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In low speed large two-stroke marine diesel engines, uniflow scavenging is 
used to remove the exhaust gases from the cylinder and fill the cylinder with 
fresh air charge for the next cycle. The swirl enhances the mixing of fuel with 
air and improves combustion efficiency. The thesis focuses on characterizing 
the confined swirling flow during the scavenging process. A simplified 
experimental model of an engine cylinder is developed. Smoke visualization 
results show that at fully open intake port there is a well-defined vortex core. 
The core size increases in a hollow conical shape along the flow downstream. 
As the port closes, the mixing of smoke particles in the core with 
surrounding regions is enhanced. The hollow conical smoke pattern 
disappears and resembles to a jet. Laser Doppler Anemometry measurements 
are conducted in the swirl generator and at the entrance to the test cylinder. 
The results show that the incylinder swirling flow has a precessing vortex 
core. The precession frequency is found to be linearly dependent on the 
volumetric flow rate at a given swirl number.  
 
The stereoscopic particle image velocimetry (SPIV) measurements are 
conducted for two sets of experiments. In the first experiment, the intake 
port is kept fully open and three different cylinder lengths are investigated. 
The results indicate that the incylinder flow is a concentrated vortex decaying 
downstream due to wall friction. The mean axial velocity has a wake-like 
profile. The radial velocity is very small compared to tangential and axial 
components. No reverse flow is observed in the vortex core. The initially 
confined vorticity in the vortex core region is distributed to outer regions 
along the flow. Turbulent kinetic energy is high in the vortex core and near 
wall regions. The incylinder flow is majorly governed by the flow conditions 
at the cylinder inlet and the increased length of cylinder provides further 
decay of the swirl. The profiles of velocity components remain the same for a 
given cross-sectional plane common in different cylinder lengths. The mean 
position of the vortex center is not aligned with the cylinder axis at all 
measuring position and follows a helical path along the cylinder length. For 
cylinder length of eight diameters, the mean vortex path does not complete 
one revolution and instead re-twists at one side of the cylinder axis.  
 
In the second SPIV experiment, the measurements are conducted to 
characterize the effect of piston position on the in-cylinder swirling flow. The 
piston is positioned to cover the cylinder intake port by 0%, 25%, 50% and 
75%. For increasing port closures the tangential velocity profile changes to a 
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forced vortex and the axial velocity changes correspondingly from a wake-
like to a jet-like. This change, however, starts at cross-sectional planes close to 
cylinder outlet and moves to upstream positions. At 50% port closure, the 
mean axial velocity in the whole cylinder attains a jet like profile. The 
tangential velocity resembles more to a wall-jet than a forced vortex profile. 
With 75% port closure, the jet-like axial velocity profile at cross-sectional 
plane close to intake port changes back to wake-like at the adjacent cross-
sectional plane and downstream. This indicates a vortex breakdown like 
characteristic. The tangential velocity then has forced vortex profile 
throughout the cylinder. The non-dimensional profiles of velocity 
components have no significant variation with the variation in Reynolds 
number.  
 
Numerical simulations are conducted only for the fully open intake port 
case. The turbulence models include RNG k ��  and Reynolds stress 
models.  The simulation results, however, do not show satisfactory 
agreement with the experimental data. The models predicted a larger vortex 
core size with a reverse flow. The downstream decay in the swirl is predicted 
to be lower than observed from experimental results. However, there are 
some qualitative features like distribution of modeled Reynolds stress 
components that, to some extent, have reasonable agreements. The factors 
affecting the performance of the CFD models possibly lie both in the 
treatment of turbulence and the numerical aspects. 
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For store langsomtgående totakts diesel-motorer, anvendes uniflow-skylning 
til at fjerne udstødningsgasserne fra cylinderen og fylde cylinderen med frisk 
luft til den næste cyklus. Swirl øger blanding af brændstof med luft og 
forbedrer forbrændingseffektiviteten. Afhandlingen fokuserer på 
karakterisering af de indesluttede roterende strømning under skylningen. En 
forenklet eksperimentel model af en motorcylinder er udviklet. 
Røgvisualisering viser, at der for helt åbne indtagsporte, er en veldefineret 
vortex kerne. Kernen bliver større nedstrøms og får en hul kegleform. Når 
porten lukker, forøges opblandingen mellem røgpartikler i kernen og de 
omkringliggende regioner. Den hule koniske form forsvinder og kommer til 
at ligne en jet. Laser Doppler anemometri målinger er foretaget i 
swirlgeneratoren og ved indgangen til testcylinderen. Indtagporten holdes 
helt åben. Resultaterne viser, at strømningen i cylinderen har en hvirvelkerne 
med præcession. Præcessionsfrekvensen er lineært afhængig af den 
volumetriske strømningsrate for et givent swirl nummer.  
 
Stereoskopisk ’’Particle Image Velocimetry’’ (SPIV) målinger er udført for to 
forsøg. I det første, er indtagsporten holdt helt åben, og tre forskellige 
cylinderlængder er undersøgt. Resultaterne indikerer, at strømningen I 
cylinderen er en koncentreret hvirvel, der henfalder nedstrøms på grund af 
vægfriktionen. Den gennemsnitlige aksialhastighed har et kølvandslignende 
profil. Den radiale hastighed er meget lille i forhold til de tangentielle og 
aksiale komponenter. Ingen tilbagestrømning er observeret i hvivelkernen. 
Vorticiteten er først begrænset til hvirvelkernen, men bliver nedstrøms 
fordelt til de ydre regioner. Turbulent kinetiske energi er høj i vortex kernen 
og i nærheden af vægregionerne. Strømningen I cylinderen styres 
hovedsagligt af strømningsforholdene ved indtagsportene, og den øgede 
længde af cylinderen giver yderligere henfald af rotationen. Profilerne af 
hastighedskomponenterne forbliver de samme for et givent tværsnit ved 
forskellige cylinder længder. Den gennemsnitlige placering af hvirvelcenteret 
følger ikke cylinderaksen, men er istedet  spiralformet. For en 
cylinderlængde på otte diametre fuldfører det gennemsnitlige hvirvelcenter 
ikke en hel omdrejning, men vrider sig I stedet tilbage på den ene side af 
cylinderaksen.  
 
I det andet SPIV eksperiment karakteriseres effekten af stemplets position på 
strømningen I cylinderen. Stemplet er positioneret til at dække cylinderens 
indtagsport med 0%, 25%, 50% og 75%. Ved forøgning af porttildækningen 
ændres den tangentielle hastighedsprofil til en tvungen vortex og den aksielle 
hastighed ændres tilsvarende fra en kølvands- til et jet-lignende profil. Denne 
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ændring begynder dog ved tværsnit tæt på cylinderudløbet, og flytter til 
opstrømspositioner. Ved 50% porttildækning, antager den gennemsnitlige 
aksiale hastighed i hele cylinderen en jet-lignende profil. Den tangentiale 
hastighed ligner mere en væg-jet end et tvungent hvirvelprofil. Ved 75% 
porttildækning, ændres den jet-lignende aksielle hastighedsprofil ved 
tværsnittet tæt på indtagsporten tilbage til et slipstrømslignende profil ved 
det tilstødende tværsnit og videre nedstrøms. Dette indikerer en strømning 
som ligner et ’’vortex breakdown’’ Den tangentielle hastighed har derefter 
tvungent hvirvelprofil. De ikke-dimensionelle profiler af 
hastighedskomponenterne har ingen betydelig ændring med variationen i 
Reynolds tal.  
 
Numeriske simuleringer udføres kun for de tilfælde hvor indtagsportene er 
helt åbne. Turbulensmodellerne inkluderer RNG k ��  og Reynolds stress 
modeller. Resultaterne af simulationerne viser dog ikke tilfredsstillende 
overenstemmelse med de eksperimentelle data. Simuleringerne viser en 
større hvirvel kerne størrelse for en tilbagestrømning. Henfaldet af rotation 
nedstrøms er mindre end hvad der blev observeret eksperimentelt. Men der 
er nogle kvalitative egenskaber såsom distribution af modelberegnede 
Reynolds stress komponenter, der til en vis grad, stemmer overens. De 
faktorer, der påvirker resultaterne af CFD modellerne ligger muligvis både i 
behandlingen af turbulens og de numeriske aspekter. 
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This dissertation is submitted in partial fulfillment of the requirement for the 
degree of Doctor of Philosophy in Mechanical Engineering. The dissertation 
is based on the research work carried out during the period from 2006 to 
2010 at the Technical University of Denmark (DTU). The work was carried 
out under the supervision of Associate Professor Knud Erik Meyer, Associate 
Professor Jesper Schramm and Assistant Professor Dalibor Cavar along with 
useful suggestions from Professor Valery Okulov and PhD Stefan Mayer 
Manager Basic Research at MAN Diesel & Turbo.   
 
The dissertation consists of six chapters excluding the conclusions and 
appendices. Bibliography is given after the summary and conclusions. 
Chapter 1 gives and introduction to the scavenging process in two stroke 
marine diesel engines and identifies the scope of the work. Chapter 2 
provides a brief overview of swirling flows based on theoretical and 
experimental work from scientific literature. Chapter 3 gives a description of 
the experimental test model used in this research work. Chapter 4 presents 
the results of the first stereoscopic PIV experiment where the length of the 
cylinder is changed. Chapter 5 gives the results from second experiment 
where the measurements are conducted at different intake port closures 
while keeping the cylinder length constant. Chapter 6 provides the 
description and results of the numerical simulations carried out. Finally the 
Summary and conclusions will summarize the results of the research work 
and point out the potential future work. Due to limited space, all the results 
from the experiments in Chapter 4 & 5 could not be given in the respective 
chapters and are instead given in Appendix A & B respectively. Appendix C 
includes the manuscript of the article ready to be submitted to a related 
scientific journal.    
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A   Area 

inA    Inlet area 

iA    Total area of inlet to the cylinder/ nozzle area 

D   Internal diameter of cylinder or vortex chamber 
Do   External diameter of cylinder or vortex chamber 
De   Internal diameter of outlet pipe 

cd    Diameter of conditional circle 

I    Turbulence intensity 
k    Turbulent kinetic energy 
L   Length of cylinder or vortex chamber 
Le   Length of outlet pipe 
l   Length scale representing size of largest eddy 
l    Helix pitch 
p  Pressure 

Q  Inlet volume flow rate 

inQ  Inlet volume flow rate 

r    Radial distance from the center of vortex 

ar   Radial distance from vortex center to location with 

maximum tangential velocity 
R  Radius of the cylinder/ vortex chamber 
Re  Reynolds number  
S  Swirl number/ parameter 

oS   Initial swirl intensity 

cS   Characteristic swirl number  

Vav   Average velocity 

�V   Normalized tangential velocity 

Vr   Normalized radial velocity 

Vz   Normalized axial velocity 

�v    Tangential velocity 

rv    Radial velocity 

av    Axial velocity 
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� �i jv v   Reynolds stress components 

� �v vi j  Normalized Reynolds Stress components in polar 

coordinates 

� �u ui j  Normalized Reynolds Stress components in Cartesian 

coordinates 
X  X-axis based on its origin at axis of the test cylinder 
Xv  X-axis based on its origin at mean vortex center 
x  X-axis based on its origin at axis of the test cylinder 

computational mesh and for experimental data it represents 
Xv. 

 
 

Greek Symbols and Notations 
 
�   Angular Velocity 
�   Circulation around the vortex core 
�    Length scale representing the effective size of vortex core 
	    Density 
�     Energy dissipation 
�     Angle between radial and tangential velocity components 

     Diameter of the circle having blade curvature as an arc 
�    Angle between cylinder radius and direction of nozzle/ inlet 

Energy dissipation 
�     Streamline angle 

    Rate of swirl decay 

t�    Turbulent viscosity 

0t
�    Turbulent viscosity without swirl 

s�    Model swirl constant 

�z   Mean axial vorticity 

��    Mean tangential vorticity 

 

Subscripts 
 
,i j   Vector components in Cartesian and Polar coordinates 

m   Model quantity 
 

Abbreviations 
 
BDC  Bottom Dead Center 
CFD  Computational Fluid Dynamics 
IMO  International Marine Organization 
LSE   Low Speed Engine 
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LDV/ LDA Laser Doppler Velocimetry/ Anemometry 
NOx  Oxides of Nitrogen NO and NO2 (air pollutants) 
PVC  Precessing vortex core 
SPIV  Stereoscopic Particle Image Velocimetry 
TDC  Top Dead Center 
T.I   Turbulence Intensity 
TKE  Turbulent Kinetic Energy 
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In this chapter a background of the motivation for the current study is given. 
Working principle of two-stroke marine diesel engines is described. A description of 
different types of the scavenging process is given and significance of scavenging 
process and the need for more efficient uniflow scavenging process is discussed. The 
chapter introduces the scope of the problem studied in this project and gives a layout 
of the current thesis.   
 
 
After its invention by Sir Dugald Clerk at the end of 19th century (Blair, 
1990), the two stroke cycle engine has evolved in different type/ designs. 
Today their applications vary from Lawn movers to large container ship 
propulsion. The most successful of all the two stroke cycle engines are the 
marine diesel propulsion units with their thermal efficiency being more than 
50% (Blair, 1990).  
 
Low Speed Marine diesel engines mostly use very low grade diesel fuel. The 
combustion of such fuels and their large consumption result in production 
of large amount of environmental pollutants like CO2, NOx, Sulphur Oxides, 
Soot and different other particulate matters etc. With the increase in global 
trade, the marine transportation/ traffic has also increased. Considering a 
potential threat to air and marine environment, different governments and 
international legislative bodies acted and an international agreement on 
emission regulations was obtained in 1997 (Dam, 2007). Today, International 
Marine Organization (IMO) which is a United Nations Agency with 169 
member states, develops and maintains the comprehensive regulatory 
framework for emission control from shipping industry as one of its 
mandates (Wikipedia, 2010). The IMO regulation ‘Annex IV of Marpol 
73/78-Regarding the prevention of air pollution from ships’, ratified in 2005, 
has made the marine engine producers to develop more fuel efficient and 
environmentally benign technologies (Dam, 2007). The current study is also 
one of the many research projects by MAN Diesel A/S with goal of 
developing future marine diesel engines.  
 
Before discussing the scope of this study a short description and working 
cycle of large two stroke marine diesel engine is given. 
 

1.1  Large Two-Stroke Marine Diesel Engine 
 
A schematic picture of large two stroke marine diesel engine is given in 
figure 1.1 which shows cold air entering from the scavenging box to cylinder 
via scavenging ports and removing the exhaust gases through cylinder 

                                              IInnttrroodduucctt iioonn  



Experi
Marin
 

 

 
Figu
 
Schem
Large
Diese
Unifl
(pisto
(http:

imental and N
ne Diesel Engin

ure 1.1:  

matic Picture of 
e Two-Stroke Ma
l Engine with 

low Scavenging 
on is at BDC). 
://sites.google.com

Numerical Stud
nes 

exhaust
respecti
(Woody
 
 
 

 
 

1.1.1
 
The sch
during t
below a
 
(a) The

and
cyli
from
loca

(b) The
the 

rine 

m).

Sca

dy of Swirling

t valve. A deta
ive working
yard, 2009) an

Two-Strok

hematic pictu
the two strok

as: 

e piston is at th
d scavenging p
nder from sca

m the cylinde
ated above the

e piston move
scavenging p

avenging Ports

Cylinder 
Exhaust Valve

g Flow in Scave

 

ail description
is not given

nd (McGeorge,

ke Diesel E

ures given in 
e diesel engin

he bottom dea
ports are open
avenging ports
er through the
e BDC. 

es towards the
ports. The exh

e 

enging Process

n of all the en
 here and in
, 1999) for fur

Engine Cyc

figure 1.2 d
ne cycle. Each

ad centre (BDC
n. The fresh c
s and the exha
e exhaust valv

e top dead cen
haust valve th

s for 2-Stroke 

ngine compon
nterested read
rther details. 

 

cle 

demonstrate d
h stage is discu

C). Both the c
cold air is en

aust gases are b
ve. The scaven

ntre (TDC) by
hen closes an

Scave

Chapter  1

nents and the
der should s

different stag
ussed separate

cylinder exhau
ntering into th
being scavenge
nging ports a

y first blockin
nd the fresh a

enging Box

1

In
tr

od
uc

ti
on

2 

 

eir 
ee 

es 
ly 

ust 
he 
ed 
re 

ng 
air 

In
tr

od
uc

ti
on

 



Experi
Marin
 

 
Figur
 
Schema
Two-Str
Engine 
Uniflow
(Dam, 

imental and N
ne Diesel Engin

 

 

 

re 1.2:  

atic Picture of 
roke Diesel 
Cycle with 

w Scavenging. 
2007).

Numerical Stud
nes 

insi
high

(c) The
dea
com
Die
hea
ther
diff

(d) Due
the 
dea
call

(e) Wh
ope
cyli
scav
rem

 
Thus it 
end of 
Turboc
  
 

 

1.2
 
Compa
comple

dy of Swirling

ide the cylind
h pressure and

e diesel fuel is 
d-center (TDC

mbustion start
esel A/S, has t
ad in a circle w
re exist diffe
ferent engine d

e to combusti
cylinder caus
d centre. The
ed the ‘Power

hen piston rea
ens before th
nder through
venging ports

maining exhaus

can be unders
power stroke
harger is used

 Signific

ared to four-S
te piston strok

g Flow in Scave

 

der is compre
d temperature

injected in th
C). The fuel ev
ts by self-igni
three fuel inj
with a spacing

erent nozzle 
designs. 

ion high tem
sing the piston
e piston force
r Stroke’. 

aches very clo
e scavenge p

h that (Blowdo
s and fresh a
st gases as the 

stood that the
 and ends in 
 to derive the 

cance of S

troke engines
ke, in two stro

enging Process

ssed in to a s
. 

he compressed 
vaporates and
ition. In 4T50
jection nozzle
g of 120� betw
mounting co

mperature and 
n to move dow
e is transferre

ose to scaveng
ports and som
own). Then p
air enters the
piston moves 

e complete scav
the start of c
scavenging sy

Scavengin

s where the s
oke engines th

s for 2-Stroke 

small volume

air pocket a l
d gets mixed w
0ME-X test en
es mounted o
ween each no

onfigurations 

pressure is g
wnward towa

ed to the cran

ging ports, the
me exhaust g
piston graduall
e cylinder an
 up again.    

avenging proce
compression s
ystem. 

ng Process

scavenging is 
here is a shor

Chapter  1

e attaining ver

ittle before to
with the air an
ngine, at MAN
on the cylind
ozzle. Howeve

depending o

enerated insid
ards the bottom
nkshaft. This 

e exhaust valv
ases leaves th
ly uncovers th
d removes th

ess begins at th
stroke. Engine

s 

carried in on
t time availab

1

In
tr

od
uc

ti
on

3 

 

ry 

p-
nd 
N 
er 

er, 
on 

de 
m 
is 

ve 
he 
he 
he 

he 
e’s 

 

ne 
ble 

In
tr

od
uc

ti
on

 



Experimental and Numerical Study of Swirling Flow in Scavenging Process for 2-Stroke 
Marine Diesel Engines 

Chapter  1

 

 

In
tr

od
uc

ti
on

 

4 

 

for the scavenging process. Moreover, it not only serves to scavenge the 
cylinder exhaust gases but also as to fill the cylinder with fresh air charge for 
the next cycle which, in case of four stroke engine, is also accomplished in a 
separate piston stroke. This makes scavenging process very important for 
engine performance and efficiency both in terms of fuel and emissions. This 
is because scavenging process not only removes exhaust gases and provides 
fresh air to the engine but also provides the necessary and initial swirl to the 
fresh air in which the diesel fuel is to be injected. As diesel combustion is a 
mixing enhanced combustion process, a proper and good mixing of fuel with 
air ensures better/ complete combustion of the fuel injected. Further, the 
resulting heat release defines the production of different pollutants like NOx 
and Soot etc.  The heat release during combustion also defines the 
temperature distribution in the cylinder fluid mixture (injected fuel, fresh 
air, combustion products) and heat transfer through cylinder walls, cylinder 
head and piston. This in turn defines the distribution thermal stresses 
generated in the aforementioned solid materials and the requirement of their 
cooling.   
 
From the point of view of engine research and development, for example in 
computational modeling of in-cylinder diesel combustion, an initial flow 
field is to be defined in the compressed air pocket in which the diesel fuel is 
to be injected. This flow field then governs the simulation of fuel 
evaporation and mixing, consequent combustion and pollutant formation 
and heat generation and transfer through the cylinder enclosure walls. An 
improper definition of this flow field gives erroneous simulation results and 
hinders the efforts for understanding the overall process and identifying the 
key aspects required to be improved in order to develop the so called future 
engines. The knowledge about the initial flow field can only be understood 
by understanding the scavenging process. During the compression stroke, 
when the piston closes the scavenging ports, the in-cylinder flow field at that 
moment is the initial condition for the final piston-compressed flow field in 
which the fuel is to be injected.  
 
