemical properties, in total over fifty available lipophilic amines were preliminarily selected 
for test tube experiments. The overall screening among those amines is based on the 
comprehensive performance in absorption and regeneration, primarily including CO2 
capacity, reaction rate, phase separation temperature and regenerability. The selected 
amines have been classified into two categories: absorption activators, such as DPA (II) and 
A1 (II), with rapid reaction kinetics, and regeneration promoters, for example, EPD (III) and 
DMCA (III), exhibiting outstanding regenerabilities. 
 
3.1 Physical properties 
In order to find adequate amines as alternative absorbents, the structural influence on the 
parameters of boiling point, basicity, solubility and viscosity, has been studied for prediction 
and selection. The investigation has been conducted with different aliphatic amines by 
varying hydrophobic substituents, such as primary, secondary and tertiary amines, linear and 
branched chains, cycloalkyl and cyclic structures. Most of the primary amines are 
unfavourable, due to either lower boiling point or high viscosity, e.g., gel formation was found 
when mixing Heptylamine or Octylamine in water. Secondary amines are preferred for 
attaining rapid absorption rate because of the higher basicity (pKaH) compared to other 
amines [12]. Tertiary amines are also recommended for enhancing CO2 desorption owing to 
their good regenerability and chemical stability. Solubility is a two-edged sword in the 
absorption and desorption performance. When a lipophilic amine has high aqueous solubility, 
fast absorption rate can be obtained, but its regenerability will be depressed.  
 
      Primary amine (I) 2.06.10 aHpK  (1) 

      Secondary amine (II) 2.01.01.11  npKaH  (2) 

      Tertiary amine (III) 2.02.05.10  npK aH  (3) 
where pKaH means value of the conjugated acid and derived from molecular simulation. As a reference, pKaH 
(NH3) = 9.3.  n is the number of methyl groups bound to the basic nitrogen atom and the max. value is 3. 

 
3.2 Absorption 
The absorption rate is significantly influenced by aqueous solubility, surface tension and 
basicity of amine. According to the reaction mechanism, CF is the main reaction in primary and 
secondary amines and takes place very fast [13]. Rapid reaction rate has been obtained in 
amine solutions such as HA, A1, DPA, etc. (see Figure 3). Therefore, the highly reactive 
primary or secondary amines are typically considered as activators for absorption; while the 
moderate reactive tertiary amines can be used as regeneration promoter due to their 
remarkable regenerability enhanced by LLPS. In primary and secondary amine solutions, the 
loading capacity can be enhanced by CR after approaching 0.5 mol-CO2/mol-sol for 
corresponding amine solvent when more and more carbamates get accumulated.  
 

      Carbamate formation (CF)   RNHCOORNHRNHCO 322 2  (4) 

      Bicarbonate formation (BF) 
  33222 HCORNHOHRNHCO  (5) 

      Carbamate reversion (CR) 
  3322 22 HCORNHOHRNHCOOCO  (6) 
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Figure 3. CO2 absorption in 3 M lipophilic amine 

solutions  
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Figure 4. CO2 desorbed from 3 M loaded 

lipophilic amine solutions  
 
3.3 Regeneration  
High temperature (>120 °C) required for solvent regeneration is an evident weakness in the 
alkanolamine-based CO2 capture process, since it induces solvent degradation and energy 
consumption with steam stripping. However, lipophilic amine can solve this problem 
dramatically with thermomorphic LLPS, which is the most favourable phenomenon in the 
regeneration process. Table 1 demonstrates LLPS was found in the most of tertiary amines 
(III), some of secondary amines (II) and few primary amines (I) in the screening experiment. 
According to the comparison of cyclic CO2 capacity, DMCA and EPD have performed the most 
remarkably and become the most considerable solvents as regeneration promoter for further 
study. The regenerability of DMOA, MPD and DBA was also outstanding, unfortunately, 
extremely slow absorption rate, high volatility loss, or precipitation, respectively, was observed 
in such aqueous amine solutions. 
 

Table 1. Phase separation temperature and net loading capacity (25-80 °C) of lipophilic amine solutions 

Amine (3M) Type LLPS temperature Net loading capacity 
  °C g/L 

Hexylamine (HA) I 90 29.3 
A1 II 90 42.2 
Dipropylamine  (DPA) II 90 54.3 
Dibutylamine (DBA) II 50 61.5 
Di-iso-butylamine II 50 56.3 
Di-iso-propyl ethylamine III 50 ~ 10 
N,N-Dimethyl butylamine III 80 ~ 40  
N-Methylpiperidine  (MPD) III 80 57.6 
N-Ethylpiperidine    (EPD) III 80 73.6 
N,N-Dimethyl cylcohexylamine (DMCA) III 70 76.3 
N,N-Dimethyl octylamine III 50 62.9 

 
Figure 4 illustrates that the solvent regenerability gets enhanced after the LLPS takes place 
and very deep regeneration is obtained in tertiary amine solutions such as DMCA. The major 
advantage of using lipophilic amines with regeneration involving LLPS to a multiphase system 
is that the desorption can be carried out at a modest temperature, i.e. 80 °C or even lower, 
which is much less than the temperature employed in industrial process using alkanolamines. 
Together with the high cyclic loading capacity of such amines, the TBS absorbent has offered 
more degrees of freedom for cost reduction with respect to the quality of energy requirement.  
 
4. Solvent formulation and TBS process 
Since none of single lipophilic amine is able to meet all the selection criteria in both reactivity 
and regenerability. Study on optimisation of absorbent formulations has thus been carried out 
for demonstrating the technical viability of such novel solvent and enhancing the energy 
efficiency of PCC process. The absorption was initially performed in a 100 mL bubble column 
with varying operating parameters. After amelioration, it has been scaled up and conducted 
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in a 1 m height parked column. The new formulated absorbent, blending of activator and 
promoter, for instance A1+DMCA, has performed rapid absorption rate, high net CO2 loading 
capacity (~3.2 mol/kg), low regeneration temperature (~80 °C) and good regenerability 
(>95%), which are superior to the benchmark 30wt% MEA solution (see Figure 5). The 
experimental study has also focused on the influences of CO2 loading on the phase 
separation behaviour and temperature on solvent regenerability. By optimising the solvent 
formulations and processing conditions, the regenerated TBS solution has successfully 
achieved homogeneous by cooling to the LCST around 40 °C, and the loaded solution has 
converted to two phases upon heating at 80 °C, which enables the use of low value heat at 
approx. 90 °C in regeneration. For assessing the technical feasibility in further evaluation 
work, we have developed the TBS absorbents with LLPS and process without steam 
stripping for desorption (see Figure 6), it cuts the energy consumption by more than 35% in 
comparison to the conventional alkanolamine solvents.  
 

 A1+DMCA 3+1M, 30 oC

 A1+DMCA 3+1M, 80 oC

 MEA 30wt%, 40 oC
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 DMX-1, 40 oC [9]
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Figure 5. Vapour-Liquid Equilibrium of TBS 

 
Figure 6. Flow sheeting diagram of TBS process 

 
5. Conclusions 
The selected biphasic solvent system exhibiting thermomorphic LLPS by integrating with 
extractive behaviour potentially enables an extensive regenerability at 80 °C, thus permits a 
more flexible and expedient thermal integration of the CO2 capture process. The performance 
of such solvents observed is superior to that of conventional alkanolamines, especially in high 
net CO2 loading capacity and low energy consumption.  
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Introduction 
In spite of the ongoing massive expansion of renewable energy, CO2 mitigation at 

fossil-fired power stations will be a key lever for climate protection since power 

production from fossil-based fuels will remain the backbone of global power 

production in the next decades. Up to 30% of the specific CO2 emissions from lignite-

based electricity generation can be avoided by building new power stations equipped 

with state-of-the-art technology (net efficiency >43%) to replace the oldest units still 

in operation (net efficiency approx. 32%). An example of this CO2 mitigation 

approach is the construction of the BoA1 2&3 power station in Neurath. After 

commissioning the two 1,100 MWel units will replace 16 units with 150 MWel each by 

end-2012. A further reduction in CO2 emissions can be achieved by employing 

innovative techniques for increasing efficiency, e.g. the WTA lignite pre-drying 

process or the increase of steam parameters to 700°C. To enhance this mitigation 

effect, carbon capture and storage (CCS) technologies must be applied.   

The combination of post-combustion capture (PCC) with these newly developed 

technologies for increasing power plant efficiency allows more than 90% of the CO2 

to be captured at a power plant efficiency of app. 40%. Despite the use of CCS, this 

efficiency is higher than today's average power plant efficiency. Thus, combining 

highly efficient CCS and power generation technology both helps spare resources 

and offers a cost-efficient method of climate protection. In the 450 scenario of the 

IEA, which describes a strategy for limiting global warming to 2°C, CCS is of equal 

importance to the reduction of CO2 emissions in the EU as renewables and CCS can 

                                            
1Lignite-fired power plant with optimized plant technology 
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be used at significantly lower costs than renewables. In addition, working group three 

of the IPCC regards CCS as a key technology for climate protection. 

Development of a full-scale PCC plant 
The CO2 scrubbing technology using amines has been a well-known technology for 

producing CO2 in the chemical industry and in the soft drink industry for decades, but 

it has not been employed in fossil-fired power plants to reduce their CO2 emissions. 

To develop a highly efficient PCC technology with a CO2 capture rate of 90% for a 

full-scale 1,100 MWel power plant, a holistic approach is important. Thus, it is 

necessary to simultaneously assess the capture process, the engineering work, the 

equipment and the integration of the capture plant into the power plant process with 

regard to efficiency, profitability, operating behaviour and process and solvent 

performance. The interdisciplinary cooperation of chemical company BASF, 

engineering company Linde and utility RWE is perfectly in line with this holistic 

approach.  

In the first stage of the development programme, more than 400 substances were 

screened on the basis of available data. Comprehensive lab tests were conducted on 

180 of the most appropriate substances and their blends before trialling the best 15 

candidates in a "mini plant". The criteria used for ranking the solvents and pre-

selecting the most promising ones included: a low energy demand for solvent 

regeneration, high stability against oxygen and thermal degradation, low emissions, 

low solvent loss, high cyclic capacity, sufficiently fast reaction kinetics and industrial 

availability of the solvent [1]. 

In the second stage of the development programme, the two best solvent candidates 

were tested for six months each in the pilot plant at Niederaußem under the real 

conditions of the power plant. The testing programme at the pilot plant was mainly 

determined by the necessity to validate the basic capture process data for the 

preliminary design of the full-scale PCC plant. The boundary conditions regarding 

CO2 transport and storage also played an important role for this design and the 

testing programme (Figure 1). A multitude of different optimization approaches to 

decrease the cost and energy demand of the PCC process and its integration into the 

power plant process were evaluated as part of the testing programme at the pilot 

plant, e.g.: interstage cooling, cost-efficient flue gas conditioning, waste heat 
recovery by integrating PCC into the power plant process, interaction between low 
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pressure steam for regeneration, pressure of the desorber column and compressor 

performance, cost/temperature difference of the solvent/solvent heat exchanger and 

cost-efficient materials.  

 

Figure 1: Development over the pilot plant to a full scale PCC plant 

 

The last step of technology development before commercial application is the 

demonstration of the technology, which comprises all topics that cannot be 

investigated on a pilot plant scale, such as: site fabrication of the columns and 

resulting tolerances, logistics for the internal packings and uniformity of gas and 

solvent distribution over the column cross-section for such large columns. Assuming 

that a detailed understanding of the process, solvent and material behaviour and the 

integration concept can be attained during the trials and plant engineering only a 

single intermediate scale-up step from pilot to commercial scale will be necessary. 

Pilot CO2-scrubbing plant in Niederaußem 
The location of the pilot CO2-scrubbing plant, which forms part of the so-called Coal 

Innovation Centre, at the 1,000 MWel lignite-fired BoA 1 unit has many advantages. 

On the one hand, BoA 1, being a base-load unit, offers the preconditions required to 

conduct reproducible and transferable test series at a high level of availability. On the 

other hand, various prototype and pilot plants that can also be run in combination are 
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being operated at the BoA 1 plant. For instance, a WTA prototype is used to replace 

up to 30% of the furnace thermal rating of the BoA 1 plant by combusting dry lignite 

and to utilize the waste heat produced by lignite drying in the power plant process, 

increasing the efficiency of the unit by > 1 percentage point [2]. In addition, a high-

performance FGD plant known as "REAplus" is operated with the aim of reducing the 

SO2 contents in the flue gas from the current maximum of 200 mg/m³N to 10 mg/m³N. 

This is an important prerequisite for the future use of CO2 scrubbing since SO2 leads 

to increased degradation of the CO2 scrubbing solvent. The combined operation of 

these prototype and pilot plants at the BoA1 unit permits the CO2 scrubbing 

technology to be tested under the conditions of future applications. Some of the CO2 

from the pilot plant is currently stored in vessels for research projects on CO2 usage 

and made available to Bayer or RWTH Aachen University among others [3]. 

With an absorber diameter of 600 mm and a plant height of 40 m, the pilot plant 

provides ideal conditions for a scale-up of the process as the carbon capture rate and 

dwell times will be comparable with those of a large-scale plant. More than 250 

measuring points, an online gas analysis system, sampling points for solvent, 

condensate and gas samples in the whole process, an extensive analysis 

programme for emissions and trace elements and 14 testing points for innovative 

materials in the CO2 scrubbing process provide good prerequisites for obtaining 

robust data for the design studies and the design of the large-scale and 

demonstration plants from the pilot-plant testing programme. The first test phase, 

whose aim was to select the optimum CO2 scrubbing solvent for use in power plants, 

was completed in mid-March 2011. We started with 30% wt monoethanolamine 

(MEA) solution as a benchmark, which was used to test the operating behaviour of 

the plant and the comparability of the test results with results obtained from 

simulations. This was followed by two new CO2 scrubbing solvents called Gustav 200 

and Ludwig 540. Each of these three test phases was subdivided into parameter 

studies and long-term tests. During the parameter studies, the ideal operating 

conditions were determined and a sensitivity analysis was performed to establish the 

dependence of the process behaviour on changes in the various parameters. During 

the long-term tests, solvent performance (solvent loss, degradation, emissions and 

stability) and the operating behaviour of the plant under different boundary conditions 

(load change of the power plant, combined operation of the CO2 scrubbing plant with 

the REAplus and/or WTA plant, etc.) were investigated (Figure 2). 
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Figure 2: Testing programme at the CO2-scrubbing pilot plant at Niederaußem 

 

During the three test sections in phase one of the testing programme (MEA, 

Gustav 200 and Ludwig 540), some 2,680 tons of CO2 were captured with the CO2 

scrubbing plant. With 9,710 hours in operation, the pilot plant achieved an availability 

level of 97%. The evaluation of all results obtained with the two new optimised 

solvents as regards materials, emissions, degradation and solvent loss took several 

months. The already available results are very promising.  

With only 0.3 kgMEA/kgCO2, the solvent consumption of MEA was significantly lower 

than data given in the literature (e.g. 1.4 – 2.1 kgMEA/kgCO2 for the Esbjerg pilot plant) 

[4]. The specific energy demand for the regeneration of the new scrubbing solvents 

Gustav 200 and Ludwig 540 is < 2.8 MJ/tCO2 and, hence, 20% better than the best 

case of an optimized MEA process. Apart from this, the solvent flow rate is lower and 

the possible temperature range for regeneration is wider than for MEA.  

One of the two new scrubbing solvents was chosen for the second phase of the 

development programme. In this phase, the pilot plant will be modified by installing 

high-performance column internals in the absorber, an improved emission control 

system at the top of the absorber and additional online gas analysis equipment. In 

two long-term tests – each lasting approx. one year, the first with flue gas feeding 

from the conventional FGD plant, the second with flue gas feeding from the high-

performance FGD plant – the long-term behaviour will be tested in particular with 

regard to degradation, reclaiming and emission behaviour.  
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Conclusion 
The results of the testing programme show that the goal of an efficiency loss of less 

than 10 percentage points for a power plant with CCS is achievable by the innovative 

capture technology that is tested in Niederaußem. The pilot plant results significantly 

reduce the design uncertainties for a full-scale PCC plant. A demonstration plant 

could be implemented on the basis of the available results. 

Nevertheless, the implementation of a demonstration project requires the prior 

establishment of a regulatory framework and the gaining of public acceptance of 

CCS in Germany. 
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Mass Transfer Coefficients - Experimental Evaluation of CO2 Capture 
with Structure Packing 
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Abstract 

, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera 

México-Toluca S/N, La Marquesa, Ocoyoacac, 52750, México, MEXICO; Javier de J. 

Guadarrama,Instituto Tecnológico de Toluca, Av Instituto Tecnológico de Toluca S/N, 

Metepc, 52140, México, MEXICO 

The objective of this work is to study CO2 absorption by experimental absorption column, 

using metal structured packing material named ININ18. This material was developed by 

Mexican National Institute of Nuclear Research (ININ by its acronym in Spanish). The 

system studied was Monoethanolamine (MEA) at 30 weight percentage in aqueous 

solution countercurrent with CO2 flue gas. The capture process was carried out in an 

absorption column with dimensions of 4.0 meters of height and 0.3 meters of diameter. 

Mass transfer coefficient and height of mass transfer were evaluated. The results showed 

volumetric mass transfer coefficient of 3.76s-1

Introduction 

 and height of mass transfer equivalent unit 

of 0.317m, and absorption efficiency of 90%. 

The Kyoto protocol is an essential step to mitigate the emission of pollutants and the CCS 

technologies are the instruments of CO2 capture and sequestration (Thitakamol et al., 

2007). The difference between categories for capturing CO2 from power plants is 

depended on fuel treatment, its oxidation, CO2 concentration, and gas pressure (Rubin 

and Rao, 2002). The general method involves contacting a gas stream to an aqueous 

amine solution which reacts with the CO2 by acid-base neutralization reaction to form a 

soluble carbonate salt. This reaction is reversible, allowing the CO2

Methodology 

 gas to be liberated by 

heating in a separate stripping column (Leites et al., 2003). 

Carbon dioxide was absorbed into 30 weight% MEA solution in a packed absorption 

column with a diameter of 0.3m and packing height of 3.5m (Figure 1 and 2). The column 

was packed with ININ18 structured packing (Table 1), with gas and liquid distributors 

located at the bottom and top of the column respectively (Chavez and Guadarrama, 2010). 

The inlet solution (CO2  lean) was taken from a container and pumped to the top of the 

column with the geared solution delivery pump. The exit (CO2  rich) solution was recycled 

to the tank. The inlet pump was fitted with flow meters enabling accurate flow rate 

measurements as well as variable pump speed controllers to modulate solution flow to the 

desired rate. The solution level within the column was maintained at the desired level by 
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controlling the inlet solution flow rate. 

The carbon dioxide and air inlet gases 

were supplied from regulated 

compressed gas tanks via respective 

volumetric flow controllers. This gas was 

then passed through a mixing manifold 

that contains a stationary mixing element 

to promote optimal gas mixing prior to its 

Table 1. Characteristic of ININ18 
structure packing 

 

Type stainless steel 
Wire gauge 18 
Porosity (ε) 0.9633 

Geometric area a 418 mp 
2/m3 

Diameter 0.252 m 
Height 0.19 m 

Corrugated angle (θ ) 45° 

feed to the absorption column.Downstream of the manifold was a mixed gas flow meter 

which was used to verify the flow of gas through the pure gas flow meters. 

   

Figure 1. Real experimental column Figure 2. Process study system 

Inlet and outlet gas samples were determined by gas chromatography technique, using a 

thermal conductivity detector. Gas chromatograph equipment is Varian 3760 with two 

detectors: flame ionization and thermal conductivity and three chromatographic columns 

used on the type of combustion gases: CH4, C6H14, CO2 and CO. The chromatograph is 

provided by HP-5MS column of 30 meters long with a diameter of 0.25µm, samples of 

3cm3

On the bases of conventional definitions of mass transfer units, the height of a gas phase 

transfer unit and the height of a liquid phase transfer unit respectively are: 

 were injected manually and the temperature was analysis carried at 35°C and 5 

minutes of routine. The results given were a series of chromatograms shown in time 

retention of each compound as well as the concentration were determined by comparing 

with standard area from standard known composition. 
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The two-film model is based on the number of mass transfer global units, NTU , of both 

gas and liquid resistance, and it involves the efficiency in terms of the height of mass 

transfer global unit HETP . In this work, gas is high soluble in the liquid and Henry 

constant is small. Liquid side resistance is negligible. The relative magnitude of the 

individual resistance evidently depends on gas solubility, as represented by the Henry’s 

law constant. The gas side resistance is controlling mass transfer when a relatively soluble 

gas is absorbed (Leites et al., 2003). 

  

M
yy
yyNTU
)( *

21

−
−

=
            (3)                      NTUHETPZ *=

Results 

                       (4) 

Figure 3 and Table 2 present the results obtained from chromatographic analysis, during 

60 minutes, countercurrent flows, in closed system. From absorption evaluation there were 

possible to determine mass transfer parameters and absorption efficiency of 90%. The gas 

composition was chosen because it best represents the flue gas composition found in 

power stations; the target process for this method of CO2

Figure 4 and 5 show pressure drop and liquid holdup with respect gas flow at different 

liquid flows. Height of mass transfer unit in gas and liquid phases, at different liquid flows 

are shown in Figures 6 and 7. 

 capture. These results were 

considered reasonable due to the complex nature of the electrolyte solution and numerous 

possible reactions involved.  

Conclusions 
This study is feasible to scale up columns with bigger gas treatment flows and different 

dimension columns. The results of CO2 capture system were found to be relatively 

accurate and reproducible. This increase in kGa indicates the speed increase in which the 

solute is transferred into the liquid phase, the highest value of kG

 

a in the region is loaded 

with a range of 80 to 90% compared to the flooding system. 

 

Table 2. Mass transfer results 

OG
HTU  m 0.317 

OL
HTU  m 0.0273 

eG
ak  

s 3.76 -1 

eL
ak  

s 0.2978 -1 
 

Figure 3. Measurement of CO2 absorption 
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Figure 4. Pressure drop versus gas velocity of 

ININ18 packing 
Figure 5. Liquid holdup versus F-factor of ININ18 

packing 
 

  
Figure 6. Height of mass transfer unit in gas phase Figure 7. Height of mass transfer unit in liquid phase 
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Nomenclature                                                       
ea  Effective interfacial area 

[m2/m3 GU
] , 

L
U  

Superficial gas and liquid velocity 
through a packed bed [m/s] 

k  Mass transfer coefficient [m/s] Z  Total height of packing [m] 
eka  Volumetric mass transfer 

coefficient [s-1
ρ

] 
 Density [kg/m3] 
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Reactive absorption is the most promising process for post combustion carbon 

capture (PCC). The process with the standard solvent monoethanolamine (MEA), 

however, suffers from a high regeneration energy which leads to a significant drop in 

the power plant efficiency. Significant progress can be achieved by using new 

tailored solvents. After a screening, promising solvents must be investigated in pilot 

scale plants with the aim to reliably determine their potential before using them in 

large scale test facilities. The present work reports on such studies. Both the 

methodology of the studies as well as results obtained for a number of new solvents 

are discussed. 

 

The studies were carried out in the pilot plant at TU Kaiserslautern. Results for three 

new solvents from the EU-project CESAR, which all belong to the class of aqueous 

amine solutions, are presented in detail. They were studied in the same systematic 

manner: In the first set of experiments, the solvent flow rate is varied at constant CO2 

removal rate. From the results, the optimum solvent to gas flow ratio (L/G) and the 

corresponding minimum regeneration energy are obtained. In the second set of 

experiments, the gas flow is varied at constant L/G and constant CO2 removal rate. 

This allows the identification of the influence of kinetic limitations. It is also, together 

with the fact that all results are normalized to those for MEA, the key to obtaining 

generic results which are largely independent of the specific plant design. The pilot 

plant results are compared with those from a short-cut method for solvent screening 

which is shown to yield the correct ranking of the solvents [1]. The most promising 

solvent, CESAR C1, results in a reduction of the minimum regeneration energy by 

20% and a reduction of the solvent flow rate by 50% compared to MEA. 

 

 

[1] R. Notz, I. Tönnies, H. P. Mangalapally, S. Hoch, H. Hasse. A short-cut method for assessing absorbents for 

post-combustion carbon dioxide capture, International Journal of Greenhouse Gas Control, 2011 (in press). 

35



Carbon Stripping - A Critical Process Step in the Chemical Looping 
Combustion of Solid Fuels 

Marvin Kramp

Institute of Solids Process Engineering and Particle Technology,  

, Andreas Thon, Ernst-Ulrich Hartge, Stefan Heinrich, Joachim Werther 

Hamburg University of Technology, Denickestrasse 15, 21073 Hamburg, Germany 

 

Introduction 
Chemical Looping Combustion (CLC) of solid fuels can be realized in two interconnected 
fluidized bed reactors, where the solid fuel is directly introduced into the fuel reactor. Such a 
process has an increased complexity compared to CLC with gaseous fuels. Solid fuels can 
usually only react with the solid oxygen carriers (OC) if the char is gasified before. This 
process is slow compared to the reaction of oxygen carrier particles with the gasification 
products H2 and CO (1). It is favorable if the char has a long residence time in the fuel 
reactor, while the large flow of OC particles needs only a short residence time. In order to 
limit the size of the fuel reactor the mixed flow that leaves the fuel reactor is introduced into a 
carbon stripper where a carbon rich fraction is separated from the OC and is then recycled 
into the fuel reactor. The most effective separation of two flows is the classification according 
to settling velocity, hence coal and OC have to differ significantly in particle size. In the 
current work a fine ground coal and coarse OC particles are used. The carbon slip from the 
fuel reactor to the air reactor has to be kept at minimum in order to prevent CO2 emissions 
from the air reactor. In the present work process simulation is applied to investigate how 
carbon slip and consequential CO2

Theory 

 capture rate are influenced by the carbon stripper. 
Furthermore the importance of fuel choice is demonstrated. 

Fuel Reactor Model 
The fuel reactor is a bubbling fluidized bed. It is described in a first approach as an ideally 
mixed reactor. Different residence times of gas and solids in the fluidized bed reactor are 
taken into account. For the solid fuel instantaneous devolatilization is assumed. The 
composition of the volatiles is calculated according to a slightly modified model of Jensen (2) 
that neglects the formation of NOx

 

 and the sulfur content of the fuel. During gasification the 
size reduction of char particles is considered to be a process of external surface reaction. 
The new particle size distribution of the char is calculated according to Levenspiel (3). 

In CLC it is self-evident to recycle apart of the off-gas (CO2 and H2O) from the fuel reactor in 
order to gasify the char. For simulation purposes a set of kinetic equations suggested by 
Matsui et al. (4,5) was chosen. In steam gasification Matsui et al. (4) introduced the factor β 
that describes the ratio of CO2 production to CO production. For this investigation the factor 
was set to 1.2 (4). Since the OC reaction with the gasification products is fast compared to 
the gasification itself, the concentrations of CO and H2

Carbon Stripper Model 
 are assumed to be zero. 

To characterize a classification process usually the grade efficiency 

 ( ) mass of solids with settling velocity  in the coarse fraction
=

mass of solids with settling velocity  in the feed
t ,i

t ,i
t ,i

u
G u

u
 (1) 

is used. In the current work the Rogers expression (6), has been used to calculate the grade 
efficiency of the carbon stripper. The sharpness of the separation is defined by: 
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where ut,25 and ut,75 are the terminal velocities that belong to the values of the grade 
efficiency curve at G(ut,i

Simulation Environment 

) = 0.25 and 0.75, respectively. An ideal separation would have a 
value of χ = 1 (usual technical sharpness: 0.3 < χ < 0.6, technically sharp: 0.6 < χ < 0.8, 
analysis sharp: 0.8 < χ < 0.9 according to 7). Reactions are not considered in the carbon 
stripper. 

The simulations have been carried out with SolidSim (8), a steady-state flowsheet simulation 
system for solids processes. 

Results and Discussion 

Test Case 

The flowsheet of the test case is shown 
in Figure 1. The carbon stripper 
(classifier) is located downstream of the 
fuel reactor. The fine ground solid fuel is 
introduced into the fuel reactor, whereas 
the OC particles are larger in size. The 
stream of coarse particles leaving the 
carbon stripper is sent to the air reactor 
whereas the fine stream is reintroduced 
into the fuel reactor. The OC refill stream 
in Figure 1 is necessary to achieve the 
desired target circulation flow rate of OC 
during the iterative solution procedure. It 
will approach zero at steady-state.  
 
Two different fuels are used in the 
simulations: The Columbian hard coal “El 
Cerrejon” and the Turkish lignite “Soma”. 
Fuel data is given in Table 1 (9,10). For 
both types of coal the feed has been 
adjusted to 100 MWth at complete 
combustion. The initial particle size 
distributions of the coals are like those a 
state of the art mill for pulverized coal 
boilers produces (11). The impregnated 
oxygen carrier particles are composed of 
10 wt.-% CuO and inert Al2O3 (Puralox 
NWa155 from Sasol, Germany). The 
particle size of the oxygen carrier is 
defined by the inert support, therefore a 
measurement via laser diffraction was 
carried out on the Puralox. For 900°C 
and a mixture of CO2 and H2

Figure 2
O the 

settling velocity distributions are shown in  (apparent density of OC is 1800 kg/m³ in 
oxidized state). Due to their different apparent densities both coals have a slightly different 
settling velocity distribution even through they have the same particle size distribution. 
Assuming 50 % oxygen carrier conversion, circulation flows of 706 kg/s and 779 kg/s OC 
have to be maintained for El-Cerrejon hard coal and Soma lignite, respectively. The fuel 
reactor is operated at 900 °C and the porosity in the reactor is calculated as 0.55. The 

Figure 1: Simulated Flowsheet 

Table 1: Fuel data 
El Cerrejon Soma

app. density of char [kg/m³] 1500 750
LHV [MJ/kg] (raw) 28.00        16.08

water [wt.-%] (raw) 15.39        17.10
ash [wt.-%] (wf) 10.30        19.80

volatiles [wt.-%] (waf) 41.90        64.10
C [wt.-%] (waf) 81.00        62.47
H [wt.-%] (waf) 6.01          5.11
O [wt.-%] (waf) 10.70        28.68
N [wt.-%] (waf) 1.50          1.12
S [wt.-%] (waf) 0.79          2.62
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average solids residence time in the fuel reactor based on the OC circulation flow and the 
fuel feed is 240 s. 
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Figure 2:Settling velocity distributions for Soma char (dots), El Cerrejon char (triangles) and 
oxygen carrier (empty squares) in the range of overlap 

Simulation Results 
The simulation results are compared on 
basis of the CO2

= 2

2

CO  flow from fuel reactor
CCR

total CO  flow based on fuel input

 capture rate CCR: 

(3) 

The CCR is lower than 100 %, if char is 
transported with the flow of coarse OC 
particles from the carbon stripper to the 
air reactor, since the char would combust 
and form CO2

Figure 2

 there. Char slip cannot be 
reduced to zero because the separation 
of OC and char particles in the carbon 
stripper is not ideally sharp and there is a 
certain overlap of the settling velocity 
distributions of char and OC ( ). 
 
Figure 3 shows the result of the variation 
of the cut velocity for a separation 
sharpness of χ = 0.5. It can be observed 
that the char flow towards the air reactor 
decreases with increasing cut velocity, while the solid flow to the sifter increases. The char 
flow to the air reactor has a minimum at approximately 2 m/s cut velocity. The increased flow 
that is returned to the reactor dilutes the char and thereby causes the minimum in the char 
flow to the air reactor. Since Soma lignite has a higher volatiles content compared to the El 
Cerrejon coal, the char flow is in general lower. Furthermore the lower char density of Soma 
lignite facilitates the separation in the carbon stripper. The solids flow to the classifier is 
increasing considerably when the cut velocity is increased. For example at 3 m/s the flow 
entering the sifter is approximately 3.3 times the flow of OC particles circulating between the 
reactors. Such high circulation rates would necessitate a rather large carbon stripper.  
 
In Figure 4 and Figure 5 the CCRs for El Cerrejon hard coal and Soma lignite are shown in 
dependency of the cut velocity. Without carbon stripper, only CCRs as low as 0.41 and 0.56 
are calculated for El Cerrejon and Soma coal, respectively. For χ = 0.5 the maximum CCR of 
90.6 % (92.9 % for Soma) is reached at roughly 2 m/s cut velocity. The influence of the 

Figure 3: Char flow towards air reactor and 
corresponding total flow of solids entering the 
carbon stripper in dependence of cut velocity 
(χ=0.5). Empty dots denote El Cerrejon and filled 
dots denote Soma coal. 
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separation sharpness is demonstrated by a variation between χ = 0.5 (usual technical 
sharpness) and χ = 0.8 (technically sharp separation). If a separation sharpness as high as 
χ = 0.8 can be realized, the CCR can reach values as high as 98.3 % (98.8 % for Soma). 
 
Even if a separation sharpness higher than 0.5 cannot be achieved, there is still potential for 
improvements in the CCR. Especially by influencing parameters like: particle size 
distributions of the coal and OC particles, temperature in the fuel reactor, fuel reactor size / 
residence time, steam enrichment of the gasification gases and the reactivity of the char. 

Conclusions 
The influence of the carbon stripper on the CO2 capture rate of a CLC process for solid fuels 
was investigated. It was demonstrated that the carbon stripping step is of great importance if 
high CO2 capture rates are to be achieved. Without carbon stripping the CO2
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Figure 4: CCR in dependency of the cut 
velocity for El Cerrejon coal and separation 
sharpnesses of χ = 0.5 and χ = 0.8 

 

Figure 5: CCR in dependency of the cut 
velocity for Soma coal and separation 
sharpnesses of χ = 0.5 and χ = 0.8 
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Introduction 
The Chemical Looping Combustion (CLC) process is commonly realized as a coupled fluidised bed 
system which consists of two reactors, the air reactor and the fuel reactor. Both reactors are 
connected by a circulating stream of solid oxygen carrier [1, 2]. The solid oxygen carrier reacts 
particularly well with gaseous fuel components. For this reason, solid fuel components have to be 
gasified with CO2 and H2O to generate CO and H2, which can then be oxidised by the solid oxygen 
carrier in the fuel reactor. To secure a certain amount of CO2 and H2O the fuel reactor is fluidised 
by recirculated flue gas or – to enhance gasification kinetics – by pure steam or steam-enriched 
flue gas. Eight different cases are modelled, to investigate the impact of different fluidisation 
requirements, steam addition and air ingress on the overall process behaviour of a base case CLC 
system. 
 
Modelling approach 
CLC Process 

The general setup of the CLC 
process has been modelled in 
Aspen Plus® and is shown in 
Figure 1. The fuel reactor is 
hard-coal fired and has a 
thermal input of 1000 MW. 
The air and the fuel reactor 
are modelled with an 
equilibrium approach. Air 
fluidises the air reactor and 
oxidises the reduced oxygen 
carrier. The oxygen-depleted 
air is separated from the 
oxygen carrier particles with a 
cyclone unit downstream of 
the air reactor. The oxygen 

carrier is transported to the fuel reactor via a loop seal, while the oxygen-depleted hot air is cooled 
down to 353 °C in a heat recovery system. The remaining heat is used to preheat fresh air within a 
regenerative air heater and an additional heat recovery system. Dust is removed by an 
electrostatic precipitator (ESP) downstream the regenerative air heater. In the fuel reactor the solid 
fuel is pyrolysed and subsequently gasified by H2O and CO2. The gasification products reduce 
subsequently the solid oxygen carrier. Almost all nitrogen and sulphur content of the fuel is 
converted to N2 and SO2. A carbon stripper is used to increase the solid fuel conversion in the fuel 
reactor by separating char particles and the solid oxygen carrier at the exit of the fuel reactor. The 
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Figure 1: Simplified scheme of the base case process of 
Chemical Looping Combustion 
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1. Introduction  
The Calcium Looping (CaL) process is a promising post-combustion technology for the 
capture of CO2 from coal-fired power plant flue gases [1]. The Calcium Looping process is 
based on the reversible reaction including calcium carbonate, calcium oxide, and carbon 
dioxide (CaO(s)+CO2(g)↔CaCO3(s)+Heat). Carbonation occurs at temperatures between 600-
700°C, and CO2 is released by the calcium carbonate particles around 850-950°C at a 
sufficiently high rate depending on the bulk CO2 partial pressure. Utilizing this reversible 

reaction, the Calcium Looping process is 
conducted in a Dual Fluidized Bed (DFB) 
system, consisting of a carbonator where CO2 
from flue gas is captured, and a regenerator 
where CO2 is released. Coal is combusted 
with oxygen (mixed with re-circulated flue gas) 
in the Regenerator to supply the heat for 
calcination, producing a CO2-rich flue gas (>95 
vol.-%) for compression and storage. The 
process employs widely available natural 
limestone and offers high CO2 capture rates 
with electric efficiency penalties comparably 
lower than competing capture technologies 
such as amine scrubbing. Furthermore, the 
heat released in the carbonator due to CO2 
capture, as well as the carbonator and 
regenerator convective pass, can be used 
efficiently in an additional steam power cycle, 
thereby increasing the overall electric output 
[2]. This paper shows the first ever pilot plant 
results of the Calcium Looping process from 
the newly commissioned 200 kWth facility at 
IFK.  

2. Experimental  
The technical feasibility of the CaL process was demonstrated on a 10 kWth (flue gas 
equivalent) electrically heated dual fluidized bed lab-scale facility at IFK achieving CO2 
capture efficiencies above 90% [3]. Therefore, a joint industrial-university research and 
development project was initiated to design and operate the Calcium Looping pilot plant to be 
used to scale up the process to a pilot size of 20 MWth [4]. The IFK pilot plant [4] was 
designed to: a) process real coal combustion flue gas as well as synthetic flue gas, b) 
investigate the thermal and chemical dynamic behavior of the plant for scale-up, and c) 
investigate long-term sorbent behavior, especially with respect to regeneration in an oxyfuel 
atmosphere in the presence of coal ash and sulfur. The carbonator, and associated 
equipment, is sized to process a combustion flue gas equivalent in flow rate to a 200 kWth 
coal-fired boiler. The 200 kWth pilot facility consists of three interconnected fluidized bed 
reactors which, as shown in figure 2, can be operated in two different Calcium Looping DFB 
configurations. In the (1) first configuration (reactor (C) – CFB carbonator, reactor (B) – CFB 
regenerator), the reactors are connected via two crosses in which the material flow rates are 
controlled by two cone valves, as described by Hawthorne et al. [4]. The (2) second 
configuration (reactor (A) – turbulent FB carbonator, reactor (B) – CFB regenerator) controls 
solid circulation via one L-valve and the two fluidized beds are hydraulically linked by a loop 

 

FCO2 
F0 
FCa 

ECO2 
Xcarb 

FCa/FCO2 
F0/FCO2 

CO2 molar flow rate  
CaCO3 molar make-up rate  
Calcium molar looping rate  
CO2 Capture efficiency 
Carbonation conversion 
Calcium Looping ratio 
Make-up ratio 

Figure 1: The Calcium Looping (CaL) process.  
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seal at the bottom of reactor (A). Since a CFB carbonator is superior to a turbulent FB in 
terms of optimizing CO2 capture costs (good CO2 capture at higher flue gas throughputs), 
configuration (2) could in principle be outfitted with a CFB carbonator without altering DFB 
functionality. Therefore, both configurations are potentially feasible options for 
commercialization of the Calcium Looping process. This paper details the operation and 
experimental results of configuration (2) on a pilot scale. 
The turbulent FB carbonator circulates sorbent internally and has a diameter of 33 cm and a 
height of 6 m. The entrained sorbent removes CO2 from the flue gas and is separated from 
the exiting flue gas by the primary cyclone, returning to the bed by means of the upper loop 
seal. The internal circulation of sorbent achieves a uniform temperature throughout the entire 
vertical height of the carbonator ensuring controlled experimental conditions. The carbonator 

temperature was varied between 620 and 
700 °C. The partially carbonated sorbent 
leaves the carbonator and enters the 
regenerator (21 cm diameter, 10 m high) 
by way of the lower loop seal where it is 
fully calcined to CaO. The rate of solid 
discharge from the L-valve determines the 
circulation rate of the system and the 
lower loop seal fluidization rate regulates 
the distribution of total solid inventory 
between the two reactors. In this 
experimental campaign, the required 
energy for heating up and calcining the 
incoming solids is provided by the 
combustion of wood pellets under oxygen-
enriched conditions. Wood pellets were 
chosen as the fuel since it was desired to 
test the process without the effects of coal 
ash and sulfur on sorbent activity. 
Upcoming publications will focus on the 
effect of the coal matrix on the Calcium 
Looping process.  

The pilot plant is equipped with numerous pressure transducers and thermocouples and all 
inlet and outlet gas flows are continuously recorded. The inlet and outlet concentrations of the 
carbonator are continuously recorded by online analyzers, as is the outlet concentration of the 
regenerator. The internal reactor specific solids circulation rate and the sorbent looping rate 
(circulation rate between reactors) are measured by means of a solids measurement unit. 
Additionally the solid flow can be measured continuously by means of a special solid flow 
sensor adapted to high temperatures. In all, over 250 process measurements are recorded 
every second by the process control system.  
The limestone used in these experiments is a local limestone from the Swabian Alb with a 
particle size of 300-600 µm. A synthetic flue gas (air & CO2) was fed to the carbonator with a 
CO2 concentration of either 10 or 15 vol.-%. These experiments collected data from 
numerous steady-states in which the carbonator temperature and gas concentrations 
remained constant for a fixed period of time. After the steady-state measurement was 
completed, solid samples of the carbonator and regenerator bed were taken in order to 
measure their carbonated fraction and their rate of CO2 uptake. The sorbent looping rate was 
also measured with the solids measurement unit. Furthermore, to quantify the rate of material 
loss due to attrition, the amount of dust collected in the secondary cyclone and filters was 
measured every hour.  

3. Results 
The facility operated stably over several days and the first experimental calcium looping 
campaign with the new 200 kWth Calcium Looping facility was concluded successfully. The 
pertinent carbonator and regenerator process parameters such as bed inventory and sorbent  

 
Figure 2: The 200 kWth Pilot Plant DFB Configurations. 
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looping rates required for Calcium Looping were achieved. As suggested by previously 
conducted scaled cold modeling work, the DFB system proved to be a robust and smooth 
system. Furthermore, it was capable of changing from one steady-state to another (e.g. 
carbonation temperature, circulation rate) with relative ease and usually within 15 minutes. 
The carbonator temperature profile was very uniform and stable over time.  
The oxygen-fired regenerator combusting wood pellets with an oxygen-air mixture as high as 
50 vol.-% at exit temperatures between 875-930 °C, proved to be a very stable and efficient 
sorbent calciner, already logged over 250 hours of operation. The temperatures and sorbent 
residence time in the regenerator are sufficient to achieve full sorbent calcination as 
confirmed by subsequent thermo gravimetric analysis of the bed samples taken during 
experimentation. The effect of sorbent attrition was found to be minimal with regard to 
process operation. The mean particle diameter dp50 decreased during one week of operation 
by 100-150 µm. Preliminary results based on the dust collected over many days of operation 
from the filtration system indicates sorbent loss (as a fraction of total solids inventory) due to 
attrition occurs at a rate of 5 wt.-%/h. This result demonstrates that attrition of the limestone 
sorbent is not a major obstacle to process commercialization. Furthermore, there remains 
preventative measures to reduce this measured rate of attrition.  

