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Abstract

A computational model for predicting the aerodynamic behavior of wind turbine
airfoil profiles subjected to steady and unsteady motions has been developed.
The model is based on a viscous-inviscid interaction technique using strong cou-
pling between the viscous and inviscid parts. The inviscid part is modeled using
a panel method whereas the viscous part is modeled by using the integral form
of the the laminar and turbulent boundary layer equations and with extensions
for 3-D rotational effects. Laminar to turbulent transition can be forced with
a boundary layer trip or computed with a modified e9 transition model. Vali-
dation of the steady two dimensional version of the code has been carried out
against experiments for different airfoil geometries and Reynolds numbers. The
unsteady version of the code has been benchmarked against experiments for
different airfoil geometries at various reduced frequencies and oscillation am-
plitudes, and generally a good agreement is obtained. The capability of the
code to simulate a trailing edge flap under steady or unsteady flow conditions
has been proven. A parametric study on rotational effects induced by Coriolis
and centrifugal forces in the boundary layer equations shows that the effect of
rotation is to decrease the growth of the boundary layer, delay the onset of
separation, and hence increase the lift coefficient and decrease the drag slightly.





Nomenclature

α Airfoil angle of attack

αm Airfoil mean angle of attack during its harmonic pitch motion

β Trailing edge flap deflection

βm Mean flap deflection during the harmonic flap oscillation

βw Angle in between the external and limiting streamlines

χ iWings angle of attack

χm iWings mean angle of attack during its harmonic pitch motion

∆H Jump in total pressure inside the separation bubble

δ Boundary layer thickness

∆χ iWings amplitude during its harmonic pitch motion

δ∗1 Streamwise displacement thickness

δ∗2 Spanwise displacement thickness

δN Nominal boundary layer thickness

γ Vortex strength

ΓB Total airfoil circulation

γH Specific heat

γlower Lower wake constant vorticity strength

ΓSiW iWings circulation

γupper Upper wake constant vorticity strength

ΓwiW iWings wake vortex strength

ΓW Wake vortex strength

κ∗ Curvature of the displacement surface

λ Thwaites parametric function

λ Wind turbine tip speed ratio
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uW Velocity induced by the wake

U Velocity on a random point P

u Velocity induced by the body

µ Doublet strength

µ Fluid viscosity

ν Kinematic viscosity

Ω Blade angular velocity

ω Relaxation factor

Φ Flow potential

ρ Fluid density

σ Source strength

σR Rotating onset flow related source strength

σW Single wake influence related airfoil source strength

σwT
Transpiration velocity related source strength

τθ Shear stress in the streamwise direction

τr Shear stress in the spanwise direction

τw Wall shear stress

θ, r, z Cylindrical coordinates

θ∗ Kinetic energy thickness

θ1 Streamwise momentum thickness

θ2, θ22, δ2xr Momentum thickness parameters due to crossflow

A Influence matrix of the potential flow, alternative notation to
Aij

B Influence matrix of the potential flow, alternative notation to
Bij

n Normal vector

t Tangential vector

v Flow velocity vector

ϕ Phase shift between the airfoil and the flap motions

A Amplitude of the airfoil harmonic pitch motion

a, a′ Tangential and axial interference factors
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Aij Influence matrix of the potential flow

Bij Influence matrix of the potential flow

c Chord length

CDynamic
L Lift coefficient during dynamic airfoil motion

CStatic
L Lift coefficient under static conditions

CτEQ Equilibrium shear stress coefficient

Cτ Shear stress coefficient

CDf Friction drag force coefficient

CDi Dissipation coefficient

CDp Pressure drag force coefficient

CD Drag force coefficient

Cf Friction coefficient

CLMAX
Maximum lift force coefficient

CL Lift force coefficient

CM Pitch moment coefficient

CNMAX
Maximum normal force coefficient

CN Normal force coefficient

Cp Surface pressure coefficient

CT Tangential force coefficient

CENr Centrifugal force term in the integral r momentum equation

CONV Relative convective terms in both the integral r and θ momen-
tum equation

CORθ Coriolis force term in the integral θ momentum equation

CORr Coriolis force term in the integral r momentum equation

D Drag force

dS Differential of surface

dt Differential of time

dV Differential of fluid volume

ex Airfoil extremity point

fA Airfoil harmonic motion frequency

fiW iWings harmonic motion frequency
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GMATRIX Viscid-Inviscid system global matrix

H Shape factor

H∗ Kinetic energy shape parameter

Hinner Total pressure inside the separation bubble

Houter Total pressure outside the separation bubble

kA Airfoil harmonic motion reduced frequency

kF Flap harmonic motion reduced frequency

kH Double wake correction constant

kiW iWings harmonic motion reduced frequency

kPI PI controller constant

L Arc length from the leading edge to the trailing edge

L Lift force

ls Local aspect ratio

M Pitch moment

m Mass flow

Ma Mach number

N Normal force

N Number of panel elements

n Amplification factor

nC Critical amplification factor

OV R Overshoot of the maximum lift coefficient

p Pressure

p∞ Pressure at ∞

Pe Real flow pressure at the edge of the boundary layer

pinner Static pressure inside the separation bubble

PIW Wall pressure of the equivalent inviscid flow

pouter Static pressure outside the separation bubble

pr Airfoil surface projector

PW Wall pressure of the real flow

QW Wind speed
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R Radius of a wind turbine rotor

r Distance in between two points

r Local spanwise position on a wind turbine blade

rWT Wind tunnel panels reduction factor; atanh function

Re Reynolds number

ReCR
θ1

Critical Reynolds number based in θ1

Reθ1 Reynolds number based in θ1

RHS Right hand side vector

RO Rotational number

S Surface

s Streamwise position

s′ Coordinate from the stagnation chordwise towards the trailing
edge

S∞ Fluid volume boundaries

Sa Length of the airfoil contour

SB Solid body surface

sreal Arc length from the stagnation point to the trailing edge

sw Sign function

T Tangential force

t Time

TH1, TH2 Double wake directions initial directions

TI Turbulence intensity

tstep Number of time steps during an unsteady computation

u Tangential velocity induced by a singularity in global coordi-
nates

u, v, w Boundary layer velocities

U∞x Component of U∞ measured along the chord

U∞y Component of U∞ measured normal to the chord

U∞ Free stream velocity

uτ Wall friction velocity,
√

τW /ρ

ue Boundary layer edge parallel velocity
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uLE Tangential velocity induced in global coordinates by a leading
edge vortex

up LE Tangential velocity induced in panel coordinates by a leading
edge vortex

up TE Tangential velocity induced in panel coordinates by a trailing
edge vortex

up Tangential velocity induced in panel coordinates

Urel Blade relative velocity

uR Rotating onset flow induced tangential velocity component

Us Equivalent normalized wall slip velocity

uTE Tangential velocity induced in global coordinates by a trailing
edge vortex

uwT
Transpiration velocity induced tangential velocity component

uW Wake induced tangential velocity component

ux Translating onset flow induced tangential velocity component

V Fluid volume

v Normal velocity induced by a singularity in global coordinates

vLE Normal velocity induced in global coordinates by a leading
edge vortex

vp LE Normal velocity induced in panel coordinates by a leading
edge vortex

vp TE Normal velocity induced in panel coordinates by a trailing
edge vortex

vp Normal velocity induced in panel coordinates

vR Rotating onset flow induced normal velocity component

vTE Normal velocity induced in global coordinates by a trailing
edge vortex

vwT
Transpiration velocity induced normal velocity component

vW Wake induced normal velocity component

vx Translating onset flow induced normal velocity component

WF Wake factor

WH Wake height

WL Wake length

wT Transpiration velocity / injection function
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wTR Weighted average for laminar to turbulent transition parame-
ters

xTR Chordwise transition location
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Chapter 1

Introduction

1.1 Introduction

Computer resources are becoming more powerful with the years, but it is still
beyond our limits to perform an optimum design of blades using Navier-Stokes
solvers, because of the computing intensive iterative design work in between
geometry and aerodynamic forces. Historically, it is possible to predict the
overall forces on a rotor blade by adding up the aerodynamic forces of each
section of the blade using strip theory, such as it is used in the the blade-
element theory to compute thrust and power. Nowadays aerodynamic force
coefficients used as inputs to the blade-element models (BEM) are obtained
from two dimensional airfoil data based on experiments. Occasionally three
dimensional corrections are used, usually based in curve fitting.

An alternative method to computing heavy Navier-Stokes solutions, is to
use viscous-inviscid interaction. In this method a viscous approach is used to
compute the boundary layer, while the outer part the flow is modeled as purely
inviscid. Initially an independent solution was obtained for both regions and
combining it allowed to solve the overall problem. During the last century
a lot of effort was put into the development of this technique. During the
present work a viscous-inviscid interactive code has been developed where the
inviscid part is solved using a potential panel method and the viscous effects
are take into account solving the integral form of the Quasi3D boundary layer r
and θ momentum equations using the kinetic energy shape parameter equation
in its two dimensional form. It is possible to approximate this higher-order
effect by considering the integral boundary layer, obtaining a higher order of
accuracy than for a potential method solution. As a higher order treatment the
variation of pressure across the boundary layer is introduced as a post processing
correction. This may be of importance where the boundary layer is not thin
and the streamlines are highly curved, just before separation appears is the most
critical location.

At relatively high Reynolds number, standard conditions on the wind tur-
bine operational range, turbulent flow will be present in large regions around
the blade surface due to the viscous nature of the air. A turbulence modeling
was implemented in order to deal with the effects of turbulence in the boundary
layer. An integral boundary layer set of quasi three dimensional closure equa-
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tions in their turbulent form are implemented. An extra set of equations in its
two dimensional form is used as closure to the kinetic energy integral equation
permitting variances in shape factor caused by the flow pressure gradients. [1]
[2] [3]

The final step in the process is to couple the two separate parts, viscous and
inviscid, to interact within each other in order to determine the final solution
to the fluid problem. Four different approaches to this aspect are present in
previous literature: ”direct”, ”semi-inverse”’, ”quasi-simultaneous” and ”strong
interaction”. The viscous-inviscid technique via strong interaction has been
implemented in the present study due to his higher stability, portability and
capability to solve separated boundary layers. The strong interaction permits
the integral boundary layer equations to be solved at and after separation takes
place, even with large separated regions.

The reduction in computational time of the methods employed in the present
work together with the high accuracy obtained should not bade the effort be-
ing done for solving the full Navier-Stokes equations with improved turbulence
models. Both methods should continue developing filling each others holes, and
for the time being, the viscous-inviscid models seem to have the capacity to
become the next generation of rotor blade design tools.

In the following subsections an overview of different topics of great interest
for the work presented herein is done. The airfoil design during the last decades
is reviewed with a special emphasis in the wind turbines airfoil characteristics.
The use of adaptative trailing edge flaps is introduced as a solution capable
of optimize the airfoil shape in order to reduced the airfoil aerodynamic forces.
The wind tunnel walls influence is analyzed, which can have a important impact
during the validation of our predictions against wind tunnel measurements. Fi-
nalizing with a introduction to rotational effects influence in airfoil aerodynamic
performance, of enormous importance due to the rotating nature of the wind
turbine blade sections.

1.1.1 Airfoil design

Since the 50s, the problem of airfoil design has been of great interest for the en-
gineering community. Aerodynamicists have put an enormous amount of effort
optimizing the airfoil shape in order to improve the aerodynamic performance of
aircraft, wind turbines, F1 cars, sailing boats, etc. Since the early days, airfoil
design for airplanes focus in obtaining an airfoil shape with a good behavior in
attached flow conditions at low angles of attack. More recently wind turbines
design is becoming of higher interest for the wind turbine blade manufacturers.
Knowing that many turbines operate under stalled conditions, airfoil shape has
not only to behave good at low angles of attack, it has also to retain good aero-
dynamic properties after separation appears, increasing the difficulty during the
design process. A small reduction in the drag coefficient can be the difference
between a winner or a second place in a F1 race, or may result in an important
fuel saving for a long flights aircraft.

A wind turbine blade section should have the following standard characteris-
tics: high maximum lift coefficient and lift to drag ratio but low drag and pitch
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moment coefficient. Thickness constrains come in play due to structural reasons,
the inboard sections close to the root will have a thick profile, while sections
closer to the blade tip will be thiner. Design of blades with sweep, taper and
winglets, already studied concepts in the aeronautics field, are nowadays being
revisited by wind turbine designers, where the rotational nature of the wind
turbine and its dimensions could channel the analysis to different solutions.

Methods for designing airfoils can be sorted in two categories. The first
category is optimization methods, where an optimization algorithm is used for
obtaining the airfoil geometry that maximizes lift and the glide ratio or min-
imizes drag. The methods embraced into this category are also known direct
methods. The second category of methods, inverse methods, is the ones where a
potential flow method is inverted, like Theodorsen conformal mapping method,
in this kind of methods the input is the pressure distribution and the output is
the airfoil shape. Originally solved only by potential methods or the so called
”conformal mapping”, airfoil aerodynamics can be solved with the addition of
viscous effects, whether with viscous-inviscid solvers or through Navier-Stokes
equations.

Geometric airfoil characteristics affects strongly the blade performance, i.e
thickness, camber, leading edge shape, roughness insensitivity. A thick wing
increases drag and reduces the angle of stall, although it has good structural
properties. Modifying the camber of the airfoil one can win lift at lower angles
of attack but. For example an acrobatic airplane needs a symmetric airfoil to
make it easier to maneuver during the rotations and upside down flights. The
shape of the leading edge is of great importance for the stall performance of the
airfoil. While a sharp leading edge will generate an abrupt lift drop after stall
is reached, a blunt leading edge will give a smoother reduction in lift. During
the lifetime of a wind turbine blade there is a slow process that turns the clean
surface in a rough or dirty surface, hence roughness insensitivity gives the airfoil
constant aerodynamic properties during its complete lifetime.

1.1.2 Use of adaptative trailing edge flaps

New developments in the early 90s have been used to investigate the use of active
parts on wings, capable of optimize the airfoil shape in order to reduce aerody-
namic forces, reduce noise level, vibration, etc. From the aviation industry flaps
are known to change the effective angle of attack of the wing. Downward flap
positions will displace the lift curve to the left, increasing the lift for the same
angle of attack, similar effect as the positive increment in camber.

As the birds, that can adapt their wings in order to optimize their aero-
dynamic shape, the airfoil aerodynamics can be improved with an adaptative
trailing edge system, or trailing edge flap. This system, as was proven in tests
performed in a wind tunnel, can manage turbulence, reduce aerodynamic loads
and have a positive overall effect on the whole wind turbine. The use of adap-
tative flap in rotors can be found in the helicopter research where the flap is
used for noise reduction and vibrations.

The present work will help to analyze the local aerodynamic behavior of a
moving trailing edge flap, and can be used by blade designers for assisting in
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the definition of an optimum design with respect to geometry of the flap and
the position of the sensors.

1.1.3 Wind tunnel walls

Most common wind tunnel test sections are enclosed by Plexiglas walls in order
to have a good visibility. There are wind tunnels with open test section but the
turbulence level is difficult to control, usually it is too high and measurements
are trigged by the high turbulence intensity. The effects of tunnel walls on the
airfoil aerodynamics can be divided in:

• Blocking of the airfoil in the tunnel increases the local velocity around the
airfoil surface.

• The walls influence the curvature of the streamlines, and so the airfoil
pressure distribution.

• Influence on the strength and geometry of the wake.

An implementation of the wind tunnel walls has been added to the viscous-
inviscid interactive solver in order to perform future comparisons against mea-
surements from the DTU red wind tunnel. The narrow test section of the wind
tunnel is expected to play an important role on the aerodynamic behavior of
the airfoil. The tunnel walls are simulated by a constant strength distribution
of source panels.

1.1.4 Rotational effects

Blade-element momentum theory (BEM) is often used as a design tool for wind
turbines. As an input to the BEM model, lift and drag forces at different angles
of attack are given, commonly obtained from two dimensional measurements. It
is known that two dimensional measurements underpredict lift forces in stalled
conditions.

Centrifugal and Coriolis forces that appear in the rotational boundary layer
are the cause of the increment in the aerodynamic forces if compared with two
dimensional non rotational case, reaching higher lift coefficients. The centrifugal
force will produce a spanwise outward velocity component which will give rise
to Coriolis forces that will act as a favorable pressure gradient in the chordwise
direction, an additional chordwise pressure drop. The centrifugal force also acts
reducing the thickness of the boundary layer by the outward movement of the
fluid, more commonly known as centrifugal pumping effect.

It is known that rotational effects are stronger in regions close to the ro-
tational axis and close to stall conditions even though a detailed study of the
phenomena has not yet been done. One of the objectives of the present study
is to obtain a deeper understanding of the influence of rotation in the boundary
layer. Rotational effects are strongly related with the existence of a radial flow
in the boundary layer of rotating blades, which following [4] arises from :

1. Yawed flow seen by the blade cross sections.
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2. Chordwise pressure distribution.

3. Spanwise pressure distribution.

4. Centrifugal force acting on the spanwise direction.

5. Coriolis force acting on both the spanwise and streamwise directions.

In the present work an interactive viscous-inviscid model has been developed
with capability of solving the quasi3D unsteady incompressible boundary layer
equations. To reduce the 3D boundary layer equations to the quasi3D ones, an
assumption that simplifies the radial derivatives has been implemented. Hence
the three dimensional boundary layer equations have been reduced to two di-
mensional boundary layer equations in its integral form with extra rotational
terms that take into account the spanwise velocity profile. The errors introduced
by this assumptions are known to be small due to the small order of magnitude
of the radial components of the boundary layer.

With the present method we thrust having capability for studying the in-
fluence of rotation on lift and drag performance of a two dimensional airfoil
section part of a rotating blade induced by different effects derived from rota-
tion. Yawed flow falls outside the capabilities of our code. Radial derivatives
are simplified assuming a high local aspect ratio of the blade cross section.

1.2 Historical survey

1.2.1 Viscous-Inviscid methods

Preston [5] in the 1940s was the first who studied the influence of the displace-
ment effect of a laminar boundary layer on an airfoil. The viscosity affects the
pressure distribution near the trailing edge so that the lift is reduced if com-
pared with potential flow computations. Conformal mapping techniques were
used in order to solve the inviscid part of the problem. The viscous effects of
the boundary layer were taken into account using a transpiration model fitted
with boundary layer thicknesses.

Spence [6] in the 50s extended Preston´s work, adding the effect of turbu-
lent boundary layers. Spence calculated the reduction on lift coefficient due to
viscous boundary layer effects for a Joukowski airfoil. Compared with invis-
cid computations, the viscous effects reduce the lift coefficient with 15% at a
Reynolds number of 5.106 while at a Reynolds number of 5.107 where the flow
is more potential the reduccion in lift is only 5%.

In 1958, Lighthill [7] studied the influence of boundary layer and wakes in
the flow outside them, depicting four theoretical treatments of the displacement
thickness. One of them, the equivalent sources technique is used to obtain a
viscous-inviscid strong interaction in the present work. The equivalent sources
create an extra flow in the region between the surface and the streamlines of
the irrotational flow.

Neither Preston nor Spence were able to calculate the effect of viscosity on
the whole airfoil surface, this was impossible due to the absence of electronic
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computers. It was not until 1965, when Powell [8] solved the whole system as
an iterative process, calculating on an iterative manner the inviscid pressure
distribution over the displacement surface using a small perturbation method,
while for the turbulent boundary layer he used an integral method.

The displacement effect of the wake was not calculated until some years later,
when Firmin [9], used the entrainment method of Green [10]. Firmin was the
first one who took into account the wake curvature, modeling it by a vortex sheet
leaving the trailing edge of the airfoil. The wake curvature effect help reducing
the lift coefficient in the computations approximately a 3% if compared with
the viscous predictions where this effect was neglected.

Le Balleur presented in 1981 [11] his viscous-inviscid method in which using a
transonic potential solver was combined iteratively with an integral formulation
of the boundary layer equations. Using this technique it became possible to
solve laminar and turbulent boundary layers around airfoil sections at high
angles of attack. Using an iterative relaxation technique in combination with
a semi inverse method the solver was able to compute small regions of trailing
edge separated flow, without reaching stalled flows.

In 1986 Drela [2] published the basic closure equations that later were used
in the Xfoil software, [12]. In first place Drela used the Euler equations in the
non-viscous part of the viscous-inviscid strong coupling, using a transpiration
velocity to account for the influence of the boundary layer. Later in the Xfoil
code the Euler equations were substituted by a linear vorticity panel method,
reducing the fully 2 dimensional mesh to a surface mesh, faster and still accurate.
In this case source distributions are in charge of adding the viscous effects into
the inviscid part, obtaining in this way an strong viscous-inviscid interaction. A
two equations model was used with the standard momentum and kinetic energy
shape parameter equations.

In the early nineties unsteady effects were taken into account by Cebeci in
[13] and [14]. An interactive boundary layer method was used for computing
harmonically oscillating airfoils and ramp increments in angle of attack. Con-
cluding that the effects of variation of lift coefficient in function of pitch reduced
frequency are important at angles of incidence that involve boundary layer sep-
aration.

Maskew and Dvorak in April 1974 [15] developed a new approach to the
viscous-inviscid solver, producing highly accurate surface pressure data for stalled
airfoils. They introduced the concept of double wake model using the boundary
layer equations to predict the onset of separation location. In their model two
wakes with constant vorticity are leaving the airfoil, one from its leading edge
and the other one from the separation point. In this way an isolated region is
created in between both wakes, simulating the separated flow around the suction
surface of the airfoil.

Riziotis and Voutsinas in 2008 [16] implemented an unsteady viscous-inviscid
solver that used a double wake model in order to predict highly accurate lift,
drag forces and pitch moment coefficients at dynamic stall conditions. They
compared dynamic force predictions at high angles of attack for two wake mod-
els, single and double wake, obtaining qualitatively much better results for the
last one.
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1.2.2 Rotational Boundary Layer

Wind turbines design method are commonly based on two dimensional aero-
dynamic data. However, this data normally needs to be corrected for three
dimensional effects due to rotational effects in the boundary layer arising due to
the rotational nature of the flow, [17]. Different authors have demonstrated the
importance of rotational effects on wind turbine aerodynamics, in accordance,
the design methods should take into account three-dimensional effects in order
to mimic more realistic aerodynamic forces, [18].

In April 1983 the HAWT Aerodynamics Specialist Meeting was held at Wi-
chita State University. During the meeting the causes of the lack of accuracy for
the presented codes to predict wind turbine performance were analyzed: higher
power production of the inboard sections of the blade and higher power produc-
tion of the rotor at higher angles of attack due a secondary outward flow caused
by centrifugal pumping. These effects induce a delay in the stalling of the lift
coefficient, thereby causing the lift to maintain its increment rate at high values
of angle of attack at the same time that the drag remains low. [19]

In 1990, SERI´s experiment on a full scale wind turbine [20] showed the im-
portance of the three dimensional effects arising from a rotating blade boundary
layer, suggesting important changes in blade performance prediction if the three
dimensional rotation effects were taken into account.

In the 50s Sears and Fogarty [21] considered the problem of an infinite long
cylinder rotating around an axis perpendicular to the cylinders axis. His conclu-
sions are used in the derivation of the Quasi3D developed in the present work.
They found out that the three dimensional boundary layer edge velocities can
be written in function of the two dimensional potential solution. This work was
extended by Rott and Smith [22], Graham [23], Sears [24], Moore [25] and [26].
Concluding that the rotational effect on the boundary layer will become more
important in the area closer to the rotational axis. All the interest in the early
stages was directed towards ship propellers and turbomachinery.

Horlock and Wordsworth in 1965 [27] developed laminar boundary layer
equations for turbomachinery showing the different flow patterns at diverse ra-
dial positions. Lakshminarayana et al in 1972 [28] introduced for the first time a
method for analyzing the turbulent boundary layer with rotational effects. The
method based on a momentum integral technique using the entrainment equa-
tion as a closure for the shape parameter. Coriolis and Centrifugal forces were
taken into account via the spanwise and streamwise momentum equations. In
their study an excellent agreement against measurements for boundary layer pa-
rameters was obtained at attached flow condition. At separated flow conditions
the agreement was poor. It was concluded that the three dimensional rotational
effects play an important role in the boundary layer flow characteristics.

In 1966, Franklin and Vertol [4] realized a study of radial flow effects on
rotor blades, concluding that the radial flow arising from yawed or oblique local
velocity, spanwise and chordwise pressure gradients and centrifugal and Coriolis
forces alters substantially the stall characteristics of airfoils, reducing the lift
boards in the near hub regions. The classical BEM theory understimates rotor
power and drag components due to the airfoil skin friction drag.
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McCroskey and Yaggi in 1968 [29] studied the influence of rotating boundary
layers on separation, finding out that separation is retarded due to the rotation.
In 1972 McCroskey, Nash and Hicks [30] extended the previous work by including
turbulent boundary layers, concluding that the three dimensional effects are
less important in the case of turbulent flow. Noting that the laminar flow,
with lower momentum is more affected by rotation than turbulent flow with
high momentum. The centrifugal pumping energizes the low momentum flow
helping it to be more resistant to separation. Takemasu in 1972 [31] found
that the airfoil shape and the radial position of this one will have an important
influence in the crossflow characteristics.

In 1985, Savino and Nyland [32] carried out flow visualization experiments
on the NASA/DOE Mod-0 Machine, finding a strong crossflow downstream of
the separation line, followed by a delay of the stall, and the location of the
separation line was found 0.1-0.2 chord downstream when comparing it with
two dimensional flow conditions.

Sørensen in 1996 [33] developed a viscous-inviscid computational model for
turbulent separated flows around rotating wings. The flow is treated in three
layers: a three-dimensional boundary layer, an external inviscid flow field and
an inviscid wake. He ran the first full computation of a wind turbine rotating
blade, concluding that the effect of rotation is to delay the onset of separation,
increase the lift coefficient and slightly decrease the drag coefficient.

In 1994 Snel [34] developed an integral boundary layer method for computing
aerodynamic forces on rotating airfoils. He used the integral r and θ momen-
tum equations, taking into account the variations of the shape factor via the
entrainment equation, obtaining impressive lift coefficient agreements against
NREL measurements performed at 30% of the blade span.

1.3 Purpose of the project

In the project a fast and efficient quasi-3D aerodynamic code has been developed
to analyze the local aerodynamic behavior of an airfoil section of a wind turbine
with a moving trailing edge flap and associated sensor response. The code uses
the well known concept of unsteady viscous-inviscid interaction via transpiration
velocity. The inviscid calculations are carried out by an unsteady potential
flow panel method; meanwhile the viscous flow is calculated using the unsteady
quasi 3-D integral boundary layer equations. Simulations are carried out for
flow around an airfoil with a moving trailing edge on a static or rotating blade.
These calculations will provide some guidelines for designing and evaluating the
Adaptative Trailing Edge Flap (ATEF) system on a wind turbine.
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Chapter 2

Potential Methods

In the present chapter the foundations of potential flow for external flow aero-
dynamics are presented. Green´s theorem is analyzed and linked to the panel
method for incompressible irrotational flows. Sources, vortex and linear vor-
ticity distributed elements are introduced as the elementary solutions to the
potential flow problem. Further is presented the basics of the inviscid part of
the strong viscous-inviscid solver. Finally, the double wake model, capable of
predicting accurately airfoil aerodynamic performance in deep stall conditions,
will be presented.

2.1 Potential flow foundations and general solu-

tion based on Greens identity

Inviscid flows are described on the bases of the continuity equation and the
inviscid momentum equations. Regarding the problem of an arbitrary solid body
immersed in a fluid and considering the flow incompressible and irrotational,
defining a velocity potential and combining it with the continuity equation gives
rise to the following second-order linear partial differential equation, for the
velocity potential Φ

∇2Φ = 0 (2.1)

Considering the immersed body in the fluid, and assuming the solid surfaces
are not penetrable the following boundary condition is applied stating that the
velocity normal to its boundary surface is expressed as,

∇Φ · n = 0 (2.2)

A second boundary condition states that the disturbance created by the solid
body should become zero as the position of study r tends to infinity,

9



Figure 2.1: Flow field sketch

∇Φ → U∞ for r → ∞ (2.3)

where U∞ is the freestream velocity.

There is a unique solution to Laplace’s equation satisfying the boundary
conditions. As vorticity can not be created or destroyed, the vorticity generated
at the body surface must be convected downstream, hence infinitesimally thin
wake surfaces have to be introduced to carry the vorticity downstream of the
trailing edge and the separation location. A description of the problem can be
found in Figure 2.1.