Practically, in the current marine diesel engines, the amount of air supplied 
during the scavenging process is more than what is required. This makes 
some amount of fresh air to enter and leave the cylinder through exhaust 
valve. This is called as Short Circuiting (Pulkrabek, 2003). In addition to 
having not well understanding of the in-cylinder fluid dynamics during 
scavenging process (flow field and interaction of fresh air with exhaust gases), 
another aspect of supplying more air is cooling the exhaust valve.  
 
Efficient scavenging improves the combustion performance of the 2-stroke 
diesel engines. Thus understanding, optimizing and developing an efficient 
scavenging process is one of the key aspects of developing efficient and 
environmentally friendlier marine diesel engines.    
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Figure 1.4 gives a comparison of scavenging performance of different 
aforementioned scavenging types based on two parameters (Heywood, 1988): 
 

� �Mass of delivered air or mixture  per cycle
Delivery Ratio  

Reference (exhuast gas) mass
�  

 
Mass of air in trapped cylinder charge

Purity  
mass of trapped cylinder charge

�  

 
 
(Schweitzer P. H., 1949) describes the ideal engine scavenging process as: 
 
‘‘The ideal engine scavenges the cylinder of all residual products of combustion, fills it with 
uncontaminated fresh air, and in so doing wastes no fresh air through the exhaust..’’   
 
This is also defined as ‘perfect displacement scavenging process’ by 
Hopkinson (1914). In the perfect displacement scavenging process all fresh 
air charge entering the cylinder is retained and perfectly displaces the exhaust 
gases (Blair, 1990). In actually engine scavenging processes there always 
occurs mixing of fresh air charge with the exhaust gases. However, the level 
of mixing depends on the type of scavenging. In ideal scavenging, the 
scavenge air acts like a piston and pushes the exhaust gases out of cylinder 
without mixing with them (Schweitzer, 1949). From figure 1.4 it can be seen 
that the uniflow scavenging type is most efficient one. Uniflow flow 
scavenging is the most efficient scavenging system but require added cost of 
exhaust valve system (Pulkrabek, 2003). Also it accounts for higher engine 
thermal efficiency due to better air/ gas exchange (Pevzner, 1998). Today 
almost all of the modern large marine diesel engines use uniflow scavenging 
(Raunek, 2009). Earlier measurements conducted on some marine diesel 
engines, manufactured by MAN Diesel A/S, resulted in 98% of purity at a 
delivery ratio of 1.5 (MAN Diesel, 2010). This shows that the uniflow 
scavenging in that engine has better performance than the one given in 
figure 1.4. However, optimization of the amount of air used during the 
scavenging process is still a challenging and potential task in order to 
improve the overall engine system efficiency and also to reduce cost due to 
scavenging system delivering excess amount of air than is actually needed.  
      

1.5 Swirling Flow during Unif low Scavenging 
Process 

 
As discussed in section 1.2, in addition to exhaust gas scavenging as the main 
criteria, the design of uniflow scavenging process also considers to provide a 
‘mixing favorable’ flow field to the injected diesel fuel at the end of 
compression stroke. Introducing swirl in the flow has a wide spread use in 
many engineering applications for enhancement of mixing process. Swirl in 
the in-cylinder flow is introduced by making the intake ports at an angle to 
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diesel engines. Nishimoto et al. (1984) obtained the shape of the front surface 
of the scavenging air using thermocouple in a uniflow model engine. The 
model engine used hot air for scavenging the cylinder filled with air at room 
temperature. It was observed that with the increase in the engine rpm 
(rotations per minute) and port angle, the scavenging air front surface profile 
changes from jet like to a wake like profile analogous to vortex breakdown in 
an axial flow vortex chamber. A method was also proposed to obtain a flat 
profile front surface at an arbitrary Reynolds number for maximum 
scavenging efficiency. Laser Doppler Velocimetry (LDV) experiment was 
conducted on a model test engine by Dedeoglu (1988).  The measurements 
involved using a single liquid and cylinder liner with different intake port 
configurations. Result show that the in-cylinder flow consists of a rotational 
flow in the cylinder axis region and a potential flow in the near wall region. 
Nakagawa et al. (1990) used 2-component LDV measurements on a model of 
large, low speed engine with large bore acrylic cylinder and using air. The 
tangential/ swirl velocity profile for piston at TDC is found to be governed 
by the scavenging port angle. Larger port angles resulted in a larger axial 
velocity drop in the central region of the cylinder thus occasionally resulting 
in a reverse flow. Litke (1999) studied the influence of the scavenging port 
angles on the scavenging efficiency by using liquids on a 1:4 scaled engine 
model instead of gases.  It was observed that the highest scavenging efficiency 
is obtained with an inlet scavenging port angle of 20°. The results also 
indicated a better performance of using scavenging ports with combination 
of different angles compared to the ports with uniform angle.  
 

1.6 Scope of thesis  
  
Large physical size and high in-cylinder pressure for LSE makes experimental 
investigations in the engine very expensive to conduct and difficult to get 
optical access. The scavenging process is transient and complex in nature 
thus making statistics difficult. In terms of variation in geometry of the flow 
domain, piston is in continuous motion during the scavenging process thus 
changing the cylinder length and also the effective shape of air intake ports. 
Such complex inlet flow conditions make it difficult to distinguish between 
inlet effects and swirling flow effects. Regarding the flow physics, mixing and 
stratification of exhaust gases with fresh air charge occurs while in-cylinder 
mass flow rate changes between opening and closing of the scavenging ports. 
This simultaneous variation in flow domain and flow physics consequently 
affects the in-cylinder swirl characteristics and the type of the vortex 
generated by the swirl. 
 
Considering the complex nature of the real engine scavenging process, a 
detailed understanding of the incylinder scavenging process requires 
isolation and consequent study of each flow phenomenon in a simplified 
form. The complex physics can then be better analyzed by gradually adding 
different flow effects.  
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The goal of this study is to study and develop a simplified steady state and 
isothermal case of in-cylinder swirling flow. The focus is to 
 

� Characterize the in-cylinder confined swirling flow in the test setup. 
� Obtain experimental data. 
� Study the capability and performance of different turbulence 

models. 
� Identify key design aspects to develop future test models. 

 

1.7 Thesis Layout 
 
This thesis has been divided into three major sections. 
 
(1) Introduction and Theory of Swirl Flows: introduce the background of the 

problem studied and provide a theoretical basis for the analysis of 
experimental and Numerical results. 

(2) Experimental Section: describes the experimental setup design and presents 
and analyses the experimental results. 

(3) Numerical Section: gives the results of computational fluid dynamics 
(CFD) models and compares them with experimental results and 
discusses the performance of different turbulence models for predicting 
the in-cylinder swirling flow.    
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This chapter gives a brief overview of flows having swirling motion. A general 
classification of different swirling flow regimes have been given based on the 
tangential velocity profile. Different swirl generation methods have also been 
presented. Aspects of swirling flows related to current study have been discussed 
based on experimental results available in the scientific literature. Some of the 
challenges regarding the numerical modeling of swirling flows with focus on RANS 
based models are also discussed.     
 
 
According to American Heritage Dictionary of English Language, the word 
‘swirl’ means ‘‘to move with a twisting or whirling motion’’. In fluid 
mechanics the term ‘swirling flow’ can in general be defined as a class of 
different flow types that involve an ‘overall’ twisting or whirling motion 
because in many flows localized twisting or whirling motion of fluid exist as 
a result of mixing or turbulence is observed yet they are not considered as 
swirling flows. The main characteristic of swirling flows as defined by Baker 
et al. (1974) and Ito et al. (1986) is that the flow has a combination of 
tangential/ vortical and axial motions. Thus the presence of ‘vortex’ is an 
important characteristic of swirling flows. Vanyo (1993) defines a vortex as a 
mass of fluid whose elements are moving in nearly circular path lines about a 
common axis. Care must be taken in distinguishing a vortex from vorticity 
because vorticity is the rotation of infinitesimal fluid elements (Vanyo, 1993). 
Greitzer et al. (2004) has further characterized the swirling flow as can be 
having a large variation in static pressure through the vortex core compared 
to an essentially uniform static pressure across a thin shear layer or boundary 
layer in a non-swirling flow. 
 
In nature, swirling flows can be observed in case of cyclones, dust devils, 
whirlpools and tornados etc. In engineering applications, the swirling flows 
exist in many engineering applications both as confined (cyclone separators 
and swirl tubes, rotary kilns, co-axially rotating cylinders, hydraulic turbine 
draft tubes etc.) and un-confined (swirling jets in combustors and tornado 
like flow upstream of the intake of a gas turbine etc.) (Escudier et al. 2006, 
Lam, 1993). Swirl in the flow enhances heat transfer in heat exchangers, 
homogenizes mixtures in casting and reactants in chemical industry, and in 
combustion processes breaks fuel droplets and stabilizes the flame (Cazan et 
al., 2009). Contrarily, the swirl/ vortices generated in some engineering 
applications e.g. at the intakes of liquid pumps, draft tubes of hydraulic 
turbines, weirs and draining of reservoirs etc. are by-product of the fluid 
motion and can severely affect the main function of the equipment (Lam, 
1993). Therefore, swirl and its effect on the flow field containing it is very 
important to be studied. As discussed in Chapter 1, the in-cylinder flow 
during scavenging process of large two-stroke diesel engine is also a confined 

                                    SSwwiirrlliinngg  FFlloowwss     
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The flow in a forced vortex is rotational. The tangential velocity is given 
by 

 

� ��v r                                                     (2.1) 

 
Where �  is the angular velocity and r  is the radial distance from the 
center of the vortex. The fluid is without shear and has a vorticity of �2  
at each position in the vortex (Wikipedia, 2010). 
 

(b) Free Vortex: Also named as ‘line’ or ‘potential’ vortex (Figure 2.1b). The 
tangential velocity decreases as the distance from the vortex center 
increases. Vorticity is zero at all positions in the vortex except for a 
singularity in the vortex core center line. The flow is therefore 
irrotational. The tangential velocity is given a:  

 

� �
constantv

r
                                               (2.2) 

 
(c) Rankine Vortex: It is a combination of forced and free vortex type 

(Figure 2.1c). The tangential velocity in the inner core region has a 
forced vortex profile and the outer flow region has a free vortex profile. 
The flow in the forced vortex is rotational and irrotational outside it. The 
tangential velocity profile has a sharp peak at some arbitrary radial 
position ‘ ar ’ where the inner forced vortex profile meets the outer free 

vortex. This is an approximation to Burgers vortex discussed later. 
 

(d) Wall Jet:  The type of swirling flow in figure 2.1d can be understood by 
considering plane wall jets. In case of plane jets, a wall-jet is defined as a 
fluid jet that is issued tangentially to and grows on a wall (Pani et al., 
1976). Due to velocity discontinuity, a shear layer develops on the fluid 
side and on the wall side a boundary layer is developed (Rajaratnam, 
1976). For confined swirling flows with tangential wall-jet like profile, 
analogous to plane wall jets, a tangential velocity jet is issued to the 
cylinder walls. Maximum tangential velocity is observed at a radial 
distance from curved wall where the shear layer meets the wall boundary 
layer and minimum tangential velocity is observed in the vortex center.  

 
 
The above mentioned profiles represent the tangential velocity field in ideal 
fluids i.e. without the effect of wall friction and intermolecular friction due 
to viscosity. In real, for example, in some swirling flows the solid body 
rotation is found only in some part of the flow cross-section.  In case of 
‘Rankine vortex’, there exists no sharp peak at the interface of inner forced 
and outer free vortices. Instead a smooth curve in indicates a smooth 
transition between the two vortex regions. This profile is called a ‘Burgers 
Vortex’ profile which is axis-symmetry, accounts for fluid viscosity and is an 
exact solution of the Navier-Stokes equations (Figure 2.2) (Alekseenko 2007). 
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data for �V  profile in a vortex chamber did not agree to the empirical 

formula by Escudier et al. (1982) in the annular region.  
 

2.2 Methods of Swirl Generation  
 
Swirl in the flow is generated by imparting tangential velocities in to the 
flow. In the experimental setups the flow passes through the swirl generator 
before entering into the main cylinder/ pipe/ tube or chamber where the 
measurements are due to be taken. Different types of swirl generation are 
shown in figure 2.5.  
 
There are basically two categories of swirl generators as described below: 
 
(1) The flow, after passing through the swirl generator, enters the main 

chamber with a combination of tangential and radial component.  These 
types of swirl generators are mostly employed with guide vanes that are 
fixed at a certain angle(s) to obtain a desired swirl and in some cases the 
inlet is fitted in a tangential direction to the vortex chamber (Figure 2.5 a 
and b ). Another way is that the flow enters the main chamber through 
nozzles fitted or ports grooved (as in Large Two Stroke Diesel Engines) 
on the periphery of the chamber walls. These nozzles or ports are at an 
angle with the radius of the chamber.   
 

(2) The second category contains devices that are axially aligned with the 
main chamber. The flow enters the swirl generator in axial direction and 
the swirl is introduced by a twisted tape or a propeller or an externally 
rotated honeycomb (Figure 2.5 c and d).    

 
The physical design of the swirl generator and the way swirl is introduced in 
the pipe/ cylinder plays a very significant role in the resulting confined 
swirling flow. For example, in experiments where the swirl is generated by a 
rotating honeycomb section fitted axially with the test cylinder/ pipe, the 
tangential velocity peak is always observed at larger distance from the 
cylinder axis see (Pashtrapanska et al. 2006, Marliani et al., 2003) etc. The 
vortex core will be large in size and the size of the annular region will be 
small. The reason for this profile is due to the solid body rotation of the 
honey-comb section and the flow passing through it following the same 
profile. Due to the presence of wall boundary layer the location of peak 
tangential velocity is observed at a small distance from the wall. The size of 
the vortex is also influenced by the magnitude of radial velocity and in the 
case of rotating honeycomb,  swirl is introduced in a non-swirling axially 
flowing fluid a larger vortex core should be expected. In the experiments 
where the swirl is generated by a propeller (Parchen et al. 1998, Algifri et al. 
1988) or twisted tape (Young et al. 1978) etc., also mounted axially with the 
pipe axis, the tangential velocity profile and the vortex core size depend on 
the physical profile of the twisted tape and propeller blades. In case of swirl 
generators with guide vanes and a conical shaped center body (Sarpkaya  
1974, Faler et al. 1977, Kitoh 1991) etc. the size of the vortex core is 
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There have been a lot of experimental studies on characteristics of turbulent 
swirling flows in straight pipe/ vortex chamber where swirl is generated 
using propeller (Algifri et al., 1988)  (Parchen et al., 1998), tangential 
injection (nozzle or holes drilled in tangential direction) (Martemianov et al., 
2004) and (Zhang et al. 2006), twisted tape (young et al. 1978) (Islek A. A., 
2004) and (Cazan et al., 2009), rotating tube bundle or honeycomb (Marliani 
et al., 2003 and Pashtrapanska et al, 2006) and fixed vanes (Kitoh, 1991) 
(Sarpkaya, 1971) (Leibovich et al, 1978) etc. The aforementioned works are 
very few in a very large amount of experimental measurements available in 
the scientific literature and a detailed account is beyond the scope of this 
thesis.  
 
The measurement techniques used also vary and include swirl vortex meters, 
pitot tubes, hot wire anemometry, Laser Doppler Velocimetry and Particle 
Image Velocimetry etc. For example Kreith et al. (1965) etc. used swirl vortex 
meters, (Lam H. C., 1993) etc.  used five hole pitot tube, Algifri et al. (1988) 
and Kitoh (1991) etc. conducted measurements using hot wire anemometry, 
laser Doppler Velocimetry (LDV) (Parchen et al., 1998) (Marliani et al., 2003) 
etc. and particle image Velocimetry (PIV) (Zhang et al. 2006) etc. 
 

2.3 Some Aspects of Swirling Flows 
 
Swirling flows have different distinct aspects compared to non-swirling 
flows. In this section only some of the aspects are briefly discussed and for a 
detailed account see (Alekseenko et al. 2007, Gupta et al. 1984, Saffman 1995, 
Greitzer et al. 2004, Wu et al., 2006) etc. Effects of Coriolis forces are beyond 
the scope of this thesis and thus are not discussed. 
 

2.3.1 Stream line Curvature   
 
In swirling flows with pure rotation i.e. no bulk flow in axial direction, the 
streamlines are curved as shown in figure 2.6a. With the addition of axial 
velocity, the streamline pattern resembles to a spring/ axially stretched spiral 
object (Figure 2.6b). The spiral shape of the streamlines depends on the type 
of the swirling flow, axial velocity profile, swirl decay, symmetric or 
asymmetric swirl, wall curvature in case of cylindrical vortex chamber etc.  
Figure 2.6c gives a sketch of the streamlines in idealized case of decaying 
solid-body rotation with uniform axial velocity.     
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that have been used by the scientific community and this often makes it 
difficult to compare the results of one case of swirling flow with the other. In 
its simplest definition, the swirl parameter is defined as   ‘the ratio of 
maximum tangential velocity to the maximum axial velocity’ (Alekseenko et 
al., 2007). Greitzer et al. (2004) has adopted the definition as the ratio of 
tangential to axial velocity. The definition by Gupta et al (1984) defines swirl 
number as ‘the ratio of axial flux of angular momentum to axial flux of axial 
momentum times the size L  (which in case of cylindrical vortex chamber is 
the internal radius R of the chamber)’ (Alekseenko et al., 2007). 
 

mm

m

F
F

S
L

�                                                       (2.5) 

 
Where 
 

� �� �	 	� � ���  mm a z
A

F v v v v r dA                                (2.6) 

 
is the angular momentum flux taking into account the component of the 
Reynolds shear stress tensor and  
 

 

� �� �	 	 �� �� � �� 2 2  m a a
A

F v v p p dA                            (2.7) 

 
is the momentum flux in axial direction taking in to account the normal 
component of Reynolds stress tensor in axial direction. The pressure 
represents the axial thrust (Khanna V. K., 2001). 
 
The calculation of swirl number based on above equations (2.5-2.7) is often 
very difficult because the velocity fields are usually unknown a priori 
(Alekseenko et al., 2007). The above equations are also simplified by 
dropping the shear stress and pressure terms. In case of experimental results, 
the use of above equations requires a complete knowledge of the velocity 
field for both axial and tangential components for a given cross-sectional 
plane. Consequently, for experiments where measurements are conducted 
for a part of the cross-sectional plane, the aforementioned equations cannot 
be used to estimate the degree of swirl. 
 
Another estimate of the swirl parameter is based on the geometrical 
parameters of the vortex chamber called as ‘design swirl parameter’ 
(Alekseenko et al., 2007): 
 
      

� c

i

Dd
A

S                                                        (2.8) 
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2.3.5 Instabilities and Vortex Breakdown in swirling 
Flows   

 
In swirl flows, instabilities (unsteady phenomena) have many aspects to be 
studied. Generally, in case of mostly laminar swirl flows, a steady flow is 
subjected to small unsteadiness/ disturbance and the response of the flow is 
observed in the form of whether there is growth or decay. With the presence 
of swirl in the flow, the instability associated means that some tangential 
velocity distributions consistent with the simple redial equilibrium are 
unstable and not achievable in practice (Greitzer et al., 2004). This method is 
called the ‘linear stability analysis’ and in case of turbulent flows such 
introduced ‘small’ fluctuations are smaller than the turbulent fluctuations 
and any conclusion of growth or decay of the disturbance always has the 
growth and decay of turbulent fluctuations as the major  contributor 
(Moene, 2003). Other significant stability studies involve studying vortex 
break down, precession of vortex cores (PVC), growth and decay of Reynolds 
normal stress components and the anisotropy of the Reynolds stress tensor 
etc. 
 
The vortex breakdown is an important aspect of swirling flows. In general 
the vortex breakdown has two distinct types: (i) Bubble or axis symmetric 
type where there is rapid expansion of vortex core in to a near axis symmetric 
bubble shape (Figure 2.9a)  and (ii) Spiral type where the vortex core deforms 
into a spiral (Figure 2.9b). Sarpkaya (1972) also observed a double helix type. 
 
Benjamin (1962) described vortex breakdown as abrupt and drastic change of 
flow structure and Ludwieg (1961) suggested that it might be a finite-
amplitude manifestation of the instability of the core flow. Velte et al., (2010) 
define vortex breakdown as explosion or abrupt growth of the slender vortex 
core with different changes in the flow topology. So far a lot of experimental 
measurements, observations and numerical studies have been conducted to 
understand this phenomenon but still the physical mechanism of vortex 
breakdown is not well understood. The phenomenon remains largely in the 
qualitative, descriptive realm of knowledge (Novak et al., 2000). In case of 
confined swirling flows, the experiments conducted by Escudier et al. (1982), 
show that the consequence of a vortex breakdown is a profile shape change 
for the axial velocity i.e. from jet-like to wake-like with an intermediate 
stagnation region. Escudier et al. (1982) discusses that the spatial growth rate 
of instability waves is very different in the two axial velocity profile types. 
The upstream jet-like profile becomes unstable and instability waves amplify 
slowly. Then the core flow undergoes a shock-like transition at some 
downstream position and the waves grow rapidly on a low velocity wake-like 
profile. Escudier et al. (1982) suggests that the swirl intensity (flow criticality) 
is the main parameter that determines the basic characteristic of the 
downstream flow and the effect of instability waves are superimposed over it.  
 