A 20 minute steady state at 650 °C with an 
CO2 inlet concentration of 10 vol.-% is shown 
in Figure 3. The CO2 outlet concentration is in 
the range of 2.1 vol.-% which results in a CO2 
capture efficiency above 80 %, close to 
equilibrium. Small changes in carbonator 
temperature of less than 10 °C are attributed 
to fluctuations in the solid circulation rate and 
are typical of DFB systems. Improvements 
have since been undertaken to minimize 
future fluctuations and their effect on 
temperature.  
The effects of a change in CO2-inlet 
concentration from 10 to 15 % at constant gas 
flow and sorbent looping rate is plotted in 
Figure 4. Despite an increase in the inlet CO2 
concentration (and molar CO2 input), the 
carbonator temperature and outlet CO2 
concentration remains at first constant 
meaning more CO2 is being captured, 
resulting in a temporary increase in capture 
efficiency of 6-7 % with the equilibrium 
capture efficiency likewise increasing. 
However, since more CO2 is being captured, 
the additional heat from the exothermic 
carbonation reaction is released raising the 
carbonator bed temperature from 650 °C to 
680 °C in around 5 minutes. Since the 
equilibrium CO2 concentration increases with 
temperature, less CO2 is subsequently 
captured and the capture efficiency sinks 
back to near its initial value.  

The results shown here focus on temperature variation and the corresponding change in CO2 
capture in the pilot plant. Figure 5 shows the measured carbonator CO2 outlet concentrations 
of various steady states in a temperature range between 620-700 °C and for CO2 inlet 
concentrations of 10 and 15 vol.-%. As mentioned previously, the equilibrium CO2 
concentration rises with increasing temperature, thereby limiting the maximum capture 
possible. Although the experiments were conducted with two different CO2 inlet  

 
Figure 3: Steady state operation: ECO2, ECO2,eq, TCarb, 
yCO2, in and yCO2,out are plotted vs. time. 

 
Figure 4: Transition between yCO2,in=10 and 15 vol.-%. 
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concentrations, the measured values follow 
the expected exponential trend indicating that 
the CO2 capture efficiency is close to 
equilibrium.  
Figure 6 shows the steady state capture 
efficiency values classified according to either 
an inlet CO2 concentration of 10 or 15 vol.-%, 
along with their respective equilibrium capture 
efficiencies. The measured capture 
efficiencies generally lie in close proximity to 
their respective equilibrium curves which 
indicates good gas-solid contacting in the 
turbulent fluidized bed carbonator. Carbonator 
temperatures below 680 °C in this data set 
were normally associated with lower solid 
looping ratios, which is the ratio of the mol of 
fresh CaO coming from the regenerator to the 
molar flow of CO2 fed to the carbonator (see 
figure 1), and led to an increased carbonated 
fraction in the bed and thus reduced CO2 
uptake rates. Therefore, the capture 
efficiency values are not as close to 
equilibrium as those at high solid looping 
ratios (since less CaO was carbonated). The 
carbonated bed fraction in the carbonator was 
determined with thermo gravimetric lab 
analysis. Most importantly, for concentrations 
between 10 and 15 vol.-%, CO2 capture 
efficiencies as high as 88 % were achieved 
between temperatures of 630 °C and 660 °C 
during continuous operation of the new 
200 kWth Calcium Looping pilot plant.  

4. Conclusions 
For the first time ever, the Calcium Looping process was demonstrated in continuous 
operation under realistic process conditions on a 200 kWth pilot plant. The process and pilot 
plant operation proved to be robust, stable, and easy to control. Full calcination of carbonated 
sorbent and fresh limestone was achieved in an oxygen-fired regenerator with inlet oxygen 
concentrations as high as 50 vol-%. The rate of total solids inventory loss due to sorbent 
attrition over many days was measured to be 5 wt.-%/h, thereby posing no serious obstacle to 
commercialization. Carbon dioxide capture efficiencies close to the thermodynamic 
equilibrium were achieved over a wide range of temperatures, calcium looping ratios, for CO2 
inlet flue gas concentrations of 10 and 15 vol-%. Capture efficiencies as high as 88 % were 
achieved at temperatures between 630 °C and 660 °C.  
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Figure 5: Carbonator outlet Concentration vs. 
Carbonator Temperature. 

 
Figure 6: Capture efficiency with different CO2 inlet 
concentrations. 
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Abstract 
Carbon capture through chemical looping combustion is a technological and eco-

nomical feasible option applicable to a wide range of fossil fuels. Within the chemical 

looping process the oxygen required for the fuel conversion is provided by a solid 

carrier material which is alternately oxidized and reduced in a spatially or temporally 

detached process. The oxidation of the carrier is strongly exothermic and the conver-

sion of oxidation and reduction need to be balanced for temporally stable operation of 

the process.  

Modeling of the transient behavior of a chemical looping system is possible through 

multiphase CFD in an Eulerian-framework. To reach steady state operation within 

simulations cooling of the reactors and carrier mass flow must be adequately ad-

justed. Therefore an interconnected multiphase CFD-model is extended by an ad-

justment control. Results obtained are relevant for experimentally investigated 

chemical looping systems where an adjustment control is essential in case of tran-

sient operation. 

 

1 Introduction 
In order to reduce the impact of global warming conversion of fossil fuels in combina-

tion with carbon capture poses a suitable option. Different technologies like pre-

combustion, oxy-fuel combustion or post-combustion are available. Among these 

technologies chemical looping combustion has a high potential, due to its comparably 

low energy penalty [1]. Different modes of operation are applicable for chemical loop-

ing combustion systems with fluidized bed technology being often favored due to its 

comparable easy solids handling characteristics. 

Over the past 10 years chemical looping combustion has been intensively investi-

gated, but it is yet not a commercially applicable technology. Demonstration proc-
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esses of up to 1MWth are at present in operation [2] with the aim to increase system 

size further. Robust simulation tool are needed for system design and scale up. 

Multiphase fluid dynamics models have been applied to chemical looping combustion 

in several cases e.g. [3,4]. A reacting, two dimensional chemical looping model in 

which the piping between the fuel reactor and the air reactor is represented in a sim-

plified way was proposed recently by Kruggel-Emden et al. [5]. A limitation of the 

model and not discussed anywhere else in literature is that solid mass flow and tem-

perature in the CFD-model are not controlled which results in non-stable operation. 

Therefore the model [5] is extended in this paper with a suitable adjustment control 

for mass flow and temperature. 

 

2 Interconnected chemical looping CFD-model 
The underlying chemical looping model is based on the two-phase Euler-approach 

implemented into the computational fluid dynamics software FLUENT. Balance equa-

tions are solved for the gas and solid phase. A sketch of the model is shown in figure 

1. Air and fuel reactor are simulated in separated fluid dynamics simulations. Further 

details can be found in [5]. 

    

 
Figure 1: Outline of the modeling framework for chemical looping combustion.  
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If a predefined temperature level is desired in a chemical looping system heat needs 

to be extracted. Highest temperatures are reached in the air reactor therefore this 

vessel provides the best location to extract excess heat. Oxidation and reduction re-

action are balanced by maintaining a sufficient solid circulation rate. For the purpose 

of control the heat flux density q&  and mass flow rate bufsm ,&  are the manipulated and 

the solid outlet temperature oxsT ,  and the degree of reduction redsX ,  (X=1 carrier fully 

reduced; X=0 carrier fully oxidized) are the controlled variables (figure 1).  

 
3 Design of the temperature control 
For the temperature control in the chemical looping system a controllable heat sink in 

form of a cooling jacket attached to the air reactor side walls is used. Solid and gas 

air reactor outlet temperatures act
oxsT , , act

oxgT ,  are monitored and the excess heat flux Q&  

with regard to a setpoint temperature set
oxs

set
oxg TT ,, =  is calculated:  

 

( ) ( )act
oxg

set
oxgoxgoxgp

act
oxs

set
oxsoxsoxsp TTmcTTmcQ ,,,,,,,,

−⋅⋅+−⋅⋅= &&&  (1) 

 

The heat flux density for the air reactor is calculated according to a proportional-

integral controller where Kp is the proportional and 1/Tn is the integral gain which are 

both controller tuning parameters: 

  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅= ∫

=

=

t

surf dQTnQAKpq
τ

τ

τ
0

/1/ &&&  (2) 

 

Tuning of Kp and Tn is achieved through a system characterization by investigating 

the open loop step response [6] of the air reactor to a predefined cooling. Tuning pa-

rameters derived vary for different carrier mass flow rates (table 1). 

 

bufsm ,& [kg/s] Kp [-] Tn [s] 

2 1.85 3.24 
4 2.25 3.24 
6 2.58 3.24 
Table 1: Parameters of a PI-temperature 
controller derived according to an open loop 
step response [6] for a carrier of Mn3O4/MnO.
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4 Design of the mass flow control 

For the mass flow control the carrier material flux bufsm ,&  entering the air reactor is ad-

justed by a PI-controller: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅+−⋅−= ∫

=

=

t
act

reds
set

reds
act

reds
set

redsbufs dXXTnXXKpm
τ

τ

τ
0

,,,,, )(/1)(&  (3) 

 

The proportional gain Kp and the integral gain 1/Tn are tuning parameters and are 

derived from a simplified external model of the fuel reactor. In the simplified model 

the fuel reactor is assumed to be an ideal mixer with constant solid volume in which 

the total fuel mass flow entering the reactor is converted. Kp and Tn are calculated 

based on an optimization of the transient overshooting of act
redsX ,  from its setpoint: 

 

( ) ∫
∞=

=

−=
t

t

act
reds

set
reds dtXXTnKpf

0

,, )(,  (4) 

 

Results for ( )TnKpf ,  are dependent on tdel which is the delay time the solid material 

needs to be passed through the air reactor. tdel is not calculated in the simplified ex-

ternal model. Results for Kp and Tn are given in table 2.    

 

tdel [s] Kp [-] Tn [s] 
3 52.1 9.7 
4 39.5 11.5 
5 31.9 13.5 
Table 2: Optimized parameters of a PI- 
mass flow controller for a carrier of 
Mn3O4/MnO. 

 

5 Simulation of chemical looping combustion in a controlled model 
As a test case of the extended CFD-model a chemical looping system with 

Mn3O4/MnO as carrier material is operated at full load of P=0.5 MW and powered 

down to part load of 0.4MW and further down to 0.3 MW. The air reactor solid outlet 

temperature is set to set
oxsT , =1270 K and the fuel reactor carrier conversion is set to 

55.0, =set
redsX . Carrier mass flow rates (figure 2A) are declining with decreasing load 
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level. Carrier mass flow rates leaving the fuel reactor reveal strong fluctuations and 

are influenced by the bubble characteristics in the bed. Carrier solid temperatures 

(figure 2B) stabilize quickly after each load change. In case of P=0.3MW no cooling 

of the air reactor is necessary (figure 3C). The related mass flow rate in this case is 

not sufficient to maintain the setpoint temperature of T=1270K for the air reactor out-

let. The applied mass flow control effectively stabilized the degree of conversion of 

the carrier material in the system (figure 2D). 
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Figure 2: Performance of the chemical looping system operated at P=0.5MW for 
t<80s, P=0.4MW for 80s<t<130s and P=0.3MW for t>130s. (A) Solid mass flow, (B) 
temperatures, (C) heat flux density and (D) degrees of reduction of the different 
solid flows. set

oxsT , =1270K and 55.0, =set
redsX . 

 

6 Conclusions 
A multiphase CFD-model was successfully extended with a temperature and mass 

flow control. PI-controllers were used and their control parameters were derived by 

analyzing an open loop step response in case of the temperature control and by util-

izing an external model and applying an optimization routine in case of the mass flow 

control. For a test case where the system load was varied the control system allowed 

steady state operation of the chemical looping system within the multiphase CFD-

model. For the future the derived control system allows detailed insight into the dy-

namics of chemical looping systems with varying carrier materials and system condi-
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tions. The derived control parameters are also applicable to controllers in experimen-

tally investigated chemical looping systems and are necessary for their effective op-

eration. 
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1. Introduction 
The environmental performance of carbon capture and storage (CCS) beyond the reduction of 
climate effective CO2 emissions has become more and more subject of a wider discussion. Among 
the different CCS concepts for power plants, oxyfuel combustion is a promising candidate for 
carbon capture. Taken from other oxygen demanding technologies, cryogenic air separation is an 
already available state-of-the-art technology to produce the high tonnage of oxygen per day 
necessary for commercial-scale oxyfuel power plants. However, the high energy demand is 
associated with a considerable loss in efficiency of up to roughly 10 %-points. This yields in an 
additional demand of fuel and related emissions. To reduce these effects, efforts are made to find 
new technology options with lower efficiency losses and lesser environmental impacts. One option 
is the development of high temperature ceramic membranes. For the analysis promising 
membranes produced from Ba0.5Sr0.5CO0.8Fe0.2O3-δ (BSCF) perovskite material are considered. 
Although some studies evaluate the environmental effects of oxyfuel processes using cryogenic air 
separation [1-4], none exists so far looking at membranes. This paper compares the environmental 
impacts of both air separation concepts in the context of an oxyfuel process using life cycle 
assessment (LCA) methodology. Beside global warming potential other environmental effects like 
acidification, eutrophication and human toxicity are considered. The results are reflected to the 
environmental effects of conventional power production without CCS. 
 
2. Power plant concepts 
For all concepts the same basic assumptions have been used to make the results comparable. 
Basis for the comparison is a German state-of-the-art super critical (SC) hard coal power plant 
without any CO2 capture. Its technical conditions provide also the basis for modeling both oxyfuel 
concepts. Figure 1 outlines the structure considered in the life cycle investigations.  
 

 
 

Figure 1: LCA system boundaries of a conventional power plant without CCS and an oxyfuel plant 
with air separation (red boxes) 
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2.1. Reference Power Plants without CCS 
In 2004 a consortium of industry and science defined basic parameters to describe a SC power 
plant [5]. This SC reaches a net efficiency of nearly 46% surpassing the average net efficiency of 
German power plants. To reduce complexity the plant information are transformed into LCA 
structure. Basic processes of the system are “Coal conditioning”, “Power generation”, “NOx 
removal”, “Dust removal”, “Desulphurization” (see fig. 1). The separation efficiency of the flue gas 
cleaning system represents advanced conditions under the current limits presented by German 
legislation [6] (SOx: 150 mg/Nm3 ≤ 200 mg/Nm3, NOx: 100 mg/Nm3 ≤ 200 mg/Nm3). For the 
analysis the South African coal “Kleinkopje” is considered. 
 

2.2. The oxyfuel process 
In addition to the basic processes the oxyfuel concepts include the “oxygen supply via air 
separation”, “H2O condensation, CO2 compression & liquefaction”, “CO2 transport” via pipeline 
(400 km onshore) and “CO2 storage” in a deep saline aquifer (800 m) (see also fig. 1). Air leakages 
of 3% are considered. The necessary oxygen is supplied by two different technologies for the air 
separation unit (ASU), cryogenic and membrane-based. 
 

2.2.1. Cryogenic air separation 
Cryogenic air separation (C-ASU) is a state-of-the-art technology suitable for high tonnage oxygen 
production for power stations. While energy consumption increases with higher O2 purity 
requirements, a higher O2 purity lowers the energy demand in the CO2 compression and 
purification step. In compliance with other studies [7, 8] 95% purity is chosen for the investigation 
(containing 3.8% Ar and 1.2% N2 [9]), as optimum value between additional energy necessary for 
further O2 purification and savings obtained during the CO2 compression. A specific energy 
consumption of 200 kWh/tonO2 is estimated. The net plant efficiency amounts to 36.4%. 
 

2.2.2. Membrane-based air separation 
In recent years great efforts are undertaken to improve the efficiency of oxyfuel power plants by 
development and integration of novel gas separation membranes [10]. One possibility to provide 
oxygen is the use of high temperature ceramic membranes (HTM-ASU). A favored membrane 
material is Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) since its permeation rate is high because of its high ionic 
and electronic conductivity [11]. As this material still faces severe problems of chemical stability in 
a four-end concept, a three-end mode is chosen for this analysis. Thermodynamic modeling of a 
highly integrated membrane module [12] showed a required membrane area of 254 thousand m² 
assuming a membrane thickness of 0.6 mm and an average oxygen permeation rate of 
1.75 ml/(min*cm2). Applying membrane-based technology a plant efficiency of 39.6% is reached. In 
a first calculation a life time of 40 years for membranes and modules is assumed. 
 

2.2.3. Performance parameter for the LCA analysis 
The comparison of the different power plant types is performed on a basis of 1 kWh electricity 
produced (functional unit in LCA). In table 1 the main performance data of the three plants 
investigated are summarised. 
 
Table 1: Performance data of the reference plant (RP SC) and of oxyfuel plants with cryogenic (C-

ASU) and membrane (HTM-ASU) air separation  
 
Plant parameter RP SC C-ASU  HTM-ASU  
Plant net output [MW] 555.3 440.9 479.5 
Net plant efficiency LHV [%] 45.9 36.4 39.6 
Efficiency drop [%-points] - 9.5 6.3 
Membrane area [thousand m2] - - 254 
CO2 recovery rate [%] - 90.2 90.1 
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3. Environmental analysis of the power plant concepts 
For the environmental analysis the total life cycle of the power plants is considered [13]. All life 
stages from the mining of the necessary materials and energy carriers, the production and 
operation of power plants and the final disposal after its life time are taken into account to avoid 
problem shifting between stages. Therefore, the described power plant systems are extended by 
upstream processes such as fuel or operation material supply and downstream processes like 
waste disposal or waste water treatment. Also construction and dismantling of components of the 
power plants and air separation facilities are included in the analysis.  
In the life cycle inventory (LCI) a full inventory is set up for each power plant type by describing all 
relevant environmental inputs and outputs for each process step using the calculation software 
GaBi 4.4. Input and output data for the power plants are taken from detailed thermodynamic 
modeling [12] and transformed to LCA data, membrane data derive from partners of the MEM-
BRAIN project [14]. Data for background systems such as fuel supply or waste treatment originate 
from the comprehensive ecoinvent database [15] and information about transport and storage are 
taken from one study [16]. 
In the Life Cycle Impact Assessment (LCIA) the gathered and aggregated inputs and outputs of the 
system are categorized and allocated to impact categories. Considered are the potential of global 
warming (GWP), acidification (AP), eutrophication (EP), human toxicity (HTP) and photochemical 
ozone creation (POCP). Characterisation of environmental impacts is based on CML 2001, 
updated in November 2009 [17]. The final normalisation step relates the results of the impact 
assessment to the total amount of the corresponding impact category in Germany. 
 

3.1. Results of the inventory 
For the three concepts the inputs and outputs along the entire life cycle are calculated. Table 2 
shows important inputs (coal, limestone, NH3) and outputs (CO2, SO2, NOx, CO, particles, gypsum) 
for all power plants relative to 1 kWh electricity produced.  
 
Table 2: Major inputs and outputs per kWhelectricity produced of the power plants (incl. upstreams and 

downstreams) 
 
  RP SC C-ASU HTM-ASU 
Input 
coal g/kWh 313.8 395.3 363.5 
limestone g/kWh 5.2 7.1 6.6 
ammonia g/kWh 0.9 0.2 0.15 
Output 
CO2 g/kWh 803 174 150 
CO2 captured g/kWh - 886.7 811.9 
SO2 g/kWh 0.74 0.50 0.43 
NOx g/kWh 0.90 0.89 0.79 
CO g/kWh 0.15 0.20 0.20 
particle g/kWh 1.2 1.5 1.4 
gypsum g/kWh 8.9 12.3 11.3 
 
When CCS technology is applied CO2 emissions released decrease significantly as intended. In 
oxyfuel processes NOx is decreased due to the changed process management which correlates to 
a reduction in ammonia demand. However, coal input and some other emissions, such as CO or 
particles increase due to the loss in efficiency. A decrease in SO2 emissions is gained by a higher 
use of limestone, producing more gypsum. 
 

3.2. Results of the impact assessment 
Beside the emissions presented above, all other emissions are also considered when evaluating 
the environmental effects of the systems. Figure 2 shows five impact categories, expressed in the 
specific equivalent of the particular category again per kWh electricity produced. It gives also the 
portion of upstream and downstream processes.  
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Figure 2: Selected environmental impacts of power plants per kWhelectricity produced (incl. upstreams 

and downstreams) 
 
The results show, that for both oxyfuel power plants the GWP and AP decrease compared to 
conventional power plants, while other impacts such as EP and POCP are hardly affected. 
However, HTP increases from 32.8 for the reference plant to 48.2 kg DCB-equivalent/kWh for the 
membrane ASU. While in most impact categories the membrane technology shows a better 
performance, mainly due to lesser efficiency losses, the human toxicity increases stronger. One 
reason for this is the high amount of steel in the membrane module.  
Due to the efficiency losses the upstream coal process chain (mining and ocean coal transport) as 
well as downstream waste processes for ashes account mainly for the overall environmental 
effects. Whereas human toxicity is dominated by the production of the membrane module, 
especially the housing of the module, as described above. The results for the membrane-based air 
separation rely strongly on the assumed life time of the module and the membranes themselves. 
Sensitivity analysis show a strong increase in HTP at lower life times (117 kg DCB-equivalent/kWh 
for a life time of 5 years). 
To evaluate the importance of different effects, each impact is benchmarked against the known 
total effect for this class, such as the total impacts of Germany. In table 3 it is assumed that the 
total electricity production by hard coal in 2007 (142 TWh, [18]) was generated using one of the 
three technologies considered. It is then related to the total German impact of that year. 
 
Table 3: Total German impacts [19] and share of normalised impacts for 2007 
 

Total German impacts [19] 
[kg-equiv.] 

RP SC 
[%] 

C-ASU 
[%] 

HTM-ASU 
[%] 

GWP 1.144 E12 10.4 2.7 2.4 
AP 3.984 E9 5.3 4.4 3.6 
EP 3.418 E9 0.83 0.88 0.62 

HTP 1.014 E12 0.5 0.6 0.7 
POCP 1.281 E9 1.1 1.2 1.05 

 
As intended by CCS, the GWP could be reduced drastically from more than 10% without capture to 
2.7% using cryogenic ASU and even to 2.4% with membrane technology. Also the contribution to 
the acidification potential could be reduced from more than 5% to less than 4%. To all other 
impacts the contribution of hard coal electricity production is quite low and changes are 
neglectable.  
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Conclusion and perspectives 
Oxyfuel technology can contribute significantly to an environmentally friendlier electricity 
production. However, the resource demand for hard coal will increase by 25% for cryogenic and 
15% for membrane-based air separation, due to its efficiency losses. The contribution to the total 
German GWP of hard coal based oxyfuel power generation could be reduced to 2.4%. Also, the 
AP is decreasing. Other impact categories are hardly affected by a change in technology. The 
slight increase in emissions which cause human toxicity do not rise today’s low share of this sector 
to a concerning one. As efficiency decrease is the driving force of most changes and no chemicals 
or other substances are involved in the capture process, technologies with lesser effects on the 
efficiency are favorable. The efforts in the development of membrane based air separation show a 
good way to improve the environmental performance. However, further research demand can be 
defined. Long term tests under operating conditions must prove the modeled performance data 
used for these calculations. Especially the life time and size of the housing of the membrane 
module play a decisive role. Effects on humans, although still marginal in a German overall view, 
are mainly driven by these factors. The performance of the membrane itself affects also the 
amount and supply of sophisticated materials. This subject has not been covered in this paper, but 
needs further investigation. 
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Introduction 
As a leading international engineering and contracting company, the Engineering 

Division of The Linde Group designs and builds turnkey process plants for a wide variety 

of industrial users and applications. Dynamic simulation of process plants plays a key 

role in the engineering workflow, especially in the area of process innovation. This paper 

illustrates concepts for dynamic simulation of compound oxyfuel power plants. 

Linde Engineering has been developing technical solutions for Carbon Capture and 

Storage (CCS) in power generation, both as proprietary developments and in 

collaboration with industry partners. Among them are CO2 scrubbing units for post-

combustion power plants [1], IGCC precombustion techniques [2], innovative concepts 

for high pressure oxyfuel [3], and the efficient integration of atmospheric pressure 

oxyfuel process sections. 

In an atmospheric oxyfuel power plant as shown in Figure 1, coal is combusted in the 

furnace in an atmosphere of gaseous oxygen (GOX), produced by an air separation unit 

(ASU), and CO2. The CO2-rich furnace outlet is cleaned in a flue gas treatment unit 

(FGT) from which the cleaned flue gas stream (FG) is transferred to the gas processing 

unit (GPU) for further concentration and compression. The GPU separates FG into a 

high-pressure CO2 stream (CO2) ready for underground storage and inerts i.e. N2, Ar, 

and O2 vented to atmosphere (Vent). Parts of both raw flue gas and cleaned flue gas are 

recycled to the furnace to make up the burner atmosphere.  

Tight dependencies within and among these process sections w.r.t. energy and mass 

flows, render a complex compound process. Based on long term experiences in air 

separation and CO2 handling Linde Engineering is a competent provider of ASUs and 

GPUs for atmospheric oxyfuel power plants. Furnace, FGT, boiler, and steam cycle (of 

which the latter two are not shown in Fig. 1), are power plant specific units originating 

from industry partners. 

The basis of steady state design are - among others - initial steady-state conditions of 

feed streams AIR and COAL, and of the GOX and FG streams connecting process 
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sections. Each project partner selects the most appropriate process technology and 

determines the most economic steady state design for his process section.  

 

Figure 1: Schematic of an atmospheric oxyfuel power plant 

Dynamic simulation  
Once an optimal static process has been fixed, its flexibility in transient operation must 

be examined and adequate control schemes must be designed. This is a crucial issue 

as modern power plants are exposed to increasingly fluctuating electrical power 

demand. The dynamic behavior of process sections is investigated independently based 

on standard operating scenarios such as the one shown in Table 1. In order to cope with 

a change in electricity demand the COAL and GOX feed rates to the furnace shall be 

reduced from nominal 100% to 85% within 3 minutes. During this transition, the GOX 

pipeline pressure must remain within ±0.05 bar and the GOX O2 concentration must 

remain within ±1.0%-points around their nominal values.  

 COAL GOX CO2 

flowrate (nominal)  100%-85% in 3 min 100%-85% in 3 min - 

pressure  - ±0.05 bar 100 bara 

composition - ±1.0 % O2 >95% CO2;    <1% O2 

Table 1: Typical load change conditions for COAL, GOX, and CO2 streams 

At Linde Engineering dynamic simulation models are developed within software tools 

also used for steady state design. For ASUs an equation-based in-house simulator is 

used whereas GPUs are modeled with a commercial process simulator [4,5]. The basic 

control schemes are designed and tested with the section models using above standard 

disturbances introduced as step or ramp changes. Similar approaches are pursued by 
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project partners for investigation of their process sections. However, this only facilitates 

tests of the individual units without any feedback from interconnected process sections.  

The compound oyxfuel process model 
A compound oxyfuel power plant model is required to investigate dynamic interactions 

between the process units and their impact on process operability. For instance, the 

impact of flue gas recycle and energy integration on load change and disturbance 

responses of the interconnected process sections is of interest. As contributing partners 

use individual modeling and simulation software, a heterogeneous model collection 

needs to be integrated. This can be achieved if two conditions are satisfied [4]: i) the 

models are compatible at points of interchange, i.e. at source and sink of streams like 

GOX and FG, ii) the models are transferred to a common mathematical representation.  

Model reduction and model identification is applied to the first-principle based dynamic 

section models including controllers. The reduced models are transferred to a general-

purpose dynamic simulation software and connected to give the compound oxyfuel 

model. 

The compound model is subjected to a load change as specified in Table 1. The 

following figures show the dynamic responses of relevant stream properties as 

deviations from their initial steady state values. 

 

 

 

 

 

 Figure 2: Flow rate deviations  Figure 3: CO2 mass fraction deviations  

In Fig. 2 GOX and Air flow rates (as well as COAL feed not shown) behave almost 

identical due to controllers receiving setpoints proportional to the Load signal. The ASU 

is able to keep the O2 concentration in the GOX stream within the required bounds of 

±1% (Fig. 4). Even though the CO2 content in the flue gas (FG) decreases significantly 

by 4%-points, very small concentration variations in the GPU CO2 stream are observed. 

The decrease of the flue gas by less than 15% (Fig. 2) is due to a higher air leakage flow 

entering the furnace during part load and thus increasing the total vent flow. In the partial 

load case CO2 and Ar in the flue gas (FG) are replaced by N2 and water (not shown).  
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Finally, the pressure control scheme is capable to keep the GOX transfer line pressure 

fluctuations below 50 mbar. The GPU header pressure is held essentially constant due 

to suction pressure control at the GPU raw gas compressor (Fig. 7). 

 

 

 

 

 

 

 

 Figure 4: O2 mass fraction deviations  Figure 5: N2 mass fraction deviations 

 
 
 
 

 

 

 Figure 6: Ar mass fraction deviations Figure 7: Pressure deviations 

This dynamic simulation study of an atmospheric oxyfuel power plant proves the 

formerly introduced concept [4] based on stand-alone dynamic model development by 

different project partners, model reduction and identification and the combination of 

reduced models in an independent simulation environment. The compound model 

indicates feasibility of the design, and can be the basis for further process and control 

strategy improvements. 
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1. Introduction 

Carbon Capture from fossil fuel fired power plants has attracted growing interest in the field 
of CO2 mitigation strategies over the past few years. Among the large stationary CO2 
sources, cement production contributes about 7% to the overall worldwide CO2 emissions. 
Part of these CO2 emissions is caused by the fuel required for the calcination reaction and to 
heat the raw material up to a temperature of 1400°C . The largest part of the CO2 emissions, 
however, is caused as a product of the calcination process. This part cannot be avoided by 
using less CO2 intensive energy sources. Therefore, only CCS techniques seem to provide a 
promising CO2 mitigation option for the cement industry. 

Generally all of the 3 main CCS routes (oxyfuel, post-combustion and pre-combustion) could 
be applied to cement plants. In the case of post-combustion, a good CO2 capture rate seems 
to excessively increase the fuel requirement needed for the regeneration of solvents like 
Monoethanolamine (MEA). However, the additional heat demand can be reduced by the 
development of less regeneration heat intensive solvents and improvements in heat 
integration.  Pre-combustion, in its usual meaning, would only be suitable to capture the CO2 
emitted from the fuel, not from the calcination reaction. Compared with a power plant, the 
calcination reaction in an air-operated cement plant increases CO2 concentration to a higher 
level. This indicates that the oxyfuel route seems to be a very appropriate concept for 
applying CCS to cement industries.  

The aim of this work is to evaluate and compare several promising oxyfuel concepts for 
cement plants based on rigorous thermodynamic models in Aspen Plus®, taking into account 
realistic boundary conditions for both the oxyfuel and the reference air case. The influences 
of modified flue gas conditions on the key reactions are considered in detail. The selection 
criterion for choosing the concepts studied here is mainly the practical feasibility of the 
required process modifications. In a further step suggestions and corresponding simulations 
are shown to further improve these concepts in terms of fuel demand, electrical power duty 
and CO2 capture rate. 

 

2. Basic Information on Cement Plants 

The raw material for cement production mainly consists of calcium oxide (CaO), silicon 
dioxide (SiO2), aluminium oxide (Al2O3) and ferric oxide (Fe2O3). Additionally, small amounts 
of magnesium carbonate and other components containing alkali elements and sulphur can 
occur within the raw meal. The conditions required by two main reactions have to be 
provided within the cement plant. The first is the calcination of the raw meal according to 
equation (1) with a conversion rate of 100% at 880°C to 900°C.   

 

 CaCO3 → CaO + CO2 (1) 

 

The second important conversion is the recombination of CaO, SiO2, Al2O3 and Fe2O3 to the 
clinker phases 2CaO·SiO2 (C2S), 3CaO·SiO2 (C3S), 3CaO·Al2O3 (C3A) and 
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4CaO·Al2O3·Fe2O3 (C4AF), which yield the characteristic behaviour of cement. Therefore, 
calcinated hot raw meal has to be heated up further to 1400°C - 1450°C. In a cement plant 
this step is provided by a rotary kiln in which the primary combustion occurs (see Figure 1) 

 
 

 
Figure 1: Flow Sheet of a Conventional Cement Plant with a Preheater of 4 Cyclones 

 

The flue gas of the rotary kiln is used to preheat the raw meal in several cyclone preheater 
stages. Here the raw meal is mixed with flue gas to be heated up and directly afterwards, to 
be separated again from the flue gas. Conventional cement plants have 3 to 5, or 
occasionally 6 preheater stages. In modern cement plants the degree of calcination reaches 
an extent of more than 90% in the calciner loop before the rotary kiln. A secondary 
combustion and the rotary kiln flue gas provide the energy for this reaction. The secondary 
combustion causes more than 50% of the overall fuel demand. Before preheating, the raw 
meal is ground and pre-dried in the raw mill and enters the raw meal silos, which ensure high 
homogeneity in the feed stream to the upper cyclone. To fill up the silos the raw mill is 
designed for a higher supply rate than the required feed rate to the upper cyclone. Therefore 
an integrated operation mode exists in which the raw mill is running, the silos are filled up 
and the cyclone flue gas pre-dries the raw meal (compound mode). For a certain period of 
time the raw mill is out of operation, the silos are emptied and the cyclone flue gas is sent 
directly to a flue gas cooler and subsequently to the filter (direct mode). These particular 
operation characteristics also have to be taken into account for designing the oxyfuel 
operation.  

 

3. Oxyfuel Concepts 

The most obvious concept for the oxyfuel operation of a cement plant can be described as 
follows (see Figure 2). 
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Figure 2: Flow Sheet of a Full Oxyfuel Cement Plant with a Preheater of 4 Cyclones 

 

An air separation unit (ASU) is installed to supply both primary and secondary oxygen for 
combustion. The oxygen excess is held to be the same as in the reference case, 1.15 for the 
primary and 1.30 for the secondary combustion. The flue gas of the upper cyclone preheater 
is dedusted in a hot ESP. More than 50% of the flue gas has to be recycled to provide the 
same adiabatic flame temperature in the primary combustion as well as the same flow 
regime (same solid loadings) in the calciner loop. The latter has the more important 
contribution but is a conservative estimation. The recycled flue gas can be reduced if higher 
loadings are possible resulting in lower temperatures at the recycle split and therefore lower 
heat losses. The remaining flue gas is cooled, desulphurised, and treated in a CO2 
purification and compression unit. Instead of flue gas, hot air from the clinker cooler has to be 
used to pre-dry the raw meal in the raw mill in order to avoid air inleakage. The air from the 
cooler cannot be used as combustion air which causes a large amount of heat that is not 
reused. Nonetheless, part of the heat of the clinker cooler could be reused by a gas-gas heat 
exchanger or by supplying part of the cooling duty by means of recirculated flue gas, thus 
sending the flue gas directly through the cooler with air inleakage.  

It could be preferable to operate the rotary kiln of the new oxyfuel plant applying conventional 
air combustion. The reason for this is the huge experience in achieving the required clinker 
quality under various raw meal and fuel conditions and the unknown impact of oxyfuel 
operation on clinker quality. In this case (see Figure 3) a concept exists where the ASU only 
supplies oxygen to the calciner. The flue gas of the conventional rotary kiln is separated from 
the calciner and the oxyfuel preheating tower. To reuse the heat of the rotary kiln flue gas a 
second tower of cyclone preheater stages has to be installed in which a part of the raw meal 
is preheated. A small part of the hot air from the clinker cooler can be used in the primary 
combustion. For the remaining heat the same considerations can be made as in the full 
oxyfuel case, either to reuse the heat of the hot air in a gas-gas heat exchanger for 
preheating the recirculated flue gas or to directly use the recycled flue gas for clinker cooling.  
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Figure 3: Flow Sheet of a Partial Oxyfuel Cement Plant with 2 Preheater Towers 

 
 

Figure 4 shows the first results regarding the fuel energy demand and the electrical power 
demand of the 3 introduced full oxyfuel concepts and the 3 introduced partial oxyfuel 
concepts with reference to the air case. Figure 5 shows the corresponding CO2 emissions of 
the introduced concepts.  

 

 
 

Figure 4: Fuel Energy Demand and Electrical Power Demand of Introduced Concepts 
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Figure 5: CO2 Emissions of Introduced Concepts 

 

All of the introduced oxyfuel concepts show significant reduction in CO2 emissions but 
indicate a massive increase in the electrical power demand resulting from the additional 
power required by the ASU and the CO2 purification and compression. Furthermore, the fuel 
energy demand significantly increases except in the case of a direct recovery of heat from 
the clinker cooler to the recycled flue gas. Therefore, this work will also show strategies to 
increase the overall CO2 capture rate and to reduce the electrical power and the fuel energy 
demand. 
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High pressure oxyfuel process with staged combustion 

Hanno Tautz*

1 Introduction 

, Linde Engineering, 82049 Pullach, Germany 

The application of pure oxygen for the combustion of coal provides the advantage to reduce the 
flue gas flow significantly and to operate the combustion and steam production at higher pressure. 
This results in higher electrical net efficiency and a reduction of investment costs.  

2 High pressure oxyfuel process concept 

There are already different oxyfuel processes under investigation. One approach is to keep the 
technology as close as possible to the existing atmospheric boiler concept. In this case the 
combustion temperature of coal with oxygen has to be limited by dilution of the pure oxygen with a 
recycled CO2 flow. 

Another approach is the application of elevated pressure to the combustion process. In this case 
although a recycle flow of CO2 or condensed water or a mixture of this is necessary to limit the 
combustion temperature. 

To overcome the problem of intensive cooling of coal combustion with oxygen in the new process, 
the oxidation is separated in two steps. First there is a gasification of the coal with pure oxygen and 
in a second step the produced syngas is burnt in several stages in the heat exchangers for the 
steam production. Between both steps there is a cyclone and hot gas filter system for gas cleaning 
from solids. 

With this the recycle of CO2 can be avoided and the application of cooling water is limited to an 
extend, which can be useful applied in the preheating of boiler feed water. As the combustion is 
mainly in reducing atmosphere the NOx formation is strongly reduced. At the pressure of 80 bara 
first the water can be condensed at about 50 °C. With a further reduction of the temperature to 30 
°C CO2 is condensed in a relatively pure condition and need no further cleaning step for 
compression to 120 bara with a pump. The desulphurization can be done in the water phase by 
neutralization of H2SO4 with caustic, see figure 1. 

 

 

 

 

 

 

Figure 1: Process principle for high pressure oxyfuel process with staged combustion 
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3 Thermodynamic background 

3.1 Increase of thermal energy input by condensation energy 
 

From the thermodynamic background the combustion of coal at elevated pressure has the 
advantage, that the thermal energy of water condensation can be used at reasonable 
temperatures for the preheating of boiler feed water. 
The difference of this thermal energy is shown in a QT diagram in figure 2. The values are 
calculated for the combustion of predried lignite with a ash free lower heating value of about 22000 
kJ/kg for a power plant with 2200 MW thermal energy input. 
At 80 bara the condensation starts at a temperature of about 145 °C compared with about 80 °C at 
atmospheric pressure. With this higher condensation temperature the boiler feed water can be 
preheated to about 160 °C instead of 100 °C and about 110 MW more thermal power can be used 
for the process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: QT-diagram for atmospheric and high pressure flue gas case. 

3.2 Increase of turbine efficiency with higher steam temperature 
 
There are intensive investigations to develop high temperature materials, which can be applied in steam 
boilers for steam generation up to 700 °C at 350 bar. With the current available materials the introduction 
of these operation conditions is not expected within the next few years in atmospheric boiler plants. 
The high pressure oxyfuel process gives the opportunity to apply these process parameters already with 
existing materials.  
For this there are the following reasons: 
 
- Reduction of differential pressure between steam and flue gas by 80 bara. 
- Increased heat transfer because of elevated pressure 
- Reduction of heat and fouling resistance because of gas cleaning in front of heat exchanger section 
 
Therefore the flue gas and material temperature and the tube material wall thickness in the heat 
exchangers can be lower than in atmospheric boilers for the same heat transfer power. 
The expected increase of electrical efficiency with the 700 °C technology and equipment optimization is  
4 % points /1/. 
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4 Key equipment for steam production 
The production of high pressure steam at temperatures above 500 °C needs special heat exchanger 
constructions. 
Typical used tube sheets would become too thick at the high temperatures and pressures. A suitable 
construction for high pressure flue gas and staged combustion can be a spiral wound heat exchanger, 
see figure 3. 
The steam can be overheated in tube bundles, which are connected over different tube baffles to the high 
pressure pipes. With this the diameter and the mechanical load of the tube sheets can be reduced. 
Additional burning or oxidizing gases can be introduced in the heat exchanger. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Spiral wound heat exchanger for high temperature steam production. 
 

5 Results of process simulation 
A detailed process simulation was conducted for the calculation of the electrical efficiency of the high 
pressure oxyfuel process and is compared with published data for the atmospheric oxyfuel process and 
an IGCC process with CO2 capture. The results can be seen in table 1: 
 
Table 1: Efficiencies of oxyfuel processes with CCS. 
 
 
 
 
 
 
 
 
 
 
 

 

 Atmospheric 
Oxyfuel 

IGCC & CCS HP Oxyfuel 
600 °C steam 

HP Oxyfuel 
700 °C steam 

Net efficiency 
(%) 

40 /3/ 35 /2/ 42 42+4=46 

CO2 capture 
(%) 

90 90 99 99 
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6 Process concept and construction 
The high pressure oxyfuel process shows a strong reduction of effective gas flow. This results in a quite 
compact plant layout, which can be seen in figure 4 and 5. 
A preliminary estimation of tonnage shows a strong reduction of material for the boiler construction.  
The main equipment can be pre fabricated in a workshop, transported and directly installed at the 
construction site. With this the erection time and costs can be reduced significantly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Sketch of high pressure oxyfuel process   Figure 5: Size proportion Boiler 
         plant and HP oxyfuel 

7 Summary 
 

o Higher electrical efficiency by > 2-6 % points compared to atmospheric oxyfuel process. 
o  Strongly reduced cost reduction by unit standardisation, prefabrication and material reduction. 
o  Strong reduction of boiler size and material demand. 
o  Simplified gas cleaning and CO2 capture 
o Option for 700 °C steam technology possible 
o The production of syngas gives the possibility to use the gasification for polygeneration 

processes in times of lower electricity demand. 
 

8 Literature 
 
/1/ Leuchtturm COORETEC, Forschungsbericht Nr. 566 
/2/ www. Life Needs Power 2008.de 
/3/ Kraftwerkstechnisches Kolloquium 2004, V39 
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Vattenfall’s CCS-Strategy 
 
Author:   Dipl.-Ing. Uwe Burchhardt, Vattenfall Europe Generation AG, Cottbus 
 
Introduction 
In connection with Vattenfall’s goal to be a leading European energy supplier, the strategic 
target to reduce CO2 emissions from power and heat generation by 50% by the year 2030 
was set. Furthermore, Vattenfall wants to provide heat and electricity climate-neutral by 
2050. Additionally, absolute CO2 emissions are to be decreased from currently 90 million 
tons per year to about 65 million tons by 2020. These reduction goals correspond with the 
targets given by the European Union and even exceed them. 
Apart from a significant increase in power generation from renewables, Carbon Capture and 
Storage is a major corner stone of our technical strategy to reach our ambitious reduction 
goals. Within the Vattenfall Group, all three technologies currently competing for the lead in 
CO2-capture are being researched: these are Oxyfuel, pre-combustion capture (IGCC) and 
post combustion capture (PCC). 
 
1. Since 2008, tests to research the entire capture technology-chain have been run at the 
Oxyfuel pilot plant in Schwarze Pumpe (Germany) (from coal feeding to the final CO2-
product). 
2. At the IGCC-power plant in Buggenum (the Netherlands), a pilot plant for CO2 shift and 
removal processes is being tested in the bypass for the fuel gas treatment since 2010.  
3. After participating in the Castor project for testing and selection of solvents suitable for post com-
bustion processes, Vattenfall have engaged in on-going cooperations for further testing in the Castor 
pilot but also for testing of optional technologies and solvents in a larger pilot at 100 tpd scale. This is 
the CCPilot100+ project in Ferrybridge UK, to be commissioned 2011. 
 