Potential flow solution based on Greens identity. The divergence the-
orem is applied to a flow velocity vector, v, which states that the fluid flux
through the boundary of the control surface is equal to the rate of expansion of
the fluid inside the control volume, [35]. In this way the flow of a vector field
through a surface is related to the vector field in the volume inside the surface.
Being the solid body surface, SB , immersed in a fluid within a volume, V , and
boundaries, S∞. The divergence theorem yields,

∫

C.S

v · ndS =

∫

C.V

∇ · v dV (2.4)

Replacing the velocity vector , v, in the equation above by Φ1∇Φ2−Φ2∇Φ1,
where Φ1 and Φ2 are two scalar functions of position, Equation 2.4 yields,

∫

C.S

Φ1∇Φ2 − Φ2∇Φ1 · ndS =

∫

C.V

Φ1∇2Φ2 − Φ2∇2Φ1dV (2.5)
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Setting Φ1 = 1/r and Φ2 = Φ, the velocity potential of the flow where r
is the distance from a point P, locating the point P outside of the volume V ,
Equation 2.5 produces,

∫

S

(

1

r
∇Φ− Φ∇1

r

)

· ndS = 0 (2.6)

where Equation 2.1 is used.
It is wanted to compute the flow field at the point P, located on the sur-

roundings of the body surface inside the flow volume, V . The point P has to
be excluded from the integration region in order to avoid a singularity, for that
purpose it has to be created a sphere of radius ǫ around it. Outside the sphere
the potential satisfies Laplace equation, ∇2Φ1 = ∇2 (1/r) = 0 in the same way
as ∇2Φ2 = 0. The Equation 2.5 becomes,

∫

S+Sǫ

(

1

r
∇Φ− Φ∇1

r

)

· n dS = 0 (2.7)

Supposing that the vector n is pointing inwards the sphere that surrounds
the point P , it is possible to write, n = −er, n · ∇Φ = −∂Φ/∂r and ∇ (1/r) =
−
(

1/r2
)

er, applying changes, the Equation 2.7 above yields,

−
∫

Sǫ

(

1

r

∂Φ

∂r
+

Φ

r2

)

dS +

∫

S

(

1

r
∇Φ− Φ∇1

r

)

· n dS = 0 (2.8)

The radius of the sphere surrounding P it is chosen to be very small, r =
ǫ → 0, its surface can be integrated as follows,

∫

dS = 4πǫ2. Assuming Φ2 and
its derivatives are well behaved functions, meaning that the potential has not
variations inside the sphere. As ǫ tends to zero, the first terms in the sphere
integral vanishes, and the second one can be integrated, Equation 2.8 yields,

−4πΦ(P ) +

∫

S

(

1

r
∇Φ− Φ∇1

r

)

· n dS = 0 (2.9)

Clearing the velocity potential from Equation 2.9,

Φ (P ) =
1

4π

∫

S

(

1

r
∇Φ− Φ∇1

r

)

· n dS (2.10)

So it is possible to obtain the velocity potential at any point in the flow
field, ΦP , if the velocity potential and its normal derivative, Φ and ∂Φ/∂n, are
known at the body surface. In order to relate the potential equation with the
singularity elements a form of the first one that includes the influence of the
inner potential is formulated, [35]

Φ (P ) =
1

4π

∫

S

(

1

r
∇ (Φ− ΦI)− (Φ− ΦI)∇

1

r

)

· n dS +Φ∞ (P ) = 0 (2.11)
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where ΦI is the internal potential inside the body boundary.

From here it is possible to define the following singularity elements and relate
them to the velocity potential, with n pointing inside the body surface,

−µ = Φ− ΦI (2.12)

−σ =
∂Φ

∂n
− ∂ΦI

∂n
(2.13)

The doublet in Equation 2.12 is defined as the difference in between the
external and internal potentials. In Equation 2.13 the source element is defined
as the difference in between the normal derivative of the external and internal
potentials. Substituting the definitions above in the velocity potential, Equation
2.14, produces

Φ (P ) =
1

4π

∫

S

(

σ

(

1

r

)

− µ
∂

∂n

(

1

r

))

dS +Φ∞ (P ) (2.14)

It can be concluded that the solution to Laplace’s equation, ∇2Φ = 0, can
be reached by the distribution of elementary solutions on the body surface
boundaries. In this way the boundary conditions are satisfied everywhere on
the fluid volume but at the point where r = 0 a singular solution has to be
forced. Two different kinds of problems arise, if the potential on the boundaries
is specified it is known as a Dirichlet problem, while if the non penetration
condition is specified as a zero normal flow on the body boundaries it is called
a Neumann problem.

2.2 Steady potential flow basics

The solution to the steady potential flow problem is obtained by modeling the
flow around a body with a distribution of singularities located on its surface.

If the flow around a body with surface SB is considered, the velocity on any
point P could be expressed as the sum of two velocities: one defined as the free
stream velocity, U∞, and the induced velocity u.

U = U∞ + u (2.15)

u = −∇φ (2.16)

As the boundary condition, considering the body surface SB impermeable,
the normal velocity component to the surface has to be zero,

U · n =
∂φ

∂n
= 0 (2.17)

Where n is the normal component to the body surface, SB .

As presented in the previous section, the body induced velocity u will tend
to 0 as the distance between the point P and the body B increases to infinity.
From the above boundary equations, a Neumann problem is defined.
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Green´s third identity has to be applied in order to obtain the flow field
solution as a superposition of the different flow singularity elements solutions
in a two dimensional case. The singularity elements are distributed on the
body surface, depending on the nature of these singularity elements the velocity
potential at a control point P is given as follows,

The velocity potential created by a constant strength source distribution σj

at a point P is

φσ(P ) =
σj

2π

∫

ln (rPj) dS (2.18)

where rPj the distance between the control point P and each source differ-
ential j

The velocity potential created by a constant strength vortex distribution γj
at a point P is,

φγ(P ) = − γj
2π

∫

arctan (θPj) dS (2.19)

where θPj is the angle between the control point P and each vortex differ-
ential j.

The total velocity potential at a point P will be obtained adding the solutions
of the different singular elementary solutions as follows,

φ(P ) =
σj

2π

∫

ln (rPj) dS − γj
2π

∫

arctan (θPj) dS (2.20)

Satisfying equation 2.17, the non-slip boundary condition, can be written as
follows,

∂φ

∂n
=

∂

∂n
φσ(P ) +

∂

∂n
φγ(P ) = U∞ · n = 0 (2.21)

1/rPj is a Greens function, or the Kernel of an integral. Which combined
with the first term of the equation forms an inhomogeneous Fredholm integral
equation.

2.3 Unsteady potential flow basics

In the present section the attention is centered in the case where the airfoil is
moving inside the flow field. The airfoil circulation, ΓB(t), is now dependent of
time. Each time step the circulation will change in order to fulfill Kelvin´s the-
orem, stating that the total circulation on the flow field has to be zero meaning
that a vortex with strength (∂ΓB/∂t)dt has to be shed out of the airfoil. That
vortex will leave the airfoil surface at its trailing edge and will become part of
the wake, [36].
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Figure 2.2: Downstream convection of point vortices at different time steps

In the next figure it is explained the mechanism followed to create the trailing
edge wake which convects downstream the airfoil, Figure 2.2. Four time steps
are sketched with different wake shapes,

In the unsteady case, the velocity on a random point P situated in the flow
field surrounding the airfoil has to be expressed as the sum of three velocities,
the free stream velocity, U∞, the influence of the body itself disturbing the free
stream flow, u, and the influence of the wake, uW, the last one will have an
important effect on the airfoil pressure distribution, with a special importance
in the airfoil trailing edge area.

U = U∞ + u+ uW (2.22)

The wake shape will change in function of the unsteady movement of the
airfoil. If the reduced frequency at which the airfoil moves is high, the strength of
the wake will increase due to a larger change of circulation between time. From
here it is possible to state that the wake influence on the airfoil will grow as the
movement frequency increases. This effect has to be taken into account when
the viscous effects are added into the potential flow model. If the frequency is
too high, the pressure difference on the airfoil surface, in between the collocation
points, especially in between the ones situated in the trailing edge area will be
too large and will be the cause of lack or slow convergence.

The wake length will be chosen in function of the model setup. For example,
when the airfoil is situated inside a wind tunnel the wake will be cut as soon as
the vortex blobs reaches the end of the wind tunnel. In the case of open space
computations, the wake has been cut off after one vortex blob is shed, in this
way a simplified wake model is introduced.

The direction of the wake first vortex blob will be the same as the airfoil
trailing edge panel with the highest absolute velocity, the upper or lower trailing
edge panel. The position of the vortex blob will be computed as following the
velocity of that side of the trailing edge.
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If the airfoil is modeled with a constant panel source plus a uniform vorticity
distribution and the trailing edge wake is simulated with point vortex converging
downstream, the velocity potential at a point P can be written as,

φ(P ) =
σj

2π

∫

ln (rPj) dS − γj
2π

∫

arctan (θPj) dS − Γj

2π
θPj (2.23)

In the present work has not been taken into account the influence of the
velocity at which the airfoil panels move, which will act as an extra induced
velocity term into the panel method formulation, introduced in a similar way as
the freestream component of the velocity. This term will grow in magnitude as
the airfoil movement frequency increases, and it will be of great importance when
implementing a controllable trailing edge due to its high frequency response. It
is encouraged here that future versions of the code should include that extra
term.

2.4 Singularity elements, influence matrices and

problem discretization

In the present report two different ways of modeling an airfoil are presented. In
the single wake model, the singularity elements are chosen to model the airfoil
were constant-strength source distribution, parabolic vorticity distribution and
point vortices. The point sources have been distributed all over the contour off
the airfoil as well as the parabolic strength distribution. A parabolic vorticity
distribution is added around the airfoil surface in order to model the airfoil
circulation and satisfy the Kutta condition. The point vortices singularities
are used for modeling the single wake, leaving the trailing edge of the airfoil
and moving downstream. In the double wake model, two wakes, one from the
trailing edge and the other one leaving the airfoil at the separation point, are
modeled with a constant vorticity distribution.

2.4.1 Singularity elements and induced velocities

Constant source distribution If a constant source with strength σ dis-
tributed along a panel is considered and positioned as shown in Figure 2.3.

The velocities induced at a point P are obtained as the integral of the influ-
ences of each one of the point sources generating the constant source distribution
along the panel,

up =
σ

2π

∫ x2

x1

x− x0

(x− x0)
2
+ y2

dx0 (2.24)

vp =
σ

2π

∫ x2

x1

y

(x− x0)
2
+ y2

dx0 (2.25)
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Figure 2.3: Panel influence at a point P

The velocity components in differential form can be obtained differentiating
the potential function. So it is possible to write the velocity equations as follows
for a more practical use, viscid

up =
σ

4π
ln

(x− x1)
2
+ y2

(x− x2)
2
+ y2

(2.26)

vp =
σ

2π

[

tan−1 y

x− x2
− tan−1 y

x− x1

]

(2.27)

An exception of the above equations is when the point P is located on the
center of the panel, in that case the induced velocities are,

up = 0 (2.28)

vp = ±σ

2
(2.29)

The velocities calculated above, induced by a panel distributed singularity
are in panel coordinate system, in that case it is needed to transform them into
the global coordinates system. Defining α as the angle in between the panel
and the global coordinates system x axis,

u = up cosα− vp sinα (2.30)

v = up sinα+ vp cosα (2.31)

Point vortex If a point vortex with circulation Γ located at x0, y0 is consid-
ered, the velocity induced on a particle situated in x, y, in this case the induced
velocity are computed in the global coordinate system so no transformation
has to be done as in the case of panel distributed singularities. The induced
velocities can be formulated as follows,

u =
+Γ

2π

y − y0

(x− x0)
2
+ (y − y0)

2 (2.32)

v =
−Γ

2π

x− x0

(x− x0)
2
+ (y − y0)

2 (2.33)
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Where u is the tangential velocity induced by a point vortex with strength
Γ in global coordinates and v is the normal one.

In the single wake model approach, the airfoil vorticity distribution is as-
sumed to follow a parabolic shape, being zero at the upper and lower trailing
edge panels.

Linear vorticity distribution For the double wake model, described further
in Section 2.5, a linear strength vorticity distribution is used to model the airfoil
surface. A vorticity distribution is placed along the panels with strength γ =
γi + γi+1(x− LEi).

Figure 2.4: Linear Vortex Influence from element i to control point Pj

x2 = (TEi,1 − LEi,1) cos (αi) + (TEi,2 − LEi,2) sin (αi) (2.34)

y2 = 0 (2.35)

x = (PxG
− LEi,1) cos (αi) + (PyG

− TEi,2) sin (αi) (2.36)

y = − (PxG
− LEi,1) sin (αi) + (PyG

− LEi,2) cos (αi) (2.37)

R1 =
√

x2 + y2 (2.38)

R2 =

√

(x− x2)
2
+ y2 (2.39)

θ1 = atan
(y

x

)

(2.40)

θ2 = atan

(

y

x− x2

)

(2.41)

From Figure 2.4 it is possible to defined all the dimensions used in the
following induced velocity equations,
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Where x and y are the positions of P in the panel local coordinate system
with origin at LEi. x2 and y2 are the local coordinates of TEi.

For convenience the influence of each panel is divided in two parts, the
leading edge vortex and the trailing edge one, see Figure 2.4. Considering the
panel i, with collocation point COi, a vortex with strength γi is placed on its
leading edge, while the one placed at its trailing edge has a strength γi+1. Hence
the vorticity will vary linearly in the panel from the positions LEi to TEi in
between the values γi and γi+1.

The velocity components in the panel coordinates can be obtained as follows,

up LE = −
y log

(

R2

R1

)

+ x (θ2 − θ1)− x2 (θ2 − θ1)

2 π x2
(2.42)

up TE =
y log

(

R2

R1

)

+ x (θ2 − θ1)

2 π x2
(2.43)

vp LE = −
x2 − y (θ2 − θ1)− x log

(

R1

R2

)

+ x2 log
(

R1

R2

)

2 π x2
(2.44)

vp TE =
x2 − y (θ2 − θ1)− x log

(

R1

R2

)

2 π x2
(2.45)

With suffix LE are denoted the velocities induced by the leading edge vortex
while with suffix TE are the velocities induced by the trailing edge one.

The influence of the linearly distributed vorticity on its middle point is as
follows,

up LE = −1

2

x− x2

x2
(2.46)

up TE =
1

2

x

x2
(2.47)

vp LE = − 1

2π
(2.48)

vp TE =
1

2π
(2.49)

Transforming the induced velocities to global coordinates yields,

uLE = up LE cos (−αi) + vp LE sin (−αi) (2.50)

uTE = up TE cos (−αi) + vp TE sin (−αi) (2.51)

vLE = −up LE sin (−αi) + vp LE cos (−αi) (2.52)

vTE = −up TE sin (−αi) + vp TE cos (−αi) (2.53)

Adding the influence of the leading edge and the trailing edge we obtain the
total velocities induced by the linear vorticity distributed panel in a point,
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u = uLE + uTE (2.54)

v = vLE + vTE (2.55)

2.4.2 Influence matrices

The Influence matrices contain information of the induced velocities and a panel
singularity (or other kind of singularity) creates in all the collocation positions
(or other points in the flow domain) and itself.

The influence matrix Aij is defined as the matrix that contains the induced
velocity components normal to the surface, created by the contribution of a unit
strength source j at the location i. While the influence matrix Bij contains the
velocity components parallel to the airfoil surface induced by a constant unit
strength source j at the location i.

Aij = (u, v)ij · ni (2.56)

Bij = (u, v)ij · ti (2.57)

Where the induced velocities u, v are in global coordinates system, Equations
2.32 and 2.33. Developing the equations above can be written as follows,

Aij = v cos (αi)− u sin (αi) (2.58)

Bij = u cos (αi) + v sin (αi) (2.59)

Where αi is the panel angle in the global coordinate system.

The induced coefficient matrix for the influence of a panel source with uni-
form strength distribution on its middle point is,

Aij =
1

2
(2.60)

Bij = 0 (2.61)

According to theory, a two-dimensional point vortex creates the same unit
induced velocity in a point as a source but rotates 90 degrees [35]. Therefore,
we can link the normal and tangential induced velocities by a vortex with the
ones induced by a source in the following way, see Figure 2.5

uΓ = +vσ (2.62)

vΓ = −uσ (2.63)

The relation in between the induced matrices, Aij and Bij of a source and
a vortex is the following,
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(a) (b)

Figure 2.5: Singularities induced velocities, (a) Point source induced velocities
(b) Point vortex induced velocities

Bij Γ
= +Aij (2.64)

Aij Γ
= −Bij (2.65)

Where Aij V ORTEX
and Bij V ORTEX

are vortex induced normal and tangential
influence coefficient matrices, while Aij and Bij are source induced ones.

To compute the induced coefficients matrix of a linear vortex distribution
one has to proceed in the following way. Each coefficient of the matrix has the
influence of a leading edge (LE) and a trailing edge vortex (TE). Each vortex,
γi, except for the ones located on the first and the last edges of the panels 1
and N, will act as a LE vortex belonging to the panel i and as a TE vortex of
the panel i− 1.

Aij = −uLE sin(αi) + vLE cos(αi)− uTE sin(αi−1) + vTE cos(αi−1) (2.66)

Bij = uLE cos(αi) + vLE sin(αi) + uTE cos(αi−1) + vTE sin(αi−1) (2.67)

The vortex located at the first edge of the first panel will only act inducing
velocities as a LE vortex, the induced coefficients matrix can be written as
follows,

Ai1 = −uLE sin(αi) + vLE cos(αi) (2.68)

Bi1 = uLE cos(αi) + vLE sin(αi) (2.69)
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The vortex located on the last edge of the last panel, N, will only induce
velocities as a TE vortex, the induced coefficients matrix for this vortex location
can be formulated as shown below,

AiN = −uTE sin(αi) + vTE cos(αi) (2.70)

BiN = uTE cos(αi) + vTE sin(αi) (2.71)

2.4.3 Single wake model, problem discretization

The airfoil contour S is discretized with N panel elements. At each panel center
a control point, i, is located. On each element the surface source density is
taken to be of constant strength, while the vorticity is modeled with a parabolic
distribution around the surface of the airfoil being zero in both, the upper and
lower trailing edge panels. The sources strength is defined as σi, it starts with
subindex i = 1 on the trailing’s edge lower panel moving towards the leading
edge and finalizing in the upper trailing edge panel with subindex i = N , as
depicts the following figure 2.6.

Figure 2.6: Airfoil discretization

In order to model the flow around the airfoil, a superposition of different
fundamental solutions is generated. The translating offset flow created by a
distribution of constant panel sources around the airfoil, the rotating offset
flow induced by a parabolic distribution of vorticity together with a source
distribution. In order to satisfy the Neumann condition of no penetration, the
viscous shear layer is taken into account with the introduction of a injection
function, more usually known as transpiration velocity, taking into account the
influence of the viscous boundary layer into the inviscid potential flow. To
finalize the single wake, the influence of the point vortex is added to the potential
model.

The orientation of the airfoil panels will be denoted using the components of
the tangent vectors, tx and ty. From now the matrix and vector notation intro-
duced in the dissertation of Sørensen [33] will be used for simplicity in explaining

the method. In this notation the operation
∑N

i=1

∑N
j=1 Aijσj is substituted by

A σ .

The translating onset flow For convenience the translating onset flow U∞

will be divided into a chordwise member, U∞x = U∞cosα , and a contribution

21



perpendicular to the chord, U∞y = U∞sinα. In order to obtain the local tan-
gential and normal velocities on the panels coordinate system, the velocity U∞x

has to be projected on the surface element multiplying by the tangent vectors.
In this way are obtained the local tangential velocity component, U∞xt and the
local normal velocity component, −U∞xn. In regarding the normal component
of the freestream velocity U∞y, its local tangential and normal components in
the local panel reference system will be respectively U∞yt and U∞yn.

In order to satisfy the Neumann condition a point source distribution, σ,
is introduced so that the following normal and tangential velocities in all the
panels are,

ux = B σ + U∞xt+ U∞yn (2.72)

vx = 0 (2.73)

The velocities induced by the source distribution outside the airfoil contour
can be obtained in the following way, being all the quantities with ∗ related
with the off body locations,

u∗

x = B∗ σ + U∞xt+ U∞yn (2.74)

v∗x = A∗ σ − U∞xn+ U∞yt (2.75)

Where the ∗ will be used from now on to refer to location points outside the
airfoil contour.

In order to ensure a unique solution, an auxiliary condition has to be applied
to our problem, this condition, known as the Kutta condition, is related with
the flow characteristics at the airfoil trailing edge. It is known, when the flow
is attached, that the effects of viscosity are confined to thin shear layers on the
airfoil surface and the downstream wake, formed by the merging of the upper
and lower boundary layers when leaving the airfoil on its trailing edge. The
Kutta condition will force a singularity in the potential flow field, located at
the sharp trailing edge and allowing the streamlines to leave the airfoil at this
point, generating in a way a more physical solution. The Kutta condition will
force the velocities to remain finite at the trailing edge.

The Kutta condition in its steady or unsteady form [36] will be set in adding
a rotating onset flow into the equations above, see section 4.5.

The rotating onset flow The rotating onset flow is added to the system
using a vortex distribution, γj , around the airfoil surface, in which the vorticity
is parabolically distributed along the airfoil contour, with zero strength at the
1st and N’th panels.

For an airfoil with vortex strength Γ, vortex distribution is defined as follows,
where ∆Sk is the length of the panel element k,

γj = Γ
(j − 1)(N − j)

∑N
k=1(k − 1)(N − k)∆Sk

(2.76)
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As seen in the equation above, the local vorticity distribution is dependent
of the total circulation around the body. The total circulation is obtained as
the addition of all the vorticity distributed along the airfoil contour multiplied
by their panel length,

Γ =

N
∑

j=1

γj∆Sj (2.77)

Using the relation in between the source / vortex influence matrices shown
in 2.64 and 2.65, the velocities induced by a rotating onset flow, that is, the
parabolic vorticity distribution, in the tangential and normal directions in func-
tion of the induced coefficient matrix can be written as follows

uR = A γ (2.78)

vR = −B γ (2.79)

Further, in order to counteract the effect of the normal velocities created
by the vortex distribution at the airfoil surface, and satisfying in this way the
Neumann boundary condition, a new source, σR, is introduced,

A σR = B γ (2.80)

σR = A−1B γ (2.81)

In a similar way, the tangential and normal velocities induced by the vorticity
distribution together with the extra source introduced above, σR,

uR = BσR +Aγ (2.82)

vR = 0 (2.83)

Evaluating the velocities outside the airfoil surface yields,

u∗

R = B∗σR +A∗γ (2.84)

v∗R = A∗σR −B∗γ (2.85)

Where A∗ and B∗ contain the influence coefficients from the panel to the
point considered.
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The influence of the boundary layer In order to simulate the influence of
the viscous boundary layer, a transpiration velocity is introduced, adding the
effects of the viscous flow into the inviscid potential flow solution.

wT =
∂

∂s
(ueδ

∗) (2.86)

The displacement thickness δ∗ is obtained from the boundary layer calcula-
tions, that in the present case follows a strong viscous-inviscid boundary layer
coupling. The strong coupling is obtained via a source distribution that will
create a transpiration velocity in the airfoil surface replacing the non penetra-
tion Neumann conditions coupling the viscous and inviscid parts of the system.

wT = A σwT
(2.87)

σwT
= A−1 wT (2.88)

Normal and tangential velocities induced by the latest source distribution,

uwT
= B A−1 wT (2.89)

vwT
= wT (2.90)

Evaluating the velocities in a point outside the airfoil surface yields,

v∗wT
= A∗ A−1 wT (2.91)

u∗

wT
= B∗ A−1 wT (2.92)

The single wake influence An inviscid wake is considered for the unsteady
case, in which every time step a vortex is shed from the airfoil trailing edge with
a strength, ΓW . The vortex strength is equal to the change of circulation on
the airfoil contour. The vortices shed by the airfoil convect downstream with
the freestream,

ΓW = Γt−1 − Γt (2.93)

Where Sa is the length of the airfoil contour, Γt−1 is the airfoil circulation
at time (t− 1) and Γt is the airfoil circulation at time t.

Surface body velocities induced by the vortex blobs that form the wake can
be written as follows,

uW = B
W

ΓW (2.94)

vW = −A
W

ΓW (2.95)
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Where AW is the wake normal induction matrix and BW is the wake tan-
gential induction matrix. It is a NxNw matrix, where N is the number of panels
distributed around the airfoil and Nw is the number of point vortices that forms
the wake.

In order to satisfy the Neumann condition on the airfoil surface, a source
distribution σW has to be created on the airfoil contour. The strength of the
source distribution, σW , added to the system in order counteract the normal
velocity induced by the wake vortices on the airfoil surface is,

σW = −A−1 vW (2.96)

The airfoil surface distribution of velocities induced by the wake vortices and
the extra source distribution added to the airfoil is,

uW = B
W

ΓW +B σW (2.97)

vW = 0 (2.98)

The velocities induced by the wake, vortex blobs and source distribution
around the airfoil, in an off body location are,

u∗

W = B∗

W
ΓW +B∗ σW (2.99)

v∗W = −A∗

W
ΓW +A∗ σW (2.100)

THE FULL POTENTIAL FLOW SYSTEM To obtain the full potential
flow solution all the different fundamental inviscid solutions have to be added.

At the airfoil surface the distribution of tangential and normal velocities it
is obtained from the following formulas,

uI = B σ + U∞xt+ U∞yn+A γ

+BσR +B A−1 wT +B
W

ΓW +B σW (2.101)

vI = wT (2.102)

When the velocities are evaluated in the off body locations, the distribution
of tangential and normal velocities is,

u∗

I = B∗ σ + U∞xt+ U∞yn+A∗ γ

+B∗σR +B∗ A−1 wT +B∗

W
ΓW +B∗ σW (2.103)

v∗I = A∗ σ − U∞xn− U∞yt−B∗γ

+A∗σR +A∗ A−1 wT −A∗

W
ΓW +A∗ σW (2.104)
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2.5 Double wake model, theory and problem for-

mulation

Due to the lack in performance of the single wake model at high angles of attack,
for the stall range of the airfoil, a new model has been implemented. Knowing
that the low performance is due to the lack of accuracy of solving the integral
boundary layer equations for flow around surfaces with a considerable amount
of separation, in the new model the boundary layer is neglected and the flow
is considered purely potential. This model will be known from now on as the
double wake model, due to the dual treatment of the separated region in two
shear layers leaving the airfoil and converging downstream.

Separation is one of the phenomena with the strongest influence on the
aerodynamic design of wind turbine blades. Lift and drag forces are strongly
affected when the flow undergoes separation, causing an exponential increment
of drag at the same time as the lift curve stalls. The bubble type of separation
has been studied widely, the difficulties of modeling this kind of phenomena
stems from predicting the pressure in the separated region at the right level
as well as predicting the exact position where the attached boundary layer
undergoes separation. The double wake model will allow us to compute with a
high degree of accuracy the pressure distribution all over the airfoil, including
the separated region.

2.5.1 Theory

The double wake model will generate a vortex sheet that leaves the airfoil from
the separation point at the same time that the trailing edge is releasing vorticity
through another vortex sheet. The uniform vortex distribution around the two
wakes will influence the tangential velocities at the airfoil surface creating a
region of reverse flow for simulating the separation effect of the flow around an
airfoil at high angles of attack.

The region of fluid surrounding the airfoil and the separated wake is irrota-
tional, and, assuming that the Mach number is low, compressibility is negligible.
The area in between the two wakes does not have significant vorticity and has
a constant total pressure, and thus it is taken to be a potential flow region.
The flow will be then irrotational everywhere except in the two confined sheets
of vorticity that forms the separated wake, this sheets are dotted with uniform
vorticity.

The initial shape of the wake is obtained iteratively starting from an initial
condition. As initial condition the wake sheets are represented by two straight
lines in between the separation points and a common point downstream, see
Figure 2.7.

In Figure 2.7 TH1 and TH2 are the wake directions when the vorticity
sheet leaves the airfoil at the separation and trailing edge positions respectively.
The wake length is related with the airfoil thickness through figure, Figure 2.8,
WL = WF ·WH , whereWH is the wake height andWF is the wake factor. Once a
first computation has been realized using the initial condition, a particle leaving
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Figure 2.7: Double wake initial shape

the separation point and another one leaving the trailing edge are followed,
finding the wake shape for both, the upper and the lower separation points.

The relation in between the airfoil chord to thickness ratio and the wake
factor is fruit of a study with different airfoil shapes, see Figure 2.8. During
the study different wake length were implemented, the ones that give better
predictions were chosen for the different types of airfoil geometries. A linear
relation was obtained in between the thickness to chord ratio and the wake
factor.

The potential model implemented consists of a linear distribution of vorticity
placed around all the individual panels that represent the airfoil and the free
vortex sheets are represented by a number of panels with uniform vorticity. In
this way, there are N+1 vorticity values, where N is the total number of panels.
The following conditions are required in order to close the system of equations:

• The boundary condition applied at each panel collocation point is that
the normal velocity is equal to zero.

• At the upper surface separation point, the right edge of the panel has the
same vorticity as at the lower trailing edge, γSEP = −γ1

• The vorticity value just downstream of the separation point on the upper
surface is set equal to zero, left edge of the panel SEP+1. This edge will
only have vorticity when forming part of the panel SEP (right edge).

• The vorticity value on the upper trailing edge is set equal to zero. γN+1 =
0

• The free vorticity sheets are located on streamlines, hence there are no
static pressure drop across them. The upper wake has the same uniform
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Figure 2.9: Double wake vorticity distribution

vorticity as the lower one but with different sign, and it is equal to the
vorticity of the lower trailing edge, γupper = −γ1 and γlower = γ1

In order to close the system a source strength is distributed uniformly around
the airfoil surface.