Alekseenko at el. (2007) has given pictures of many different vortex 
breakdown structures both in confined and unconfined swirling flow 
experiments.  



Experi
Marin
 

 
Figu
 
Vorte
(a) B
(Alek

imental and N
ne Diesel Engin

ure 2.9:  

ex Breakdown Ty
ubble (b) Spiral.

kseenko et al., 20

Numerical Stud
nes 

 
 

 
The vo
depend
high sp
Reynold
of singl
Sarpkay
speed c
high ro
(2000) s
at the c
show th
celled b
 
At high
instabil
al., 1994
unstabl
the axis
amplitu
system 
high Re
and fort
 

2.3.6
 
In swir
has a 

ypes: 
 
07). 

dy of Swirling

rtex breakdow
ent in nature

peed camera, 
ds number in 
le and double
ya et al. (1995
camera. This c
otational spee
show that at h
center line nev
hat for high R
bubble form an

h Reynolds n
ity is develope
4). This is the 
e and displace
s (Lucca-Negr
ude and in som
instabilities a

eynolds numb
th along the a

Helical V

l flows with f
straight/ rect

g Flow in Scave

 

wn is often n
e (Lucca-Negr

conducted vi
the range of 1

e spiral breakd
5) to be a co
conical shape 
eds of 1000 re
high Reynolds
ver becomes n
eynolds numb
nd bursts into

numbers, a l
ed called as ‘P
result of the 

ed from the ax
ro et al., 2000
me cases can ca
and resonating
bers, the vorte
axis (Novak et 

Vortex Stru

filament type 
ilinear axis d

enging Process

(a) 

(b) 

not only asym
ro et al., 2000
isualization o
105. The observ
kdowns which
onical shape u

is observed d
ev/s. The me

s number of 3 
negative/ rever
bers the spiral 

o turbulence. 

large three d
Precessing vort

forced vortex 
axis of symmet
0). The PVC 
ause many pro
g with them 

ex breakdown 
al., 2000).   

ctures   

vortices, the v
due to differ

s for 2-Stroke 

mmetric but al
0). Novak et a
f vortex brea
vations reveal

h previously w
using a comp
due to rotatio
asurements b
x 105 the mea

rsed. Addition
 breakdown b

dimensional ti
tex core (PVC
region of the 
try and start t
has a regular 
oblems by loc
(Yazdabadi e
is also observ

vortex filamen
rent instabilit

Chapter  2

lso highly tim
al. (2000) usin
kdown at hig
ed the existen

was observed b
paratively low
ons of spirals 
by Novak et a
an axial veloci
nally, the resul
bypasses the tw

ime depende
)’ (Yazdabadi 
flow becomin

to precess abo
frequency an

king onto oth
et al., 1994). A
ved to dart bac

nt almost nev
ties and wav

2

Sw
ir

li
ng

Fl
ow

s

24 

 

me 
ng 
gh 
ce 
by 

wer 
at 
al. 
ity 
lts 

wo 

nt 
et 

ng 
ut 
nd 

her 
At 
ck 

ver 
ves 

Sw
ir

li
ng

 F
lo

w
s 



Experi
Marin
 

 
F
 
Vo
ch
bo
al

 

f

imental and N
ne Diesel Engin

Figure 2.10:

Vortex Filament in
hamber with rota
ottom (Alekseenk
l., 2007). 

Figure 2.11
 
Streamlines (Proj
in a cross-section
for a helical vort
Filament in a tu
(Alekseenko et a

Numerical Stud
nes 

propaga
radially
and tak
flow. Sw
vortex f
 
Helical 
flows, i
vortex 
sections
comple
exampl
etc.,  Fi
radially
& 2007
the actu
the sam
(Figure 
 
 
 

  

n a 
ating 
ko et 

1:  

ojections) 
nal plane 
tex 
ube 
l., 1999). 

dy of Swirling

ating along it
y displaced fro
kes the shape 
wirl/ vortex flo
flows’ (Figure 

swirl flows, 
involves the 
breakdown a
s. However, t
xity to the ov
e in case of a h
igure 2.11 sho
y displaced (fo
7). The conseq
ual vortex feel

me radial dista
2.12).  

g Flow in Scave

 

(Alekseenko 
om the axis of

of a helix wr
ows exhibiting
2.10) (Aleksee

like axis-sym
characteristics

and PVC etc
the helical st
verall flow str
helical swirl fl
ws the stream

or further poss
quent effect of
ls that there i
ance from th

enging Process

et al., 2007). I
f the container
rapped around
g this characte
enko et al., 200

mmetric and n
s e.g. wave p
., that have 
tructure of th
ructure and i
low confined i

mlines (project
sible structure
f cylinder wal
is another vor
e wall but ro

 
 
 

 
 

s for 2-Stroke 

Instead the vo
r (pipe/ cylind
d the cylinder
eristic are calle
07). 

non-helical asy
propagation o
been discusse

he vortex cor
its consequen
in a device lik

tions) when th
es see Alekseen
ll is like a ‘mi
rtex of identic
otating in opp

 

 

Chapter  2

ortex filament 
der in this cas
r axis along th
ed ‘helical swir

ymmetric swi
on vortex cor
ed in previou
re brings mo
t behavior. F

ke pipe/ cylind
he vortex core 
nko et al., 199
irror vortex’ i.
cal properties 
posite directio

2

Sw
ir

li
ng

Fl
ow

s

25 

 

is 
se) 
he 
rl/ 

irl 
re, 
us 

ore 
or 

der 
is 

99 
.e. 
at 

on 

Sw
ir

li
ng

 F
lo

w
s 



Experi
Marin
 

 
Figu
 
Sketch
effect 
illustr
at y/h
2009)

imental and N
ne Diesel Engin

ure 2.12:  

h of mirror vortex
of wall. The wal

rated by a thick l
h=0 (Velte et al., 
). 

Numerical Stud
nes 

 
 
Figure 
vortex f

��  are

same R
observe
helix pi
handed
handed
vortex 
existenc
number
mass tr
vortices
symmet
sectiona
be the g
affects t
strain e
where d
vortices

x 
ll is 
line 

dy of Swirling

(2.13) shows t
filaments whe

e the axial and

Reynolds and 
ed i.e. uniform
itch (Figure 2

d helical vortex
d helical vortex

can result in
ce of different 
rs are not suff
ansfers for the
s have finite s
trical. The rad
al positions al
geometrical sh
the flow prope
etc.). Alekseen
double helical
s the helix also

g Flow in Scave

 

the sketches o
re l  is pitch o

d tangential v

swirl numbe
m axial velocit
2.13a), jet-like
x (Figure 2.13b
x (Figure 2.13
n generating 
vortex symme

ficient to char
e swirling flow
size cores and

dius of helix an
ong the flow

hape of the inl
erties (a contra
nko et al. (20
l vortex filame
o is a function 

enging Process

of different mo
of the helix, V
vorticity comp

ers different a
ty with rectilin
e axial velocity
b) and wake-li
3c). In some c

a counter fl
etries indicate
racterize the d
ws (Martemia
d even in som
nd the pitch ca
and one of th
let and outlet 
action section

007) have also
ents are observ
of time in a p

 
 

s for 2-Stroke 

 

odels of axisym
Vz  axial veloc

ponents respe

axial velocity 
near vortex lin
y profile gene
ike profile gen
cases, the left 
flow regime. 
es that the Rey
different aspec
anov et al., 200
me cases the h
an also vary at

he many possib
of the vortex 

n at the outlet i
o discussed th
ved. In non-st

periodic mann

Chapter  2

mmetric helic
ity and z�  an

ctively. For th

profiles can b
nes and infini
erated by righ

nerated by a le
handed helic
Practically th

ynolds and swi
cts e.g. heat an
04). In real, th

helix is not ax
t different cros
ble reasons m
chamber whic
introduces axi

he experiment
tationary helic
ner.         

2

Sw
ir

li
ng

Fl
ow

s

26 

 

cal 
nd 

he 

be 
ite 
ht-
ft-

cal 
he 
irl 
nd 
he 
xis 
ss-
ay 
ch 
ial 
tal 
cal 

Sw
ir

li
ng

 F
lo

w
s 



Experi
Marin
 

 
Figu
 
Schem
axisym
vortex.
origina
(Aleks

imental and N
ne Diesel Engin

ure 2.13:  

mes of 
mmetrical helical 
. Modification of
al figure from 
seenko et al., 1999

Numerical Stud
nes 

Okulov
transitio
same in
helical v
 
(1) The

tra
for
tra
 

(2)  In 
du
vor

 
 

l
f 

9). 

dy of Swirling

v et al., (2002) 
on from right
ntegral flow p
vortex types h

e pitch is posi
ansition the pi
r left handed h
ansition (Figur

the other case
uring the trans
rtex. This type

g Flow in Scave

 

have describe
t to left hande
parameters. Th
appens in two

itive for the ri
itch becomes 
helical vortex. 
re 2.14a).  

e the positive p
sition before c
e is called R (ri

enging Process

 
 

ed the vortex 
ed helical vort
his continuous
o different way

ight handed h
infinite and t
This type of t

pitch for right
changing to n
ing)-transition

s for 2-Stroke 

breakdown as
tices and vice 
s transition be
ys as shown in

helical vortex 
then attains a
transition is n

t handed vorte
negative value 
n (Figure 2.14a

Chapter  2

s a spontaneou
versa under th
etween the tw

n figure 2.13: 

and during th
a negative valu
ames L (linear

ex becomes zer
for left hande

a).   

2

Sw
ir

li
ng

Fl
ow

s

27 

 

us 
he 

wo 

he 
ue 
r)-

ro 
ed 

Sw
ir

li
ng

 F
lo

w
s 



Experi
Marin
 

 
Figu
 
Transit
vortices
(b) R-T
et al., 2

imental and N
ne Diesel Engin

re 2.14:  

tion of helical 
s (a) L-Transition
Transition (Okulo
2002). 

Numerical Stud
nes 

 
      
In real 
single v
filamen
periodic
position
confine
make th
inside t
empiric
the ave
comput
areas.    
 

2.4
 
There 
Compu
the pur
that ma
model t
models 
 
Swirl fl
streaml
shear) i
coordin
equilibr
 
The sta
eddy vi
features
of entr

n 
ov 

dy of Swirling

(a)

confined swir
vortex chambe
nt not only p
c behavior an
n. The presen
ed swirling flo
he flow beha
the vortex cha
cal models dev
eraged values
tational mode
   

CFD Mo

is a large 
utational Fluid
rpose of this se
ake it very di
them using st
and Reynolds

ows has some
ine curvature 
f the velocities

nates (Moene
rium and effec

andard two eq
iscosity hypoth
s like velocity 
ainment, cha

g Flow in Scave

 

                       

rling flows, th
er a helical sw
recess around

nd undergoes 
nce of wall 

ow even more 
ve as if two p
amber. In cas
veloped (see A
s obtained fr
els, the swirlin

odeling C

amount of 
d Dynamics (C
ection is to di
ifficult or in o
andard turbul
s Stress Model

 challenging f
which is view
s would be exp

e A.F., 2003)
cts of turbulen

quation mode
hesis have fai
component de
racteristics of

enging Process

                       

here can exist
wirling flow 

d the vortex c
vortex breakd
will make th
 complex as t
parallel helica
se of highly t
Alekseenko et 
from the exp
ng flows are 

Challenge

scientific li
CFD) modelin
scuss some of
other words, 
lence models 
ls. 

features that a
wed as an extra

pressed in Car
), strong de
nce anisotropy

els such as k
iled to reprod
ecay, jet sprea
f recirculation

s for 2-Stroke 

                   (b

t many examp
exists where t
chamber axis 
down at some
he overall be
the ‘mirror vo
al vortex syste
turbulent swir
al., 2007) are 

perimental re
also one of t

es 

iterature ava
ng of swirling 
f the aspects o
require speci
i.e. Two-equa

are absent in si
a strain rate (re
rtesian rather t
parture from

y (Jakirlic´ et a

k �� , based o
duce importan
ading or diffus
n zones and 

Chapter  2

 
)                      

ples where in 
the vortex cor
but also has 

e cross-section
ehavior of th
ortex’ effect wi
ems are existe
rling flows, th
compared wit

esults. For th
the challengin

ailable on th
flow. Howeve
f swirling flow
al treatment 
tion turbulen

imple flows e.
elative to simp
than cylindric

m local energ
al., 2002).       

on Boussinesq
nt swirling flo
sion rate, degr
Reynolds stre

2

Sw
ir

li
ng

Fl
ow

s

28 

 

                      

a 
re 
a 

nal 
his 
ill 
ed 
he 
th 
he 
ng 

he 
er, 
ws 
to 
ce 

.g. 
ple 
cal 
gy 
 

q’s  
ow 
ee 

ess 

Sw
ir

li
ng

 F
lo

w
s 

                



Experimental and Numerical Study of Swirling Flow in Scavenging Process for 2-Stroke 
Marine Diesel Engines 

Chapter  2

 

 

Sw
ir

li
ng

 F
lo

w
s 

29 

 

levels etc. (Sloan et al., 1986). The adoption of a relation that local stresses 
being directly proportional to local strain rates rules out any special 
sensitivity to the streamline curvature (Craft et al., 2008). The assumption of 
turbulent/ eddy viscosity as isotropic cannot be valid in flows influenced by 
body forces acting in a preferred direction, such as buoyancy, rotation and 
streamline curvature (Sloan et al., 1986). Algifri et al. (1988) proposed, using 
experimental data on confined swirling flow, that the eddy viscosity is 
function of Reynolds and swirl numbers. Further, the k ��  model is a 
simplistic function of a single time scale (proportional to a turbulence energy 
turnover time k � ) which implies that the spectral energy transfer rates for 

production of turbulent kinetic energy by mean shear, the intermediate 
transferal regime and the viscous dissipation regime are equal without any 
characteristic lag (Sloan et al., 1986). 
 
The second order closure schemes having transport equations for individual 
components of Reynolds Stress tensor account for the curvature of 
streamlines however the effect is at least an order of magnitude large than 
expected (Moene A.F., 2003) i.e. a 1% curvature strain produces for a 
boundary layer a 10% or greater effect on the turbulent stresses (Bradshaw, 
1973). The source terms in dissipation �  equation, to a significant degree 
control the magnitude of turbulent kinetic energy, mean velocity decay and 
the spreading rates (Sloan et al., 1986). However, the transport equations for 
k and �  have no specific terms (source) to account for sensitiveness to 
rotation and swirl (Jakirlic´ et al., 2002). Since both of these transport 
equations are common in two-equation and second order closure schemes, 
the performance of second order closure schemes are also affected to some 
degree for modeling the swirling flows. Numerical issues also have 
significant impact on predicting the behavior of swirling flows (Craft et al., 
2008).  
 
Different modeling approaches so far have been adopted to improve the 
performance of the aforementioned turbulence models and some of them are 
discussed here in brief. In order to include a rapid response to streamline 
curvature, the coefficient C�  in the turbulent viscosity equation (2.12) has 

been altered to a functional form (see Leshcziner et al., 1981). Sloan et al., 
(1986) reports that more complex versions of C�  have been developed that 

include non-equilibrium turbulence and wall damping.  
 

2

. .t
kC�� 	
�

�                                               (2.12) 

 
Where t�  is turbulent viscosity, C�  is a constant and has empirically 

determined value of 0.09 and 	  is the fluid density.  
 
Yakhot et al., (1992) developed the RNG k ��  model which, unlike the 
standard k ��  model, is derived using a statistical technique called 
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‘Renormalization Group Theory’. The model has an additional term in the 
�  equation that improves the accuracy in terms of rapidly strained flows 
(Najafi et al., 2005). The model also accounts for the effect of swirl or 
rotation by modifying the turbulent viscosity, given in function form in 
equation (2.13) (ANSYS FLUENT, 2009). 
 

� � �
�

� ��  !
" #0

, ,t t s c
kf S                                               (2.13) 

 
Where 

0t
�  is the value of turbulent viscosity calculated without swirl using 

equation (2.12), cS  is the characteristic swirl number and s�  is swirl 

constant having different values based on whether the flow is strongly or 
mildly swirl dominated.  
 
In other attempts to account for streamline curvature involves modifications 
in the source term for �  equation by including the ‘gradient Richardson 
number’ which is the ratio of centrifugal force to a typical inertial force and 
in context of swirling flows, the extra mean rates of strain associated with a 
curved shear layer may be regarded as producing the effects of a centrifugal 
force on a displaced element (Sloan et al., 1986). 
 
In case of second order closure schemes, the predictions in general are better 
compared to two equation models in some cases but still their performance 
is not universal to different swirling flow regimes in experimental and 
industrial devices. One of the weaknesses is that neither the modeling of 
terms nor the numerical values of the model constants are fully established 
(Sloan et al., 1986). Further, the stress transport equations are numerically 
very sensitive and using higher order discretization schemes may sometimes 
destabilize the computations. Jawarneh et al. (2006) also used first-order 
upwind discretization schemes for the Reynolds stresses. However, confined 
swirling flow calculations performed by Strugess et al. (1985) demonstrate 
that the errors due to numerical diffusion can make a suitable turbulence 
model to produce bad results. Further, Craft et al. (2008) demonstrated 
different performance of same Reynolds stress model for a given case but 
using 3D elliptic and parabolic solvers.  
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introducing an axial strain to the swirling flow, is expected to begin at test 
cylinder regions very close to the outlet pipe. The flat-bottom-head of the test 
cylinder, fitted with the outlet pipe, provides 90º sharp edge and another 
near-wall recirculation/ separation zone is expected to form at the entrance to 
outlet pipe (‘e’ in Figure 3.4). The flow from outlet pipe enters a soft and 
bendable plastic pipe connected to the orifice meter assembly (‘f’ in Figure 
3.4). The internal wall of the bending pipe is not very smooth and some head 
loss is expected to occur. The flow, after passing the orifice plate, enters the 
blower (‘g’ in Figure 3.4).  The blower exhaust is connected to the laboratory 
building exhaust system which exhausts out the air/ glycerin mixture for 
ensuring safe and healthy working conditions inside. The experiments in this 
study are conducted mostly in non-gusty outside weather conditions in order 
to prevent any possible effect of pressure waves, traveling through building 
exhaust, to the test cylinder thus creating some unsteadiness to the in-
cylinder swirling flow.    
 

3.3 Differences between Test Model and Real 
Engine Scavenging process 

 
 
The in-cylinder flow during scavenging process is very complex in nature and 
involves different aspects and phenomena occurring simultaneously. The test 
model developed in this study is an attempt to simplify that flow. In this 
way, it makes possible for each phenomenon to be studied and characterized 
separately/ individually. The major differences between the actual and this 
simplification of the scavenging process are given below:  
 

� Flow: The in-cylinder flow is steady, incompressible and isothermal. 
 

� Cylinder Geometry: The cylinder head is a flat bottom head 
without any exhaust valve and diesel spray nozzles. There are no 
scavenging ports on the lower part of the cylinder wall. The piston 
top surface is flat and no piston rings are mounted. Thus the 
clearance between the piston wall and cylinder wall is smaller than 
real engine.  
 

� Swirl Generation: There is no scavenging box and the air enters the 
inlet section from surroundings in an axis-symmetric manner. Swirl 
is induced to the flow using the guide vanes. In real engine, air 
from the scavenging box enters the cylinder through intake ports 
which are grooved an angle to the cylinder radius. Thus the in-
cylinder swirl can be thought of being generated by the air jets from 
each intake port. Moreover, the flow entering the engine cylinder is 
not axis symmetric. 

 
� Fluid Compression and Moving Parts: The piston cannot be moved 

to complete a stroke thus there is no compression of the fluid inside 
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the cylinder and the flow is incompressible. The piston can slide to 
a position where it completely covers/ closes the cylinder intake 
port. Moreover, the piston is shifted manually from one position to 
another and it is not in continuous motion like in real engine. Thus 
the variation in in-cylinder flow characteristics is not a function of 
time. 

 
� Chemical Species: A mixture of air and very small concentration (in 

ppm) of glycerol droplets as seeding is used as the working fluid. 
There is no fuel injection, chemical reaction and exhaust products/ 
gases. 

 
� Combustion:  The measurement is conducted with flowing fluid 

and experimental setup to be at room temperature. No combustion, 
heat sources and temperature gradients (in fluid and solid walls, 
piston and cylinder head) are involved. 

 
� Stratified Flow: Contrary to real engine scavenging process, no fluid 

density variations occur inside the test cylinder. Therefore, there is 
no in-cylinder stratified flow regime where the incoming air 
interacts with exhaust gases which are lower in density than air. 
Also the test cylinder is mounted horizontally instead of being 
vertical in real engines. This factor can be significant if there exists a 
stratified flow. 