Practical experience gained in these projects is to support the selection of future CCS-
technologies for commercial utilization. Below, the experience gained so far will be presented 
in detail and an outlook on the Oxyfuel technology will be given. 
 
Results and Knowledge Gained during Test Operation of the Oxyfuel Pilot Plant 
At the 30 MW (thermal) Oxyfuel-pilot plant in Schwarze Pumpe (see chart 1), the following 
aspects could be proved on a pilot level for the first time:   

- The permission procedure for a CCS-power plant   
- The combustion behavior of lignite under Oxyfuel conditions 
- The compliance with emission requirements 
- The interaction of components originating from the chemical industry with power plant 

technology (air separation – boiler – flue gas cleaning – CO2-plant) 
- The CO2-purity necessary for transport and storage. 
 

 
Chart 1: Oxyfuel-pilot plant in Schwarze Pumpe 
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Since the commissioning in September 2008, the plant has been in operation for more than 
12,000 hours. During this time, more than 8,900t of CO2 could be captured and liquefied. 
At this pilot plant the sulphur-rich recirculation was tested (downstream of the electrostatic 
precipitator, but upstream of the flue gas desulphurization). Experience on the pre-mixed 
operation mode (O2 fed into the recirculation) and the expert operation mode (O2 fed into 
individual burner ports) could be gained. 
 
So far, three burners have been tested; a combined jet-/swirl burner and two pure swirl  
burners. Different ignition burner concepts on a gas basis have been researched. Besides 
the conventional, separately arranged ignition burners, especially the ignition burners inte-
grated into the main burner have been proved to be effective.   
 
The combustion behavior under Oxyfuel conditions has permanently been improved. Vatten-
fall wanted to keep the remaining amount of excess oxygen at the end of the boiler smaller 
than 5% to reach a possibly high O2 amount in the oxidant (combustion gas enriched with 
O2). While a low O2 surplus in the waste gas can reduce the oxygen demand for the combus-
tion process, a high amount of excess oxygen in the oxidant results in a low recirculation 
rate. Both arrangements have direct impact on the efficiency of the Oxyfuel process. Values 
reached during different test campaigns (TC 3-5) are displayed in chart 2 and 3. 
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Chart 2: Diagram of tested operating points 
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Chart 3: Impact of the O2-content in the oxidant on the recirculation rate 
 
Additionally to the researched combustion behavior and the heat transfer in the Oxyfuel boi-
ler, the flue gas cleaning process, using an electrostatic precipitator, a flue gas desulphuriza-
tion plant and a flue gas condenser to provide the required flue gas composition for the CO2 
process, has been researched, as well. The suitability of conventional power plant compo-
nents was proved, and required removal rates (dust and SOx) could be achieved. 
Special focus was on NOx-reduction in the Oxyfuel process. Here, the following alternatives 
were researched and evaluated. 

1. High-dust-DeNOx (SCR) in the boiler 
2. Low-dust-DeNOx (SCR) downstream the electrostatic precipitator  
3. Combined DeSOx- and DeNOx-processes during flue gas cleaning 
4. DeNOx in the CO2-compression process (cold DeNOx) 
5. DeNOx in the vent gas discharge of the CO2 plant 

 
Vattenfall is focusing on the options 1, 3 and 4 and will run further practical tests. 
 
In the CO2-process, practical experience could be gained on the following aspects: 

- Compression process (vibration behavior when using CO2-rich flue gas) 
- Operation behavior of activated carbon filters 
- Drying processes of molecular sieves 
- Vent gas composition and how to use it 
- Aspects influencing the CO2-quality 

 
In the CO2-plant, a CO2 retention rate of 93% could be achieved. Therefore, a CO2-removal 
rate of higher than 90% for the entire process could be proved in practice.  
The current results gained from the Oxyfuel pilot plant are sufficient to take the next step and 
set up a demonstration plant. 
 
Concept of the CCS-Demonstration Plant in Jänschwalde 
Based on the lessons learnt from the Oxyfuel pilot plant and our PCC projects so far as well 
as from the feasibility study carried out in the year 2009, the scale-up behavior to a demon-
stration plant can be calculated.  
 
In 2010, Vattenfall decided to set up a CCS-demonstration plant at the power plant site in 
Jänschwalde (6x500 MWel) and benefit from EU funds available (EEPR and NER 300).   
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Chart 4: The demonstration plant at the site in Jänschwalde 
 
The concept is based on lignite and includes a separate Oxyfuel unit with a capacity of 250 
MWel and the retrofit of an existing unit with post combustion scrubbing with a capacity of 50 
MWel. The plant layout can be seen in chart 5. 

 
Chart 5: Layout of the 250 MWel Oxyfuel-unit in Jänschwalde 
 
For the design of the Oxyfuel boiler the following principles have been taken into account:  

• Integration of a coal drying and an air separation unit into the power plant concept 
• State-of-the-art live steam parameters 
• Boiler and flue gas cleaning based on concepts tested 
• Making use of condensate from coal drying, flue gas condensation and the CO2 proc-

ess for internal processes 
• Optimization of the O2 purity (air separation unit) with respect to the operating cost of 

the entire process 
• Reaching a CO2 purity required for transport and storage 
• CO2 process with direct compression for pipeline transport 

PFBD 

Cooling tower 

PCC 

Oxyfuel-Boiler 
Particular removal 

FGD 

Vapour condenser 

ASU 

Turbine house 

CO2-Compression 
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In contrast to the pilot plant, the Oxyfuel demonstration concept will use a sulphur-poor recir-
culation (downstream the flue gas desulphurization plant) due to reasons of availability. For 
coal drying, a pressure charged steam fluidized bed drying (PFBD) will be used. It is de-
signed three-line with direct feeding of dried lignite to the burners and it will be integrated into 
the boiler concept right next to the boiler house. The air separation unit will be designed en-
ergy-optimized (without backup system) and it will have an oxygen-purity above 95 % and a 
load change rate of +/- 5% per minute. The CO2 plant will have a material-optimized and en-
ergy-optimized design. CO2 purity will be above 95% and the ultimate pressure is calculated 
until 140 bar. 
 
   Unit G   

Oxyfuel 
Unit F  

with PCC 
Unit F        

(conventional) 

Operating mode  Demo Base load Base load 

Fuel  Dried lignite Raw lignite Raw lignite 

Gross output MW 250 519 530 

Auxiliary power MW 83 37 30 

Net efficiency % 36 36.5 37.9 

Availability % > 91   

Live steam temperature °C 600 535 535 

Reheating temperature °C 610 545 545 

Demand for lignite million t/a 1.5 4.1 4.1 

Specific CO2-emissions g/kWhnet 78 933 1,004 

CO2 captured  (for 7,700 
operation hours /year) 

million t/a 1.3 0.385 - 

Table 1: Basic data of the demonstration power plant in Jänschwalde 
 
From the Oxyfuel and the PCC plants, the captured CO2 will be compressed together at a 
CO2 plant (without intermediate storage) and transported to possible storage sites not further 
than 300km away. For possible storage, two saline aquifers and a depleted gas field are cur-
rently being researched. 
The demonstration project in Jänschwalde has already been subsidized with €180m by the 
European Union through the European Energy Program for Recovery (EEPR). A further ap-
plication for granting subsidies from the Program for the promotion of new technologies to 
reduce CO2 emissions from power generation significantly (NER 300) has been submitted for 
the demonstration project in Jänschwalde.   
 
Outlook and Potential 
Future developments of the CCS-technology will mainly aim at an increased efficiency and 
an improved availability as well as at a better coordination of CCS power plant and pipeline 
transport and storage. CO2 storage in saline aquifers and the CCS-technology’s efficiency 
has to be proved in the real world. The regulation control behavior of the entire CCS-chain in 
compliance with market demands is of importance. 
 
At the Oxyfuel pilot plant, the following tests have been scheduled for the next few months. 

• Load change behavior of the air separation unit with a connected burner 
• Tests to be run with different coal qualities 
• Material tests in an Oxyfuel atmosphere (on-line and pressure loaded probes) 
• Additional tests for the “Cold DeNOx” (regeneration and alternative reducing agents) 
• Alternative flue gas cleaning and CO2-processes 
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For testing of an alternative flue gas cleaning method, a separate pilot plant in the Oxyfuel 
pilot plant’s bypass was designed. This is to simplify the flue gas cleaning by combining the 
desulphurization, denitrification and CO2-process. 
 

 
 
Chart 6: The alternative CO2-plant in the Oxyfuel-pilot plant 
 
From Vattenfall’s point of view, further potentials as well as additional research demand is 
especially given with respect to: 

• The optimization of individual components (air separation unit, CO2-plant) and sys-
tems (synergies in cooling processes and utilization of waste heat) 

• The utilization of a sulphur-rich recirculation (requirements on material) 
• Alternative flue gas cleaning processes (the purity of the captured media and their in-

dustrial utilization) 
• Use of the membrane technology (ASU, CO2 plant) 
• The integration of the pressure charged steam fluidized bed drying (DDWT) with va-

por compressor (further development of rotary vane feeders and tests of a vapor 
compressor for an exegetical utilization of vapor within the power plant) 

 
A further aspect for the introduction and acceptance of CCS-technologies is the industrial 
application of the captured CO2. CO2 qualities of all capture processes are suitable for utiliza-
tion in water treatment plants, technical gases, fire extinguishers etc. We can see further po-
tential for CO2 applications in algae breeding or the synthesis of plastics, chemicals or fuels. 
However, this will require further comprehensive research by universities, institutes and the 
chemical industry. Vattenfall is willing to support this research by providing “real Oxyfuel 
CO2”. 
 
Summary 
Oxyfuel works successfully on a pilot level; all emission limits could be complied with and the 
required CO2 purity was reached. CO2 capture within the IGCC process has been proved in 
practice and several post combustion projects could meet their targets. For CO2 transport, 
experience gained with pipelines worldwide can be referred to. The first CO2 storage in a 
saline aquifer in Ketzin (Germany) has been running successfully for years. CO2 storage in 
depleted oil and gas fields is state-of-the-art. The conditions to test the complete CCS-chain 
(capture, transport and storage) are present. Financial subsidies by the European Union are 
possible. 
 
Nevertheless, Vattenfall had to find out that not the technical solution is greatest challenge. 
To gain public and political acceptance is of far greater importance for the introduction of 
CCS-technologies and in this process Vattenfall will continue to contribute. 
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Corrosion aspects of materials Selection for 
CO2 Transport and Storage 

D. Bettge

 

, A.S. Ruhl, R. Bäßler, O. Yevtushenko, A. Kranzmann, Federal Institute for 
Materials Research and Testing, Berlin, Germany 

Introduction 

The geological storage of carbon dioxide (Carbon Capture and Storage, CCS) in depleted 
gas reservoirs or in saline aquifers is a widely discussed issue. Carbon dioxide may induce 
corrosion on the piping steels during compression, transportation and injection. Therefore, 
selection of appropriate piping steels is a key factor in order to increase the safety and 
reliability of the CCS technology, and to keep the processes cost-effective. 

The here described subproject of the COORAL project (German acronym for “CO2 purity for 
capture and storage”) deals with the levels of impurities in the CO2 stream that will be 
acceptable when using specific steels. Material exposure to carbon dioxide (CO2) containing 
specific amounts of water vapor, oxygen (O2) sulfur dioxide (SO2), nitrogen dioxide (NO2

 

), 
carbon monoxide (CO) can be a challenge to steels. Within this subproject 13 different steels 
are tested for suitability as materials used for compression, transportation and injection units 
within the CCS chain.  

Corrosion Caused by Condensation in CO2

Sample coupons are fixed to Teflon mountings in air tight reaction vessels. The vessels are 
continuously fed with on-site prepared gas mixtures for 120 to 600 hours. Reaction vessels 
are positioned in climate chambers to simulate different temperatures, ranging from 5 °C to 
170 °C. Humidity is added by directing a fraction of the CO

 Containing Impurities 

2 flux through a washing bottle. 
Water vapor concentrations are varied between 0 and 2.5 %, O2 up to 1.8 %, SO2 up to 
220 ppm, NO2

The results indicate that under these circumstances corrosion increases with decreasing 
temperature. Dew point dependent condensation of sulfuric and nitric acids can lead to 
severe corrosion. At temperatures above 60 °C only slight corrosion and discolorations occur 
even at elevated concentrations of water, SO

 up to 1,000 ppm and CO up to 750 ppm. 

2, O2 and NO2

 

. At 5 °C condensation and liquid 
film formation on steel surfaces with dissolution of metals and precipitation of ferrous and 
ferric minerals were observed. Surfaces seemed to be uniformly corroded. Cleaned surfaces 
after removal of corrosion products by ultrasonic reveal that corrosion pits also formed. 

 
Fig. 1: Example images of coupons made of „compressor steels“ (from left to right: 1.4006, 1.4313, 
1.4542) after 600 hours at 170 °C in continuous CO2

 

 stream at atmospheric pressure. 
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Fig. 2: Example images of coupons (from left to right, 1.4006, 1.4313, 1.1018) after 600 hours at 
170 °C in continuous CO2

 

 stream at atmospheric pressure, elevated amounts of impurities. 

 
Fig. 3: Example images of coupons (from left to right, 1.4006, 1.4313, 1.1018) after 600 hours at 
60 °C in continuous CO2

 

 stream at atmospheric pressure. 

    
Fig. 4: left: Generation of bubbles on coupon surfaces due to condensation of acids and gas 
generation at 5 °C and 0.8 % water, 1,8 % oxygen, 760 ppm CO2, 1000 ppm SO2 and 220 ppm SO2. 
right: Corrosion of low alloyed pipeline steels after 120 hours at 5 °C in CO2 containing 2 % H2O, 
0.6 % O2 and 650 ppm SO2

 
.  

Corrosion in CO2

Electrochemical experiments were carried out on piping steels exposed to CO

 Saturated Brine 

2 and artificial 
saline brine (“Stuttgart” aquifer). The corrosion of 1.4021, 1.4162 and 1.7225 (AISI 4140) 
steels, which are considered for injection, was investigated. The specimens were exposed to 
the CO2

Some results are shown in the figure below. For example, the steel 1.4021 exhibits pitting 
corrosion and is therefore not recommended for the use in injection wells. After 14 days 
1.4162 does not show any indications of pitting corrosion. The diagram indicates that passive 
layers are formed. Therefore local corrosion is not likely to occur during longer expositions. 

 saturated brine for 24 h up to 336 h. Electrochemical and metallographic analyses 
have been carried out. 
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1.7225 shows uniform corrosion. After 5 days of exposition a constant corrosion rate is 
established. The corrosion rate is about 1.9 mm/year measured by mass loss. 

 

1.4021 

1.4162 

1.7225 

Fig. 5: Examples for corrosion of steels in CO2

 

 saturated brine, steels 1.4021, 1.4162 and 1.7225. 
Left: polarization resistance and free corrosion potential over time. Right: Surfaces of coupons after 
336 hours. 1.4021: pitting corrosion, 1.4162: no corrosion, 1.7225: uniform corrosion. 
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Aspects of CO2-Pipelinetransport 
U. Lubenau, DBI Gas- und Umwelttechnik GmbH 

 
 
 
Carbon capture and storage offers the opportunity to reduce CO2 emissions while using fossil 
fuels. Concerning the current situation of energy generation and assuming that fossil fuels 
will play an important role on the way to a sustainable energy supply it is expected that CCS 
will be further considered as a bridge into the future.  
 
As CO2 point sources and suitable sinks are often located in different regions (figure 1), 
transport routes are essential. The transport of huge amounts of gases is state of the art and 
managed by pipelines. Solely in Europe the existing Natural Gas System has a length of 1.2 
million km. The engineering of transport and distribution systems is well developed 
concerning hydraulic and material aspects. Transportation of CO2 is different in comparison 
to natural gas for several reasons. Firstly the thermodynamic properties are significantly 
different to natural gas, resulting in different head losses, even when CO2 is transported in its 
gaseous state. Moreover the critical point is relatively low regarding temperature and 
pressure.  
This offers transportation in the supercritical phase, which is challenging but allows transport 
in a relatively dense state. The thermodynamic properties of CO2 necessary for hydraulic 
calculations are available. Furthermore pure CO2 is not known for initiating or propagating 
material degradation mechanisms. But the situation is different for CO2 containing impurities 
and it is known that the flue gases of coal fired power plants will contain significant shares of 
impurities.  
These impurities can be removed but the treatment is costly and therefore it is necessary to 
find a compromise for solving the problems before transporting (by removal of impurities) or 
making the transport system fit for CO2 with significant shares of impurities. To solve this 
problem it is necessary to determine the thermodynamic properties for realistic flue gas 
compositions and then calculate the head losses for different transport scenarios (regarding 
distances and transport state of the CO2).  
 
Furthermore it is important to evaluate if standard carbon steel (e.g. line pipe steel used in 
the oil and gas business as X 42, X 70 or X 80) can be used for the transportation of impure 
CO2. 
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In the project COORAL (funded by the Bundesministerium für Wirtschaft und Technologie) 
these questions will be answered and moreover the whole chain of a safe and stable 
underground storage of CO2 from the production process to the reservoir will be addressed 
(http://www.bgr.bund.de/nn_1633894/DE/Themen/Geotechnik/CO2-
Speicherung/COORAL/Startseite/startseite__node.html?__nnn=true). Concerning the 
transportation several scenarios will be investigated and economical evaluated. Furthermore 
the effect of the equations used for the head loss calculation is going to be investigated. 
 
 
 

 
 
Figure 1: Distances between CO2 Sources and Sinks 

Transport Lenghts (Air line)
„best“: 50 km
„medium“: 250 km
„worst“: 500 km

[1]
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Post-combustion processes employing polymeric membranes 
Torsten Brinkmann, Helmholtz-Zentrum Geesthacht,Institute of Polymer Research, 

21502 Geesthacht, Germany; Thorsten Wolff

Gas permeation employing CO

, Helmholtz-Zentrum Geesthacht, 

Institute of Polymer Research, 21502 Geesthacht, Germany; Jan-Roman Pauls, 

Helmholtz-Zentrum Geesthacht, Institute of Materials Research, 21502 Geesthacht, 

Germany 

2-selective polymeric membranes is a promising 

alternative to absorption processes. Its suitability for the removal of CO2 from flue 

gases of fossil fuel fired power plants will be investigated and rated. The newest 

performance data of polymeric membrane developments will be considered for 

process simulations. Based on the membrane’s performance, process designs with 

different possible plant layouts will be discussed. The influence on the power plant 

efficiency will be quantified. By varying parameters as e.g. feed to permeate pressure 

ratio or process stage arrangement, the demand of energy for pumps and cooling 

devices shall be minimised and related to the purity of CO2

Next to the process design studies, additional aspects of applying gas permeation to 

post-combustion will be discussed. One important point is the design of membrane 

modules tailored towards this application. The module concepts discussed will focus 

on flat sheet membrane configurations with a minimised pressure drop on the 

permeate side to facilitate an optimised withdrawal of the CO

 in the permeate and the 

over all power plant efficiency. 

2

 

 enriched permeate. 

Furthermore, the pre-treatment of the flue gases is important since it will have a large 

influence on the membrane life time. The required driving force of the process has to 

be applied by blowers, compressors and vacuum pumps or combinations thereof. 

Due to the large flowrates involved, the selection and availability of these 

components is of a large importance. 
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Carbon Molecular Sieve Membranes for Carbon Capture  
Bee Ting Low 

 
and Tai-Shung Chung, National University of Singapore, Singapore 

 
Introduction and Objectives 

Power generation via fossil fuel combustion produces carbon dioxide which is often deemed 
as the primary cause for global warming. The removal of carbon dioxide from flue gas is thus 
of paramount importance [1]. In recent years, advances in membrane separation make it 
competitive with the conventional amine absorption in flue gas treatment [1]. The design of 
membrane material is a critical aspect in the development of membrane technology for post-
combustion carbon capture. Carbon molecular sieve membranes (CMSMs) represent a 
special category of inorganic membranes that shows promising CO2/N2

 

 separation 
performance. The motivation for transforming a polymeric membrane to a highly size-
selective inorganic CMSM is to circumvent the permeability-permselectivity tradeoff 
relationship shown by most polymers [2-4].  

The molecular frameworks of thermosetting polymers (e.g. polyimides) can be retained after 
carbonization and hence are ideal for fabricating CMSMs [2]. Recently, Low et al. studied the 
formation of pseudo interpenetrating polymer networks (IPNs) by the in-situ reaction of 2,6-
bis(4-azidobenzylidene)-4-methylcyclohexanone (azide) within pre-formed linear polyimide 
frameworks [5]. In this approach, the free volume distribution of a polyimide with preferably 
high intrinsic free volume can be altered by changing the content of azide [4]. The change in 
the polymer free volume by incorporating the azide network is anticipated to bring about a 
parallel change in the pore size distribution of the corresponding CMSM. In this study, 
pseudo-IPNs comprising of azide and poly(2,3,5,6-phenylene-2,2’-bis(3,4-carboxylphenyl) 
hexafluoropropane) diimide (6FDA-TMPDA) were used to fabricate CMSMs [6]. The effects 
of azide loading and heat treatment temperature on the CO2/N2

 

 transport properties of the 
CMSMs were investigated [6]. 

 
Methodology 

6FDA-TMPDA was synthesized by chemical imidization. Azide was used without further 
purification. Dichloromethane was the solvent for preparing 6FDA-TMPDA/azide pseudo-
IPNs. The chemical structures of 6FDA-TMPDA and azide are shown in Figures 1(a) and 
1(b), respectively.  
 
Figure 1.  Chemical structures of (a) 6FDA-TMPDA and (b) 2,6-Bis(4-azidobenzylidene)-4-
methylcyclohexanone  
 
 
 
 
 
 
 
 
To prepare the film casting solution, the azide monomer was first dissolved in 
dichloromethane and stirred for 1 hr. Subsequently, 6FDA-TMPDA was added to the solution 
and stirred overnight. The polymer concentration in the solvent is 5 wt% while the azide 
loading in the polymer varied from 0 to 30 wt% [6]. The solution was filtered before ring 
casting onto a Si wafer plate at 25 0C. After solvent evaporation, the nascent film was 
annealed at 250 0

 

C. Figures 2(a) and (b) illustrates the annealing and carbonization 
protocols, respectively.  
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Figure 2. (a) Heat treatment protocol for final annealing temperatures of 350 to 450 0

(b) Pyrolysis protocol for final carbonization temperatures of 550 to 800 
C  

0C  

 
The membranes were characterized by thermal gravimetric analysis (TGA) and X-ray 
diffraction (XRD). The pure gas measurements were done using a variable-pressure 
constant-volume gas permeation cell at 10 atm and 35 0

 
C.  

Results and Discussion 
 
The 6FDA-TMPDA polyimide starts to decompose at around 400 0C and the maximum rate 
of degradation occurs at 538 0C [6]. The initial weight loss at 400 0C up to 500 0C was due to 
the degradation of CF3 groups and the subsequent decomposition beyond 500 0C was 
attributed to the imide groups [7]. The 6FDA-TMPDA polyimide shows a second 
decomposition peak at around 600 0C. The decomposition curves of 6FDA-TMPDA/azide 
pseudo-IPNs display the characteristics of the pristine polyimide. The incorporation of the 
azide network decreases the thermal stability of the polymeric films and the onset of 
decomposition occurs in the range of 200-300 0C [6]. The weight loss at 200-300 0

 

C is 
possibly due to decomposition of thermally liable amine (N-H) groups.  

For 6FDA-TMPDA/azide (90-10) annealed or pyrolyzed at a temperature in the range of 250 
to 800 0C, the local maxima for CO2 permeability occurs at 550 0C [6]. The highest N2 
permeability is obtained at 450 0C. With rising temperature, the CO2/N2 permselectivity 
decreases initially, reaches a minimum at 425 0C and elevates with further temperature 
increase [6]. The glass transition temperature of 6FDA-TMPDA/azide (90-10) is 411 0C [5]. 
Therefore, between 250 to 425 0C, the creation of pores from the evolved gases and the 
enhancement in polymer chain mobility (near the glass transition) are the governing 
processes which accounts for the higher permeability and lower permselectivity [6]. In the 
range of 450 to 650 0C, two competing effects of pore evolution from gas release and 
structural evolution from molecular rearrangement are present [6]. This can be inferred from 
the smaller changes in gas permeability and selectivity. As the temperature goes beyond 
650 0

 

C, the densification of the structure accounts for the drastic decline in gas permeability 
and the rapid elevation in permselectivity. 

To understand the underlying structural properties of the CMSMs that account for the 
observed gas transport behaviors, the membranes were characterized using XRD. For the 
6FDA-TMPDA/azide (90-10) that was carbonized at 550 0C, there is a broad peak over the 
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d-spacing range of 4.4 to 6.8 Å [6]. This broad distribution of approximated inter-segmental 
distance explains for the higher gas permeability and lower selectivity of the membrane. At a 
pyrolysis temperature of 800 0C, a bimodal profile with d-spacings of 4.0 and 2.0 Å is 
observed [6]. This corresponds to the better permselectivity and smaller permeability of the 
6FDA-TMPDA/azide CMSM that is prepared at a pyrolysis temperature of 800 0

 
C.  

The pristine polyimide and 6FDA-TMPDA/azide pseudo IPNs with different azide contents 
were carbonized at 550 and 800 0C, and the gas transport properties are summarized in 
Tables 1 and 2 [6]. For the CMSMs prepared at 550 0

 

C, the addition of 10 wt% azide leads 
to a higher gas permeability but further increase in the azide content to 30 wt% results in a 
lower permeability. The higher permeability and lower selectivity of 6FDA-TMPDA/azide (90-
10) CMSM correspond to the broad peak of its XRD spectra. The disappearance of the 
broad peak for 6FDA-TMPDA/azide (70-30) indicates a shift and sharpening of the pore size 
distribution, which results in a lower gas permeability and higher selectivity.  

Table 1. Pure gas permeability of 6FDA-TMPDA/azide pseudo-IPNs pyrolyzed at 550 0

Sample 

C 
Permeability (Barrer) CO2/N2 

selectivity CO N2 2 

6FDA-TMPDA 6810 ± 125  277 ± 0.6 24.6 ± 0.4 
6FDA-TMPDA/azide (90-10) 9290 ± 170 358 ± 17 26.0 ± 0.8 
6FDA-TMPDA/azide (70-30) 3640 ± 17 151 ± 0.2 24.2 ± 0.1 
 
Table 2. Pure gas permeability of 6FDA-TMPDA/azide pseudo-IPNs pyrolyzed at 800 0

Sample 

C 
Permeability (Barrer) CO2/N2 

selectivity CO N2 2 

6FDA-TMPDA  1460 ± 17 46.6 ± 0.1 31.3 ± 0.3 
6FDA-TMPDA/azide (90-10)  851 ± 9.1 25.6 ± 0.2 33.2 ± 0.1 
6FDA-TMPDA/azide (70-30)  280 ± 7.0 8.85 ± 0.2 31.7 ± 0.1 
 
At a temperature of 550 0C, two competing effects of pore evolution from gas release and 
structural evolution from molecular rearrangement are present. The 6FDA-TMPDA/azide 
pseudo-IPN is apparently homogenous as indicated by the presence of a single glass 
transition temperature [5]. However, the transition is broad especially for 6FDA-
TMPDA/azide (70-30) [5]. This implies the existence of multiple nano-domains with varying 
compositions. The dimensions of these nano-domians for 6FDA-TMPDA/azide (70-30) 
CMSM are possibly larger and the distribution within the polyimide is more heterogeneous, 
as compared to the 6FDA-TMPDA/azide (90-10) CMSM. The variation in the homogeneity of 
the pseudo-IPN precursor creates CMSM with different pore connectivity. As the 6FDA-
TMPDA/azide (90-10) CMSM prepared at 550 0C is more homogenous, it possibly exhibits 
better pore connectivity which accounts for the enhancement in gas permeability [6]. 
Conversely, for the 6FDA-TMPDA/azide (70-30) CMSM prepared at 550 0C, the pores are 
trapped within the denser and more impermeable azide-rich nano-domains [6]. Hence, the 
gas permeability decreases. At a carbonization temperature of 800 0C, the dominant process 
that is occurring is the transformation and rearrangement of molecular structure and a 
CMSM with denser morphology is obtained. Therefore, for the membranes pyrolyzed at 800 
0

 
C, the gas permeability decreases and permselectivity increases with higher azide content.  

The CO2/N2 gas separation performance of the CMSMs is plotted against the Robeson’s 
upper bound as depicted in Figure 3 [6,8]. As illustrated in Figure 3, the CMSMs that are 
pyrolyzed at 550 0C outperform conventional polymeric membranes and the CO2/N2 
separation performance falls on or above the upper bound. It was highlighted by Merkel et 
al. that in the treatment of flue gas by membranes, the separation performance is limited by 
the difference in pressure ratio [1].  It is redundant to have membranes with exceptionally 
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high selectivity. In fact, membranes with high permeability and reasonable selectivity of 
about 20 to 40 are preferred for use in post-combustion CO2 capture. Therefore, the 6FDA-
TMPDA/azide (90-10) membrane that is carbonized at 550 0C exhibits CO2/N2 separation 
performance that meets the aforementioned criteria for flue gas purification. 

 
 
Conclusions 
 
Carbon membranes that are derived from polyimide/azide pseudo-IPNs exhibit good CO2/N2 
transport properties which are determined predominantly by the azide loading and pyrolysis 
temperature [6]. The 6FDA-TMPDA/azide (90-10) CMSM pyrolyzed at 550 0C has a CO2 
permeability of 9290 barrer and CO2/N2 selectivity of 26, which is suitable for use in CO2

 

 
capture from flue gas [6].  
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Abstract 
Post combustion capture of CO2 via reactive absorption (RA) using amines is 

seen as one of the most attractive solutions to remove CO2

Key words: CO

 from flue gases in 

large industrial plants such as refineries, power plants and petrochemical 

industry. The dimensions of the columns used in these industries will be much 

larger than those used for other industrial applications. Therefore for an 

efficient design of columns for such scales, a detailed scale-up study is 

necessary.  This study should be based on a rigorous rate based model along 

with the detailed experimental research. In this work, a user defined rigorous 

rate-based model is validated initially and its role in a scale-up study and 

commercialization of the technology is explained consequently.  

2

 

, amines, reactive absorption, rate-based model, scale-up 

1. Rigorous rate-based model 

The rigorous rate-based model used in this work considers a packed bed RA 

column which is axially discretised into smaller packing segments for detailed 

analysis. In the model, the mass transfer across the gas-liquid interface is 

described by the two-film theory. Multi-component diffusion in the film is 

calculated using the Maxwell-Stefan equation. It is assumed that phase 

equilibrium exists only at the phase interface. Because the chemical reaction 

takes place only in the liquid phase, the chemical kinetics is integrated into the 

balances on the liquid side. For instantaneous reaction, chemical equilibrium 

constants are used to calculate the equilibrium composition. Mass transfer 

coefficients are calculated from empirical correlations which are in turn 

dependent on physical properties, packing type and hydrodynamics. The 
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liquid film can be further discretised in radial direction into several segments to 

study composition profile across the film. The mole and heat balance 

equations for the multicomponent system are solved in each segment. To 

determine axial temperature profiles, differential energy balance equations are 

solved [1].  

 

2. Process simulator  
A wide variety of commercially available and in-house developed process 

simulators have been used to study reactive absorption processes. Aspen 

Plus® (RateSep), Aspen HYSYS®, ProTreat™, ProMax and gPROMS are 

commercially available simulators and Chemasim and CO2SIM are the 

examples of in-house process simulators [2]. Main advantages of these 

simulators are the availability of different chemical kinetics, different types of 

columns with variety of column internals, thermodynamic models and 

empirical mass transfer correlations as built-in functions. These in-built 

functionalities and the user friendly interface make these simulators easier to 

operate. However, often it is difficult to have an access to the governing 

model equations. The user cannot examine the influence of the model 

equations on simulation results. Furthermore, modifications and application of 

newer correlations becomes difficult. Many times the operating window of 

these simulators is limited. This is especially an important issue in scale-up 

studies where changing column dimensions can cause a complete different 

process behavior both in terms of hydrodynamics and chemical kinetics. Here 

it is necessary that the user has a complete access to the model equations for 

a better understanding of the model results. The model also offers user to 

study the process in depth by switching to different options with respect to 

various process phenomena, e.g. adiabatic or non-adiabatic process, Fick’s or 

Nernst-Planck diffusion etc.[3] 

The model presented here (see section 1) allows the user to formulate all the 

equations and correlations. The model is implemented in the simulation 

environment Aspen Custom Modeler® which uses an interface with Aspen 

Properties® to calculate the thermodynamic and physical properties. The 

Electrolyte NRTL model was chosen to describe the non-idealities in the 

reaction system. 
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3. Model validation results 
To validate the above-described model, pilot plant experiments of CO2 

absorption in monoethanolamine (MEA) were carried out. The pilot-scale 

absorption column has an inner diameter of 0.125 m and a packing height of 

4.2 m with Sulzer BX packing [4]. The reaction system includes two kinetically 

controlled reactions and four equilibrium reactions. The kinetic rate constants 

and equilibrium reaction constants are taken from literature [5]. Steady-state 

simulations were carried out using the inputs from experiments. The results of 

simulations are given in Table 1. The height of an individual packing segment 

was changed in order to get stable concentration and temperature profiles 

(Fig. 1, 2: for flow rate - 2.45mol/s). For the reaction between CO2

Table 1: Comparison of experimental and model results: overall CO

 and MEA, 

kinetics of Hikita et al. [6] was implemented. Mass transfer correlations of 

Rocha et al. [7] were used along with the correlation of Tsai et al. [8] for the 

calculation of the interfacial area.  

2

No. 

 removal 

L_flow 
(mol/s) 

L_flow 
(mol/s) 

x_CO
mol/mol 

2 x_CO
mol/mol 

2 
Total CO2

(mol/s) 

 
absorbed 

Relative 
deviation 

(%) 

 exp. model exp. model exp. model  
1 1.584 1.450 0.050 0.051 0.079 0.074 6.227 
2 1.898 1.739 0.049 0.051 0.093 0,089 4.132 
3 2.452 2.322 0.047 0.051 0.115 0.119 -3.800 
4 2.466 2.352 0.048 0.050 0.120 0.118 1.543 
5 2.817 2.620 0.047 0.051 0.132 0.134 -1.346 
6 3.311 3.258 0.044 0.047 0.146 0.153 -4.319 
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4. Conclusions  
From the results it can be concluded that the user defined rigorous rate-based 

model of RA is validated (±7% accuracy). The validated model is an important 

analytical tool and can also be used for optimization study, sensitivity analysis 

and scale-up studies. The model has sub-models for the calculation of 

reaction kinetics, hydrodynamics and mass transfer parameters, which offers 

high flexibility. Unlike other commercially available simulation tools, the model 

gives the user complete access to governing equations, correlations and 

model structure which can be modified for a variety of column internals and 

new absorption solvents. This is very important in the scale-up study. 

 

(Authors would like to thank Dr. Schoenmakers at TU Dortmund for his 

guidance) 
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The Post-Combustion Capture Process (PCC) 
The post-combustion capture of CO2 from the flue gases of fossil fired power plants 
by an absorption process represents one option to reduce the emissions of carbon 
dioxide.  

 

 
Figure 1: Schematic diagram of a post-combustion plant  
 

 

The CO2 in the flue gas is absorbed by a liquid solvent and desorbed under the addi-
tion of heat (ref. Figure 1). The separated CO2 is finally sequentially compressed and 
cooled before it is directed to a permanent geological storage facility.  

The main advantages of PCC are that it has only a relative small impact on the 
power plant process and therefore standardized components can be used, the re-
liability of the power plant is not reduced (since operation without capture is still 
possible), and existing plants can be retrofitted. 

For a steam turbine the PCC process represents a thermal consumer. Similar to the 
extraction of hot steam for district heating, the heat is mainly transferred by conden-
sation in a surface heat exchanger. The condensate remains in the water-steam-
cycle and is admitted back into the feed water heating system at an appropriate posi-
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tion. Therefore the requirements are very similar to other state-of-the-art process 
heat extractions (e.g. for district heating). The temperature level defined by the heat 
consumer is determined by the condensing pressure of the extracted steam and the 
terminal temperature difference of the heat exchanger.  

Extraction of process steam from steam turbine 
 

There are two principles applied to extract steam from the turbine (ref. Figure 2).  

 

 

Figure 2: Variants of extracting steam from a steam turbine  

 

Bleeds are typically used for regenerative feed water heating. A property of bleeds is 
that the pressure at the extraction point behaves proportional to the load of the fol-
lowing turbine section (“sliding pressure”). This means that the higher the extracted 
mass flow, the lower the pressure at the extraction point. On the other hand the pres-
sure at the extraction point has to be higher than the pressure in the heat exchanger, 
so it can be the case that not enough steam is provided if an uncontrolled bleed is 
used.  

In contrast to the uncontrolled bleed, a controlled extraction is capable of maintain-
ing the pressure at the extraction point independently of the turbine load. The re-
quired mass flow can be adjusted indirectly by using the throttling device in the main 
flow path of the turbo-set (ref. Figure 2). The disadvantage is that throttling losses 
occur in the flow to the following turbine section.  
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While bleeds can be positioned anywhere in the flow path of the turbine, controlled 
extractions are typically arranged between two turbine casings since a throttling de-
vice can be easily installed there.  

The process of absorption typically calls for a constant temperature of the transferred 
heat. This means that the pressure at the extraction must be kept constant, inde-
pendent of the turbine load point. This can be achieved by throttling the flow down-
stream of the extraction. Conventionally the steam is extracted between the interme-
diate pressure turbine and the low pressure turbine since this is where a butterfly 
control valve can be positioned. If the saturated steam temperature at the corre-
sponding extraction pressure is equal to the required process temperature, no throt-
tling in the design case, e.g. at full load, is necessary.  

For the controlled steam extraction to provide process heat at a low temperature 
level, the connecting pipe between the IP- and LP-turbines is suitable. The choice of 
the design pressure at this position, subsequently called separation pressure, is 
highly relevant for the occurring losses in the water steam cycle. With the goal of 
minimising these losses, calculations were carried out, analysed and discussed. The 
calculations are based on an 800 MW coal fired power plant. The variation parame-
ters were the separation pressure (between the IP- and LP-turbines) and the pres-
sure in the desorber of the downstream process.   
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Exergetic contemplation of losses  
 

The calculations are carried out contemplating exergetic losses. Exergy represents 
the part of energy that can be transferred into any other kind of energy. Energy con-
sists of exergy and anergy, which cannot be used in a process. To define exergy and 
anergy the ambient temperature is the decisive factor. For steam power plants the 
temperature of the steam in the condenser can be used instead. 

 

Figure 3: Calculation of exergetic losses for isenthalpic throttling and desuperheating 
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Choice of separation pressure and desorber pressure 
 

 

 

Figure 4: Variation of pressure at turbine extraction point for atmospheric operated desorber 
 

For a high extraction pressure in combination with a low temperature level of the heat 
consumer large exergetic losses occur, either due to throttling (in the process steam 
line) or due to high terminal temperature differences in the heat exchanger.  

For a low separation pressure, the high volumetric flows at the IP-exhaust call for 
large dimensions of the cross-over-pipe and the process steam pipe.  

Depending on the design of the IP-turbine there might be additional restrictions for 
the choice of the separation pressure. For low separation pressures resulting in high 
temperature differences between inlet and exhaust steam, a modified design concept 
might be necessary.  

For variants with an increased desorber pressure it is important to consider the auxil-
iary power of the capture plant as well, especially of the CO2-compressor, since the 
compression also starts with the increased pressure. Another relevant aspect of in-
creased desorber pressure could be the influence of the dimensions of the desorber 
depending on the volumetric flow of the captured CO2.  
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Results and conclusions  
 

After summarizing all relevant occurring losses, the variants can be compared.  

 

Additional summarized 
exergetic losses of the 
variants: Pressure at desorber 
  1.0 bar 1.6 bar 2.8 bar 
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t  2.5 bar Base (#)   

3.6 bar   1.5 MW (#)  
5.6 bar 24.5 MW 14.7 MW  6.2 MW (#) 
8.0 bar 35.0 MW 25.1 MW 16.6 MW 

Table 1: Additional exergetic losses of analysed variants 
 

The throttling of the process steam, or the increased terminal temperature difference in the 
heat exchanger causes significant exergetic losses. By increasing the separation pressure 
together with the desorber pressure the total losses can be limited.  

 

The main conclusions which can be derived are listed below: 

 

• Low separation pressures are beneficial for the provision of process steam. Limita-
tions may result from the design of the IP-turbine, or from high volumetric flows.  

• To retrofit a power plant with post-carbon capture without modifying the steam tur-
bine, exergetic losses can be avoided by increasing the desorber pressure. Most of-
ten this is more economical than to adapt the steam turbine to lower separation pres-
sures. 

• The pressure in the desorber represents an additional degree of freedom. However it 
can only be applied if the thermal stability of the solvent is sufficiently stable at in-
creased temperatures.  

• Siemens uses an amino acid salt as solvent, which is characterized by very high 
temperature stability. This has the advantage that the pressure in the desorber can 
be used as an additional degree of freedom. 

• Siemens is in the position to evaluate all components along the process chain (from 
fossil fired boiler to water/steam cycle, including the steam turbine, up to the proc-
esses of capturing and compressing the CO2) as well as their interaction, and to op-
timize the overall system.  

• Siemens develops appropriate concepts with the aim of minimising the decrease in 
efficiency for the application of Carbon Dioxide Capture and Storage (CCS). 

 

#: no throttling in process 
steam line or increased 
terminal temperature differ-
ence in the heat exchanger 
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Nonlinear Model Predictive Control for operation of a post 
combustion absorption unit 

J. Åkessona,b, G. Lavedana, K. Prölßa, H. Tummescheita, S. Veluta  
aModelon AB, Ideon Science Park, Lund, Sweden 

b

Introduction 

Department of Automatic Control, Lund University, Sweden 

One of the most promising processes to separate carbon dioxide (CO2) from flue gas 

in coal-fired power plants in order to reduce its emission to the environment is based 

on absorption with aqueous amine solutions. A schematic of the process is shown in 

Figure 1. 

 
Figure 1: Schematic of an amine scrubbing process to remove CO2

 

 from flue gas. 

The cleaned gas is released to the environment, while the rich solution is 

regenerated in the stripper at elevated temperatures driven by bled steam from the 

power generation process. After water condensation from the exiting gas phase the 

CO2 product stream is compressed and stored. This process drastically reduces 

overall power plant efficiency. Minimizing the amount of steam required in the 

reboiler is therefore the task with highest priority in the optimization of this process. 
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With an increasing demand on the plant’s flexible operation in the face of frequent 

load, dynamic simulation and optimization are seen as important tools to ensure an 

efficient incorporation of the carbon capture into the power generation. This paper 

presents results achieved within a larger project aiming at developing an optimization 

technology for advanced model-based control of the separation plant.  

Background 

Modeling  

The post-combustion separation unit was modeled with Modelica, an equation-based 

modeling language for dynamic simulation, which is supported by a number of 

different platforms. The focus was on the two column models, which describe the 

mass transfer-driven absorption of CO2 from the flue gas by a MEA (mono-

ethanolamine) -solution and the corresponding process in the stripper column. For 

this work only the stripper unit models including reboiler and condenser are 

considered in the following study.  A description of the models, as well as validation 

with experimental data and physical model reduction to meet the requirements of an 

optimization routine are presented in [1]. 

Model Predictive Control  

Model Predictive Control (MPC) is an advanced control method that relies on the 

online solution to optimal control problems. Every time new plant measurements are 

available, the MPC controller makes use of a model to predict the future plant 

behavior and to compute the control action that minimizes a cost function defined 

over a prediction horizon. The first part of the optimal control variable trajectories is 

then applied to the process and the controller waits for new measurements. This so 

called-receding horizon control strategy is an efficient feedback algorithm that can 

handle multi-input multi-output systems and constraints on any process variables. 