The airfoil area situated between the two wakes it is isolated from the rest
of the flow, a jump of total pressure has to be added to the airfoil panel stations
situated on the separated area,

Cp = 1−
(

ue

U∞

)2

+ kH
∆H

p∞
(2.105)

Where ∆H is the increase in total pressure inside the separation bubble,
being equal to zero all over the airfoil except in the separation wake region. The
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constant kH is equal to 2, while p∞ = 1/2ρU2
∞
. The assumption of zero static

pressure drop across the free shear layer is use to find the total pressure in the
wake, writing the average velocity in the following way,

Vm =
1

2
(Vout + Vin) (2.106)

Since the γupper = Vout − Vin and γlower = Vin − Vout,

Vouter = Vm +
γupper

2
and Vin = Vm − γupper

2
(2.107)

The change in total pressure of the wake area will be,

∆H = Hinner −Houter = pinner +
1

2
ρ
(

Vm − γupper
2

)2

− pouter −
1

2
ρ
(

Vm +
γupper

2

)2

= −ρVmγupper = ρVmγlower (2.108)

In regards of the SEP location, it can be obtained in two different manners.
The first approach is, using a downstream matching integral boundary layer
solution until separation is found based on the friction coefficient parameter,
separation is located when Cf ≤ 0 . The second approach is forcing the flow
to separate at a specific point, usually obtained from experimental or computa-
tional pressure distributions.

The implementation of the first approach has been done, but the separation
location obtained in this way does not move as fast downstream in function of
angle of attack as it does in experiments, over predicting the airfoil forces. The
second approach has been implemented with a great success. The downside
of the method is that the separation location has to be known in advance. A
future study will be aimed in order to find a relation between the onset of
separation and the airfoil geometry, Reynolds number, angle of attack of the
aforementioned airfoil.
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2.6 Summary

In this chapter the foundations of potential flow theory have been reviewed.
Based on the potential flow theory the formulation of a panel method has been
presented herein. The basic theory behind steady as well as unsteady potential
flow modeling was presented.

The different singularity elements used in the present approach have been
defined in this chapter. Focusing in the velocity induced in a point P by:
constant source distribution, point vortex and linear vorticity distribution. The
generation of influence matrices has been explained.

Discretization of the single and the double wake models has been depicted.
In the single wake model, the final solution will be obtained by superposition of
the different singularity solutions:

• The translating onset flow. Constant panel source distribution, σj

• The rotating onset flow. Parabolic vortex distribution, Γ

• The influence of the viscous boundary layer. Transpiration velocity source
distribution, σwT

• The influence of the vortex wake. Wake point vortices, ΓW

Whereas in the double wake model, in which viscous effects are not taken
into account, the full potential flow system is composed of:

• The translating onset flow. Constant source distribution around the airfoil
contour, σu

• The rotating onset flow. Linear panel vortex distribution, γj

• The influence of the double wake. Constant wake vortex distribution,
γlower and γupper

In the double wake model a correction of the pressure in the separated region
has been introduced in order to take into account the increase in total pressure
inside the separation bubble.
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Chapter 3

Boundary Layer

3.1 Boundary layer theory

Prandtl in 1904 presented for first time the concept and theory of boundary
layers, approximately one year after the first flight of a powered aircraft by the
Wright brothers [37]. His studies became the foundation in which aerodynamic
research was based, helping the rapid development of this branch of science.

The effect of viscosity is directly linked to the Reynolds number quantity.
While at high Reynolds number the influence of viscosity is confined to thin lay-
ers around the solid wall, at low Reynolds numbers this layers grow in thickness
increasing the viscous effects upon the body. This area around the body where
the viscous effects are confined is most commonly known as a boundary layer.
It can be defined as the fluid region around a solid body inside which the fluid
is subjected to frictional forces that retard the fluid motion, [38].

Bases of Prandtl’s boundary layer theory, [39]:

• At the surface of the body the fluid is at rest relatively to the body, no
slip condition between the fluid and the surface. The relative fluid velocity
increases from zero at the surface of the body to a value close to the main
stream at the edge of the boundary layer.

• Near the body there are large velocity gradients and therefore rates of
strain. Shear stresses due to viscosity are directly related to these rates
of strain.

• The Reynolds number becomes a essential parameter for defining the flow
nature as a rate between inertia and viscous forces, Re = ρUL/µ. The
region near the body where the viscous stresses are important is thin and
becomes thinner with increase in Reynolds number.

• The small thickness of the boundary layer at high Reynolds numbers per-
mits some simplifications of the full Navier-Stokes equations, which lead
to a set of parabolic equations more easily to be solved, the boundary
layer equations, see Section 3.1.2. The boundary layer equations are used
to model the flow in the vicinity of the body surface while inviscid the-
ory can be applied in the outer region, in which the viscous terms are
neglected.
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Figure 3.1: Sketch of the boundary layer on a flat plate

In Figure 3.1 is sketched the velocity profile of the boundary layer on a flat
plate with flow at zero angle of attack. The velocity distribution entering the
leading edge is uniform, the thickness of the boundary layer increases as the
flow moves downstream from the leading edge. Further, the boundary layer
thickness will decrease as the Reynolds number increases, the viscous forces
become smaller in relation with the inertial ones.

The boundary layers are regions where vorticity is concentrated around bod-
ies. Vorticity is generated at the surfaces of the bodies due to the presence of
viscous stresses and it is convected downstream the surface forming the bound-
ary layer and the wake behind it, formed when the boundary layer leaves the
rear of a body, in the wake the influence of viscosity is still large, playing an
important role in the downstream convection of the wake.

Defining circulation around a closed circuit as the integrated vorticity that
threads it, is possible to define the viscosity as the the source of circulation and
vorticity in a fluid. Hence the vorticity is only create in regions where viscous
effects are important, therefore it is generated in the boundary layer and wake
of the body itself. In a flat plate, due to the zero pressure gradient, vorticity is
only be created in the leading edge converging downstream.

A thin boundary layer will not exist once the flow has undergone separation,
for example on the rear side of bluff bodies or on the suction surface of airfoils at
high enough angles of attack. In most of the cases, the boundary layer increases
its thickness in the downstream direction until it can not be contain anymore
and the flow becomes reversed. The reversal flow forces the fluid particles out-
side the boundary layer which is identified as boundary layer separation, [39].
The separation phenomena is associated with the formation of vortices on the
separated region that converge downstream and produce large energy losses in
the wake of the body.

Separation is delayed with the increasing of the Reynolds number, thinner
boundary layers are more resistant against separation. In the case of airfoils,
their shape is crucial, generally thin airfoils will separate later than thick airfoils,
although a deeper stall will appear on the first ones. The nose shape of the airfoil
is important in order to determine the type of separation, rounded airfoil noses
will be more given to trailing edge separation while sharp noses will usually
undergo leading edge separation due to the large pressure gradients created on
the airfoils nose suction side.
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3.1.1 Laminar flow, transition and turbulent flow

In order to explain the changes in nature that experiences the flow around a
solid body, an airfoil section is considered, and a high Reynolds number flow is
assumed. This flow will create a thin boundary layer around the airfoil contour
that variates in thickness in function of its streamwise position.

Supposing that from the stagnation point downstream the flow in the bound-
ary layer is composed by smooth and stable streamlines parallel to the airfoil
surface, the flow in this case is referred as laminar. At a position downstream
the stagnation point, depending of the Reynolds number, the flow in the bound-
ary layer becomes unstable and changes from laminar to turbulent state. This
change can be triggered by the pressure gradient, the roughness of the surface
or the influence of external disturbances like noise or turbulence intensity. The
turbulent boundary layer has irregular fluctuations in velocity magnitude and
direction added to the mean flow, that still remains parallel to the surface.

Velocity fluctuations due to turbulence can be of orders of magnitude smaller
than the mean velocity. The mixing effect in the boundary layer driven by the
velocity fluctuations increases the rates of diffusion of momentum, vorticity and
heat transfer. Since the rates of momentum transport due to the relatively large
eddy movements, created by the velocity fluctuations, are larger than those due
to the molecular movements, governed by the viscosity, the eddy shears stresses
are generally much larger than the viscous shear stresses except in the viscous
inner and overlap layers. The viscous sub-layer is a thin layer adjacent to the
surface of the order of a hundred of the thickness of the turbulent boundary
layer, in which the turbulent fluctuations tends to be decremented due to the
proximity of the body surface, [38]. In the viscous sub-layer the dominant shear
stresses are the viscous ones. The overlap layer is the transition in between the
viscous inner and outer layer. In the outer layer the eddy shear stresses are
dominant.

The larger rate of strain close to the surface in the turbulent boundary layer
make the wall shear stresses, τw = µ∂u/∂y, to be larger than for a laminar
boundary layer at the same Reynolds number, creating a higher friction drag.

The process by which the flows changes laminar state to turbulent is most
commonly known as transition. Laminar to turbulent transition occurs by
fast growing laminar instabilities in the longitudinal and transversal directions,
driven by the strong instability of the boundary layer under adverse pressure
gradients. The chordwise position at which transition occur variates in function
of the Reynolds number. At low Reynolds number the transition mechanism
could use a large portion on the chord, while at higher Reynolds numbers tran-
sition occurs much earlier.

3.1.2 Boundary layer equations for steady 2D flow

Assuming thin layer theory the boundary layer equations can be derived from
the full Navier-Stokes equations via an order of magnitude analysis as follows.
Using as starting point the dimensionless x momentum equation,

33



ρ′u′
∂u′

∂x′
+ ρ′v′

∂u′

∂y′
= − 1

γHMa2
∂p′

∂x′
+

1

Re

∂

∂y′

[

µ′

(

∂v′

∂x′
+

∂u′

∂y′

)]

(3.1)

Where γH is the specific heat, Ma is the Mach number and Re is the
Reynolds number.

As a first assumption of boundary layer theory the boundary layer thickness,
δ, is supposed to be very small in comparison with the body scale, c,

δ << c (3.2)

An order of magnitude analysis of the non dimensional continuity equation
is done in order to find the magnitude of the velocity v′,

∂ (ρ′u′)

∂x′
+

∂ (ρ′v′)

∂y′
= 0 (3.3)

Assuming a freestream velocity equal to the unity, the velocity u′ varies from
0 at the body surface to 1 at the boundary layer edge, so u′ can be assumed to
have an order of magnitude equal to 1, O(1). The density ρ′ and x′ have the
same order of magnitude. y′ has a smaller order of magnitude since it varies
from 0 to δ. Following this reasoning, from Equation 3.3, the velocity v′ must
have an order of magnitude O(δ), the same as the y′.

Extending the forehead adimensional analysis to the x momentum equation
the orders of magnitude of the different terms can be written as follow,

O(1) +O(1) = − 1

γHMa2
O(1) +

1

Re

[

O(1) +O

(

1

δ2

)]

(3.4)

The second assumption of boundary layer theory states that the Reynolds
number is large enough that its inverse has the same order of magnitude as the
displacement thickness squared,

1

Re
= O(δ2) (3.5)

From Equation 3.4 and 3.4 it follows that the term (1/Re)∂/∂y′(µ(∂v′/∂x′))
has an order of magnitude O(δ2). Therefore much smaller that all the other
terms from the x momentum equation and possible to neglect it. In this way
the boundary layer approximation of the x momentum equation is obtained, in
dimensional variables as follows,

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+

∂

∂y

(

µ
∂u

∂y

)

(3.6)
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Realizing a similar order of magnitude analysis to the y momentum equa-
tions, in adimensional variables can be written,

ρ′u′
∂v′

∂x′
+ ρ′v′

∂v′

∂y′
= − 1

γHMa2
∂p′

∂y′
+

1

Re

∂

∂x′

[

µ′

(

∂v′

∂x′
+

∂u′

∂y′

)]

(3.7)

In terms of orders of magnitude the Equation 3.7 above can be written,

O(δ) +O(δ) = − 1

γHMa2
∂p′

∂y′
+O(δ2)

[

O(δ) +O

(

1

δ

)]

(3.8)

Assuming that γHMa2 has O(1), being γH the specific heat. The term ∂p/∂y
has to be of order of magnitude O(δ) or smaller. Since the Reynolds number is
very high, the boundary layer thickness, δ, is very small so for boundary layer
flow can be stated that,

∂p

∂y
= 0 (3.9)

Stating that the pressure is constant through the boundary layer in a direc-
tion perpendicular to the body surface. Or what is the same, the pressure at
the boundary layer edge is the same as the one at the body surface.

In the case of steady incompressible flow and Cartesian coordinates, the
system of equations that governs a boundary layer flow is formulated as follows,
[40]

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ µ

∂2u

∂y2
(3.10)

∂u

∂x
+

∂v

∂y
= 0 (3.11)

∂p

∂y
= 0 (3.12)

Even though the boundary layer equations are non linear, as the Navier
Stokes equations, they have a parabolic nature which makes them simpler and
easier to be solved due to its upstream dependence. The boundary conditions
applied to the boundary layer equations are,

y = 0 : u = 0; v = 0 (3.13)

y = ∞ : u = ue (3.14)
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3.2 Two dimensional integral boundary layer

A study of a viscous fluid flow at high Reynolds number past a flat plate is used
herein in order to present the integral form of the boundary layer parameters.
As presented in the following figure, Figure 3.2, the fluid interacts with the plate
surface causing a frictional drag force. The velocity profile changes and in order
to satisfy the mass conservation the streamlines will be bended outwards. The
outwards deflection that the external streamline is subjected too is defined as
displacement thickness, δ∗.

Figure 3.2: Control volume for the momentum analysis of flow past a flat plate

The control volume is chosen so the velocity distributions are known at its
inlet and outlet. The upper side of the control volume is defined by a streamline
and the lower by the flat plate surface. In this manner there is no mass nor
momentum crossing the control volume upper nor lower boundaries.

The displacement thickness integral parameter can be obtained assuming
steady flow and applying conservation of mass to the control volume in Figure
3.2,

∫ ∫

ρV · dA = 0 =

∫ Y

0

ρudy −
∫ H

0

ρuedy (3.15)

If incompressible flow is assumed, the Equation 3.15 above yields,

ueH =

∫ Y

0

udy =

∫ Y

0

(ue + u− ue) dy = ueY +

∫ Y

0

{u− ue} dy (3.16)

From figure 3.2 can be seen that Y = H + δ∗, rewriting the Equation 3.16
produces,

ue (Y −H) = ueδ
∗

1 =

∫ Y

0

(ue − u) dy (3.17)

Following the displacement thickness quantity is defined as,
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δ∗1 =

∫ δ

0

(

1− u

ue

)

dy (3.18)

Physically the displacement thickness can be interpreted as the decrement
of the mass flow due to the presence of the boundary layer. Knowing that for a
fully inviscid fluid flow, the mass flow, mi, in between the body surface and a
point outside the boundary layer, y0, is defined as,

mi =

∫ y0

0

ρeuedy (3.19)

In the case of a real flow, with a viscous boundary layer that varies its
velocity from the body surface to the edge of the boundary layer. The mass
flow, mr, is formulated as,

mr =

∫ y0

0

ρudy (3.20)

Subtracting the real mass flow from the mass flow of a pure inviscid flow,
mi −mr, the decrement in mass flow due to the presence of the boundary layer
is obtained and it relates with the boundary layer thickness quantity, δ∗1 , as
follows,

mi −mr =

∫ y0

0

(ρeue − ρu) dy =
1

ρeue
δ∗1 (3.21)

The displacement thickness can also be seen as the deflection of the exter-
nal streamline caused by the partial obstruction of the boundary layer to the
freestream flow. Note that due to the integration of y variations, δ∗1 as all the
other integral boundary layer quantities are only function of x. What makes
possible to treat them numerically without a two dimensional fluid mesh, a
surface fitted 1D mesh is used.

The momentum thickness θ1 is defined as the loss of momentum of the real
viscous flow due to the presence of the boundary layer. Its is obtained applying
conservation of x momentum to the control volume in Figure 3.2,

∑

Fx = −D =

∫ ∫

u (ρV · dA) =
∫ Y

0

(ρudy)−
∫ H

0

ue (ρuedy) (3.22)

D = ρu2
eH −

∫ Y

0

(

ρu2dy
)

(3.23)
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Figure 3.3: Displacement and Momentum thickness relation

If incompressible flow is assumed, and using the following relation for the
shape factor, H = δ∗/θ,

H =

∫ Y

0

u

ue
dy (3.24)

The drag can be written in the following form,

D = ρ

∫ Y

0

u (ue − u) dy (3.25)

Knowing the relation in between drag and momentum thickness for a flat
plate, one can write as follows,

θ1 =
D

ρu2
e

=

∫ δ

0

u

ue

(

1− u

ue

)

dy (3.26)

The following figure is added in order to clarify the relation in between the

quantities u
ue
,
(

1− u
ue

)

and u
ue

(

1− u
ue

)

. Directly related via integration with

the boundary parameters of interest.
Other parameters of interest in the two dimensional integral boundary layer

approach are:

38



H =
δ∗1
θ1

(3.27)

Cf =
τw

1
2ρu

2
e

(3.28)

CDi =
1

ρeu3
e

∫ δ

0

τ
∂u

∂y
dy (3.29)

Cτ =
τmax

ρeu2
e

(3.30)

H∗ =
θ∗

θ1
(3.31)

Reθ1 =
ρeueθ1
µe

(3.32)

uτ =

√

τwall

ρ
(3.33)

θ∗ =

∫ δ

0

u

U

(

1− u2

u2
e

)

dy (3.34)

(3.35)

3.3 Laminar boundary layer, Thwaites method.

The present method has been implemented as an alternative to Mark Drelas two
equations laminar method, in order to solve attached laminar flow conditions
around the airfoil. Thwaites abandoned the family of profiles idea and fitted
the whole set of analytical and experimental results using a set of average one-
parameter functions. Thwaites methods solves the momentum integral equation
in terms of a parameter λ, therefore it is more stable and faster for computing
attached laminar boundary layers.

The Kármán integral momentum equation can be written as follows,

dθ1
dx

+
θ1
ue

due

dx
(2 +H) =

Cf

2
(3.36)

Following Holstein and Bohlen in 1940, the momentum integral equation can
be multiplied by ueθ/ν, obtaining an equation with a right-hand side composed
by dimensionless boundary-layer functions. The equation can be correlated by
a single parameter λ.

dθ1
dx

ueθ1
ν

+
θ21
ν

due

dx
(2 +H) =

τwθ1
µue

(3.37)

The dimensionless boundary layer functions that appears in Equation 3.37
can be written as,
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S (λ) ≈ τwθ1
µue

(3.38)

H (λ) ≈ δ∗

θ1
(3.39)

Knowing that θ1dθ1 = d(θ21/2), the Equation 3.37 above yields,

ue
d

dx

(

λ1

∂ue/∂x

)

= 2 [S (λ)− λ (2 +H (λ))] = F (λ) (3.40)

Where the parameter λ is given as,

λ =
θ21
ν

∂ue

∂x
(3.41)

Following the idea of abandoning the family profiles to evaluate the para-
metric function λ, Thwaites studied the entire collection of analytic and experi-
mental results trying to fit them by a set of one parameter functions. He found
an outstanding correlation for the function F and proposed the following linear
fit, where a = -6 and b = 0.45,

F (λ) = b+ aλ (3.42)

In order to find the solution to Equation 3.40 it is necessary to use the
definition of F formulated in Equation 3.42

ue
d

dx

(

λ

∂ue/∂x

)

= b+ aλ

ue

ν

d

dx

(

θ21
)

= a
∂ue/∂x θ21

ν
+ b (3.43)

Setting θ21 = Y we can write the following first order ordinary differential
equation

Y ′ − a
∂ue/∂x

ue
Y =

ν

ue
(3.44)

The equation above can be solved analytically in the following way

Y = e
∫
a∂ue/∂x/uedx

[

C +

∫ x

0

ν

ue
b e−

∫
a∂ue/∂x/uedxdx

]

= ua
e

[

C +

∫ x

0

ν

ue
bu−a

e dx

]

= bνue

∫ x

0

u−a−1
e dx (3.45)
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Where constant C is set to zero in order to avoid the infinite momentum
thickness for ue = 0.

θ21 = bνue

∫ x

0

u−a−1
e dx (3.46)

In the present work the correlations used for H(λ) and Cf (λ) are,

H (λ) ≈ aHλ2 − bHλ− cH (3.47)

Cf (λ) ≈ 2
(

aSλ
2 + bSλ+ cS

)

(

µ

ρθ1ue

)

(3.48)

The constants in Equation 3.47 are set the following values,

aH = 15 (3.49)

bH = −6 (3.50)

cH = 2.5 (3.51)

aS = −2.17 (3.52)

bS = 1.73 (3.53)

cS = 0.23 (3.54)

(3.55)

The accuracy of Thwaites method is about ±5 percent for favorable or mild
adverse gradients but may be as much as ±15 percent near the separation
point,[38].

3.4 Quasi 3D turbulent boundary layer

In this section, an overview of the Quasi 3D boundary layer approach is done.
The differential form of the Quasi 3D boundary layer equations is presented, as
a basis for the integral form introduced later herein. To conclude, corrections in
order to adapt the equations, based on flat plate theory, to an airfoil geometry
will be presented.

The streamlines in the boundary layer edge of a flat plate follow circular
arcs, there is no radial velocity at the edge of the boundary layer. But in the
present case, involving a blade, the presence of pressure gradients change the
forehead affirmation. Rotation and curvature effects changes the flow structure
around the airfoil creating radial velocities along the span of the wind turbine
blade, the Coriolis and centrifugal forces modify the pressure distribution and
the skin friction stress on the blade surface. In order to include these effects
into the integral boundary layer analysis an effort has been done to transform
the full three dimensional boundary layer equations into the Quasi 3D ones.
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3.4.1 Blade geometry and coordinate system

The system is composed by a 3D wind turbine blade, Figure 3.4, although in
order to simplify the analysis, in a first step, the real blade is simplified into a
flat plate, Figure 3.5. The system is presented in cylindrical coordinates (θ, r, z)
with velocities (u, v, w) in the respective directions. The coordinate system is
rotating with the blade, which turns at constant angular velocity Ω around the
z axis. The wind is entering the system from the negative z direction, θ is the
azimuthal angle, r is the distance to the center of rotation and z is the axis of
rotation. u is the streamwise velocity while v, w are respectively the radial and
the velocity component in the direction of rotation.

Figure 3.4: 3D Blade System,

Figure 3.5: Flat Plate System,
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Far away from the flat plate surface the influence of the boundary layer
is negligible and the streamlines of the potential flow around a flat plate are
circular arcs with constant radius, following s, Figure 3.5. In order to simplify
the problem a relation in between the s and s′ is introduced. Where s is the
arc followed by the undisturbed free streamlines of the inviscid flow, while s′ is
the coordinate of sreal on the surface of the blade from the stagnation point to
the trailing edge. First of all the relation in between sreal and s′ is formulated,
where sreal starts at the stagnation point and ends at the trailing edge following
the surface,

s′ = sreal
c

L
(3.56)

Where L is the arc length from the leading edge to the trailing edge and c is
the airfoil chord. From the flat plate reference can be assumed that s′ = rsin (θ).
Following this reasoning it can be stated for small θ that rθ = s ≈ s′.

In order to gain simplicity useful in the posterior parametric study, the
following definitions are introduced.

The ratio between the chord length and the radial position, or local aspect
ratio, ls,

ls =
c

r
(3.57)

The ratio between the rotational speed and the relative velocity, RO,

RO =
Ωr

Urel
(3.58)

where Ω is the blade angular velocity.

The relative velocity, Urel, is defined typically following [41],

Urel =

√

((1 + a′) Ωr)
2
+ ((1− a)QW )

2
(3.59)

where QW is the wind speed and a′ and a are the tangential and axial
interference factors. In the present study both factors are set to be zero for
simplicity.

The four dimensional variables of interest c, r,Ω, QW have been reduced to
two adimensional parameters ls, RO, providing the base of a parametric study,
Section 5.7.
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3.4.2 The boundary layer equations in differential Form

The steady incompressible continuity and r, θ momentum equations in cylindri-
cal coordinates can be written as follows, [42]

Continuity,

1

r

∂u

∂θ
+

1

r

∂

∂r
(rv) +

∂w

∂z
= 0 (3.60)

θ−Momentum

u

r

∂u

∂θ
+ w

∂u

∂z
+ v

∂u

∂r
− v

r
(2Ωr − u) = − 1

ρr

∂p

∂θ
+

1

ρ

∂τθ
∂z

(3.61)

r−Momentum

1

r

∂

∂θ
(uv) +

∂v2

∂r
+

∂

∂z
(vw) +

v2

r
− u

r
(u− 2Ωr) = −1

ρ

∂p

∂r
+Ω2r +

1

ρ

∂τr
∂z
(3.62)

τθ and τr are shear stresses in the θ and r direction respectively and can be
either laminar or turbulent stresses. In order to facilitate the derivation of the
integral form of the equations, the θ momentum equation is shown in a convec-
tive form whereas the r momentum equation is represented in its conservative
formulation. It is assumed that the pressure distribution at the edge of the
boundary layer and at the wall is the same, following boundary layer theory,
Section 3.1.2. Pressure gradients perpendicular to the wall are negligible, due to
the small thickness of the boundary layers at high Reynolds numbers compared
the surface curvature.

The centrifugal term, Ω2r appears only on the r-momentum equation and
has a effective favorable spanwise pressure gradient. However Coriolis related
terms appears in both momentum equations. In the r-momentum equation,
2Ωu, appears as an effective not favorable spanwise pressure gradients. While
in the θ-momentum, the Coriolis term 2Ωv, appears as a favorable streamwise
pressure gradient.

The pressure gradients are formulated in function of the velocity, following
Bernoulli´s equation in a rotating frame of reference,

p+
1

2
ρV 2 − 1

2
ρ (Ωr)

2
= constant (3.63)

Applying Bernoulli´s equation at the edge of the boundary layer, both θ and
r pressure gradients terms from the boundary layer momentum equations yield,

−1

ρ

1

r

∂p

∂θ
= ue

1

r

∂ue

∂θ
+ ve

1

r

∂ve
∂θ

+ we
1

r

∂we

∂θ
(3.64)

−1

ρ

∂p

∂r
= ue

∂ue

∂r
+ ve

∂ve
∂r

+ we
∂we

∂r
− Ω2r (3.65)
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3.4.3 The Quasi3D boundary layer equations in differen-

tial form

The 3D differential boundary layer equations have to be reduced to the Quasi
3D version. For beginning with this approach is considered the flow around a
rotating cylinder of arbitrary cross section, following [21]. The cylinder rotates
steadily about the z axis. It was shown by Fogarty and Sears that the three
inviscid velocity components can be found, assuming potential flow at the edge
of the boundary layer, in function of a two dimensional potential solution which
is the same at all spanwise positions. The outward velocity component V it is
then dependent of the potential of the two dimensional solution and independent
of y′.

U ′ = Ωy′
∂φ1 (x

′, z′)

∂x′
+ VW

∂φ2 (x
′, z′)

∂x′
(3.66)

V ′ = Ω [φ1 (x,
′ z′)− 2x′] (3.67)

W ′ = Ωy′
∂φ1 (x

′, z′)

∂z′
+ VW

∂φ2 (x
′, z′)

∂z′
(3.68)

Where U ′, V ′,W ′ are the inviscid velocity components in x′, y′, z′ and φ1

and φ2 are the two dimensional potentials. Following this reasoning, the edge
velocity, ue, can be found using a two dimensional solution of the flow if potential
flow is assumed at the edge of the boundary layer.

ue (s, r) = Urelu
′

e (3.69)

Thereby the velocity u′

e is obtained from the viscous-inviscid flow solution
and it changes iteratively with the solution of the 2D boundary layer equations.
The term ∂ue

∂s is also found from the viscous-inviscid flow solution. On the other

hand, assuming that u′

e is independent of r, the quantity ∂ue

∂r can be written as,

∂ue

∂r
=

∂Urel

∂r
u′

e =
2
(

Ω2r
)

2

√

(Ωr)
2
+Q2

w

=
Ω2r

Urel
u′

e (3.70)

Using adimensional parameters for simplicity,

∂ue

∂r
= ueRO2 ls

c
(3.71)

The following terms containing ve and we velocity gradients on the radial
and theta direction can be neglected following a previous order of magnitude
analysis [43],

ve
∂ve
r∂θ

, we
∂we

r∂θ
, ve

∂ve
∂r

, we
∂we

∂r
(3.72)
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3.4.4 Quasi 3D boundary layer equations in integral form

It is needed to introduce a new set of parameters of interest in the three di-
mensional approach of the integral boundary layer equations capable of taking
into account rotational effects. Already known parameters such δ∗1 , θ1, H andCf

will still be in use, among others that will parametrize the characteristics of the
outward component of the flow,

δ∗2 = −
∫ δ

0

v

ue
(3.73)

θ22 = −
∫ δ

0

v2

u2
e

(3.74)

θ2 = −
∫ δ

0

uv

u2
e

dz = δ2xr + δ∗2 (3.75)

δ2xr =

∫ δ

0

(

1− u

ue

)

v

ue
(3.76)

tan (βw) =
τw,r

τw,θ
(3.77)

Where βw is the angle in between the external and limiting streamlines.
Parameters with subindex 1, introduced in the former section, are related with
the streamwise profile while the ones with subindex 2, introduced above, are
related with the spanwise one.

In the case of a rotating blade, due to the spanwise pressure gradient, yawed
conditions and changes in thickness the streamlines do not follow the arcs at the
edge of the boundary layer. Hence the spanwise velocity profiles do not tend to
zero as approaching δ and the streamwise profiles have inviscid variations after
the boundary layer edge is reached.

As an important assumption done in the present work, the streamwise and
spanwise velocity profiles characteristics of a rotating flat plate were used to
derive the three dimensional closure equations of the integral boundary layer
quantities, see Figure 3.6,

The differential boundary layer equations in three dimensional form will be
integrate including all terms. In second place, the Quasi3D approximations
presented earlier in this chapter will be applied in order to obtain the Quasi3D
boundary layer equations in its integral form.