    

3.4 Smoke Visualization 
 
A qualitative analysis of the test model is performed by conducting 
visualization using glycerin smoke from a smoke generator. The smoke is 
blown in to the setup and pictures are taken using a digital camera. The 
smoke generator cannot produce a constant jet of smoke and instead injects 
intermittent puffs of smoke which gradually reduces in concentration at the 
end of each puff (smoke generator here is one used in Disco/ concerts etc that 
produces smoke by heating and evaporating glycerin). The smoke enters the 
experimental setup from one side and the distance is kept in a way that the 
smoke jet has minimum effect on the actual flow pattern at the inlet to the 
experimental setup. Figure 3.5 shows the smoke entering the inlet section 
and being diverted at an angle by the guide vanes thus helping in checking 
the general performance of the design. The flow then enters the cylinder 
with an angle to the radius and bends in the axial direction (Figures 3.6).  
  
The pictures presented in figures 3.7-3.11 are taken using a 13W (blue color) 
energy saver light bulb as light source and pictures are taken using a 
webcam, Microsoft LifeCam Cinema®. The idea was to attempt to visualize 
flow patterns by making the blue light giving a fluorescence-like effect after 
being reflected from the smoke particles. The visualization was carried out by 
first keeping the experimental setup in darkness and then using blue light as 
the only light source. The light reflection from glycerin smoke particles 
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appeared to be the major source of light entering the camera compared to 
other objects. This made the flow patterns, to some extent, visible inside the 
test model. Here it must be mentioned that the camera is not perfectly 
aligned with the experimental setup. For all the pictures the position of the 
smoke generator was kept the same. 
 

Figures 3.7-3.10 show the visualization of in-cylinder swirling flow observed 
from piston window i.e. the flow direction is into the picture plane (see 
Figure 3.4). Figure 3.11 shows observations taken from one side of the test 
setup. For a given piston position, the figures are not in a time sequence. It 
can be seen that in case of fully open cylinder intake port, the in-cylinder 
flow has a well-defined vortex core region (Figures 3.7 & 3.11a). The smoke 
after entering the cylinder remains confined mostly in the core region and 
does not mix to a large extent with the region surrounding the vortex. The 
core size increases in a conical shape downstream the flow. As the port is 
closed by 25%, the vortex core region becomes comparatively less defined 
and more mixing of the smoke is observed along the cylinder length (Figures 
3.8&3.11b). However, at 50% closed port, the vortex core is no more visible. 
The smoke stream enters the cylinder and mixes with the surrounding air 
very quickly (Figures 3.9 & 3.11c). Similar pattern can be seen in case of 75% 
closed port (Figures 3.10&3.11d). During the smoke visualization 
experiment, the author observed that for fully open port the smoke stream, 
after entering the cylinder, entered in the center vortex core at regions 
adjacent to piston surface. Observing from the side of cylinder in Figure 
3.11a, the smoke in the core region along the cylinder had a shape of 
expanding hollow cone with cone top side to be at the piston surface. 
However, with the gradual increase in blockage of intake port, the well-
defined conical smoke pattern started to disappear. Instead the smoke 
pattern resembled to a jet (Figure 3.11 c & d). Viewing from the piston side 
in figures 3.7-3.10, the Smoke stream entered the cylinder center region after 
travelling some axial distance from the piston surface. This is probably due to 
piston wall favoring the flow to enter the cylinder with an axial component. 
The smoke stream was having a flapping behavior after entering the cylinder, 
just like a thread connected at one end with a fixed object in air stream. This 
indicates increased turbulence at the cylinder entrance and consequently an 
increases in the mixing of smoke with the surrounding air as can be seen in 
(Figure 3.11 c & d).       
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mounted, is not fitted with the traverse. Laser cavity and cameras are 
mounted on the same traverse with their positions fixed relative to each 
other. Thus the traverse moves only laser and the cameras at the required 
measuring planes in axial direction (Z-axis). 
 

3.5.1 Alignment and Calibration 
 
The NewWave® Solo Nd:Yag pulse laser device (120 mJ pulses @ 15 Hz, 
Wavelength 532 nm) is mounted on the traverse in a way that the laser sheet 
is perpendicular to the cylinder. The laser sheet is aligned with the laser light 
reflected from the cylinder wall. This ensures that the laser sheet is 
perpendicular to the cylinder. Two Dantec HiSense cameras with 1344 x 
1024 pixels and pixel size of 6.45μm are equipped with 60 mm focal length 
lenses and green light filters. Both cameras, mounted on the same traverse, 
are at one side of the laser sheet and the cylinder is placed between the two 
cameras (Figure 3.13). The calibration target is attached on a disc of same 
diameter as the internal diameter of the cylinder and is slided inside the test 
cylinder. The calibration target is kept aligned with the laser sheet at only 
one of the measuring cross-sectional position and considering the test 
cylinder being axially aligned; same calibration is used for all the other 
measuring cross-sections. The cameras were focused on a rectangular target 
plane within the pipe diameter, avoiding measurements close to the cylinder 
wall due to strong reflections of the laser light. In order to capture all the 
measuring positions, two position configurations for the cameras are used 
(Figure 3.10).  Due to angle of view, for the measuring positions near the 
outlet in camera configuration 1, camera view is blocked by the cylinder 
outlet wall and thus configuration 2 is used. For each configuration, 
calibration is performed at single measuring position. Dantec 
DynamicStudio® software is used for PIV measurements and data 
processing. Calibration was performed using 3rd Order XYZ-Polynomial 
Imaging model which is capable of handling distortion caused by the lens or 
curved windows (DynamicStudio® user manual). In order to account for the 
possible misalignment of the calibration target with the laser sheet, disparity 
error correction is performed. For configuration 2, calibration and 
calibration refinement processes are repeated and is used only for the 
positions near the outlet.  
 
One half of the test cylinder wall behaves like a concave reflecting surface 
and laser light reflections from the internal walls make a very bright spot 
near the concave wall facing the laser light (Figure 3.14). This will increase 
uncertainty in the measurement in that region. The F-number is set to 8 for 
the camera receiving the forward scatter and for the camera receiving the 
backward scatter, F-number is set to 4. 
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Reynolds number. In the first part (marked by blue box), only first 6 
positions for the aforementioned cylinder lengths are plotted. This provides 
a comparison of flow characteristics for measuring positions that are 
common in all the three cylinder lengths. The second part (marked by green 
box) describes the remaining positions i.e. position 7 and beyond which are 
common only for 6D and 8D cylinder lengths and also the positions which 
are only in 8D. 
 
 

 

Position 
No.      

Axial Positions  
( z/D ) 

Cylinder Length (L/D) 

L1 =8 L2 =6 L3 =4 
z1 0.963 %& %& %&
z2 1.489 %& %& %&
z3 2.016 %& %& %&
z4 2.542 %& %& %&
z5 3.068 %& %& %&
z6 3.595 %& %& %&
z7 4.116 %& %&
z8 4.642 %& %&
z9 5.168 %& %&
z10 5.695 %&
z11 6.226 %&
z12 6.747 %&
z13 7.268 %&     

 
 

 
Before discussing the results from stereoscopic PIV experiments on different 
cross-sectional planes along the cylinder length, it is necessary to study and 
understand the flow inside the swirl generator because the flow conditions 
and characteristics such as swirl angle (angle between radial and tangential 
velocity components), symmetric or asymmetric flow and turbulence level 
etc. in the swirl generator govern the resulting downstream in-cylinder 
swirling flow and knowing the flow inside swirl generator will help in better 
understanding of the PIV results at the downstream positions. Moreover, it 
will give an assessment of the design performance of swirl generator and also 
help in finding any possible manufacturing and human errors during 
construction, assembling and alignment of the inlet section. Proper and 
accurate alignment of all the guide vanes ensures a symmetric flow 
distribution/ swirl generation in the inlet section and any misalignment will 
introduce asymmetric swirl.  
 

 
Table 4.1:  
 
Axial Position of 
Measuring planes for 
different cylinder lengths. 
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4.1  LDA Measurements (Inlet Section) 
 
Two components LDA measurements were conducted at different locations 
in the swirl generator as described in Section (3.6). The main reason for 
using LDA technique has been the possibility of conducting measurements 
at locations where PIV measurement becomes very difficult to be conducted 
due to guide vanes blocking the laser light (see section 3.1). The 
measurements are conducted at volume flow rate of 0.154 m3/s.   
 
Different radial positions from origin see figure 3.18, between inlet to swirl 
generator and contraction section, are selected and then measurements are 
conducted at same radial positions along each of the axes lines (Table 4.2).   
 

 

Axis 
Radial Positions from origin (mm) 

          
275 230 215 200 185 

X %& %& %& %& %&

-X %& %& %& %& %&

 
 
This must be mentioned here that in the real swirl generator the assumed 
axes lines, while crossing the blade row, do not lie on similar location 
between the two adjacent guide vanes e.g. the measurement at the radial 
position of 235 mm for negative Y axis is not possible due to the laser beam 
being blocked by a guide vane whereas for other axes measurements can be 
conducted at the same radial position. 
 
The measured radial velocity profiles for each half axis are shown in figure 
4.1a (flow direction is from radial position at 275 mm to 180 mm). The half-
length of each error bar is one standard deviation. It can be seen that the 
radial velocity distribution is not symmetric. Flow accelerates while passing 
through the row of guide vanes and further downstream due to the 
contraction section. Due to wake behind the guide vanes a decrease in the 
magnitude is also observed for radial positions of 200 mm along positive X.  
 
The tangential velocity profiles are shown in figure 4.1b. For both half axes, 
at radial position of 275 mm, a non-zero tangential velocity is observed 
which demonstrates either the flow feeling the presence of the guide vane 
being at downstream position or the blade edge facing the inlet section 
outlet is not perfectly aligned with the radius. Moreover, different values of 
tangential velocity and angle between radial and tangential velocity 
components along the axis lines indicate that there exists a small relative 
difference in alignment of guide vanes (Figure 4.1c).  
  

 
Table 4.2:  
 
Radial Position of 
Measuring points along 
X-axis for LDA 
measurements. 
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At downstream radial position of 180 mm, the relative variation in 
magnitudes of individual velocity components reduces significantly. A 
possible reason is that the flow at a radial position of 170 mm enters the 
contraction region which will have a damping effect to any variations/ 
fluctuations in velocity and the flow at nearby upstream positions also feels 
the presence of the contraction section.  
 
 

 
(a) 

 

 
(b) 

 
The measurements conducted along the two arcs behind the blades as 
mentioned in figure 3.18 are shown in figure 4.2. Where '  is the angular 
location of the measurement point on a given arc. The negative values of the 
velocity components are due to the orientation of LDA laser beams. Each 
half length of the error bar is one standard deviation. The results show that at 
a radial distance of 230 mm (the trailing end of the blade is approximately at 

(m
/s)

V r
�(m

/s)
V

 
 
Figure 4.2:  
 
LDA Measurements 
along an arc behind the 
blades (a) mean radial 
velocity profile (b) mean 
tangential velocity profile 
(Schnipper, 2010). 
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Based on the average angle of 28.6° at the radial position of 200 mm, using 
the conservation of angular momentum, the design swirl parameter for 
current experimental setup is 0.34 (Equation 2.8).    

 

4.2 PIV Experimental Results (L3) 
 
The PIV experimental results are discussed here by describing the mean data 
for each flow characteristic. In order to present the results in a 
comprehensive and more understandable manner, at first, the results for the 
base case of cylinder length L3 are discussed and then the effect of change in 
cylinder length is discussed by comparing the results for L1, L2 and L3 at 
selected positions. The results for the remaining positions are presented in 
appendix A. 
 

4.2.1 Mean Velocity Field 
 
The mean velocity field at z1 is presented for both the Reynolds numbers in 
figure 4.6. Each velocity component is non-dimensionalized with bulk flow 
velocity Vb.  
 
It can be seen that the resulting in-cylinder swirling flow is comprised of a 
concentrated vortex with a small core surrounded by a high velocity region. 
The velocity magnitude in the vortex core is very low compared to its 
surroundings and mean position of the vortex core is slightly eccentric to the 
geometric center of the cylinder. A low velocity region exists at larger radial 
positions close to the cylinder wall. Moreover, it can be observed that the 
core size, in case of ReB is relatively smaller than the velocity field at ReA.  
 
The flow decays downstream and the size of vortex core region increases 
indicating smaller localized velocity gradients compared to upstream 
positions (Figure 4.7). Moreover, the high velocity region exists at larger 
radial distances from the vortex core and the thickness of the high velocity 
region is also not uniform at all circumferential positions at the given radial 
distance from the core. This demonstrates the flow having three dimensional 
features. The size of the vortex core has further increased and the relative 
difference in the core size at two Reynolds numbers still exists. 
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4.2.5 Reynolds Normal Stresses 
 
The Reynolds stresses are expressed in Cartesian coordinates rather than 
cylindrical coordinates. The major reasons are (i) the particle image 
Velocimetry (PIV) measurement equipment gives data in Cartesian 
coordinate system and (ii) transforming the velocity components to the 
corresponding components in cylindrical coordinate is very difficult in 
instantaneous velocity filed due to the lack of a clear and single defined 
vortex core. In the current experiment only at z1, there exist some 
instantaneous snapshots of the flow, among all snap shots for that particular 
measurement, where a single vortex core can reasonably be observed. (iii) to 
the knowledge of author, most of the major CFD codes are written for 
Cartesian coordinates and the model validation requires the experimental 
data to be in the same coordinate system. 
 
The contour plots of velocity components in Cartesian coordinates can still 
provide some good information about the corresponding components in 
polar (cylindrical) coordinates. The only difference is to understand the 
relation of u and v  components to �V  and Vr  because the w  and Vz  are 

the same in both the coordinate system. In case of swirling flow, the 
interpretation of Cartesian components in to polar components is easily 
understood. Along X-axis, the u  component represents Vr  and v  

component represents �V . In case of Y-axis, it is vice versa. Figure 4.14 show 

contour plots of u and v  components and can thus be used as an example of 
understanding the distribution of tangential and radial velocities from 
contour plots of u and v  components (signs denote the direction of a given 
vector component). 
 
The contours of u  along Y-axis indicate that the tangential velocity increases 
from cylinder axis to its peak value at a region r/R=0.17 (approximately) and 
then decreases again towards large radial positions. Whereas along X-axis, the 
value of u  shows that radial velocity has a very low magnitude. The contour 
of vgives similar information about the distribution of tangential and radial 
velocity components but along opposite axis lines i.e. X-axis, as discussed 
before. The distribution of fluctuating/ turbulent part of the individual 
velocity components, for polar coordinates, can also be understood in the 
same manner.  
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From the contour plots of u and v , it can also be observed that the peak 
tangential velocity regions are not perfectly aligned with the axis lines and in 
fact are at an angle to the axis lines in clockwise direction. This is possibly 
due to the eccentric location of the vortex core from the cylinder axis. 
Another effect of asymmetric swirling flow can also be understood by 

plotting the contour plot for in-plane velocity ( 2 2u v� ) (Figure 4.14). In 
case of axis symmetric swirling flow, the velocity contours will have a 
circular ring shape.  However, in this case a high velocity quarter-moon 
shaped region (indicated by a white arrow) is observed. This is probably due 
to the effect of wall because the vortex core is radially closer to the wall in the 
direction of eccentricity from the cylinder axis compared to other direction.  
(Alekseenko et al., 2006) has discussed in detail about the changes in the 
structure of flow in helical vortices with and without the presence of wall.    
 

The normal Reynolds stress components u u� � , v v� � ,w w� � , statistically, 
represent variance of u , v  and w  components of velocity respectively. In 
case of experimental measurements for swirling flow with precessing vortex 
core (PVC), the measured values of Reynolds stresses are actually a 
combination of true velocity variance and vortex core oscillation.  The 
contribution of oscillating vortex core depends on its amplitude and 
frequency and in some cases can be the major contributor. 
 

The u u� � component, at z1, has high values concentrated around the vortex 
core and in an oval shape region elongated along x-axis (Figure 4.15). This 
may possibly be due to a precessing vortex core (PVC). The size of this region 
with peak velocity variations in the core is smaller at ReA compared to ReB.  
The region surrounding the vortex core has very low velocity variations but 
these variations gradually increase in radial direction towards the near wall 
region.  
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ẃ , the maxim
s decayed alm

e region with 
both ReA and
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values of v vr z� � . An overall picture of the distribution can be understood in 

this way that at z1, the highest values of v v z�� �  are observed in the vortex 

region whereas the v vr z� �  are dominant in the near wall region. The region 

in between has the minimum values for both the shear stress components. 
With swirl decay along the flow, the spatial distribution of these shear 
stresses increase and magnitude decreases.  
 

4.2.7 Average Turbulent Kinetic Energy 
 
The average turbulent kinetic energy (TKE) k  is given by  
 
 

� �1
2

k u u v v w w� � � � � �� � �                                         (4.1) 

 
From equation (4.1), the turbulent kinetic energy represents half the sum of 
normal components of Reynolds stresses. Thus a possible bias, as discussed in 
section 4.2.6, due to vortex core precession can also be expected in the values 
of k  in the vortex core region. 
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experiment has been conducted using a single blade angle, therefore, all the 
measurements are conducted at a constant swirl number. Thus it is not 
possible to study the upstream effect of this exit contraction on the flow 
profile in the cylinder as a function of swirl number, similar to studies 
conducted by (Escudier et al. 1985, Escudier at el. 2006). The experimental 
results from different cylinder lengths, however, indicate that the flow does 
not feel the presence of outlet contraction until cylinder cross-sections very 
close to it as in case of z6 with cylinder length 4D. The downstream change in 
cylinder length is not detected by the flow at upstream positions and thus the 
flow mainly depends on the upstream conditions at the cylinder inlet. The 
flow behavior remains the same for a given Reynolds number and whether 
or not the variation in the velocity profiles at different Reynolds number is 
due to outlet contraction needs further experimental investigation. 
 
For all the cylinder lengths used in this experiment, the vortex core follows a 
helical path downstream the flow. The radius of the helix is not constant and 
actually increases along the flow direction. However, in all the cylinder 
lengths the helical path does not complete one rotation. Experiments 
conducted by (Escudier et al., 2006) observed a helical vortex path when the 
outlet contraction is made eccentric with respect to cylinder axis but in the 
current experiment the outlet is aligned with the cylinder axis. The helix 
rotation is clockwise representing a left-handed helical vortex. However, 
contrary to the results obtained by (Alekseenko et al., 1999), the helical path 
and fluid particles (swirl) have same direction i.e. clockwise. 
 
At z1 the flow has a tangential velocity like Burgers vortex and the wake-like 
profile of axial velocity does not show any reverse flow. As mentioned by 
(Alekseenko et al., 2007) this represents that the helical path, followed by the 
vortex core downstream the cylinder, has a negative pitch. For the cylinder 
length 8D, at z10 and positions downwards, the tangential velocity profile 
becomes like forced vortex and the axial velocity profile becomes almost 
uniform. Besides, the vorticity profiles having Gaussian profile at z1 also 
becomes uniform. This demonstrates that for cylinder length 8D at far down 
stream positions the negative pitch changes to infinite value indicating a 
transition of left-handed helical vortex to right handed helical vortex called 
as ‘L-Transition’ and is one of the characteristics of vortex breakdown 
(Okulov et al., 2002) (see Section 2.3.6). However, since z13 is close to outlet 
for cylinder length of 8D, the complete transition of the left handed helical 
vortex to right handed type cannot be seen from experimental results. It 
probably requires conducting measurements by keeping the cylinder length 
more than 8D. Another interesting feature is observed from the helical vortex 
path for 8D cylinder length where instead of completing one revolution the 
vortex path tries to re-twist at far downstream cross-sections. Similar results 
are obtained from experiments by (Alekseenko et al., 2007) but the difference 
is that in their experiment the outlet contraction is made eccentric to 
cylinder axis. Further, this re-twisting of helical path, in their case, is 
observed in the bottom vicinity (near inlet) whereas in current experiment it 
is observed near cylinder outlet. This re-twisting indicates distortion of helix 
and change in its direction (Alekseenko et al., 2007). Thus it can be 
concluded that in case of cylinder length 8D, at far downstream positions, 
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the flow indicates a vortex breakdown. However, from the current 
experimental results, the location of the vortex breakdown being before or 
after the outlet contraction cannot be predicted.        
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results in Chapter 4, the variation in cylinder length may not be having any 
significant effect on the in-cylinder. The axial positions mentioned in table 
5.1 are all relative to the origin fixed at piston position at fully open port.   
 
The PIV data acquisition is performed by keeping the piston at any 
aforementioned fixed position and then taking measurements at cross-
sectional planes z1 to z6 along the length of the cylinder. The piston is then 
moved manually to one of the next aforementioned position and the same 
procedure is repeated. Thus measurements are not conducted in a varying in-
cylinder flow Reynolds number and continuous piston translation. This 
makes the measurements in this experiment to be conducted in a quasi-
steady state because in real engine scavenging process, in addition to 
stratified flow and large temperature gradients, the piston accelerates or 
decelerates continuously (covering and uncovering the intake ports) and the 
in-cylinder flow rate and Reynolds number change accordingly. The presence 
of exhaust valve has an aerodynamic effect on the in-cylinder flow e.g. it acts 
as a bluff body to the flow at the cylinder outlet and also changes the cross-
section of the cylinder outlet. Studying the effect of exhaust valve on the in-
cylinder flow is considered as the future work.  
 
