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Ensemble forecasts of (u,v)-wind are of crucial importance for a number of
decision-making problems related to e.g. air traffic control, ship routeing and energy
management. The skill of these ensemble forecasts as generated by NWP-based
models can be maximised by correcting for their lack of sufficient reliability. The
original framework introduced here allows for an adaptive bivariate calibration of
these ensemble forecasts. The originality of this methodology lies in the fact that
calibrated ensembles still consist of a set of (space–time) trajectories, after translation
and dilation. In parallel, the parameters of the models employed for improving
the stochastic properties of the generating processes involved are adaptively and
recursively estimated to accommodate smooth changes in the process characteristics
and to lower computational costs. The approach is applied and evaluated based on
the adaptive calibration of ECMWF ensemble forecasts of (u,v)-wind at 10 m above
ground level over Europe over a three-year period between December 2006 and
December 2009. Substantial improvements in (bivariate) reliability and in various
deterministic/probabilistic scores are observed. Finally, the maps of translation and
dilation factors are discussed. Copyright c© 2012 Royal Meteorological Society
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1. Introduction

After the tremendous advances in the development
of ensemble forecasting methodologies (Palmer, 2000;
Gneiting and Raftery, 2005), ensembles and more generally
probabilistic forecasts of meteorological variables are
increasingly considered as a crucial input to a number
of socially relevant decision-making problems. Out of the
potential variables of interest, probabilistic forecasts of near-
surface winds are becoming increasingly popular. This is
partly due to the needs for accurate forecasting of wind
power generation (from the short to medium range). Nielsen
et al. (2006), Pinson and Madsen (2009) and Taylor et al.
(2009) provide reviews of the methods for ensemble-based
forecasting of wind power. It has been shown that the
optimal management and trading of wind energy generation
calls for probabilistic forecasts (e.g. Pinson et al., 2007a;

Matos and Bessa, 2010; Meibom et al., 2011, among others).
From a more general point of view, probabilistic forecasts
of near-surface winds can be of great value for decision-
making problems related to sailing, ship routeing, air traffic
control, etc. This statement is supported by theoretical
results indicating that, for a large class of decision-making
problems, optimal decisions directly relate to quantiles of
conditional predictive densities (Gneiting, 2011).

As is often the case for forecasts directly taken as output
from physical models, ensemble forecasts of near-surface
winds tend to be biased. For probabilistic forecasts, this
defect consists of their lack of sufficient (probabilistic)
reliability: they generally are under-dispersive. With that
in mind, various approaches to the bias-correction and
calibration of ensemble forecasts of wind speed (Sloughter
et al., 2010; Thorarinsdottir and Gneiting, 2010) and
direction (Bao et al., 2010) have been described. The
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bivariate view of wind speed and direction was in parallel
touched upon by Gneiting et al. (2008) when discussing
the skill evaluation of multivariate probabilistic forecasts.
Our aim here is to further develop the calibration
of ensemble forecasts of (u, v)-wind in a multivariate
framework. In contrast with the argument of Wilks (2002),
we are not looking at fitting probability distributions
based on the ensembles. The output of our calibration
methodology consists of ensemble forecasts similar in
nature to the uncalibrated ones, though with improved
stochastic properties. This approach is motivated by the
fact that a number of decision-support systems using
wind probabilistic forecasts as input need ensembles (in
other words, trajectories) instead of predictive densities
(Meibom et al., 2011; Morales et al., 2010). Indeed, by fitting
probability distributions for each point in space and in
time, individually, the physical spatio-temporal structure of
ensemble members gets lost.

The methodology developed in the present article is
mainly inspired by the approach described in Pinson and
Madsen (2009) for the adaptive kernel dressing of ensemble
forecasts in a univariate framework, but also by the ideas
described by Sloughter (2009) for probabilistic forecasting
of (u, v)-wind using Bayesian model averaging (BMA). The
present proposal is developed in a multivariate Gaussian
framework, with the idea of correcting the first- and second-
order moment properties of the ensemble forecasts. The
main innovations brought in by this approach are that:
(i) u and v wind components are jointly considered, instead
of focusing on wind speed and direction individually;
(ii) the output of the models are ensemble forecasts of the
same nature as the input ones, not predictive densities; and
(iii) the model parameters are considered as time-varying,
while being adaptively and recursively estimated in a
rigorous Maximum-Likelihood (ML) framework.