θ integral momentum equation. For obtaining the integral formulation of
the θ-momentum equation, the continuity equation has to be multiplied by the
term u− ue and added to the θ momentum, Equation 3.61
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Figure 3.6: Velocity profiles,

(u− ue)

(

1

r

∂u
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∂ue
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1

ρ
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r∂θ

+ we
∂we

r∂θ
(3.78)

The equation above can be reduced to

1

r

∂

∂θ
(u (u− ue)) +

∂

∂z
(w (u− ue)) +

∂

∂r
(v (u− ue)) +

v
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(u− ue)
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∂ue
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(2Ωr − u) =
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∂ue
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(ue − u) +

1

ρ

∂τθ
∂z

+ ve
ve
r∂θ

+ we
∂we

r∂θ
(3.79)

Integrating from the airfoil surface, z = 0, to the boundary layer edge z = δ
and multiplying by the term 1

ue
, Equation 3.79 yields to,
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e
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∂
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e
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r
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1
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∂θ
δ∗1

= −τw,θ
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e

+
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e
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δ +
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u2
e

∂we
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δ (3.80)

Therefore,
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1

r

∂θ1
∂θ

+
∂θ1
ue

1

r

∂ue

∂θ
(2 +H) =

Cf

2
+

2Ω

ue
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− 1
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∂ue
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+
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u2
e

∂ve
r∂θ

δ +
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e

∂we

∂s
δ (3.81)

In order to simplify for the parametric study, the non-dimensional variables
and assumptions presented before are used: s = rθ having ∂s

∂θ = r, RO, and ls,
the above equations yields to

∂θ1
∂s

+
∂θ1
ue

∂ue

∂s
(2 +H) =

Cf

2
+

2ROls

uec
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∂r
(θ2 − δ∗2)
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ls
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(2θ2 − δ∗2) +

ve
u2
e

∂ve
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δ +
we

u2
e

∂we

∂s
δ (3.82)

r integral momentum equation. The integral formulation of the r momen-
tum equation is obtained by integrating its differential form, Equation 3.62, and
multiplying the result by 1/u2

e
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r∂θ

(

u2
e (δ2xr + δ∗2)

)

− ve
ue

∂δ

r∂θ
− 1

u2
e

∂

∂r

(

u2
eθ22

)

− v2e
u2
e

∂δ
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∂ue
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Which can be written as,
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ue

∂ue
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2
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ue
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)
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∂ue
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+
ve
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e

∂ve
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δ +
we

u2
e

∂we

∂r
δ (3.84)

Using the adimensional variables introduced earlier in this chapter, ls and
RO, together with the assumption that ∂s

∂θ = r,the Equation 3.84 can be for-
mulated as,
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In this manner a suitable set of equations that form the viscous core of our
viscous-inviscid system is obtained. The system is formed by two momentum
equations that combined with the kinetic energy parameter equation and a set
of closure equations makes it amenable to solution via a strong viscous-inviscid
coupling. Assumptions are done in order to neglect low order of magnitude
terms that appears in Equations 3.82 and 3.85.

Again, following [43], the four terms that were neglected during the differ-
ential analysis are neglected herein,

ve
u2
e

∂ve
∂s

δ,
we

u2
e

∂we

∂s
δ,

ve
u2
e

∂ve
∂r

δ,
we

u2
e

∂we

∂r
δ (3.86)

There are still some r derivatives of the boundary layer parameters that can
not be computed using the Quasi3D integral boundary layer approach,

∂

∂r
(θ2 − δ∗2) ,

v2e
u2
e

∂δ

∂r
,
∂θ22
∂r

(3.87)

Following [44] we can assume that they are negligible. In order to be sure
that these terms do not play an important role in the Quasi3D approach of the
boundary layer equations an study of order of magnitude was realized previously
to the present work.

In order to compute the derivative terms with a differential boundary layer
code [45], the following approximation has been done. The approximation is
shown only for the δ∗2 parameter, but the same procedure is carried out for the
parameters θ2, δ and θ22. From Blasius solution for a flat plate it is known that,

δ

x
≈ c√

Rex
(3.88)

were,

Rex =
Ωrx

ν
(3.89)

following that,
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δ ≈ cr−1/2 (3.90)

δ∗2 ≈ cr−1/2 (3.91)

So its derivative respect to the radial direction can be written as follows,

∂δ∗2
∂r

= c (−1/2) r−3/2 = − c

2r
r−1/2 = − δ∗2

2r
(3.92)

The following terms were computed using the existing finite differences code,
where the denominators are chosen because they are characteristic terms in the
r and θ momentum equations,

(θ2 − δ∗2) /2r

∂θ1/∂s
(3.93)

v2e/u
2
e δ/2r

∂θ2/∂s
(3.94)

θ22/2r

∂θ2/∂s
(3.95)

The order of magnitude analysis showed that the ratios above are of the
order of O(10−3), being the related terms in in Equation 3.87 negligible.

3.4.5 Airfoil geometry adaption

In order to adapt the flat plate equations to the real geometry of an airfoil,
some modifications have to be performed to the integral boundary layer equa-
tions presented above for taking into account the differences in between both
geometries:

• From the stagnation point, STG, to the extremity point, ex, the flow will
be reverse. Meaning that the normal and tangential velocities are negative,
so a sign function negative between the points and positive otherwise, sw,
has to be multiplying u and w, forcing the Coriolis force to be negative in
this region and positive elsewhere in the airfoil surface,

• For a plate with zero pitch angle the rotation and the velocity are orthog-
onal, so the Coriolis terms don not need to be modified. When an airfoil
is considered, due to its surface curvature, the terms that take into ac-
count Coriolis forces have to be multiplied by a projector, pr. The factor
is obtained from the cosine of the angle between the direction of the flow
and the plane normal to the axis of rotation, pr = |cosϕ|.

After the airfoil geometry adaption, the quasi 3D integral boundary layer
equations for an airfoil geometry can be written as follows,
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Figure 3.7: Flat plate to airfoil adaption, sign function

Figure 3.8: Flat plate to airfoil adaption, projector of Coriolis terms
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Further, due to stability problems and following previous work by Dumitrescu
[44], the following terms in Equation 3.96 have been neglected,

− 1

ue

∂ue

∂r
(2θ2 − δ∗2)−

ls

c
(2θ2 − δ∗2) = 0 (3.98)

Assuming that our spanwise velocity profile has similar shape to the one
sketched in Figure 3.6, the spanwise velocity will tend to zero as it approaches
the edge of the boundary layer. In this case the following terms are neglected,

ve
ue

∂δ

∂s
, sw

vewe

u2
e

(3.99)

The final θ and r momentum equations used in the present approach are,
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3.4.6 Turbulent Quasi3D closure equations and 2D kinetic

energy shape parameter equation

Due to the non availability of three dimensional relations for all stream and
spanwise boundary layer variables, a set of equations has been chosen, where
the ones use for closure of the kinetic energy shape parameter equation are in
two dimensional form and the rest are used in its three dimensional form.

The velocity profiles used in the derivation of the closure relations are of
similar shape as the ones sketched in Figure 3.6. The crossflow v velocity profile
tends to zero as approaches the boundary layer edge. While the u velocity profile
is similar to the one used in the two dimensional closures, where the velocity at
the edge of the boundary layer is equal to the freestream velocity.

The streamwise velocity profile assumed for the turbulent mainstream is a
power law type velocity profile, [46],

u

ue
=
(z

δ

)

H−1

2

(3.102)

The crossflow or spanwise turbulent velocity profile used for derivate the
closure relations is, following [47],

v

ue
= tan (βW )

(

1− z

δ

)2

(3.103)

By integrating the velocity profiles the following turbulent boundary layer
relations are obtained, [46]

δ∗2 = − 16Htanβw

(H − 1) (H + 3) (H + 5)
θ1 (3.104)

θ2 = − 2tanβw

(H − 1) (H + 2)
θ1 (3.105)

θ22 = − 24 (tanβw)
2

(H − 1) (H + 2) (H + 3) (H + 1)
θ1 (3.106)

θ1 =

(

2

H + 1
− 1

H

)

δ (3.107)

52



The skin-friction closure relation for flows with pressure gradients and ro-
tation effects is based on the experimental data for turbulent boundary layer
in a rotating channel of Lakshminarayana and Govindan [46]. Due to a better
numerical stability the three dimensional component of the Cf equation has
only been implemented as a right hand side term,

Cf = 0.172Re−0.268
θ1

10−0.678H
(

1 +B1

√

tan (βw) (s− st) /c
)

(3.108)

Where B1 is a constant of value 0.52, Reθ1 is the Reynolds number based on
the streamwise velocity at the edge of the boundary layer and the streamwise
momentum thickness parameter. st is the distance between the leading edge
and the laminar to turbulent transition point along the s direction.

In order to take into account the variation of the shape factor parameter,
H, the kinetic energy shape parameter equation is chosen in its two dimensional
form. It is also a possibility to use the entrainment equation suitable for turbu-
lent boundary layers, but, even thought the last one involves less empiricism in
calculating the dissipation integral term, the energy shape integral equation has
been implemented due to a better numerical stability, [46]. The following equa-
tion is derived by a combination of the standard integral momentum equation
and the kinetic energy thickness, following Mark Drela’s paper in 1986 [2].

Kinetic energy shape parameter equation The kinetic energy shape pa-
rameter equation is produced by multiplying the standard boundary layer inte-
gral x-momentum equation, Equation 3.109, by the kinetic energy shape param-
eter, H∗, and subtracting the result from the kinetic energy thickness equation
3.110.

∂θ1
∂x

+ (2 +H)
θ1
ue

∂ue

∂x
=

Cf

2
(3.109)

∂θ∗

∂x
+

(

δ∗∗

θ∗
+ 3

)

θ∗

ue

∂ue

∂x
= 2CDi (3.110)

(3.111)

Where θ∗ is the kinetic energy thickness and δ∗∗ is the density thickness,
defined from integral boundary layer theory as,

θ∗ =

∫ δ

0

ρu

ρeue

(

1− u2

u2
e

)

dy (3.112)

δ∗∗ =

∫ δ

0

u

ue

(

1− ρ

ρe

)

dy (3.113)

The kinetic energy shape parameter equation is written,

θ
dH∗

ds
+ [H∗ (1−H)]

θ1
ue

due

ds
= 2CDi −H∗

Cf

2
(3.114)
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A set of two dimensional relations is introduced in order to obtain a closure
to the kinetic energy shape parameter equation, following Drela’s model [2].

The shape parameter relation, H, based on the analytical representation of
two-dimensional turbulent boundary layer velocities profiles for either attached
and separated flow of Swafford, [48].

H∗ = 1.5050 +
4

Reθ1

+

(

0.165− 1.6

Re0.5θ1

)

(H0 −H)
1.6

H
, H < H0 (3.115)

H∗ = 1.5050 +
4

Reθ1

+ (H −H0)
2

[

0.004

H
+

0.007logReθ1
(H −H0 + 4/logReθ1)

]

, H > H0 (3.116)

The dissipation coefficient relation, CDi

CDi =
Cf

2
Us + Cτ (1− Us) (3.117)

The equivalent normalized wall slip velocity, Us

Us =
H∗

2

(

1− 4

3

H − 1

H

)

(3.118)

The stress-transport equation. A rate equation for the maximum shear stress
coefficient Cτ is used to account for deviations of the outer layer dissipation
coefficient CDi from the local equilibrium value. This closure relation simulates
a slow response of the Reynolds stresses to changes in the boundary layer, so,
in this way Cτ does not only depends on the local boundary layer conditions,
[12],

δ

Cτ

dCτ

ds
= 5.6

(

C
1/2
τEQ − C1/2

τ

)

+ 2δ

{

4

3δ∗1

[

Cf

2
−
(

H − 1

6.7H

)2
]

− 1

ue

due

ds

}

(3.119)

The nominal boundary layer thickness, δ,

δ = θ

(

3.15 +
1.72

H − 1

)

+ δ∗1 (3.120)

The equilibrium shear stress coefficient, CτEQ,

CτEQ = H∗
0.015

1− Us

(H − 1)
2

H3
(3.121)

The G − β locus of equilibrium boundary layers [49] where used by Mark
Drela in his derivation of the equations 3.117, 3.118 and 3.121.
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3.5 Laminar to turbulent transition model

In order to predict laminar to turbulent transition the n9 method with Mack’s
modification to take into account turbulence intensity is used. The method fol-
lows the spatial-amplification theory based on the solution of Orr-Sommerfeld
equation, [2]. Transition is predicted when the most unstable Tollmien-Schlichting
wave in the boundary layer grows more than a factor, nC , which leads to turbu-
lence. The fast growing of laminar instabilities, in the longitudinal and transver-
sal directions, are driven by the strong instability of the boundary layer velocity
profiles in adverse pressure gradient.

The Falkner-Skan velocity profile family is used in this method for solving the
Orr-Sommerfeld equation for the spatial amplification rates of a series of shape
parameters, unstable frequencies and Reynolds number, [50]. Stability diagrams
are used for studying the evolution of the amplitude of a given perturbation
with the momentum thickness Reynolds number, Reθ1 . Curves are obtained for
different perturbations frequencies, relating the perturbation amplitude rate of
the perturbation with the Reynolds number based in momentum thickness and
the shape parameter. Via the envelope of this curves, that follows the highest
amplification factor of a set of frequencies in function of the momentum thickness
Reynolds number, the total amplification of the most unstable frequency n is
computed. An example of the Orr-Sommerfeld amplification curves with their
respective envelope for two shape factor quantities is presented in Figure 3.9.

Critical Reynolds number, ReCR
θ1

, defines the value of Reθ1 under which no
perturbation can be amplified. It is obtained as,

DGR = 0.08 (3.122)

GRC = 2.492 (
1

(H − 1)
)0.43 + 0.7 (tanh(14

1

H − 1
− 9.24) + 1) (3.123)

GR = log10(Reθ1) (3.124)

In the case that GR < GRC −DGR, no perturbation can be amplified, so
the term ∂n/∂Reθ1 = 0.

In order to determine the total amplification, n, at a streamwise position,
s, starting from the leading edge and moving downstream the envelope slope
has to be integrated from the critical Reynolds number, ReCR

θ1
, to the Reynolds

number of the local streamwise position s, Reθ1 . Transition occurs when n(s)
reaches the critical amplification factor nC .

n(s) =

∫ Reθ1

ReCR
θ1

∂n

∂Reθ1
∂Reθ1 (3.125)

Following Drela’s code Xfoil, a steep cubic ramp is used in order to smoothly
turn on n as Reθ1 grows bigger than its critical value ReCR

θ1
.
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Figure 3.9: Example of Orr-Sommerfeld amplification curves.

RN =
GR− (GRC −DGR)

2DGR
(3.126)

RF = 3R2
N − 2R3

N , RN < 1 (3.127)

RF = 1 , RN ≥ 1 (3.128)

The amplification envelope slope correlation for Falkner-Skan in the case of
attached boundary layers is written as follows,

(3.129)

n =

(

−0.05 + 2.7

(

1

H − 1

)

− 5.5

(

1

H − 1

)2

+ 3

(

1

H − 1

)3
)

(

0.028(H − 1)− 0.0345e−(3.87
1

H−1
−2.52)

2

θ1

)

RF (3.130)

At chord locations where the shape parameter exceeds the constant H1 =
3.8, highly separated flow conditions, a correction has to be applied to the
envelope slope,

H1 = 3.8 (3.131)

H2 = 4.2 (3.132)

HN =
H −H1

H2 −H1
(3.133)

HF = 3H2
N − 2H3

N , HN < 1 (3.134)

HF = 1 , HN ≥ 1 (3.135)

n1 = n
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n = HF

(

0.086 tanh
(

1.2
(

GR− 0.3 + 0.35 e−0.15(H−5)
)))

θ1
(3.136)

−
0.25

(H−1)1.5

θ1
+ (1−HF )n1 (3.137)

The laminar to turbulent transition will occur when the amplification factor
n grows bigger than its critical value nC . nC expressed as a function of the
turbulence intensity level can be written as follows, [51],

nC = −8.43− 2.4 ln (TI) (3.138)

At low Reynolds number transition plays an important role. In the case of
laminar separated flow a delayed transition will cause the flow not to reattach.
In the case of laminar attached flow, a delay transition will be the cause of
an underestimation of the boundary layer thickness reaching higher angles of
attack without entering flow separation. While early transition prediction will
be the cause of an overestimation of the turbulent boundary layer thickness and
hence an early boundary layer separation would take place.

An weighted average of the Cf parameter is used to obtain a smooth laminar
to turbulent transition. The weighted average of the Cf value is introduced two
stations upstream the transition point with a weighted value: wTRSTG−2 =
80%, wTRSTG−1 = 50% and wTRSTG = 20% respectively. Therefore the Cf

equations is formulated at each of these three panel stations as wTR CfL +(1−
wTR) CfT = 0.

3.6 Unsteady integral boundary layer

Following Riziotis and Voutsinas [16] unsteady viscous terms are introduced into
the θ momentum equation and to the kinetic energy shape parameter equation,

U1 =
ut
eδ

∗ t
1 − ut−1

e δ∗ t−1
1

dt
; (3.139)

U2 =
(ut

e)
2θt1 − (ut−1

e )2θt−1
1

dt
; (3.140)

U3 =
δ∗ t
1 − δ∗ t−1

1

dt
(3.141)

The unsteady formulation of the boundary layer θ momentum and kinetic
energy shape parameter equations is:
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u2
e

U1 +
∂θ1
∂s

= −∂θ1
ue

∂ue

∂s
(2 +H) +

Cf

2
+ . . .

swpr
2ROls

uec
δ∗2 (3.142)

1

u3
e

U2 +
1

ue
U2− H∗

u2
e

U1 + θ1
dH∗

ds
+ [H∗ (1−H)]

θ1
ue

due

ds
. . .

= 2CDi −H∗
Cf

2
(3.143)
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3.7 Summary and remarks

In this chapter the idea of describing a rotating blade as a flat plate with an at-
tributed pressure distribution has been presented. In the first term, the Navier-
Stokes equations have been reduced to the 3D boundary layer equations applying
thin layer theory. In the second term, the 3D differential boundary layer equa-
tions formulated in cylindrical coordinates were reduced to the Quasi3D ones.
As the final step, after integrating and with further manipulation, the integral
form of the Quasi3D boundary layer equations was obtained.

An important assumption has been done in the basis of Sears work, the
streamwise edge velocity can be expressed as the product of the relative velocity
and the dimensionless chordwise edge velocity. After a dimensional analysis and
following earlier literature some of the terms in the integral r and θ momentum
equations were neglected in order to make the system amenable to solution
using the integral approach. An adaption of the flat plate equations to an
airfoil geometry has been done including a sign function and a projection of the
Coriolis terms.

The final version of the code uses Thwaites integral method for the laminar
part of the boundary layer. The Blasius flat plate solution is used to find the θ1
and H∗ in four stations around the stagnation point (STG± 5). Transition can
be forced or computed with the modified e9 transition model. The turbulent part
of the boundary layer is governed by the unsteady formulation of the Quasi3D
θ momentum equation and the steady version of the r momentum equations
closing the system with a set of quasi3D closure equations. In order to take
into account variations in the shape factor, H, the 2D unsteady version of the
kinetic energy shape parameter equation is added to the system together with
its set of two dimensional closure relations.
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Chapter 4

Viscous-Inviscid Interaction

4.1 Strong coupling method

An alternative approach to the solution of the time-averaged Navier-Stokes
equations for turbulent flows is to divide the flow into two domains, a vis-
cous one, governed by the integral form of the boundary layer equations, and
an inviscid domain, handled by a panel method. The two sets of equations are
coupled by a strong coupling method. The main advantage of using the integral
boundary layer formulation is the parabolic nature of the equations that makes
them more amenable to be solved assuming incompressible and irrotational flow.
The nature of the equations allows an important reduction in CPU time and
computer power, the full system can be solved in a nowadays standard computer
within a fair amount of time if compared with Navier-Stokes solvers.

The parabolic nature of the boundary layer equations implies that the flow
information does not have to travel upstream during the solving procedure,
hence a special treatment is necessary when the flow separates, reversal flow. In
the present approach the convergence of the method after separation is reached
is ensured with the implementation of a strong viscous-inviscid coupling.

The type of coupling used in the present work is known as a strong coupling
via ”transpiration velocity” or ”injection function”. One of the advantages of
the method is that changes on the airfoil geometry are avoided, hence a better
convergence and computational stability can be achieved in comparison with
other coupling methods. In a strong coupling the airfoil surface is not longer
considered as a solid body surface, the introduction of the transpiration velocity
changes the non penetration boundary condition, forcing the normal velocity at
the wall to be equal to the injection function, see Figure 4.1. The transpiration
velocity is taken into account via the panel method with a distribution along
the airfoil surface of equivalent sources. These sources are directly related with
variations in the displacement thickness quantity, taking into account the ob-
struction effect of the boundary layer against the freestream flow and bending
outwards the outer streamlines.

The transpiration velocity will take into account the effects of the real flow
in the potential flow solver. The first derivation of the transpiration form of
the displacement effect was given by Lightill in 1958, [7]. Formulating the
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Figure 4.1: Coupling Sketch

continuity equation in terms of the difference between the inviscid and real flow
and neglecting the effect of surface curvature,

∂

∂s
(ρiui − ρu) +

∂

∂z
(ρiwi − ρw) = 0 (4.1)

Integrating the equation above from the wall, z = 0, to the edge of the
boundary layer δ. At the body surface the inviscid velocity term must be equal
to the transpiration velocity and the viscous one is equal to zero, wi = wT ,
w = 0. At the edge of the boundary layer the two flows must mix together,
ρiui = ρu and ρiwi = ρw.

ρiwT =

∫ δ

0

∂

∂s
(ρiui − ρu) dz =

d

ds

∫ δ

0

(ρiui − ρu) dz (4.2)

Introducing the definition of streamwise displacement thickness, δ∗1 , from
3.18,

δ∗1 =
1

ρiui

∫ δ

0

(ρiui − ρu) dz (4.3)

Combining the Equation 4.3 above with Equation 4.2, and knowing that
the quantities at the edge of the boundary layer are inviscid quantities, the
transpiration velocity or injection function is produced,

wT =
1

ρi

∂

∂s
(ρiuiδ

∗

1) (4.4)

In order to obtain a strong coupling the transpiration velocity has to interact
simultaneously with both the panel method and the viscous system of equations.
The solution rises from introducing a source distribution capable of creating an
outwards flow with a normal velocity equal to the transpiration velocity. This
source distribution will change the Neumann condition of no penetration, the the
normal velocity at the surface of the airfoil will be no longer zero. According
with panel method notation, the strength of the source distribution, σwT

, is
given by,
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Figure 4.2: Effect of the injection function on the streamlines

wT = A σwT
(4.5)

σwT
= A−1 wT (4.6)

where A is the normal influence coefficients matrix in panel method form.

The injection function sources will induce velocities in all the other panels,
obtaining in this way a strong interaction in between the viscous and the inviscid
parts of the global matrix.

The injection function can be seen physically as an outflow blowing out-
wards the airfoil surface due the presence of the boundary layer. It will push
away from the wall the streamlines that are close enough to the airfoil surface,
mimicking the obstruction of the freestream flow created by the presence of the
boundary layer, Figure 4.2. In blue color are represented the transpiration veloc-
ities blowing outwards the original streamlines (dashed lines). Only one original
streamline is shown to maintain the simplicity of the sketch. It is important to
remain that due to its relation with the rate of change of displacement thick-
ness times tangential edge velocity, the injection function usually increases its
absolute value from the leading edge to the trailing edge. It is common in com-
putations that after separation takes place the transpiration velocity remains
approximately constant, as sketched.

4.2 Numerical methods, other interaction types

An overview of the existing iterative procedures is presented. This coupling
techniques have been developed relatively late if compared with the development
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of both viscous and inviscid fields separately. Viscous inviscid iterations usually
diverges without assistance in the regions where the interaction in between the
viscous and the inviscid parts is strong, for example around the trailing edge
or near separated flow regions. The stiffness of the boundary layer equations
around separation is not inherent to the equations nature, it is a result of the
coupling method, [1]. Nowadays there are five different successful or semi-
successful interaction techniques, besides the strong one implemented in the
present work,

4.2.1 Direct interaction

The displacement effects of the boundary layer are used in an iterative way
to correct the inviscid flow solution. The inviscid part is solved to obtain an
edge velocity distribution, ue. The edge velocity is used to solve the viscous
equations obtaining a displacement thickness distribution, δ∗. The displacement
thickness is used to compute the transpiration velocity. Introducing the new
wT into the inviscid solver a new edge velocity distribution is obtained. The
computations follow a downstream order, starting from the stagnation point and
moving towards the trailing edge, taking advantage of the parabolic nature of
the boundary layer equations. The iterative process continues until convergence
is reached for each station. Disadvantages of the method are: convergence only
for small displacement thickness and attached flows.

4.2.2 Inverse interaction

In order to handle separation the above method was modified, solving the in-
viscid and viscous parts inversely. An initial estimate of the velocity gradient
is used to determine a value for the source strength, which is used to calculate
the velocity gradients induced by the boundary layer equations. The process
ends repeating the calculations until convergence is reached, under relaxation is
needed with this approach. This method has been used successfully for calcula-
tions of internal flows such compressors, however it has not a special advantage
for the computation of external flows due to the need of increasing under relax-
ation as the computational domain is increased.

4.2.3 Semi-inverse interaction

Two estimates of the velocity gradient are obtained from the direct potential
method and the inverse viscous method, using them in a correction equation
which outputs go again into both the initial methods. The most rigorous for-
mulation of the correction equation was given by Le Balleur, [11], who used
a local Fourier analysis of the small perturbation equations and the integral
boundary layer equations to study the stability of the method. The coefficients
of the linearized correction equation are unknown, because of this Le Balleur
used in his method an initial estimate of the source distribution to derive esti-
mates of the inviscid and viscous flows velocity gradients, using them as inputs
for the correction formula that gives a new estimate for the source strength,
the iterative process continues until convergence is reached. The semi-inverse
interaction is a robust formulation for airfoil flows.
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4.2.4 Quasi-simultaneous interaction

Developed originally by Veldman [52], in this approach the inviscid flow is de-
scribed with a simplified linearized equation, solved simultaneously with the
viscous flow equations in a local linearized form. The coupling advances station
by station. A velocity gradient together with a source strength are obtained.
The following iteration of the viscous solution can be obtained using the velocity
gradient or the source strength with a direct or inverse mode in that order, as
explained on the other iteration types. The new source or velocity gradient is
used in the simplified inviscid equation and the iteration process restarts. This
scheme is one of the most robust viscous-inviscid schemes with downstream
matching scheme.

4.2.5 Fully-simultaneous interaction

A Fully-simultaneous method was introduced based on the assumption that
there is no hierarchy between viscous and inviscid solutions. The simultaneous
solution of both sets of equations is performed by a Newton kind of iteration
process. This method involved the inversion of the full influence matrix, used
as a base to the method implemented in the present work, the strong viscous-
inviscid interaction. A very good convergence is obtained but with a significant
increment in the computational cost due to the full matrix inversion.

4.3 Space discretization of partial derivatives

A first order backward scheme is used for the discretization of differential quan-
tities in the integral boundary layer equations. Even tough other schemes were
implemented and tested, like the central difference scheme or the second order
backwards scheme, the first order discretization scheme seems to be the more
robust.

An example of the discretization of a given variable, δ∗,

∣

∣

∣

∣

∂δ∗

∂s

∣

∣

∣

∣

i

=
δ∗i − δ∗ii

Si
(4.7)

Where δ∗i is the value of the displacement thickness at the control point of
the ith panel, δ∗ii is the value of the displacement thickness at the control point of
the panel upstream of i, in the case of attached flow. When the boundary layer
is separated, the flow becomes reversal, so the value of δ∗ii will be given by the
control point downstream of i. It is due to this property that the discretization
scheme is not a first order upwind scheme, and it is referred from now on as a
backward scheme. Si is the distance computed in between the control point i
and the ii.

4.4 Matrix form

One of the main advantages of the strong viscous-inviscid interactive approach
is the treatment of the problem as a full Jacobian matrix system. The Jacobian
matrix is used for linearizing the non linear system of equations formed by the
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viscous and the inviscid parts. The global Jacobian matrix is formed by sub
matrices, each sub matrix represents a panel of the discretized airfoil surface.
Sub matrices can be composed of the laminar or turbulent set of equations. If
the flow is laminar an extra equation to predict the laminar-turbulent transition
is added, including the amplification factor, n, as a new variable of the system. A
weighted average of the friction coefficient, Cf , is used in the transition location
and two stations upstream of it.

The global Jacobian matrix is composed by: panel method equations, lam-
inar equations, amplification factor equation, turbulent equations, interaction
function and Kutta condition, see Figure 4.3.
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Figure 4.3: Jacobian global matrix for seven panels around the laminar-
turbulent transition location. Laminar stations are delimited by blue lines while
turbulent ones are delimited by red lines.