JModelica.org 

Solving optimal control problems may be computationally challenging, in particular for 

non-linear models. The software platform JModelica.org [2]  is used to solve the 

dynamic optimization problems from the MPC formulation applying a direct 
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collocation method together with the open-source Nonlinear Programming solver 

IPOPT [3].  

Application of nonlinear MPC to the stripper unit 

Problem formulation 

The control problem is formulated as in standard MPC using a quadratic cost function 

penalizing deviations of the controlled variable from a reference value, as well as 

variations in the control signal. The variable to be controlled is the removal rate 

defined as a CO2 balance across the absorber. The chosen control signal is the heat 

flow rate to the reboiler. An upper bound on the reboiler pressure is imposed to avoid 

MEA degradation occurring at high temperatures. Both the control and the prediction 

horizons are set to 1000s. The sampling time is chosen to be 100s. 

Results 

The continuous-time optimization problem, containing 50 states, 1493 equations and 

1493 variables, is transformed by JModelica.org into a large scale discrete-time 

Nonlinear Program with 29824 equations. Performance of MPC is now evaluated in a 

simulation where the desired removal efficiency is increased, see Figure 2. The heat 

flow rate to the reboiler is rapidly increased from its start value of 0.7 MW to 1.05 

MW, leading to a removal efficiency of about 0.8 at time t=400s. At around 500s, the 

reboiler pressure reaches its maximal allowed value of 1.95 bar and the heat flow 

rate decreases slightly to avoid constraint violation. Because of the high condenser 

pressure, the target efficiency of 0.9 cannot be achieved in this optimization setup. In 

contrast to [1] the optimized trajectories are derived iteratively by solving a sequence 

of open-loop control problems. Solving a single problem takes about 60s, which is 

below the sampling-time of 100s required for real-time control. Future work includes 

the addition of the MEA circulation rate as second control signal and the 

implementation of an observer to estimate parts of the state that cannot be measured 

online. 
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Figure 2 Optimized trajectories when the target efficiency is changed to 0.9 after 100 

seconds. From top to bottom: removal efficiency, heat derivative, condenser pressure 

and reboiler pressure. 
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Solvent based CO2 capture is performed using scrubbing. It is currently the state of 

art technology for cleaning flue gasses and similar carbon dioxide rich streams. The 

technology has only been proven for smaller bench scale and pilot test using amines. 

It is yet to be built full scale, for capturing CO2 from coal fired power plants. On a long 

term basis new processes may substitute this equipment. In the mean time the amine 

units will be successful in reducing the emission of CO2

 

, especially from coal fired 

power plants. There is a huge potential to reduce the energy demand with the 

existing technology.  

Principles and case studies 
In this work a generic model will be presented for the simulation of both absorption 

and desorption. It involves a complete rate based equation scheme for the column 

tower, linked to models of the reboiler and condenser. The core modular parts are 

discussed and an overview of the thermodynamic modelling, transport relations, and 

physico-chemical properties will be presented.  

New concepts, methods, tools, and ideas are given in order to explain the principles 

of solvent based CO2

The calculations show the properties inside the column as function of column height, 

compared to experimental measurements. Result on energy consumption, simulation 

scenarios, and method evaluation will be presented, supported by case studies 

based on real life capture process parameters. A comparison towards recent 

experimental pilot studies is part of the results.  

 capture.  
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Abstract 

The Chilled Ammonia Process (CAP) is a post-combustion technology that 
captures CO2 emitted from the power plants for sequestration and storage. Deployment 
of this technology requires a flexible process simulation tool for design that can evaluate 
various CAP configurations to achieve the lowest possible capital cost, energy demand 
and operating cost in the context of the power plant operating objectives.  This paper is 
focused on incorporating the knowledge gained from CAP field pilots with plant 
capacities ranging from 1,000 to 100,000 metric tons of CO2

A robust process simulation tool using Aspen Plus is developed by Alstom to 
design CAP CO

 captured per year into our 
modeling tools to ensure success for predicting full scale unit performance.  

2

The paper presents the methodology that Alstom utilized to: 

 Capture facilities.  Underpinning this development, thermo–physical 
properties and chemistry were regressed using data from laboratory and literature. To 
validate the model, experimental steady state data from the lab-scale pilot plant in 
Sweden, field pilot plants in United States and Sweden, and a Process Validation Facility 
(PVF) in United States were compared with model results.  This comparison validated the 
process simulation tool across a range of CAP operating conditions and flue gas sources.   

• Ensure quality of field data from calibrated instruments 

• Implement advanced data reconciliation techniques 

• Characterize the accuracy of simulator predictions 

• Analyze the developed simulation tool to ensure reproducibility of results 
independent of plant size 

 

This validated model will be used to design and optimize future CAP scale-up facilities.   
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Keywords: Destillation, CO2-Absorption, Raschig Super-Pak, Raschig Super-Ring 

 
 
 
Energy and performance-efficient CO2 capture in the field of gas absorption/stripping 
will become an increasingly important technology in various industrial and 
environmental applications for decades to come.  To meet the goal of optimized CO2 
capture performance, high capacity/high mass transfer efficiency/low pressure drop 
modern packings are required.  To support these requirements, a series of 
commercial/pilot scale tests have been conducted on high performance random and 
structured packings.   
  
Capacity-efficiency-pressure drop-liquid hold-up examples from Commercial Test 
Columns will be described.  Test results clearly demonstrate superior all round 
performance of modern high performance structured or random packings over the 
well-known standard metal packings.   
 
Beside the distillation tests hydraulic air-water and mass transfer measurements from 
CO2 absorption into caustic solution performed will be presented. Again comparison 
data will be given for high performance random and structured packings.  
 
All data presented will answer the question if distillation test data can be used for a 
ranking list of packings in CO2 absorption processes. 
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Abstract 
STEPCAP is a multipartner consortium project, the aim of which is to develop a targeted 
range of novel CO2 adsorbents for carbon capture.  This research into materials and process 
development is essential to achieve the potential cost and efficiency benefits offered by solid 
sorbents capture technologies over the current state of the art processes.  Firstly, this paper 
will discuss the key materials and process challenges associated with developing solid 
sorbents.  This will lead into a discussion of materials development in STEPCAP which is 
based on a fundamental understanding of adsorption processes to design and optimise 
material properties and form.  The development and performance of the three classes of 
materials under development in this study, microporous polymers, surface modified 
hydrotalcites, and co-doped sorbents, which offer potential for a step change increase in 
adsorption capacity and performance over previously developed materials will be discussed.  
Modified hydrotalcites such as, amine modified layered double hydroxides (LDH’s) have 
been synthesized via the exfoliation and grafting route.  In addition, novel conjugated 
microporous polymers synthesized through Sonogashira-Hagihara coupling have also been 
investigated and have demonstrated similar capacities.  Critically, due to the hydrophobic 
nature of some of these adsorbents, identical performance has been observed in the 
presence of moisture, an advantageous property for operation in the water saturated 
environment of flue gases.  This presentation will also present data on the performance of 
these materials in simulated flue gases as well after simulated temperature swing 
regeneration cycles to assess the stability and lifetime of the sorbents. 
 
Introduction 
Recognising that fossil fuels will continue globally as part of a diverse energy mix for some 
time[1], targets and strategies have been developed to reduce greenhouse gas emissions, 
for example the European Unions Sustainable Energy Technology (SET) Plan[2].  Rapid 
development and implementation of these strategies will be required if the warnings of 
potentially damaging climate change reported by the Intergovernmental Panel on Climate 
Change (IPCC) are to be avoided[3], a task that is made more challenging when set against 
the significant global increase in energy demand[1].  Europe is committed to an 80% 
reduction in greenhouse gas emissions by 2050[4] and similar emissions reduction targets 
have been proposed and committed to on a global scale[5]. 
The current state of the art technologies for post-combustion capture, amine solvent 
scrubbing, uses aqueous solutions of alkanolamines to achieve CO2 separation from flue 
gas[6-8].  Whilst this technology is the current state of the art and will be used in the first 
generation of carbon capture plant, the technology has a number of drawbacks in terms of 
complexity in operation, high pH solvents leading to corrosion of metal piping, and the 
energy-intensive regeneration of the solvents[6].  This high energy usage of this process has 
led to the proposal of a range of potentially more efficient and less energy intensive second 
and third generation capture technologies[9].  The development of a solid adsorbent capture 
technology is one of the most promising alternative capture technologies[9].  A key 
motivation for the development of solid adsorbents for carbon capture is the potential energy 
saving shown by theoretical studies.  These studies suggest that an adsorbent system with a 
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cyclic capacity approaching or better than 3 mmol g-1 could significantly reduce the energy 
requirement of post-combustion capture by 30-50% compared with amine solvent 
systems[10].  A wide range of materials have been developed for this application[11] and 
include, supported amines and immobilized amines[12-16] activated carbons[17-19], 
Hydrotalcites[20], zeolites[21], inorganic-organic hybrid materials such as Metal Organic 
Frameworks (MOFs)[22].  Of all the materials developed and tested the challenge still 
remains to develop materials that achieve these performance targets and are fully stable 
under the conditions of post-combustion flue gases[23]. 
 
Experimental 
Adsorbent materials have been characterised and tested using a range of techniques.  
Characterisation of materials has focussed on determining the physical and chemical 
properties of the solid sorbent materials.  This has been conducted using a range of 
techniques, for example, elemental analysis, powder x-ray diffraction (XRD), diffuse 
reflectance infrared Fourier transform spectra (DRIFTS), textural properties have been 
determined by N2 adsorption analysis .  Thermogravimetric analysis (TGA) has been used to 
determine the thermal stability of the materials as well as measure CO2 adsorption capacity 
and cyclic capacity[14]. 
 
Results and Discussion 
To realise the potential of solid sorbent for carbon capture two developments are required, 
new porous materials and plant integration processes.  The key challenges for materials 
development and requirements in terms of: operating conditions, gas composition, stability 
and lifetime required to make solid sorbents a viable large scale CO2 capture process are 
described in this presentation[24]. 
To date a wide range of materials have been developed and tested as part of the STEPCAP 
project.  The key materials under development are, microporous polymers, surface modified 
hydrotalcites, and co-doped sorbents.  Performance of these materials has been assessed 
under a range of conditions and will be presented.  Current key developments are 
summarised as follows: 
Hydrotalcites and conjugated microporous polymers have been studied as potential 
adsorbents for CO2 capture[25, 26].  Modified hydrotalcites such as, amine modified layered 
double hydroxides (LDH’s) were synthesized via exfoliation and grafting route.  The 
influence of primary and secondary amines on carbon dioxide adsorption was investigated. 
One hydrotalcite with  3-[2-(2-Aminoethylamino) ethylamino]propyl-trimethoxysilane, 
containing both a primary and secondary amine functional groups showed a steady increase 
in CO2 adsorption capacity of 0.74 - 1.76 mmol g-1 from 25 - 80oC through the flue gas 
temperature range. 
Synthetic microporous polymers possess some of the highest reported surface areas[27] 
and some preparative routes might in principle be applicable to CCS applications[28].  A key 
benefit of porous organic chemistries is the very diverse synthetic organic chemistry which is 
available, both in terms of the wide range of monomers that can be exploited either by direct 
incorporation[29-31] or by the possibility of post-synthetic modification of networks to include 
functional groups reactive to CO2.  These routes to materials synthesis are being explored 
as part of the STEPCAP project.  Incorporation of functional monomers has been shown to 
be useful in tuning the isosteric heat of adsorption of CO2 by these materials[32].  A further 
advantage of organic polymeric networks over other highly porous synthetic materials such 
as hybrid inorganic-organic materials is their high moisture stablility together with high 
thermal stability[27]. However, despite recent reports of uptakes of around 3 mmol g-1 at 
ambient temperatures[33] microporous organic polymers have yet to achieve high enough 
CO2 loadings under the required conditions to be commercialised. 
 
Conclusions 
The development of solid sorbents for CO2 capture is an area of significant academic and 
industrial interest.  The composition of the flue gases in post-combustion capture and the 
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requirements for material performance to minimise the energy penalty of the capture process 
present a significant challenge for materials development.  To date, a wide range of 
functional materials have been and will continue to be developed with potential to make 
breakthrough.  Whilst at present the required cyclic capture capacities can be achieved, one 
of the main challenges still remains to develop materials that can operate reliably and over a 
large number of cycles in a flue gas environment, a challenge which will form the future 
focus of the STEPCAP project. 
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Abstract 
Experimental values for the solubility of carbon dioxide in a number of ionic liquids 

have been included in a database for properties estimation. The highest CO2 

experimental absorption was found in a poly(ionic liquid) P[[VBTMA][PF6

 

]], however 

the solubility can be enhanced by including tris(heptafluoroethy) trifluorophosphate 

[FEP] in the anion. An analysis of cation/anion structure in terms of the process 

separation performance is carried out. 

Introduction 
The main disadvantages of the well-known process of CO2 capture from flue gas 

using monoethanolamine (MEA) are the high solvent losses due to their evaporation 

and energy requirements; therefore process intensification must be applied. The 

properties of Ionic liquids (ILs) make them strong competitors of conventional 

solvents [1]. The most widely used ionic liquids are those based on alkyl imidazolium 

(1-alkyl-3-methylimidazolium) [2,3] as it is believed that these ionic liquids provide 

good solubility at low pressures. Among the anions, those that arouse more attention 

are the fluorides such as hexafluorophosphate ([PF6]) or bis (trifluoromethylsulfonyl) 

imide ([Tf2N]) [4]. In this work, the solubility data reported in literature at a range of 

temperatures and pressures is discussed. Absorption process perform at high 

pressures may be of interest because the resulting CO2

 

 product must be 

compressed before transport to the final storage. 

 

Methodology 

It has been developed a database composed of CO2 solubility experimental values 

reported in literature ranging from 0.014 to 70.242 wt% on a range of operating 

conditions from 0.09 to 946 bars and temperature from 5 to 300ºC. The number of 

different cations and anions in the database are 35 and 29 respectively, which leads 

to 1015 ionic liquid combinations. As there are potentially over one million simple ILs, 
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a group estimation method from the database permits evaluate which ILs reports 

higher solubility in terms of Henry´s law constant. To this end, data are subjected to 

linear regression in MATLAB. Descriptors are used as a function of the presence of 

different cation/anions and the result is normalized between -1 and 1 as showed in 

Figure 1. Cation (p-vinybenzyl)trimethylammonium [p-VBTMA] and fluorinated anions 

such as tris(heptafluoroethy)trifluorophosphate [FEP], (Tf2N) and (PF6
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  Figure 1. Effect of the anion and cation on the solubility of CO2  in a regression analysis Results and Discussion 

Figure 2a, represent the effect of pressure on seven 1-butyl-3-methylimidazolium 

([bmim]) cation based ionic liquids including different anions such as nitrate ([NO

Pressure influence on solubility: Anion/Cation effect

 3]), 

dicyanamide ([DCA]), tetrafluoroborate ([BF

4]), trifuoromethanesulfonate ([TfO]) 

([PF
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As can be seen, the CO2 is less soluble in non-fluorinated anion [NO3] and [DCA]. 

The highest solubility is reported with anions containing fluoroalkyl groups such as, 

[TFO] and [Tf2N]. This effect is explained by favorable interactions fluoroalkyl-CO2

 

 

and the increased size of the anion [5].  

The effect of the cation selection on CO2 solubility is less significant than the anion 

effect as it is shown in Figure 2b, in agreement with literature results [6]. It is 

observed that fluorinated cations produce a slight increase in the solubility value and 

the higher the number of fluorine groups, the higher its value, i.e: 1-methyl-3-

(3,3,4,4,5,5,6,6,6-nonafluorohexyl)imidazolium ([C6H4F9mim]) and 1-

(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium ([C8H4

 

F13mim]) 

case [7].  

CO

Temperature influence on solubility: Anion/Cation effect 

2 solubility decreases with increasing temperature. Again the cation selection is 

less significant in comparison to the anion selection. Solubility for some ILs i.e. 

[hmim][Tf2N] and [bmim][BF4] decreases approximately 35 % for a range of 

temperature of 65ºC when pressure is 1 bar. Besides, this negative influence is more 

evident at higher mole fractions of CO2

 

. 

The exhausted gas in a coal-fired power plant exits the burner at approximately 

370ºC and cooled to approximately 40ºC through the wet flue gas desulfuration 

device or a direct contact cooler (DCC) in order to avoid the negative effect of 

temperature in the absorber. CO

Process operating conditions 

2 product at the end of the capture process must be 

compressed to approximately 130 bars before being transported [8]. Since 

absorption increases with pressure, is interesting to analyze solubility at this high 

operating pressure. Table 1 show the database values of two combinations of ILs 

with cation 1-butyl-3-methylimidazolium ([bmim]) and anions ([Tf2N] and [PF6]) in 

comparison to MEA at real operating conditions for absorption of CO2

 

 capture plants 

and in carbon dioxide transport to final storage [9].  
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Table1: CO2 solubility at 40ºC and real process pressures 

Solvent Pressure Solubility (wt%) Ratio 

MEA (22.7 wt%)  0.631  

[bmim][PF6] 1.2 0.11 5.72 

[bmim][Tf2N]  0.19 3.32 

MEA (22.7 wt%) 

130 

1.151  

[bmim][PF6] 0.89 1.29 

[bmim][Tf2N] 1 1.15 
           1

 

From Vrachnos et al., 2006 [10]. 

Conclusion 
A database containing 1015 ionic liquid combinations has been developed for 

solubility estimation trough a group contribution method. The selection of the cation 

has result of less significance when designing a task-specific ionic liquid for CO2 

absorption. The inclusion of fluorinated groups such as [Tf2N] and [PF6

 

] in the 

structure increase the solubility, although there are disadvantages associated with 

their use, such as high price and poor biodegradability.   

A comparison of the use of MEA - ILs at real operating conditions has been carried 

out. CO2

 

 solubility at 130 bars pressure for selected ILs is very close to that value 

reported for MEA (1.15wt%), which means a similar circulation rate. Therefore ILs 

could become strong competitors of conventional solvents at high pressures. Further 

works will include a high number of ionic liquids combinations for a more robust 

database analysis. 
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Abstract 
Ionic liquids can be promising candidates as absorbents in CO2 removal, as some 

are quite stable even at temperatures greater than 573 K with negligible vapor 

pressure. There are many reports on CO2 capture using common ionic liquids - 

typically referred to as first-generation ILs. The CO2 capture ability for these ionic 

liquids is, however, limited due to relatively weak physi-sorption and absence of 

chemical absorption. Owing to this, task-specific ionic liquids have been developed 

which are able to make a chemical bond between CO2

In this work, the solubility of CO

 and functionalized ionic 

liquids at ambient conditions. It appears, however, that this type of bonding is too 

strong to make reversible absorption/desorption economic in technical scale. 

2

 

 in new functionalized ionic liquid is measured using 

a Rubotherm magnetic suspension balance (Rubotherm Präzisionsmeβtechnik 

GmbH, Germany). Experimental results are presented for the total pressure above 

liquid mixtures of carbon dioxide and the ionic liquid for a temperature range from 

(298.15 to 323.15) K. 
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In this study pre-treatment of synthetic solid sorbent for sequentially CO2 capture has been 
analysed. The sorbents were synthesized by means of a CaO hydrolysis technique to 
generate sorbents with 75 and 85% of active phase CaO. The sorbents also contain a 
calcium aluminate phase acting as a binder of the active phase (CaO). Pretreatment was 
accomplished in a thermo-gravimetric analyser (TGA) exposed in an atmosphere of 86% 
N2 and 14% CO2 under 600 °C. The as-synthesised sorbent and the pretreated sorbent 
have been characterised by scanning electron microscope, nitrogen physisorption tests, 
and multi-cycling carbonation-calciation test in TGA (100 cycles). Here, the CO2 uptake 
took place at programmed temperature (600 °C) in an atmosphere of 25/75 % CO2/N2 with 
two different conditions tested: a) severe condition: regeneration under 1000 °C, and b) 
mild condition: regeneration under 900 °C. In both cases the calcination atmosphere was 
composed of 86% N2 and 14% CO2 and 100 °C/min heating rate. The experimental results 
show significant improvement in the stability of the CO2 uptake capacity over multiple 
cycles when comparing the synthetic sorbents to natural dolomite. Pretreated sorbents 
show a further increase in CO2 uptake. For instance, for the 85% CaO synthetic sorbent 
an increase of 91% for the CO2 uptake has been found during the first cycle in the 
sequentially CO2 capture. After that the uptake decreases but still remains 64% above the 
uptake found for the as-synthesised sorbent up to the 50th cycle. 
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1 Introduction 

High temperature O2 separation using MIEC (Mixed Ionic Electronic Conductor) membranes 
is an energy-efficient alternative to cryogenic air separation, but the different level of develop-
ment complicates a reliable assessment of this preindustrial technology regarding energy de-
mand, capital and operation costs. A competitive oxygen production using high temperature 
membrane separation is proposed for a minimal flux of 10 ml_STP/(cm2 · min) [1, 2]. The 
oxygen permeation of MIEC membranes depends on the membrane thickness but also on 
operation conditions, e. g. on temperature, gas velocities, overpressure of feed air and 
vacuum pressure [3] used for O2 extraction. A minimal oxygen production rate per volume 
unit seems to be much more meaningful for economic assessment, because of the direct 
correlation to the investment costs for an industrial plant. Besides, different membrane 
designs are entailed by special drawbacks, e. g. fragile construction, high local stresses, big 
joining areas and the risk of leakages, high pressure drops entailed with energy losses and 
so forth.  

2 Oxygen permeation of different membrane designs 

Three different membrane designs based on BSCF were manufactured and characterized 
regarding oxygen permeation, The geometric dimensions of a monolithic tube, an 
asymmetric membrane tube and a thin-walled capillary are summarized in Table 1. Fig. 1 
showing a SEM picture of the asymmetric BSCF membrane and a capillary bunch joined with 
machined BSCF pellets. The total leakage of the asymmetric membrane tube was measured 
to be 1.7 · 10-1 mbar · l/s. 

Oxygen permeation measurements 
were carried out with a special expe-
rimental setup designed for a fast 
comparison of the performance of 
different oxygen membranes. Com-
mercially available cable glands were used to seal the open cold ends of the sample tubes 
outside the furnace. The internal space of each membrane was evacuated by a vacuum 
pump and heated up to the measuring temperature. The vacuum level and the associated 
driving force was changed stepwise at high temperature using a pressure regulating valve. 
The isothermal zone at the closed end of the membrane was approximately 15 cm long. The 
total O2 flux was determined after the vacuum pump using a mass flow meter and oxygen 
sensors. Air was used as feed gas at environmental conditions. Normalization to the hot 
working membrane area was realized using a comprehensive data set for BSCF flat 

Table 1: Dimensions [mm] of BSCF (Ba0.5Sr0.5Co0.8Fe0.2O3-δ) 
membranes used for O2 permeation tests 
membrane type outer diameter wall thickness length 
monolithic tube 14.2 1.5 250 
asymmetric tube 14.4 1.4 250 
capillary 3.20 0.25 250 
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membranes determi-
ned with another test 
rig, as was recently 
described [4]. 

Total and normali-
zed O2 fluxes of the 
three different mem-
branes depending 
on the driving force 
are depicted in Fig. 
2. Obviously, the 
asymmetric membrane possess the highest 
O2 flux 4.3 times higher in comparison to the 
monolithic tube. Although the total O2 flux of 
the capillary is the smallest because of their 
limited dimension, the normalized O2 flux is 
located relatively close to the asymmetric 
membrane, especially at a low driving force. 
The apparent loss at higher driving forces is 
caused by the pressure drop inside the 
narrow capillary afar from the pressure 
sensor. It has to be noticed that an energy 
efficient vacuum operation is limited to 
vacuum pressures above 50 mbar [5] and low 
driving forces below 1.4.  

3 Advanced membrane design  

Oxygen production in pilot scale using monoli-
thic tubes [5] and hollow fibers [6] was alrea-
dy proven. However, an energy efficient oxy-
gen production requires high membrane 
areas per volume unit, but also low pressure 
drops. This results in gas velocities below 
10 m/s in contrast to 25 m/s postulated in [2].  

Two advanced membrane designs with a high 
membrane area per volume are depicted in 
Fig. 3. It has to be noticed that a decreasing inner diameter of a capillary or hollow fiber is 
entailed by a growing pressure drop, especially at low pressures. This is also true for planar 
cell stacks developed by Air Products & Chemicals aimed at a production rate of 1 ton per 
day [7]. A promising alternative to the concepts shown in Fig. 3 is the development of multi-
channel honeycombs, but up to now feasibility in pilot scale was not shown.  

4 Mechanical stress depending on membrane design  

Production of pure O2 using MIEC membranes always needs an oxygen partial pressure gra-
dient usually accompanied by a absolute pressure difference. Therefore, mechanical stress 

  
Fig. 1: Left: SEM picture of the cross section of an asymmetric BSCF membrane; 
Right: Capillaries and a RAB joined capillary bunch (10 cm length) 
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Fig. 2: Oxygen flux through different types of BSCF 
membranes at 850 °C, environmental air outside, 
vacuum inside 

 
Fig. 3: CAD drawings of a capillary bunch and a stack 
of planar cells supported by O2 withdrawal tube 

115



  

inside a working membrane could be 
critical for its mechanical integrity, 
especially for filigree membrane 
designs. Moreover, remarkable 
creeping at high temperatures was 
described by different authors for 
BSCF [8, 9] seems to be critical for 
application due to the narrowing of 
small channels with time.  

Therefore, mechanical stress was calculated using the software COMSOL for membranes 
and conditions summarized in Table 2. The 
maximal tensile stress depending on outer 
pressure is depicted in Fig. 4. As expected, 
the highest values were observed for planar 
membranes, especially at the higher prop 
distance located above the upper limit of the 
diagram. The stress of the thin-walled capil-
lary is a little bit higher compared to the 
monolithic tube.  

Apart from mechanical loads stress can be 
induced by crystal lattice expansion caused 
by different local oxygen stoichiometry [10, 
11]. Fig. 5 contains the oxygen stoichiometry 
at the membrane surfaces calculated by a 
semi-empirical defect model [12]. Although 
the oxygen stoichiometry increases with air 
overpressure, the difference to the permeate 
side is always low, independent on the mem-
brane geometry. However, the chemically in-
duced tensile stress is high compared to the 
mechanical stress shown in Fig. 4 with the ex-
ception of the disadvantageous planar mem-
brane. According to the works mentioned che-
mically induced stress dominates the whole 
stress situation even for the mild conditions of 
oxygen production from air. All together, total 
stress is much higher for planar membranes 
compared to tubular ones and is in the range 
of fracture stress [13]. Besides, tensile stress 
of tubular membranes working with overpressure from the outside can be minimized close to 
zero by perfection of roundness. 

5 Economic aspects of membrane production 

An estimation of material requirements, oxygen flux and production costs for different 
membrane designs based on BSCF is summarized in Table 3  

Table 2: Geometry [mm] of BSCF membranes used for simu-
lation of mechanical stress for 0.05 bar O2 to 1, 5, 20 bar air at 
850 °C 
membrane type outer 

dimensions  
wall 

thickness 
comments 

monolithic tube 10.0 outer Ø 1.0 5 %, 10 % out of 
round Capillary 3.5 outer Ø 0.25 

planar cell 100 x 100 0.5 2 mm prop with 
10 and 3 mm 
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Fig. 4: Maximal first principle mechanical stress at 
850 °C depending on outside pressure (50 mbar in-
side) for tubes, capillaries with different out of round-
ness and planar membranes with different distance of 
supplying props 
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Fig. 5: Oxygen stoichiometry of BSCF and chemical in-
duced stress at 850 °C for tube, capillary and planar 
membranes with different distance of supplying props 
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Table 3 Material requirement, oxygen flux and production costs of different membrane designs 
co

m
po

ne
nt

s 
a

nd
 m

at
er

ia
l archetype unit tube 19 capillary bunch stack with 100 cells

dimensions [mm] 10 x 8 3.5 x 31 100 x 100 x 1.52 

component active length [mm] [mm] 1000 500 600 

membrane area [cm2] [cm2] 283 970 16000 

material solid volume [cm3] 28,3 25 1280 

component mass [kg] 0.150 0.133 6.784 

number of membrane components  353.357 103.093 6.250 

total mass [kg] 53.000 13.660 42.400 

O
2
 fl

ux
 

per component4 [ml_STP/min] 194 2000 20180 

total oxygen flux [103kg/day] 141 424 259 

re
ac

to
r 

distance between components [mm] 6 6 20 

reactor volume [m3] 13.5 6.7 8.0 

co
st

s 

raw material4 k€ 10.600 2.730 8.480 

capital, depreciation5 k€ 1.000 1.360 950 

production, personnel k€ 1.300 1.310 4.570 

total5 sum for 10.000 m2 k€ 12.900 5.400 14.000 

membrane costs6 per ton O2 [€/103kg O2] 50 € 7 € 30 € 
1capillary distance 1.5 mm;2membrane thickness 0.5 mm, cell height 1.5 mm, prop width 2 mm, prop distance 
3 mm, vertical cell distance 4 mm, 3at ln(pO2) = 1, 850 °C; 4150 €/kg and 25 % rejection rate; 45 years, 6per year 

Obviously, the total O2 flux of capillary bunches is the highest one compared to the other 
membrane designs because of the lowest self-supporting membrane thickness reached for 
this design. The high package density results also in a minimized reactor volume. According 
to the high cost fraction of the raw material BSCF dominating the total production costs, thin-
walled capillary bunches seems to be the most economic choice. All together, the membrane 
production cost per ton O2 seems to be competitive regarding an averaged price of 23 to 30 
€ per ton O2 produced by an industrial cryogenic air separation plant. Besides, it has to be 
noticed that the oxygen production rate could be significantly enhanced using higher 
pressure differences.  

Capillary bunches will be much more stable than planar cell stacks comparable regarding 
volume density and oxygen flux. Further flux enhancement could be realized by asymmetric 
membranes together with advanced membrane designs but an economic assessment is 
questionable because of the coating effort presently uncertain.  
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Testing of nanostructured gas separation membranes in the flue gas of a 

post-combustion power plant 
M. Bram, K. Brands, W.A. Meulenberg, H.P. Buchkremer, D. Stöver 

Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; 

G. Göttlicher, EnBW Energie Baden-Württemberg AG, D-76131 Karlsruhe, Germany; 

J. Pauls, Helmholtzzentrum Geesthacht, D-21502 Geesthacht, Germany 

Nanostructured gas separation membranes are promising candidates for the 

separation of CO2 from the flue gas of fossil power plants. Well-defined atomic 

structures in the range of a few Angstrom are required to separate CO2 from N2 in 

existing post-combustion power plants and H2 from CO2 in prospective integrated 

gasification combined cycle (IGCC) power plants. Today, CO2/N2 and H2/CO2 gas 

separation with membranes has been demonstrated mainly on a laboratory scale, 

while less is known about membrane performance and stability under real conditions. 

To extend the state of knowledge, a test bed was put into operation in the flue gas 

stream of a hard-coal-fired power plant (EnBW Rheinhafendampfkraftwerk, 

Karlsruhe), which enabled the long-term functional test of ceramic as well as polymer 

gas separation membranes for up to 1100 hours. For the first time, a CO2 enrichment 

from 12 Vol. % in the flue gas to 57 vol. % in the permeate of a polymer membrane 

was demonstrated. Due to operating this membrane in direct contact with flue gas, 

the flow rate was reduced from 0.86 m3/m2·h·bar to 0.07 m3/m2·h·bar within the first 

400 hours. This reduction was mainly caused by the deposition of ash particles and 

gypsum suggesting the need of developing effective membrane protection strategies. 

In addition, ceramic membranes were tested under the same conditions. Even if 

demonstration of CO2 gas separation with ceramic membranes requires further 

modifications of the membrane materials, the long-term exposure in the power plant 

led to first results regarding adherence of functional layers and chemical stability. 
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Polymer Membranes for Separation of CO2 - An Overview 
Volker Abetz, Torsten Brinkmann, Sergey Shishatskiy, Jan Wind 
Institute of Polymer Research, Helmholtz-Zentrum Geesthacht 

Max-Planck-Str. 1, 21502 Geesthacht, Germany 
History 
The possibility for small molecules to pass through a wall made of solid material is known since 
middle of the 19th century when Graham has formulated his law of diffusion. The first 
implementation and consideration of use such membranes in real life were done already in the 
middle of 20th century when van Amerongen and Barrer carried out systematic investigations of 
gas transport through polymers. The next breakthrough was achieved by Loeb and Sourirajan in 
1961 by development of the anisotropic membrane formation process suitable for continuous 
membrane production in industrial scale.  
Since then many big players in the field of industrial chemistry have developed a number of 
membranes and membrane separation units suitable for various separation tasks. The interest 
to membrane separation increased with the development of the “resistance model” for the 
multicomponent membranes which opened efficient methods to cure defects of the thin 
separation layer. 
The era of the industrial membrane gas separation have been started when Monsanto installed 
(1977) the Prism membrane system in a commercial-size plant for the H2/CO separation and in 
1980 have announced its commercial availability. 
But the first patent related to membrane gas or vapour separation was filed as early as in 1936 
on the topic of concentration of desired organic compounds from mixtures of gases by 
separation through the film or diaphragm such as a thin sheet of rubber.[1] 
 
Background 
Polymeric membranes utilize the ability of the gas molecule to be dissolved in the polymer and 
diffuse through the polymer bulk. All membrane processes of gas or vapour separation use 
partial pressure difference on the feed and permeate side of the membrane. Due to the 
difference in the ability of polymer matrix to dissolve gas and vapour molecules and ability of 
dissolved molecules to diffuse by jumping from one free volume void to another the separation 
of gas and vapour mixtures occurs. Diffusion primarily depends on the size of the penetrant and 
is generally independent on pressure applied to the membrane. The solubility of gas in polymer 
on the contrary strongly depends on the pressure and changes according to the gas 
condensability.  
Polymers can be roughly divided into two major groups by their state under separation 
conditions: glassy polymers with the glass transition temperature Tg higher than the temperature 
under separation conditions, and rubbery polymers with Tg lower than the temperature of the 
media under separation. Glassy polymers with the “frozen” free volume separate small 
molecules mostly according to their kinetic diameter and rubbery polymers according to gas or 
vapour condensability. 
 
Polymeric membranes in industrial applications 
Over the last 60 years, since the pioneering work of Barrer, thousands of polymers were tested 
for their gas and vapour separation properties. However, just a few of them have found their 
way to industrial production.[2] Table 1 summarizes polymers and their applications as 
membranes. 
CO2 separation from natural gas was one of the first applications of a gas separation membrane 
(1981, CO2, H2S separation form natural gas by Delta Engineering Corp.) and still is the most 
developed membrane based gas separation technology. Large plants for natural gas 
sweetening were installed by UOP (Separex), Cynara, Kvaerner, US Air products, Ube utilizing 
membranes made of glassy polymers: cellulose acetate, polyimides, polyaramide, polysulfone 
packed in spiral wound (CA) and hollow fiber modules. 
Until 2004 there was no information on the interest to separate CO2 from its mixtures with 
nitrogen except from one case: reduction of the CO2 emission on the off-shore platforms in 
Norway. Kvaerner in cooperation with GORE has pilot tested a membrane contactor system 
based on the GORE-TEX membrane and reported it to public as early as 1998 [3]. But since the 
Kyoto protocol the problem of carbon sequestration and storage (CSS) became very sound and 



research in this area is well funded. As a result at least two new membranes have been 
developed and pilot scale tests started.  
MTR developed a thin film composite membrane (TFCM) based on a Pebax® polymer which is 
commercialized under the trade name Polaris®. The membrane is packed into spiral wound 
modules and has been tested for the treatment of off-gases of Redhawk natural gas power plant 
providing production/capture of 1 ton CO2 per day. 
HZG (previously GKSS) took part in the Helmholtz-Allianz MEMBRAIN “Gas separation 
membranes for zero-emission fossil power plants” and has developed the TFCM based on 
Polyactive®. As Pebax®, Polyactive® is a poly(ethylene glycol) containing multiblock 
copolymer. The membrane is produced in pilot scale and samples were tested under off-gas 
conditions in the coal powered Rheinhafen-power station (Karlsruhe). 
Sweetening and conditioning of biogas to the pipeline standards can be done by either rubbery 
of glassy polymer based membranes depending on the raw material composition. In many 
cases the selectivity of the existing membranes is not high enough for an energy efficient 
separation and therefore the development of new membrane materials continues for this 
purpose. 
 
Future 
There seems to be a natural border for the CO2/N2 selectivity (Figure 1). During the last 10 
years development of new polymeric and hybrid organic/inorganic materials allowed to push up 
the CO2 permeability while the selectivity does not exceed 90. Research groups around the 
globe study ways to solve the problem by incorporation various materials into the polymer 
matrix. 
Mixed matrix membranes comprising two separation materials: inorganic porous particles 
embedded into a selective polymer matrix were suggested [4] as a possible way to combine the 
good mechanical but poor separation properties of polymers and excellent selectivity provided 
by porous inorganic materials. During the last 10 years this approach was widely acknowledged 
by the scientific community. Various porous materials were tested including zeolites, carbon 
molecular sieves (CMS), metallo-organic frameworks (MOF), zeolitic imidazolate frameworks 
(ZIF). To our knowledge, unfortunately none of these approaches led to reliable and 
processable membranes to date. 
Carbon molecular sieves in the form of flat sheet membranes or hollow fibers can be mentioned 
here as well as an emerging membrane type since polymers are used as a precursor. A number 
of groups have demonstrated outstanding properties of CMS membranes for CO2 separation 
(e.g. M.B.Hägg [5]) but the application of these membranes is hindered due to the brittleness of 
the material. 
Active transport of sour gases and CO2 in particular has been intensively studied for at least 20 
years.[6] Various active groups as –NH2, -NH3

+X-, or polyacids were incorporated into polymers 
chemically or by blending. Some of these systems have shown very encouraging results but 
experienced problems like loss of activity or desalting. If these problems will be overcome, it can 
be expected that for applications with a low pressure difference such as treatment of the off-gas 
active transport membranes will find the way to the market.  
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Table 1. Polymers used for industrial membrane production to this date 
 

Polymer Membrane type Applications Company 

Poly(phenylene oxide) As *)  O2/N2 Aquillo, 
Parker-Hannifin 
UBE 

Polysulphone As H2/N2  
(H2/CH4, H2/CO) 
CO2/CH4 

Permea (Air Products)

Polyaramid As O2/N2 MEDAL (Air Liquide) 

Polyimide As O2/N2 

H20/Air 
H2/(N2, CO, C1+) 

MEDAL (Air Liquide) 
IMS (Praxair) 
UBE 

Poly(4-methylpentene-1) As O2/N2 Dow 

Cellulose Acetate As, TFCM *)  CO2/CH4 Separex (UOP) 
Dow 
Envirogenics GASEP 

Ethyl Cellulose As, TFCM CO2/CH4 GKSS/HZG 

Poly(dimethyl siloxane) TFCM VOC/Air 
O2/N2 

GKSS/HZG 
MTR 
Permea 
UOP 
General Electric 

Poly(vinyl trimethyl silane) As O2/N2 USSR  

Polycarbonate As O2/N2, H2/N2, H2/CH4 Generon 

Tetra bromo 
polycarbonate 

As O2/N2 Generon (MG) 
DOW 

Teflon AF TFCM VOC/perm. Gas 

O2/N2 

MTR,  
CMS 

PEBAX TFCM CO2/N2, CO2/CH4 MTR 
GKSS/HZG 

Polyactive TFCM CO2/N2, CO2/Biogas GKSS/HZG 

AS – Asymmetric membrane; TFCM – Thin film composite membrane 
 



Polymers of commercial membranes

New developed polymers

Active transport polymer

 
Figure 1. Robeson (2008) plot of CO2/N2 selectivity vs CO2 permeability coefficients with 
polymers of commercial membranes marked green. New polymeric materials developed in 
frames of MEMBRAIN project are shown in pink and yellow. 
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IONIC LIQUID COATED ZEOLITE –PDMS MIXED MATRIX 

MEMBRANE FOR GAS SEPERATION 

Muhammad Hussain, Chair of Separation Science and Technology Uni-Erlangen, Erlangen, 

Germany, Prof. Dr. Axel König , Chair of separation Science and Technology Uni- Erlangen, 

Erlangen, Germany 

1. INTRODUCTION: 

It is well known that both high permeability and selectivity are desirable in membrane 

processes. For example high selectivity leads to more purity in the product gas and high 

permeability requires a smaller membrane area, which leads to lower costs for membrane 

units. However, the achievement of both benefits at a time has turned out to be a difficult 

challenge.  

In order to overcome this limitation, the idea of mixed-matrix membranes (MMMs) came up 

by combining both the polymer and the filler that have properties above the upper bound line 

of the Robeson Plot [1]. These fillers are molecular sieves, such as carbon molecular sieves 

(CMS) or zeolites. Especially the latter one can provide higher permeability and selectivity, 

due to their specific sorption and shape selective properties. Kulprathipanja et al. [2] were 

pioneers in the study of zeolite-polymer mixed-matrix membranes in 1980s.  

Although MMMs offer advantageous opportunities compared to pure polymer or molecular 

sieve membranes although there have been obstacles concerning modeling of MMMs. As in 

many publications reported, the observed permeabilities are higher than the ones predicted by 

the Maxwell model. Moreover, that difference rises with increasing filler fraction. Mahajan R. 

and Koros W. [3] explained that this phenomenon occurs due to the poor contact between the 

zeolite and polymer phase, which leads to de-wetting of the polymer chains. As a result, that 

non-binding interface forms a gap, where the gas could easily pass through instead of 

penetrating through the zeolite phase. This could explain the higher apparent permeabilites 

and sometimes leads to the same selectivity as of the pure polymer. Mahajan et al. has 

determined the size of the gap by using modeling studies. The value was around 260nm. 

Ionic Liquids (ILs) are defined as a diverse group of salts, which are in molten (liquid) state 

under 100°C [4]. Several advantageous properties of ILs as for example their thermal and 

chemical stability, beneficial viscosities, negligible vapor pressure and high solubility’s for 

various substances makes them attractive for supported Ionic Liquid membranes (SILMs) in 

gas separation processes [5]. 

In this work, [EMIM]Tf2N and [EMIM]TfO (which will often be abbreviated in this work as 

Tf2N and TfO for convenience), are applied primarily as zeolite-coatings in order to reduce or 
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even fill the interfacial inorganic-organic void.  

 

2. Experimental: 

2.1 Membrane synthesis Procedure: 

Primarily the synthesis process can be classified into zeolite coating, polymer filling and 

membrane casting. The main component of each membrane is PDMS next to IL-coated ZSM-

5 serving as the Filler. The mass fractions of these ILs on Zeolite are 10 wt%, 20 wt% and 30 

wt%. Afterwards the coated filler was blended in different mass fractions 17 wt%, 38 wt% 

and 57 wt% into PDMS. Following labeling system has been adopted to explain the coating 

and filling process: [IL-ωCoat-ωFill-gas]. For example, the Nitrogen experiment on a 17 wt% 

filled membrane with 10 wt% [EMIM] [Tf2N] coated zeolite is described as: [Tf2N -10wt%-

17wt%-N2]. 

2.2 Gas permeation measurements: 

The pure gas permeability has been measured using a constant volume variable pressure apparatus.  