In order to study the effect of variation in flow rate and Reynolds number on 
the in-cylinder swirling flow, for each given piston position, the 
measurements are conducted at two different Reynolds numbers (ReA = 6.5 x 
104 ± 1870 and ReB =3.25 x 104 ± 935) as in the experiment discussed in 
Chapter 4. In a real engine, the flow rate changes as the piston movement 
closes ports. For simplicity, in this experiment, the flow rate has been kept 
constant for different port openings, but by using two different flow rates 
(High and comparatively low), the effect of change in flow rate on the in-
cylinder flow can be studied. Thus the current experiment is focused on the 
effect of piston position on the in-cylinder confined swirling flow. The 
experimental results can also be useful for the computational modeling 
where, at first, the performance of a given model is validated against the 
experimental results at different quasi-steady state piston positions and a 
given Reynolds number and then a transient simulation of swirling flow 
during scavenging process is performed using computationally dynamic/ 
moving mesh techniques for piston and exhaust valve motions. 
 

5.1  Results and Discussion 
 
The results for the piston position with fully open cylinder inlet port has 
already been discussed in Chapter 4 for the cylinder length L=4D. However, 
only the tangential and axial velocity profiles for ports fully open are 
discussed briefly from the prospect of discussing the comparison of the effect 
of piston motion/ position on in-cylinder swirling flow. The rest of the 
chapter will present the results for piston positions at cylinder inlet closure of 
25%, 50% and 75%. 
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The profiles plots are presented by first moving the origin of the coordinate 
system to the approximate position of vortex center and then interpolating 
along new X-axis defined as ‘XV’ and at YV=0 for a flow characteristic of 
interest. The data for different flow characteristics are normalized in the same 
manner as in case for the experimental results in Chapter 4. 
 
This chapter includes results selected from the experimental measurements in 
order to cover the topic in a comprehensive manner. The remaining and 
detailed results are given in Appendix B.  
 

5.1.1 Tangential and Axial Velocity Profiles 
 
 
Fully Open port  
 
With the piston at bottom-dead-center (BDC) the cylinder inlet is fully open. 
The flow, after being accelerated in the contraction section enters the 
cylinder with tangential and stronger radial component. Since the cylinder 
inlet is fully open i.e. the piston surface is aligned with the bottom wall of 
the cylinder inlet, the flow on the piston surface resembles to flow on a flat 
surface. The other end of the cylinder inlet is aligned with the lower end of 
cylinder and makes a 90� bend.  Due to this sharp bending, the flow entering 
the cylinder at the other side of cylinder inlet will form a large recirculation 
zone at the cylinder wall. The flow entering from in between the two ends of 
cylinder inlet loses majority of its radial momentum and after traveling to 
some radial distance towards the cylinder axis, bends to axial direction. This 
radial distance that flow travels at the cylinder cross-sections in front of the 
inlet is governed by the magnitude of radial component of incoming velocity 
and the size of the recirculation zone at the cylinder wall. Further, for the 
cylinder cross-sections close to cylinder inlet, the peaks in tangential and axial 
velocity profiles are approximately observed at this radial distance from the 
cylinder axis. The resulting tangential velocity �V profiles are shown in 

(Figure 5.1)1.  
 
When the intake port is fully open, the tangential velocity �V profile is similar 

to the Burgers vortex which is comprised of a solid body rotation forced 
vortex region and an outer region with very low rotationality or weak 
vorticity. Higher velocities are observed in the radial position where the inner 
forced and outer regions meet.  

                                                 
1 The results for fully open port case are same as for cylinder length 4D in Chapter 4. The repetition is intended to 
provide a flow to the reader.  
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Thus for a fully open cylinder inlet, the in-cylinder swirling flow is similar to 
concentrated vortex type. The experiments conducted by Escudier et al. 
(1982) suggest that similar type of confined swirling flow at higher Reynolds 
number is actually a result of upstream effect of vortex break down in the 
exhaust pipe. However, in the current experiment, this reason cannot be 
verified since no measurements are conducted in the exhaust pipe.  
 
 
25% Port Closure  
 
When the piston is translated to partially close the intake port by 25%, the 
piston serves as a small forward-step facing the incoming flow in the cylinder. 
This step will affect the intensity of the radial component of incoming 
velocity and transform a part of it into axial direction at the cylinder inlet 
interface. The tangential velocity may also reduce due to friction with the 
piston outer wall surface exposed to the flow. The decrease in the radial and 
tangential components is compensated by the increase in axial velocity 
component due to continuity. The intake port area reduces and piston also 
behaves like a bluff-body in the flow path. Unsteady fluctuations/ 
disturbances are generated at the sharp-edge interface of the piston top and 
outer wall and recirculation regions are formed at the side of piston wall and 
piston surface (Figure 5.3). These fluctuations result in growth of instabilities 
and waves and are superimposed on already precessing helical vortical flow 
that exists when the port is fully open. Thus the resulting in-cylinder swirling 
flow becomes comparatively more transient and chaotic. In order to get a 
better average, for most of the measurements with piston partially covering 
the intake port, more number of instantaneous PIV snapshots has been taken 
compared to measurements for fully open port. From the point of view of 
Stereoscopic PIV experimentation, a significant aspect to be considered 
during the measurements is that the general method of setting the time 
between two laser pulses or PIV images by accepting in-plane particle 
displacements by 25-30% of the side of interrogation area is no more a good 
estimation. In stereoscopic PIV the third component of velocity is obtained 
mathematically after processing the snapshots of two cameras viewing in-
plane displacement of particles. The increase in magnitude of the axial 
component and large variations in out-of-plane component (in this 
experiment is axial velocity) require the time between pulses to be chosen by 
considering the maximum displacement of particles in the axial direction by 
25% of the laser sheet thickness. In the presence of a large axial velocity 
component, this axial displacement limit for the particles is achieved by 
setting the time between pulses in a way that allows the particles to have an 
in-plane displacement less than 25-30% of the side of interrogation area. 
Otherwise, the magnitude of particles with high axial velocity magnitude will 
not be measured correctly. Thus there will be a trade-off between the error/ 
uncertainty in the measurement of in-plane components (radial and 
tangential components in this case) and the out-of-plane component (axial 
velocity). For this reason, the measurements for some positions have been 
conducted with different times between pulses and only the selected ones are 
presented.  
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outward. As discussed before, the presence of piston will make major portion 
of the flow to enter in to the cylinder at an angle to the piston top surface 
(Figure 5.3). This angle makes the fluid jet coming from intake port along 
the cylinder circumferential periphery to meet at some axial distance from 
the piston surface facing the cylinder axis. The fluid after meeting at that 
axial distance will then move outward to other regions of a given (near 
cylinder inlet) cross section. The solid body rotation and low pressure near 
the cylinder wall (near the cylinder intake port) provides favorable condition 
for transporting the fluid to other regions.  

5.1.3 Reynolds Normal Stresses 
 
The distribution of Reynolds normal stress components are expressed in 
Cartesian coordinates. For a given cross-sectional position all the three 
normal components are presented under a single figure and scaled to same 
color values so as to get a comparison of the relative magnitude of each 
component. Each Reynolds stress component is normalized by square of the 
bulk velocity and the symbols represent normalized stress components. The 
results are also discussed from the perspective of polar coordinates as 
discussed earlier in Chapter 4. 
 
25% Port Closure  
 
At z1, figure 5.18 shows that all the Reynolds normal stress components are 
higher compared to fully open port (see Section 4.2.5). This indicates an 
increase in the variance/ fluctuations of corresponding velocity components. 

It can be seen that w w� � attains the highest and v v� �has the lowest values.  
For all the three components, the vortex core and the near wall region has 
higher fluctuations. The region in between the vortex core and the wall has 

fewer fluctuations. In the near wall region w w� �  is the dominant component 
and has comparatively large values. The spatial distributions of all the 
components show increased anisotropy of the normal components. Thus 
vortex core and near wall regions have most of turbulent kinetic energy for 

the given cross-sectional plane. Considering polar coordinates,  v v� �� �  and 

v vr r� �  at z1 are higher in the vortex core and near wall regions and the 
annular region has smaller values. 
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At z6 the overall magnitudes of the normal stress components have decayed 

approximately by an order of 10 with w w� �  still having the highest values 

(Figure 5.19). u u� �  and v v� �  have nearly the same magnitude and since they 
represent the variance in tangential and radial velocity components, the 

values are higher in the vortex core region. However, w w� �  is very low in the 
core region and gradually increases in the radial direction towards the 
cylinder wall. As discussed in section 5.1.1, at z6 for 25% port closure, the 
mean axial velocity has a jet-like profile. This indicates that in the center of 
the jet the axial velocity is comparatively more stable and fluctuates more 
around the mean value as the radial distance from the vortex core increases. 
 
However, for u  and v  components it is the vortex core region where higher 

fluctuations are observed.  v v� �� �  and v vr r� �  at z6 has higher values in a large 

region around the cylinder axis and gradually decreases in the radial 
direction towards the wall. 
 
 
50% Port Closure  
 
Figure 5.20 shows that at z1 with 50% port closure, the magnitude of all the 
Reynolds normal stress components have further increased. Compared to 

25% port closure, the peak value of  w w� �  at z1 has increased almost twice. 

The difference in magnitude of in-plane normal components u u� �  and v v� �  
at z1, as observed in case of 25% port closure in figure 5.18, does not exist and 

have nearly the same range. The spatial distribution of u u� �  and v v� �  show 
two distinct regions lying side by side where one has the highest values and 
the other has the lowest values. This distribution can be understood by 
looking at the tangential velocity and the three dimensional velocity 
distribution in figures 5.6 and 5.13 respectively. The mean vortex core 
location is in the third quadrant at a radial distance of approximately 
r/R=0.15 and very close to negative Y-axis line. Due to the effect of wall an 
asymmetric tangential velocity distribution is observed which has higher 
peak at r/R=0.4 along positive X-axis compared to negative X-axis where small 

dip in the profile is observed. The contour plots for u u� �  and v v� � show that 
if they are added together, a region with high values will be obtained almost 
very close to the position where the vortex core is located. The adjacent 
region with low values is possibly, due to wall effect here, a distorted shape 
of the region observed in (Figure 5.18) in between the wall and vortex core 

where the minimum values are observed for u u� �  and v v� � .  The w w� �
although having anisotropic spatial distribution still exhibit some features as 
in case of z6 with 25% port closure i.e. the minimum values exist in the jet 
center and increases along the radius towards the wall. However, a different 
feature is observed that after a radial distance of approximately r/R=0.5 the 
fluctuations in axial velocity starts decreasing towards the wall. This feature, 
however, could not be observed for z6 with 25% port closure possibly due to 
location of peak value region being outside the PIV measurement area.   
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At z5 in figure 5.21 the fluctuations in u  and v  velocity components are 
higher in the region around cylinder axis and lower at large radial positions 
near cylinder wall. Due to increase in the size of the vortex core this region 
with higher values is large. However, the relative difference between the 
minimum and maximum values is small. Fluctuations in the axial velocity 
component w  is still dominant. The cylinder center region has minimum 

w w� �  values and the near wall region has the highest values. For all the 
normal Reynolds stress components, the decrease in magnitude from z1 to z5 
is by an order of 10. Compared to fully open port, the magnitude of all the 
normal Reynolds stress components are nearly twice the value at z5.  
 
The effect of wall at z1 has changed the distribution of Reynolds stress 

components v v� �� �  and v vr r� �  in the cross-sectional plane. The region around 

the vortex core location still has higher values but the region with low 

magnitude of v v� �� �  and v vr r� � ,as in case of 25% closure, is distorted. 

However, at z5 a more clear picture can be seen where their values increase 
from large radial positions in the direction of cylinder axis region where the 
vortex core is resided.    
 
 
75% Port Closure  
 
When the intake port is 75% closed, the variance in the axial velocity is very 
large at z1 compared to u  and v  velocity components (Figure 5.23). The 

spatial distribution is also very anisotropic for w w� � . For all aforementioned 
cases where the axial velocity has a jet-like profile, the fluctuations in axial 
velocity are comparatively low at the center of the jet. The gradual increase in 
the outward radial direction decreases again towards the wall, after attaining 

a high value. The radial location of this peak w w� �  region seems to exist at 
the outer periphery of the jet where a mixing occurs with the fluid near the 
wall region. In the current case, this peak region is at a smaller distance from 
the jet center than previous cases possibly because the wall recirculation zone 

has comparatively grown in case of 75% port closure at z1. u u� �  and v v� �
components have lowest values at large radial positions from the vortex core. 
There is radially large region around the cylinder axis where patches of high 

and low values are observed. The peak values of u u� �  and v v� �  are nearly 

half the value of w w� � . 
 

A resultant of the u u� �  and v v� �  components given in figure 5.23 with the 
same color scale as figure 5.22 shows that the in-plane Reynolds normal 
stresses are higher in the central region around  cylinder axis and decreases 
towards the wall region. 
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5.1.4 Reynolds Shear Stresses 
 
25% Port Closure  
 
The shear stress components of Reynolds stresses are given in figure 5.25 for 
z1. It can be seen that the covariance of in-plane velocity components u  and 

v  is small compared to u w� �  and v w� �  components. Shear stress component 

u v� �  is weak in the region around cylinder axis and large values are observed 
in two pairs of distinct regions/ zones. These regions lie adjacent to each 
other and have opposite signs, however, with almost same absolute value of 

their magnitude. Shear stresses u w� �  and v w� �  are high in the cylinder axis 

and near wall region. In the cylinder axis region, u w� �  and v w� �  have high 
values in two small adjacent zones with opposite signs. The zones in the near 
wall region also exhibit opposite signs for two ends of X-axis and Y-axis for  

u w� �  and v w� � respectively.   
 
At z6, the Reynolds shear stresses are reduced by a factor of 10 (Figure 5.26). 

The spatial distribution of u v� �
 

component still has the zone pairs as 
discussed for z1. However, their shape is more distorted showing small 

gradients of u v� �  in the cross-sectional plane. For u w� �  and v w� � the two 
adjacent zones around the cylinder axis have grown in size and cover large 
portion of the cross-sectional plane. The zones in the near wall region have 
high values but seem to have radially shrunk toward cylinder wall. In general 
it can be said that with the decay in the swirl along the cylinder, the 
magnitude of Reynolds shear stresses decreases and their spatial distribution 
increase. For z6, the region in between the cylinder axis and the near wall 
exhibits large covariance values among the velocity components.   
 
For 25% port closure, the covariance between v�  and vr  is large at larger 

radial distances. The Reynolds stress component v v r�� �  at z1 decreases slowly 

towards the cylinder axis and increase again to a small extent in the vortex 

core region.  v v z�� �  is low in the near wall region and increases to its peak 

value at a radial distance of r/R=0.15 and then decreases again in the vortex 

center. v vr z� �  has largest values in the near wall region and decreases towards 

the vortex core region. At z6, the distribution of v v z�� �  and v vr z� �  spread to 

distances around the cylinder axis. Both the components attain high values at 
a comparatively larger radial distance from the cylinder axis and decreases in 
the vortex center.  
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50% Port Closure  
 
At position z1, the contour plots for shear stresses are given in figure 5.27. For 

component u v� �  the distribution profile is following nearly the same pattern 
as in case of 25% port closure i.e. large values are observed at larger radial 
distances and decrease towards the vortex core region. This shows that the 
covariance between u  and v  components of velocity is high at larger radial 

distance and low near the vortex center. For u w� �  along X-axis, the peak 
value is observed in a region at a radial distance of r/R=0.6 from the cylinder 
axis. Decrease gradually on both sides of this peak region i.e. both towards 

cylinder axis and near wall region. Similar pattern is observed for  v w� �  but 
along Y-axis. This distribution gets very clear by looking at this from the 
perspective of cylindrical coordinates. Considering contour plots for both 

u w� �  and v w� �  components, it becomes clear that v vr z� �  is the dominant 

component and v v z�� �  is very small at this cross-section plane.  

 
At z5, the magnitude of shear stress components has reduced by an order of 

10 (Figure 5.28). For all the u v� �  , u w� �  and v w� �  components, the 

distribution in the center part of the cylinder exhibit very low values. u w� �  

and v w� �  have large values observed in the near wall region. The main 
reason is that the axial velocity is nearly constant in most of the central 
portion of the cylinder and fluctuates mostly at the near wall region.   
 
 
75% Port Closure  
 

At position z1, the u v� �  is very weak compared to u w� �  and v w� � (Figure 

5.29). The distribution pattern of the regions with high u v� �  is still the same. 

For u w� �  and v w� �  the orientations of the regions with peak values are at an 
angle to X and Y axes respectively. The radial location of these regions has 
moved to comparatively lower radial distance from the cylinder axis. 

Regarding the shear stress components v vr z� �  and v v z�� � , it still seems that 

the v vr z� �  is stronger than the v v z�� � .   

 
The possible vortex breakdown between positions z1 and z2 has, in general, 
no significant effect on the distribution pattern of Reynolds shear stress 

components. For u v� �  the magnitude has reduced to a small extent 

compared to  u w� �  and v w� � . The covariance between the radial and axial 
velocity component is still large compared to the covariance between the 
tangential and axial components. This means that for any disturbance in 
axial velocity the radial velocity is more sensitive than the tangential velocity. 
Such axial disturbances are low in the jet center and high in the outer region.     
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more mass into the wake region.  This change in velocity profile begins from 
cross-sectional positions near the cylinder outlet and moves to upstream 
positions as the piston gradually closes the port. However, in case of piston 
position with 50% port closure, at cross-sectional positions close to cylinder 
inlet, the tangential velocity profiles resembled more towards a wall-jet like 
profile rather than the forced vortex. The axial velocity in the whole cylinder 
exhibits a jet-like profile with a broad peak. For the cross-sectional positions 
close to the intake port, the partial closure of the intake port introduces 
asymmetry and variation in the mean tangential velocity profile. At 75% port 
closure the tangential velocity in the cylinder has a forced vortex like profile 
indicating high velocities in the near wall region. At z1, the axial velocity still 
has a jet like profile but with a sharp peak. This jet-like mean axial velocity 
profile changes back to wake-like at the adjacent downstream cross-sectional 
position z2. This indicates a vortex breakdown like characteristic. The mean 
axial velocity profile then continues to have the wake-like profile at the 
remaining downstream positions. The wake effect however is small 
compared to when the port was fully open.  
 
The mean axial vorticity of the mean velocity field has a Gaussian like profile 
when the intake port is fully open. However with the decay in the swirl 
downstream as well as the partial closure of the intake port, the vorticity 
confined in the vortex core region is transmitted to the outer regions. This 
results in a comparatively uniform mean axial vorticity distribution 
throughout the cylinder for 75% port closure.  
 
The increase in port closure increases the magnitude of Reynolds stress 
components as well as the anisotropy. The distribution of normal Reynolds 
stress components can be understood and summarized from the profiles of 
axial and tangential velocity components. In case of tangential velocity 
having the burgers vortex like profile, the u and v  velocity components have 
high fluctuations in the vortex core region and the near wall region. For a 

forced vortex like profile, u u� �  and v v� �  attain higher values in the region 
close to vortex center than to region with higher tangential velocities. In case 
of axial velocity with wake like profile, the fluctuations w  is high in the 
vortex core region and near wall region. As the axial velocity profile attains a 

jet like profile, the � �w w  in the jet center seems to be very low and increase 
as the radial distance from the jet center increases. In general, the turbulent 
kinetic energy increases with the partial closure of the intake port.  
 
For the incylinder flow at all piston positions, the Reynolds shear stresses 
have lower magnitude compared to normal components. Figure 5.37 give 
profile of Reynolds shear stress components (in polar coordinates) at z1 and 
ReA for each piston position. An important thing to be noted is the rise in the 

magnitude of � �v vr z   with percentage of piston closure especially from the 

region at X/R=± 0.6. At 75% port closure, increase in values of  � �v vr z  and 

� �v vr z  show that the covariance of axial velocity with both tangential and 

radial velocity components is large. 
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This chapter presents the results from the numerical modeling of the swirling flow 
test case. Unsteady simulations are conducted using two RANS based approaches 
and the results are compared with the experimental data. The simulations results 
only represent the case with fully open cylinder intake port and at Reynolds 
number of 65,000. A discussion has also been made on the possible approaches for 
improving the simulation results.   
 
 
 
The results of the numerical models included in this chapter are those 
obtained until the time of writing this thesis. For mesh generation, Ansys® 
GAMBIT v2.4 is used and for CFD processing Ansys®  FLUENT v12.1 is used. 
The post processing of the numerical data is done in Fieldview® v 12.    
 