In Figure 4.3 are represented with circles the non zero positions of the global
Jacobian matrix for seven panels located on the suction side of the airfoil. Sub
matrices are limited by red or blue dot-dash lines, the ones delimited by blue
dashed lines represent laminar stations while the turbulent locations are de-
limited by red dashed lines. Sub matrices occupying the main diagonal of the
global matrix take into account the influence of the panel in itself and the vis-
cous terms. Jacobian terms of the panel equations will occupy locations in all
the sub matrices. Each panel distributed elementary solution induces normal
and tangential velocities in all the other panels, in this manner a sparse matrix
is formed. Panel method equations are basically two at each panel, the normal
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velocity equations or Neumann condition and the tangential velocity equations.
The Kutta condition is added to the last row of the matrix.

In Figure 4.3 the first two panels are under laminar conditions and the other
four are modeled with the turbulent set of equations. For the surface derivatives
in the laminar, turbulent and injection equations the relations are backwards due
to the backward scheme implemented. The parabolic nature of the boundary
layer equations allows to use backwards discretization without critical stability
problems. When the flow is attached the derivative quantities are taken from
the upstream neighbor, while if the flow is separated are from the downstream
one.

The transition point is found by using amplification theory, a modified n9

method that takes into account the turbulent intensity effect is implemented,
or, if the boundary layer is tripped, the transition point is forced where the
user wants it to be located. Thwaites integral momentum equation is used with
a set of three closure equations in order to represent the laminar flow, in the
following sketch can be appreciated the position of the laminar equations in the
main diagonal panel sub matrix, Figure 4.4. Rows with only one space occupied
means that even though the equation is not in use, the variable is set to zero
being its Jacobian is equal to the unity. For a higher speed up of the code these
rows have to be neglected.
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Figure 4.4: Global matrix system modeling the laminar flow for two panels on
the suction side of the airfoil

The modified e9 model appears in the global matrix in the row 18 of the
main diagonal sub matrices in the case that the flow is laminar.

The injection function is introduced into the global matrix in the row 19 of
the main diagonal sub matrices for both laminar and turbulent panels, it acts
as a strong coupling in between the viscous and inviscid part.
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The turbulent set of equations will be placed in the positions related with
panels under turbulent flow conditions, see Figure 4.5. The turbulent equations
are larger in number than the laminar equations, the r and θ momentum equa-
tion are used together with the kinetic energy shape parameter equation and a
set of closure equations.
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Figure 4.5: Global matrix system for the two panels of the suction of the airfoil
under turbulent flow.

In Table 4.1 shows the column position of each system variable on the panel
sub matrix for the turbulent case. The row position in which each equation is
located in a sub matrix for the turbulent case is presented in Table 4.2.

VARIABLE COLUMN POS. VARIABLE COLUMN POS.

θ1 1 Cτ 12
δ∗1 2 θ2 13
H 3 δ∗2 14
Cf 4 βw 15
H∗ 5 δ 16
CDi 6 Empty 17
Reθ1 7 n 18
H0 8 wT 19
Us 9 σ 20
δN 10 ue 21

CτEQ
11 v 22

Table 4.1: Column position of the system variables in each submatrix.

A second implementation was done in which the θ1 closure equation was not
included as a closure for the turbulent boundary layer equations. Consequently
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EQUATION ROW POS.

θ −momentum 1
Kinetic Energy Thickness 2
Shape parameter Relation 3

Cf closure 4
H∗ closure 5
CDi closure 6

Momentum Thickness Reynolds 7
Initial Shape Factor 8

Us closure 9
δN closure 10

CτEQ
closure 11

Cτ closure 12
r −momentum 13

δ∗2 closure 14
θ2 closure 15
θ1 closure 16
Empty 17

Amplification Factor 18
Injection Function 19
Source Distribution 20

Parallel Edge V elocity 21
Normal Edge V elocity 22

Table 4.2: Row position location of the full system equations in each submatrix.

the nominal boundary layer thickness obtained from equation 10 was used as
the value of the boundary layer thickness parameter. Hence the boundary layer
thickness, variable number 16 from 4.1 was removed. Validations of the new
system of equations was done for a couple of airfoil profiles and as far as the
tested airfoil profiles concern there was no change in the final solution. The
system in this way can be closed with one equation less. This implementation
will be analyzed more in depth to be used as a future implementation for the
code.

4.5 Kutta condition

In order to ensure a unique solution to the potential problem, an auxiliary
condition commonly know as Kutta condition has to be imposed. This condition
is related with the flow characteristics in the airfoil trailing edge surroundings.
A body with a sharp trailing edge immersed in a moving fluid has a circulation
around itself which forces a stagnation point in the rear side of the airfoil making
the flow to leave the surface at this point and hence creating lift.

When an airfoil without camber is situated parallel to the freestream, the
circulation around its surface is zero generating no lift. If a particle is followed
in both, the upper and the lower surfaces from the stagnation point, at angle of
attack zero both particles will meet at the trailing edge and leave the airfoil at
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the same time, see Figure 4.6(a) where the position of each particle is plotted
every time step. As the angle of attack increases, the particle in the suction
surface will travel much faster due to the large pressure gradients existent near
the nose of the airfoil. In the steady state both particles will have the same
speed once reaching the trailing edge, although the upper one will reach it
much faster, see Figure 4.6(b), this will create a circulation around the airfoil
contour generating lift. This is know as Kutta condition.

(a)

(b)

Figure 4.6: Tracking particles around an airfoil surface. (a) α = 0, (b) α > 0.

4.5.1 Steady Kutta condition

The flow has to leave the airfoil at its trailing edge in order to create lift, in
this way the trailing edge becomes a stagnation point. The tangential edge
velocities at the upper and lower trailing edge panels are forced to be equal
in absolute value, hence the pressure at both positions is equal, in this way a
zero loading condition is created on the trailing edge. In practice the Kutta
condition is implemented using the velocities induced by the parabolic vorticity
distribution, Γ, the point source distribution, σ, the parabolic vorticity related
source distribution around the airfoil, σR, the source transpiration velocity,
σWT , the single wake vortex influence, ΓW , the wake related source distribution
around the airfoil, σW , plus the projection of the freestream velocity into the
trailing edge panels Q∞ x and Q∞ y.

70



N
∑

i=1

B1iσi +

N
∑

i=1

A1iγi +

N
∑

i=1

B1iσR i +

N
∑

i=1

B1iσWT i +

N
∑

i=1

Bw 1iΓW i

+
N
∑

i=1

BNiσW i + U∞xt1 + U∞yn1 =

N
∑

i=1

BNiσi +

N
∑

i=1

ANiγi +

N
∑

i=1

B1jσR i +

N
∑

i=1

BNiσWT i +

N
∑

i=1

Bw NiΓW i

+
N
∑

i=1

BNiσW i + U∞xtN + U∞ynN (4.8)

4.5.2 Unsteady Kutta condition

In the unsteady case, opposite to what occurs in the steady one, when the flow
approaches the trailing edge the differential of pressure in between the upper
and lower sides of the airfoil does not tend to zero. This can be explained
from the unsteady Bernoulli equation in which appears an unsteady term, that
depends of the change in airfoil circulation. A pressure difference in the trailing
edge is not admissible on physical backgrounds, so in order to maintain a zero
loading of the trailing edge region, a vortex with a strength equal to the change
in airfoil circulation has to be shed into the trailing edge wake.

The vorticity of the first wake vortex is equal to the change of circulation in
the airfoil contour,

ΓW = Γt
B − Γt−1

B (4.9)

The condition of zero loading or equal pressure in between the two trailing
edge panels can be written in the following way, following Basu and Hancock
implementation [36],

u2
e 1 = u2

e N + 2
Γt
B − Γt−1

B

dt
(4.10)

Where dt is the time step.

The flow leaves the trailing edge parallel to the upper or the lower trailing
edge panels depending which has the highest velocity.

θN+1 = θ1 if u1 > uN (4.11)

= θN if uN > u1 (4.12)

Where θN+1 is the angle at which the first trailing edge vortex leaves the
airfoil surface while θ1 and θN are the angles of the upper and lower trailing
edge panels respectively.

The position of the first vortex is obtained averaging the velocity at which
the flow leaves the trailing edge on its upper and lower sides,
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Pw1 =
(|ue 1|+ |ue N |)

2
dt (4.13)

It is important here to remain that the Kutta condition is placed on the last
row of the Jacobian matrix.

4.6 Curvature effects

The high curvature of the airfoil geometry and the appearance of strong adverse
pressure gradients, causing the boundary layer thickness to grow rapidly as the
flow approaches separation, increases the importance of the streamline curva-
ture. The pressure variation across the boundary layer, neglected in first order
theory, can not be neglected in the case of flows around highly curved walls and
with rapidly thickening boundary layers.

Figure 4.7: Pressure correction due to curvature effect.

For a pre-stalled flow, the curvature effects are significant only in the neigh-
borhood of the separation point, [1]. Curvature effects lower the pressure around
the separation location which influences the pressure level of the complete sep-
aration plateau. Hence a correction of the separation area pressure distribution
is included in the present formulation.

Due to stability problems arising from the roughness of the displacement
thickness predicted by the viscous-inviscid interactive code in separated areas,
a simplification is introduced. Knowing that the curvature effects are more
significantly in the neighborhood of the separation point, the value of κ∗ at the
SEP position is used for correcting the pressure on the whole separated flow
region.

PW = PIW − κ∗ρu2
e (δ

∗

1 + θ1) (4.14)

Where PW is the wall pressure of the real flow and PIW is the pressure of
the equivalent inviscid flow. It was shown by Look in 1985 [1] how evaluating
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the equivalent inviscid flow pressure at y = δ∗1 + θ1 one gets the wall pressure
of the real flow. The value of the curvature of the displacement surface around
the separation point, κ∗, is obtained differentiating two times the streamwise
displacement thickness, following Sørensen [33],

κ1A =
δ∗1 SEP−1 − δ∗1 SEP

SSEP−1
(4.15)

κ1B =
δ∗1 SEP − δ∗1 SEP+1

SSEP
(4.16)

κ∗ =
κ1A − κ1B

1
2 (SSEP−1 + SSEP )

(4.17)

Hence the correction to the pressure coefficient can be written,

∆Cp =
PW − PIW

1
2ρU

2
∞

(4.18)

This correction factor will vary from 0 to 0.13 depending on the flow con-
ditions, usually it increases with the angle of attack until stalls and remains
almost constant. It is of great importance for an accurate prediction of the drag
coefficient.

4.7 Convergence study

4.7.1 Introduction

As a strong coupling has been implemented, the viscous and inviscid equations
are computed via a full Jacobian matrix that linearizes them. The following
procedure is used for updating the variables each newton iteration,

xn = xn−1 + ω ∆x (4.19)

Where x is a system variable and ω is its relaxation factor, it is set to unity
for most of the parameters except for the following variables in the turbulent
closure relations,

ωH = 0.6 (4.20)

ωCf
= 0.6 (4.21)

ωCDi
= 0.7 (4.22)

In order to obtain a smooth numerical transition in between both sets of
equations the following under relaxation factors were used in a six stations
radius around the laminar to turbulent transition location,
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ωδ∗
1
= 0.7; (4.23)

ωwT
= 0.8; (4.24)

4.7.2 Interactive boundary layer solver convergence

A convergence study was carried out for the viscous inviscid boundary layer
interactive solver running under two dimensional steady flow conditions. A
NACA 63415 at Reynolds 3e6 is chosen as the test airfoil. Convergence analysis
has been realized at two different flow conditions. The first test is performed at
low angle of attack, where the flow is attached to the airfoil. The angle of attack
for the second case is higher and the flow is partially separated from the airfoil
surface creating a separation bubble. In both cases the solution at a previous
angle of attack is used as initial condition.

The maximum value of the right hand side vector is used as a convergence
criteria. When maximum residual, max (RHS), is lower than 5e-4 convergence
is reached. In most of the cases convergence was reached in approximately 10
iterations for attached flow conditions and within 15-20 iterations for partially
separated flow. In the cases in which the separation location moves fast up-
stream the increment of angle of attack in between computations had to be
lowered to reach convergence.

The first test was performed at α = 1◦, using a previous converged solution
at α = 0◦ as initial condition, Figure 4.8,

The case where under relaxation was turned off had a faster convergence,
less than 5 newton iterations. The convergence slope when the under relaxation
was active is lower, the system needed 9 newton iterations until the convergence
criteria was reached.

A second test was performed at α = 16◦, see Figure 4.9. A previous con-
verged solution at α = 15◦ was used as initial condition. The flow underwent
separation at 0.6878c from the leading edge,

At high angles off attack, with highly separated flow, was common the ap-
pearance of a lack of convergence in most of the cases and consequently it was
necessary to use under relaxation for some of the boundary layer variables to
reach a converged solution, see Equations 4.20 and 4.23.

The convergence depends on the airfoil geometry as well as the Reynolds
number and the angle of attack. Thick airfoils and profiles with high wall cur-
vature present more convergence difficulties than thin airfoils, low Reynolds
number conditions converge slower and with less stability than high Reynolds
numbers closer to the potential solution. Convergence for incidence angles
higher than 26 degrees has not been obtained with the viscous-inviscid interac-
tion method. For cases far into deep stall conditions, the double wake model
without viscous influence is strongly recommended.
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Figure 4.8: Iteration History for an attached flow computation
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Figure 4.9: Iteration History for a separated flow computation

75



During the adimensional study of the boundary layer rotational effects in
the airfoil aerodynamic performance was found that convergence problems arise
when the local aspect ratio c/r and the rotational number approach the unity.

4.8 Initial conditions files

In order to obtain the first initial conditions for the system, the flow around a
flat plate at α = 0 and Reynolds number 1 106 was computed using a backward
matching boundary layer scheme iteratively with a panel method. Computa-
tions started from the stagnation point moving downstream in order to take ad-
vantage of the parabolic nature of the integral boundary layer equations. Values
for the different boundary layer parameter were saved and used in computing
the first airfoil geometry.

A small database with restart files that include initial boundary layer pa-
rameters for the different airfoil shapes has been created. Database restart files
are used as initial conditions at α = 0 when a new simulation is started. In the
case that a new airfoil geometry has to be simulated, the initial conditions of
an airfoil with similar geometry have to be used to create a new restart file.
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4.9 Summary

In this chapter the strong viscous-inviscid coupling selected as the interaction
technique for the present approach is described. Other coupling alternatives
have been presented and briefly analyzed.

The problem is reduced to a Jacobian matrix system, in this chapter the
construction of the Jacobian matrix is depicted.

A deeper insight is taken into the Kutta condition, in its steady and unsteady
versions. Its physical meaning as well as numerical implementation has been
treated in the present chapter.

The influence of curvatures effects has been analyzed. A pressure correction
for the separated region is introduced. The correction takes into account the
curvature effects around the separation point that arise due to curvature of air-
foil geometry together with the appearance of strong adverse pressure gradients.

A convergence study has been done for two different flow cases. In the
first case, a fully attached boundary layer was considered while the other case
presented a large separated region. Convergence for attached flows was easier
to attain, while under relaxation was needed for the separated case.
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Chapter 5

Results and Discussion

In the present chapter validations of the proposed viscous inviscid solver are
presented. Benchmarking the VI interactive code with a large set of airfoil
types and flow conditions is of great importance in order to probe the range of
applicability of the solver.

In Section 5.1 a comparison between viscous and inviscid computations is
presented. The improvements obtained in airfoil performance predictions if
viscous effects are included in a potential flow solver are discussed.

The steady two-dimensional version of the code is validated against experi-
ments in Section 5.2. A wide range of airfoil types and flow conditions are sim-
ulated and presented herein. The airfoil shapes simulated are: NACA 65415,
LS(1)-0413, NACA 63-4xx, NACA 4412. The capability of the code to predict
changes in the airfoil aerodynamic characteristics when subjected to variations
in thickness and Reynolds number is also validated in this section. Further, the
VI code running a laminar to turbulent modified e9 transition model is vali-
dated against experiments for the airfoil profiles FFA-W3-211, s089 and NACA
634xx. Simulations with the two-dimensional version of the code are performed
with the Quasi3D set of equations with the following values of the rotational
parameters RO = 0.3 and ls = 0.001. These values ensure negligible rotational
effects, although convergence at high angles of attack is improved if compared
with the two dimensional set of equations.

An analysis of the influence of a trailing edge flap in the airfoil aerodynamics
is presented in Section 5.3. Simulations were performed with the steady two
dimensional version of the Quasi 3D integral boundary layer code. A comparison
against potential flow theory predictions is analyzed herein.

In Section 5.4 the double wake model is validated against experiments. Pre-
dicted airfoil surface pressure distribution are compared against experimental
ones in stall conditions. The airfoil profiles chosen for validation are: GA(W)-1,
NACA 4412 and a cylinder shape. The cylinder cross section is simulated in
order to verify the capability of the code to compute highly separated flows over
geometries with a high thickness to chord ratio.

Validation of the unsteady version of the code with a single wake model is
presented in Section 5.5. In this section, unsteady VI code predictions for dif-
ferent airfoil types with different dynamic flow conditions are compared against
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experiments. An harmonic pitch motion of the airfoil was implemented and
comparisons at different amplitudes and different reduced frequencies are pre-
sented. The airfoils used for validation are NACA 0012, NACA 0015 and NACA
63421.

The unsteady code has been used in its unsteady two dimensional version in
order to simulate the aerodynamic behavior of an harmonically pitching airfoil
section with a moving trailing edge flap, see Section 5.6. The work carried
out by Krzysiak and Narkiewicz [53] has been selected for validation of our
results. Influence of the phase shift between airfoil and flap motions is analyzed
and presented herein. Comparisons between computations and experiments
for different phase shifts are done. The capability of the code to simulate the
damping of inflow disturbances using a controlled TEF is presented in this
section.

A parametric study of the rotational effects is presented in Section 5.7, where
lift and drag predictions for the s809 airfoil geometry are shown as function of the
rotation related adimensional parameters RO and ls. An artificial rotor blade
with constant chord was designed and simulations were performed at different
spanwise positions of the blade. An analysis of the influence of rotation in the
boundary layer characteristics is presented in this chapter. Results are shown as
an order of magnitude analysis of the terms containing centrifugal and Coriolis
forces terms in the r and θ momentum equations.

The following sign convention for the airfoil forces is used in the present
chapter, Figure 5.1,

(a)

Figure 5.1: Airfoil Forces

Where,

• U∞ is the freestream velocity vector.

• L is the lift force, perpendicular to the wind direction.

• D is the drag force, parallel to the wind direction.

• N is the normal force, perpendicular to the airfoil chord line.

• T is the tangential force, in the direction of the airfoil chord line.
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• M is the pitch moment, positive in the counterclockwise direction.

Viscid-Inviscid predictions of the airfoil aerodynamic forces have been com-
puted integrating the surface pressure distributions obtained from simulations.
The integration was done over the panel discretization. For a higher accuracy of
the results the integration could be done over a spline curve that fits the airfoil
surface.
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5.1 Comparison between viscous and inviscid com-

putations

In this section comparisons between viscous and inviscid computations at Reynolds
number of 3 106 are presented and discussed. Inviscid computations were car-
ried out using a panel method with a uniform source distribution in combination
with a parabolic vorticity distribution around the airfoil contour and a Neumann
condition used as boundary condition on the airfoil surface. The viscous simula-
tions were carried out with the steady two dimensional version of the Quasi 3D
viscous inviscid integral boundary layer solver that was presented in Chapter 3.

The airfoil chosen for the study of the influence of viscous effects is a NACA
63415. Lift, drag and pitch moment coefficients predictions from viscous and
inviscid computations are compared herein for a range of angles of attack in
between 0 to 20 degrees. Surface pressure distributions predicted with both ap-
proaches are also presented and analyzed. A study of the inviscid computations
dependence on the number of panels used for the airfoil discretization is done
and results are presented herein for α = 15◦. Viscous computations are done
with a surface mesh of 140 panels, following Drelas discretization for its code
Xfoil. Inviscid computations are done with a 1000 panels discretization of the
airfoils surface.
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Figure 5.2: (a) Viscous and inviscid predictions of lift coefficient (b) Inviscid lift
dependency on panel number at α = 15◦

As expected, inviscid computations predict a higher lift coefficient due to the
inexistence of a boundary layer that obstructs the freestream flow, and hence
reduces the lift. The obstructing effect starts at low angles of attack and it is
captured by the viscous-inviscid computations, becoming more important as the
boundary layer grows in thickness with increasing α. Differences between the
lift predictions increase after the viscous computations enters stalled conditions.
As expected the lift dependency on panel number is not important, see Figure
5.3 (b).

VI model predictions of total drag are higher than inviscid computations,
which should predict non drag, see Figure 5.3. Inviscid computations predict
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Figure 5.3: (a) Viscous and inviscid predictions of drag coefficient (b) Inviscid
drag dependency on panel number at α = 15◦

a small amount of drag, this is due to the error introduced by integrating the
drag using the panel discretization and due to mesh disturbances around the
leading edge of the airfoil. The drag predictions are strongly dependent on the
number of panels used for discretization, see Figure 5.3 (b).
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Figure 5.4: (a) Viscous and inviscid predictions of pitch moment coefficient (b)
Inviscid pitch moment dependency on panel number at α = 15◦

In Figure 5.4, the pitching moment coefficient is plotted as function of α. It
is clear that the inviscid computations can not mimic any of the CM tendencies
reflected by the viscous-inviscid solver. Inviscid computations predict an ap-
proximately constant increment in CM from 0 to 19 degrees of angle of attack.
Pitch moment dependency on number of panels in not important, see Figure
5.3 (b).

In Figure 5.5 viscous and inviscid model predictions of the surface pressure
distribution are presented for different angles of attack. Differences in between
viscous and inviscid computations grow as the angle of attack increases, pro-
viding similar results until approximately α = 11◦, and more and more distant
results as the angle of attack increases further. The main advantage of the
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strong viscous-inviscid approach is its capability to solve the boundary layer at
and after separation takes place, overcoming Goldstein’s singularity. This allows
the VI code to predict the constant pressure distribution characteristic of the
separated area in the suction side of the airfoil. Due to the viscous nature of
the flow separation mechanism, the inviscid solver can not predict separation by
itself. However the introduction of a double wake model could allow the inviscid
model to simulate airfoils in deep stall conditions. In this kind of models the
separation location has to be known in advance from experiments or viscous
computations, see Section 5.4.
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Figure 5.5: Viscous and inviscid surface pressure distributions from 0 to 19
degrees

Summary of viscous vs inviscid comparisons

Viscous-inviscid interactive computations have been compared against po-
tential panel method ones for a NACA 63415 airfoil at a Reynolds number of
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3 106. The lack of accuracy of the inviscid method has been proved at high
angles of attack, when separation plays an important role. At lower angles of
attack, differences due to the neglected influence of the viscous boundary layer,
primary in drag and pitch moment predictions, are also important.

5.2 Steady airfoil computations

5.2.1 Validation against Risø W.T Airfoil Catalogue

NACA 65415 Airfoil

In this section is presented a detailed comparison of lift, drag and pitching
moment coefficients as function of angle of attack between measurements, El-
lipSys2D and viscous-inviscid interactive simulations. The NACA 65415 airfoil
is chosen as a first study case. This airfoil was designed to attain its minimum
pressure at 0.5c, defined by the 2nd digit, a design lift coefficient at zero angle of
attack of 0.4, indicated by the 3rd digit, and a 15% maximum thickness, given
by the last two digits.

Measurements were performed at the NASA low-turbulence pressure tunnel
[54], and reported in the book Theory of Wing Sections by Abbott and von
Doenhoff [55]. The Reynolds number in experiments as well as in computations
was 3.106. eNRG simulations have been carried out with a boundary layer trip
at 0.05c from the leading edge. In the following, viscous-inviscid interactive
computations are referred to as eNRG in the figures.

In Figure 5.6, lift comparisons are presented for angles of attack from 0 to
20 degrees. At small angles of attack, when the flow is attached to the airfoil
surface, the VI interactive solver over predicts slightly the lift, as compared
with experimental values. At α = 9◦ the exponential growth in the boundary
layer thickness forces the flow to separate. For angles of attack from 10 to 15
degrees, the separated region expands rapidly upstream the airfoil trailing edge.
In this α range the viscous-inviscid lift predictions are in perfect agreement with
experiments. EllipSys2D predicts an early stall of the lift curve, while the VI
code over predicts slightly the lift values for α > 16.5◦.

Drag curves are presented in Figure 5.7. Experimental drag data was not
available for attack angles higher than 11◦. The VI predictions are in better
agreement with experiments at low angles of attack where most of the drag arises
from friction effects, whereas from 5◦ to 10◦ VI computations under predicts
drag. Differences in airfoil drag performance influenced by the tripped boundary
layer in comparison with a free transitional one will be analyzed at the end of
the present section, Subsection 5.2.4. Discrepancies between Ellipsys2D and
eNRG drag predictions increase with angle of attack, mainly due to differences
in the separated area pressure level.

In terms of pitching moment coefficient, Figure 5.8, the viscous-inviscid code
predictions are in better agreement with experimental data at small angles of
attack. Note the high level of difficulty for most of the computational fluid
dynamics solvers available nowadays to predict accurately CM values.
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Figure 5.6: Lift coefficient curves, NACA 65415 Airfoil, Reynolds 3 106.
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Figure 5.7: Drag coefficient curves, NACA 65415 Airfoil, Reynolds 3 106.

A good agreement between VI and EllipSys2D predictions of the surface
pressure distributions is obtained at low angles of attack, although small dis-
crepancies appears in the suction side of the trailing edge, Figure 5.9(a). With
the increasing of the angle of attack, a progressive increase of the pressure peak
near the airfoil nose was predicted. A recovery of the pressure from the pressure
peak downstream is computed until α = 9◦, where the turbulent flow under-
goes trailing edge separation and hence a region of nearly constant pressure is
formed on the trailing edge vicinity. Laminar boundary layers undergo easier
separation while turbulent boundary layer offers more resistance against it. The
viscous-inviscid computations predict a faster movement upstream of the tur-
bulent separation point if compared with EllipSys2D predictions. At the same
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Figure 5.8: Pitching moment coefficient curves, NACA 65415 Airfoil, Reynolds
3 106.

time, the constant pressure region created by the reversal flow is also predicted
at a lower absolute value by VI computations, Figures 5.9(c) and 5.9(d). When
the separated region increases in size, the airfoil enters stalled conditions and
differences in between both simulations are reduced, Figures 5.9(e) and 5.9(f).
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Figure 5.9: Surface pressure coefficients, NACA 65415 Airfoil, Reynolds 3 106.

LS(1)-0413 Airfoil

The LS(1)-04XX airfoil series were developed at NASA for general aviation
applications. Experiments were carried out at the Laminar Wind Tunnel of the
Institut fur Aerodynamik und Gasdynamik in Stuttgard University [56]. The
Reynolds number in experiments and simulations was 1.5106. Simulations with
the VI interactive model have been performed with a boundary layer trip at
0.05c from the leading edge.

As shown in Figure 5.10, both VI and EllipSys2D computations predict the
same lift at low angles of attack, α < 8◦, although measurements show a slightly
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higher lift for α < 4◦. For α > 9◦, the flow starts to separate from the rear
side of the airfoil, progressing upstream with the further increment in angle of
attack. In overall terms, the agreement is good until stall is reached. EllipSys2D
predicts a better position of α(CL=CLMAX ), while VI computations stalls one

degree later than experiments. At α(CL=CLMAX ) the flow is separated over

almost a 50% of the airfoil chord. Both predictions have the right tendency
in the after stall region, although the reduction in lift is not as drastic as in
experiments.
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Figure 5.10: Lift coefficient LS0413, Reynolds 1.5 106.

In terms of drag, Figure 5.11, the viscous-inviscid code predicts a better
starting drag but under predicts it as the angle of attack increases. The under
prediction of total drag in between 2◦ to 7◦ degrees is related with a under
prediction in pressure drag due to the boundary layer trip effect. At high angles
of attack, where the friction drag is smaller, differences in between both simu-
lations rise mainly due to the VI predictions of a lower absolute pressure in the
separated region.

Regarding pitching moment coefficient, Figure 5.12, VI predictions have the
same tendency as the experimental data but with a lower absolute value. Ellip-
Sys2D CM predictions does not follow the experiment tendencies as good as VI
computations in this case.

Comparing the predicted surface pressure distributions, Figures 5.13, an
excellent agreement is obtained at low angles of attack. Even though small dis-
crepancies appear in the trailing edge vicinity, Figure 5.13(a). At higher angles
of attack, separation is predicted in the suction side of the airfoil. Separation is
related with the value of the boundary layer shape parameter factor. In the case
of turbulent flow, previous investigations [57] showed that separation appears
when the shape factor, H, reaches the critical value of 2.5. With the appear-
ance of separation, differences in between EllipSys2D and eNRG predictions
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Figure 5.11: Drag coefficient LS0413, Reynolds 1.5 106.
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Figure 5.12: Pitching moment coefficient LS0413, Reynolds 1.5 106.

increases. The VI interactive solver predicted once more a lower absolute pres-
sure of the suction surface of the airfoil, Figures 5.13(b), 5.13(c) and 5.13(d).
With the upstream motion of the separation location, differences in between
both predictions diminish, Figures 5.13(e) and 5.13(f).

90



0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

6

x/c

−
C

p

α = 6

 

 

EllipSys 2D
eNRG

(a)

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

6

x/c

−
C

p

α = 10

 

 

EllipSys 2D
eNRG

(b)

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

6

x/c

−
C

p

α = 12

 

 

EllipSys 2D
eNRG

(c)

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

6

x/c

−
C

p

α = 14

 

 

EllipSys 2D
eNRG

(d)

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

6

x/c

−
C

p

α = 16

 

 

EllipSys 2D
eNRG

(e)

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

6

x/c

−
C

p

α = 18

 

 

EllipSys 2D
eNRG

(f)

Figure 5.13: Surface pressure coefficient LS0413, Reynolds 1.5 106.