The gas permeability was measured by the following (Eq.(1)): 

 

           (1) 

 

The permeability oP  is reported in „Barrer“(10
-10

cm
3
 (STP) cm cm

-2
 s

-1
 cmHg

-1
). 

dt

dpiF
 feed pressure change (bar) of component i with time (t), T is the operational temperature (K), R 

is the universal Gas constant, V is the volume of the autoclave (1.4 litre), MA  is the active permeation  

area of membrane(51.5 cm
2
 ), Mδδδδ  is the thickness of the membrane, and )( ipiF pp −−−−  is the partial 

pressure difference between feed side and the permeate side of component i. 
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The ideal selectiviy BA /αααα  is the ratio of permeability coefficient of component A and B. While DA, SA 

and DB, SB are the solubility and diffusivity coefficients of individual components. 

For mixture of gases permeate and retantate flow rates were measured by using bubble flow meters. 

Gas chromatogram (G-1530A) was used to measure permeate and feed side compositions.  

2.3 Polymer - IL penetration Model: 

 It has been presumed that the gas permeates alternately through the polymer and IL-phase, 

without any interaction with the zeolite phase. Due to this binary path, the Maxwell model can 

dt

dp

RT

V

ppA
P iF

ipiFM

M

o **
)( −−−−

====
δδδδ
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be applied, considering the permeability of IL as the particle or filler permeability (PFil) and 

the polymer permeability (Ppol) as the continuous phase permeability. Still zeolite component 

must not be neglected; its volume (����) contributes to the overall filler volume fraction φFil in 

equation (3).  

 Overall coated filler volume (VFil ) is the sum of volume of zeolite (VZeo) and volume of IL 

(VIL) whereas overall volume of the MMM (VMMM) is the sum of volume of polymer(VPol), 

volume of zeolite (VZeo)  and volume of IL (VIL).  

���� 	
����

�



	

���� � ��

���� � ���� � ��
  (3) 

 

�
������� 	 ���� ∙
���� � 2���� � 2��������� � �����

���� � 2���� � ��������� � �����
                          (4) 

3. Results and Discussion: 

3.1 Thermogravemetric Analysis (TGA): 

The TGA has been applied to detect the quality of IL-coating on zeolite. The system is stable 

till ~240 °C .Optimal coating means no IL decomposition or evaporation during the coating 

process. This would lead to respective weight loss of IL from IL coated zeolite. Fig. 1 shows 

the weight-loss curves for Tf2N coated zeolites, containing each coating level i.e. 10% ,20% 

and 30% respectively. It can be seen, that the overall weight losses are a bit higher than the 

corresponding coating levels. This can be explained by the strong solubility property of IL, 

especially for diverse components like water from the atmosphere and also presence of 

acetonitrile (coating solvent) cannot be neglected.  

 

 

Fig. 1: Weight-loss curve of [EMIM]Tf2N coated ZSM-5 zeolite 
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3.2 Permeability and Selectivity Results and Discussion: 

An overall decrease in permeability for each gas has been observed with increasing coating or 

filling level. The trend is shown in Fig. 2 for the experiments [Tf2N-allwt%-56wt%] (allwt% 

stands for every variation of IL coating weight fractions). In case of [Tf2N-30wt%-38wt%] 

membranes, there is hardly a decrease in permeability compared to the 20 wt% IL-coated 

equivalents. Therefore, no more investigation in less filled membranes of those coating-sets 

occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Permeability decrease with increasing coating level in [TF2N-allwt%-56 wt%-all gases] 

 

No remarkable trend in selectivity with increasing coating or filling level for all gas pairs has 

been observed. Thus, the average selectivity factors for all gas pair combinations are 

summarized in the following table 1: 

 

Table 1: Averaged selectivity factors for all gas pairs 

 ���� ��⁄  ���� � !⁄  �� ! ��⁄  

TfO-membranes 8,8 3,4 2,7 

Tf2N-membranes 10,7 4,0 2,7 

3.3 Modeling results:  

Equations (3) and (4) have been used to determine the modeling results. Fig 3 shows 

modeling and experimental permeability values as a function of filling level. The importance 

of the appropriate coating level has been demonstrated with [Tf2N-10wt%-allωFill-N2] and 

[Tf2N-20wt%-allωFill-N2] for instance. Due to approximately equal model results for 10 wt% 
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and 20 wt% coating, they have been averaged in Fig. 3. 

 

      Fig. 3: Comparison of [Tf2N-10wt%-allωωωωFill-N2] and [Tf2N-20wt%-allωωωωFill-N2] 

 

Best model fitting has been observed for methane in case of both ILs, where both ∆P20wt% TFO 

and ∆P20wt% Tf2N reach 4,8%, as shown in Fig. 4 for 20wt% TfO-coated filler in PDMS. 

 

 

Fig. 4: Best model fitting with [TFO-20wt%-allωωωωFill-CH4] membrane 

4. CONCLUSIONS: 

In this work the inorganic-organic void interface has been closed using ILs. The quality of IL 

coating on zeolite surface has been evaluated using TGA results that show the ILs are well 

distributed during the coating process.  

A decrease in permeability has been observed with both; by increase in coating of IL on 

zeolite surface and by increase in filling levels of the coated zeolite in PDMS. Moreover, no 

appreciable change in selectivity has been observed. 
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The Polymer-IL penetration model may provide reliable permeability predictions. The 

modeling results were mostly close to the experimental values at 20wt% coating. Moreover, 

that agreement occurred especially for all results for methane with deviation values up to 

∆P20wt%=4,8% for [EMIM]Tf2N coated fillers.  
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Introduction 
For the separation of gases but also vaporous and liquid mixtures, membrane-based 
processes are gaining increasing attention although this technology is quite young compared 
to conventional separation technologies like distillation, absorption or extraction. Many 
membrane-based processes have been established in an industrial scale, e. g., oxy-
gen/nitrogen separation, natural gas purification, dehydration of solvents, as well as the 
removal of hydrogen from ammonia production or low molecular weight components from 
equilibrium reactions. Membrane technology offers many advantages like little maintenance, 
simplicity of operation and the units are small and compatible. Furthermore the processes 
are low energy consumptive. However, nowadays discussions on environmental as well as 
energy issues are playing an important role, whereas membrane processes are 
predestinated for the reduction of emissions from air (vapor recovery units) from water, e.g. 
treatment of waste water from large hospital complexes or recycling of valuable starting 
materials, like recycling of ethylene and propylene from vent streams in polyethylene or 
polypropylene production units.   
 
 
Natural gas treatment 
The removal of carbon dioxide from natural gas streams using membranes has been 
extensively studied by researchers all over the world since decades [1] and many companies 
like UBE, DuPont, VaPerma, MTR etc. are offering commercial solutions. The treatment of 
natural gas streams includes the removal of water, carbon dioxide and hydrogen sulfide in 

order to prevent corrosion and to meet pipeline specifications (≤ 2 mol% carbon dioxide and 

≤ 4 ppm hydrogen sulfide) [2]. But as the worldwide energy demand increases, new gas 

fields have to be developed, many with high levels of carbon dioxide and even high hydrogen 
sulfide content. And although natural gas treatment with membranes is commercialized, it 
cannot be used in these cases since plasticization effects or degradation of the membrane 
material is observed which lead to irreversible loss of separation performance [3]. Therefore 
new approaches must be developed to reach more stable materials for the treatment of 
natural gas streams [4,5]. 
 
 
Biogas treatment 
In the last couple of years a large number of biogas production plants have been installed. 
For example, in Germany 1.14 billion m3 /year of biogas is currently produced and new, easy 
operating systems with low energy consumption are necessary to upgrade biogas to pipeline 



quality. But, depending on the raw material which is used for the gasification process, the 
efficiency shows significant variations, e.g. 973 m3 biogas per ton of biomass is obtained if fat 
and grease components as raw materials are used and less than 30 m3/ton if pig or cow 
manure is used. Also the carbon dioxide concentration and hydrogen sulfide concentration is 
varying depending on the biomass. Typically up to 50% carbon dioxide and up to 3 % of 
hydrogen sulfide are occurring in biogas streams. Although it has been calculated that 
membranes would offer a major advantage because of its low energy consumption and 
simplicity of operation compared to glycol and alkanole amine treatment followed by 
conversion of hydrogen sulfide to sulfur using the Claus process, only a few papers have 
been published so far investigating different membrane materials for biogas treatment [6-9]. 
 
 
 
Flue gas streams 
The  recovery of CO2 from flue gases of  power plants has been examined for the first time in 
1992 [10,11]. The streams obtained in post combustion process, is mainly a low pressure, 
wet carbon dioxide/nitrogen mixture. Various studies showed that the present state of the art 
polymer membranes are less expensive and energy demanding than alkanol amine  
absorption or cryogenic processes. On the other hand, the membranes are less competitive 
to absorption processes in terms of selectivity and final CO2 purity [12]. However, membrane 
technology has significant environmental benefits, since its application does not result in by-
products causing emissions or requiring further treatment and disposal [13]. Since the flue 
gas streams are currently cooled down to 40-60°C and the carbon dioxide/nitrogen 
separation factors are quite similar or even higher for the separation of carbon dioxide and 
nitrogen compared to carbon dioxide to methane, several membrane materials which are 
able to overcome the so-called Robeson upper bond limit are of high interest [14].  
 
 
 
Robeson Upper bond for carbon dioxide/methane 
 
In Fig. 1 the so-called Robeson Upper bond from 1991 and 2008 [15] is shown for carbon 
dioxide/methane separation, which is relevant for the biogas as well as natural gas 
treatment. Thereby selectivity of a membrane material is plotted versus the permeability of 
carbon dioxide. It is obvious that rubbery polymeric materials are showing high permeabiltity 
combined with low selectivity whereas for the glassy polymers it is vice versa. So far all 
commercial polymers are found beyond the Robeson upper bond limit of 2008, most of them 
are even lying under the 1991 limit. Interesting materials with very high permeability as well 
as high selectivity are polymers with specific side groups which are able to rearrange during 
thermal treatment [16]. Other interesting approaches which lead to significantly improved 
separation characteristics are carbonized cross-linked polymer blends. Thereby cross-linking 
is induced with diamines as additives in a mixture of different polyimides. With this approach 
selectivities for carbon dioxide and methane between 100 and 200 can be reached [17]. 
Polymeric materials with extremely high carbon dioxide permeability are PIMs which might 
be especially of interest for post combustion carbon dioxide capture since the flow rates are 
rather high [18-20].  



Permeabilität Kohlendioxid/Methan [barrer]

0,0001 0,001 0,01 0,1 1 10 100 1000 10000

id
ea

le
 S

el
ek

tiv
itä

t K
oh

le
nd

io
xi

d/
M

et
ha

n

1

10

100

1000

10000

Upper Bond 1991

Upper Bond 2008  

Fig. 1 Upper bond diagram for CO2/CH4 separation, commercial polymers,( ), polymeric materials after
thermal rearrangements ( ) and green area, PIMs ( )polymer blends crosslinked and carbonized( ), mixed
matrix membranen ( ), area postulated with crosslinked mixed matrix membranes (yellow area)

Id
ea

l s
el

ec
tiv

ity
fo

r
ca

rb
on

di
ox

id
e/

m
et

ha
ne

Permeability carbon dioxide/methane [barrer]

 
Finally mixed matrix membrane materials as well as crosslinked mixed matrix materials or 
hybrid materials combining the high permeation rates of inorganic materials and the superior 
mechanical properties of polymeric materials are extremely promising candidates [21] 
governing the direction for implementing membrane based processes in order to reduce the 
carbon dioxide emissions set free in natural gas and biogas streams but also in flue gases 
from coal-burning power plants. 
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1. Introduction 

As the capture of CO2 from conventional fuel combustion with air is inherently energy 

intensive, oxyfuel combustion, where pure O2 obtained from an air separation unit (ASU) is 

used, is considered a worthwhile alternative. However, for flame temperature control, the 

pure O2 stream needs to be diluted with recycled flue gas. The major efficiency drawback in 

oxyfuel combustion is caused by the ASU. For example, processes using the well-

established cryogenic technique for O2 production are typically associated with a penalty of 

10%-points [1]. Therefore, using high temperature membranes as ASU, known also as ion 

transport membranes (ITM), may be more efficient. The membrane technology is expected, 

from an economic and environmental perspective, to have a major role to play in the 

mitigation of CO2

At RWTH Aachen University OXYCOAL-AC, a joint project between industry and university 

researchers, has investigated the potential for ITM usage with pulverised coal combustion 

since 2004. At RWTH Aachen University six institutes working on the field of energy, process 

engineering and material technology have provided the scientific part, supported by 6 

industrial companies

 resulting from fossil fuel combustion [2].  

1

Elevated temperatures, typically 800-900°C, together with an enlarged differential pressure 

across the membrane, are required to obtain an appropriate O

. Using process simulations, Stadler et al. [3] determined a minimum 

achievable penalty of 5.2%-points for the OXYCOAL-AC process. 

2

Due to severe process constraints (temperature, pressure and flue gas composition), the 

design of such heat exchangers has to be addressed. Full consideration must be given to the 

design of the feed air heater (FAH, see figure 1) to guarantee an effective process integration 

of the ITM. This work investigates the impact of FAH design characteristics on process 

efficiency and membrane area requirement. Two variants of the OXYCOAL-AC process have 

been considered. 

 flux. For industrial size power 

plants it follows, that a heat flow rate, which amounts to 10-30% of the plant thermal 

capacity, has to be transferred to the feed air. Therefore, heat exchangers advantageously 

positioned either in the boiler or in the recycled flue gas pipe will have to be used.  

1 RWE Power AG, E.On AG, Hitachi Power Europe, Linde AG, MAN Turbo, and WS-Wärmeprozesstechnik 
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2. Process description 
2.1. Reference process 

The processes investigated are based on the Reference Power Plant North Rhine-

Westphalia [4], which is characterised by a net efficiency of 45.9% and steam parameters of 

600/620°C and 285/60 bar. All processes investigated relate to a gross electric power output 

of 600 MW. The simulations have been carried out using a Matlab based code.  

2.2. OXYCOAL-AC 4-end concept 

A central feature of the 4-end concept, shown in Fig.1a, is a membrane integrated in the 

recycled flue gas pipe. Hot recycled flue gas (875°C) and preheated feed air (757°C) are 

thereby intended to heat the membrane to the required operation temperature. On the 

membrane feed surface, O2 is absorbed and transported by diffusion to the permeate 

surface, where it is swept by recycled flue gas. This method provides a high O2 partial 

pressure difference and a high O2 flux across the membrane. In standard conditions, the 

average O2 partial pressure ratio attains a value of ∆pO2_av = 24.5. The exit N2-rich stream 

from the membrane releases mechanical energy in a turbine and ultimately provides 

additional heating to the feedwater (not represented in the sketch). As the major components 

located in the recirculation path are vulnerable to dust and sulphurs, a hot-gas cleaning 

device, made of ceramic candle filters, cleans the flue gas.  

 
Figure 1: OXYCOAL-AC processes with a four-end and a three-end membrane module 

A large part of the cleaned flue gas goes through the membrane where it is enriched with O2. 

Eventually, it is cooled by the FAH and transported by a hot gas blower to the burners. O2 

concentration at the burners attains 17 %-vol. The low O2

The analysis has been carried out for a CO

 concentration, still enables an 

efficient combustion [5]. The not-recirculated flue gas releases subsequently heat to the 

economizer and to the feedwater.  

2 capture rate of 90% with 5% remaining 

impurities. This adds an energy penalty of 130 kWhel per tonne of CO2 sequestrated [6]. In 

contrast with air fired processes, process variants developed within the OXYCOAL-AC 
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project are based, to a greater extent, on turbo machinery, which puts a heavy strain on 

process efficiency. In this respect, Stadler et al. [7] proposed realistic lower and upper limits 

for polytropic efficiencies. The conservative values are used in the present simulations. 

Finally, ingress air has been restricted to 1% of flue gas mass flow. Non condensable gases 

actually increase significantly the compression work and the condensation duty of the CO2 

separation process [8]. Under standard conditions, a net plant efficiency of 38.5% and a 

adiabatic flame temperature of 1648°C have been determinated. 

2.3. OXYCOAL-AC 3-end concept 

Currently available membrane materials (perovskite) suffer performance deterioration under 

action of CO2 [9]. An alternative referred to as 3-end concept, shown in Fig.1b, keeps 

membrane and flue gas separated. A significant O2 partial pressure difference throughout 

the membrane is then attained through pressurizing feed air and simultaneously applying 

vacuum on the permeate surface. Since recycled flue gas exhibits a significant lower 

temperature (323°C), it is inadequate to heat entirely the feed air. Hence feed air heating 

takes place within the combustion chamber (up to 825°C). To apply vacuum on the permeate 

surface and convey pure O2 into gas recirculation, Beggel [10] suggests the use of a non-

lubricated liquid pump, since O2 represents a potential risk. O2

Changing the membrane integration from the 4-end version to 3-end requires an increased 

membrane surface area for similar process efficiencies. This is due to a significant lower 

average O

 concentration at the burner 

has been set to 17 Vol.-%.  

2 partial pressure ratio across the membrane. The O2 partial pressure ratio at the 

end of the membrane has been set to ∆pO2_end =2. The average O2 partial pressure ratio 

between feed and permeate surfaces then attains ∆pO2_av

 

 = 5.5.  

3. Results 
Oxyfuel combustion including O2

•  a sensitivity analysis of characteristic parameters of the membrane (O

-transport membranes has been studied by many 

investigators, with most of the simulations performed on process efficiency [3,6,7,10] and 

membrane area [11]. The new results reported here include: 

2

• the effect of O

 separation 

ratio in the feed stream and pressure ratio between feed and permeate sides) on net 

plant efficiency, membrane area and FAH design parameters (heat transfer rate, 

effectiveness and heat capacity rate ratio), 

2

• the effect of FAH internal pressure drop on plant efficiency. 

 concentration in recycled flue gas, 

Effectiveness is defined as the ratio between actual heat transferred and maximal heat 

transferable in a counter-flow heat exchanger. 
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3.1. OXYCOAL-AC 4-end concept 

a. Sensitivity analysis of characteristic parameters of the membrane 

The net plant efficiency (Fig.2a) and the membrane specific area (Fig.2b) increase with 

increasing membrane O2 separation ratio and decreasing pressure ratio β. Low O2 

separation ratios increase the air flow rate, which in turn increases the power deficit between 

the turbine and the air compressor and also decreases the flue gas temperature at the 

burners. In exactly the same way, high pressure ratios increase the power deficit between 

the turbine and the air compressor: as the air compressor discharge temperature increases, 

less heat is required from the recycled flue gas, which would result in a lesser drop in flue 

gas temperature. An undesirable consequence of decreasing O2 separation ratio is a rise in 

heat flow rate (Fig.2c), effectiveness ε and heat capacity rate ratio C* (Fig.2d) for the FAH. 

All of this is in line with increasing the heat transfer area.  

 
Figure 2: Sensitivity analysis of the OXYCOAL-AC 4-end concept for variable membrane pressure ratio β and O2 

b. Effect of O

separation 

ratio: (a) plant net efficiency, (b) specific membrane area, (c) FAH: specific heat transfer (d) FAH: effectiveness and heat 

capacity rate ratio.  

2

Increasing O

 concentration in recycled flue gas 

2 concentration increases adiabatic flame temperature and also brings hot gas 

blower power expenditure down. Hence, a substantial gain in net plant efficiency (0.5 %-

points for an O2 increase of 6 Vol.-%) is obtained. It also acts in a manner that the O2 flux 

across the membrane slightly decreases. No significant difference in terms of heat transfer 
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rate in FAH is observed. However, as the flue gas flow rate decreases, the temperature 

difference in the heat exchanger decreases, i.e. the exchanger effectiveness increases.  

c. Effect of FAH internal pressure drop 

The net plant efficiency decrease has been determined in relation with FAH pressure drop: at 

equal pressure drop, the net plant efficiency is lowered by the flue gas stream 31 times more, 

than by the pressurized air stream. 

3.2. OXYCOAL-AC 3-end concept 

a. Sensitivity analysis of characteristic membrane parameters  

The net plant efficiency (Fig.3a) reaches a peak in the region between 70 and 80% of O2 

separation ratio. This is due to two competing effects. At low O2 separation ratio, the net 

plant efficiency is predominantly impeded by the high air flow rate and the resulting high 

energy consumption of air compressor. In contrast, at high O2 separation ratios, low O2 

partial pressure in the feed needs to be counterbalanced by a higher vacuum on the 

permeate side. The fact that the air pressure decrease on the membrane feed side coincides 

with a decrease of the net plant efficiency has been discussed before. Please note that net 

plant efficiencies attained by the 3-end and 4-end concepts are very similar to each other.  

 
Figure 3: Sensitivity analysis of the OXYCOAL-AC 3-end concept for variable membrane pressure ratio β and O2 

Unlike the 4-end concept, the O

separation 

ratio (a) plant net efficiency, (b) specific membrane area, (c) FAH: specific heat transfer (d) FAH: heat capacity rate ratio. 

2 transport across the membrane of the 3-end concept 

decreases with increasing O2 separation ratio (Fig.3b). One must keep in mind that for a 

constant ∆pO2_end, O2 partial pressure ratio imbalance along the length of the membrane  
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increases with increasing O2

b. Effect of O

 separation ratio. Regarding the heat transfer rate (Fig.3c) and 

the heat capacity rate ratio (Fig.3d) in FAH, 3-end and 4-end concepts exhibits the same 

qualitative behaviour.  

2

The simulations have shown that the efficiency gain through higher flue gas O

 concentration in recycled flue gas 

2

c. Effect of pressure drops in FAH 

 is 

insignificant. 

With respect to the 4-end concept, the dependence of net plant efficiency on FAH pressure 

drop has decreased: the impact of the flue gas stream on the net plant efficiency is 22 times 

higher than that of the feed air stream. This is attributable to a decrease in recirculation 

temperature, which in turn leads to a reduced hot gas blower power expenditure. 

4. Conclusion: 

In the context of CCS power plants based on oxyfuel combustion with O2

5. Acknowledgement: 
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membrane the main factors exerting an influence on the membrane feed air heater have 

been analysed. In order to provide a comprehensive approach, this development has been 

put into perspective with the impact on the net plant efficiency and the membrane area. 
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Oxygen Supply for Oxyfuel Power Plants by Oxy-Vac-Jül Process 
J. Nazarko, M. Weber

 

, E. Riensche, D. Stolten, Juelich Research Center, Germany 

1 Introduction 
 
Oxy-fuel processes are based on the elimination of nitrogen from the oxidizer flow entering 
the combustion chamber in order to get a flue gas that consists almost exclusively of CO2 - 
after application of common flue gas cleaning steps and vapor condensation. Oxygen can be 
supplied by various processes. Cryogenic air separation on medium scale is state of the art, 
but it requires an energy of 0.245 kWhel/kgO2

1 1, p. 
20

 to supply oxygen with a common purity [
]. Energetic optimization allows to reduce the energy consumption to 0.175 kWhel/kgO2, but 

it results in an impurity content of up to 5 vol% [1, p. 21]. Substitution by a membrane based 
oxygen supply will be successful only, if the CO2 avoidance cost can be reduced.  
 
 
2 Oxygen supply using Perovskite membranes  
 
Perovskite is gas-tight ceramic material allowing mixed ionic-electronic oxygen permeation 
with a perfect selectivity [2, p. 239], which enables single-stage separation. It´s ABO3 
structure consists of a cubic close packing of large A cations (e.g. La3+ or Sr2+) and oxygen 
ions, while the smaller B cations (e.g. Co3+, Co4+, Fe3+, Fe4+) occupy the octahedral cavities 
furthest from A ions. Transport occurs via oxygen vacancies. Thermal activation sufficient for 
technically relevant transport is reached only at temperatures above 700°C [3, p. 6]. The flux 
is given by the Wagner equation [4, p. 3]: 
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Here, R  is the gas constant, F  is the Faraday-constant, σ are the conductivities, L is the 
membrane thickness an LC a critical thickness, below which surface kinetics prevail  [4, p. 3]. 
 
 
3 Classification of the membrane based Oxyfuel concepts 
 
Membrane based oxyfuel-concepts for coal power plants (Table 1) can be distinguished by 
the methods for air or membrane heat-up and for generation of driving force for the oxygen 
transport. Following heating methods are known and partially combined: 

- Air compression 
- Regeneration 
- External heating (e.g. inside of the boiler) 
- Use of hot flue gas (either membrane heating by use as sweep gas or air heating). 

Driving force is generated by 
- Compression of the feed gas (followed by expansion of the retentate) 
- Vacuum on the permeate side 
- Sweeping on the permeate side at atmospheric pressure. 

 
From the three measures for generation of the driving force for the oxygen transport and their 
possible four combinations in principle seven different oxyfuel classes come out. Four 
promising concepts are listed in Table 1, which are subject of evaluation. 
 
 
 

1 Ambient conditions: 20°C, 1.01325 bar, 60% humidity, product temperature 15°C. 
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Table 1: Classification of the membrane based oxyfuel concepts 

  OXYCOAL-
AC OXY-CLEAN OXY-VAC-

JÜL 
OXY-SWEEP-

JÜL 

Driving force 
generation 
 

Feed side Compressor 
and turbine 

Compressor 
and turbine ------ ------ 

Perm. side Sweep with 
flue gas 

---- / vacuum 
suction 

vacuum 
suction 

Sweep with 
flue gas 

Total pressure 
Feed side  10-20 bar 10-20 bar 1 bar 1 bar 

Perm. side 1 bar 1 bar / < 1 bar < 0.2 bar 1 bar 

Heating of membrane feed gas Compressor / 
flue gas 

Compressor / 
flue gas 

Recuperator / 
flue gas 

Recuperator / 
flue gas 

Reference power plant 
(without CCS) 

Externally 
Fired CC 

Externally 
Fired CC 

Steam power 
plant 

Steam power 
plant 

Flue gas recycling (temp. level) hot cold cold hot-cold-hot 

Flue gas recycling (flow rate) large small small very large 

 
 
4 OXY-VAC-JÜL concept 
 
In the OXY-VAC-JÜL concept air compression and sweeping with flue gas is avoided. 
Sufficient driving force results from the generation of a strong vacuum at the permeate side 
of the membrane (Fig. 1).  
 
An air blower compensates the pressure losses in the membrane module and the heat 
exchangers. The recuperative air preheating is designed with parallel fresh air streams and 
the corresponding two hot streams of the depleted air and the produced oxygen. Final air 
heating up to 850°C takes place in the boiler. A certain air excess is needed, because 
membrane modules can separate only a part of the oxygen contained in the air. The degree 
of separation is limited by the oxygen content in the retentate: its partial pressure is always 
higher than the vacuum pressure on the permeate side. 
 
This concept offers several advantages: 

- Elimination of compression and expansion of the fresh air 
- Cold flue gas recycling, and thus with low flow rate and with recycle blower and flue 

gas cleaning similar to the cryogenic process 
- Flue gas, consisting of CO2, H2O and impurities, is not contacting the membrane 

material. 
 
The disadvantages are: 

- Special requirements on heat exchangers and tubing resulting from vacuum. 
- Large peripheral components compared to the concepts with feed compression. 
- oxygen handling at high temperatures needed. 
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Fig. 1: Flowsheet of the simulated OXY-VAC-JÜL concept 
 

 

5 Thermodynamic boundary conditions  
 
For the thermodynamic analysis of the OXY-VAC-JÜL concept the hard coal-fired “Reference 
power plant NRW” [5, p.] is chosen as reference and orientation for the power plant 
components including the water steam cycle. 
 
The air data are calculated on the basis of 

- the air composition given in Landolt-Börnstein 
- the Magnus equation for the saturation vapor pressure and 
- the correction factor for water vapor in air compared to steam 

These data as well as the composition of the coal “Klein Kopje“ are input parameters for the 
simulation. A pressure of 1.01325 bar and a temperature of 11°C for the environment is 
fixed, the relative humidity of the air amounts to 60%. 
 
The thermodynamic calculations are carried out using the commercial programmes  

- PRO II, version 8.3.3, for air and coal path, combustion and flue gas path 
- Ebsilon Professional, version 9.00, for the water steam cycle (IAPWS-IF97 water 

steam table). 
 
The oxygen demand of 70.9 Nm³/s results from 

- the thermal heat input of 1210.3 MWth 
- the coal type Klein Kopje 
- oxydant ration of 1.15 for oxyfuel combustion 
- the simulated flue gas recirculation ratio of 68.7%, which adjusts the caloric 

combustion temperature to 2124°C [6, p. 161] and 
- the oxygen content in the recycled flue gas, which amounts to 3.61 Vol.-%. 
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From safety reasons the temperature of the hot oxygen should not exceed 200°C outside the 
membrane module. Therefore, two vacuum compression steps with intercooling are 
foreseen. The waste heat of the compression is used in the water steam cycle for preheating 
of the condensate. An adiabatic efficiency of 75% is assumed for the vacuum compressors. 
The oxygen partial pressure in the retentate is 10% higher in relation to the oxygen partial 
pressure in the permeate. 
 
For the feed/retentate side of the membrane and for the air- respectively flue gas sides of the 
heat exchangers a pressure loss of 2% of the absolute pressure value is assumed. 
Therefore, the air blower has to compensate a pressure loss of 80 mbar in total. 
 
The boundary conditions of the waste heat use of the flue gas, the coal drying and the flue 
gas recycling are published in [6, p. 160-161]. Table 2 gives an overview of the parameters 
and characteristic data of the simulated OXY-VAC-JÜL concept. 
 
Table 2: Parameters of the simulated membrane based OXY-VAC-JÜL concept 

parameter data unit 

caloric combustion temperature 2124 °C 

operating temperature of membrane 850 °C 

flue gas temperature after steam generator  370 °C 

Recirculated flue gas in front of combuster 350 °C 

coal mass flow 48,429 kg/s 

excess oxygen 1,15 ------ 

leak air fraction 0,00 ------ 

Vacuum compressor, adiabatic efficiency 75 % 

blower, efficiency 75 % 

oxygen partial pressure ratio retentate / permeate 1,1 ------ 

gas/gas heat exchanger, terminal temperature difference 50 K 

gas/coolant water heat exchanger, terminal temperature 
difference 12 K 

pressure loss per apparate passage 20 mbar 

 
 
 
6 Results 
The net plant efficiency of the OXY-VAC-JÜL concept (including CO2 compression) is shown 
in Fig. 2 as a function of the O2 separation degree. A maximum can be observed at a 
separation degree of 60%. At lower separation degrees, high flow rates of fresh air and 
depleted air lead to higher energy demand of the air blower and larger amounts of waste 
heat in the depleted air, leaving the plant at 69.3°C. At higher separation degrees, the 
electric energy demand of the vacuum compressor increases, since lower vacuum pressure 
levels are required, as shown by the red curve in Fig. 3.  
 
Whether the optimum design point can be realized, depends on the availability of suitable 
vacuum compressors; with the assumptions on pressure loss made, the suction pressure of 
the vacuum compressor is 20 mbar lower than the pressure values given in Fig. 3. 
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Fig. 2: Net plant efficiency of the OXY-VAC-JÜL concept as a function of the O2 separation degree 
(net efficiency of the reference plat is 45.6 %) 
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Fig. 3: Air mass flowrates and O2 permeate partial pressure as a function of the O2 separation degree 
 
A low O2 separation degree leads to a high air demand (Fig. 3, blue curve). The air flow of 
the reference power plant NRW (air ratio 1.15) amounts to  470 kg/s (Fig. 3, dashed line). 
The air demand of OXY-VAC-JÜL ranges from 540 to 1440 kg/s. The  membrane unit 
supplies 99.2 kg/s of oxygen. Compared to stoichiometric oxygen supply, this value is by a 
factor of 1.047 higher.  
 
The energy need for oxygen supply by OXY-VAC-JÜL concept is composed of the 
consumptions of the two vacuum compressors and of the air blower as well as the heat 
supplied in the boiler multiplied by the steam process gross efficiency (Fig. 4). 
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Positive effects of membrane based oxygen supply on the plant efficency (hot oxydant 
supply to the boiler, waste heat use in the steam cycle)  are not shown here but included.  
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Fig. 4: Energy demand for oxygen supply 
 
 
 
7 Summary 
 
Applying OXY-VAC-JÜL concept to the “Reference power plant NRW” results in net plant 
efficiencies ranging from 39.4 to 39.6 %-points (including CO2 compression) for a wide range 
of oxygen separation degrees (50 to 75%). In the frame of the assumptions made and at an 
optimal degree of O2 separation of 60%, the oxygen supply by OXY-VAC-JÜL concept 
requires a net electric energy of 0.098 kWhel/kgO2 – including all negative and positive effects 
of integration into the power plant. The corresponding values for the cryogenic air separation 
technology are 0.245 kWhel/kgO2 (today, high O2 purity) and 0.175 kWhel/kgO2 (optimized for 
oxyfuel, lower O2 purity). This results in lower efficiency penalties for the OXY-VAC-JÜL 
concept: the difference is 4.3 respectively 2.3 %-points. The values are obtained assuming 
realistic component data: 50 K terminal temperature difference in heat exchangers, 20 mbar 
pressure loss for each apparatus passage and 75% adiabatic efficiency of the vacuum 
compressors. 
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Abstract 
 
The CCS-Technology seems to be a promising technology for reducing CO2-emissions of 
coal-fired power plants. To capture and store CO2, the exhaust gas needs a high purity 
grade. This can be realized by firing in an atmosphere of pure oxygen and re-circulated CO2. 
Providing the required oxygen by liquid air separation, results in a significant net efficiency 
loss of the power plant process. An alternative is to supply pure oxygen by Oxygen Transport 
Membranes (OTM). Regarding the membrane material, perovskite type ceramics like 
BSCF (Ba0.5Sr0.5Co0.8Fe0.2-O3-δ) with mixed ionic and electronics conductivity (MIEC) at high 
temperatures can be used.  
Within the OXYCOAL-AC Project a 15 m² membrane area Pilot Module equipped with BSCF-
tubes for oxygen separation has been developed. The module aims to produce more than 
300 000 liters pure oxygen per day. 
  

1. Introduction 

About 75% of anthropogenic CO2-emissions are produced by fossil fired power plants [1]. To 
improve coal fired power plants in relation to their environmental acceptability the carbon 
capturing and storage (CCS) technology is an important measure. One of three main 
approaches for CO2 capture is the oxyfuel combustion, where the fossil fuel is combusted 
with pure oxygen instead of air. This leads to a flue gas mainly consisting of CO2  and water 
which can be readily captured. State of the art to provide the pure oxygen is by cryogenic air 
separation. The critical disadvantage regarding this process is an efficiency drop of the 
power plant process of 8% - 12% [2, 3].  
Another possibility to provide the oxygen is the use of ceramic oxygen transport 
membranes (OTM) [4, 5, 6]. At high temperatures, these membranes are able to separate 
oxygen from air with an infinite selectivity. 
There are currently several research projects investigating the characteristics and the use of 
OTM membranes for a power plant process, but still most OTM-reactor concepts are bench-
scale-modules. In the OXYCOAL-AC Project a Pilot Module is developed, which works as a 
standalone equipment for oxygen supply.  
 

2. Principles of oxygen transport across MIEC-Membranes 

As membrane material for OTM-reactors, perovskite type ceramics like BSCF with mixed 
ionic and electronic conductivity (MIEC) are suitable. Due to oxygen vacancies in the lattice, 
which become highly mobile at elevated temperature (>700°C), those materials show a good 
conductivity for oxygen ions. The parameters affecting the oxygen transport JO2 can be 
expressed by the simplified Wagner´s equation (Eq.1), as it is mainly the temperature, the 
membrane thickness and material properties. The driving force for oxygen ions through the 
membrane is provided by a difference in oxygen partial pressure on its feed (pO2air) and 
permeate (pO2flue) side. 

        
 (Eq.1) 

 
 
C(T)=constant, which depends on material and temperature; sm=thickness of membrane 
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By applying high temperatures and high differences in oxygen partial pressure, the oxygen 
flux across the membrane is increased, but at the same time those operating conditions 
cause mechanical loading of the membrane. Consequently, not only functional properties like 
oxygen permeation have to be considered but also mechanical, thermo-physical and 
chemical properties. 
The integration of the membrane into the power plant process can be done in two different 
ways: the three-end and the four-end operation [7]. In the 4 end integration, re-circulated 
exhaust gas is used as a sweep gas to achieve a low oxygen partial pressure on the 
permeate side while on the feed side pressurized air is used. By increasing feed air pressure, 
oxygen flux across the membrane is increased as well (Fig.1). 
 

 
 
Fig.1: Oxygen assimilation over the membrane by using overflowing sweep gas 
 
In the three-end concept no sweep gas is used. The oxygen partial pressure difference is 
provided by applying pressurized air on the feed side of the membrane and vacuum on the 
permeate side. Stadler et al. determined the net efficiency loss for a coal fired power plant to 
5.8-%-points, assuming an average partial pressure ratio (pO2,feed/pO2,permeate) of 5 [8]. 
There is also the option to increase the oxygen flux by reducing the membrane thickness. To 
realize very thin membranes there is the possibility to coat a porous structure with a thin 
membrane layer. But increasing permeation by reducing membrane thickness is limited due 
to oxygen surface exchange kinetics [9]. Betz et al. found out, that the oxygen permeability of 
a supported dense membrane with a thickness of 70 µm on a porous layer is only 30% 
higher than of a 1 mm monolithic membrane [10]. Furthermore, investigations from Q. Jiang 
et al. show, that the values of oxygen permeation of a composite membrane are lower than 
the theoretically values calculated by Wagner`s equation [11]. A problem in case of 
composite membranes is that the substrate has to be very porous otherwise the permeation 
of oxygen gets suppressed. In addition, the survey of Q. Jiang et al. expresses, that by 
increasing the porosity of the substrate, the oxygen flux reaches higher values. But a high 
porosity means a low mechanical stability. 
 

3. Membrane design 
 

3.1 Membrane material 

Concerning the membrane material, a lot of influencing factors have to be considered. A 
compromise between particular needs for the process and solutions that can be realized by 
available production technology has to be found. The most attractive material for OTM-
applications is the perovskite type ceramic BSCF. This material shows a high oxygen flux at 
temperatures from 800 °C - 900 °C and an acceptable mechanical strength.  
The disadvantage of BSCF is the poor chemical stability in CO2 and SO2 enriched 
atmospheres. Investigations from Engels et al. [12] show a decrease of oxygen permeation 
about 80% in case of increasing the CO2 concentration in the sweep gas from 0% up to 15%. 
By using a pure CO2-atmosphere a decomposition of the BSCF structure can be observed. 
That makes it impossible to use in the 4-end mode, where the sweep gas mainly consists of 
CO2 and water. Other possible materials like Sr0,5Ca0,5Mn0,9Fe0,1O3-δ (SCMF), 
Sr(Co0,8Fe0,2)1-yTiyO3-δ (SCFT) or La0,6Ca0,4Fe0,75Co0,25O3-δ (LCFC) have better chemical 
stabilities, but show a smaller oxygen flux in the order of one magnitude [13, 14]. For BSCF 
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different permeation ratios are released in literature [15-19]. However, comparing different 
investigations is difficult, because oxygen flux depends on sample geometry, sample surface, 
operation conditions and also on the microstructure of the material [20].  
 

3.2 Membrane manufacturing 

To equip the OXYCOAL-AC Pilot Module tubular membrane geometry was chosen. 
Compared to planar BSCF membranes, tubular membranes have several advantages. By 
using tubes, high packing fractions are possible and in case of a defect, only the defective 
tube has to be changed, not the whole stack.  
For tubular structures there are a few manufacturing possibilities, for example extrusion or 
cold isostatic pressing. Better results were archived by isostatic pressing what made it the 
favourable manufacturing technique for the equipment of the Pilot Module. The tubes have a 
length of 500 mm, a diameter of 15.5 mm and a wall thickness of 0.8 mm. To press the 
ceramic material to tubes, a special pressing mold is required. Also the ceramic powder has 
to be granulated, that means the powder get mixed with specific additives. This is beneficial 
for filling the pressing molds and the pressing process. After compacting the ceramic 
granulate with pressures up to 180 MPa, the green compacts were cut to their final 
dimension plus a shrinking allowance, because the tubes shrink during the sintering about 
14%. Sintering temperature amounts to 1100 °C with a holding time of 5 hours. Those 
parameters have been identified during last years research activities. Especially the 
microstructure of the BSCF was optimized relating to the membrane performance. 
After sintering the tubes are joined to metal parts. Before assembling the membranes in the 
Pilot Module all tubes get checked in a burst test bench. That kind of proof test guarantees 
the gas tightness of the membranes as well as the resistance against external pressure of up 
to 20 bar at a temperature of 850 °C. Investigations regarding the mechanical strength of 
BSCF show, that the strength of the material at 850 °C is only 60% of the stability at room 
temperature. Therefore the tubes get tested in the burst test bench with 35 bar external 
pressure at ambient temperature. 
 

3.3 Joining techniques 

In the OXYCOAL-AC module concept, the tubular ceramic membranes have to be joint gas 
tight on metal parts to assemble them in the pilot module. One possibility is to braze with 
glass or metal solders. Brazing metal on ceramic is a difficult process. But it is the only 
alternative to get a high temperature resistant sealing. One typical problem of metal-ceramic-
bonds is the difference in thermal expansion. But in this case, the coefficient of thermal 
expansion from BSCF has nearly the same high value as the heat resistance steel 
X15CrNiSi25-20. Therefore glass solders are not qualified, because they have usually low 
expansion coefficients. Wang et al. [18] and Shao et al. [21] used glass ceramic sealants to 
join BSCF in their oxygen permeation testing device and after measuring and cooling down 
to room temperature the mismatch of thermal expansion has damaged sealant and 
membrane. 
For brazing with metal solder it has to be taken into account, that the OTM works in oxidizing 
atmosphere, so only noble-metals can be used as solder material. A common active metal 
material for ceramic/metal brazing is a Silver-Copper-Titanium solder. But active brazing 
needs vacuum for processing and this condition decompose OTM-Materials.  
Weil et al. [22-24] introduced a technology called Reactive Air Brazing (RAB) which works 
with a Silver-Copper-oxide solder, which can be brazed in air atmosphere. Investigations 
carried out at IWM show, that it is possible to reach reactive brazed BSCF-metal-bonds, 
which have gas tightness up to temperatures of 850 °C. This technology seems to be the 
most promising technology in this case but there are still no tests concerning its long term 
stability. Therefore currently the creep behavior of reactive air brazed high temperature 
membranes are going to be investigated.  
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In the OXYCOAL-AC Pilot Module the joint patch of the membranes is cooled down to 
200 °C. So alternatively to brazed tubes also tubes which are joined with special epoxy glues 
can be used.  
 

4. Module design 

By designing a module concept the first aim is to reach a permeation area which is as high 
as possible. Also, thin wall thicknesses of the membranes are needed. There are few design 
concepts for membrane modules with tubular and also planar structures worldwide. The 
second generation of modules developed within the OXYCOAL-AC-project, which actually is 
going to be finished, will be equipped with monolithic BSCF tubes.  
The ceramic tubes are joined on metal housing. With those housings, the tubes were 
inserted into a cooled metal flange. This flange is able to hold 300 tubes with a length of 
500 mm on both sides, since the module consists of a symmetric assembly, of two separated 
pressure vessels, see Figure 2.  

 
Fig.2: Principle assembly of the OXYCOAL-AC Pilot Module with 15 m² membrane area 

Every tube has al membrane area of 246 cm², which results in a total membrane area of 
about 15 m² for the Pilot Module. According to a permeation rate of 2 Nml/cm²min, the 
Module is able to supply 0.6 t oxygen per day.  
The Module works in three-end operation with a possible gauge pressure of 20 bar on the 
feed side and a vacuum of 0.3 bar at the permeate side. These conditions seem to be 
suitable for power plant integration as shown in [8].  
The pre-heated pressurized air streams into the vessel, where it passes the tubes. The 
oxygen that permeates through the membrane tubes is collected within the flange, where it is 
additionally cooled down to temperatures below 200 °C and conveyed to the vacuum pump. 
The required temperature is reached by electric preheating of the air stream and an 
additional heating inside the module.  
 