This article is structured as following. The rationale and
models for calibration are introduced in the first stage
by describing the bivariate Gaussian framework for (u, v)-
wind, our approach to calibration, as well as the underlying
mean and variance models. The question of the adaptive and
recursive estimation of the model parameters is subsequently

dealt with. We derive the general updating formulae for the
various models in a ML framework while giving the exact
expressions to be used for every set of model parameters.
The methodology is finally applied for the calibration of
European Centre for Medium-range Weather Forecasts
(ECMWF) ensemble forecasts of (u, v)-wind (at 10 m above
ground level) over Europe and over a three-year period. The
original and calibrated ensemble forecasts are evaluated in
a bivariate framework, focusing on the deterministic skill
of the ensemble mean, as well as the reliability and skill of
ensemble forecasts. The article ends with conclusions and
perspectives regarding future work.

2. Rationale and models for calibration

Before we get into a description of our proposed
methodology, related models and estimation methods, it is
important to mention that the model analysis is considered
as the target and hence is used as a reference for calibration.
Calibration against observations at particular sites may rely
on similar approaches and models, though the scope of
their application would be different. Indeed we consider
here that, before forecasts may be communicated to their
potential users, a requirement for the meteorological centre
issuing the forecasts is to ensure that its ensemble forecasts
are calibrated with respect to its own target, i.e. its own
analysis.

2.1. The general bivariate Gaussian framework

Instead of looking at wind speed and direction individually,
wind is modelled as a bivariate process, i.e. in terms
of its zonal and meridional components, denoted u and
v, respectively. While physical reasons hint at the fact
these two components of the wind are inter-related, their
interdependence is illustrated in Figure 1 based on 48 h
ensemble forecasts from ECMWF over the period December
2005–February 2006. This figure depicts a map of average
values of the coefficient of determination R2, showing the
general level of interdependence between these u and v
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Figure 1. Interdependence of u and v wind components of ensemble forecasts, based on the 48 h ECMWF ensemble forecasts over DJF2006. (a) is a map
of the average R2 values between u and v over all forecast series, and (b) is the distribution of the (u, v) correlation for all locations and all forecast series.
This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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components, as well as the distribution of the (u, v)-
correlation values for all locations and all forecast series
over that period. While the level of correlation between
u and v components may well vary in time and in space,
it appears that they are significantly interrelated overall,
especially in zones with specific wind regimes e.g. the
Tramontane in the French Gulf of Lion. This justifies the
proposal of bivariate approaches to the recalibration of
(u, v)-wind ensemble forecasts, instead of the more classical
univariate approaches.

For a given location s, ys,t = [us,t vs,t]� is the observed
wind vector at time t. It is assumed that (u, v)-
wind is distributed bivariate Gaussian, possibly after
transformation. We denote by Ys,t = [Us,t Vs,t]� the
bivariate random variable for the wind vector at time t
and for location s. Subsequently,

Ys,t ∼ N2
(
µs,t , �s,t

)
, (1)

where µs,t = [µu,s,t µv,s,t]� is a two-dimensional vector
giving the wind vector expectation at time t and location s
while �s,t is the variance–covariance of the random variable:

�s,t =
[

σu,s,t
2 ρs,t σu,s,t σv,s,t

ρs,t σu,s,t σv,s,t σv,s,t
2

]
. (2)

In the above, σu,s,t and σv,s,t are the standard deviation of the
random variable at time t and location s along the u and v
components, respectively, while ρs,t is the (u, v)-correlation,
controlling the anisotropic shape of bivariate distributions.
Comprehensive illustrations of using bivariate Gaussian
distributions for predicting (u, v)-wind can be found in
Gneiting et al. (2008), for instance.