5.2.2 Thickness variation, NACA 63-4xx

The influence of airfoil thickness variations in the aerodynamic performance of
the airfoil family sections NACA 63-4xx and the viscous-inviscid interactive code
capability for predicting it is studied in the present subsection. Experimental
lift, drag and pitching moment coefficients are compared against Ellipsys2D
and VI computations. Three different airfoil thicknesses are simulated 15%,
18% and 21%. Surface pressure distributions at different angles of attack are
also analyzed.

Measurements were performed at NASA in a low-turbulence pressure tunnel
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and reported by Abbot and von Doenhoff [55]. Navier-Stokes equations were
solved with the EllipSys2D code and results reported by Franck Bertagnolio in
Risøs airfoil catalogue [58]. Simulations with the VI interactive model have been
carried out with a boundary layer trip at 0.03c from the airfoils leading edge.

Figure 5.14 compares computed and measured lift distributions for three
airfoil with different thickness, ranging from 15% to 21%. From the comparison
it is seen that the computed lift distributions follow the experimental data up
to stall, after which they start to deviate. The general tendency is that the VI
code predicts stall a little bit too early whereas EllipSys maintains attached the
flow much longer and therefore predicts a too high CLMAX

. Furthermore, it is
seen that discrepancies between computed and measured values tend to increase
with airfoil thickness. As will be seen later, the early stall predicted for the 21%
thickness airfoil is related with the transtition location.
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Figure 5.14: Lift coefficient NACA 63-4xx, Reynolds 3.106.

In regarding drag coefficient, Figure 5.15, viscous-inviscid computations present
good drag predictions at angles of incidence lower than 7 degrees. At α > 7◦,
VI simulations are slightly under predicting the pressure drag and hence the to-
tal drag differs from measurements and EllipSys2D computations, in which the
drag is higher. At low angles of attack, where the drag is mostly friction drag,
the VI interactive solver predicts higher drag coefficients for the thinner airfoil,
while in the after stall region, where the pressure drag is dominant, tendencies
changes and the thicker profile has slightly more drag. For α > 18◦ differences
in drag due to the airfoil thickness are vanished.

Concerning the pitching moment coefficient, Figure 5.16, a good agreement
between experiments and eNRG computations is achieved for angles of attack
below 10 degrees. VI as EllipSys2D computations predicted a higher starting
pitching moment coefficient for the thinner profile, reducing its value as the
airfoil thickness increases. The VI code does not predict a clear effect of the
airfoil thickness in CM for α > 13◦.
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Figure 5.15: Drag coefficient NACA63-4xx, Reynolds 3.106.
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Figure 5.16: Pitching moment coefficient NACA 63-4xx, Reynolds 3.106.

Comparisons of the surface pressure distributions between EllipSys2D and
VI computations are shown in Figure 5.17. The CFD code as well as the in-
teractive code predict a higher suction pick for the thinner airfoil, reducing its
value as the thickness increases. Discrepancies in between VI and EllipSys2D
computations grow with the angle of attack. In all the cases, as the airfoil thick-
ness increases, the suction peak smooths out. VI and EllipSys2D simulations
present the largest differences in Cp around the separation position. VI simu-
lations predict a too early separation as the airfoil thickness increases, Figure
5.17(b). Although at high angles of attack, α > 18◦ the separation location
is the same for the three airfoil thicknesses, Figure 5.17(c). It is know that
the thinner is the airfoil, the later separation appears on its rear side due to
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Figure 5.17: Pressure coefficient NACA 63-4xx series, Reynolds 3.106.
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the lower obstruction exert against the freestream flow. Ellipsys2D predict no
changes in the separation location as function of airfoil thickness at any of the
angles of attack studied herein. In the separated flow region, none of the solvers
predict changes in pressure as function of the airfoil thickness.

Due to the lack of experimental pressure data it is not possible to assure
which of both computations can mimic better the reality.

The addition of curvature effects was key for improving the predictions of
aerodynamic forces in thick airfoil simulations, in which the streamline curvature
grows in importance due to the growing pressure gradients generated across the
boundary layer, [33].

5.2.3 Reynolds number variation, NACA 4412

Validation of VI computations against measurements for a NACA 4412 airfoil
subjected to Reynolds number variations is presented herein. Simulations were
performed with Reynolds numbers 1.8 106, 3.4 106, 6.3 106 and 8.2 106. The
Reynolds number indicates the ratio of the mass forces to the viscous forces, the
higher is the ratio the more negligible become the viscous forces and the more
potential becomes the flow. Experiments were carried at NACA variable-density
wind tunnel and reported by Pinkerton [59]. Simulations have been carried out
with a tripped boundary layer at 0.03c from the leading edge of the airfoil.

Figure 5.18 compares measured and predicted normal force coefficients in
function of the angle of attack. For a better clarity of the figure the CN values
at Reynolds number of 3.4 106 are moved 10◦ in the positive α direction, for
Reynolds 6.3106 are moved 20◦ and for Reynolds 6.3106 are moved 30◦. As the
Reynolds number increases the VI code underpredicts slightly the normal force
value in the linear region if compared with measurements. Good prediction of
the CNMAX

in angle and magnitude is obtained by the VI model at Reynolds
1.8 106 and 8.2 106. Although CNMAX

is slightly under predicted at Reynolds
3.4106 and 6.3106. In all cases α(CN=CNMAX ) is predicted accurately. CNMAX

is

directly dependent on the viscous forces, and hence dependent on the Reynolds
number. The viscous-inviscid computations after stall do not predict as steep
drop in normal force as measured values.

Regarding the tangential force coefficient, Figure 5.19, a good agreement
between experiments and computations is obtained for angles of attack from α =
0◦ to α ≈ α(CN=CNMAX ) for the different Reynolds computations. Predictions

and experiments present the same tendency to increase CT in its absolute value
with the Reynolds number. The viscous-inviscid computations can not capture
as steep decrease in CT after stall as measured.

In terms of pitching moment coefficient, Figure 5.20, more difficult to pre-
dict than the other aerodynamic forces, simulations predict similar trend as
experiments. The positive steep slope at high angles of attack is predicted in
agreement with the measured data, although its absolute value is under pre-
dicted.

Analyzing the pressure distributions, Figures 5.21, at low angles of attack,
when the flow remains attached to the surface of the airfoil, pressure distribu-
tions are practically unaffected by variations in Reynolds number. For α < 8◦
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Figure 5.18: Normal force coefficient NACA 4412, Reynolds 1.8 106, 3.4 106,
6.3 106 and 8.2 106.
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Figure 5.19: Tangential force coefficient NACA 4412, Reynolds 1.8 106, 3.4 106,
6.3 106 and 8.2 106.

experiments and computations are in perfect agreement. For α > 8◦, separation
appears on the rear side of the airfoil and differences in pressure distribution
between the different Reynolds numbers increases. The separation location is
clearly affected by changes in Reynolds number. At low Reynolds numbers the
flow separates earlier and moves faster upstream. At high Reynolds numbers
the flow separates later allowing the airfoil to reach higher absolutes values of
the normal and tangential force coefficients.

The viscous-inviscid model predicts in general more accurately the surface
pressure distribution at higher Reynolds numbers, 6.3 106 and 8.2 106. At post
stalled angles of attack, Figures 5.21(c), disagreements expand to the highest
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Figure 5.20: Drag coefficient NACA 4412, Reynolds 1.8 106, 3.4 106, 6.3 106

and 8.2 106.

Reynolds number computations. In this cases the separation location is pre-
dicted further downstream than obtained in experiments. Consequently the
separation plateau has a lower absolute pressure, and a lower value of the pres-
sure drag is obtained.
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Figure 5.21: Surface pressure coefficient NACA 4412, Reynolds 1.8 106, 3.4 106,
6.3 106 and 8.2 106.
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5.2.4 Free transition computations, modified e
9 type tran-

sition model

As a first case, the FFA-W3-211 airfoil has been chosen for validation of the
VI interactive code running the modified e9 laminar-turbulent transition model.
The airfoil was tested in the low speed wind tunnel L2000 located at KTH Royal
Institute of Technology in Stockholm [60], the turbulence intensity during mea-
surements was 0.15%. The Reynolds number of experiments and computations
is 1.8 106. The critical amplification factor, nC , related with a turbulence level
of 0.15% is computed following Equation 3.138, nC = 7.1755. Comparisons are
done between computed and measured lift and drag data. The VI code has been
running with and without tripping of the transition point. First, the boundary
layer trip was located at 0.025c from the leading edge and second at 0.15c.
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Figure 5.22: Comparisons between computed and measured lift data. The VI
code has been running with and without tripping of the transition point. FFA-
W3 211 airfoil, Reynolds 1.8 106.

In regarding lift force coefficients, presented in Figure 5.22. Stall is reached
earlier in the case that transition is forced at 0.025c obtaining a better predic-
tion of the CLMAX

. The modified e9 transition model computations also follows
closely experiments. When the boundary layer is forced to laminar at 0.15% of
the chord, the lift curve stalls much later. This is due to the underprediction
of the boundary layer thickness as a consequence of the late laminar to tur-
bulent transition, causing a reduction in the shape factor and hence retarding
separation.

Concerning drag, Figure 5.23. At low angles of attack all the computations
have similar drag predictions. Drag coefficients predicted by the viscous-inviscid
model with a boundary layer forced transition at 0.15c are lower than the other
simulations in the stall region due to the delayed separation. None of the mod-
els can predict the large values of drag obtained during experiments in stall
conditions.
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Figure 5.23: Comparisons between computed and measured drag data. The
VI code has been running with and without tripping of the transition point.
FFA-W3 211 airfoil, Reynolds 1.8 106.
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Figure 5.24: Chordwise transition location. The VI code has been running with
and without tripping of the transition point. FFA-W3 211 airfoil, Reynolds
1.8 106.

The predicted laminar to turbulent transition position as a function of the
angle of attack is plotted in Figure 5.24. xTR = 0 refers to the leading edge and
xTR = 1 to the trailing edge. Transition moves gradually towards the leading
edge between 0◦ to 11◦ of angle of attack, reducing considerably its variation at
higher angles of attack.

As a second study case the airfoil s809 is selected. Experiments used for
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validation were performed in the low-turbulence wind tunnel at Delft Univer-
sity of Technology, The Netherlands. The turbulence intensity in the VI model
is set to 0.11%, giving a critical amplification factor of nC = 7.9199. The
Reynolds number in experiments and computations is 1.106. The airfoil thick-
ness is 21% of the chord length. Note that simulations with the transition model
presented convergence problems around α(CL=CLMAX ). A reduction of the angle

of attack variations between computations had to be applied in order to reach
convergence. The fast movement upstream of the transition location makes the
convergence more difficult, see Figure 5.27.
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Figure 5.25: Measured Lift coefficients compared against Ellypsis2D and
viscous-inviscid computations running with and without tripping of the transi-
tion point. Airfoil s809, Reynolds 1.106.

In terms of lift, Figure 5.25, VI predictions with free transition are in excel-
lent agreement with experiments, the code is capable of predicting both double
stall peaks. Simulations with a forced transition over predict lift in the stalled
region and fail in capturing the double stall shape.

Regarding drag comparisons, Figure 5.26, Ellipsys2D predicts larger drag
values than the VI solver. As shown before, the further downstream from the
leading edge is located the boundary layer trip, the lower is the predicted drag
at high angles of attack.

In regards to the onset of transition, Figure 5.27, the s809 airfoil section
undergoes a more abrupt transition than the predicted for the FFA-W3 211
airfoil, Figure 5.24. The onset of transition moves from 50% of the chord at
incidence angle 6◦ to 15% from the leading edge at α = 7◦. At high angles of
attack laminar to turbulent transition reaches a steady location at 4% of the
chord.
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Figure 5.26: Measured Drag coefficients compared against Ellypsis2D and eNRG
computations: modified n9 transition model and boundary layer trips at 15%
and 2.5%. Airfoil s809, Reynolds 1.106.
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Figure 5.27: Transition predictions of the eNRG code running the modified n9

transition model and boundary layer trips at 15% and 2.5% as a function of the
angle of attack. Airfoil s809, Reynolds 1.106.

As a last study case the influence in the aerodynamic behavior of the lam-
inar to turbulent transition location is studied for the airfoil profile family
NACA634xx. Following the low turbulence wind tunnel in which measurements
were acquired, the turbulence intensity in the modified n9 transition model is set
to 0.1%, obtaining a critical amplification factor of nC = 8.1486. Simulations
with a forced laminar to turbulent transition have the boundary layer tripped
at 0.03c. The Reynolds number in both measurements and simulations is 3.106
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Figure 5.28: Experimental lift compared against VI simulations running with
and without tripped boundary layer. Airfoil family NACA 634xx with 15% and
21% of the chord in thickness, Reynolds 3.106.

Viscous-inviscid simulations running the transition model are in better agree-
ment with experimental lift data around CLMAX

, Figure 5.28. In particular for
the airfoil with 21% thickness, for which there is a significant improvement of the
lift predictions after separation takes place. For thicker airfoils the early forced
transition creates a overpredicted boundary layer thickness that promoves an
early trailing edge separation, which forces a CL underpediction around the
CLMAX

position.
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Figure 5.29: Experimental drag compared against VI simulations running with
and without tripped boundary layer. Airfoil family NACA 634xx with 15% and
21% of the chord in thickness, Reynolds 3.106.
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In terms of drag, Figure 5.29, at low angles of attack the VI code with
the transition model predicts a larger total drag coefficient, in comparison with
tripped boundary layer computations in which the flow is almost fully turbulent.
However, the friction drag has a larger value under turbulent flow conditions
than under laminar, due to the larger shear stresses created by turbulent velocity
fluctuations. Therefore, the higher total drag predicted in the free transition
simulations is related with a larger increment in pressure drag if compared with
the decrement of friction drag due to the existence of a larger region under
laminar flow.
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Figure 5.30: VI prediction of the laminar-turbulent transition location. Airfoil
family NACA 634xx with 15% and 21% of the chord in thickness, Reynolds
3.106.

A faster upstream movement of the transition location is obtained for the
thinner airfoil geometry, see Figure 5.30. The largest difference appears at
α = 7◦, the thinner airfoil presents transition at 0.03c while the thicker one
presents it at 0.33c. Differences between both transition location are reduced
as the angle of attack increases. At high angles of attack both airfoils present
the same transition location at 0.015c.
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Summary of steady airfoil computations

A validation of the steady two dimensional version of the VI interactive
boundary layer code against experiments and EllipSys2D computations has been
presented in this section for the airfoils NACA 65415 and LS(1)-0413. A good
accuracy of the lift prediction has been obtained although at high angles of
attack there is a tendency to overpredict it. Drag predictions are slightly un-
derpredicted in some of the cases, probably due to the tripped boundary layer
implemented in computations. In terms of pitch moment coefficient a fairly
good agreement is obtained with a tendency to underpredict it in comparison
with experiments.

The influence of airfoil thickness variations in the aerodynamic performance
of the NACA 63-4xx has been studied, as well as the capability of the VI inter-
active code to predict this variations. The VI code appears to be more sensitive
to thickness variations than EllipSys2D, although the predicted decrease in lift
during stall conditions is too light if compared with experiments. The airfoil
thickness has the effect of forcing an earlier and smoother lift stall. In terms of
drag, the viscous-inviscid code underpredicted it at low angles of attack if com-
pared with EllipSys computations, although at high angles of attack differences
are reduced.

The effects of Reynolds number in the aerodynamic forces have been studied
for a NACA 4412. Further, the capability of the code to predict these effects
has been benchmarked against experiments. Excellent predictions of CNMAX

and α(CN=CNMAX ) and their variation with Reynolds number are obtained. In

terms of tangential force and pitch moment coefficients the agreement between
predictions and experiments is good until stall is reached, after which their
values are over predicted, although the right tendency is captured.

Simulations with the viscous-inviscid solver running the modified e9 transi-
tion model have been presented in this section, showing the great importance
of the transition location in order to predict aerodynamic lift and drag forces,
specially in thick airfoil computations. An early transition location influences
an overpredicted boundary layer thickness, forcing an early stall. Whereas a
late transition location has the opposite effect, delaying stall and predicting a
higher lift.
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5.3 Steady airfoil computations with trailing edge

flap

This section presents a study of the influence of the trailing edge flap on the
aerodynamic behavior of two different airfoils, NACA 63418 and NACA 4412.
Lift and drag polars are compared for different flap deflections. More in detail
comparison is done analyzing the airfoil surface pressure distribution and which
is the TEF effect on it.

As a first study case, the NACA 63418 is doted with a smooth curved trailing
edge flap. The length of the flap is 10% of the airfoil chord and there is no gap
between the main airfoil and the flap, Figure 5.31. The flap hinge x location is
0.9c while the y hinge location is 0. Four flap deflections have been simulated:
β = 15◦, β = 10◦, β = 5◦ and β = 0◦. Laminar to turbulent transition is forced
at 0.03c from the leading edge.
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Figure 5.31: NACA 63418 geometry with 10% curved flap. Flap deflections
β = 15◦, β = 10◦, β = 5◦ and β = 0◦.

In terms of lift performance, Figure 5.32, the TEF translates the lift curve
to the left, obtaining a maximum gain in lift between 10 to 15 degrees of angle
of attack for all the flap deflections. The rate at which the lift increments due to
the flap is reduced with its downward deflection. Previous studies showed how
the rate of increment in lift created by the flap is reduced with the downwards
deflection at high angles of attack in stalled conditions, [61]. This tendency
is not followed by the present simulations performed with the VI solver. This
could be due to the light stall characteristics of the NACA 63418.

The TEF increases slightly the drag coefficient with its downward deflection
due to the higher obstruction objected against the freestream flow, see Figure
5.33.

Analyzing the predicted surface pressure distributions, Figures 5.34. The
flap alters the entire airfoil loading, not only influencing the trailing edge vicin-
ity. Its overall effect in the surface pressure increases with the deflection angle
until the separation position moves closer to the nose of the airfoil. At low
angles of attack, Figures 5.34(a) and 5.34(b), the pressure peak is clearly af-
fected by the flap position, increasing in absolute value with the downward flap
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Figure 5.32: Lift force coefficients. NACA 63418, Reynolds 1.5106. 10% curved
flap with deflections β = 15◦, β = 10◦, β = 5◦ and β = 0◦.
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Figure 5.33: Lift versus force coefficients. NACA 63418, Reynolds 1.5 106. 10%
curved flap with deflections β = 15◦, β = 10◦, β = 5◦ and β = 0◦.

deflection. At high angles of attack, when the flow is vastly separated, Figure
5.34(d), the TEF influence on the suction surface is reduced, specially in the
separated region, although it does not vanish totally.

Lift predictions of the viscous inviscid interactive solver are compared against
inviscid panel method computations in Figure 5.35. The panel method is imple-
mented with a constant source distribution and a parabolic vorticity distribution
around the airfoil contour. As the flap deflection increases the differences be-
tween the potential and the VI predictions grow in magnitude. Differences arise
do to the relatively small Reynolds number of 1.5 106 used in the VI compu-
tations, while the potential panel method solution corresponds to an infinite
Reynolds number. Further the panel method in itself is not capable of predict-
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Figure 5.34: Surface Pressure distribution around a NACA 63418. Reynolds
1.5 106. Incidence angles (a) 3◦, (b) 8◦, (c) 14.5◦ and (d) 20.5◦. 10% curved
trailing edge flap with deflections β = 15◦, β = 10◦, β = 5◦ and β = 0◦.

ing separated flow, making the inviscid lift predictions diverge more an more
from the viscous ones after separation takes place.

In order to gain a deeper understanding of the influence of a trailing edge
flap in stall conditions, a NACA 4412, with deeper stall characteristics than the
previous airfoil is simulated. A 10% of the chord length curved flap has been
implemented with a hinge x location 0.9c and a hinge y location 0c. Four flap
deflections have been simulated: β = 15◦, β = 10◦, β = 5◦ and β = 0◦, see
Figure 5.36. The Reynolds number is set to 1.106 while the laminar-turbulent
transition is forced at 0.05c.

Downward deflections of the flap create an increment in the lift force, moving
the lift curve to the left as the flap angle increases, Figure 5.37. The influence of
the flap influence on lift performance varies as a function of the angle of attack.
Dividing the lift curve in three regions for a better understanding of the flap
effects:

• The linear lift region, low angles of attack. In this region the rate at
which the lift increments decreases with the downwards deflection of the
flap. Differences in lift remained approximately constant in function of α
until separation appears on the rear side of the upper surface.
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Figure 5.35: Lift curves predicted by VI model at Reynolds 1.5 106 and the
potential panel method. NACA 63418. 10% curved flap with deflections β =
10◦, β = 5◦ and β = 0◦.
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Figure 5.36: NACA 4412 geometry with 10% curved flap. Flap deflections
β = 15◦, β = 10◦, β = 5◦ and β = 0◦.

• The second region is located around CLmax
. Here the lift increment

due to the flap deflection is maximum. As the flap deflection increases,
α(CL=CLMAX ) moves to the left, reaching stall at lower angles of attack.

• The third region includes the deep stall area. In this region differences in
lift between flap deflections decrease considerably.

In terms of drag, Figure 5.38, the flap increases its value at high angles of
attack while no clear effect is seen at low angles of attack.
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Figure 5.37: Lift force coefficient. NACA 4412, Reynolds 1 106 . 10% curved
flap with deflections β = 15◦ β = 10◦ β = 5◦ and β = 0◦.
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Figure 5.38: Lift versus drag force coefficient. NACA 4412, Reynolds 1 106.
10% curved flap with deflections β = 15◦ β = 10◦ β = 5◦ and β = 0◦.

The flap influence is not only localized to the trailing edge region. The
TEF affects the pressure distribution all around the airfoil surface. Its influence
increases with α until αCL=CLMAX

and decrease after stall is reached. Analyzing
the upper and lower surfaces and the trailing edge separately, we may conclude:

• Changes in the loading of the trailing edge. The loading of the pressure
side of the trailing edge increases with the downward flap deflection due
to the higher bending of the streamlines. A larger obstruction is presented
against the freestream inflow. In the suction side of the trailing edge, pres-
sure changes due to the flap deflection are not as large as in the pressure
side.

• Changes on the suction side. The suction peak increases in absolute value
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with the downward deflection of the flap, see Figures 5.39(a) and 5.39(b).
The suction surface load increases between the leading edge and the onset
of separation in all the cases with the downwards flap deflection. The
flap has a smaller influence inside the separated region, although it affects
the separation location, downwards flap deflections retard the onset of
separation, see Figures 5.39(b) and 5.39(c). This effect increases with
the downward position of the the flap and it vanishes at high angles of
attack. In the case presented in Figure 5.39(d), where the airfoil is almost
fully separated, the flap has no influence in the location of separation and
differences in the loading of the suction side are reduced drastically.

• Changes on the pressure side. Except for the trailing edge area, discussed
earlier, the pressure side of the airfoil remains practically invariable to flap
deflections.
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Figure 5.39: VI solver predicted surface pressure distribution for a NACA 4412.
Reynolds 1 106. Incidence angles (a) 3◦, (b) 8◦, (c) 14.5◦ and (d) 20.5◦ re-
spectively. Flap length 10%. Flap deflections β = 15◦ β = 10◦ β = 5◦ and
β = 0◦.

Summary of steady airfoil computations with Trailing Edge Flap

The capability of the viscous-inviscid interactive code to predict the trailing
edge flap influence in the aerodynamic performance of the NACA 63418 and
NACA 4412 airfoils has been presented and analyzed in this section. The VI
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interactive code has a good capability to simulate the flap influence on the airfoil
section if compared qualitatively with previous works.

In general, downward flap deflections move the lift curve to the left, in-
creasing the lift value for a giving angle of attack. The CLMAX

is translated
to lower angles of attack with the downward deflection of the flap. Differences
in lift between flap deflections are reduced at high angles of attack. The drag
force coefficient is not strongly affected by the flap angle at lower angles of at-
tack although a tendency to increase drag with the downward flap deflection is
observed at higher angles of attack.

5.4 Double wake model computations

In order to validate the double wake model, the pressure distribution around
the airfoil surface has been computed for different airfoils at different angles
of attack in stalled conditions. Double wake model predictions are compared
against experiments. The separation position at which the upper wake is shed
is in all the cases obtained from the experimental pressure distribution.

In Figure 5.40 inviscid double wake model pressure computations are com-
pared against wind tunnel measured data at high Reynolds number, Re =
6.3 106. The simulated airfoil is a NACA 4412 at 17.6 and 22.1 degrees of angle
of attack. Experimental data used for validation was published in a NACA
report by Robert M. Pinkerton, [59].

The airfoil is simulated with a wake factor, WF = 1.8, value obtained from
the linear relation betweenWF and chord to thickness ratio presented in Chapter
2, Figure 2.8. For an angle of attack of 17.6◦, the separation point in simulations
is forced at 0.5331c. The position of separation is obtained from the experimen-
tal pressure distributions. Whereas at 22.1 degrees the separation position is
forced at 0.1674c, obtained with similar procedure as in the first case.

At α = 17.6◦ a good agreement with measurements is achieved for both, the
upper and lower surface pressure distributions. The pressure peak is captured
with high accuracy and also the rate at which the pressure recovers until sepa-
ration is reached. In the case of α = 22.1◦, a fairly good agreement is obtained
for the suction surface, despite the fact that the absolute value of the pressure
peak is slightly under predicted.

In Figures 5.41(a), 5.41(b) and 5.41(c), wind tunnel measurements of the
surface pressure distribution around a GA(W)-1 airfoil are compared against
the double wake model predictions. Experiments were carried out at the NASA-
Langley Wind Tunnel installation [15]. The Reynolds number in experiments
was 6.3106 and a boundary layer trip was placed at 0.08c from the leading edge.
Comparisons are presented herein for the following angles of attack: 19.06◦,
20.05◦ and 21.14◦.

The wake factor used to compute the wake length in the double wake model
is taken from Figure 2.8, WF = 1.58. Computations at α = 19.06◦, with a forced
separation location at 0.5986c, exhibit excellent agreement with experiments for
both the upper and lower surfaces. In the case that α = 20.05◦, the separation
position is fixed at 0.4889c and a perfect agreement with the experiments is
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Figure 5.40: NACA 4412 airfoil at Reynolds 6.3106 (a) α = 17.6◦, (b) α = 22.1◦

achieved. In deep stall conditions, α = 21.14◦, the separation position is set at
0.1513c, good agreement is attained for the suction surface with a slightly under
predicted pressure peak. The pressure peak increases with the angle of attack
until deep stall is reached, after which it decreases.

In the last study case, Figure 5.42, a Cylinder is chosen. The thickness over
chord ratio of a cylinder is equal to unity. Experiments used for validation [62]
were performed at a Reynolds number of 6.7 105.

The separation point was forced at 0.2612c for both the upper and the lower
surface. The wake factor obtained from Figure 2.8 was WF = 1.2. A good
overall agreement was obtained for the pressure distribution. Note that in this
case the separation area has the same pressure as the ambient flow.

In Figures 5.43, double wake flow computations around a GA(W)-1 airfoil
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Figure 5.41: GA(W)-1 airfoil at Reynolds 6.3106, (a) α = 19.06◦, (b) α = 20.05◦

and (c) α = 21.14◦
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Figure 5.42: Circular cylinder at Reynolds 6.7 105.

undergoing separation are presented. Velocity vector field, streamlines and po-
tential field are plotted for the airfoil at an angle of attack 21 degrees. Separation
is fixed to occur at 0.1513c, the position in which the double wake is shed. The
influence of the linear vorticity and constant source distribution around the air-
foil together with the two constant vorticity wake distributions is computed on
a Cartesian mesh generated around the airfoil contour.

Studying the figures below, the flow field can be divided in different areas
as function of the flow characteristics. Around the leading edge the velocities
are low, as seen from the velocity vectors plot, Figure 5.43(b). Some particles
will choose to follow the streamlines to the suction side of the airfoil while
the others will follow them to the pressure side, see Figure 5.43(a). The ones
following streamlines to the suction side of the airfoil will increase gradually its
velocity reaching its maximum around the outer side of the separation wake. In
the inner side of the separation shear layer the velocities are negative and really
close to zero, this tendency it is clear from the potential flow distribution, see
Figure 5.43(c). The particles following the streamlines to the pressure side of
the airfoil will keep a constant and relatively low velocity until they reach the
trailing edge, after which will follow the trailing edge wake increasing gradually
their velocity.

In Figure 5.44 are plotted streamlines around a GA(W)-1 airfoil at 19, 20 and
21 degrees of angle of attack. The separation wake changes its shape as function
of the angle off attack. When the flow hits the airfoil at 19◦ the separated wake
has a bubble shape. As the angle of attack increases, the separation location
moves upstream the airfoil surface and the two wakes that forms it increase the
gap between each other on its rear side. At 21 degrees the bubble shape has
slowly turned into the characteristic wake geometry behind a fully separated
airfoil section.
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Figure 5.43: GA(W)-1 α = 21◦, (a) Streamlines, (b) Velocity flow field ,(c)
Potential flow field
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Figure 5.44: GA(W)-1, Streamlines, (a) α = 19◦ ,(b) α = 20◦ ,(c) α = 21◦
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Summary of double wake validations

In the present section a validation of the double wake model pressure com-
putations against experimental airfoil pressure data has been presented. An
excellent agreement is obtained when the separation location is known in ad-
vance.