The computational domain does not include the guide vanes and the inlet to 
the domain is defined at a radial distance of 200 mm from the axis of 
rotation (Figure 6.1). In the experimental setup the inlet to the setup is at a 
radial distance of 300 mm with guide vanes mounted at 250mm radial 
distance from the cylinder axis/ axis of rotation (Figure 4.1). This is adopted 
to avoid the inlet to be in the region with large wake effects behind the guide 
vanes and also not close to the contraction section. The LDA measurements 
in section 4.1 show a very small wake effect at this radial distance. Another 
purpose is to see if it is possible to achieve good results by neglecting the 
guide vanes region in the computational mesh and defining the magnitude 
of radial and tangential velocity components at some radial position after the 
guide vanes region. The computational mesh has Y-axis as its rotational axis, 
therefore, the velocity component along Y-axis represents the axial 
component and for velocity component along Z-axis it is vice versa. 
 
 

                  NNuummeerriiccaall  MMooddeelliinngg    
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�r
in

in

Q
v
A

                                                      (6.1) 

 
 

� ��  rv v tan                                               (6.2) 

 
Where inQ  is the inlet volume flow rate and inA  is the inlet area. 

 
The values of k  and �  at the inlet boundary is defined based on the 
empirical relations given in ANSYS FLUENT manual (Equation 6.3 & 6.4). 
 

� �2
V

3 .
2 avk I�                                               (6.3) 

 

�� �
2/3

3/4

l
k

C                                               (6.4) 

 
Where Vav  is average velocity in (m/s), I  is the turbulent intensity (T.I) and 

‘l’ is the turbulent length scale. The length scale is assumed to be 0.05 m 
based on assumption that the size of largest eddy at the inlet is half the width 
of inlet which is 0.1 m. For the fully open port cases the two turbulent 
intensity levels 1% and 10% are defined.   
 
For the Reynolds stress turbulence model (RSM), the values of shear stress 
components at the inlet are considered negligible and the normal stress 
components are derived from k (Equation 6.5). 
  

� ��
1

2 i ik v v                                               (6.5) 

 

� � � 0i jv v                                               (6.6) 

 
The velocity components profiles at the inlet are assumed to be uniform and 
a constant value is assigned. Similarly no profiles at the inlet are defined for
k , �  and Reynolds stress components. 
 
At the outlet the pressure outlet boundary condition is defined with radial 
equilibrium pressure distribution which assumes radial velocity to be 
negligible as discussed in chapter 2. The solid boundaries are defined as walls 
with no-slip condition i.e. all the velocity components are assumed to be zero 
at the wall. 
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6.1.3 Near Wall Treatment   
 
The near wall region is defined by adopting the wall function approach. For 
all the simulations the two-layer-zone model ‘Non-equilibrium wall 
function’ is used. In this model, the flow is divided into viscosity affected and 
turbulent regions. The turbulent kinetic energy budget is computed in the 
wall neighboring cells (ANSYS, 2009). This model needs less grid points 
compared to low-Reynolds number models (Najafi et al., 2005). It also 
accounts for the effect of pressure gradients on the distortion of the velocity 
profiles i.e. in cases where the assumption of local equilibrium, when the 
production of the turbulent kinetic energy is equal to the rate of its 
destruction, is no longer valid (ANSYS, 2009).  
 

6.1.4 Solution Methods   
 
For all the simulation cases same solution methods are used. For pressure-
velocity coupling SIMPLE algorithm is used. PRESTO scheme is used for 
spatial discretization of pressure equation. For momentum, turbulent kinetic 
energy, turbulent dissipation rate and Reynolds stresses second order upwind 
scheme is used.  For temporal discretization, first order implicit integration 
method is used. The time step t(  for fully open case is defined as 1e-04 
seconds.   

6.2 Results  
 
The results presented in this section are from transient or URANS 
simulations only. For the case of fully open port case, the maximum y+ value 
for all the simulation cases are between 126.5 to 130. The cell courant 
number range from 0.018 to 1.67. 
 

6.2.1 Tangential Velocity 
 
The comparison of normalized tangential velocity profiles are given in 
figures 6.3-6.8 for positions z1- z6. It can be observed that, in general, for all 
the positions the results of both RNG k ��  model and RSM are not 
predicting the (free vortex type) tangential velocity profile in the annular 
region.  The RNG k ��  model, for both inlet turbulent intensities (T.I = 1% 
and 10%), show a tendency towards predicting a forced vortex profile for the 
tangential velocity. At z1, all the models predict a larger size of the vortex 
core (Figure 6.3). However, RNG k ��  model with T.I 1% and RSM with 
T.I 10%, give a good prediction of the magnitude of the peak tangential 
velocity whereas the RNG k ��  model with T.I 10% under predicts the 
value. At further downstream positions, all the models show a smaller decay 
in the swirl intensity and thus over predict the peak tangential velocity value 
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However, the RNG k ��  model with T.I 10% predicts the existence of the 
separation to a comparatively shorter distance downstream. 
 
The vortex core seem to get instantaneously instable in case of RNG k ��  
model with T.I 1% and with RSM the vortex core seems to be stable in the 
cross-sections very close to the piston surface and then gets unstable further 
downstream. One of the possible reasons may be the effect of the 
aforementioned flow separation at the wall. For RNG k ��  model with T.I 
10%, the vortex core is comparatively stable and also predicts a smooth 
growth in the vortex core size along the flow. 
 
The flow in the outlet pipe has been predicted different by RNG k ��  
model and RSM. For all cases the flow in the outlet pipe initially has a jet 
like velocity profile but cases with RNG k ��  model show that after nearly 
half of the outlet pipe length, this jet-like velocity profile becomes unstable 
and then develops a nearly uniform velocity profile. RSM predicts a jet-like 
velocity profile throughout the outlet pipe.  
 

6.2.4 Normalized Reynolds Normal Stresses  
 
The Reynolds normal stress components at z1 and z5 are shown in figures 6.16 
and 6.17) respectively. As mentioned earlier, these contour plots show a 
temporal snapshot of normal components of Reynolds stresses from RSM 
simulation case and do not include the contribution from unsteady flow 
simulation. Therefore, an exact comparison may not be possible here with 
the experimental data. Compared to the experimental results shown in 
Chapter 4, the results to some extent give reasonable qualitative agreement.  
 
At z1, higher values of the normal stress components are observed in the 
region near the axis of the cylinder and the wall region and the region in 

between has low values. In case of � �w w , the model also give a half circle arc-

like shape region with peak � �w w  values. The magnitude of peak values for 
all the normal stress components are close to the experimental values 
(Figures 4.15, 18 and 21).  
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nd enlargeme
alues for all th

6

N
um

er
ic

al
M

od
el

in
g

160 

 

 

 

cts 
res 

ex 
lts 

he 

an 

lar 

has 
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shear stress components are under predicted compared to experimental data 
in figures 4.29 & 4.32 respectively.  
 

6.3 Discussion  
 
The results of CFD simulations presented in this chapter do not show a 
satisfactory agreement with the experimental data. However, there are some 
qualitative features like profiles of velocity and modeled Reynolds stress 
components that, to some extent, have reasonable agreements. The factors 
affecting the performance of the CFD models possibly lie both in the 
treatment of turbulence and the numerical aspects.   
 
The performance of RANS based models for swirling flows have already been 
discussed in Section 2.4. Numerically, defining the boundary conditions at 
the inlet of the computational domain has very significant impact. In the 
current simulations, a constant value of the parameters like velocity 
components and turbulence parameters like  k  and �  have been given at 
the inlet. Considering the real experimental setup, this approach may not be 
good because the inlet in the computational domain is placed after the guide 
vanes and close to the contraction section. The profile of velocity 
components may not be uniform at that radial position. The possible reasons 
are the wake that is generated behind the guide vanes and the upstream 
effect of in-cylinder swirling flow (PVC and instability waves).  Both of these 
factors can make the velocity profiles and magnitude, at the selected inlet 
position (a radial distance of 200 mm from cylinder axis in this case), non-
uniform and unsteady respectively. Similar effect can be on the turbulence 
parameters like k ,�  and Reynolds stress components. This requires 
experimental measurements to be conducted in order to define the realistic 
boundary conditions. (Dong et al, 1993) also studied the effect of different 
inlet profiles for the velocity components in a swirling flow and suggested 
experimentally measured profiles for better simulation results. In case of 
outlet, since the outlet pipe length is very long, therefore, the effect of outlet 
boundary condition on the in-cylinder swirling flow may not be very 
significant. (Xia et al., 1997) have found significant effect of outlet boundary 
conditions but at regions close to outlet i.e. only to a small upstream distance 
from the outlet.  
 
The other aspect is the RANS modeling approach itself. In the RANS based 
models, the turbulent scales are not fully or partly resolved. Instead the 
whole range of turbulent scales is modeled and the simulation results 
represent the influence of all the turbulent scales. Thus RANS have a strong 
damping influence on any resolved turbulence or unsteady structures, which 
is desirable for steady state flows (Gyllenram et al., 2008). In case of unsteady 
flows, the time dependent features that unsteady RANS (URANS) may 
resolve is restricted only to the coherent periodic motions and not the wide 
range of frequencies of broadband turbulence (Spencer et al., 2009).  The 
unsteady behavior requires the turbulence model to be able to distinguish 
between resolvable and unresolvable scales and the RANS based equations 
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experimental data. Addressing the aforementioned issues of properly 
defining the inlet boundary conditions may also improve the RANS/URANS 
results to some extent, however, the major reason may simply lie in the 
inadequateness of the RANS/URANS based methodology in this particular 
case. This indicates that using Hybrid RANS-LES or purely LES approach 
will probably give better simulation results by resolving a portion of the 
turbulence scales. Thus performing a grid independence study by increasing 
the computational mesh size in the current simulation cases may not 
significantly improve the simulation results compared to what already have 
been obtained using URANS. Due to very limited number of Ansys® 
FLUENT licenses available at MEK-DTU, Hybrid RANS-LES or LES models 
could not be applied. The URANS simulations with a computational gird 
containing the guide vanes and for cases with partially closed cylinder intake 
port are currently under progress. 
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The aim of this thesis was to study and understand various aspects of the 
confined swirling flow during the uniflow scavenging processes for large 
two-stroke marine diesel engines. A description of the working of large two 
stroke marine diesel engines were given in order to understand the role of 
scavenging process and its significance on the overall engine performance 
and efficiency. Different features of uniflow scavenging process in currently 
operational marine diesel engines were discussed and it was identified that 
the real engine scavenging process is very complex, scientifically less 
understood in detail and one of the potential processes for making 
improvements in order to develop future fuel and environmentally efficient 
marine diesel engines.  
 
Out of the many aspects of complex physics of scavenging process, the focus 
in this thesis was to study and characterize the confined swirling flow during 
the scavenging process. The study was conducted by developing a simplified 
experimental model with air at room temperature and pressure without 
considering mixing and stratification. The model comprised of a transparent 
acrylic cylinder fitted to a swirl generator having guide vanes. Features like a 
movable piston and changing cylinder length were also included. The design 
is more close to features of engine cylinder and makes it different from the 
confined swirling pipe flow experimental setups earlier reported in scientific 
literature. Different experimental techniques were used and CFD simulations 
were performed and the results were compared with the experimental data.      
 

1.1  Experimental Measurements 
 
Two different experiments are conducted using Stereoscopic PIV 
measurements at different cross-sectional planes. For both the experiments 
the measurements are conducted at fixed guide vane angle of the swirl 
generator and two Reynolds numbers in the cylinder i.e. 65,000 and 32,500. 
For each measurement, nearly 1000 instantaneous PIV snapshots were taken. 
For the fully open intake port, LDA measurements are also conducted in the 
inlet section and also at the entrance of the cylinder. The design swirl 
parameter for the experimental setup is found to be 0.34 and is kept constant 
for all the measurements. 
   

    SSuummmmaarryy  &&  CCoonncclluussiioonnss    
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1.1.1 Swirling Flow in a Pipe with different Lengths 
 
In this experiment the inlet to the measuring cylinder was kept fully opened 
and the measurements are conducted by changing the length of the cylinder 
to 8D, 6D and 4D.  
 
The results from LDA measurement show that in the inlet section, the wake 
effect behind the guide vanes reduces significantly before entering the 
contraction region. The velocity distribution in the inlet section at different 
circumferential position is not symmetric at a radial distance of 200 mm. 
However, after the flow passes through the contraction region the variation 
of the angle between radial and tangential component (along the 
circumferential positions) is reduced to 1.5°. At an axial position z/D of 
0.368, the LDA measurements show a near symmetric distribution of 
tangential velocity. 
 
The PIV results show that the resulting confined swirling flow has a 
tangential velocity profile similar to Burgers vortex and the axial velocity has 
a wake-like profile. The tangential velocity profile shows that unlike the 
theoretical Burgers vortex profile, the region surrounding the inner forced 
vortex core region is not irrotational. Instead, the region has a very weak 
vorticity that may possibly be as a result of a radially decaying vortex causing 
a vorticity transfer from vortex core to the surrounding regions. This result is 
in accordance with some other experimental results reported earlier in the 
scientific literature. The swirl decays downstream the flow and the vortex 
core size increases. This changes the tangential velocity profile towards more 
forced vortex and the axial velocity to be more uniform by transferring more 
mass in to the central velocity deficit region. The effect of variation in 
Reynolds number is mostly observed in the vortex core region where for 
initial measuring positions the peak value of normalized tangential and axial 
velocity is found to be higher for low Reynolds number. Further, for axial 
velocity, the minimum velocity in the velocity deficit region is found to be 
lower in case of high Reynolds number. However, the axial velocity profile at 
all measuring positions does not show any reverse flow. The average size of 
the vortex core at low Reynolds number is observed to be relatively smaller 
than at high Reynolds number. For first five measuring positions close to 
cylinder inlet, which are common in cylinder lengths 8D, 6D and 4D, the 
variation in cylinder length seems to have no significant effect on the 
normalized tangential and axial velocity profiles for a given Reynolds 
number. Similar behavior is observed for the positions which are common in 
cylinder lengths 8D and 6D. For position z6 (z/D=3.595) being very close to 
cylinder outlet for cylinder length 4D, a small increase in the tangential and 
axial velocity is observed due to small diameter outlet pipe. This indicates 
that the downstream change in cylinder length is not detected by the flow at 
upstream positions and thus the flow mainly depends on the upstream 
conditions at the cylinder inlet. 
 
The magnitude of radial velocity at position z1 (z/D=0.963), is almost a factor 
of 10 lower than tangential and axial velocity and decreases further 
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downstream the flow. At position z7 (z/D=4.116) and cylinder lengths (8D 
and 6D), the magnitude of radial velocity becomes very close to zero and 
then slowly starts increasing again. 
 
The mean axial vorticity has a Gaussian like profile at z1 (z/D=0.963) i.e. for 
the regions at larger radial distance from the cylinder axis, except the near 
wall region, the vorticity is very weak and then in the vortex core region it 
gets very strong. With swirl decay downstream the flow, the vortex core loses 
its vortical strength by transferring it in outward radial directions. The rate of 
this vorticity transfer is higher in case of high Reynolds number thus leading 
to quicker decay of the weak vortical ‘annular region’ in the tangential 
velocity profile.       
 
The detection of vortex core position in the instantaneous PIV measurements 
at z1 (z/D=0.963) show that the vortex core position is not stationary and 
moves in an area of r/R= ±0.2. This indicates a precessing vortex core (PVC) 
and LDA measurements show that the precession frequencies at Reynolds 
number of 65000 and 32500 are 5.8 Hz and 3.15 Hz. The precession 
frequency is found to increase linearly as a function of flow rate.  The mean 
vortex core position is not aligned with the cylinder axis at all measuring 
positions indicating an asymmetric swirling flow with core following a 
helical path. The radius of the helical path is not same for all measuring 
positions and initially the radius of the helical path is smaller but then 
gradually increases. The helix rotation is in a clockwise direction similar to 
the swirl which is also in clockwise direction. This together with a Burgers 
vortex like tangential velocity profile and wake-like axial velocity profile 
indicate a left-handed helical vortex and having a negative pitch. For all the 
cylinder lengths the helical vortex core does not complete one revolution. In 
case of cylinder length 8D, the helical vortex path at the downstream 
positions, instead of rotating around the cylinder axis, re-twists at one side of 
the X-axis. In addition, at those far downstream positions the tangential 
velocity has forced vortex profile, the axial velocity and mean axial vorticity 
profiles become uniform showing an infinite pitch of the helical path. This 
indicates a transition of left handed to right handed helical vortex called as 
‘L-transition’ and is one of characteristics of vortex breakdown. 
 
In the presence of a precessing vortex core (PVC), the measured values of 
Reynolds stresses are actually a combination of turbulence and vortex core 
oscillation.  The Reynolds stress normal components are high in the vortex 
core and near wall regions. Considering the maximum values, for normal 

stresses (Cartesian coordinates) at z1 (z/D=0.963) w w u u v v� � � � � �) � . 

Regarding the components in polar coordinates, v v� �� �  and v vr r� �  are larger 

near the wall and in the vortex core regions at z1 (z/D=0.963). The radial 

distance, from the vortex center, where v vr r� �  increases towards the vortex 

center, is larger than the v v� �� �  and follows the same for both high and low 

Reynolds numbers. As the swirl decays downstream, the magnitude of radial 
and tangential fluctuations decrease but their spatial distribution increase to 
larger radial distances of the cylinder cross-section.  
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In general the magnitudes of shear stress components, at different measuring 
positions are observed to be smaller than normal stress components. 
Considering the maximum values, for shear stresses (Cartesian coordinates)  

� � � � � �)�u w v w u v  indicating anisotropy of the flow.  However, with swirl 
decay downstream at z5 (z/D=3.068), the maximum values become almost 
equal for individual components of both normal and shear stress 

components i.e. w w u u v v� � � � � �� �  and u w v w u v� � � � � �� � . The Reynolds 
stresses decay with the swirl and distribution of normal and shear 
components tends to become comparatively and gradually more uniform in 
the flow domain. With swirl decay downstream, the flow at high Reynolds 
number has higher tendency towards a more uniform spatial distribution of 
individual Reynolds stress components in the flow domain. 
 
At z1 (z/D=0.963) the turbulent kinetic energy is strong in the vortex core and 
near wall region. The maximum value is observed in the vortex core region 
and the contours show an asymmetric distribution. The turbulent kinetic 
energy decreases downstream. 
 
The flow at low Reynolds number is less responsive or in other words more 
resistive to the variations in vorticity, Reynolds stresses and turbulent kinetic 
energy as the swirl decays along the pipe.      
 

1.1.2 Effect of Piston Position on the Confined Swirling 
Flow  

 
In this experiment the length of cylinder was kept 4D but the piston is 
translated and adjusted to fixed positions where it closes the intake to the 
cylinder by 0% (Fully Open intake port), 25%, 50% and 75%. For each piston 
position, stereoscopic PIV measurements were conducted at the 
aforementioned Reynolds numbers.  
 
When the piston is partially closing the cylinder intake port, the piston serves 
as a forward-step facing the incoming flow into the cylinder and affects the 
magnitude of radial velocity in particular and also tangential velocity to some 
extent. This consequently increases the axial velocity magnitude. Since the 
flow rate is kept constant but the inlet area is reduced, therefore, the average 
velocity at the inlet increases. The piston also behaves as a bluff-body in the 
flow path generating unsteady fluctuations/ disturbances at the sharp-edge 
interface of the piston top and outer wall. These fluctuations result in growth 
of instabilities and waves and are superimposed on already precessing helical 
vortical flow that is observed when the port is fully open. This indicates that 
the resulting in-cylinder swirling flow becomes more transient. This also puts 
some challenge for making non-time resolved PIV measurements.    
 
At 25% intake port closure and a given Reynolds number, the peak values of 
tangential velocity decreases and axial velocity increases. At z1 (z/D=0.963), 
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the tangential velocity profile shows a less distinct peak at the interface of 
outer region and a comparatively bigger vortex core. Also the tangential 
velocity profile on both sides of the origin is different and indicates 
asymmetry in tangential velocity distribution. The axial velocity still has 
wake-like profile, however, the velocity deficit in the vortex core region 
reduces indicating more mass entering into that region. With the swirl decay 
downstream the flow, the tangential velocity at far down stream positions 
develops a forced vortex profile. Whereas for axial velocity the mass continue 
to enter the velocity deficit region until at position z6 (z/D=3.595) where its 
profile changes to jet-like.  
 
At 50% port closure, the asymmetry in the distribution of tangential velocity 
increases further z1 (z/D=0.963) and the profile develops two peaks at one side 
of the diameter. This is possibly due to the effect of wall or ‘mirror vortex’. 
For position z3 (z/D=2.016) and downwards, the vortex core size increases 
significantly. The tangential velocity profile becomes difficult to be identified 
because of its shape to be more close to a ‘wall-jet’ rather than ‘forced vortex’ 
profile. At z1, the axial velocity profile becomes jet-like  with a broad peak 
and the magnitude of axial velocity profile is higher than at 25% port closure. 
With the decay in swirl, the velocity magnitude in the center of the jet 
gradually decreases becoming nearly uniform at downstream positions but 
increases again at z6 due to effect of cylinder exit contraction. 
 