Similarly, for the ensemble forecasts of (u, v)-wind, for
given lead time k, we write

ŷ
(j)
s,t|t−k =

[̂
u

(j)
s,t|t−k v̂

(j)
s,t|t−k

]�
(3)

as the jth member of a set of m ensemble wind forecasts,
issued at time t − k for the current time t (hence with
k denoting the forecast horizon) for the location s. Since
in the following we will focus on each location and lead
time individually, and in order to ease notations, we do
not employ subscripts that would indicate the lead time k
and location s (unless necessary). One should for instance

remember that ŷ
(j)
t actually corresponds to ŷ

(j)
s,t|t−k, the same

being valid for the analysis as well as individual u and v
components.

It is also assumed that ensemble forecast members
sample a bivariate Gaussian distribution, possibly after
transformation. An exploratory analysis of ECMWF
ensemble forecasts and analysis data available showed that
the bivariate Gaussian assumption was suitable for both
ensemble forecasts and forecasts errors of the ensemble
mean, with no transformation being necessary. This
contrasts with the analysis of Sloughter (2009), who observed
for the University of Washington Mesoscale Ensemble
(UWME) system that a power transformation should be
applied to the wind speed for the ensemble forecasts of
(u, v)-wind to be more Gaussian.

For the purpose of the derivations to be performed, let
us recall here the density function for bivariate Gaussian

random variables:

f (y) = 1

2πσuσv

√
1 − ρ2

×exp

[
−1

2(1 −ρ2)

{(
u −µu

σu

)2

+
(

v −µv

σv

)2

− 2ρ(u−µu)(v−µv)

σuσv

}]
.

(4)

In the remainder of this article and under this bivariate
Gaussian assumption, the variables related to the ensemble
forecasts will be denoted with a hat symbol, as µ̂u and σ̂u for
the expectation and standard deviation of the u component
of their generating process. In parallel, a star symbol will
denote all quantities linked to the calibrated ensemble
forecasts e.g. µ̂∗

u and σ̂ ∗
u for the corrected expectation

and standard deviation related to the u component.

2.2. The rationale behind calibration

Proposals for the calibration of ensemble forecasts can
already be found in the work of Wilks (2002) and of Buizza
et al. (2003) among others, based on fitting probability
distributions to the set of ensemble members. Since bivariate
Gaussian variables are fully characterised by their mean
vector and covariance matrix, fitting appropriate probability
distributions would translate to the estimation of their
mean and covariance, for instance in a ML framework.
This would comprise a generalisation of the univariate case,
as considered by Vannitsem and Hagedorn (2011) for the
specific case of wind speed and by Gneiting et al. (2005) in
a more general case.

Since we aim to conserve the original nature of the
ensemble forecasts, we introduce a little twist to these
approaches by avoiding the direct fitting of distributions.
Our proposal is instead to concentrate on the underlying
generating processes for the ensemble forecasts and for the
error of the ensemble mean for every lead time, in order
to introduce a two-dimensional translation and dilation of
the sets of ensemble forecasts. This reduces to proposing
models for the mean and variance of the bivariate Gaussian
densities, then yielding translation and dilation factors. The
translation corresponds to the (bivariate) bias correction
of the ensemble mean, while the dilation translates to the
variance correction of the (unbiased) ensemble forecasts
along the u and v dimension. The potential correction of the
(u, v)-correlation is not considered since it would be difficult
to apply it without having to resample from the generating
processes, which is exactly what we aim to avoid.

Let us illustrate the rationale behind our proposal for
the calibration of ensemble forecasts of (u, v)-wind based
on Figure 2. On Figure 2(a), the original and calibrated
sets of ensemble members issued for a given location s, at
a given time t and for a specific lead time k, are shown.
The corresponding generating processes for these two sets
of ensemble members are represented in Figure 2(b). The
mean/mode of the generating process is displaced towards
higher magnitude of u and v components, while its variance
is increased–actually more along the u dimension than
along the v one. The difference between the two means of
these generating processes gives the translation factors to
be applied in the first stage to the ensemble forecasts, while
the ratio between variances (along the u and v dimensions,

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 1273–1284 (2012)