5. Permeation results 

Figure 3 shows the experimental results of a 1m² Lab-scale Membrane Module, that uses the 
same principle for the cooled flange as the pilot module under construction. 
In different experiments the module was equipped with 250 mm and 500 mm one-sided 
closed tubular BSCF membranes with a wall thickness of 0.8 mm, as described in section 
3.2. The experiments were performed at temperatures of 800 °C and 850 °C. The difference 
in oxygen partial pressure was realised by applying pressurized air up to 15 bar on the feed 
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side of the membrane and by applying a moderate vacuum down to 0.3 bar on the permeate 
inner side of the tubes.  
Figure 3 shows a linear dependence of the permeation ratio and the logarithmic partial 
pressure ratio as described by the Wagner equation (Eq.1) for all sets of experiments.  
 

 
Fig.3: Permeation results of the 1m² -Membrane Module 
 
As also can be seen, the shorter membrane tubes show a higher specific permeation ratio 
than the ones with a length of 500 mm. It was found out that the reason for this difference 
lies in insufficiently preheated feed air. Since the top of the longer tubes is adjusted closer to 
the feed air inlet, the temperature reaches only 730 °C, 680 °C respectively. Therefore, a part 
of the 500 mm tubes shows far lower permeation ratio compared to the 250 mm tubes, 
where the desired temperature is reached all along the membrane length. 
Applying a partial pressure ratio of (pO2,feed/pO2,permeate) = 5, which is assumed to be suitable 
for power plant integration [8], the 500 mm tubes reach a permeation ratio of 
1.46 Nml/cm²/min. Extrapolating the experimental results for the short membrane tubes, a 
permeation ratio of  more than 2 Nml/cm²/min can be reached under these conditions.    
 
 
Conclusion and Outlook 
 
Within the OXYCOAL-AC Project a Pilot Module for oxygen separation by ceramic OTM with 
a membrane area of 15 m² has been developed. In the Module monolithic BSCF tubes are 
used under three-end conditions. This Pilot Module will start running in July of 2011 at 
Aachen University. The feasibility of this membrane concept was demonstrated at a 1 m² lab-
scale Module. 
A production technology for membrane tubes has been developed. About 700 membrane 
tubes have been successfully produced and quality tested in a particular developed proof 
test. 
An important future task is the proof of long term stability of the entire membrane plant under 
service conditions, regarding functional properties like permeation rate and mechanical 
properties like strength and creep behaviour. 
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ABSTRACT 
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Canada’s oil and gas industry is centered in the province of Alberta. The Western Canadian Sedimentary Basin, which 
comprises most of the province, contains significant oil, gas, coal-bed methane, shale gas, and coal resources. The 
industrial heartland area, near Edmonton, contains large CO2 emitters, including tar sands upgrading plants and coal 
fired power stations. The provincial and federal governments have created multiple initiatives to encourage research 
into, and practical application of geological carbon sequestration. Alberta is fortunate in having multiple large 
opportunities for enhanced oil recovery, CO2

There is little experience to-date with CO2 injection into saline aquifers. The Alberta Saline Aquifer Project (ASAP), 
an initiative by Enbridge Inc., brought together multiple industry partners to prepare and execute a demonstration 
program for sequestration of CO

 storage in depleted oil and gas reservoirs, and sequestration in saline 
aquifers. Potential sequestration sites may be near emission centers, or aligned along strategic pipeline corridors. 

2 in a saline aquifer. This paper presents the high-level conclusions of Phase 1 of this 
study. The authors hope that other developers can learn from the framework of the ASAP project.  

144



 
Coupled Processes during CO2 Storage - Example of the Ketzin Pilot Site 
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At Ketzin, near Berlin, the GFZ German Research Centre for Geosciences operates Europe’s 
longest-running on-shore CO2 storage site with the aim of increasing the understanding of 
geological storage of CO2 in saline aquifers. The Ketzin field laboratory is Germany’s first CO2 
storage site and fully in use since the injection started in June 2008. After 34 months of operation, 
about 48,500 tons of CO2 have been injected. Monitoring at Ketzin integrates geological, 
geophysical, geochemical and microbiological investigations for a comprehensive characterization 
of the reservoir and the CO2 migration at various scales. Integrating field and lab data, both static 
geological and dynamic flow modelling are conducted in different stages. Our presentation 
summarizes the key results. 

CO2 injection and monitoring  
Research at Ketzin, funded by the EU project CO2SINK and further national projects (e.g. 
CO2MAN), began in April 2004 (Förster et al., 2006, Martens et al. 2011, Würdemann et al. 2010). 
Until 2004, natural gas was seasonally stored at about 280 m depth at Ketzin (Figure 1). The 
Ketzin anticline is therefore well studied. Based on these existing data as well as new exploration 
research from recent projects, three additional wells have been drilled in 2007 to depths of about 
800 m for the CO2 storage operation. One of these wells (CO2 Ktzi 201/2007; abbrev. Ktzi) serves 
as an injection and observation well, while the other two (CO2 Ktzi 200/2007, CO2 Ktzi 202/2007; 
abbrev. Ktzi 200 and Ktzi 202) serve solely as observation wells for monitoring the injection and 
the subsurface migration of the CO2 (Figure 2). 

 

 
Figure 1: Schematic of the Ketzin anticline (dome structure) with three wells. Migration of CO2 is indicated 
(yellow) within the reservoir beneath the cap rock. 
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Figure 2: Aerial view of the Ketzin pilot site displaying the injection facility, the pipeline (yellow) from the 
storage tanks to the injection well (Ktzi 201) and both observations wells (Ktzi 200, 50 m away from injection; 
Ktzi 202, 112 m away from injection). 

Since start of the CO2 injection on June 30, 2008, the injection facility operates reliably and safely. 
By the end of April 2011 about 48,500 tons of CO2 have been injected via the well Ktzi 201 into the 
target reservoir, a sandstone section of the Stuttgart Formation (Upper Triassic) at a depth of about 
630 to 650 m. The Stuttgart Formation is lithologically heterogeneous consisting of fluvial 
sandstones and siltstones alternating with mudstones (Förster et al. 2010).  

An interdisciplinary monitoring concept integrates geophysical, geochemical and microbial 
investigations at Ketzin (Giese et al. 2009). Following baseline measurements prior to the injection 
(Förster et al. 2006) repeat measurements are carried out for joint interpretations and a 
comprehensive characterization of the reservoir and the CO2 migration process. 

 Surface and down-hole geophysical measurements are applied to test and optimize the 
resolution of different methods and to visualize the CO2 plume. Active seismic is 
spearheaded by time-lapse 3D monitoring, carried out in 2005 (baseline) and 2009. The 
CO2 signature could be detected by an increased reflectivity at the top of the target 
reservoir, by a change in the attenuation behaviour and by a reduced propagation velocity 
within the reservoir (Lüth et al. 2011). After ~15 months of injection, the CO2 plume was 
concentrated around the injection well with a lateral extent of ~ 300 to 400 m and a 
thickness of ~ 5 to 20 m. Quantifying the CO2 imaged by the 3D seismic data is still 
challenging due to the relatively small CO2 amount, the heterogeneous reservoir and the 
limited information on CO2 saturation. 

 Electric Resistivity Tomography (ERT) is another essential part of the monitoring concept. 
ERT is shown to be sensitive to saturation changes caused by the migration of the 
supercritical CO2 within the originally brine-filled reservoir (Schmidt-Hattenberger et al. 
2011). A time-lapse sequence from a permanently installed vertical electric resistivity array 
(VERA) in all three Ketzin wells shows a significant resistivity increase at the reservoir level 
since the beginning of the CO2 injection. 

 Temperature conditions in all wells are monitored using distributed temperature sensing. 
The temperature evolution within the injection interval, the CO2 arrival and the evolution of 
two-phase P/T conditions in both observations wells are detected with high temporal and 
spatial resolution (Henninges et al. 2011). 
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Static and dynamic modelling of the Ketzin pilot site 
All data available from the Ketzin wells and the different monitoring techniques are compiled in a 
geological model of the site. Geological modelling (Norden et al. 2010) and dynamic flow modelling 
(Kempka et al. 2010) are conducted in different stages, e.g. incorporating pre-existing data and 
information from drilling, monitoring and laboratory experiments. Integrating field and lab data, 
numerical modelling is currently conducted in order to investigate coupled processes in the 
Stuttgart Formation and its caprock taking into account hydrodynamics, thermodynamics, 
geochemistry and geomechanics. 

Detailed static geological models were developed in the post-drilling phase already before start of 
the injection. This was in advance to the numerical models conducted (Kempka et al. 2010). The 
models were developed taking into account the heterogeneous lithological conditions in the 
Stuttgart formation. Here, the challenge was geological modelling of the alternating sequences of 
sandy string-facies and muddy floodplain-facies rocks. For that purpose, a diversity of information 
from local and regional origin was incorporated and combined in a geological model. The facies 
modelling, yielding the distribution of high permeable sand-channels throughout the floodplain-
facies rocks were produced using stochastic modelling. The geometry of the fluvial channel belts 
was modelled using an object modelling code. Subsequent to the facies modelling process, the 
petrophysical modelling of permeability and porosity within each facies was carried out, including 
lateral variability in properties. 

These models were applied for dynamic flow simulations. The arrival time of CO2 at the first 
observation well (Ktzi 200) was successfully matched. The calculated results for the arrival of the 
gaseous CO2 varied between 8 and 17% for the simulators applied compared to measured 
21 days which is in fairly good agreement. However, the arrival time at the second observation well 
(Ktzi 202) was predicted much earlier, after 60 - 80 days, compared to the observation of 271 days. 
Question then was what the reason is for the unpredicted observation. 

Due to the fact that efficient history matching requires an integrated iterative modelling framework, 
the Ketzin model was set up anew. Operational as well as monitoring data were integrated: (1) We 
used literature data of fluvial systems for characterisation. (2) The attribute analysis based on 3D 
seismic for the Stuttgart formation was taken into account as well. (3) 4D seismic results were used 
to involve the CO2 distribution into the interpretation. (4) Measurements with the permanently 
installed electrodes provide resistivity data and information about the state of saturation. (5) Pulse 
neutron gamma tests in the wells provide additional information about the state of saturation. 

All the revised data lead to an updated facies model of the Stuttgart formation. Regional trends and 
information about channel geometry were taken from the literature. Based on the logs the sand 
and clay content of the formations were revised. Seismics provide information about the structure 
of the Stuttgart formation and the channels around the wells. Next step was to update the 
petrophysical data and to integrate all the knowledge from the observation. 

At first, the static geological model is validated by dynamic simulations of the pressure 
development. Result is that the simulated and observed pressure data coincide very well. Second, 
the model is as well in very good agreement with observed arrival times of the CO2 in both the 
observation wells. Current modelling activities involve the investigation of coupled processes at 
Ketzin by geochemical and geomechanical modelling. 

Conclusion and outlook 
The Ketzin project is thus far the only active CO2 storage site in Germany and demonstrates 
successful CO2 storage and interdisciplinary monitoring in a saline aquifer on a research scale. 
The gained results underline the necessity for further storage projects on a demonstration scale. 

The CO2SINK project ended in March 2010. CO2 injection, complementary monitoring and 
modelling with a particular focus on abandonment continue at Ketzin. Two projects CO2MAN (CO2 
Reservoir Management, funded by the Federal Ministry of Education and Research) and 
CO2CARE (CO2 Site Closure Assessment Research, funded by the EU) succeed CO2SINK. 
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1. Introduction 

Legislation will soon require more efficient plants and significant carbon capture & 

sequestration (CCS) capabilities. Pre-combustion CCS has a natural fit with Shell’s 

technology portfolio, in view of the strong position of its entrained flow gasification 

technology. The first application of the Shell Coal Gasification Process (SCGP) has 

been in the 250 MW power plant in Buggenum, the Netherlands; details may be 

found in Appendix A. IGCC schemes based on SCGP have desirable environmental 

characteristics [1]: very low sulphur and NOx emissions, and smaller cooling water 

requirements than coal boilers with steam cycle. Produced syngas has high partial 

pressure of carbon monoxide; after shifting to carbon dioxide, CCS is relatively easy. 

The purpose of this paper is to show how the high coal-to-power efficiencies of IGCC 

can be further improved, and the efficiency penalty incurred for pre-combustion 

removal of CO2 minimized. This requires improved technologies; the steps needed to 

develop such technologies, by Shell and by others, are explained in detail. 

2. IGCC with and without CCS  

Figure 1 shows a typical IGCC process scheme. An IGCC plant requires additional 

units for CCS (coloured orange). Firstly, the syngas is shifted with steam: 

CO + H2O = CO2 + H2 

CO2 is removed/compressed, and the gas turbine is fired with hydrogen-rich syngas. 

An in-house feasibility study has been carried out, based on commercial and near-

commercial technologies (see next section). Methodology: modelling of the gasifier 

using in-house design tools; modelling of the Water Gas Shift and gas treatment 

units in flowsheeters; configuring the Combined Cycle Power Plant (CCPP) in GT 

Pro. ISO conditions were applied with condenser pressure of 40 mbar (a). Generator 

losses of 0.2% were taken into account; the gas turbine was fully loaded. The steam 

cycle was optimized by low-level heat integration (low stack temperatures). 
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Table 1: IGCC power plant with and without CCS; based on 2 gasification strings 

IGCC IGCC + 90% CCS 

Total plant fuel input (MWth, LHV) 

Gas Turbines power output (MW) 

Steam Turbines power output (MW) 

Plant power output, gross (MW) 

Auxiliary Power (MW) 

Plant power output, net (MW) 

2166.3 

720.6 

475.2 

1195.8 

145.1 

1050.7 

2610.0 

816.6 

525.6 

1342.2 

259.9 

1082.3 

Gross Efficiency (%) 55.20 51.42 

Net Efficiency (%) 48.50 41.47 

The results are summarized in Table 1. Without capture, today’s efficiency in 

Buggenum of 43% can be improved by more than 5% (points). With long-term 

technology improvements (e.g. in gas turbines; using construction materials that are 

already available), over 50% is expected to be possible. For a plant with 90% CO2 

capture, the 40% efficiency barrier can be surpassed, and the penalty of carbon 

capture limited to 7%. This presents a significant improvement over other studies 

with a penalty in the range of 9-11%, based on conventional capture technologies. 

E.g. the Electric Power Research Institute reported a drop of 9% [3]. For comparison: 

post-combustion capture has a higher penalty of 11-13%, depending on technology, 

partial pressure of carbon dioxide, and conditions for amine regeneration. 

 

Figure 1: IGCC process scheme with carbon dioxide separation and compression 
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3. Technology development 

3.1 SCGP gasifier 

The IGCC study is based on an SCGP employing 6 coal burners. This results in a 

significant capacity increase since the 1993 Buggenum SCGP, with 4 burners. The 

operating pressure is higher and matches with novel gas turbines. The syngas cooler 

is designed for maximum production of high-pressure, saturated steam; 

superheating in the HRSG of the CCPP. 

3.2 Water Gas Shift 

A novel low-steam CO sour WGS process is introduced in this study. It is based on 

the principle of using steam as the limiting reactant. A process using a sulphur-

tolerant water-gas shift catalyst (that suppresses methanation) has been installed 

and commercially proven at several SCGP licensee sites.  

The unit is conveniently located immediately after the SCGP, which includes a low-

temperature water scrubber that moisturizes the syngas. In a conventional High 

Temperature Shift / Low Temperature Shift design, a large amount of steam is added 

for temperature control. This negatively impacts IGCC efficiency and leads to a large 

amount of water in the product gas, that has to be knocked out. 

3.3 Sulphur removal 

The THIOPAQTM biological desulphurization process is selected for removing H2S 

from the shifted syngas. It enables direct production of elemental sulphur, replacing 

Shell’s Sulfinol process & Claus/SCOT unit  applied at the Buggenum plant. The 

process combines a high-pressure absorber and a low-pressure bioreactor. 

In the absorber, H2S and part of CO2 are removed from the sour gas by an alkaline 

solvent. High H2S removal efficiency can be achieved, as the solvent entering the 

absorber is lean in H2S. The absorption proceeds according to these reactions: 

−−− +⇒+ 3
2

32 HCOHSCOSH  
−− ⇔+ 3

2
32 2HCOCOCO  

In the above reaction, alkalinity is consumed. This alkalinity consumption is 

compensated by the oxidation of H2S to elemental sulphur in the bioreactor. It 

proceeds under oxygen controlled conditions according to the following reactions: 
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OHCOoSHCOOHS 2
2

332½ ++⇒++ −−−

 

22
2

332 COOHCOHCO ++⇔ −−

 

The THIOPAQTM process has been licensed many times for natural gas; we expect 

to demonstrate its suitability for industrial syngas soon. 

3.4 Carbon dioxide removal and compression 

ADIP-X was selected as the solvent because of the good CO2 removal kinetics in the 

absorber, the high CO2 carrying capacity and the low viscosity. It combines the 

benefits of a chemical solvent (high purity of absorbed CO2) and physical solvent 

(low amount of heat for regeneration). ADIP-X is a mixture of the tertiary amine N-

methyl di-ethanol amine (MDEA), the secondary diethylene di-ethanol amine 

(piperazine) and water. Staged flash regeneration is applied with pre-heating of the 

fat solvent at relatively low temperature (<100°C). This allows low value heat sources 

to be utilized (e.g. from the hot syngas ex WGS and the CO2 compressor 

intercoolers), and maximises the amount of CO2 flashed-off at around 5 bar. The 

latter stream bypasses the first compression stage(s), minimising required 

compression power. CO2 is conditioned and compressed to 120 bar, for 

sequestration. The CO2 compressor is multi-stage with intercooling, and has a 

polytropic efficiency of 80% (in line with [2]).  

3.5  Gas turbine 

A modern G-class gas turbine, already available for syngas in the US 60 Hz market, 

is selected for this study. It achieves a combined cycle efficiency of over 59%, a 

significant improvement over the E-class gas turbine used in the Buggenum IGCC 

and today’s F-class gas turbines [4]. The trend continues in the future: increasing 

Turbine Inlet Temperatures, enabled by improved materials of construction, in 

combination with higher compression ratios. More gas turbines shall be modified for 

hydrogen firing, as vendors know how to handle the high burning velocity of 

hydrogen (e.g. by modified burners, blade cooling and/or exhaust gas recirculation). 

Air side integration with ASU was not considered, to keep the IGCC flexible. Fuel 

gas humidification and nitrogen dilution was applied in order to achieve NOx 

emissions below 25 ppm. For stricter emission targets, it is recommended to use a 

catalytic de-NOx unit incorporated into the HRSG.   
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4. Conclusions and recommendations 

For IGCC applications, the Shell Coal Gasification Process offers high thermal 

efficiency and feedstock flexibility. The process has been fully proven and its 

development continues, together with the development of larger, more efficient gas 

turbines. Near-commercial technology can push IGCC coal-to-power efficiency 

above 48%. The penalty for pre-combustion CO2 removal can be minimized to only 

7%, which widens the efficiency gap with post combustion CCS solutions. 

These results stress the importance of R&D (both on a medium and long term) and 

commercialisation pathways needed to realise the required improvements. Shell’s 

commitment to Clean Coal Energy and combined expertise in coal gasification, gas 

treating, syngas conversion, carbon capture and storage as well as enhanced oil/gas 

recovery contribute to make zero emission power a reality. 
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APPENDIX A: Shell Coal Gasification Process 

The Shell Coal Gasification Process (SCGP) is an entrained flow type of a gasifier, 

which uses a dry feed system. Coal is pulverized and dried to 2% moisture before 

being pressurized with nitrogen or CO2 in lock hoppers. The gasification pressure is 

commercially proven up to around 45 bar and the operating temperature may well 

exceed 1500°C. To control the inner gasifier wall temperature, water is circulated in 

a membrane wall to generate steam for utilization in the power cycle. The ash is 

converted to slag, of which the majority leaves the gasifier in a liquid flow via the 

bottom and is solidified in a water bath, whereas the rest is entrained in the hot gas 

flow. In the standard SCGP line-up, this gas is cooled to 800-900°C by adding cold 

recycled quench gas into the hot gas stream, which allows molten slag particles to 

solidify and prevents these from hitting the quench pipe wall. After the quench, the 

sensible heat of the raw syngas is recovered in a syngas cooler (SGC), which cools 

the gas down to 340-360°C. In this syngas cooler, HP/MP steam is raised which may 

be used in a combined cycle for electricity generation. A dry solids removal system 

with candle filters separates out the flyash. Finally, a wet scrubbing system removes 

any remaining particles down to a very low level and also other impurities such as 

halides. Figure A.1 shows the overall SCGP process scheme. 

Figure A.1: Overview of Shell Coal Gasification Process 
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The SCGP has several key features, which are essential for successful IGCC 

application: 

- Dry feeding system: coal is transferred with carrier gas (usually nitrogen, 

although carbon dioxide may also be used) to the gasifier. A high gasification 

efficiency is thus achieved, typically 4-5% higher than gasification of water 

slurries. This is essential for the economics of IGCC, in which every 

percentage point counts. It is also of great importance for Carbon Capture and 

Sequestration, as the minimum amount of CO2 per kWh is produced and 

needs to be sequestered. 

- Multiple burners: whereas other gasifiers use only a single burner, the SCGP 

has multiple side-fired burners. This allows scale-up to large gasifiers that can 

fuel the world’s largest gas turbines, even under cold environmental 

conditions. 

- Membrane wall: whereas other gasifiers use a refractory lined vessel, the 

SCGP has a water-cooled membrane wall. This allows firing at higher 

temperatures, which means that virtually any type of fuel has been 

successfully gasified, offering maximum fuel flexibility. The SCGP also has 

high operating flexibility with respect to short-term coal quality changes. 

Furthermore, the conversion of coal/coke is almost complete (carbon 

conversion >99%), so that fuel costs are low. 

- Heat recovery from the hot syngas: a typical energy balance is shown in 

Figure 2. As noted, the cold gas efficiency is very high (82%); the rest of the 

energy contained in the solid fuel is converted into heat, but the largest part of 

this is recovered as useful steam. This steam may be routed to the Combined 

Cycle Power Plant (CCPP), to ensure optimal coal-to-power efficiency. 

- Dry solids removal: flyash is removed in candle filters. Compared to other 

gasification processes, in which flyash is removed as a water slurry, this limits 

water usage and optimizes environmental performance. 

- High availability and low maintenance cost owing to the robustness of the 

membrane wall gasifier (designed for 25-year life time) and the long lifetime of 
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coal burners (every two years, the burners get a complete overhaul and are 

ready for the next operating period). 

The first demonstration of the SCGP has been in the Integrated Gasification 

Combined-Cycle (IGCC) power plant, located in Buggenum, the Netherlands. The 

power plant was built by Demkolec BV and started up in 1993. It has been in 

commercial operation since 1998, gasifying 2,000 ton/day coal producing 4.0 106 

Nm3 syngas. Thermal input of coal intake amounts to 585 MW, with gross output of 

284 MW (156 MW from gas turbine, 128 MW from steam turbine) and net output of 

253 MW. This corresponds to 43% LHV efficiency. 

This IGCC demonstration was the first large-scale project in Europe, a major 

milestone for combining a chemical plant (gasification) with a power plant (CCPP). It 

employs a Siemens V94.2 gas turbine with a maximum integrated Air Separation 

Unit (ASU) from Air Products. The gas turbine, steam turbine and generator have 

been designed as single shaft. Gas treating is accomplished with Shell Sulfinol-M 

(MDEA based solvent) for >99% sulphur removal. Coals can be switched ‘’on-the-fly’’ 

and co-feed of biomass and bio sludge have been run successfully. Gasification 

pressures and temperatures are 25-28 bar and 15000C. Solidified molten slag, flyash 

and sulphur are recovered as saleable by-products. The plant is presently owned 

and operated by NUON. Many lessons have been learned to improve its operation, 

fuel flexibility, and availability, to the benefit of future power plants. 
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An Improved SELEXOL™ Processing Scheme Reduces  
CO2

 
 Capture and Compression Costs  
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UOP NV (A Honeywell Company), Antwerpen, Belgium 

Raj Palla 
UOP LLC ( A Honeywell Company), Des Plaines, USA 

 
Abstract 

 
Gasification industry is starting to require more and more stringent specifications on the CO2 
stream impurities.  In a typical gasification Selexol design for segregated H2S and CO2 removal 
into their respective purified streams, the CO2 produced is at a reasonable pressures but still 
requires large amount of compression for geologic sequestration or enhanced oil recovery (EOR) 
applications.  The captured CO2 stream may contain up to five percent of impurities that can be 
recovered.  Some of the components in the CO2 streams currently considered as a regulated HAP 
pollutants.  This CO2 compression has been found to be single most energy sink compared to all 
other elements in the gasification complex.  Meeting the CO2 purity requirements with conventional 
systems is cost-prohibitive.  
 
UOP is working on few innovative schemes that will reduce capture and compression costs 
compared to the conventional designs.  The new processing not only reduces the capture and 
compression costs but also meets continuous CO2 venting requirements in case of emergency.  
This paper will describes some of the characteristics of the applied flow schemes and provide 
details on the acid gas removal and CO2 capture economics.   
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CO2 Absorption Pilot Plant – Design, Commissioning, Operational 
Experience, and Applications 

Agnes von Garnier

Introduction 

, Dr. Andreas Orth, and Tobias Stefan; Outotec GmbH, 61440 

Oberursel, Germany; Dr. Volker Giese and Raquel Fernández Rodiles, BASF SE, 

67056 Ludwigshafen, Germany 

Outotec has recently commissioned its new CO2 absorption pilot plant at its R&D 

center in Frankfurt am Main, Germany. The pilot plant applies BASF's licensed 

aMDEATM technology for acid gas removal to remove CO2 and H2

The CO

S from 

metallurgical process gas. It complements Outotec's circulating fluidized bed (CFB) 

pilot plant allowing for the treatment of process gas from coal and biomass 

gasification as well as from iron ore direct reduction.  

2 absorption plant was planned to demonstrate Outotec’s proprietary 

Circofer® process for the direct reduction of iron ore fines based on coal. The 

fluidized bed based Circofer process offers the opportunity of using raw materials 

such as iron ore fines and coal, avoiding capital-intensive agglomeration processes 

and coke making. Coal is partly combusted with oxygen to provide the required heat, 

and it also serves as reduction agent. The gas leaving the CFB reactor is dedusted 

and washed to remove CO2

Integration into the 700 mm CFB pilot plant 

 to below 1%. The remaining carbon monoxide and 

hydrogen are recycled as reduction gas to the CFB.  

The CFB pilot plant at Outotec’s R&D Center in Frankfurt is suited for gasification and 

combustion of any kind of feedstock, as well as for direct reduction of iron ore fines. 

Its core is a CFB reactor with 700 mm inner diameter. Both, a wet and a dry gas 

cleaning allow a very flexible operation of the plant in. Fig. 1 shows the setup under 

reducing conditions for the Circofer process. Fine grained iron ore is fed to the CFB 

reactor together with fine coal and oxygen and the solids are fluidized with a 

hydrogen- nitrogen-gas mixture. In order to maintain the CFB at the desired 

temperature of about 950°C, char particles are recycled via cyclone 1 into a heat 

generator, mixed with fresh coal and partly combusted with oxygen. The mixture 

serves as heat carrier to the CFB and the solid carbon is used as reduction agent. In 

a second cyclone dust is separated and recycled directly to the CFB. The remaining 

offgas is cooled in the evaporation cooler and dedusted in the radial flow scrubber. 
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Previously, the off gases were burnt in the after burning chamber and hydrogen from 

a trailer was used to simulate the process gas recycle. The new CO2 absorption plant 

allows now to recycle the process gas, mainly H2

H2 , CO

Pilot plant expansion 2009
H2 , CO

Pilot plant expansion 2009-2010

Ore

 and CO, in a closed loop into to 

CFB reactor, thus eliminating the need for hydrogen from external sources. 

 
Fig. 1: The 700 mm CFB pilot plant modified for Circofer operation mode including the new CO2

 

 

absorption plant. 

Design of the CO2

For a close reproduction of the industrial scale Circofer® process, the gas leaving the 

700 mm CFB pilot plant after the Radial Flow Scrubber and the ID fan at atmospheric 

pressure is compressed to approximately 500 kPag. A liquid ring compressor was 

chosen as it is not very sensitive to remaining dust and tar particles in the cleaned 

gas. Subsequently, the gas is additionally scrubbed and cooled before entering the 

two-stage absorber in which CO

 absorption pilot plant 

2 and H2S are absorbed by an aqueous aMDEATM 

solution. Process gas leaving the absorber, mainly consisting of CO, H2 and N2, is 

recycled to the CFB plant via a droplet separator. The washing solution is 

depressurized to partly degas the CO2 before entering the regenerator column. The 

main regeneration is achieved by heating the solution in the kettle-type reboiler which 

is designed as a bypass of the regenerator. As no steam network is available on site 

an electrically heated reboiler is used. The washing solution circulates between the 
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two absorbers and the regenerator passing an internal heat exchanger. A part of the 

recycled solution is led through a series of mechanical and activated carbon filters to 

remove tar and remaining dust particles. The removed CO2 rich gas leaves the 

desorber unit to an after burning chamber after condensation of the water vapor.  

 
Fig. 2:  Flowsheet of the CO2

 
 absorption plant.  

Commissioning and first operational experience 

The pilot plant was successfully tested on up to 750 Nm³/h tar and dust loaded 

process gas from the gasification of coal achieving a CO2 removal efficiency of over 

80%. The content of CO2

During Circofer operation the recycled process gas contained less than 0.5% CO

 in the dry incoming gas was significantly higher than the 

design case. The high tar load of the gasification gas led to a significant dark 

coloration of the aMDEA solution and to solid residues during the initial phases of the 

tests. The mechanical filter and the activated carbon filter removed the dissolved 

impurities so that the recycled solution was observably clear again.  

2 

after scrubbing, corresponding to a CO2 removal rate of over 95%. 100 Nm3/h of 

recycle gas were introduced in the CFB via an electric gas heater while additional N2 

was provided to achieve sufficient fluidization. 
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Tab. 1:  Typical operational data during operation with Circofer. 

Gas  after Liqid 
Ring Compr. 

after CO2 
Absorp. Unit 

Temperature °C 50 35 
Pressure kPag 450 440 
Volume Flow Nm³/h 400 300 
Gas Composition (dry)    
CO %-vol. 2 13.5 0.3 
CO %-vol. 12.1 13.0 
H %-vol. 2 12.2 15.0 
CH %-vol. 4 1.0 0.8 
O %-vol. 2 0.1 0.5 
N %-vol. 2 Balance Balance 
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Fig. 3:  Typical transient behavior of gas composition when bringing CO2

Conclusion and further applications 

 scrubbing plant online. 

The CO2 absorption plant complements the CFB pilot plant allowing for the cleaning 

of process gas from iron ore direct reduction as well as from coal and biomass 

gasification. The facility also features integrated gas cleaning steps allowing for the 

treatment of pressurized gases rich in dust and tars. This makes it a unique facility for 

testing CO2 absorption under real process conditions similar to an industrial plant. 

The removed gases can be used in other processes or for underground storage as 

envisaged in carbon capture and storage (CCS) approaches. The new pilot plant also 

plays an important role in the development of the company’s sustainable 

technologies for the growing energy industry providing the testing facilities to reduce 

the carbon footprint of coal and biomass based energy production as well as of the 

oil winning from oil shale according to the new Enefit280 process. 
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CO2-Capture in Combined 
Solid Oxide Fuel Cell (SOFC)-Gasification-Cycles 

by Water Vapour Condensation 
 

Prof. Dr. techn. Reinhard Leithner, Dipl.-Ing. Christian Schlitzberger 
Institut für Wärme und Brennstofftechnik, Technische Universität Braunschweig, 

Germany (www.wbt.ing.tu-bs.de, E-Mail: r.leithner@tu-bs.de) 

Abstract 
Increasing energy demands, limited resources, pollutants- and CO2-emissions caused by the 
use of fossil fuels require a more efficient and sustainable energy production. Due to their 
high electrical efficiencies as well as fuel and application flexibility, Solid Oxide Fuel Cells 
(SOFC) offer a great potential to meet future energy demands. The fuel gases hydrogen and 
carbon monoxide, which are electrochemically convertible in SOFCs have to be generated 
by reforming or gasification of hydrocarbons. The combination of an allothermal gasifier with 
a SOFC represents an innovative concept for high efficient hydrocarbon based power 
generation. 
In this combination, the gasifier, using recycled anode off gas or steam at least during start 
up as gasification agent, is heated by the waste heat of the SOFC, transferred e.g. via heat 
pipes. The produced H2- and CO-rich syngas is passed through the fuel cell, generating 
electrical energy. This mass flow and thermal coupling of the SOFC and the endothermic 
steam gasification process is called chemical heat pump. Depending on the fuels used, 
system efficiencies of about 60 % can be achieved, even though the SOFC itself reaches 
only an electrical efficiency of approximately 50 %. Additionally, due to an innovative 
cascaded SOFC-design, resulting in high fuel utilization of 90 % and higher, a post-
combustion of the off gases is not longer necessary. Because of the SOFC membrane 
allowing only an oxygen-ion flow and the SOFC design without the mixing of anode and 
cathode exhaust gas flows, an effective CO2-separation without efficiency loss can be 
realized by simply condensing the water vapor in the anode off gas. Applying a combined 
water-gas-shift-membrane-reactor in front of the condenser the CO remaining in the anode 
off gas is converted into H2, which is separated from the anode off gas using a palladium-
membrane. The water vapor which is needed as gasification agent or the fuel flow through 
the other side of the membrane-reactor and recycle the H2 into the gasification process. 
The aim of the presented work was to show a first dimensioning of such a combined cycle 
and its energetic analysis concerning operation and feasibility. With the program ENBIPRO 
developed at the IWBT of TU Braunschweig for general cycle simulation purposes, the 
theoretical feasibility of the concept and a high electrical efficiency of about 60 % including 
CO2-separation were proven. 
 

Introduction 
The need/wish to sequestrate CO2 is based on the assumption put forward by the 
International Panel of Climate Change (IPCC) that CO2 may be the major driving force in 
climatic changes, which means that especially the anthropogenic CO2 emissions resulting 
from the combustion of fossil fuels like coal, oil and natural gas will increase the atmospheric 
CO2-content, which in turn will lead to higher temperatures in the atmosphere. The 0.03% 
CO2 in the atmosphere has a 22% share of the natural greenhouse effect of 33 K necessary 
for life on earth. Water vapour has the main share of 62% of the natural greenhouse effect 
[Leithner2005]. CO2-emissions can be reduced by less power consumption, increasing 
efficiency, increasing CO2 free power like nuclear or renewable power or finally by carbon 
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Figure 1. Principle of a chemical heat pump [Schlitzberger2006]

capture and sequestration (CCS). Lower CO2 emissions simultaneously result in less fossil 
fuel consumption, offering the possibility to use fossil fuels for longer time, and in lower 
emissions of other pollutants like SOx, NOx or particulate matter except when applying most 
of the CCS methods. The reason is that most of the CCS methods cost a lot of additional 
energy. There are only a few methods, which lead to an intrinsic CO2-separation, especially 
two groups of methods [Leithner2005]: 

a) Metal Oxid Cycles 
Oxygen is transported to the fuel by metal oxides which are reduced to pure metals by 
the fuel. The metals are separated and transported into the air, where the metals re-
oxidize and the cycle starts again. Applicable metals are: nickel, copper, iron, zinc or 
cadmium [Knoche1967], [Knoche1968]. 

b) Oxygen Ions Transporting Membrane Cycles. There are two possibilities again: 
a. the electrons flow back in the membrane itself or 
b. the electrons flow from one membrane surface (anode) to the other (cathode) via an 

external electricity cycle. The latter is the case in Solid Oxide Fuel Cells – SOFC 

Combined SOFC-Gasification/Reformer Process Concept 
Combining an SOFC with an allothermal reforming or gasification process offers the 
opportunity to realize high electrical system-efficiencies.  In such a process the SOFC-waste 
heat is transferred to the gasifier or reformer e.g. by conduction or by heat pipes allowing 
also to use less excess air, because the air is not used so much for cooling any more, and 
the hot anode off-gas consisting of water vapor, CO2 and unused fuel gas (mainly CO) is 
partly recycled as gasification medium to the endothermic water steam and CO2 gasification 
or reforming process increasing simultaneously the fuel utilization. Applying a cascaded 
stack design an additional increase in fuel utilization and efficiency can be achieved. Those 
combined processes are capable to convert all sorts of accordingly conditioned 
hydrocarbons, i.e. fossil fuels or renewable fuels. The combination of a SOFC with an 
allothermal gasification or reforming reactor can be described by the term “chemical heat 
pump”, as the waste heat of the fuel cell is used to provide energy for the endothermic 
gasification or reforming reactions. In the gas generation reactor, the waste heat is partially 
converted into chemical energy of the produced gas. Figure 1 shows the simplified working 
principle of such a chemical heat pump [Schlitzberger2006]. E.g. the fuel flow entering the 
gasifier or reformer with a certain lower heating value LHV is considered as being 100 % 
energy flow, to which approximately 40 % heat flow are added, representing the waste heat 
from the SOFC that is recycled into the gasifier/reformer via recycled anode off-gas and heat 
transfer. Without losses the produced gas flow represents 140 % energy flow related to the 
fuel flow entering the 
gasifier or reformer with an 
increased LHV. Due to the 
SOFC’s electrical efficiency 
of about 50 %, half of the 
chemical energy of the 
produced gas is converted 
into electrical energy, which 
leads to a cycle efficiency of 
up to 70 %, neglecting 
various losses. The other 
part is converted into heat, 
which is recycled into the 
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Figure 2. Internal interconnect structure [Leithner2004a,b]

gas generation reactor or leaves the SOFC as waste heat within the cathode and anode off-
gases together with unburned fuel [Schlitzberger2006]. 

Today still autothermal reforming ATR or partial oxidation POx are often used together with 
high amounts of excess air for cooling to limit the temperature increase and also mixing of 
anode and cathode exhaust gases to burn the unused fuel of the anode exhaust gas. 
Consequently microturbines etc. are proposed to use the high amount of waste heat. But 
such a process cannot lead to high efficiency and in addition has not a simple design and the 
possibility to separate CO2 simply by condensing the water vapor is abolished.  Only a few 
SOFC systems possess a mass and thermal coupling between fuel processing and fuel cell. 
Examples for such SOFC systems are those developed by Siemens-Westinghouse (tubular 
stack design) [Winkler2002], Rolls Royce (integrated planar flat tube stack design) 
[Travis2007], Forschungszentrum Jülich (planar stack design) [Steinberger-Wilckens2004] 
and FuelCell Energy, Inc. (planar stack design) [Katikaneni2002]. In the Siemens-
Westinghouse and the Rolls Royce systems the fuel processing is divided into pre-reforming 
and indirect internal reforming (IIR) with partially recycled hot anode off-gas (using an injector 
or alternatively a hot gas blower) and direct internal reforming (DIR) of the remaining 
unconverted higher hydrocarbons entering the SOFC-section using in-situ the generated 
waste heat and steam. In the Forschungszentrum Jülich design the thermal coupling is 
realized by stacking the planar SOFC and IIR-reformer sections, whereas in the FuelCell 
Energy stack the fuel processing is mainly realized by direct internal reforming. Examples for 
parallel and serial electrical interconnection of the single SOFC-cells represent the Siemens-
Westinghouse stack and the stack design developed by Rolls Royce respectively. Nearly all 
system-concepts include an afterburning of the SOFC off-gases. 

 

Stack-Design 
Figure 2 shows an innovative cascaded, 
planar SOFC-stack design without use of 
bipolar plates, developed at the Institute for 
Heat- and Fuel-Technology of the Technische 
Universität Braunschweig. The internal stack 
electrical interconnection represents a 
combination of serial and parallel 
connections. The voltage increases in fuel 
flow direction because of the cascaded 
connection of the equipotential surfaces and 
the current increases with the number of 
stack levels [Leithner2004a,b]. 

 

Cycle-Design 
The basic cycle (more sophisticated cycles see [Leithner2007b]) shown in Figure 3, can be 
divided into four parts: Gasification with gas cleaning, cascaded SOFC, heat transfer system 
between SOFC and gasifier and CO2-separation with heat recovery. The gas produced by 
the allothermal steam gasifier, which consists mainly of H2, CO, CH4, CO2, H2O, is cleaned 
from ash, tar and gaseous pollutants like sulphur-and chlorine compounds. To minimize heat 
losses, hot gas cleaning technologies like ceramic filter candles, desulphurisation on lime-
absorbers and catalytic tar reduction are particularly suitable. To overcome the pressure 
losses on the fuel-gas side, a high-temperature fan is used. In the SOFC the chemical 
energy of the combustible gases is converted into electrical energy and heat. Air and fuel 
flows are heated by the exhaust gases. After being used to preheat air and fuel flows, the 
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Figure 3: Basic cycle configuration for hard coal as fuel 

anode exhaust gas flows 
through a CO-shift reactor, 
where the residual CO is 
converted into H2 and CO2 
using catalysts. In the 
following steam-washed 
counter-current membrane 
the H2 is separated from the 
exhaust gas and re-enters 
the cycle together with the 
steam as gasification agent. 
After passing an expander 
and a condenser, the anode 
exhaust gas consists mainly 
of CO2, which is compressed 
and supplied to further use or 
storage. 
Energetic Analyses 
The energetic analysis of the concept was performed with the cycle simulation program 
ENBIPRO developed at the Institute for Heat- and Fuel Technology. With the simulation 
program the theoretical feasibility of the concept and a high electrical efficiency were proven. 
For the first draft of a hard coal fuelled cycle shown in Figure 3, an electrical system 
efficiency of 58.5 % including CO2 compression (62.1 % without) were calculated. However, 
the obtained results have to be considered a first estimation, due to the made simplifications 
and assumptions. 
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ELCOGAS pre-combustion 14 MWt carbon capture pilot plant 
Dr. Pilar Coca

Introduction 

, ELCOGAS, S.A., Puertollano, Spain; Mr. Pedro Casero, ELCOGAS, 

S.A., Puertollano, Spain; Mr. Francisco García-Peña, ELCOGAS, S.A., Puertollano, 

Spain 

ELCOGAS S.A. is a Spanish company established in 1992 and shared by European 

electrical companies and equipment suppliers. It operates the Puertollano 335 MWeISO

 

 

IGCC demonstration power plant. This IGCC plant is the largest IGCC plant in the world 

using solid fuel in a single pressurised entrained flow gasifier, being in commercial 

operation since 1998 with synthetic gas. Its design fuel is a mixture 50:50 of coal (high 

content of ash) and pet-coke (high content of sulphur). The total power production up to 

Dec 2010 is 21,052GWh (mainly using syngas).  

As a demonstration plant, ELCOGAS has obtained important achievements showing the 

potential of IGCC technology, including its advantages and disadvantage and identifying 

its main improvement and optimisation lines. Regarding this point, the ELCOGAS IGCC 

R&D activities are based on the opportunity that the IGCC technology offers related with 

fuel flexibility (test with different coals, pet-coke, biomass, wastes, …), multi-production 

(electricity, hydrogen, synthetic gasoline, biodiesel, …) and zero emissions production 

(reduction of emissions, CO2

 

 capture …). 