A linear relation has been found between the chord to thickness ratio and
the wake factor, WF , which relates the wake height to the wake length.

Comparisons have been carried out for different airfoils types, not all pre-
sented herein for simplicity. Some comparisons were carried out against CFD
computations due to the lack of more experimental pressure distribution data
for airfoils at high angles of attack. Concluding that if the separation point is
known the agreement is good in all the cases. A linear relation between WF

and chord to thickness ratio was not found in these cases.

Streamlines, velocity vector and potential flow fields have been computed
in a Cartesian mesh generated around the airfoil. The influence of the double
wake model in the fluid flow that surrounds the airfoil has been analyzed.

Future work has to be done in order to accurately find the separation position
in a semi empirical way or using the boundary layer equations.
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5.5 Unsteady airfoil computations

Dynamic stall conditions affects actively the aerodynamic performance of the
wind turbine rotors. Pitch regulated machines will operate under stall depend-
ing on the wind conditions while stall regulated and active stall machines will
always operate under dynamic stall conditions. Dynamic stall in a wind turbine
blade can be induced by: rotor yaw, blade control dynamics, flow control devices
or changes in inflow conditions due to the turbulent nature of the atmospheric
boundary layer. Most of these unsteady variations in flow characteristics are
seen from the blade as a temporal change of angle of attack. Hence accurate
predictions of the blade dynamic loads are of great importance in order to design
new wind turbines blades with lower cost and better performance.

To validate the unsteady version of the viscous inviscid interactive model
under dynamic performance, including dynamic stall conditions, comparisons
of the predicted aerodynamic coefficients CL, CD and CM , are carried out and
compared to wind tunnel experiments. Simulations are performed by keeping
the airfoil at a fixed position, obtaining the change of the angle of attack accord-
ing to variations of the freestream flow direction as function of time. Different
values of the mean angle of attack around which the airfoil oscillates, αm, var-
ious amplitudes of oscillation, A, as well as reduced frequencies are chosen in
order to cover dynamic airfoil performance under a wide span of inflow condi-
tions. Computations are run until a stable solution is reached, usually within
no more than a couple of complete loops. In order to force an early turbulent
boundary layer, in all the cases the laminar to turbulent transition is forced at
0.05c from the leading edge. A modified e9 method is used when the transition
point moves upstream the boundary layer trip position. The simplified single
wake model is used in all the computations.

As a first validation test case the NACA 0012 profile is chosen, the profile
is subjected to an harmonic pithc oscillation around αm = 4◦, with amplitude,
A = 6, and reduced frequency, kA = 0.021, see Equation 5.1.

kA =
π fA c

U∞

(5.1)

In Figure 5.45, the experimental lift coefficient for static case and oscillating
airfoil carried out by Krzysiak and Narkiewicz are compared against predictions
of the VI code and static measurements carried out at the Sandia National
Laboratories. The static experiments from Sandia Labs were carried out in
the Memorial Wind Tunnel at Wichita State University [63]. Krzysiak and
Narkiewicz experiments were carried out at the Institute of Aviation wind tunnel
in Poland [53]. A counterclockwise loop is formed due to the attached nature of
the boundary layer, unsteady terms on the boundary layer equations together
with the influence of the unsteady vortex wake induce the hysteresis effects.
These effects grow with the frequency of the oscillating movement, at higher kA
differences in lift between upstroke and downstroke motion are larger.

Krzysiak static experiments presented a lower lift in the vicinity of α =
10◦ if compared with Sandia Labs measurements. The same difference can
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be appreciated comparing Krzysiak dynamic lift measurements against the VI
code dynamic lift predictions. This effect, could probably be related with their
experimental setup. Sandia Labs steady lift data falls inside the dynamic lift
curve predicted by the VI code.
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Figure 5.45: Comparison between computed and measured dynamic/static lift
data. NACA 0012 airfoil, αm = 4◦ , A = 6◦, kA = 0.021.

In regarding drag predictions, Figure 5.46(a), differences in drag between
the upward stroke and the downward stroke movement increase with the angle
of attack. Drag measurements are not available.

The pitching moment coefficient during the unsteady motion of the airfoil
indicates the energy transfer between the airfoil and its surrounding fluid. Inte-
grating the area bound by the pitching moment curve the net energy transferred
to the fluid is obtained for each cycle of the airfoil harmonic motion. Experi-
mental pitch moment data is not available for the present case.

As second study case, the NACA 0015 airfoil was chosen. Experiments
reported by Galbraith performed at the University of Glasgow are used for vali-
dation of the unsteady version of the VI code, [64]. A qualitative comparison of
the VI model capability to predict unsteady forces is done against Sørensen and
Nygreen vorticity formulated Navier-Stokes solver running a Spallart-Allmaras
turbulence model, [65].

The NACA 0015 profile follows in this case an harmonic pitch motion with
mean angle of attack, αm = 11◦, amplitude of oscillation, A = 4◦, and reduced
frequency, kA = 0.1. Two clearly differentiated hysteresis loops can be observed
in both predicted and experimental lift curves, Figure 5.47.

The first loop appears at lower angles of attack and is characteristic of at-
tached boundary layer flows, following a counterclockwise sense. The second
loop is formed from 8.5 to 15 degrees of angle of attack and it follows a clock-
wise direction. The unsteady terms of the boundary layer equations together
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Figure 5.46: Dynamic drag force and pitch moment coefficients. NACA 0012
airfoil, αm = 4◦ , A = 6◦, kA = 0.021.

with the vortex wake influence retards the appearance of separation during the
upstroke movement of the airfoil if compared with static simulations. During
the upward stroke the separation point moves from the trailing edge upstream,
while during the downwards stroke the separation position will move in the
opposite direction. The downstream movement of the separation point during
the downstroke pitching is slower than its upstream movement during upstroke.
The difference in the location of separation appears as lift variation between
both motions.
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Figure 5.47: Comparison between computed and measured dynamic lift data.
NACA 0015 airfoil, αm = 11◦ , A = 4◦ and kA = 0.1 at Reynolds 2 106

Computed CM values agree qualitatively well in comparison with the mea-
surements, being positive for the whole harmonic motion, Figure 5.48(b). CD

values are underpredicted at angles of attack between 10 to 15 degrees, Figure
5.48(a).

The same airfoil profile, NACA 0015 has also been tested at higher incidence
angles. In this case the mean angle of attack is αm = 11.37◦, with an oscillation
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Figure 5.48: Dynamic drag force and pitch moment coefficients. NACA 0015
airfoil, αm = 11◦ , A = 4◦ and kA = 0.1 at Reynolds 2 106

amplitude, A = 7.55◦ and a reduced frequency: kA = 0.102. Computed values
of normal and tangential forces and pitch moment coefficients are compared
against measurements from the already introduced experiments performed at
the University of Glasgow wind tunnel [64].

From Figure 5.49, predictions of dynamic forces around the airfoil are in good
agreement with measurements. The hysteresis loop shape around α(CN=CNMAX )
is better predicted by the Navier-Stokes model. Experiments show how the flow
fully reattaches to the airfoil surface around α = 3◦ during the downstroke
movement, creating a counter clockwise hysteresis lift loop. VI model pre-
dictions capture the counterclockwise loop at low angles of attack while the
Navier-Stokes simulations does not.

In terms of CM , VI and EllipSys2D are in good agreement at angles of attack
smaller than 15◦, although differ from measurements at α > 15◦. Positive
pitching moment values during the upstroke movement evidence that the airfoil
motion is against the aerodynamic moment induced by the surrounding fluid.
During downstroke, positive CM values state that the aerodynamic movement is
favorable to the airfoil motion whereas negative CM state that the aerodynamic
movement is against the airfoil motion.

The hysteresis effects have a favorable influence in the surface pressure gra-
dient during upstroke, retarding separation and consequently stall. During the
downstroke motion they act destabilizing the boundary layer and therefore mak-
ing more difficult its reattachment. The different location of the onset of sepa-
ration predicted during upstroke and downstroke motions for the same angle of
attack can be observed from Figures 5.50. The largest difference between the
separation location during upstroke and downstroke movements is obtained at
α = 11◦. At this angle of attack, during the nose up movement around a 10%
of airfoil chord is under separated flow. However during the nose down motion
the separated region expanded over a 50% of the chord, Figures 5.50(c) and
5.50(d).

In order to cover a wider span of airfoil profiles the asymmetric NACA
63421 is chosen as airfoil section commonly used in the wind energy industry.
Experiments were carried out in the test section of the S4 wind tunnel located at
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Figure 5.49: Comparison of CFD computations, experiments and viscous-
inviscid interactive solver of the normal, tangential forces and pitching moment
coefficients for a NACA 0015 airfoil, αm = 11.37◦ , A = 7.55◦ and kA = 0.102
at Reynolds 1.5 106.

the Institut AéroTechnique, Saint Cyr, France and reported by Amandolése [66].
Amanadolése experiments for static lift at Reynolds number 1.106 are in good
agreement with the ones reported in the book by Abbott and von Doenhoff [55]
at a higher Reynolds number, 3.106, see Figure 5.51. As Amandolése reported
on his paper, the difference could be due to the turbulence level inherent to the
wind tunnel. As the turbulence intensity increases the boundary layer becomes
more resistant to separation, obtaining higher values of lift at smaller Reynolds
number. The experiment realized at Reynolds 3 106 reported by Abbott was
performed in a low turbulence wind tunnel, TI < 1% , while the one reported
by Amandolese was performed with TI = 1.1%. Experiments carried out by
Amandolese are compared herein against VI computations at Reynolds 3.106

with a boundary layer tripped at 5% of the chord from the leading edge.

Figure 5.51 shows the lift coefficient as a function of α for the airfoil pitching
with amplitude A = 8◦ around three different mean angles of attack 8◦, 12◦, 16◦

with a reduced frequency kA = 0.0785. In the figure, for clarity, the CL values
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Figure 5.50: VI interactive model predicted upstroke and downstroke surface
pressure distribution coefficient during an harmonic pitch motion of a NACA
0015, αm = 11.37◦, A = 7.55◦, kA = 0.102. Reynolds 1.5 106.

have been moved 15◦ towards the positive α direction for the αm = 12◦ case and
30◦ for the αm = 16◦ case. As the mean angle increases, the counterclockwise
hysteresis loop, characteristic of low angles of attack, is reduced, disappearing
completely for the case with αm = 16◦. In this case the flow is separated
during the whole airfoil motion, forming a unique clockwise loop. Although the
viscous-inviscid computations have the right tendency in all the cases, predicted
lift variations between upstroke and downstroke movements are smaller than
measured ones.
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Figure 5.51: Comparison between computed and measured dynamic lift for a
NACA 63421 airfoil, αm = 8◦, αm = 12◦ and αm = 16◦. A = 8◦, kA = 0.0785,
Reynolds 3.106.

The maximum lift and its angle of attack are chosen for a more quantitative
study of the dynamic effects on the lift curve. In all the cases presented in Figure
5.51 an overshoot of the maximum lift coefficient is predicted if compared with
the static case. Defining it as follows,

OV R =
max

(

CDynamic
L

)

−max
(

CStatic
L

)

max
(

CStatic
L

) · 100 (5.2)

For the predicted dynamic lift curve with a mean incidence angle of 8◦ the
overshoot is 18.67%, for αm = 12◦ is 25.17% and for αm = 16◦ is 28.07%.
While the OVR values calculated from Amandoleses experiment were 28.52%,
33.48% and 30.81%. Consequently an underprediction of the dynamic overshoot
is obtained with the VI interactive solver. In regarding the position of CLMAX

,
a good agreement between experiments and computations is obtained for αm =
8◦. In the other two cases, αm = 12◦ and αm = 16◦, the viscous-inviscid
computations predicted the maximum lift at a higher angle of attack.

In Figure 5.52(a) dynamic drag force coefficients for the different mean angles
of attack computations are presented. At low angles of attack drag differences
between both motions are not so important. As α increases, drag differences
between the upstream and downstream motions increase considerably. No ex-
perimental drag data was available for comparison.

CM predictions are compared against measurements, Figure 5.52(b), in this
case the agreement is poor. Among others, difficulties arise in order to predict
the lower side of the loop. Experiments show the existence of a unique closed
loop while VI computations predicted three different loops.
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Figure 5.52: Dynamic drag and pitch moment coefficients for a NACA 63421
airfoil, αm = 8◦, αm = 12◦ and αm = 16◦, A = 8◦ kA = 0.0785, Reynolds 3.106.

Summary of unsteady airfoil computations

The validation of the unsteady version of the viscous-inviscid interactive
boundary layer code against experiments has been presented in this section.

Good predictions of the dynamic lift are obtained in most of the cases al-
though drag and pitching moment coefficient predictions does not compare so
good with experiments. Computations at different reduced frequencies, ampli-
tudes of oscillation as well as Reynolds number have been presented, verifying
the capability of the VI interactive solver to compute different unsteady flow
conditions.

In terms of lift, the hysteresis loop formation has been analyzed. Two loops
with opposite directions are formed in function of the flow nature around the
airfoil. When separated flow is present in the suction surface of the airfoil,
the hysteresis loop follows a clockwise direction, obtaining a higher lift during
upstroke and lower during downstroke. When the flow is fully attached to the
surface, the hysteresis loop has a counterclockwise direction. The shape of the
hysteresis loops varies with the amplitude and the reduced frequency of the
motion.

5.6 Unsteady airfoil computations with trailing

edge flap

5.6.1 Validation against wind tunnel experiments

The unsteady aerodynamic loads on a NACA0012 airfoil with a moving trailing
edge flap are computed using the unsteady version of the viscous-inviscid inter-
active solver and are validated against measurements carried out by Krzysiak
and Narkiewicz in the trisonic N-3 wind tunnel located at the Institute of Avi-
ation Warsaw, Poland [53]. The validation is focused on the aerodynamic effect
in CL and CM of the shift angle between the harmonic motion of the airfoil and
flap.
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Figure 5.53: NACA 0012 geometry with a 20% of the chord plain trailing edge
flap

The Reynolds number is fixed at 1.63106 in both experiments and computa-
tions. A rigid trailing edge flap is implemented with a length 20% of the airfoil
chord, Figure 5.53. In the experimental setup there was a small gap between
the flap and the airfoil while in the numerical model the gap has been obvied.
The reduced frequency of the airfoil harmonic motion is kA = 0.021, while the
flap oscillation doubled this frequency, kF = 0.042.

The viscous-inviscid integral boundary layer solver is used in its unsteady
version with the simplified single wake vortex model. The time step used in
all the cases presented herein is dt = 0.2. Suction side turbulent transition is
forced at 0.05c from the leading edge.

Comparisons against experiments for the current airfoil performing an har-
monic pitch motion without flap are presented and discussed in the former
Section 5.5. In all the VI simulations, due to errors in prescribing accurately
the motion of the model during experiments, the values of the phase shift and
flap amplitude reported by Krzysiak had to be adjusted for the best fitting of
the measured airfoil-flap relative motion. These values of the airfoil/flap relative
motion are used as input in the VI simulations. It is probable that the lack of
accuracy of the computations is partially due to differences in the airfoil/flap
motion between experiments and simulations and not to the computations itself.

The equation that governs the airfoil angle of attack can be written as follows,

α = αm +∆α sin (2 kA t)) ; (5.3)

The flap deflection follows,

β = βm +∆β sin (2 kF t− ϕ) ; (5.4)

αm and βm are the mean values of the angle of attack and flap deflection
around which the airfoil and flap oscillating motions are performed. ∆α and
∆β are the amplitudes of the airfoil and flap harmonic movement respectively.
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ϕ is the phase shift between the airfoil and the flap. In the case that ϕ = 2π
there is not delay between airfoil and flap motions.

In all the cases presented herein the flap reduced frequency is twice the airfoil
reduced frequency. The airfoil / flap system presents four different relative
movements. These relative motions are sketched in the following Figure 5.54,

Figure 5.54: Airfoil respect to flap relative motions

As a first study case, the phase shift ϕ = 148◦ is chosen. The phase shift used
in computations is modified to ϕ = 135◦ in order to fit the measured airfoil /
flap relative motion. In Figure 5.55 a comparison between experiment measured
and simulations values of the β and α angles is presented. Predictions of the lift
force and pitch moment coefficients are also compared against measurements.

In terms of lift, a good agreement is obtained at intermediate angles of
attack although around the maximum incidence angle, α = 10◦, the computed
lift is slightly over predicted. In the upper figure it is possible to distinguish a
difference between experimental and computational values of the β/α relation
at angles of attack after position 1, following the loop direction. In this region,
the flap deflection during experiments is more upwards in comparison with the
input used in simulations, reducing the profile lift. This can be one of the
possible explanations of the lift overprediction. Already discussed in Section 5.5
is the low lift value measured in experiments around 10 degrees, this could be
the second cause for the lack of agreement at high angles of attack. The loop
intersection region is predicted with a high accuracy in this case.

In terms of pitching moment coefficient, which is always more difficult to
predict than the lift, predictions follows similar tendencies as measured values.
From Figure 5.55 negative flap deflections are related to higher positive values of
the pitch moment and vice versa. In an upstroke pitch movement of the airfoil,
the flap undergoes both upstroke and downstroke motions, see Figure 5.54.
The flap performs the same motions during the airfoils downstroke. Analyzing
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separately each of the relative motions: From position 1 to 2, the airfoil is under
upstroke movement and the flap is moving downwards. The flap influence is
acting against the airfoil aerodynamic movement, counterclockwise direction,
hence decreasing CM . From position 2 to 3, the airfoil is moving downwards
at the same time that the flap moves upwards. The flap effect is opposite to
the airfoil motion, clockwise direction, CM is increased. From position 3 to 4,
both the airfoil and flap are in downstroke. The flap effect is favorable to the
aerodynamic motion of the airfoil, in the counterclockwise direction, reducing
CM . From position 4 to 1, both the airfoil and flap are in upstroke, the flap
influence is favorable to the motion of the airfoil, clockwise direction, increasing
CM . The net amount of energy transfered from and to the fluid can be obtained
integrating the CM curve.
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Figure 5.55: Unsteady experiments against viscous-inviscid unsteady solver,
ϕ = 148◦. Experiments (circles), VI computations (solid lines) .

In the next study case, Figure 5.56, the phase shift reported by Krzysiak is
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Figure 5.56: Unsteady experiments against viscous-inviscid unsteady solver,
ϕ = 206◦. Experiments (circles), VI computations (solid lines).

ϕ = 206◦ while the one used as input for the VI simulations is ϕ = 196◦. The
overall lift predictions are in good agreement with experiments. Although a lift
over prediction is obtained during the downstroke motion of the airfoil, between
stations 2 and 3. The overprediction of lift at αCLMAX

influences the prediction
of a higher lift during the airfoils downstroke motion between stations 2 and 3.
The unsteady terms of the θ momentum and kinetic energy shape parameter
equations act as a boundary layer memory, forcing in this case the lift to remain
at a high value.

The predicted pitch moment coefficient is also in good agreement with mea-
sured data, although slightly underpredicted during the downward stroke. Again,
the most negative deflections of the flap are related with maximum positive val-
ues in the pitching moment curve, positions 1 and 3. While the highest positive
deflections of the flap are related with the minimum CM values.
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Figure 5.57: Unsteady experiments against viscous-inviscid unsteady solver,
ϕ = 298◦. Experiments (circles), VI computations (solid lines).

As a third study case the simulations shift angle is set to ϕ = 280◦ while
the experiments reported a ϕ = 298◦. An excellent agreement is obtained in
this case between predicted and experimental lift values. Although the lift is
slightly over predicted around α = 5◦ where the loop intersection takes place. A
better agreement than for the first two cases is obtained around the maximum
lift. The VI interactive code predicts better slow changes in the α/β relation.

The pitching moment coefficient is predicted with a good accuracy by the
VI interactive code. The area enclosed by the pitch moment curve is smaller in
this case than in previous cases. This indicates that the net energy transfered
to the fluid in a cycle with the shift angle ϕ = 280◦ is lower than with ϕ = 135◦

and ϕ = 196◦ .

No measured data of the β and α angles, neither pitch moment coefficient
values are available for the next case, Figure 5.58. Although it is of great interest
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Figure 5.58: Unsteady experiments against viscous-inviscid unsteady solver,
ϕ = 357◦. Experiments (circles), VI computations (solid lines).

to see how the lift coefficient behaves when there is almost no phase lag between
the airfoil and the flap motions, ϕ = 357◦. As in most of the study cases shown
in the present section, CLMAX

is in overall overpredicted in its absolute value,
although the tendencies are well captured. Predicted lift during downstroke is
in this case in good agreement with measurements, although small differences
appear around station 3.

In terms of CM , the area covered by the curve is larger than previous cases,
implying that in the case that kF = 2kA the net energy exchanged with the fluid
is larger when there is no phase delay between airfoil and flap motions. The
larger is the difference in the flap position between the upstroke and downstroke
movements of the airfoil the larger is the net energy transfered from and to the
fluid if a constant angular velocity is assumed.

In the last study case, the capability of the code to simulate dynamic deep
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Figure 5.59: Unsteady experiments against viscous-inviscid unsteady solver,
ϕ = 343◦. Experiments (circles), VI computations (solid lines).

stall conditions influenced by a moving trailing edge flap is exposed, Figure 5.59.
Simulations and experiments have the same phase shift, ϕ = 343◦. Simulations
predicted a lighter stall than experiments between stations 1 and 2. Negative
flap deflections induced lower pressure gradients in the suction side of the air-
foil, keeping the external streamlines closer to the airfoil surface, and therefore
retarding slightly separation. The lift force is clearly over predicted during the
downwards motion of the profile.

In terms of pitch moment coefficient, an important disagreement between
measured and computed values is obtained from 10◦ to 16◦, in both the up-
stroke and downstroke movements of the airfoil, the predicted pitch moment
had opposite sign than the measured one.
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5.6.2 Damping inflow disturbances created by the iWings

system

In order to validate the computer tools developed in the framework of the ATEF
project, a set of experiments will be carried out at DTUs red wind tunnel in the
near future. The experiments will involve a pair of oscillating wings situated on
the wind tunnel inlet. Such a wings will be referred from now on as iWings. The
iWings oscillation creates a disturbance on the flow seen by the main airfoil,
which is located a couple of chords downstream. A controlled trailing edge
flap is used in order to reduce the lift variations on the main wing induced by
iWings flow disturbances. The experiments performed at DTUs red wind tunnel
will measure the aerodynamic characteristics of a specific airfoil section under
different flow conditions: Reynolds number, angle of attack, pitching reduced
frequency, iWings pitching frequency and amplitude. The wind tunnel setup has
been simulated with the VI interactive solver in order to probe the capability
of the trailing edge flap to reduce flow disturbances and the ability of the VI
code to simulate it. Computations will give a valuable knowledge useful for the
planning of future experiments.

Wind tunnel walls are modeled using panels with constant source distribu-
tion. Each side of the wall is modeled with fifty panels. A coarse distribution
is implemented far away from the airfoil, refining the surface tunnel mesh in
its vicinity. An inverse hyperbolic tangent function is used in order to generate
the wind tunnel panels distribution. The upper and lower tunnel walls have the
same panel distribution, obtained as follows,

xT =
arctan (xTc/rWT )

max (arctan (xTc/rWT ))

xOUT − xIN

2
(5.5)

where xT is the position of the panels edges with the arctan distribution,
xTc are the edges positions if panels with constant length are assumed, rWT is
the panel reduction factor of the surface mesh and is set to rWT = 1.15, xOUT

and xin are respectively the x coordinates of the wind tunnel inlet and outlet.

The iWings are represented by two static point vortex shedding vorticity
downstream of them in form of trailing edge vortex wakes. The steady CL curve
of a NACA 0015 at Reynolds 5.105 is used for obtaining the correct strength of
the shed vortices via Kutta-Joukowski theorem,

L = ρ U∞ Γ → Γ =
1

2
CL (5.6)

ΓwiW = Γt−1
SiW − Γt

SiW (5.7)

A screenshoot of the computational setup is presented in Figure 5.60. Where
the iWings are located at a position x = −1.2 and the main airfoil aerodynamic
center is located at x = 0. The iWings and airfoil downstream convecting
vortices are presented in dark and light filled circles respectively.
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Figure 5.60: Computational Wind Tunnel + iWings setup with downstream
convecting vortices. NACA 63418.

The ability of the TEF to minimize iWings induced lift variations on the
main wing is presented herein. A PI controller is used in order to maintain
the lift at a constant value. Both iWings are set to pitch harmonically with
the same motion, creating in this way a disturbance in the main airfoil. The
pitching motion of the iWings is governed by the following equation,

χ = χm +∆χ sin (2 kiW t)) (5.8)

Where χm is the main iWings angle, ∆χ is the amplitude of the motion and
kiW is the iWings reduced frequency.

The PI controller computes the necessary flap deflection to maintain a con-
stant lift on the main wing. The following algorithm is used as controller,

βt = βt−1 − kPI (C
t−1
L − C0

L) (5.9)

Where C0
L is the reference lift value of the main airfoil, Ct−1

L is the value of
the lift coefficient on the last time step and kPI is the PI controller constant
that relates changes in lift with flap deflections needed to compensate it.

The main airfoil is fixed at 5 degrees of angle of attack, αm = 5◦. The iWings
are set to pitch harmonically with main angle of attack, χm = 0◦, amplitude,
∆χ = 8◦ and frequency, fiW = 1. The TEF deflection is regulated by the PI
controller with constant kPI = 5. In the Figure 5.61 lift coefficient variations are
shown in function of time step for the iWings pitching. At first the flap deflection
is set to zero, turning off the trailing edge PI controller. When tstep = 3050 is
reached, the PI controller is activated and the flap deflected following Equation
5.9 in order to maintain a constant lift.

Lift variations are reduced drastically due to the effect of the controlled
trailing edge flap. Variations in lift are still present, although with a smaller
amplitude and higher frequency than the ones created by the inflow perturba-
tions. A better controller, for example a PID, should be used in order to totally
reduce lift variations.
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Figure 5.61: iWings with PI controlled TEF. NACA 63418 airfoil, α = 5◦,
iWings χm = 0◦, ∆χ = 8◦, fiW = 1, flap PI rF = 5.

Flap deflection in comparison to the iWings angle of incidence is presented
in Figure 5.62. Smaller flap deflections are needed to keep constant the CL value
when the iWings are pitching upwards compared with its downwards movement.
This difference is related with the appearance of separated flow on the main
airfoil suction surface. For a Reynolds number of 1.5 106 for the main airfoil,
separation appears on its rear side at an angle of attack of 9◦. At 13◦ almost a
35% of the airfoil chord is under separated flow. In the present setup, although
the airfoil geometric angle is fixed at 5◦, the pitching iWings act bending the
streamlines seen by the main airfoil, increasing its angle of attack. Forcing
in this way the flow to separate on the trailing edge vicinity. The rate of lift
increment decreases with the increasing amount of separated flow, hence smaller
deflections of the TEF are needed to keep the lift at a constant value. That’s
why in the case in which the main airfoil is fixed at 0◦ with the same motion
amplitud of the iWings, only small differences appeared between positive and
negative values of the PI controlled flap deflections. Such differences are related
with the non symmetric airfoil geometry.
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Figure 5.62: iWings pitching with χm = 0◦, ∆χ = 8◦,fiW = 1 and PI controlled
flap deflection with constant rF = 5
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Summary of unsteady computations with TEF

The capability of the unsteady interactive viscous-inviscid boundary layer
code to simulate an airfoil at moderate angles of attack with a moving trailing
edge flap has been proven. Validations of the VI code predictions have been
presented against experiments where the airfoil and flap move harmonically
with different phase delays. Disagreements are obtained at angles of attack
around α = 10◦, probably due to the experimental setup. The model accuracy
to predict unsteady forces of the airfoil-flap system is in doubt during stall
conditions.

The ability of the unsteady VI interactive code for simulating the capability
of the TEF to compensate changes in lift produced by inflow variations is proven.
Although a better TEF controller should be implemented in order to obtain a
total reduction in lift variations. Further analysis of the influence of the iWings
amplitude and pitching frequency will be carried out using the VI interactive
boundary layer code. In the near future, wind tunnel measurements will be used
for the validation of the code.

5.7 Parametric study of the Quasi3D viscous-

inviscid method

A parametric study of the influence of a rotational boundary layer in the aerody-
namic performance of an airfoil section has been carried out using the Quasi3D
viscous-inviscid method and it is presented in this section.

A recapitulation of the adimensional variables used in the present study is
done. The variables of interest are: c, r,Ω, Qw. In non-dimensional form can
be reduced to two model variables: The ratio between the chord length and the
radial position, ls = c/r and the ratio between the rotational speed and the
relative velocity, RO = Ωr/Urel. Where Urel is function of Ω and Qw. In this
way the four variables of interest are reduced to two adimensional parameters
ls and RO, basis of our parametric study.