1276 P. Pinson

4 6 8 10

2
3

4
5

6
7

8

u [m s−1]

v 
[m

 s
−1

]

original
recalibrated

0.02

0.04
0.06

0.08

0.1

0.12

0.14

u [m s−1]

v 
[m

 s
−1

]

0.02

0.04

0.06

0.08

 0.1

4 6 8 10

2
3

4
5

6
7

8

original
recalibrated

(a) (b)

Figure 2. Illustrative example of the calibration of ensemble forecasts of (u, v)-winds, considering a translation and dilation of the set of ensemble
members. (a) original and calibrated set of ensembles after derivation of translation and dilation factors, and (b) the generating processes for both
original and calibrated ensembles. The translation and dilation factors are derived so as to improve the correspondence of the stochastic properties of the
generating processes for both ensemble forecasts and observations.

individually) yields the dilation factors to be applied in the
second stage.

In more mathematical terms, at time t, location s and for
lead time k, by writing τ = [τu τv]� and ξ = [ξu ξv]� as
the translation and dilation factors, respectively, this yields

ỹ = y + τ , (5)

y(j)∗ = ỹ + diag(ξ)
(

y(j) − y
)

, j = 1, . . . , m, (6)

where y = [u v]� is the bi-dimensional ensemble mean, y(j)∗
(j = 1, . . . , m) are the members of the calibrated ensembles,
and diag(ξ) is a matrix of zeros with the elements of ξ on its
diagonal.

2.3. Obtaining the translation and dilation factors

Since placing ourselves in a bivariate Gaussian framework,
the translation and dilation factors are obtained based
on models for the mean and variance of the generating
processes for both the ensemble forecasts and the errors
of the ensemble mean. An exploratory analysis indicated
that a set of linear models would be sufficient. Even though
we do not use appropriate subscripts, all models below are
defined for each lead time and point in space, individually.
The stochastic characteristics of the ensemble forecasts
necessarily evolve as a function of these two variables.

In the first stage, the translation factor is deduced from
linear bivariate models used to correct the mean of the
generating process,

µ∗
u = θ�

u x, µ∗
v = θ�

v x, (7)

where x = [1 u v]� with u and v the mean of ensemble
forecasts of u and v wind components for that lead time,
while θu and θ v are vectors of model parameters. They are
generically referred to as mean models. Employing such
a bivariate approach implies a bi-dimensional view of the
translation in the (u, v)-plane. We generically write θ for
the set of model parameters for mean correction. Note that
one could potentially use additional explanatory variables

in model (7), like high-resolution deterministic forecasts for
instance. Subsequently, the translation factor τ is given by

τu = θ�
u x − u, τv = θ�

v x − v. (8)

For the case of the variance of the generating process, it
has been observed that a univariate scaling along the u and
v axes would be sufficient. The chosen solution was then to
employ two linear models for σu and σv individually,

σ ∗
u = exp(γ u)�zu , σ ∗

v = exp(γ v)�zv , (9)

where zu = [1 σu]� and zv = [1 σv]�, with σu and σv being
sample estimates of the standard deviations of the ensemble
forecasts along the u and v dimensions, respectively. γ u
and γ v are the corresponding bi-dimensional vectors of
model coefficients. The models in (9) are referred to as
variance models (even though they actually concentrated
on standard deviations instead). We generically write γ for
the set of model parameters for variance correction. We
take the exponential of these coefficients to ensure that the
coefficients applied to the various explanatory variables are
always positive, so that the resulting standard deviations
are in turn constrained to be positive. Finally, the dilation
factors along the u and v dimension are obtained as

ξu = σ ∗
u

σu
, ξv = σ ∗

v

σv
. (10)

Even though the calibration of the ensemble forecasts
is based on the translation and dilation factors, the actual
parameters to be estimated are those of the above mean and
variance models, i.e. θ and γ .