Carbon Capture Pilot Plant description 

 

Currently, the ELCOGAS largest investment in R&D is focused on carbon capture topic, 

covered by the National Singular and Strategic Projects Initiative, called PSE-CO2. The 

main milestone of the PSE-CO2 project has been the construction of a 14 MWth pilot 

plant fed by a 2% slip-stream of the Puertollano IGCC power plant and able to capture 

100 t/d of CO2, while producing 2 t/d of high purity H2 and using proven and commercial 

technology. This pilot plant aims are to demonstrate the feasibility of CO2capture and 

H2production in an IGCC that uses solid fossil fuels and wastes as main feedstock as 

well as to obtain economic data enough to scale it to the full Puertollano IGCC capacity 

in synthetic gas production 
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The participants in the project are ELCOGAS (coordinator), University of Castilla-La 

Mancha (UCLM), CIEMAT (Spanish research centre) and INCAR (coal Spanish 

research centre) being the original budget

 

 18.5 M€, currently is €14.7 million. 

Both Spanish Government (Spanish Science & Research Minister) and Regional 

Government are funding

 

 the project through the Strategic and Singular Project 

Programme (PSE), being their contribution approximately 50% of the total budget.  

The following figure shows a general view of the IGCC plant and the pilot plant. 

 
Figure 1. CO2 capture & H2

 
 co-production pilot plant: location 

The pilot plant is fed with syngas –approximately 3,600 Nm3

 

/h, dry base- from the IGCC 

power plant that can be desulphusired, i.e., it comes downstream the IGCC 

desulphurisation unit (called sweet gas) or the syngas can be fed sulphurised, i.e. 

upstream the desulphurisation unit (called sour gas).  

The process of the 14 MWth pilot plant (see the figure below) consists on a two step 

shifting unit to convert CO into CO2, a CO2 separation unit -based on absorption 

processes with amines (sweet/sour) as catalysts- and a H2 purification unit (PSA), being 

all of them commercial processes. Auxiliary systems and full control have been 

integrated in the existing IGCC. All processes used in the pilot plant are being utilised at 

this moment by the chemical industry, so its innovation is their integration and use in the 

power industry. 

PRENFLO Gasifier 

Coal preparation 

Sulphur Recovery Combined Cycle CO2 capture pilot 
plant 

ASU 
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         Figure 2. Flow diagram of the CO2 capture & H2

 
 production pilot plant 

The first tonne of CO2 was captured on 13th September 2010 (thus becoming the 

first installation of this kind in the world) and the commissioning was accomplished by 

October 2010. Characterization tests are being carried out since November 2010 until 

June 2011, covering the two different feeding syngas conditions as well as two different 

configurations, with and without H2

 

 co-production. 

As a brief description of the main learning in project phase can be mentioned: the 

finance delay due to funding calls, delay in the main equipment supply -more than 12-14 

months-, the detailed engineering was conditioned by suppliers and the pilot plant 

construction was also delayed due to safety permits since it is installed in an operating 

plant, finally lack of experimented personnel implied a delay on the commissioning. 

 

The first battery tests using the sweet catalyst were undertaken from Oct 2010 to Feb 

2011. The table below shows the composition of the main streams: 

 
Table 1. Main results obtained from pilot plant in sweet operation (dry base) 
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Main learning in the sweet characterisation tests has been an unexpected reactivity 

in first step of shifting unit since in design CO conversion into CO2

Auxiliary consumption was lower than estimated in design, being the integration of O&M 

in the existing IGCC very easy, the rate of CO

 was estimated to be 

of 85% and 15% in the second step. However, in operation, the CO conversion was of 

95% in first step and 5% in the second step, what would make possible to consider a 

shifting process with only one step using the sweet catalyst. 

2 captured is 91.7% and the cold gas 

efficiency is 89.5%. The first estimation cost of avoided CO2

 

 is approximately 25-30 €/t 

for the existing IGCC, which has been obtained from the pilot plant data. 

For the second battery tests, which will take place from May to June 2011, the sour 

catalyst will be tested, expecting to get final results by the end of July 2011. These final 

results will include comparison of the pilot plant’s behaviour under the two different 

operation conditions, optimization of steam/gas ratio at shifting unit for the correct 

operation of the plant, optimization of energy balance and real costs obtaining of CO2 

capture and H2

 

 co-production. 

Future activities 

 

Once the PSE project is finished, ELCOGAS proposal is to use the pilot plant as an 

R&D platform in order to develop new projects related to these research areas: 

optimisation of catalysts for shift reaction (including tests on a variety of different 

catalysts), development and demonstration of new processes for CO2-H2 separation, 

demonstration of processes for CO2 treatment and the improvement of integration 

between the CO2

 

 capture facility and the IGCC power plant to increase efficiency. 

With the aforementioned and taking into account the results to be obtained from the 

pilot plant, ELCOGAS has the opportunity to contribute to the optimisation of IGCC 

technology subsequently to optimisation of the clean coal technologies. So, 

improvements and processes, which are being set out for the design of new plants, can 

be tested and developed even at commercial scale, leading to ultra-efficient and zero-

emissions energy plants based on gasification of low cost fuels.  
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Process Development for Integrated Coal Gasification SOFC Hybrid 
Power Plants 

Dipl.-Ing. Michael Krüger, DLR (German Aerospace Centre), Institute of Technical 

Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany 

 

Introduction 
On the path towards sustainable electric power generation, an increase in efficiency 

of fossil-fuel power plants and a reduction of CO2-emissions are both necessary.  

Improvements in energy efficiency and an introduction of carbon capture and storage 

(CCS) demand optimization and retrofitting of existing power plant processes as well 

as a development of advanced power plant concepts that have mid- to long-term 

economic viability. This is of extraordinary importance, especially considering the 

already perceptible significant need for new and replacement electricity generation 

capacity in Germany, Europe and around the world. 

 

In addition to the already well analyzed integrated gasification combined cycles 

(IGCC), hybrid power plants with fuel cells and integrated coal gasification promise to 

have the potential to achieve a high power plant efficiency, as well as to provide an 

opportunity for carbon dioxide capture.  

 

Hybrid power plants incorporating high temperature fuel cells and coal gasifiers are 

currently at the development and simulation stage. So far, only a few investigated 

concepts have been described in literature; these assume a time frame for realisation 

in the distant future. Because of this, these concepts include subsystems and 

components that do not represent the current state-of-the-art.  

 

Objective and approach 
The main goal of the project is to find the most efficient low-carbon power plant 

configuration, by integrating high temperature fuel cells (SOFC – solid oxide fuel 

cells) in IGCC using state-of-the-art power plant components. 

In the case of coal-based power generation, IGCC can be considered the reference 

standard regarding efficiency and emissions; it has been widely implemented on an 

industrial scale. An optional implementation of CCS in IGCC coal power plants also 
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has significant advantages over other coal fired power plant technologies. The 

development of this technology is highly advanced and moreover, the integration of a 

SOFC as a stage before the combined cycle power block is feasible without 

substantial changes to the IGCC system.  

 

Development and modelling of suitable concepts for hybrid power plants 
Various concepts of integrated coal gasification SOFC hybrid power plants have 

been considered and simulated with Aspen PlusTM software, extended by several 

user implemented models, such as a coal gasifier, SOFC and air separation unit. The 

figure below presents the developed base case of a hybrid power plant with possible 

options for CO2-capture. 

 

 

 

It is clear that integrated coal gasification SOFC hybrid power plants consist of many 

components and subsystems that coincide with those of the IGCC power plants. In 

addition, there are SOFC and optional process technologies, such as water gas shift 

reactor and technologies for carbon dioxide capture. 
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Before simulations of the overall systems could are possible, all subsystems and 

components have to be modelled at a similar depth of detail. Only the main energetic 

components, i.e. SOFC, were modelled in greater detail. Furthermore, the usage in 

complex systems and the flexibility under various conditions has been taken into 

consideration. Created models have been verified by measured or operating data 

found in literature. The last step of the component modelling consisted of appropriate 

sensitivity analysis in order to test the models under conditions present in developed 

overall systems.  

 

This was followed by modelling and simulation of reference power plants, in 

particular the IGCC of Puertollano and an IGCC with CCS based on the Puertollano 

IGCC. 

 

Simulation of the developed integrated coal gasification SOFC hybrid power plants 

has been divided into two steps. The first step is the basic analysis of the systems, 

by means of simulation of simplified sub-processes without a coal gasifier, gas 

cleaning or air separation plant. This allows for an overcoming of the high complexity 

of the overall systems and thereby facilitates parameter studies to indicate general 

tendencies. As a result of this first step, a preliminary assessment of the various 

concepts has been reached. In the second step, the overall systems were simulated 

with optimal parameters gained from step one. A comparative assessment and a 

definition of guidelines have been carried out via these steps. 

 

Results 
The essential energetic and ecological criteria to evaluate concepts for power plants 

are the net efficiency and specific CO2-emissions.  

The effectiveness of the straightforward solution, i.e. removing CO2 from SOFC 

anode residual gas, is low, caused by limited fuel utilization of the fuel cell. The most 

effective case is the combination of a water-gas-shift-reactor and a physical 

absorption process before the SOFC-anode. This is due to the high partial pressure 

of CO2 and the supply of SOFC with a rich hydrogen gas. This results in a three 

percentage points higher efficiency than the most investigated IGCC with CO2-

capture. 
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Investigations of Reduction Behavior of Manganese Oxide as Oxygen 
Carrier Material for Chemical Looping Combustion 

 

Maciej Wrobel

 

, Outotec GmbH, Frankfurt am Main, M. Buchmann, TUBAF, Freiberg, 

Germany; Dr -Ing. habil. A. Saatci, Outotec GmbH, Frankfurt am Main 

 
Introduction 
Chemical looping combustion (CLC) represents a novel combustion technology, where 

two discrete reactors are used to separate reduction from oxidation reaction. The main 

objective of this combustion process is to generate energy and pure carbon dioxide 

(CO2

The reaction in the first reactor can be represented as the following:  

) stream that can be captured and stored. The oxygen-carrier materials which are 

circulated between these separate reactors, are then oxidized in the circulating fluidized 

bed (first reactor) with the generation of energy. While in the second reactor, the oxygen 

carrier material is reduced and then finally recycled to the first reactor.  

MnOn + xO2 = MnOn+x/2  

The CLC of coal is more complex than the combustion of methane or natural gas. A 

direct usage of solid fuel requires a major overhaul of entire fuel reactor due to 

gasification reactions (equations 2 to 4). In addition, it requires fluidization medium to be 

high pressurized steam (energy intensive) or CO

  …(1) 

2 

The conversion process during CLC of solid fuel is a function of gasification reactions 

kinetic (equations 2 to 4) and reaction kinetic reduction of metal oxide(s) (equation 5): 

(product of CLC).  

 C + H2O ↔ CO + H2

C + CO

   …(2) 

2 

3 H

↔ 2CO    …(3) 

2 + CO ↔ CH4 + H2

C

O   …(4) 

nH2m + (2n+m) MxOy→ n CO2 + m H2O  + (2n+m) MxOy-1 

 

…(5)  

Theoretically, the kinetics of metal oxide(s) reduction (equation 5) is much faster than the 

kinetics of gasification reactions (equations 2 to 4). In other case, the content of CO in the off-

gas stream from the fuel reactor (and the specific consumption of solid fuel) will increase. 
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Experimental 
In the performed study, manganese oxide sintered material was used as oxygen carrier 

material in the fluidized bed reactor. Two different types of cokes were utilized: brown 

coal chars (BRCC) and black coal char (BLCC). Thermogravimetry (TG) measurements 

were performed with Netzsch Jupiter F1. The TG experiments were conducted with 

different morphology and surface area of manganese oxide in the form of sintered and 

fine powder MnO2 (purity of 99.99 %, <20 µm in particle size). The TG procedure was 

performed in three steps: (1)-preheating to 850°C with 20K/min in nitrogen flow, (2)-

temperature stabilization for 15 min and finally (3)-reduction with a CO/CO2

The fluidization experiments were conducted in a laboratory fluidized bed reactor with 

internal diameter of 50 mm. The fluidizing atmosphere was made of nitrogen and carbon 

dioxide gas mixtures with total flow rate of 700 L/h of 30%N

 gas mixture 

for the duration of 60 min.  

2-70%CO2

Results 

. The gasification 

of coal and direct reduction of manganese sinter were investigated at two different 

temperatures (850 °C and 950 °C) and with retention time of 30 min. An infrared off gas 

analyzer was used to analyze continuously the amount of CO concentration in the course 

of gasification of coal and the reduction of manganese.  

Kinetics of coal gasification (reactivity of coal) 

Kinetically, the gasification process is the slowest reaction in the fuel reactor and therefore the 

kinetics of this reaction governs the size of the fuel reactor. The gasification reaction process 

was described in equation 3.  The reaction rate of this reaction is a function of the available 

amount of carbon (Ca) and the difference between the present carbon dioxide partial 

pressure (pCO2
ex) and its partial pressure in equilibrium (pCO2

eq.

   

) [1]: 

dC/dt = -kC⋅Ca⋅(pCO2
ex ⋅ pCO2

eq

 

)  …(6). 

By the use of equation 6 and the results from the reactivity experiments (CO content in off-

gas), the reaction constant kC

 

 for the brown coal char could be calculated 

Kinetics of the reduction 

In the first stage Mn2O3 is reduced to Mn3O4; while in the second stage Mn3O4 is reduced to 

MnO. The first stage of reduction process is very fast in oxygen lean atmosphere at 850 °C, 

enabling quick decomposition of Mn2O3 to Mn3O4.  
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The slowest stage is the reduction from Mn3O4

 

 to MnO. Thus, the kinetics determining step 

is the second stage with reaction as follows: 

     Mn3O4 + CO → MnO + CO2

 

  …(7)  

The reduction of Mn3O4

dO/dt = -k

 is the reaction of first order with a driving force (partial pressure of 

CO):  

O⋅Oa⋅(pCO
ex ⋅ pCO

eq

Where O

)  …(8) 

a  is the available amount of oxygen, pex
CO  is partial pressure of CO, peq

CO 

 

is the partial 

pressure of CO in equilibrium (calculated with HSC 7.0) 

The kinetics of reduction was investigated in thermogravimetric unit. The materials were 

heated at 850°C with gases in different proportions of CO/CO2. The maximum registered 

weight loss ratio (dO/dt) with corresponding Oa (available amount of oxygen in the sample) 

were plotted as a function of CO partial pressure. The slope of the lines is equivalent to the 

reaction rate constant kO

 

. Table 1 summarized the reaction rate constants for different 

materials.  

Table 1. Reaction rate constants for the different materials 

kO / kC Mn -sinter Mn -sinter pure Mn3O4 BRCC BLCC BRCC BLCC 
(coarse, 850°C)  (ground, 850°C) (ground, 850°C) (coarse, 850°C) (coarse, 850°C) (coarse, 950°C) (coarse, 950°C) 

(s × bar)-1 0.0391 0.106 0.2035 0.001 ~2⋅10 0.003 -5 ~1.3⋅10-4 

 

Estimation of CO-content in off-gas from fuel reactor: 

The simplified reaction of reduction with coal is as follows:   

 

2Mn3O4 + C → 6MnO + CO2(g)

 

  …(9) 

The CO concentration in steady state ( ) is also a function of kO/kC

    

 and can be 

approximated as [1]:  

 

 
The results of calculation for different (ko/kc) rates for sinter coarse/ground manganese, and 

pure Mn3O4

 

 were plotted in Figure 1.  
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Figure 1. Calculated CO content at 850°C as function of kO/kC (kC
 

 for BRCC) 

 

Direct reduction of manganese sinter in stationary fluid bed 

The results indicate that the reduction between 5 to 15 min was insufficient at 

temperature of 850°C. The maximum evolution of CO in the off-gas was recorded to be 

1% and after 30 minutes of reduction, the CO concentration was dropped to 450 ppm. 

The reduction of manganese sinter at 950°C occurs much faster than that at temperature 

of 850°C. After 12 min of reduction, the concentration of CO in the off gas reached 450 

ppm with maximum CO evolution of 4%.  

The experimental results suggest that the CO content in the off-gas could be reduced 

significantly by increasing the amount of sintered material, that is a hyperstoichiometric 

ratio of oxide material to the coal. High CO concentration reading in the off-gas indicates 

that the reduction was incomplete. The highest degree of reduction (R) was achieved by 

reduction with BRCC at 950°C (R=36.4%). At 850°C, the degree of reduction with BRCC 

was reduced to merely 26.5% due to low reactivity of coal at the range of 850-950oC. 
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Table 2 show the summary of calculated parameters from the experimental data. The 

estimated reaction rate constants were simulated and calculated using AspenPlus 7.0 for 20-

MW CLC unit. 

 

Table 2. Summary of AspenPlus calculations 

Coal conversion - 90% Retention 
time [min] 

Sinter 
material / 

coal in [t/t] 
CO in off-
gas [%] 

Required 
amount of CO2 

[kNm³/h] 
Equilibrium reached after 

5 min 
5 49 0.09 78.3 

Measured kinetics 

5 710938 0.00003 1127547 

30 3383 0.00007 32191 

60 417 0.001 7932 

 

Conclusions 

The evaluation reaction kinetics of reduction and gasification process allows estimation of CO 

concentration in the off-gas during steady-state reduction. The minimum theoretical amount 

of CO concentration in the off-gas with grounded Mn3O4 
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Separation of CO2 in Coal Fired Power Plants without Efficiency 
Losses?! 

Reinhard Leithner;  Martin Strelow; Silvia Magda; Fridolin Röder; Christian 

Schlitzberger; Institut für Wärme und Brennstofftechnik, Technische Universität 

Braunschweig, Germany (www.wbt.ing.tu-bs.de, E-Mail: r.leithner@tu-bs.de) 

Motivation 

Due to the growing world energy demand, an increased annual consumption of fossil 

fuels is to be expected and thus also a rise in the carbon dioxide emissions into the 

atmosphere, with their impact on the global climate. Substantial efforts are therefore 

needed in developing new power plant technologies for CO2 separation from exhaust 

gases. Three main methods are envisaged for the CO2 capture: pre-combustion, 

post-combustion and oxyfuel-combustion [1,2. The current work presents a post-

combustion CO2 capture solution feasable for new power plant construction and in 

principle also for retrofit [3]. 

Concept of the Carbonate Looping Process 

The principle of carbonate looping 

follows the scheme of Figure 1. The CO2 

rich flue gas is fed to a fluidized bed 

reactor operating at temperatures of 

600°C. In the presence of reactive lime 

and under heat release the CO2 is 

carbonated [4]. The backward 

endothermic reaction takes place at 

about 900°C in a twin fluidized bed 

reactor, with water vapor resulted from 

the calcination to be fed as fluidization 

gas. The necessary heat input for the 

reaction is provided by radiation in the combustion chamber with the tubes of the 

calcinator or high temperature heat pipes in a fluidized bed calcinator. Evaporation of 

the water-steam cycle will be dislocated to the carbonator. This layout ensures an 

CO2-seperation of up to 90 % [6] and is not to be used after the flue gas cleaning 
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system, but part of the flue gas path and the water-steam cycle. The use of a 

pressurized carbonation reactor and of a downstream water-steam-CO2-turbine 

enables additional energy generation (Figure 2). 

 

Figure 2: Simplified flow scheme of a power plant with carbonate looping and water-steam-CO2-turbine  

 

Power plant and carbonate looping modelling 

By means of the simulation program EnBiPro (Energie-Bilanz-Programm, engl.: 

energy-balance-programm) [7, 8] devloped at the Institut für Wärme und 

Brennstofftechnik the modelling of a 1052 MW coal-fired power plant was undertaken 

as reference case. Carbonate looping components were modeled also and 

implemented in EnBiPro. The thermodynamic equilibrium was used to model the 

calcination and carbonation reactions [9]. In order to ensure that the steam 

parameters upstream the turbine inlet are kept constant the reference power plant 

had to be modified. Furthermore along the evaporator, additional heat surfaces were 

integrated (e.g. air pre-heater and superheater heating surfaces). The simulations 
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were performed for full load operation. Figure 3 shows the flow chart of the simulated 

power plant (simplified scheme of the water-steam-cycle). 

 

Figure 3: Flow chart of a coal fired power plant using carbonate looping 

Simulation results 

The use of the carbonate looping process results in a reduction of 3 % of the mass 

flow in the water-steam cycle. By using a retrofit concept and the water-steam turbine 

a net electrical capacity of 1050 MW was achieved (the reference plant has a 

capacity of 1055 MW). This is due to a higher compressor power which is needed for 

the carbonation reactor.  With 45.3 % no significant difference exists between the 

carbonate looping plant and the reference power plant (efficiency of the reference 

plant: 45.4 %). If the additional energy required for the CO2-compression is 

accounted for then the electrical net efficiency decreases to 41.7 %, i.e. the efficiency 

decreases by 0.1 % or 3.7 % without respectively with CO2 compression, which is 

well below the power losses of other CO2 removal concepts, e.g. chemical looping, 

absorption and adsorption associated with losses of 10-20% of the power plant 

efficiency [10]. 
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 Reference power 
plant 

Power plant with 
CO2-separation 

Power plant with CO2-
separation and 

compression 
Steam turbine inlet: mass flow 824.3 kg/s 793.0 kg/s 793.0 kg/s 

Steam turbine inlet: temperature 869 K 869 K 869 K 

Fuel heat input  2322 MW 2322 MW 2322 MW 

Steam turbine: electrical output  1103 MW 1062 MW 1062 MW 

CO2-H2O-Turbine: electrical output - 39 MW 39 MW 

Ausxilliary power 33 MW 33 MW 33 MW 

Air compression power 14 MW 17 MW 17 MW 

CO2-compression power - - 81 MW 

Power plant capacity 1055 MW 1051 MW 970 MW 

Gross efficiency  47.5 % 47.4 % 47.4 % 

Net efficiency  45.4 % 45.3 % 41.7 % 

Table 1: Simulation results for the reference and carbonate looping power plant  
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NUMERICAL SIMULATION OF OXI-FUEL COMBUSTION IN A 
CEMENT KILN
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1Universidad Nacional de Colombia, Escuela de Procesos y Energía, Medellín, Colombia;
2Cementos ARGOS, Medellín, Colombia 

__________________________________________________________________________________________________________________

Abstract

In order to evaluate the heat transfer mechanism in a cement kiln driven by oxy-fuel combustion, two mathematical models of the process were 
developed. The first model accounts for global process transformation by solving macroscopic mass and energy balance equations. The second 
model is based on the 3D mass, energy, species, momentum, turbulence and radiation transport equation, coupled to a chemical kinetic model 
of the pyrolisis and gas-solid and gas-gas reactions. The discrete phase (coal) was simulated following a Lagrangian approach. The impact of 
the flue gas recirculation on the oxy-fuel combustion process was parametrically studied. The 3D model was solved by using a commercial 
computational fluid dynamics (CFD) solver. The global model and the CFD simulation showed good similarities in the results. The simulation 
results of both models predicted similar values of the maximum flame temperature (9%) and 2% difference for the convective energy flux. In 
addition, the flame length and convection and radiation energy contribution to the clinker was compared. The models can be used for the 
evaluation of different energy scenarios in cement kilns in order to increase the energy efficiency and clinker production.

Keywords: CFD, rotary kilns, heat transfer, oxygen combustion, carbon dioxide
__________________________________________________________________________________________________________________

1. INTRODUCTION

The coal combustion process with air is used in the cement 
industry for the clinker chemical transformations. The 
combustion process has a significant impact on the 
environment, particularly on greenhouse gases emissions 
(NOx, CO2, and other). The cement industry is one of the 
largest industrial sources of CO2, accounting for 1.8 Gt/y of 
emissions worldwide in 2005 [1].It representing 5-6% of 
global emissions of CO2 [2]. Emissions of CO2 can be 
reduced by carbon capture and storage processes (CCS), 
but few studies have been done on CCS in the cement 
industry [1]. In the oxy-fuel combustion process, high 
concentration of oxygen is fed to the kiln, which is diluted 
with recirculated CO2 from the flue gas in order to keep a 
suited flame temperature. Carbon dioxide is the main 
component of the flue gases along with small quantities of 
nitrogen, carbon monoxide, water and other [3].

The oxy-fuel combustion does not generate (or little 
quantities) NOx because there is few nitrogen in the 
oxidizing stream. In the other hand, as the CO2 partial 
pressure is high it may be easy captured and subsequently 
stored, increasing the efficiency of the capture process. This 
will generate an alternative to reduce CO2 emissions to the 
environment [3].

Some authors and research institutes have worked in the 
oxy-combustion topics in order to assess the technology and 
improve the CO2 capture. The international Energy Agency 
(IEA) studied the oxy-fuel combustion in a cement plant was 
studied without taking into account the kiln temperature and 
reactions. F. Zeman and K. Lackner [4] studied the reduction 
of pollutants emissions on a cement kiln with oxy-fuel 
combustion. The European Cement Research Institute [5].
Studied the limitations and requirements technological, 
energy balances impacts, clinker quality, plant operation and 
identification of gas components of oxy-fuel cement kilns.

2. GLOBAL PROCESS ANALYSIS

A thermodynamic analysis of the oxy-fuel combustion in the 
kiln was done using a global model to the process shown in 
the Figure 1.
In Figure 1, air enters to the Air Separation Unit (ASU) which 
is separated into nitrogen and oxygen. The oxygen is mixed 
whit the flue gases, previously cooled in the heat exchanger 

1. This mixture is the oxidizing gas stream or “artificial air” 
which is divided into primary (APG) and secondary (SG) 
streams. The primary stream is injected in the burner 
together with the coal. The secondary stream retrieves heat 
energy with the product in heat interchanger 2.  

Figure 1. Oxy-fuel process scheme

It is considered that coal was previously dried (70%), and 
only CO2 is produced in the combustion of coal. It is 
assumed that the kiln is adiabatic. The kiln operating 
conditions are presented in Table 1.

Table 1. Operating conditions considered by the global 
model simulations.

CE (GJ/Ton) E (%) OP (w/w) TR (K) TS (K) TC (K)

4 10 0.995 367 300 300

TO (K) TGS (K) R (w/w) RPM FVS P (bar)

300 1073 0.4 - 0.9 1.5 0.1 1

In Table 1, CE, E and OP are the specific energy consumption 
of the process, oxygen excess and oxygen purity in the ASU 
output respectively. TR, TS, TC, TO and TGS are the
temperature of the recirculation stream, solids, coal, oxygen 
and oxidizing secondary stream respectively. R, RPM, FVS 
and P are the range of flue gas recirculation, kiln’s angular 
velocity, volumetric fraction of solids and pressure 
respectively.
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3. CFD SIMULATION

A kiln with 2.5m internal diameter and 40m in length [7] was 
chosen for this study (see Figure 2).  The mesh used in this 
study was developed in a previous work [7] and was latter 
incorporated to the FLUENT 6.3 software. Mesh 
independence test was done in order to select a 
computational mesh that gives a low computational cost with 
similar accuracy of finer meshes [7].

Figure 2. Scheme of the kiln

The model solves steady - mass, momentum and energy 
conservation equations [8] coupled to turbulence [8], 
radiation [9], non-premixed combustion [9], dispersion 
devolatilization models. 

The oxy-fuel combustion simulations were done for 
pulverized coal combustion by changing the mass flow rate 
and composition of the oxidizing gas streams. The flue gas 
recirculation was changed between the 0.3 and 0.85. In 
addition a simulation using air as oxidant was also carried 
out in order to compare the simulation results. 

The boundary conditions are shown in Table 2. An additional 
consideration in the simulation was that the oxidizing gas in 
the inlet (resulting to combine oxygen from de ASU and flue 
gas recirculation) is only formed by oxygen and carbon 
dioxide. The composition and mass flow rate of the primary 
and secondary oxidizing steams were calculated using the 
global model, and they are presented in Table 4 respectively.
The inlet temperature was constant (300 K).  

Table 2. Boundary conditions in FLUENT

Boundary in the kiln geometry
Numerical boundary 
conditions

Primary gas-fuel input MASS FLOW INLET
Secondary gas input MASS FLOW INLET
Flu gas output OUTFLOW
Internal and external wall WALL
load of lime and limestone SOLID (inert)
Internal gas FLUID

Table 3. Molar fraction for O2 and CO2 for all recirculation 
cases

Recirculation O2 CO2

30% 68% 32%
40% 65% 35%
55% 51% 49%
60% 47% 53%
65% 42% 58%
70% 37% 63%
80% 28% 72%
85% 23% 77%

Table 4. Oxidizing gas mass flow

Recirculation
Primary gas 

(kg/h)
Secondary gas 

(kg/h)

30% 0.858 0.050
40% 0.828 0.117
55% 0.790 0.618
60% 0.778 0.861
65% 0.768 1.169
70% 0.757 1.576
80% 0.738 2.984
85% 0.729 4.381

The mathematical model was solved using FLUENT 6.3. 
Simulations finished with differences of 1x10-6 in the mass 
balances and between 1% ant 10% of differences for energy 
inputs and outputs for the different simulated cases.

4. RESULTS

4.1. Global Model

In the oxy-fuel combustion process, the partial pressure of 
carbon dioxide is higher than in the air combustion process.
It will expect that, at constant temperature, the radiation will 
be more effective because carbon dioxide emissivity is 
higher than that of nitrogen. The adiabatic process 
temperature, for different recirculation ratios, is presented in
Figure 3.  

Figure 3. Adiabatic process temperature for different 
recirculation ratios.

The horizontal red line in the Figure 3, show the value of 
adiabatic temperature of the air-fuel process. It observes that 
the process temperature can be controlled with the 
recirculation fraction of the flue gases. To obtain the same 
adiabatic temperature when it use air as an oxidant 
(T=2230°C, see the horizontal line in the Figure 3) it’s 
necessary to recirculate 67.8% of the output stream of the 
flue gases. This adiabatic temperature is very sensitive to 
small changes in the recirculated fraction. Close to R=67.8% 
the process temperature changed at a rate of 49.72°C per
each percentage of unit recirculation.

On the other hand, it is necessary to evaluate the convective
energy transfer between the solid and gas phases. The rate
of heat transfer will depend of hydrodynamic parameters and 
transport and thermodynamic properties of the species. 
Nusselt number is evaluated through the correlation from 
Tscheng & Watkinson [11], that was developed for rotary 
kilns.

In order to achieve a similar Nusselt number  for that in 
air combustion, the recirculation ratio is close to 68.2%.  
This recirculation is higher than that required to conserve the 
adiabatic process temperature. However, the thermal 
conductivity of the flue gases produced in the oxy-fuel 
combustion process is higher so the convective heat transfer 
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coefficient will be higher for oxy-fuel combustion (see Figure 
4).

Figure 4. Nusselt number for different recirculation ratios.

From Figure 5, it can be observed that the oxy-fuel 
combustion process gives a convection heat transfer 
coefficient higher to the air for recirculation ratios higher than
58.2%. Nevertheless, this limit increases to 60.4% when heat 
transfer to the solid phase and its endothermicity are
considered.

Figure 5. Convective heat transfer coefficient for different 
recirculation ratios.

Based on previous results, a recirculation range between 
60.4%-67.8% can be used in order to achieve similar heat 
transfer characteristics for those obtained when the 
combustion takes place with air.

4.2. 3D Model

The convective and radiative energy transfer mechanisms to 
the solid bed is presented in Figure 6 for different 
recirculation ratios, and compared to the simulations when 
air is used in the kiln. As noted previously, the energetic 
contributions by radiation are higher when air is replaced by 
oxygen. In the ranges simulated by the 3D model, the oxy-
fuel radiation to the bed is superior. On the other hand, the 
energy contribution to the bed by convection mechanism is 
higher than that for an air-based kiln when the recirculation 
ratio is higher than 60%. This result is similar to that obtained 
by the global model. 

Figure 6. Energy transfer by convection and radiation for 
different recirculation ratios.

In the Figure 7 is presented the total energy flux to the bed 
for oxy-fuel (symbols) and air combustion (red line). An 
important feature presented In Figure 7 is that, 
independently from the recirculation ratio, the oxy-fuel kiln 
provides more energy to the solid bed, given the operating 
conditions and kiln configuration analyzed in this work.  It
might increase the clinker production or the decrease the 
specific fuel consumption per ton of clinker.

Figure 7. Total energy supplied to the solid phase for 
different recirculation ratios .

The influence of the recirculation ratio on the maximum flame 
temperature is presented in Figure 8. The model predicts 
that recirculation ratios lower than 77% provides higher 
temperatures than the air-based combustion. Comparison of 
the 3D model results with the global ones presented in 
Figure 3 reveal that the later model provides the shape of the 
temperature distribution. 

Figure 8. Maximum temperature of the process for different 
recirculation ratios.
.

The flame length of the oxy-fuel combustion (see Figures 9 
and 10) is short for low recirculation ratios, because a higher 
partial pressures of oxygen is available for the oxidation 
reactions. As the recirculation increases, the flame length
becomes larger, and becomes equal to that of the air-based 
combustion when the recirculation ratio is 68% (red line). 
From this recirculation ratio, the flame length increases up to 
two times the length of the air flame for a recirculation of 
85%.

Figure 9. Recirculation effect in the length flame for different 
recirculation ratios
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Qualitatively, Figure 10 shows that at high recirculation
ratios the flame becomes thinner and larger than that 
obtained with air.

Figure 10. Flame lengths: a) Air, b) 30%, c) 55%, d) 65% and 
e) 80%. 

An important aspect in relation to the oxy-fuel combustion in 
the kiln is that short flames and high temperatures can be 
achieved, which are good characteristics for the cement 
production process.

5. SUMMARY AND CONSLUSIONS

Two mathematical phenomenological models of the oxy-fuel 
combustion process in a cement kiln were developed: a 
global model and a local three-dimensional model.  The flue 
gas recirculation effect on the heat transfer by convection 
and radiation mechanisms was presented. The models can 
predict for flame temperature, the energy transfer to the bed, 
the flame length and other important aspects of the process. 
The results of the global model showed good similarity with 
the three-dimensional model results at a much lower  
computational time. The models can be used for the 
evaluation of operating conditions in order to increase the 
kiln energy efficiency and clinker production rates.
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The CO2 is one of the main pollutants for global warming and climate change effect. 
In order to carry on power generation by fossil fuel, CCS technologies are required to 
reduce the environmental impact by CO2 emissions. The post combustion CO2 
capture via chemical absorption is the most effective and widely used technology in 
the CO2 recovery process. This paper presents the detailed description of the 
chemical absorption process using MEA as a solvent and sensitivity analysis to 
improve the process performance. The model was developed in ‘Aspen Plus’ and 
possible chemical reactions were introduced using an electrolyte wizard. The 500MW 
coal power plant flue gas with 85% of CO2

 

 removal was considered. The process 
flow diagram of the removal process is given in Figure 1. 

 
 
Figure 1: Process Flow Sheet  
 
 
The sensitivity analysis was performed to check the effect of absorber pressure and 
packing height along with solvent temperature on re-boiler duty, re-boiler temperature 
and pump work. According to the total work requirement equation, the required work 
for CO2 removal process was calculated for every single simulation step. The work 
for complete CO2 recovery process decreases as the packing height and pressure of 
the absorber increases. Similarly, the work requirement decreases with increasing 
solvent temperature. The absorber pressure, packing height and solvent temperature 
are most important factors to reduce the work load for removal process. Future works 
have to be carried out to check the effect of other parameters, such as, stripper and 
absorber packing type and solvent flow rate effect etc.  
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1. Introduction 
Due to the increasing amount of installed fluctuating energy sources, such as wind energy, the 
requirements on the operation of coal-fired power plants change. To maintain a stable energy 
supply, the fluctuating energy production of wind turbines needs to be compensated by 
increased flexibility, i.e. an enhanced part-load operation of coal-fired power plants. These 
requirements also remain valid for power plants with an integrated CO2

If the power plant is operated in part-load, flue gas parameters (i.e. composition, volume flow, 
temperature) change and the operation of the CO

 capture process. 

2 capture unit and the CO2

2. Modelling 

 compressor 
deviates from their design point. Therefore, appropriate part-load capable models of an 
integrated overall process need to be developed.  

The influence of the CO2 capture unit and the CO2 compression on the net output of the power 
plant is examined by the combination of three independent models for the power plant, the CO2 
capture unit and the CO2
 

 compressor.  

Power plant: The power plant model used in this work is based on a state-of-the-art hard-coal-
fired power plant with high steam parameters. The main boundary conditions of the power plant 
at its design point are given in Table 1. To account for the part-load behaviour of the power 
plant and its effect on the overall process, several components (i.e. steam generator, steam 
turbines, heat exchangers and auxiliary power of the blowers and pumps) need to be modelled 
by using physical expressions or characteristic lines, which are derived from existing 
components. For a comprehensive overview of the complete modelling assumptions it is 
referred to [1, 2]. 

Table 1: Boundary conditions of the power plant at full-load 

Gross (output) capacity (MW) 1100  Live steam conditions (°C, bar) 600, 285 
Net (output) capacity (MW) 1017  * Reheated steam conditions (°C, bar) 620, 60 
Net efficiency (%) 45.60  Flue gas mass flow (kg/s) 1020 
Condenser vacuum (mbar) 39/49  Flue gas CO2 13.9  concentration (vol.-%) 
Pressure in the IP/LP crossover (bar) 3.9  Flue gas O2 3.3  concentration (vol.-%) 
*High aux. power of the power plant, due to electric driven feed water pump 

 

 
Integration: The post-combustion CO2

1 Corresponding and presenting author. Tel.: +49-40-42878-2772; fax: +49-40-42878-2841 

 capture process (PCC) is integrated as a retrofit option 
to the existing hard-coal-fired power plant. The heat for the regeneration of the solvent is 
provided by extracting steam from the water-steam-cycle of the power plant at the IP/LP 
crossover. As the pressure in the IP/LP crossover is reduced if an additional steam extraction is 
foreseen, a pressure maintaining valve (PMV) is placed downstream the branch to the reboiler, 

E-mail address: linnenberg@tuhh.de 
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upstream the LP turbine, to maintain a constant steam pressure and thus the temperature level 
in the reboiler required by the capture process. The condensate from the reboiler is forwarded 
to the feed water tank in the water-steam-cycle. For additional information, it is referred to 
[2,3,4]. 
 
CO2 compressor: It is assumed, that a pipeline pressure of 110 bar is necessary to transport 
the separated CO2 to the injection well. To realise the pressure increase of the CO2 leaving the 
desorber an integrally-geared (radial) compressor with six stages, three intercoolers and an 
aftercooler is considered. As the working range (i.e. the variation of the CO2

First, adjustable inlet guide vanes are 
considered, which can enlarge the 
working range for the related volume flow 
to 72 % - 103 % [5]. Secondly, to 
increase the inlet volume flow, a part of 
the volume flow leaving the compressor 
is recycled (bypass operation). Using this 
measure, limitations of the working range 
can be avoided at the expense of a 
strongly increased power duty of the 
compressor. Thirdly, to reduce the high 
power duty of the compressor if bypass 
operation is used, four identical 
compressors, which can be separately 
switched off are considered [2,5].  

 flow) of such 
compressors is commonly limited, three additional measures are considered to allow a 
reasonable working range at a constant discharge pressure of 110 bar: 
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Figure 1: Part-load behaviour of four CO2

By combining all three measures, the CO

 compressors at a constant pressure 
ratio of 55 

2 compression can be realised for a reasonable working 
range. In Figure 1 the minimal specific power duty of the CO2 compressor system is shown for 
different CO2

 
 volume flows. 

CO2 capture unit: To allow a realistic simulation of the capture unit, the geometry of absorber 
and desorber must be taken into account. Therefore, it becomes necessary to calculate the 
mass and heat transfer as well as the kinetics of the chemical reactions of the capture process. 
In this work, the post-combustion CO2 capture process is modelled by a rigorous rate-based 
model. The flowsheet of the CO2 capture unit is based on a conventional CO2

3. Overall process at full-load 

 capture process 
using 30 wt.-% MEA. A detailed explanation of the capture process can be found in [1,2]. 

As explained above, the heat for the reboiler is commonly provided by extracting low-pressure 
steam from the IP/LP crossover of the water-steam-cycle of the power plant. The effect of the 
steam extraction on the overall process (power plant, CO2 capture unit and CO2 compressor) is 
not only determined by the reboiler duty and the corresponding amount of extracted steam 
(quantity) but also by the temperature and pressure of the extracted steam (quality). The 
process parameters affecting the quantity and the quality of the extracted steam are the solvent 
circulation rate and the desorber pressure of the capture unit. For this reason, these process 
parameters need to be optimised with respect to the overall process [3,4]. As the solvent 
circulation and the desorber pressure also affect the design of the absorber and the desorber 
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column, the diameters of the columns need to be adjusted2

In 

 to allow a fair comparison between 
the varied variables. 

Figure 2 the net efficiency penalty of 
the integrated overall process is shown 
for different solvent circulation rates 
(L/G) and different desorber pressures. 
Besides the effect of steam extraction, 
the auxiliary power of the capture unit 
(blower and solvent pumps) and the 
CO2

Figure 2

 compressor, and the auxiliary 
power of the cooling pumps are 
considered. To avoid an excessive 
degradation of the solvent, the 
desorber pressure is reduced to a 
maximum pressure of 2 bar. 
From  it can be seen that the 
minimal net efficiency penalty occurs at  
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Figure 2: Net efficiency penalty of a hard-coal-fired power plant with 

PCC for different L/G and different desorber pressures 

a desorber pressure of 2 bar and a L/G of 3.1. For the full-load operation of the power plant 
the minimal net efficiency corresponds to the minimal heat duty of the capture unit. 

4. Overall process at part-load 
If the power plant and thus the overall process is operated at part-load conditions, the interface 
quantities between the three sub-processes power plant, CO2 capture unit and CO2 
compressor change. For instance, the flue gas parameters (i.e. CO2- and O2-concentration and 
flow), which strongly influences the CO2 capture unit and the CO2 compressor. Although the 
heat and the power duty of the CO2

Figure 3
 capture unit decrease with a decreasing flue gas flow [2], 

the net efficiency penalty increases at part-load conditions (see ). The higher efficiency 
penalty3 at part-load conditions can be mainly attributed to the influence of the extracted steam 
on the steam turbine performance. If the power plant is operated at part-load conditions, the 
pressure level in the IP/LP crossover decreases. To maintain the pressure level in the IP/LP 
crossover at the pressure required by the CO2

Figure 4

 capture unit, the losses due to steam 
conditioning increase compared to full-load operation. The effect of the different interface 
quantities on the net efficiency penalty at different load conditions is shown in .  
As the pressure level in the IP/LP crossover change, the L/G and desorber pressure need to be 
adjusted in order to find the minimal net efficiency penalty. In Figure 3 it can be seen that the 
reduction of the steam quality (i.e. the reboiler temperature decrease with decreasing desorber 
pressure) overcompensates the higher heat duty of the reboiler (i.e. the reduction of the 
desorber pressure results in a higher reboiler duty) resulting in a decreased net efficiency 
penalty at part-load conditions. Due to the fact that the compressor is designed for the 
minimum efficiency penalty of the overall process at full-load (pdes=2 bar), the reduction in 
desorber pressure is restricted by the surge line of the CO2

2 Including a security factor of 85 %, a maximum approach to flooding of 70 % is assumed. 

 compressor [2].  