At 75% port closure, the tangential velocity has a solid-body rotation 
throughout the cylinder which decays along the flow downstream. This 
shows that closure of the intake port has a direct relation to the development 
of solid body rotation profile of tangential velocity in the cylinder. At z1, the 
axial velocity has jet like profile and its magnitude increases further. 
However, at next measuring position z2 (z/D=1.489), the axial velocity profile 
changes to wake-like profile indicating a vortex breakdown like 
characteristic. For the downstream positions, the axial velocity profile 
continues to be wake like but with a small wake effect and a radially broad 
wake region. Since the cylinder inlet provides a very small area for fluid to 
enter into cylinder resulting in a local compression of the fluid at the intake 
port, a very distinct feature is observed at z1 and z2. The vortex core at these 
positions behaves like a source i.e. the fluid particles move outward from the 
vortex core following a curved path. However, at z3, this pattern changes and 
the in-plane velocity distribution has now a regular swirling flow pattern i.e. 
vortex core behaving like a sink. 
 
With the partial closure of the intake port as well as the decay in the swirl 
downstream, the mean axial vorticity distribution confined in the vortex core 
region is transmitted to the outer regions. This results in a comparatively 
uniform mean axial vorticity distribution throughout the cylinder for 75% 
port closure. 
 
For the Reynolds normal stresses, the magnitude and anisotropy of all the 
components increases with the increase in the partial closure of the cylinder 
intake. However, for a given port closure, the variance in axial velocity is 
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dominant i.e. w w u u v v� � � � � �) � . At 25% port closure, initially the v v� �� �  

and v vr r� �  are higher in the vortex core and near wall regions and the 
annular region has smaller values. However, at z6, the overall magnitudes of 
the normal stress components have decayed approximately by an order of 10. 
At this cross-sectional position, the spatial distribution of variance in 
tangential and radial velocity components has a spread to larger radial 
positions around the cylinder axis gradually decreases in the radial direction 
towards the wall. The variance in axial velocity is very low in the core region 
and gradually increases in the radial direction towards the cylinder wall. This 
indicates that in the center of the jet the axial velocity is comparatively more 
stable and fluctuates more as the radial distance from the vortex core 

increases. At 50% port closure, the peak value of  w w� �  at z1 increases almost 

twice the value at 25% port closure. For all measuring positions, w w� �  has 
minimum values in the center of the jet and the near wall region has the 

highest values. The spatial distribution of v v� �� �  and v vr r� �  show high values 

in the vortex core region. With swirl decay downstream, this spatial 
distribution grows to larger radial positions. At 75% intake port closure, the 
value of maximum variance in the axial velocity increases almost 4 times the 
value at 50% port closure and spatial distribution is also very anisotropic. At 

z1, the w w� �  is low in the jet center, then increases to its peak value at 

(X/R=0.3) and then starts decreasing again towards the wall. v v� �� �  and v vr r� �  

have higher value in a large central region around the cylinder axis and 
decreases towards the wall. In general, despite a large increase in the 
magnitude of normal stress components at z1, the values at z6 do not increase 
in the same order indicating that the downstream decay in the velocity 
fluctuations also increases with the increase in partial closure of the intake 
port. This may possibly be the upstream influence of outlet contraction 
having a damping effect. In general, the turbulent kinetic energy increases 
with the partial closure of the intake port. For a given cross-sectional plane, 
the distribution of turbulent kinetic energy seems to be understood from the 
mean axial velocity distribution. For a wake-like axial velocity profile, the 
maximum value of turbulent kinetic energy is observed in the vortex core 
region and minimum value is observed in the high axial velocity region. 
Similarly, for a jet-like Vz  profile, the minimum value is observed in the 

center of the jet and maximum value is observed in the jet skirt region.  
 
The magnitude of Reynolds shear stress components also increase with the 

increase in partial closure of the cylinder intake. At 25% port closure, v v r�� �  

decreases slowly towards the cylinder axis and increase again to a small 

extent in the vortex core region.  v v z�� �  is low in the near wall region and 

increases to its peak value at a radial distance of r/R=0.15 and then decreases 

again in the vortex center. v vr z� �  has largest values in the near wall region 

and decreases towards the vortex core region. At z6, the peak values of 
Reynolds shear stresses are reduced by a factor of 100. This distribution of all 
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the components in general remains the same but spreads to surrounding 
regions. At 50% port closure, the magnitude of Reynolds shear stresses 

increases approximately twice the value at 25% port closure. At z1,  v v r�� �  and 

v vr z� �
 
have almost similar distribution as in case of 25% port closure but for 

v v z�� �  the region near the cylinder axis with peak value disappears indicating 

a very small value at large radial distance and almost zero value in the 
remaining central portion of the cylinder. As the swirl decays downstream, 
for all the shear stress components the magnitude decays and high values are 
observed in the larger radial distances from the cylinder axis and central 
region of the cylinder has very low values. At 75% port closure, the peak 
values of shear stresses is almost twice the value at 50% port closure. For 
individual components the distribution pattern at z1 is nearly the same as 
previous piston position. An important aspect is observed that the vortex 
breakdown between positions z1 and z2 has no significant effect on the 
distribution pattern of Reynolds shear stress components.  
 
The closure of cylinder intake port closure has a significant effect on the 
mean axial vorticity distribution for a given cross-sectional position and also 
along the flow downstream. With the increase in the closure of the intake 
port, at initial position z1, the Gaussian like profile of mean axial vorticity 
starts to deteriorate until 75% port closure where it no longer exists. Also, the 
port closure enhances the vorticity transfer from strong localized vortical 
zones (vortex core) to other weak vortical region as the swirl decays 
downstream the flow direction. Thus, in general, the in-cylinder axial 
vorticity distribution is comparatively more uniform at higher cylinder 
intake port closures.  
 
   

1.2 CFD Simulations 
 
The numerical simulations are conducted using RANS based modeling 
Approach. The models used are high Reynolds number RNG k ��  and 
Reynolds stress model (RSM) with quadratic formulation for the rapid part 
of the pressure strain term. The inlet to the computational domain is defined 
at a radial distance of 200 mm from the axis of rotation and does not include 
the guide vanes. This is carried out to study the possibility of achieving good 
results by neglecting the guide vanes region in the computational mesh and 
defining the magnitude of radial and tangential velocity components using 
the LDA data. The RNG k ��  models are used with an inlet turbulence 
intensity of 1% and 10% whereas with the Reynolds stress model (RSM) 
turbulence intensity of 10% is defined.  
 
The comparison of normalized tangential velocity profiles show that for all 
the positions the results of both RNG k ��  model and RSM are not 
predicting the (free vortex type) tangential velocity profile in the annular 
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region.  The RNG k ��  model, for both inlet turbulent intensities (T.I = 1% 
and 10%), shows a tendency towards predicting a forced vortex profile for 
the tangential velocity. The models show a smaller decay in the swirl 
intensity downstream the flow and thus over predict the peak tangential 
velocity value compared to experimental data. For RNG k ��  model with 
T.I = 10%, the predicted swirl flow shows a rapid transformation of 
tangential velocity from an initial burgers vortex like profile in to forced 
vortex type. Moreover, at all positions steeper gradients in the core region are 
predicted at lower T.I. 
 
At z1 all the simulation cases result a normalized axial velocity with a wake-
like profile but with a recirculation zone in the vortex core region. This 
seems to be a major difference between the experimental and numerical 
results because the experimental data, at z1 does not show any recirculation. 
 
The overall performance of RANS based models used in this study are not 
satisfactory. From turbulence point of view, the main reasons lie in the 
modeling of turbulence scales and also a poor performance of RANS based 
models for flows involving streamline curvature. Numerically, an inlet 
boundary condition based on experimental results should perform better 
than assuming constant values for different turbulence parameters.   
 
 

1.3 Future Work 
 
The current project has been the initial work towards the ultimate and long 
term goal of an efficient scavenging process for a low speed two stroke 
marine diesel engine. The future challenges involve both experimental work 
and numerical computations. Some of the potential future works in author’s 
view are given as follows: 
 

� Conducting the experiments at different swirl numbers in order to 
study the effect of swirl number. 

� Design and development of an experimental test setup having a 
moveable piston, scavenging ports similar to cylinder liner, exhaust 
valve at the outlet and a scavenging box. 

� Designing intake ports with different radial thickness and 
conducting measurements to study the effect of cylinder liner wall 
thickness on the incylinder flow.  

� Measurement of dynamic effect of the piston motion on the 
incylinder confined swirling flow. 

� Studying the effect of exhaust valve on the incylinder swirling flow. 
� Conducting experiments to study the effect of mixing and 

stratification during the scavenging process. This is probably the 
most challenging experiment both from point of view of design of 
setup and procedure to conduct useful measurements. 

� CFD simulations based on LES or Hybrid LES RANS methods. 
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�  Developing RANS based model to simulate the incylinder flow 
with good agreements compared to experimental data. 

� Simulations using the moving boundary methods to predict the 
transient flow during the scavenging process. 
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Abstract A simplifiedmodel of a low speed large two-stroke
marine diesel engine cylinder is developed. The effect of
piston position on the in-cylinder swirling flow during the
scavenging process is studied using the stereoscopic particle
image velocimetry technique. The measurements are con-
ducted at different cross-sectional planes along the cylinder
length and at piston positions covering the air intake port
by 0%, 25%, 50% and 75%. When the intake port is fully
open, the tangential velocity profile is similar to a Burgers
vortex whereas the axial velocity has a wake-like profile.
Due to internal wall friction, the swirl decays downstream
and the size of the vortex core increases. For increasing port
closures the tangential velocity profile changes from a Burg-
ers vortex to a forced vortex, and the axial velocity changes
correspondingly from a wake-like profile to a jet-like pro-
file. For piston position with 75% intake port closure, the
jet-like axial velocity profile at a cross-sectional plane close
to the intake port changes back to a wake-like profile at the
adjacent downstream cross-sectional plane. This is charac-
teristic of a vortex breakdown. The non-dimensional veloc-
ity profiles show no significant variation with the variation
in Reynolds number.

Keywords swirl · scavenging · two-stroke engine · PIV

1 Introduction

Low Speed Engine (LSE) are large two-stroke marine diesel
engines that use air swirling inside the engine cylinder for
scavenging process. The air intake ports are located near
the bottom-dead-center (BDC). The exhaust port is located
in the cylinder head. An exhaust valve is used to open and
close the exhaust port whereas the intake ports are controlled

J. H. Walther. E-mail: jhw@mek.dtu.dk

by piston motion. The fresh air enters the cylinder near the
bottom-dead-center and flows upward and removes the ex-
haust gases though the exhaust port at the cylinder head.
Since the scavenging air flows from the bottom to the top
of the cylinder, this type of scavenging is called uniflow
scavenging. Uniflow scavenging accounts for higher engine
thermal efficiency due to better air/gas exchange (Pevzner,
1998). Efficient scavenging improves the combustion effi-
ciency of the two-stroke diesel engines (Nakagawa et al,
1990). The scavenging ports, depending on different designs,
are at an angle of 15◦–25◦ with the cylinder radius to impart
tangential velocity producing a swirling air column (Litke,
1999). The resulting in-cylinder confined swirling flow re-
moves the exhaust gases from the cylinder, provides fresh
air charge for the next cycle and introduces swirl to en-
hance mixing of injected fuel and its consequent combus-
tion. Moreover, it also increases cooling of the cylinder liner
and in case of a non-axis symmetric swirl, can result in an
uneven temperature distribution at the walls. Thus investi-
gation and optimization of the scavenging process is key pa-
rameter for the performance and development of fuel effi-
cient and low emission marine engines.

Experimental results available in scientific literature, fo-
cused on studying the uniflow scavenging process in large
low speed marine diesel engines, are very few compared
to scavenging in other (smaller and high speed) two stroke
diesel engines. Previous studies include the experiments by
Nishimoto and Takeyuki (1984), who obtained the shape of
the front surface of the scavenging air using thermocouple
in a uniflow model engine. The model engine used hot air
for scavenging the cylinder filled with air at room temper-
ature. It was observed that with the increase in the engine
RPM (rotations per minute) and port angle, the scavenging
air front surface profile changes from jet like to a wake like
profile analogous to vortex breakdown in an axial flow vor-
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tex chamber. A method was also proposed to obtain a flat
profile front surface at an arbitrary Reynolds number for
maximum scavenging efficiency. Laser Doppler Velocime-
try (LDV) experiment was conducted on a model test en-
gine by Dedeoglu (1988). The experiments used a single
liquid and cylinder liner with different intake port config-
urations. Result show that the in-cylinder flow consists of
a rotational flow in the cylinder axis region and a potential
flow in the near wall region. Nakagawa et al (1990) used
two-component LDV measurements on a model of large,
low speed engine with large bore acrylic cylinder and air
as the working fluid. The tangential velocity profile for the
piston at TDC was found to depend on the scavenging port
angle. Larger port angles resulted in a larger axial velocity
drop in the central region of the cylinder thus occasionally
resulting in a reverse flow. Litke (1999) studied the influ-
ence of the scavenging port angles on the scavenging ef-
ficiency by using liquids in a 1:4 scaled engine model. It
was observed that the highest scavenging efficiency is ob-
tained with an inlet scavenging port angle of approximately
20◦. The results also indicated a better performance of us-
ing scavenging ports with combination of different angles
compared to the ports with uniform angle.

The large physical size and high in-cylinder pressure for
LSE makes experimental investigations in the engine very
expensive to conduct and with difficult optical access. The
scavenging process is unsteady and complex in nature thus
making statistics difficult. In terms of variation in geometry
of the flow domain, piston is in continuous motion during
the scavenging process thus changing the cylinder length
and also the effective shape of air intake ports. Such com-
plex inlet flow conditions make it difficult to distinguish
between inlet effects and swirling flow effects. Regarding
the flow physics, mixing and stratification of exhaust gases
with fresh air charge occurs while the in-cylinder mass flow
rate changes between opening and closing of the scavenging
ports. This simultaneous variation in flow domain and flow
physics consequently affects the in-cylinder swirl character-
istics and the type of the vortex generated by the swirl.

Considering the complex nature of the real engine scav-
enging process, a detailed understanding of the in-cylinder
scavenging process requires isolation and consequent study
of each flow phenomenon in a simplified form. The com-
plex physics can then be better analyzed by gradually adding
complexity. The focus in this study is to characterize the in-
cylinder confined swirling flow at different piston positions
during the scavenging process. In order to simplify the prob-
lem an experimental down-scale and simplified model of the
engine cylinder is developedwhich is analogous to a straight
cylinder connected to a swirl generator but having features
like movable piston, cylinder head and guide vanes to di-
vert the flow entering the cylinder at a desired angle etc. In
the present study the cylinder exhaust port is fully open and

the exhaust valve is removed. The experimental results will
provide a detailed understanding within areas of large two
stroke LSE and fundamental studies in turbulent confined
swirling flows.

In the present experiment, air at atmospheric conditions
is used as the working fluid and the cylinder length is fixed
at 4D i.e. equal to stroke-to-bore ratio for LSE, and where D
is the diameter of the cylinder. Stereoscopic Particle Image
Velocimetry (PIV) measurements are carried out to study the
in-cylinder confined swirling flow. The study does not in-
clude the effects of mixing and stratification. The measure-
ments are conducted at four fixed piston positions in transla-
tional direction where piston partially covers intake ports by
0% (fully open ports), 25%, 50% and 75%. PIV data acqui-
sition is performed by keeping the piston at any aforemen-
tioned fixed position and then taking measurements at dif-
ferent cross-sectional planes along the length of the cylinder.
The piston is then moved to the next position and the proce-
dure is repeated. Conducting measurements at fixed piston
positions will give snapshots of the in-cylinder flow charac-
teristics without transient effects induced by the continuous
piston motion. This makes the results of the current study
very useful for computational studies. In order to study the
effect of variation in Reynolds number on the in-cylinder
swirling flow, for each given piston position, the measure-
ments are conducted at two different flow Reynolds num-
bers: Re= vbD/ν = 65000 and 32500, where vb denotes the
bulk axial velocity in the cylinder, and ν the fluid viscosity.

2 Experimental Set-up

An overview of the experimental set-up is shown in Fig. 1.
The scavenging flow test rig is connected with a fan with
speed controller and an orifice meter to measure the volu-
metric flow rate through the set-up.

2.1 Cylinder

A transparent acrylic cylinder (produced using casting pro-
cess to give good optical properties) is used. The internal
diameter (D) of the cylinder is 190mm and the total length
L of the cylinder is 760mm. JHW In one end, an inlet sec-
tion is mounted, and in the other end an outlet section is
mounted. JHW instead One end of the cylinder enters in-
side the inlet section and at the other end an outlet section is
inserted.

2.2 Inlet Section

The inlet section (Fig. 1) consists of two transparent ring-
shaped acrylic plates with an outer diameter of 600mm. The
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Fig. 1 Schematics of the experimental set-up. The ports are here closed 50% by the piston. The blades are located at rb = 250mm with a length
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Fig. 2 Illustration of the guide vane blade geometry.

plates are fitted in parallel by mounting 60 guide vanes in
between them thus serving as walls bounding the flow. The
distance (h) between the internal walls of the plates/height
of individual blade is h= 100mm. A screen with 51% open
area ratio is glued around the outer periphery of the inlet
section to obtain a uniform velocity profile at the inlet cf.
Fig. 1. A bell-mouth shape contraction section (Fig. 1), is
mounted internally at the inner periphery of the inlet section.
The contraction reduced the width of the channel from the
100mm at the inlet to 40mm at the inlet of the cylinder.

An overview of the individual guide vane construction
is shown in Fig. 2. Each guide vane has a thickness of 1mm
and a width of 26.16mm (when flat). The guide vanes are
then deformed into an arc shape with details given in Fig. 2.
Each individual guide vane is fitted inside the inlet section
in a way that one end is aligned in radial direction with the
flow entering through the inlet. The other end follows the
curved geometry of the guide vane. Thus the flow from inlet
enters the guide vane in the radial direction and diverts at
an angle of αblade = 35◦ with the radial direction. The guide

vanes are mounted at a large radial distance (rb = 250mm)
from the geometric center of the cylinder and close to the
inlet (Fig. 1). This will give some time to the flow after the
vanes to settle thereby minimizing the wake effects behinds
the guide vanes. Further, before entering the cylinder, the
flow enters the contraction section which will accelerate the
flow and reduce the velocity fluctuations. The acrylic cylin-
der is entered into the inlet section from one side and from
the other side, a transparent piston is mounted. The piston
can slide inside the cylinder thus partially/fully close the
cylinder inlet section, similar in a way that in real engine
the reciprocating piston uncovers and covers the scavenging
ports. However, the outer diameter of the piston is larger (by
wall thickness) than the cylinder inner diameter. This limits
the displacements of the piston to a position where it fully
covers the cylinder intake port. The current work is focused
on studying the in-cylinder swirling flow when the piston is
at the BDC (the inlet to the cylinder is fully open) and piston
positions where it covers the intake port by 25%, 50% and
75%.

2.3 Outlet Section

The outlet section consists of a smaller internal diameter
pipe (d = 110mm) and length (l = 1415mm). The large
length of the pipe will minimize any effect on the nature
of the swirling flow inside the cylinder due to bending in the
connecting pipes to the orifice plate and fan. The shape of
the outlet provides a flat-bottom head to the cylinder. The
outlet section can slide inside the cylinder and facilitates ex-
periments at a desired effective length of the cylinder which
in this study is kept fixed at 4D.
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Fig. 3 Illustration of the Stereoscopic PIV set-up.

3 Stereoscopic PIV Setup

An overview of the stereoscopic particle image velocimetry
set-up is given in Fig. 3. The laser optics and the two cam-
eras are mounted on a large traverse system that moves in
the axial direction i.e. along the length of the test cylinder.
The traverse is carefully aligned with the cylinder and uses a
steppingmotor for accurate positioning. The traverse system
moves independently of the test rig.

3.0.1 Alignment and Calibration

ANewWave Solo Nd:Yag pulse laser (120mJ pulses at wave-
length 532 nm) is mounted on the traverse so that the laser
sheet is exactly perpendicular to the cylinder axis. The ap-
proximate laser sheet thickness is 4mm. Two Dantec HiSense
cameras with 1344× 1024 pixels and pixel size of 6.45 μm
are equipped with 60mm focal length lenses and green light
filters. Both cameras are in Scheimpflug condition andmounted
on the same traverse as the laser source. The cameras are at
one side of the laser sheet and the cylinder is placed between
the two cameras (Fig. 3). The calibration target is kept on a
disc of same diameter as the internal diameter of the cylin-
der and is slided inside the test cylinder. The calibration tar-
get is kept aligned with the laser sheet at a given measuring
cross-sectional position. Both cameras are aligned in a way
that their rectangular frames capture maximum area of the
given cross-section within the pipe diameter. Thus avoiding
measurements close to the cylinder wall due to strong reflec-
tions of the laser light. The calibration is performed at sin-
gle measuring position. Dantec DynamicStudio software is
used for PIVmeasurements and data processing. Calibration
was performed using the 3rd order xyz-polynomial imaging
model which is capable of handling distortion caused by the
lens or curved windows (DantecDynamics, 2009). In order
to account for the possible misalignment of the calibration

target with the laser sheet, disparity error correction is per-
formed. Since the relative positions of laser source and two
cameras are fixed, considering the test cylinder being axi-
ally aligned, the same calibration is used for all the other
measuring cross-sections.