3. Adaptive and recursive estimation of the model
parameters

Based on these parametric assumptions for the generating
processes of forecasts and errors of the ensemble mean, we
propose to estimate the parameters of the models introduced
in section 2.3 through a ML approach. It is thus aimed at
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maximising the likelihood of the observed wind vectors,
given the calibrated probabilistic forecasts resulting from
the model. More specifically, the method is a Recursive
Maximum Likelihood (RML) approach, with exponential
forgetting of past observations. An advantage of such a
proposal is that only the last available set of forecasts and
measurements is employed at a given time t for updating the
model parameters. It hence allows for significant lowering
of computational costs compared to the more traditional
batch estimation methods, e.g. using a moving window
of 3 months for estimating model coefficients. Another
advantage brought in by the exponential forgetting is the
ability for the model parameters to smoothly evolve, as a
reaction to changes in the joint forecast–observation process
characteristics. These changes may originate from changes
in the wind dynamics e.g. due to seasonalities, but also from
changes in the forecasting system, like at the occasion of a
change of model physics or of a change of horizontal/vertical
resolution.

3.1. General aspects of the RML estimation

The method described below is inspired by that of Pinson
and Madsen (2009), which was introduced for the calibration
of ensemble forecasts of wind power. In a RML estimation
paradigm, the estimate of the model parameters is defined at
a given time t as that which minimises the objective function

St(θ , γ ) = − 1

nλ

t−k∑
i=1

λt−k−i ln
{

L(yi; θ , γ )
}

, (11)

where λ ∈ (0, 1) is the forgetting factor allowing for
adaptivity in time (by giving less weight to older
observations), and nλ is the effective number of observations,
nλ = (1 − λ)−1, used for normalising the objective function.
The value of λ is typically slightly below 1. In parallel, the
term L(yi; θ , γ ) denotes the likelihood of observing the wind
vector yi in view of the generating process for the calibrated
ensemble forecasts issued at time i − k for lead time i, given
the model parameters θ and γ :

L(yi; θ , γ ) = P[yi|θ , γ ] = f̂ ∗(yi), (12)

where f̂ ∗ is the (bivariate Gaussian) density function for the
generating process, as expressed in (4). In the following, we
denote by θ̂ t and γ̂ t the estimate of the model parameters at
time t.

The interest of this ML estimation method is that
minimising the objective function of (11) is equivalent to
minimising the logarithmic scoring rule known as ignorance
(Roulston and Smith, 2002) (here for bivariate probabilistic
forecasts). Ignorance considers a trade-off between reliability
and sharpness of the probabilistic forecasts. It is also a proper
scoring rule which ensures that a lower value of the score
indeed corresponds to a higher skill of the probabilistic
forecasts. As a consequence, recursively minimising the
objective function in (11) will permit us to obtain ensemble
forecasts with a generating process having maximised skill,
given the ensemble forecasts used as input and the chosen
model for translation and dilation. The minimisation of
other proper scores like the Continuous Rank Probability
Score (CRPS) could be considered instead, as discussed by
Gneiting et al. (2007). The derivation of a similar recursive

estimation scheme would be not be possible however, since
it would require us to perform batch estimation on a sliding
window of recent data.

Since having at time t two vectors of model parameters
θ̂ t−1 or γ̂ t−1 to be updated, they are taken care of one
after the other (starting first with the translation ones).
When dealing with one vector of parameters, the other
one is considered fixed. By generally writing ν̂ for these
model parameters (thus being θ̂ or γ̂ ), the RML estimation
is derived as follows. From the formulation of the ML
estimation problem given above, a corresponding recursive
estimation procedure can be derived by applying the method
described by Madsen (2007). Indeed, the basis for derivation
of such recursive procedure is to employ a Newton–Raphson
step for expressing the estimate ν̂t as a function of the
previous estimate ν̂t−1,

ν̂t = ν̂t−1 − ∇νSt (̂νt−1)

∇2
ν St (̂νt−1)

. (13)

We follow the reasoning of Pinson and Madsen (2009)
for the developments below. One first deduces from (11)
that

St (̂νt−1) = λSt−1(̂νt−1) − 1

nλ

ln
{

L(yt; ν̂t−1)
}

, (14)

which can then be used for deriving recursive formulae for
the calculation of ∇νSt and ∇2