3 The efficiency penalty refers to the net efficiency penalty of the conventional power plant at the corresponding load (i.e. 45.0 at 
70% and 42.5 at 40% load).  
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Figure 3: Net efficiency penalty of a hard-coal-fired  
power plant in part-load 

Figure 4: Net efficiency penalty of a hard-coal-fired  
power plant in part-load 

5. Conclusions 
The impact of the interface quantities (heat duty, cooling duty, power duty and reboiler 
temperature) was calculated for full-load and part-load conditions. It was shown that the net 
efficiency penalty of the overall process increases from 10.26 % at full load to 12.43 % at 40 % 
load due to the changed pressure levels in the different turbine sections of the power plant4

 

. 
Furthermore, it was pointed out, that an optimisation of the process parameters (i.e. desorber 
pressure and solvent circulation rate) of the capture plant at a part-load of 40 % leads to an 
increase of the net efficiency from 12.43 % to 12.26 %.  
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1. Introduction 
The increase of carbon dioxide emissions is considered as the main contribution to 

the global warming. Therefore, there is an urgent need to reduce the emissions of 

CO2 into the atmosphere. Recently, CO2 capture and storage technologies to reduce 

the CO2 emissions from coal fired power plants have gained great attentions of 

decision makers in governments, industry and academia. There are three major 

concepts for CO2 sequestration: post-combustion capture, pre-combustion 

separation and oxyfuel techniques [1]. Mixed oxygen ionic-electronic conducting 

ceramic membranes (MIECMs) have gained increasing attention due to their 

potential applications in oxygen supply to power stations for CO2 capture according 

to the oxyfuel concept [2]. Such oxygen permeable membranes are demanding not 

only high oxygen permeability but also long-term stability. However, the perovskite-

type membranes usually contain alkaline earth metals on the A site, which tend to 

react with CO2 and form carbonates [3]. Dual phase membranes which consist of an 

oxygen ionic conducting (OIC) phase and an electronic conducting (EC) phase in a 

micro-scale phase mixture are considered to be promising substitutes for the single 

phase MIEC materials, since their compositions can be tailored according to 

practical requirements. However, due to the use of noble metals as electronic 

conductor and reactions between OIC and EC phases at high operation temperature, 

most of these composite membranes are too expensive or unstable [4]. Therefore, the 

development of new oxygen-permeable membranes with high CO2 stability is highly 

desired. Herein, a novel earth alkaline-free CO2-stable and cobalt-free composite 

dual phase membrane, 40 wt.% NiFe2O4 - 60 wt.% Ce0.9Gd0.1O2-δ

 

 (abbreviated as 

40NFO - 60CGO) is prepared and evaluated.  
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2. Experimental 
The 40NFO-60CGO powder was prepared via a one-pot method. [5] The powders 

were calcined at 1000 °C for 10 h then pressed to disk membranes under a pressure 

of 10 MPa in a stainless steel module with a diameter of 18 mm. Green disks were 

pressure-less sintered at 1350 °C for 10 h. The dense disks were polished with 1200 

mesh sandpaper from both sides to achieve a 0.5 mm membrane thickness. To 

improve the oxygen surface exchange rate on the air side, the membranes were 

coated with a La0.6Sr0.4CoO3-δ

The phase composition of the composite membrane was determined by powder X-

ray diffraction (PXRD) using a PHILIPS-PW1710. The disc membranes were studied 

by scanning electron microscopy (SEM) and back scattered SEM (BSEM) using a 

JEOL JSM-6700F. The element distribution was studied on the same electron 

microscope by energy dispersive X-ray spectroscopy (EDXS) at 15 keV.  

 (LSC) porous layer on one side with a paste made of 

40 wt.% LSC powder and 60 wt.% terpineol.  

The oxygen permeation was studied in a self-made high-temperature oxygen 

permeation cell. A gold paste was used to seal the disk onto a quartz tube at 950 °C 

for 5 hours. Air was the feed; He and CO2 have been used as sweep gases (29 

ml/min, 99.995 % + 1 ml Ne/min as the internal standard gas). A gas chromatograph 

(Agilent 6890) was on line connected to the permeation apparatus. The leakage of 

oxygen was subtracted when the oxygen permeation flux was calculated. The total 

flow rate of the effluents was calculated from the change in the Ne concentrations 

before and after the permeator. The oxygen permeation flux calculation was shown 

in detail in [6]

3. Results and discussion 

.  

The dual phase membrane was synthesized using powder mixing and the one-pot 

method. X-ray diffraction (XRD) (Fig. 1) clearly confirmed that both 40NFO-60CGO 

membranes consist of only the two phases NFO and CGO. The unit cell parameter 

of the pure phases NFO (0.83455 nm) and CGO (0.54209 nm) are almost the same 

as in the 40NFO-60CGO dual phase material (NFO: 0.83350 nm, CGO: 0.54186 

nm). The phase composition turned out to be stable with time. As an example, Fig. 

1c shows the XRD of the spent 40NFO-60CGO membrane after the long-time 

oxygen separation with CO2

 

 as sweep gas as shown in Fig. 3.  
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a) e) c) 

f) b) d) 

Fig. 2 shows the results of SEM, BSEM, 

and EDXS of both membranes. For the 

membrane prepared by powder mixing 

(Fig. 2a, c, e), the grain size of CGO in 

these composite membranes is smaller 

(2 ~ 4 μm) than that of NFO (3 ~ 7 μm). 

Especially BSEM (Fig. 2c) shows that 

there is clustering of grains of   one and 

the same type, i.e. NFO-NFO and CGO-

CGO aggregation. In comparison to the 

powder mixing, the membrane prepared 

by the direct one-pot method shows much smaller grains and a higher 

homogenization of the NFO and CGO phases (Fig. 2b, d, f). By BSEM and EDXS, 

the NFO and CGO grains could be distinguished. The dark grains in BSEM are NFO 

and the light ones CGO since the contribution of the backscattered electrons to the 

SEM signal intensity is proportional to the atomic number. The same information is 

provided by EDXS. The green color (dark in the black-and-white version) is an 

overlap of the Fe and Ni signals, whereas the yellow color (light) stems from an 

average of the Ce and Gd signals.  

 

 

 

 

 

 

 

 

 
 
Fig. 2. Grain structure of the surface (top view) of the 40NFO-60CGO composite membrane after sintering at 1350 °C for 10h 

prepared by different methods: (i) powder mixing in a mortar by hand (up line, a), c), e), and (ii) direct one-pot method (down 

line, b), d), f): SEM (a and b), BSEM (c and d), and EDXS (e and f). 
 

Fig. 3 shows the long-time behaviour of oxygen permeation flux through 40NFO-

60CGO composite membrane at 1000 oC. During this oxygen permeation test, an 

Fig.1 XRD patterns of the 40NFO-60CGO composite 

membrane prepared by powder mixing method (a), one-pot 

method (b) and one-pot membrane after CO2 stability test (c).                 
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oxygen permeation flux of about 0.30 

ml/min·cm2 was obtained at 1000 oC and 

no decrease of the oxygen permeation 

flux was found during the permeation test. 

After the oxygen permeation test, the 

sample was characterized by XRD, as 

shown in Fig. 1c. It can be seen that the 

dual phase structure was kept, which 

indicates that the 40NFO-60CGO exhibits 

an excellent structure stability under CO2

4. Conclusions 

 

atmosphere. 

In conclusion, a novel CO2-stable and Co-free dual phase membrane of the 

composition 40 wt.% NiFe2O4-60 wt.% Ce0.9Gd0.1O2-δ (40NFO-60CGO) is 

successfully synthesized via a direct one-pot method and for comparison by powder 

mixing in a mortar. In a 100 h oxygen permeation using CO2 as the sweep gas, no 

decline of the oxygen permeation flux was found indicating that our dual phase 

membrane is CO2

 

-stable. 
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Ba0.5Sr0.5Co0.8Fe0.2O3-δ

 

 (BSCF) has previously been identified as a composition with 

excellent oxygen-ionic and electronic transport properties reported by many research 

groups. In its cubic phase, this mixed-conducting perovskite is a promising candidate 

for oxygen,transport membranes (OTM) operated in the absence of carbon dioxide.  

As the transport properties are very sensitive to changes in material composition and 

the occurrence of secondary phases, the long-term stability of BSCF under operating 

conditions is of crucial importance. This contribution is therefore focused on the 

stability of the BSCF cubic phase in the targeted temperature range for OTM 

applications (T = 700...900 °C) and in atmospheres with low oxygen contents. 

Previous studies in literature report a reversible phase transition from cubic to 

hexagonal at temperatures below 900 °C and suggest limited chemical stability below 

oxygen partial pressures pO2 of around 10-6

 

 bar.  

Single-phase cubic BSCF powders were annealed in air and several pO2 at different 

temperatures over varying periods of time. Phase composition was subsequently 

analyzed by means of X-ray diffractometry (XRD). Electrical conductivity of 

corresponding ceramic bulk samples was monitored between 700 and 900 °C over 

several hundreds of hours. From these combined data, an assessment of the thermal 

as well as the pO2

 

 stability of BSCF is facilitated. 
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Introduction 
The membrane separation of gas mixtures has met with rising interest because of the great 
significance for industrial applications. Inorganic membranes, especially the carbon 
membranes have been identified as promising candidates for CO2

The first step of this study was to evaluate the use of carbon membranes, which were 
provided by Fraunhofer Institute for Ceramic Technologies and Systems IKTS (Hermsdorf 
branch of the institute), for the CO

 separation from flue gas 
streams. In comparison to other gas separation membranes like polymeric materials, carbon 
membranes show better selectivity, heat resistance and chemical stability.   

2/N2

 

 separation in laboratory scale. 

Experimental Set-up 

Amorphous carbon or graphite-like carbon is plane structured with a defined lattice plane 
distance of 0.34 nm. Because of their brittleness, carbon membranes were synthesized on 
porous alumina tubes by dipcoating the tubes in a polymeric precursor solution and pyrolysis 
at temperatures above 873 K in an inert atmosphere. The tubes had an inner diameter of 
7 mm, an outer diameter of 10 mm and a length of 250 mm.  

A schematic illustration of the set-up is shown in Fig. 1. The feed gas mixtures with defined 
composition were supplied from the gas bottle (Praxair). The composition of the permeate 
stream was analysed by on-line gas chromatography equipped with a mass spectrometry 
detector.  

The permeation and separation properties of the membranes were examined by means of 
the steady-state measurement method with pure gases and a CO2/N2

 

 gas mixture 
(20/80 Mol %) in a temperature range from 293 K to 363 K and at feed pressures up to 1.4 
MPa and atmospheric pressure on the permeate side.  

 
Figure 1. Schematic illustration of set-up. 
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3 

La0.7Sr0.3Co0.5Fe0.5O3-δ powders were prepared through thermal decomposition of 

amorphous citrate precursors by calcinations at 1300 oC. The material properties 

were characterized by thermogravimetric-differential thermal analysis, X-ray 

diffraction, and four probe method. The results show that the membrane sintered at 

1300 oC possesses a rhombohedral distorted symmetry structure with space group of 

R3c (space-group number = 167). We have studied the variation in lattice parameters 

with temperature and have observed a linear decrease in lattice parameters with 

synthesis temperature. It was also observed that the particle size increased with 

increasing temperature in the range from 800 to 1300 oC.  Electrical conductivity of 

sintered La0.7Sr0.3Co0.5Fe0.5O3-δ ceramics increases with temperature through a 

maximum, then decreases at relatively higher temperatures, due to oxygen vacancy 

formation. Oxygen permeation was performed between 700 and 950 oC under 

different oxygen partial pressures (0.21, 0.42, and 0.63 atm) and carbon dioxide 

concentrations (300, 500, and 700 ppm). As the oxygen partial pressure increases 

from 0.21 to 0.63 atm, the oxygen permeation flux correspondingly increases from 

0.23 to 0.33 mL/min•cm2 at 950 oC. Long-term permeation at high temperature in 

carbon dioxide conditions (700 ppm) over La0.7Sr0.3Co0.5Fe0.5O3-δ

 

  membranes gives rise 

to the change of rhombohedral crystal structure distortion and morphologic of surface 

membrane. 
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Hydrogen production is an important technical issue, which is related to future 

energy and environmental problems. Recently many studies on hydrogen membrane 

have been conducted for applying to pre-combustion capture process. Also hydrogen 

may be separated using membrane technology from the reformer and water-gas shift 

reaction mixture.  

In this work, V99Y1 membranes of 12 mm diameter and 1.0 mm thickness were 

machined by wire cutting from about 25 g cast ingot prepared using vacuum arc 

melting machine. In order to eliminate the effect of the contamination layer, after 

polishing both sides of the membrane, reactive ion etching (RIE) was treated 

(~500nm) on both sides of the dissociation and recombination of the retentate and 

permeate sides. Using dc magnetron sputtering system, a thin layer of about 150 nm 

thick of pure palladium (purity=99.99%) was deposited on the etched surface of 

membrane. The crystal structure of the selected alloy membrane was characterized 

with an X-ray diffractometer. The morphology of the V99Y1 membrane and the 

thickness of the Pd-layer were analyzed with a scanning electron. The high 

temperature/pressure permeation cell in a flat geometry was constructed for studies 

of hydrogen permeation under the condition of pre-combustion process. Hydrogen 

permeation study was performed within the temperature range of 300-450 oC at the 

pressure of 1-2 atm. The hydrogen flux was increased with temperature, showing the 

maximum of about 22.9 ml/cm2 min under 100% hydrogen as feed at 450 o

 

C using Ar 

sweep gas.    
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A ZEOLITE (ZSM-5) PDMS (POLYDIMETHLYSILOXANE) MIXED 

MATRIX MEMBRANE FOR CO2 SEPARATION 

 

Muhammad Hussain, Chair of Separation Science and Technology Uni-Erlangen, Erlangen, 

Germany, Prof. Dr. Axel König , Chair of separation Science and Technology Uni- Erlangen, 

Erlangen, Germany 

1. Introduction: 

Membrane based gas separation occur due to the difference in the permeability of the species 

flowing through the membrane [1, 2]. Generally, the permeability of a gas through the 

membrane can be thought of as the product of diffusivity and solubility. Therefore, gas 

separation through membranes can be broadly categorized into diffusivity- based and 

solubility-based separation. 

Solubility difference is inherently caused by differences in the molecular-level energetic 

interactions of the membrane material with the permeating species. The exploitation of 

“chemically specific” energetic interaction, such as hydrogen bonding, may lead to greatly 

enhanced selectivity; however even simple van der Waals dispersion forces, which tend to be 

stronger for larger molecules, may lead to significant selectivity. This can lead to a situation 

in which it is possible to have the preferential permeation of one of the component as 

compared to other. The solubility-selective mode is especially advantageous in applications 

where a dilute heavy molecular weight species contaminates a light gas feed stream [3]. 

 Gas separation may be achieved with both inorganic and polymeric membranes and also by 

mixing former and later to take the best characteristics of both known as mixed matrix 

membranes.  

Filling zeolite (silicalite-1) in polymer membranes especially in silicone rubber membranes 

have great advantage in separation of alcohol from water due to molecular sieve effects from 

zeolites and hydrophobic nature of silicalite-1. Furthermore, good permeation for gases are 

also been observed with silicalite-1 filled polymer membranes. Experimental results show that 

the separation factor αCO2/N2 is increased from 11.6 to 17.1 with increasing of silicalite from 

zero to 70 wt% [4]. 

In the present study the Mixed Matrix Membranes (MMMs) were prepared by incorporation 

of zeolite (ZSM-5) filler in PDMS matrix to separate CO2 from CO2-N2 gas mixtures. The 

membranes were tested for single gas permeability of CO2 and N2 at different filler loadings. 
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Furthermore, prepared MMMs were evaluated for CO2-N2 gas mixtures to exploit the 

selective sorption property of zeolite for CO2 at elevated pressures. It was presumed that the 

adsorption of CO2 in pure zeolite filler is proportional to the overall permeability of MMMs. 

2. Experimental: 

2.1 Membrane Preparation: 

The silicone rubber membrane was prepared with Elastosil RT 601; supplied from the Walker 

Chemie, it consists of two components A and B. The two components mixed thoroughly at a 

9:1 ratio to get a homogeneous mixture. To eliminate air trapped during mixing, a vacuum 

encapsulation done occasionally. Later on the mixture was put on a stainless steel plate for 

casting a membrane. The membrane was cured at room temperature for 24 hours and then 

striped out from casting plate. Zeolite (ZSM-5, from Tricat Zeolites GmbH) filled membranes 

are prepared by first mixing component A and zeolite thoroughly and then component B is 

added; finally the mixture was put on the stainless steel plate for casting a MMM of uniform 

thickness.  

2.2 Gas permeation measurements: 

The pure gas permeability was measured using a constant volume variable pressure apparatus 

as shown in the Fig. 1.  A known pressure of gas was taken in a constant volume autoclave 

(B1) and then the gas was allowed to pass over the membrane surface while the permeate side 

was kept at atmospheric pressure (0 psig). The pressure difference across the membrane was 

measured and reported for the permeability measurement of single gases. For single gas 

experiments the retantate valve VR1 was kept closed.  

The gas permeability was measured by the following (Eq.(1)): 

 

           (1) 

 

The permeability oP  is reported in „Barrer“(10
-10

cm
3
 (STP) cm cm

-2
 s

-1
 cmHg

-1
). 

dt

dpiF  feed pressure change of Component i with time (t), T is the operational temperature 

(K), R is the universal Gas constant, V is the volume of the autoclave (B1) i.e. 1.4 litre, MA  

is the active permeation area of membrane (51.5 cm
2
) of the membrane module (M), Mδδδδ  is 

the thickness of the membrane, and )( ipiF pp −−−−  is the pressure difference between feed side 

and the permeate side. 
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The ideal selectiviy BA /αααα  is the ratio of permeability coefficient of component A and B. 

While DA, SA and DB, SB are the solubility and diffusivity coefficients of individual 

components. 

For mixture of gases permeate and retantate flow rates were measured by using bubble flow 

meters. Gas chromatogram (G-1530A) was used to measure permeate and feed side 

compositions.  
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Permeate

1
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2
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1
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2
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1
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Fig.1:  Experimental Setup for Gas Permeation measurements 

3.Results and Discussion: 

 3.1 Adsorption Isotherms: 

 

Fig. 2: Solubility data for different membranes reference to different zeolite loading in 

CO2 environment (20bars and 300K) 
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The experimental results of adsorption and desorption behaviour dependency for different 

membranes were plotted and displayed in Fig.2. By filling membrane with zeolites, the 

solubility of the CO2 increased as compare to pure polymer membrane. Moreover, the 

adsorption and desorption values are almost same for a particular membrane with different 

incorporated percentage of zeolite showing less hysteresis.  

3.2 Single Gas Permeabilities: 

 

Fig. 3: Single gas permeability and ideal separation factor for CO2 and N2 as a function 

of Zeolite Loading in PDMS 

The variation in the permeability values of CO2 and N2 in PDMS membranes filled with 

zeolite (ZSM-5) with respect to the zeolite loading (wt.%) are shown in Fig.3. An increase of 

the permeability of CO2 in the zeolite–PDMS mixed matrix membranes was observed in the 

cases investigated. By increasing the percentage of zeolite in PDMS the permeability 

coefficients increases gradually up to 38 % filled membranes and afterwards it increases 

strongly.  

Furthermore, the increase in CO2 and N2 permeability could be elucidated by two different 

factors. The first one seems to prove the existence of positive adsorptive interactions between 

zeolite and gas molecules as was also indicated in adsorption isotherms Fig2. That leads to 

the higher adsorption of gas on the zeolite–polymer interfaces and this may provide a driving 
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force for the molecules, i.e. a reservoir effect, leading to an increase in the permeability of the 

mixed matrix membranes. 

It might also be explained on the basis of ‘Sieve-in-a-cage’ morphology that means the 

interface exits beyond the dispersed phase. This zone of influence comprises of a void or high 

free volume phase or a rigidified/compressed region of the polymer matrix [5].  Frequent 

examples are available in literature regarding this undesirable morphology [6].  

 

3.3 Mixtures of Gases: 

 

Fig. 4: CO2 and N2 permeance and separation factor for different zeolite filled 

membranes as a function of trans-membrane pressure drop (Feed Composition 50 Vol% 

CO2). 

Fig.4 shows the effects of trans-membrane pressure drop on CO2-N2 permeance and 

separation factors (feed composition of 50 vol % CO2) of different zeolite filled mixed matrix 

membranes. The pure gas permeabilities of non-adsorbable gases such as He, N2, and O2 are 

well described by Arrhenius plots corresponding to the activated diffusion model in 

micropores [7].  

Just as expected, all experimental data indicated an increase in the permeance of CO2-N2 with 

the rise of the feed pressure with corresponding increase in zeolite content in the membrane. It 

could be explained as increased mobility of the permeating molecules in the bulk feed 

solution, which results in higher partial pressure and provide greater driving force for the 

permeating components. Also, the increased mobility of the permeating molecules within the 
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membrane will facilitate the diffusion of the components.  In the case of zeolite filled 

membranes, the variation of the interface between polymer–zeolite induced by the rise of 

pressure might play a role as well. 

4. Conclusion: 

Mixed matrix membranes have been prepared using zeolite (ZSM-5) and rubbery polymer 

PDMS (Polydimethylsiloxane) in different compositions. The ideal separation factor for 

CO2/N2  stays constant for all zeolite-filled membranes .However, the permeability of CO2 

and N2 increased almost three times in case of 66 % zeolite filled membrane compare to pure 

silicone membrane. The effect of pressure on the permeance of CO2 and N2 is also 

investigated for mixture of gases, and an increasing effect with pressure on CO2 permeance 

and separation factor has also been observed.  
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The operation of the ISA process aims to capture and store the CO2 and CH4 carbon (CCS).  With the 
exception of the of iron salt aerosol (ISA) generation step the technical ISA-Process is almost identical 
to the carbon sequestering process that determined the ice age carbon cycle. The ice age carbon 
cycle was accelerated by the increased transfer- and burial-rate of atmospheric CO2 and CH4 carbon 
into the oceanic sediments. The lowered greenhouse gas level dropped the climate temperature. The 
ice age climate was generated by excessive elevation of dust, developing in small parts into ISA. The 
technical ISA-Process mimics this ice age process by technical generation of ISA.  
 
The ISA triggered the carbon burial and activated the glacial epoch. Data collected from Antarctic and 
Greenlandic ice core samples, dating back approximately 800,000 years, give transparency to definite 
correlations between the atmospheric contents of dust, both greenhouse gases CO2 and CH4 and  the 
temperature: 
High dust content epochs (up to 50x present day levels) pushed the concentration levels of CH4, CO2, 
as well the overall global temperature, down to glacial levels. Contrary, the warm inter-glacial periods 
are characterized by low dust or even dust-free periods. These periods are characterized by high CH4- 
and CO2-levels resulting in temperature increases within Europe and North America to subtropic 
conditions1A). In reference to the glacial-interglacial CO2 change John C. Martin published his famous 
“Iron Hypothesis”1B) concerning the biological activation of green plankton growth by iron. 
 
The reasoning behind this phenomenon are small amounts of ISA contained within the dust. As  
powerful oxidation tool within the troposphere and fertilizing tool at the ocean surfaces ISA accelerated 
the transfer of the gaseous carbon phases from the planets atmosphere into the condensed carbon 
state within the oceanic sediments. The natural ISA-driven carbon burial process, may be devided into 
five definite steps: 
 

1) ISA generation occurs through dust production within the troposphere as a result of aeolic 
movement of soil particles. Atmospheric ingredients, such as sulphur- and chlorine-
compounds, NOx, organic acids and water vapour change small reactive iron oxide fractions of 
every dust particle into photo-oxidant acting water soluble iron salts (ISA). 

 
2) The ISA content triggers a drop of the atmospheric CH4 concentration level by generation of 
hydroxyl and chlorine radicals. These are the only oxidants in the lower atmosphere with the 
ability to initiate methane oxidation. ISA generates the radicals mainly during daytime by the 
Photo Fenton oxidation cycle and during nighttime by the Fenton reaction. Essentials for the 
Fenton reaction beside ISA are tropospheric chloride, hydrogen, peroxide and sunlight. The 
Photo Fenton reaction is known as most powerful oxidizing tool. It has received much attention 
in different technical processes: Decomposition of resistant organics in drinking water, 
wastewater, tooth whitening, chlorine production, photography2-8). 
Additional, tropospheric organics of low vapour pressure adsorb on ISA and become photo-
oxidized by ISA. In the absence of ISA these organics consume the radical oxidants hydroxyl 
and chlorine. This kind of ISA action lowers the atmospheric radical oxidant consumption 
followed by an increased radical level. This level elevation of the CH4 radical oxidants hydroxyl 
and chlorine additional triggers the CH4 level drop. Additional the elevated halogene radical 
level lowers the tropospheric concentration of ozone, a further greenhouse gas.  
The main sources of the ISA-generated chlorine radicals are sea spray chloride and hydrogen 
chloride. Hydrogen chloride, produced by the CH4 chlorine radical reaction, is washed out from 
the atmosphere by precipitation in the absence of ISA. During ISA epoches hydrogen chloride 
is re-oxidized to chlorine radicals by the ISA Photo-Fenton-Cycle preventing chlorine loss from 
the atmosphere by the wash-out of hydrogen chloride9).  
 



   

3) Dust and ISA content within the dust aerosol initiate a denser and wider spread cloud cover 
by multiplying the cloud condensation nuclei10). This initiates an additional climate cooling 
effect by increasing the level of sunshine reflection.  
 
4) After several days and weeks the ISA has left the troposphere by sorption on cloude ice 
crystals precipitating as rain or snow all over the ocean surfaces. From the water surface the 
dissolved iron salt distributes within the oceanic photic zone. The ISA precipitation is quasi-
continuous throughout extremely wide spread areas, generating very low specific iron input 
per ocean surface square by ISA. At this point CCS starts. As a consequence of the very high 
fertilization factor of dissolved iron on the mid-oceanic green plankton, however, due to the 
very low specific input per square, the following phyto plankton mass growth is small, and at 
fractions of lower than  the 1 % level. Calculating the huge oceanic surfaces, where ISA 
realizes mass growth, 1 iron atom drives the transfer of up to 100,000 CO2 carbon atoms from 
the gaseous phase into the condensed organic phase11). Even such low growth increase rates 
may transfer huge CO2-carbon masses into condensed organic carbon. Phyto plankton 
represents the first link of the oceanic food chain; consequently the mass increase will cover 
the whole chain. Additional to the CO2 carbon transfer increase into organic carbon the ISA 
fertilization generates an increase in CO2 carbon transfer into carbonate carbon bound within 
skeletons, shells, corals and further carbonate bio-constructs.  
 
5) The increase of sedimentation rate of the organic and carbonate carbon bound to dead 
organism on the ocean floor, from the former tropospheric CO2 and CH4 carbon will follow at 
least the same percentage that the iron-triggered oceanic food chain growth has increased. 
Due to its lower deep water concentration, the availability of free oxygen is restricted near the 
ocean floor. Due to the ISA-induced increase of the rain of oxygen consuming organic carbon 
the oxygen deficient anaerobic sediment localities at the ocean floor will spread. According to 
this fact anaerobic micro organisms will change sediment interior and even sediment surfaces 
of additional localities into anaerobic condition reducing the reoxidation of the organics. This 
again will increase the organic sediment load, changing it into kerogene, humic acids and CH4 
hydrate. Additional the anaerobic conditions increase the alkalinity to basic conditions by 
sulphate reduction to hydrogen sulfide and by nitrate reduction to ammonium and nitrogen. 
These pH changes to basic will trigger the Precipitation of additional CO2 amounts within the 
anaerobic localities as lime. Reduction of every sulphate or nitrate ion will induce the transfer 
of at least one additional CO2 molecule into this carbonate precipitate.   

 
 
The technical ISA-Process 
 
As mentioned above, except the ISA generation step, the world-wide patented ISA-Process runs on 
nearly identical tracks. The technical ISA generation may be realized by the variants 1a and 1b:  
 

1a) A flow of a carrier gas like the flue gas of fossil power plants or of traffic vehicles or of any 
other carrier gas stream is enriched by iron oxide aerosol. This iron oxide aerosol is produced 
by the well known burning of mixtures of iron-organic oil additives, preferable ferrocene, with 
oil. The iron-organic oil additives are changed by combustion into iron oxide aerosol. This 
aerosol is composed of nanometer sized pure iron oxide particles of outstanding chemical 
reactivity. After emission into the atmosphere, this reactive iron oxide aerosol particles change 
quantitative and without any residue into water-soluble particulate and/or droplet ISA by 
reaction with the fluegas- and air-borne chemicals SO2, NOx, water, oxygen, chloride and 
organic acids like oxalic acid and catechols. 
 
1b) A flow of carrier gas like the flue gas of fossil power plants or traffic vehicles or any other 
carrier gas stream is enriched by injection of gaseous iron(III) chloride. Within the carrier gas 
iron(III) chloride change into ISA by condensation and hydrolysation. Preferable the gaseous 
iron(III) chloride is produced at the emission locality by simple reaction of hot iron scrap with 
gaseous chlorine. This chlorine can be produced there by salt water electrolysis. This kind of 
ISA production may utilize the electric energy during day times of low electric power 
consumption.  

 



   

All following steps of the technical ISA-Process are in principle the same as in the glacial ISA process 
described above. Differing to nature the efficiency of the technical ISA process is by orders of 
magnitude higher than that of natural dust. Some reasons why ISA shall have orders of magnitude 
higher efficiency than natural dust are: 
  

• Artificial ISA is composed of nanometer-sized particles; natural dust particle diameters are of 
micrometer size. This effect raises the chemical activity of artificial ISA. 

• Due to their low velocity free falling artificial ISA particles stay and react much longer than 
natural dust particles within the troposphere. This effect elongates the duration of chemical 
activity raising the oxidation capacity per ISA iron atom.   

• Artificial ISA are composed of pure iron salt. The iron salt content of natural dust particles is 
much lower than 1 percent. This effect raises the chemical activity of artificial ISA. 

• Artificial ISA are easy dissolvable as requirement for consumability by the phyto plankton. 
Only small parts of the iron mineral fraction within natural dust are soluble. This effect raises 
the fertilizing capacity of artificial ISA. 

 
We have different clues to calculate rough estimations about the efficiency of the ISA-process11-14):  

a) 1 Atom of ISA iron has the ability to sequester up to 100,000 Atoms of CO2-carbon; 
corresponding to 1 kg ISA iron (=17.86 mol) sequestering up to 79 t CO2 (=1,786,000 mol)  
b) 1 Atom ISA iron has the ability to initiate the oxidation of up to 100,000 CH4 molecules; 
corresponding to 1 kg ISA iron (= 17.86 mol) oxidizing 29 t CH4 (=1,786,000 mol). Within this 
calculation it should be considered, that the global warming potential (GWP) of CH4 is more 
than 21 times that of CO2

15) 16). 29 t of CH4 have a GWP of about 600 t CO2.  
 
From this estimation we can calculate the possible quantitative potential and economy of the order of 
magnitude of the ISA-Process concerning its ability to initiate the oxidation of CH4 into CO2 and its 
ability to bury CO2-carbon. Taking the above calculation we come to the conclusion, that 1 kg of iron in 
the form of ferrocene may eliminate up to about 600 to 700 t of CO2-equivalents. 1 kg of iron 
corresponds to about 3 kg ferrocen oil additive or to about 3 kg iron(III) chloride. Then 1 kg of ferrocen 
or 1 kg of iron(III) chloride shall bury the carbon of up to about 100 to 200 t CO2 equivalents. 
Calculating the price of ferrocene to about 50 €/kg, and the price of iron(III) chloride to lower 5 €/kg, 
the costs to bury the carbon of 100 t CO2 equivalents without any harm to the environment and to the 
health of men will be even lower than 100 € in the case of ferrocene as ISA educt and even lower than 
10 € in the case of iron(III) chloride as ISA educt.  
  
In the order to bury the whole of CO2 emission quantity of a coal power plant by ISA the necessary 
concentration of the ISA precursor alternatives iron(III) oxide or iron(III) chloride within the flue gas 
may fall short of 1 mg/Nm³ Fe; this would even apply in a brown coal power plant flue gas. Because 
the carbon burial location is independent on the greenhouse gas emission location, the ISA Process 
may be carried out in remote areas on the ocean or within deserts to keep away any harm to human 
health. 
 
Climate chamber and bench scale research will have to be done to realize stable and quantitative data 
as a base for certification of the ISA process as CCS process. Certified, the ISA process would be a 
very useful tool for potential process owners and licence holders by compensating or even selling eco 
credits. 
 
The ISA process has even the potential to overcome the climate warming problem and may be 
defined as geo-engineering process. Combined with the off-shore “cloud whitening” geo-engineering 
process17) by unmanned sea salt spray ships, the ISA process could improve the physical cloud 
whitening cooling by addition of the chemical and biological carbon burial of greenhouse gas carbon 
within an enduring ocean sediment storage as fuel- and lime-carbon sediment. The sea salt aerosol 
carrier gas stream of the cloud whitening process additional may act as carrier gas for ISA as well. 
This combined ISA cloud whitening action shall result in an extraordinary improvement of both 
processes: By the enrichment of ISA with sea salt chlorine the ISA process would gain effectivity. The 
cloud whitening process to reduce the global temperature would gain drastic improvement of economy 
and even ecology; we estimate that this advantage could reduce the number of the proposed fleet of 
sea salt spray ships for cloud whitening from the proposed 1,500 ships to 10 or lower, gaining as well 
CCS extension plus extension of the albedo increase by cloud cover extension.  
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Abstract 

A possibility to reduce Carbon Capture Costs in Combined Gas- and Steam Turbine 
Cycles is the injection of water into the compressed air and vaporization by low 
temperature heat instead of using a high amount of excess air. If only stoechiometric 
air is used for a gas turbine, the allowable inlet temperatures would be exceeded. 
Therefore an additional mass flow has to be used, e. g. water vapor. If water is 
injected into the compressed air, it can be evaporated at partial pressure, i. e. at low 
temperatures. This offers a possibility to use low temperature waste heat or solar 
heat or geothermal heat in a combined cycle. In addition it offers the possibility to 
reduce the CO2-capture costs because the exhaust gas of such a combined cycle 
only consists of water vapor, CO2, N2 and a negligible amount of O2. After the 
condensation of water vapor only CO2 and N2 remain. That means that the CO2-
capture plant has to deal with a much lower amount of exhaust gas with higher CO2 
content. Finally three advantages coincide namely the use of low temperature heat 
for the vaporization of water in the compressed air, an increase of efficiency and the 
low mass flow in the CO2-post combustion capture plant. This will result in additional 
efficiency gains by the reduction of CO2-capture losses in the CO2- post combustion 
capture plant. 

 

Introduction 

The Humid Air Turbine [HAT] cycle uses a gas turbine with intercooling by water 
evaporation avoiding a steam cycle as well as the STIG- or  Cheng Cycle [Jones 
1985], which uses the steam produced in a Heat Recovery Steam Generator - HRSG 
for injection into the combustion chamber of the gas turbine . The intention of the 
Solar- and Low temperature Heat-Combined Cycle-Solico/ Lotheco is different. 
Condensate from the flue gas is injected into the compressed air and evaporated by 
low temperature or solar heat at changing partial pressure but at lower temperatures 
as in the HRSG of a Cheng Cycle. In addition the air flow through the compressor is 
reduced to nearly stoechiometric values. This is possible, because the steam 
produced by the low temperature or solar heat reduces the adiabatic combustion 
temperature to allowable values. The heat of the flue gas after the gas turbine is 
used as in a usual combined cycle HRSG i.e. for a  steam turbine (Rankine) cycle.   
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Facilitation of CO2-Capture out of Gas turbine exhaust gas 

Figure 1 shows the flow diagram of such a Lotheco/ Solico-Cycle. After the 
compressor an aftercooler is heating up the compressed air-steam mixture before 
this mixture enters the combustion chamber of the gas turbine. After the aftercooler 
condensate is injected into the compressed air and evaporated at increasing partial 
pressure. The water flow injected depends on the allowable gas turbine inlet 
temperatures as can be seen on figure 5. 

 

In Figure 2 a combined cycle using on Alstom GT10C gas turbine and a simple 
HRSG can be seen, which is used as basic cycle for the comparison. 
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 Figure 3 shows the Lotheco/ Solico-Cycle, which has an improved efficiency of 57.6 
% related to the fuel flow compared with 51.1 % of the basic combined cycle. 

 

In Figure 4 the adiabatic temperature at the combustion chamber outlet (= gas 
turbine inlet) is depicted over the excess air ratio. In addition the flue gas composition 
is given. The main part is N2 followed by O2 at excess air ratios above about 1.6 and 
then by CO2 and water vapour. 
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Figure 4: Concentrations of Flue Gas and Adiabatic Combustion Temperature Depending on 

Excess Air 

Figure 5 reveals the advantage of using water vapour instead of excess air. N2  is still 
the main part of the flue gas, but followed by high amounts of water vapour, which is 
at least partly condensed, so that CO2 concentration is remarkably increased. O2 is 
nearly negligible. So any CO2-capture process starts at a much higher CO2-
concentration compared to a usual combined cycle with excess air. 

excess air ratio

CC outlet
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 Figure 5: Concentrations of Flue Gas and Adiabatic Combustion Temperature Depending on 

Water Injection before Water Condensation 

So water injection and evaporization by low temperature waste-, geothermal- or solar 
heat not only increases efficiency but also reduces penalty of CO2-capture. 
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1. Introduction  
 

CO2 reforming of methane shows a growing interest from both industrial and 
environmental viewpoint. From an environmental perspective, CO2 and CH4 are undesirable 
greenhouse gases and both are consumed by the proposed reaction. From the industrial 
point of view, the reaction allows to transform these invaluable gases into synthesis gas with 
a low H2/CO ratio adequate for Fischer–Tropsch synthesis [1,2]. The CO2

In this context, the objective of this work is to study the influence of the catalyst composition 
on the catalytic properties of  NiAl- R, or R=Ni

 reforming reaction 
has been studied over numerous supported metal catalysts including Ni-based catalysts. The 
main drawback of this catalyst is its poor stability caused, mainly, by a high coking-rate. 
Thus, basic supports and highly dispersed Ni catalysts have been used to lower the rate of 
coke deposition [3].  

2+/Al3+ 

The catalytic activity runs were carried out at atmospheric pressure, was carried out using an 
engine fixed-bed quartz U-tube, Before each catalytic test, the samples were reduced in situ 
at 600°C during 14h under hydrogen, After the reduction, a reactional mixture consisting of  
CH

(R=2, 3, 5, 8 and 10) for CO2 reforming 
of methane. 

4/CO2/Ar  with a molar ratio of CH4 and CO2

 

 in proportion 1:1 was used for the reaction 
tests, at a total flow rate of 1.5 l/h. (According to a speed of heating equal to 5°C/min). The 
water produced in the reaction was condensed out and the reacting gases and products 
were analyzed with TCD chromatograph. 

 
2. Catalysts preparation 

  
The corresponding NiAl-R samples were prepared prepared by a standard Co-precipitation 
procedure using two solutions. The first solution contained Ni (NO3)2,6H2O and Al (NO3)2, 
9H2O, with a different molar ratio Ni:Al (R= 2,3,5,8 and 10) and total metal ion concentration 
of 1.0 mol.l-1. The second solution contained NaOH and Na2CO3 in adequate concentrations 
to obtain the total precipitation of Al and Ni. Was controlled to maintain reaction pH = 12. 
When the addition was complete, the mixture was stirred for a further 1.5 h, durring which 
time the pH was still maintained constant.the product was then filtered off, washed 
thoroughly with distilled water and dried overnight at 60 oC. The dried and powdered product 
was formed into pellets and calcined at 800 o
 

C for 6 h in air. 

3. Characterizations   
The Chemical composition of the calcined  samples was determined by ICP method and the 
data obtained  confirmed that the  values of  R    were  close to the intended value (Table-1). 
 
Table-1: Chemical analysis and chemical formulas of Calcined catalysts NiAl-R with 800°C 
Catalysts M+2/M+3 Chemical formula        
NiAl-2       
NiAl-3 
NiAl-5 
NiAl-8 
NiAl-10             

1.94 
2.70 
4.88 
7.33 
9.00 

Ni0.66Al
Ni

0.34 

0.7 3Al0.27 
Ni0.83Al
Ni

0.17 
0.88 Al

Ni
0.12 

0.90Al0.10 
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X-Ray powder diffraction patterns were recorded in a X’PERT PRO MPD diffractometer 
using CuKα radiation and varying 2θ values from 5 to 70°C.    The XRD patterns of the NiAl-
R (R=2, 3, 5, 8 and 10) non calcined are shown in fig.1. All these peaks when R ≤ 5 
are characteristics of clay mineral (hydrotalcite) having a layered structure, which is not 
clearly evidenced for samples with R > 5.  
The X-ray diffraction patterns of all calcined samples are shown in fig.2.  

After calcinations at 800°C. The mixed oxides showed sharp diffraction peaks due  to NiO 

and NiAl2O4

 

 spinel phase. 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.1:   XRD patterns of the NiAl-R non calcined 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Fig.2 X-ray diffraction patterns NiAl-R                                                                                  
after calcination at 800°C. 
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Surface area and mesoporous structure of the catalysts were determined by adsorption/ 
desorption of nitrogen at -196 C using the BET and BJH (Barret, Joyner, Hallenda) methods 
were used for evaluation of surface area and pore size distribution, respectively. The lower 
surface areas values were obtained for the samples with lower Ni2+/Al3+ 

 
molar ratios. 

 
 FTIR spectra in the region 4000-400 cm-1 

on the non-calcined samples (Fig.3), the obtained spectra reproduce the general features 
often reported for hydrotalcites –like compounds. 

were obtained with PERKIN-Elmer spectrometer, 
using KBr pellet technique.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  Fig. 3. FT-IR spectra of NiAl-R non calcined. 
 

The calcined samples were analyzed by temperature programmed reduction (TPR) carried 
out at atmospheric pressure under H2

 

 atmosphere in the range of 25 to 900°C ( fig.4) 
.TheTPR profiles of samples showed a reduction peaks (around 400-600 and 
800°C) which were shifted at the highest temperatures when R-values increased. 
The reducibility may depend on the degree of aggregation of the nickel oxide. 

 
 
 
 
  

 
 
 
 
 
 
 
 
 

 
Fig.4. TPR profiles for NiAl–R samples calcined at 800 °C; 
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4. Catalyst characterization 
 
Catalysts stability was carried out at 650°C and a 1:1 CO2/CH4 feed ratio. It was found that 
performances of catalysts after 8 h in reaction, within this period nor or little deactivation 
takes place and a  relatively high CH4 conversions were obtained such as: 69.8%, 70.0%, 
70.3%, 71.1% and 75.4 % respectively on Ni0.66Al0.34, Ni0.83Al0.17, Ni0.88 Al0.12, Ni0.88Al0.12  and  
Ni0.90Al0.10 

×
catalysts. In another hand,   the rate of CO formation obtained   were about 

10.7 10-2 × mol/g.h,10.8 10-2 ×,13.8 10-2 ×mol/g.h, 14.0 10-2 × mol/g  and 17.9 10-2

   

 mol/g.h 
respectively. As can be seen, the better catalytic performances were obtained when R > 5 
which can be  probably related to  the   higher  nickel content in these cases.  
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Chemical-looping combustion (CLC) has been demonstrated as an interesting 

technology for energy production with great potential to integrate CO2 capture with 

low energy penalties. CLC of methane carried out in dynamically operated packed 

beds has been developed in our previous work (Noorman, 2009). In this process the 

oxygen for combustion is provided by an oxygen carrier, which is oxidized when air is 

blown through the packed bed reactor. This oxidation reaction is an exothermic 

reaction and power is generated from the hot exhaust gas. The oxygen carrier is 

afterwards reduced via reaction with a fuel and a product gas mixture of CO2/H2O is 

obtained, circumventing energy intensive separation steps for the CO2

In the present work, the fixed bed CLC process has been further developed by 

investigating the use of syngas (e.g. produced by coal or biomass gasification) as 

fuel. In particular, the performance of different oxygen carriers including naturally 

available ilmenite has been theoretically investigated and the maximum temperature 

rise during CLC in packed beds. It has been found that oxidation of ilmenite could 

give a temperature rise up to 500°C (depending on the composition of the material). 

Reduction of ilmenite with CO is an exothermic reaction and reduction with H

 capture. 

2 is an 

endothermic reaction. The temperature profile during reduction is thus dependent on 

the H2

The stability after many alternating reduction/oxidation cycles of ilmenite for CLC of 

syngas has been also investigated with TGA experiments. 

/CO ratio and the kinetic rates of the two reduction reactions. Axial 

temperature profiles in packed bed CLC have been studied in detail using numerical 

reactor models. 
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