The F-number is set to 8 for the camera receiving the
forward scatter and for the camera receiving the backward
scatter, the F-number is set to 4.

3.1 Seeding

The seeding generator contains 75/25% by volume glycerol-
water solution and the size distribution of seeding droplets is
in range of 1-3μm. For a uniform and adequate seeding, the
particles should mix properly with the incoming air enter-
ing the inlet section. For this purpose a metal frame, with a
diameter of 860mm and width 150mm, is mounted around
the inlet section. A plastic pipe with a diameter of 40mm
is tied with the internal periphery of the metal frame in a
helical shape so as to cover the whole breadth of the metal
frame and consequently the inlet surface. A large number of
holes (approximately 1.5cm−2 with a diameter of 3mm) are
drilled in the pipe wall facing the inlet of the experimental
set-up and the two ends of the pipe are connected to the seed
generator. The radial distance of the pipe wall from the in-
let surface is sufficiently large to minimize any effect to the
the incoming flow and provide a uniform seeding across the
inlet surface.

4 Data Acquisition

The measurements are conducted at different cross sectional
planes along the length of the cylinder, with their distances
measured from the piston surface as reference (Fig. 1). For
every position, a minimum of 994 PIV snapshots are taken.
Data processing and analysis of the PIV images is performed
using multi-pass “Adaptive Correlation” algorithm in Dan-
tec DynamicStudio software. The initial interrogation win-
dow size is 128× 128 pixels with two refinement steps to a
final interrogation area of size 32×32pixels and 50% over-
lap of the side of the interrogation area. The time-between-
pulses (TBP) was optimized by testing several values. The
largest value that gave a low amount of outlier vectors was
selected. This was performed for each combination of mea-
surement position, piston position and Reynolds number.

5 Results and Discussion

In order to present the results in a comprehensive manner,
first the results for the case of fully open intake port are pre-
sented and discussed. The results for the cases with 25%,
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50% and 75% partially closed intake port are then discussed
in a successive manner. The measurements are conducted
for two flow Reynolds numbers: Re = vbD/ν = 65000 and
32500. The results are presented for Reynolds number 65000
since no significant differences are observed compared to
Reynolds number 32500 for a given measuring plane and
piston position.

A significant effort has been made to make the exper-
imental set-up rotational symmetric. In order to asses the
uncertainties involved in the measurement process and the
repeatability of the experimental results, different measure-
ment sessions were conducted for a given position and Reyn-
olds number. These measurement sessions were conducted
at different days, dismantling and reassembling of the PIV
set-up (Fig. 3) and using different TBP. The results from dif-
ferent measurement sessions are labeled in each presented
profile and represent repeated experiment but with different
TBP for PIV and on a reassembled PIV set-up. The profiles
of the tangential and axial velocity components include the
error bars. The error bars are based on standard error (SE) of
the mean with upper and lower 95% confidence limits and
present the uncertainty involved in a given measurement

SE =
σ√
n

(1)

where σ is the standard deviation of all the observations for
a given measurement and n represents the total number of
observations.

The degree of swirl in a given swirling flow is quantified
by the non-dimensional swirl number S. The swirl number in
this experiment is measured using the relation for the design
swirl parameter given by Gupta et al (1984) and Alekseenko
et al (2007)

S ≡ 2Fθ ,z
Fz,zD

(2)

where Fθ ,z and Fz,z denote the flux of angular and axial mo-
mentum in the flow direction. The angular momentum is es-
timated from the radial flux of angular momentum

Fθ ,z ≈ Fθ ,r = ρvθvrr(2πrh), (3)

where h denotes the height of the channel at the radius r
(Fig. 1), and

Fz,z = ρv2b
(π
4
D2

)
, (4)

where vr= vr(r) is related to the bulk velocity vb= vr8rhD−2.
Thus, the swirl number is

S =
vθ
vr

D
4h

. (5)

At the guide vanes (r = 250mm) the velocity ratio vθv−1r ≈
tan(αblade) and hence the design swirl number is S = 0.33.
In addition, preliminary Laser Doppler Anemometry (LDA)
experiments have been conducted to study the wake behind
the blades (not shown). At r = 200mm the measured flow
angle is 26◦, which results in an effective swirl number of
S = 0.23.
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Fig. 4 Time average flow fields at z/D = 0.963 with fully open ports:
(a) normalized velocity field (contour colors represent magnitude of
out-of-plane velocity component); (b) normalized turbulent kinetic en-
ergy.

5.1 Fully Open Ports

When the intake port is fully open, the in-cylinder swirling
flow results in a high velocity region at an intermediate ra-
dial position between the cylinder wall and geometric cen-
ter cf. Fig. 4a). Here R is the radius of the cylinder. X and
Y shown in Fig. 4 represent the x-axis and y-axis, respec-
tively, when origin of the coordinate system is defined at the
cylinder axis. The origin of the z axis is at the piston surface
when the port is fully open. Contour color represents the ax-
ial velocity (out of the plane component) vz normalized by
bulk flow velocity vb. It can be seen that the resulting in-
cylinder swirling flow is comprised of a concentrated vortex
with a core surrounded by a high velocity region. The veloc-
ity magnitude in the vortex core is very low compared to its
surroundings. A low velocity region exists at a larger radial
positions close to the cylinder wall (not shown). Although
great care has been taken to make the experimental set-up
rotational symmetric, the recirculating vortex core is asym-
metric i.e. the mean vortex position is not coinciding with
the geometric center of cylinder. Fig. 5a shows that when
the intake port is fully open, the tangential velocity profile
at z/D= 0.963 is comprised of a forced vortex region (solid
body rotation) and an outer region with very low rotation
or weak vorticity . The Xv shown in Fig. 5a represents the
x-axis when the origin of the coordinate system is shifted to
the mean vortex center. Higher velocities are observed in the
radial position where the inner forced and outer free vortices
meet. The vortex core region has low velocity magnitude
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compared to other regions of the cylinder (except near cylin-
der wall as in the current experiment measurements near the
wall have not been taken).

The axial velocity vz has a wake-like profile cf. Fig. 5b
and has overall magnitude higher than vθ . This shows that
flow has low swirl intensity. The size of vortex core increases
downstream as both the tangential and axial velocities grad-
ually decay downstream the cylinder and the velocity peaks
become less distinct (Fig. 5d,e,g,h).

The flow at z/D = 0.963 has a large negative value of
the normalized mean axial vorticity (ωz) in the core region
(calculated by first normalizing x, y with cylinder radius R
and u, v with bulk flow velocity vb) cf. Fig. 5c. The vortic-
ity distribution appears to have a Gaussian-like profile. The
vorticity is concentrated in a small tubular region near the
vortex center and decays rapidly outward in the radial direc-
tion indicating a concentrated vortex profile cf. Lam (1993).
Very low vorticity is observed only at large radial distances
X/R= 0.5 from the vortex center.

With the decay of the swirl along the cylinder length, the
vortex core gradually loses its vorticity. The size of the core
increases and the weak-vortical region diminishes downstream
the cylinder (Fig. 5f,i).

At z/D = 0.963, the vortex core exhibits an asymmet-
ric distribution of the mean turbulent kinetic energy (TKE)
cf. Fig. 4b indicating that the flow is three-dimensional. The
largest value of TKE is observed in the vortex core region.
However, the kidney shape of the region with high variance
indicates the vortex precession superimposed on the three-
dimensional velocity variations. The region outside the vor-
tex core has very low turbulent kinetic energy but beyond
half of cylinder radius, TKE starts increasing again towards
the cylinder wall region. This is due to the 90◦ bend between
the swirl generator outlet and the test cylinder (Fig. 1). The
flow, while entering the cylinder, separates at the wall which
increases the turbulence. As the swirl decays downstream
(not shown), the overall magnitude of the turbulent kinetic
energy also decreases but its spatial distribution increases
due to enlargement of the vortex core and comparatively
more uniform velocity distribution.

5.2 Ports Closed by 25%

As the piston is translated to the positions partially covering
the intake port, the in-cylinder flow becomes comparatively
more chaotic. The possible reason is that the piston consti-
tute a bluff body with a sharp edge to the flow entering the
cylinder and the port area also reduces. This produces in-
creased velocity fluctuations at the inlet compared to when
the port is fully open and affects the in-cylinder velocity dis-
tribution.

At 25% partially closed port (Fig. 6a,d,g), the maximum
value of vθ at z/D= 0.963 has decreased compared to fully

open port. The profile shows a less distinct peak at the inter-
face of outer region and inner enlarged forced vortex region.
The size of the forced vortex region increases downstream
the flow and at z/D = 3.068, the overall vθ profile changes
to a forced vortex i.e. the high vθ region shifts to near wall
position and eliminating the outer free vortex region. The
overall vθ magnitude decreases at all measuring positions
compared to fully open port. The vz at the near outlet po-
sitions changes from wake-like profile to a more uniform
distribution cf. Fig. 6b,e,h. At position z/D= 0.963 near the
inlet, the peak values of vz magnitude is higher than its value
at the open port position of the piston.

Fig. 6c,f,i shows the mean axial vorticity for the posi-
tions z/D = 0.963, z/D= 2.016, and z/D = 3.068, respec-
tively. Compared to the fully open port case, the overall
vorticity magnitude is reduced. At z/D = 0.963, similar to
the fully open port, the vortex core region has the strongest
vorticity. However, the maximum vorticity magnitude in the
vortex core region is less than half the value observed in case
of fully open intake port. Due to increase in the size of the
vortex core region, the spatial distribution of the vorticity
around the vortex center has also increased. This indicates
that the Burgers vortex profile is dimished in a way that the
vorticity from strong vortical region (vortex core) is trans-
ferred to the surrounding weak vortical regions and thus the
vorticity of the outer (free vortex) region increases. With the
flow downstream, the vorticity distribution tends to become
more uniform at z/D= 2.016 and at z/D= 3.068 a uniform
vorticity distribution is observed cf. Fig. 6f,i. The fluctua-
tions in the vorticity profile plots are due to measurement
noise.

At z/D= 0.963 the maximum value of the turbulent ki-
netic energy seems to have increased when the the piston
partially closes the intake port by 25%. The maximum value
of TKE is still observed in the vortex core region however
the region with low value of TKE, observed in case of fully
open port has shrunk thus indicating an increase in the value
of TKE from the half cylinder radius to the regions close to
the wall (Fig. 9a).

5.3 Ports Closed by 50%

With the piston covering 50% of the intake port, the asym-
metry in the distribution of vθ at z/D = 0.963 increases cf.
Fig. 7a. At z/D = 2.016 cf. Fig. 7d the tangential velocity
profile becomes more symmetric and attains a forced vortex
like profile. However, the vθ profile seems to have a small
curvature from thee mean vortex center to large radial po-
sitions indicating rather a tangential wall-jet like profile as
observed by Steenbergen and Voskamp (1998). In case of
plane jets, a wall-jet is defined as a fluid jet that is issued
tangentially to and grows on a wall (Pani and Rajaratnam,
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Fig. 5 Normalized time averaged profiles with fully open ports: (a) tangential velocity profile at z/D = 0.963; (b) axial velocity profile at z/D =
0.963; (c) axial vorticity profile at z/D = 0.963; (d) tangential velocity profile at z/D = 2.016; (e) axial velocity profile at z/D = 2.016; (f) axial
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Fig. 6 Normalized time averaged profiles with 25% closed ports: (a) tangential velocity profile at z/D = 0.963; (b) axial velocity profile at
z/D= 0.963; (c) axial vorticity profile at z/D= 0.963; (d) tangential velocity profile at z/D= 2.016; (e) axial velocity profile at z/D= 2.016; (f)
axial vorticity profile at z/D = 2.016; (g) tangential velocity profile at z/D = 3.068; (h) axial velocity profile at z/D = 3.068; (i) axial vorticity
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8

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

X
v
 / R

V
θ / 

V
b

 

 
measurement 1

−1.0 −0.5 0.0 0.5 1.0
0.0

1.0

2.0

3.0

4.0

5.0

X
v
 / R

V
z / 

V
b

 

 
measurement 1

−1.0 −0.5 0.0 0.5 1.0
−25.0

−20.0

−15.0

−10.0

−5.0

0.0

5.0

X
v
 / R

ω
 z

 

 

measurement 1

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

X
v
 / R

V
θ / 

V
b

 

 
measurement 1
measurement 2

−1.0 −0.5 0.0 0.5 1.0
0.0

1.0

2.0

3.0

4.0

5.0

X
v
 / R

V
z / 

V
b

 

 
measurement 1
measurement 2

−1.0 −0.5 0.0 0.5 1.0
−25.0

−20.0

−15.0

−10.0

−5.0

0.0

5.0

X
v
 / R

ω
 z

 

 

measurement 1
measurement 2

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

X
v
 / R

V
θ / 

V
b

 

 
measurement 1
measurement 2

−1.0 −0.5 0.0 0.5 1.0
0.0

1.0

2.0

3.0

4.0

5.0

X
v
 / R

V
z / 

V
b

 

 
measurement 1
measurement 2

−1.0 −0.5 0.0 0.5 1.0
−25.0

−20.0

−15.0

−10.0

−5.0

0.0

5.0

X
v
 / R

ω
 z

 

 

measurement 1
measurement 2

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Fig. 7 Normalized time averaged profiles with 50% closed ports: (a) tangential velocity profile at z/D = 0.963; (b) axial velocity profile at
z/D= 0.963; (c) axial vorticity Profile at z/D= 0.963; (d) tangential velocity profile at z/D= 2.016; (e) axial velocity profile at z/D= 2.016; (f)
axial vorticity Profile at z/D = 2.016; (g) tangential velocity profile at z/D = 3.068; (h) axial velocity profile at z/D = 3.068; (i) axial vorticity
Profile at z/D = 3.068.

1976). Due to a velocity discontinuity, a shear layer devel-
ops on the fluid side and on the wall side a boundary layer is
developed (Rajaratnam, 1976). For confined swirling flows
with a tangential wall-jet like profile, analogous to plane
wall jets, a tangential velocity jet is issued to the cylinder
walls. The maximum tangential velocity is observed at a
radial distance from the curved wall where the shear layer
meets the wall boundary layer and minimum tangential ve-
locity is observed in the vortex center. A similar vθ profile is
observed for z/D= 3.068 but with a smaller magnitude thus
indicating decay in the swirl (Fig. 7g).

A significant change in the axial velocity profile is ob-
served at the positions close to the cylinder inlet where, com-
pared to fully open and 25% port closure, it has changed to
jet-like profile i.e. the peak velocity magnitude is at the cen-
ter of the cylinder and decreases radially towards the wall
(Fig. 7b). However, there is a rapid decay in the velocity
peaks from position z/D= 0.963 to z/D= 2.016 and again
at z/D = 3.068 where a uniform distribution of vz is ob-
served cf. Fig. 7e,h.

For 50% intake port closure, the mean axial vorticity at
z/D= 0.963 is shown in Fig. 7c. The ripples in the axial vor-
ticity profile is due to the measurement noise. The vorticity
of the vortex core region is still stronger than other radial
positions at that cross-sectional plane but less pronounced
compared to the vorticity at z/D= 0.963 and with 25% port
closure. The maximum value of the axial vorticity has re-

duced to nearly half of the maximum value at z/D = 0.963
for 25% intake port closure.

The mean axial vorticity distribution at z/D= 2.016 and
z/D = 3.068 (Fig. 7f,i) respectively, the vorticity is more
uniformly distributed. This indicates that the initial strength
of the vortex core decreases along the flow downstream by
transferring vorticity to other weak vortical regions.

The turbulent kinetic energy increases further with the
increase in the partial closure of the intake port from 25%
to 50% cf. Fig. 9b. The vortex core region now has a very
low TKE value. The maximum value of TKE is observed in
the region X/R= 0.4 to 0.6. This indicates that the overall
velocity variance in the center of the jet-like axial velocity is
very low. The asymmetric distribution of TKE in the vortex
core region can be understood from an asymmetric jet-like
profile of mean axial velocity component.

5.4 Ports Closed by 75%

The tangential velocity exhibits a solid body rotation through-
out the cylinder i.e. peak vθ in the entire cylinder is shifted
to the near wall positions cf. Fig. 8a,d,g.The overall tangent
velocity magnitude decays downstream the flow.

At z/D= 0.963 the axial velocity component vz still has
a jet-like profile (Fig. 8b). However, the profile has a sharp
peak compared to the 50% intake port closure (Fig. 7b).
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Fig. 8 Normalized time averaged profiles with 75% closed ports: (a) tangential velocity profile at z/D = 0.963; (b) axial velocity profile at
z/D= 0.963; (c) axial vorticity Profile at z/D= 0.963; (d) tangential velocity profile at z/D= 1.489; (e) axial velocity profile at z/D= 1.489; (f)
axial vorticity Profile at z/D = 1.489; (g) tangential velocity profile at z/D = 3.068; (h) axial velocity profile at z/D = 3.068; (i) axial vorticity
Profile at z/D = 3.068.

A significant change in the vz profile is observed at z/D =

1.489 where vz changes back from jet-like to wake-like pro-
file (Fig. 8e) which is characteristic of a vortex breakdown
(Escudier et al, 1982). The profile for vz remains the same
i.e. wake-like at all downstream positions (Fig. 8h), how-
ever, the peak value vz is observed at large radial distance
from the vortex center indicating an increase in the vortex
core size downstream the flow.

When the intake port is closed by 75% (Fig. 8c), com-
pared to the other positions of the piston, at z/D = 0.963
the strong vorticity of the vortex core region no longer ex-
ists. Instead the mean velocity field has nearly uniform ωz-
distribution throughout the cylinder.

The increase in the value of the turbulent kinetic en-
ergy continues with the partial closure of the intake port.
For 75%, similar to 50%, the vortex core region has a low
value of TKE at z/D = 0.963 (Fig. 9c). The distribution
of TKE in the core region is comparatively more symmet-
ric than at 50%. This can be observed from the vz profile
(Fig. 8b) which is more symmetric than vz profile at 50%
port closure (Fig. 7b).

6 Conclusion

The magnitudes of the tangential and axial velocities decay
downstream due to friction with the internal cylinder wall.

The tangential velocity profile, at fully open port, is similar
to a Burgers vortex i.e. an inner forced vortex core and free
vortex outer region. The higher velocities are observed at
some intermediate radial position between the cylinder wall
and the geometric center where force and free vortex regions
meet. With the downstream decay in swirl the size of the
forced vortex region increases. At piston positions partially
closing the port, the tangential velocity profile starts chang-
ing to a forced vortex i.e. higher velocities are observed near
the cylinder walls. This change in velocity profile begins
from cross-sectional positions near the cylinder outlet and
moves to upstream positions as the piston gradually closes
the port. However, in case of piston position with 50% port
closure, the tangential velocity profiles resembled a wall-
jet like profile rather than the forced vortex. For the cross-
sectional positions close to the intake port, the partial closure
of the intake port introduces asymmetry and variation in the
mean tangential velocity profile.

Fully open ports result in an axial velocity with wake-
like profile at all measuring planes. However, no reverse
flow at the vortex core has been observed. The downstream
decay in swirl is decreasing the wake effect by transferring
more mass into the wake region. As the piston starts closing
the ports the axial velocity profile changes fromwake-like to
jet-like at 50% port closure. However, at 75% port closure
the jet-like mean axial velocity profile at the cross-sectional
position close to intake port changes back to wake-like at the
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Fig. 9 Time average turbulent kinetic energy at z/D = 0.963 for the (a) 25%, (b) 50% and (c) 75% closed ports.

adjacent downstream cross-sectional position. This is char-
acteristic of a vortex breakdown. The mean axial velocity
profile then continues to have the wake-like profile at the
remaining downstream positions.

The mean axial vorticity of the mean velocity field has
a Gaussian-like profile when the intake port is fully open.
However, with the downstream decay of swirl as well as the
partial closure of the intake port, the vorticity confined in
the vortex core region is transmitted to the outer regions.
This results in a comparatively uniform mean axial vorticity
distribution throughout the cylinder for the 75% port clo-
sure. The turbulent kinetic energy increases with the partial
closure of the intake port. For a given cross-sectional plane,
the distribution of TKE seems to be understood from the
mean axial velocity distribution. For a wake-like vz profile,
the maximum value of TKE is observed in the vortex core
region and the minimum value is observed in the high vz re-
gion. Similarly, for a jet-like vz profile, the minimum value
is observed in the center of the jet and maximum value is
observed in the jet skirt region.

The experimental results presented in this paper provide
insight into the nature of the in-cylinder confined swirling
flow during the scavenging process. With the piston motion
the change in the tangential and axial velocity profiles, both
at different piston position and at different cross-sectional
planes represent a specific type of vortex. Studying the char-
acteristics of the different types of vortex structures is a key
to the understanding of the real engine scavenging process
including critical issues such as the mixing of fresh charge
with exhaust gases. Moreover, the modelling of swirling flow
is a challenge to standard computational fluid dynamics (CFD)
tools and the present, fixed piston experiment provides an
essential benchmark for the validation of CFD tools for en-
gine simulations.
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