Urel =

√

((1 + a′) Ωr)
2
+ ((1− a)QW )

2
(5.10)

The study presented herein is divided in five subsections. In the first and
second, lift and drag curves will be analyzed as a function of the rotational
parameters ls and RO for the S809 airfoil at Reynolds number 1.106. A third
section is dedicated to rotor performance under rotational effects, an artificial
rotating blade has been simulated and the effects of rotation are depicted in
function of radial position and tip speed ratio. A study of the influence of rota-
tion in the boundary layer characteristics is presented in the fourth subsection.
Finalizing this section an order of magnitude study of Coriolis and centrifugal
forces in the rotating boundary layer is presented.
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5.7.1 Influence of rotation on lift performance of a S809

airfoil

To demonstrate the influence of the rotating effects in an airfoil section, a study
of the aerodynamic performance of a S809 airfoil subjected to rotation has been
done and it is presented herein. Simulations Reynolds number is 1.106. The
boundary layer laminar to turbulent transition is forced at 0.05c from the leading
edge.
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Figure 5.63: Lift curves for RO 0.6, 0.7, 0.8 and 0.9. c/r from 0.1 to 0.9.
Reynolds 1.106.

In Figures 5.63 lift variations in function of the ratio c/r are shown for four
values of the rotational number, RO. Generally as RO increases, maintaining
a constant c/r ratio, the lift increases, therefore increasing CLMAX

. In a sim-
ilar way, as the ratio c/r increases, maintaining RO constant, α(CL=CLMAX )
increases, retarding stall in a similar way. After the maximum lift is reached
the airfoil stalls, being the negative lift slope for α > α(CL=CLMAX ) steeper for

larger c/r ratios. Centrifugal and Coriolis forces create a favorable pressure gra-
dient that thinners the boundary layer and retards separation. At low angles of
attack, i.e. attached flow, the rotational forces induce a thinner boundary layer.
Since separation is not involved the higher lift obtained is created due to the
lower obstruction presented by the thin boundary layer against the freestream
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flow. At higher angles of attack a delay in the separation location is predicted
due to the favorable pressure gradient generated by rotation, the thinner bound-
ary layer is more difficult to detach from the airfoil surface. A strong radial flow
present in the bottom of a separated boundary layer modifies actively the lift
characteristics of the airfoil sections. The later separation appears, the faster it
moves towards the leading edge after stall is reached, this explains the drastic
decrement in lift for α > α(CL=CLMAX ). In the cases in which the influence of

Coriolis and centrifugal forces is large enough, the flow remains attached to the
airfoil surface even at high angles of attack. In these cases lift increases linearly
with the angle of incidence avoiding stall, case RO = 0.9 & c/r = 0.9, Figure
5.63(d). Differences between lift predictions vanish with the reduction of RO,
see Figure 5.63(a). For RO < 0.4 differences in lift due to rotation effects are
inappreciable.
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Figure 5.64: Surface pressure distribution for RO 0.6, 0.7, 0.8 and 0.9. c/r from
0.1 to 0.9. Reynolds 1.106. Angle of attack, α = 12◦.

Surface pressure distributions at angle of attack 12◦ for four different rota-
tional numbers are presented above in Figure 5.64. For the rotational number
RO = 0.6, Figure 5.64(a), the influence of rotational effects in the pressure dis-
tribution is weak although grows with the c/r value. The separation position
is slightly delayed and moved towards the trailing edge for the ratio c/r = 0.9.
Changes in pressure distribution due to rotation are not significant for the lower
c/r ratios. As the rotational number increases, RO = 0.7, Figure 5.64(b), the
separation location moves downstream towards the rear side of the airfoil. A
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60% smaller separated area is predicted at c/r = 0.9 if compared with the two
dimensional flow existent at c/r = 0.1. With the further increment in the ro-
tational number, RO = 0.8, the separation location moves closer to the trailing
edge. See Figure 5.64(c) case c/r = 0.9 where a separation bubble is confined
to the last 5/10 % of the airfoil chord. For RO = 0.9 and c/r = 0.9, Fig-
ure 5.64(d), the favorable pressure gradients created by Coriolis and centrifugal
forces maintain the flow fully attached to the airfoil surface.

Rotation does not only affects the separation location, it affects strongly
the whole suction side of the airfoil inducing a favorable pressure gradient and
hence decreasing the pressure. The pressure side is not so heavily affected by
rotation, although a favorable pressure gradient is also induced which in this
case increasing the pressure. In this way a larger pressure difference is created
between the upper and the lower surfaces, obtaining a larger loading of the
airfoil.

5.7.2 Study of rotation influence on drag performance of

a S809 airfoil

The aim of the present section is to analyze the influence of rotation on drag
performance of a wind turbine airfoil section. The rotational number, RO, is
fixed to 0.9 in all the cases presented herein. Three local aspect ratios are
considered, c/r = 0.4, where the rotational effects are very small as concluded
from the previous lift study, c/r = 0.7, where stall is delayed and c/r = 0.9,
where the rotational effects are large enough to maintain the boundary layer
fully attached to the airfoil surface.

The total drag, Figure 5.65(a), is computed with the addition of pressure
drag plus friction drag, Figures 5.65(b) and 5.65(c) respectively. At angles
of attack smaller than α(CL=CLMAX ) a larger total drag is predicted for the

higher c/r ratio simulations, in these cases the friction drag is clearly larger due
to rotation. The opposite prediction is done for angles of attack higher than
α(CL=CLMAX ), for which the total drag is smaller. This effect is magnified at

c/r = 0.9, where the onset of separation is kept on the trailing edge vicinity
as a consequence of rotation. Contrary to the other two cases, where at high
angles of attack around a 98% of the drag is created by pressure drag, for the
ratio c/r = 0.9 more than 30% of the total drag arises from friction.

Small kinks appeared on the drag curve before α(CL=CLMAX ), cases c/r = 0.4

and c/r = 0.7. These bumps are related to the sudden decrease in friction drag
together with a reduction of the pressure drag. This effect is localized to less
than half a degree around α(CL=CLMAX ).

The friction drag is the main component of the total drag at low angles
of attack for the three spanwise positions, Figure 5.65(c). Differences in CDf

between the different c/r ratios remain constant until stall is reached, having a
higher CDf the computations with larger c/r. The increment in skin friction is
induced by the effects of Coriolis and centrifugal forces in the boundary layer.
Once stall is reached, in both cases c/r = 0.4 and c/r = 0.75 the friction
coefficient decreases abruptly reducing the differences. When c/r = 0.9, the
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friction drag keeps growing with the angle of attack, contributing to maintain
the turbulent boundary layer attached to the airfoil surface and hence holding
the pressure drag from increase.
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Figure 5.65: (a) Total drag (b) Pressure drag (c) Friction drag, at c/r cases 0.4,
0.7 and 0.9 with RO = 0.9. Reynolds 1.106.
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5.7.3 Artificial rotor

An artificial rotor blade has been created in order to analyze the effects of
rotation in function of some of the variables used in the design of wind turbine
blades: angular velocity, wind speed, blade span, and tip speed ratio. The
blade has been generated with a constant chord S809 airfoil geometry along 10
meters span. The Reynolds number in simulations is kept constant at 1.106 for
the whole blade span using an artificial variation of the viscosity. The angular
velocity, Ω, at which the blade rotates is fixed at 70 rpm. Four different cases at
different wind speeds, Qw, and subsequently different tip speed ratios, λ, have
been studied. In all the cases the boundary layer transition location is forced
at 0.05c from the leading edge.

λ =
Ωr

Urel
(5.11)

WIND SPEED (m/s)) TIP SPEED RATIO, λ

12.20 6
8.14 9
6.11 12
5.23 14

Table 5.1: Tip speed ratio at different wind speeds.

Figure 5.66: Blade streamlines sketch.

The influence of spanwise position and tip speed ratio on lift and separation
location has been analyzed. Computations have been carried out at three dif-
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Figure 5.67: Lift and separation location in function of the local spanwise posi-
tion at λ = 6. Angles of attack 4◦ , 8◦ and 12◦.

ferent incidence angles, α = 4◦,α = 8◦ and α = 12◦. The cases go from fully
attach boundary layer over the airfoil surface to large separated flow regions.
The turbulent separation location presented in the figures is obtained following
Fox [57], he related the onset of separation with the shape factor value in the
case of turbulent flows, when H grows bigger than 2.5 separation is reached.

As a first case, the chosen tip speed ratio is λ = 6, corresponding to a
wind speed of 12.20m/s. At α = 4◦, the flow remained fully attached to the
airfoil surface as shown in Figure 5.67(b), in which the chordwise separation
position,xSEP , is plotted in function of the local spanwise location, r/R. A
small gain in lift is obtained in this case, the maximum gain of 7.5% is predicted
in the closest section to the root, Figure 5.67(a). The gain in lift is achieved
in its totality due to the thinner boundary layer created. At angle of attack
α = 8◦, a small separation bubblewith a length 6% of the chord is predicted far
away from the root, Figure 5.67(b). As computations move towards the blade
root, the bubble is pushed downstream. At the span location r/R = 0.1 the
buble has been reduced to a 4%, giving a 12% increment in lift, Figure 5.67(a).
As the angle of attack increases, the separation location moves upstream. At
α = 12◦ the two dimensional separation, far away from the root, is positioned
at 0.64c from the leading edge, Figure 5.67(b). In this case the maximum gain
in lift is 10.5% with the separation position moved downstream to 0.67c at the
given span location r/R = 0.1.

The wind speed is reduced and simulations are carried out for the new tip
speed ratio λ = 9, Figures 5.68(a) and 5.68(b). Lift and separation position pre-
dictions at r/R locations far away from the root remained constant if compared
with the previous cases. At α = 4◦, the boundary layer is fully attached to the
airfoil surface, a maximum 10% increment in lift is predicted. At α = 8◦, the
predictions show a maximum lift gain of 17% while the maximum delay in the
separation location is 5%. For the highest angle of attack, α = 12◦, the maxi-
mum lift increment is a 33% of the two dimensional lift, almost triple than the
previous case with λ = 6. The onset of separation has been moved dowstream
a 33%.

In the third study case, the wind speed is 6.11 m/s with a tip speed ratio
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Figure 5.68: Lift and separation location in function of the local spanwise posi-
tion at λ = 9. Angles of attack 4◦, 8◦ and 12◦.
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Figure 5.69: Lift and separation location in function of the local spanwise posi-
tion at λ = 12. Angles of attack 4◦ , 8◦ and 12◦.

of λ = 12, lift and separation location in function of the local spanwise position
are presented in Figures 5.69(a) and 5.69(b). Again lift predictions at locations
far away from the root remain constant if compared with the previous λ cases.
At α = 4◦, the maximum gain in lift is 12.7%. At α = 8◦, predictions show a
maximum lift gain of 20.7% with the separation location pushed downstream.
At the highest angle of attack, α = 12◦, a maximum lift increment of 50.5%
is predicted, while the separation location is moved towards the trailing edge a
48.23% if compared with two dimensional flow predictions.

As a final case, the wind speed is reduced to 5.23m/s giving a tip speed ratio
λ = 14. For all the different angle of attack simulations, 4◦, 8◦ and 12◦, at the
given span position r/R = 0.1, the favorable pressure gradients created by the
rotational forces where enough to maintain the boundary layer fully attached to
the blade surface, Figure 5.70(b). Increments obtained in lift force coefficient in
the closest region to the root are 14%, 45.3% and 57.6% of the two dimensional
predictions for α = 4◦, α = 8◦ and α = 12◦ respectively, Figure 5.70(a).

In order to summarize the effect of rotation in lift performance at different tip
speed ratios, lift and separation position are plotted for α = 12◦. Analyzing the
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Figure 5.70: Lift and separation location in function of the local spanwise posi-
tion at λ = 14. Angles of attack 4◦ , 8◦ and 12◦.

lift predictions presented in Figure 5.71(a), the lift gain starts to be significant
in all the cases around 30% to 40% of the blade span, increasing as simulations
move towards the blade root. The greatest rate of lift increment between tip
speed ratios is achieved from λ = 6 to λ = 9, while the smallest is obtained
between λ = 12 to λ = 14. However, the total lift gain grows with the λ value.
As the wind speed decreases, maintaining a constant rotational speed, the tip
speed ratio increases and the rotational effects in the boundary layer increase
with it.

The delay in the separation appears to be significant from 20% of the blade
span towards the root, while on the rest of the span it is negligible. The largest
delay in separation location appears for the highest tip speed ratio simulation,
λ = 14, at a radial position 10% from the blade root, in this case the separation
location is pushed downstream almost a 40% of the airfoil chord.
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Figure 5.71: (a) Lift (b) Separation location. Tip speeds λ = 6, λ = 9, λ = 12
and λ = 14. Angle of incidence 12◦.

5.7.4 Influence of rotation on the boundary layer param-

eters

In this section is presented an analysis of the influence of rotation on the bound-
ary layer properties of a rotating wind turbine blade section. The study is cen-
tered on the suction surface of the airfoil, where the flow frequently undergoes
separation at high angles of attack due to the existence of large pressure gradi-
ents. δ∗1 , θ1, H, Cf , δ

∗

2 , θ2 and βW are the boundary layer parameters chosen
for the present analysis. The airfoil section studied is a s809 section profile at
Reynolds 1 · 106. The boundary layer is tripped to become turbulent at 0.05c
from the leading edge. Two cases at different angle of attack are compared. For
α = 4◦, the flow is fully attached to the airfoil surface. For α = 12◦, the flow has
undergone trailing edge separation. For both cases three local aspect ratios are
simulated: c/r = 0.4, in which the rotational effects have a weak influence on
lift, drag and separation position, c/r = 0.7 and c/r = 0.85, in which rotational
effects, as seen in the previous subsection, have a strong effect in lift and drag
performance and therefore the boundary layer properties will be also strongly
affected. In all the cases analyzed herein the rotational number is kept constant
at RO = 0.9.

The behavior of the streamwise displacement thickness quantity, δ∗1 , is shown
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in Figures 5.72(a) and 5.72(b). At α = 4◦, remarkable differences appear from
the chordwise position 0.5c towards the trailing edge, as the given local aspect
ratio increases, the boundary layer displacement thickness decreases due to the
influence of Coriolis terms in the θ−momentum equation. Coriolis terms induce
a thinner boundary layer that reduces the outwards displacement of the external
streamlines. Reductions in the δ∗1 quantity can be seen as a diminution of the
airfoil obstruction against the freestream flow due to the thinner boundary layer
generated. At incidence α = 12◦, the flow is separated and the influence of
rotational effects is stronger in the boundary layer quantities. The maximum
value of δ∗1 is reduced almost 10 times from the ratio c/r = 0.4 to c/r = 0.85.

In terms of the streamwise momentum thickness quantity, θ1, shown in Fig-
ures 5.72(c) and 5.72(d), very similar trend as for the δ∗1 quantity is observed
when the flow is fully attached, α = 4◦. In the case where the flow undergoes
trailing edge separation, α = 12◦, the momentum thickness quantity increases
abruptly just before separation takes place for the cases c/r = 0.4 and c/r = 0.7.
For c/r = 0.85, θ1 has a fairly constant value on the last 50% of the chord, re-
ducing the growth of the shape factor and retarding separation. It is important
to remark that the streamwise momentum thickness reduction due to the ro-
tational effects is smaller than the reduction of the streamwise displacement
thickness quantity, hence the growth of the shape factor H is contained and
separation delayed.

With respect to the shape factor behavior, H, presented in Figures 5.72(e)
and 5.72(f): At α = 4◦ the shape factor does not grow larger than 2.5 for any
of the given c/r ratios. As soon as the angle of attack increases differences
in the shape factor magnitude between the different local aspect ratios grow
drastically. As c/r is increased, the secondary spanwise flow increases together
with the increment in the effect of Coriolis forces, having a stabilizing effect on
the boundary layer, in this way the shape factor is considerably reduced and
thereby the onset of separation retarded. At the position c/r = 0.85 the shape
factor has been reduced drastically, reaching values larger than 2.5 only in the
last 3% of the airfoil chord.

Concerning the friction coefficient, Cf , shown in Figures 5.72(g) and 5.72(h),
in opposition to the effect of rotation on the shape factor, the friction coeffi-
cient increases due to the secondary radial flow. The radial flow increases the
minimum total drag, mostly friction drag, as shown in the section above. This
effect is particularly important on the last half of the airfoil chord. At α = 12◦

the skin friction on the rear part of the airfoil increases from zero to a positive
value as the ratio c/r is reduced.

The behavior of the spanwise displacement thickness, δ∗2 , is shown in Figures
5.73(a) and 5.73(b). As the simulations c/r ratio increases, δ∗2 grows in absolute
value, with opposite sign to the δ∗1 quantity. The growth of the spanwise dis-
placement thickness is related with the outwards moving spanwise flow, which
affects the streamlines displacing them outwards from the airfoil surface. After
separation the rate of growth of δ∗2 is larger for bigger c/r values.

The suction side streamwise momentum thickness distribution, θ2, is plotted
at incidence angles α = 4◦ and α = 12◦ as function of the chordwise direction
in Figures 5.73(c) and 5.73(d). At α = 4◦, where there is not a separated flow
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Figure 5.72: Boundary layer quantities δ∗1 , θ1, H and Cf . RO = 0.9 with c/r
0.4, 0.7 and 0.85 Angles of incidence 4◦ and 12◦. Separation location marked
with vertical point-dash line. 149



region, θ2 follows the same tendency as the δ∗2 quantity. At α = 12◦, under
separated conditions, the rate of grown of θ2 in absolute value is not as large as
the one obtained for δ∗2 .

Rotation increases the angle between the limiting streamline and the bound-
ary layer edge streamline, βw, Figures 5.73(e) and 5.73(f). The angle is set to 0◦

at the position where the boundary layer becomes turbulent. During attached
flow conditions, α = 4◦, as the ratio c/r increases, the angle βw grows reaching
a maximum of βw = 60◦ at the suction side of the trailing edge for c/r = 0.85.
At α = 12◦, in the attached flow region, βw follows the same tendency. Al-
though after the flow separates, βw grows with a steep increment towards 90◦,
staying almost constant at this value until the trailing edge is reached. After
separation appears the limiting streamlines inside the boundary layer are per-
pendicular to the inviscid flow ones, a strong radial flow appears in the bottom
of the separated boundary layer while further up and in the inviscid flow region
the streamlines follow the θ direction.
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Figure 5.73: Boundary layer quantities δ∗2 , θ2 and βw. RO = 0.9 with c/r 0.4,
0.7 and 0.85. Angles of incidence 4◦ and 12◦. Separation location marked with
vertical point-dash line.
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5.7.5 Analysis of rotation induced Coriolis and Centrifu-

gal forces

The influence of centrifugal and Coriolis force terms in the integral boundary
layer equations has been evaluated by comparison to the convective terms on
the suction side of the airfoil. In Chapter 3, the integral form of the Quasi-3D
boundary layer equations was derived. We here use these equations to evaluate
the relative magnitude of the centrifugal and Coriolis terms:

• Relative magnitude of Coriolis force term, θ-momentum equation,

CORθ

CONV
=

∣

∣

∣
sw pr 2RO ls δ∗2

1
ue c

∣

∣

∣

∣

∣

∂θ1
∂s

∣

∣+
∣

∣

∂θ2
∂s

∣

∣

(5.12)

• Relative magnitude of Coriolis force term, r-momentum equation,

CORr

CONV
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∣

∣

∣
sw pr ls 2RO
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(5.13)

• Relative magnitude of centrifugal force term, r-momentum equation,

CENr
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∂θ1
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∣

∣

(5.14)

These ratios can give an idea of the importance of Coriolis and centrifugal
forces in the viscous boundary layer for both streamwise and spanwise directions
in comparison with the convective terms. The present analysis is carried out for
the wind turbine airfoil S809, with rotational number, RO = 0.9. Three local
aspect ratios are included in the analysis: c/r = 0.1, c/r = 0.7 and c/r = 0.9.
Two angles of attack are considered: α = 9◦ and α = 12◦.

Convergence problems arise when the flow undergoes separation. The θ mo-
mentum Coriolis term was determined as the source of the convergence prob-
lems. In order to reach a converged solution, the θ momentum Coriolis term
is reduced artificially by a factor of 10 in the separated region. In the case
that convergence was reached without any modification, the Coriolis ratio was
predicted constant in the separated region with a value approximately equal to
the one of the last attached location.

In the differential form of the boundary layer equations, the centrifugal force
term Ω2r enters the system through the r-momentum equation. In the present
formulation of the boundary layer equations the pressure terms do not appear
explicitly, as the Bernoulli equation has been utilized to replace them by velocity
relations on the edge of the boundary layer. In the r−momentum equation the
centrifugal force appears through the radial derivative of the streamwise velocity
multiplied by the boundary layer thickness, − 1

ue

∂ue

∂r δ. Centrifugal forces, due
to its radial nature, does not enter the θ momentum equation.
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The spanwise pressure gradient is given by Bernoulli equation which, formu-
lated in a rotational frame of reference, reads

−1

ρ

∂p

∂r
= ue

∂ue

∂r
+ ve

∂ve
∂r

+ we
∂we

∂r
− Ω2r (5.15)

From Equation 5.15 it can be seen how the centrifugal force term is coupled
to the radial velocity gradients via spanwise pressure gradients.

In the differential form of the equations, Coriolis forces enter the system
through both the θ and r − momentum equations, through the terms, 2Ωv
and 2Ωu. After manipulating the differential equations, transforming them
into a Quasi 3D integral version, the Coriolis terms fake the following form:
sw pr 2RO c

r δ
∗

2
1

ue c and sw pr c
r

2RO
ue

(δ − δ∗1), respectively. Coriolis forces create
a favorable pressure gradient in the chordwise pressure distribution, delaying
separation and increasing CLmax

.

Due to the small-crossflow approximation, ∂/∂r << ∂/∂s, Coriolis forces
are relatively small in the θ−momentum equation, whereas they are relatively
large in the r −momentum equation. The small-crossflow approximation only
holds for low local aspect ratios. When c/r is large the spanwise component of
the flow grows in importance and the small-crossflow approximation is not valid
anymore.

In Figures 5.74, 5.75 and 5.76 we illustrate the relative importance of the fic-
titions forces by depicting Equations 5.12, 5.13 and 5.14 at different parameters.

As the local aspect ratio c/r increases, the Coriolis terms in the θ−momentum
equation grow in magnitude. For α = 9◦ and c/r = 0.1, see Figure 5.74(a),
before separationthe θ Coriolis term is more than 100 times smaller than the
convective terms. Increasing the local aspect ratio to c/r = 0.7, the value of the
θ − momentum Coriolis term just before separation is approximately 50% of
the convective terms, see Figure 5.74(b). Finally, at c/r = 0.9, Figure 5.74(c),
the Coriolis term has grown double as big as than the convective terms. Near
the leading edge the rotational effects are less pronounced, due to the larger
pressure gradients, which increases with the downstream location. In all the
cases, the Coriolis term decreases around 0.5c coinciding with the rise in the
shape parameter, to increase again before separation takes place.

The relative magnitude of the Coriolis term in the r−momentum equation is
presented in Figures 5.75(a), 5.75(b) and 5.75(c). This term also increases with
the c/r ratio. However, his increment rate is very small in comparison with the
θ−Coriolis term. In general Coriolis terms are larger for the lower angle of attack
simulations. For c/r = 0.1, differences between α = 9◦ and α = 12◦ are larger
after separation takes place. For c/r = 0.7, differences between α = 9◦ and
α = 12◦ start growing before separation takes place. At c/r = 0.9, both angle
of attack computations follow similar trends from the leading to the trailing
edge, although the lower angle of attack maintains a higher value. In this case
the boundary layer separation is pushed to the trailing edge due to the strong
favorable pressure gradients created by rotation.
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Computed changes on the r-centrifugal to convective terms ratio appeared
to have, in all the cases, similar tendencies as those computed for the r-Coriolis
terms ratio. However their order of magnitude was slightly lower, see Figures
5.76(a), 5.76(b) and 5.76(c). We may thus conclude that the spanwise direction
Coriolis force influence is stronger than centrifugal force influence.

In Figure 5.77 centrifugal force terms are compared against Coriolis terms
in the spanwise direction at α = 9◦ for three local aspect ratios c/r. In the
nose region of the airfoil, the differences between the two force terms are small,
after which the differences grow with the downstream position. The maximum
difference between the two force ratios is generally located to the rear side of
the airfoil.

Coriolis forces in the streamwise direction are an order of magnitude smaller
than Coriolis and Centrifugal forces in the spanwise direction. Except at high
local aspect ratios, c/r = 0.9, where the θ Coriolis forces are of the same order
of magnitude as the Centrifugal forces.
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Figure 5.74: Relative magnitude of the Coriolis terms in the θ-momentum equa-
tions to the convective terms. Separation is marked with a vertical line.
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Figure 5.75: Relative magnitude of the Coriolis terms in the r-momentum equa-
tions to the convective terms. Separation is marked with a vertical line.
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Figure 5.76: Relative magnitude of the centrifugal force terms in the r-
momentum equations to the convective terms. Separation is marked with a
vertical line.

157



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
RO = 0.9, ls = 0.1

x/c

C
O

R
r &

 C
E

N
r

 

 

COR
r
 α = 9

CEN
r
 α = 9

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
RO = 0.9, ls = 0.7

x/c

C
O

R
r &

 C
E

N
r

 

 

COR
r
 α = 9

CEN
r
 α = 9

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
RO = 0.9, ls = 0.9

x/c

C
O

R
r &

 C
E

N
r

 

 

COR
r
 α = 9

CEN
r
 α = 9

(c)

Figure 5.77: r-centrifugal vs r-Coriolis force terms ratio.
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Summary of parametric study of the Quasi3D viscous-inviscid method

A parametric study of the influence of rotation on the aerodynamic behavior
of an airfoil section has been presented in this chapter. It is concluded that the
rotational effects increase with both ls and RO. Coriolis and centrifugal forces
rising from rotation generate a favorable pressure gradient on the suction side
of the airfoil which increases lift and retards the onset of separation. On the
pressure side, the influence of rotation is not as large, but it is still present.
Rotation increases slightly the total drag at low angles of attack, α < αCLMAX

,
although at high incidence angles rotation tends to reduce the drag.

A study of an artificial wind turbine blade was performed concluding that
the rotational effects are have an influence on the first 40% of the blade span.
However thery are only significant on the first 20% where separation is clearly
retarded and the lift increased considerably. On the other 60% of the blade span
rotational effects are inapreciable.

Analyzing the influence of rotation on the integral boundary layer variables,
it was concluded that rotation reduces drastically the streamwise displacement
thickness. The shape factor, H, is also reduced, delaying the appearance of
separation.

The influence of Coriolis and centrifugal forces has been studied and their
order of magnitude has been analyzed. Coriolis terms appearing in the θ mo-
mentum equation became significant as the computations approached the blade
root. Far away from the root, i.e at small c/r values, the θ-Coriolis terms are
about 100 times smaller than the convective terms, while for a local aspect ratio
c/r = 0.9 have the same order of magnitude as the convective terms. Coriolis
and centrifugal terms in the r momentum equation also became larger as the
simulations approached the blade root, but their growth is much more mod-
erate. The r-Coriolis force terms are larger in magnitude than the centrifugal
terms.
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Chapter 6

Conclusion

Steady, unsteady, 2D and Quasi3D versions of a viscous-inviscid interactive
boundary layer solver have been developed and presented in the dissertation.
The solver has been developed during the last three years to become a design
tool for wind turbine airfoil design. The code is capable of computing airfoil
aerodynamic performance under rotational and unsteady effects with high ac-
curacy and low computational costs.

The viscous part of the flow solver is made up using the integral Quasi3D
form of the r and θ momentum equations together with the kinetic energy shape
parameter equation and a set of closure relations. The inviscid part consists of
a panel method. A strong viscous inviscid interaction is used in order to couple
both parts. The strong interaction makes it possible to overcome the Goldstein
singularity and compute the boundary layer flow at and after separation takes
place. Under relaxation is needed at high angles of attack where the airfoil
presents large regions of separation.

An study of airfoil aerodynamic performance for different geometries and
Reynolds numbers has been presented and used for validation of the steady two
dimensional version of the code. A good agreement is obtained against experi-
ments for the predicted aerodynamic lift, while drag and pitching moment are
slightly under predicted. The viscous-inviscid predicted pressure distributions
around the airfoil surface were also in overall good agreement with experiments
and with EllipSys2D computations.

The unsteady terms of the r momentum and kinetic energy shape param-
eter equations together with the implemented unsteady version of the Kutta
condition using a single wake vortex model, allows the viscous-inviscid solver
to simulate dynamic airfoil performance. Dynamic lift predictions are in good
agreement with experimental data while drag and pitch moment computations
in some cases lack accuracy.

The capability of the code to simulate a trailing edge flap has been proven
in both steady and unsteady cases, as well as the capability of controlling the
flap using a PI controller to maintain a constant lift.

The viscous-inviscid interactive code has been used for studying the effect
of rotation for rotating wind turbine blades. It is concluded that the rotational
effects have an influence on the 40% of the blade span from the root, having a
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significant influence in the first 20% of the blade, where separation is retarded,
lift increased and drag reduced. Rotational effects are negligible on the rest of
the blade span.

A study on the influence of rotation showed that Coriolis and centrifugal
forces act as a favorable streamwise pressure gradient that thinners the bound-
ary layer, reducing the airfoil obstruction against the freestream and therefore
increasing the lift. The drag coefficient is slightly increased by rotation at low
angles of attack and reduced after stall takes place. Coriolis and centrifugal
forces tend to move the separation point downstream, in some cases keeping it
in the trailing edge vicinity.

In the future, a validation of the code against a wider span of airfoil ge-
ometries and flow conditions will be done. Furthermore, the important issue of
transition will be addressed. In particular the convergence difficulties that arise
from fast changes in the transition location.
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