ν St . Indeed, for ∇νSt we write

∇νSt (̂νt−1) = − 1

nλ

∇νL(yt; ν̂t−1)

L(yt; ν̂t−1)
, (15)

since νt−1 is assumed to be the optimal estimate at time t − 1,
thus minimising the objective function St−1 and yielding
∇νSt−1(̂νt−1) = 0. In a similar manner, by assuming that L
is almost linear around the optimal estimate∗, a recursive
formula for the Hessian of the objective function can be
written as

∇2
ν St (̂νt−1) =λ∇2

ν St−1(̂νt−1)

+ 1

nλ

∇νL(yt; ν̂t−1)
{∇νL(yt; ν̂t−1)

}�

L2(yt; ν̂t−1)
.

(16)

Then, by defining the information vector

ht = ∇νL(yt; ν̂t−1)

L(yt; ν̂t−1)
(17)

and the estimate of its inverse covariance matrix

Rt = ∇2
ν St (̂νt−1), (18)

one obtains from (13)–(16) the two-step scheme for
updating the ν-estimate at time t, i.e.

ν̂t = ν̂t−1 + 1

nλ

Rt
−1ht , (19)

Rt = λRt−1 + 1

nλ

htht
�. (20)

∗This assumption is common for iterative estimation methods where
Taylor expansions of the objective function are used and with the steps
of the updating procedure of limited magnitude.

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 1273–1284 (2012)
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The interest of the recursive estimation scheme can be
observed from the above formulae: only the latest available
information is used at time t for updating the model
parameters. This recursive estimation scheme is initialised
by setting all model parameters so that the procedure
of translation and dilation corresponds to an identity
transformation. In parallel, the initial inverse covariance
matrix Rt (for t = 0) can be filled in with zero values.
Obviously, such a matrix cannot be inverted as would
be necessary for updating model parameters with (19). The
approach to be taken then consists of using (20) for updating
Rt only as long as Rt is non-invertible, and then starting to
use (19) when this stage is reached eventually.

3.2. Obtaining the moments of the calibrated ensemble-
generating process

When the analysis of wind vectors yt is made available at
time t, it is then used for updating the parameters of the
mean and variance models (described in section 2.3) for the
ensemble-generating processes for every lead time and every
location (that is, grid nodes). Analysed wind vectors are then
compared with all past forecasts made for time t, hence with
varying lead time k. Subsequently for a given lead time and
location, it is first necessary to compute the moments of
the calibrated generating process based on the last available
set of the corresponding model parameters, i.e. from time
t − 1. Firstly, based on (7), one has

µ∗
u,t = θ̂

�
u,t−1xt , µ∗

v,t = θ̂
�
v,t−1xt , (21)

with xt = [1 ut vt]�. Similarly, based on model (9) for σu

and σv, one obtains

σ ∗
u,t = exp(γ̂ u,t−1)�zu,t , σ ∗

v,t = exp(γ̂ v,t−1)�zv,t , (22)

with zu,t = [1 σu,t]� and zv,t = [1 σv,t]�.

3.3. RML estimation for the translation factors

Based on the general developments of section 3.1, the
information vector ht has to be calculated at time t when a
new set of wind vector observations yt is made available. In
practice, the basic quantity to be computed is the gradient
of the likelihood with respect to relevant parameters.

Consider first the parameters θu, and after a little algebra,
the information vector to be employed for the updating of
θu at time t is

ht =
 1

ut

vt

⊗ 1

σ ∗
u,t

(
1 − ρ2

t

)(
ut − µ∗

u,t

σ ∗
u,t

−ρt
vt − µ∗

v,t

σ ∗
v,t

)
,

(23)

with ⊗ denoting the fact that all elements of the vector on
the left-hand side are multiplied by the scalar value on the
right-hand side. In the above, the updated moments µ∗

u,t ,
µ∗

v,t , σ ∗
u,t and σ ∗

v,t are obtained using (21) and (22), that is,

based on the last available model parameters θ̂u,t−1, θ̂ v,t−1,
γ̂ u,t−1 and γ̂ v,t−1 at time t − 1.

In parallel, for the case of θ v, this same information vector
is written as

ht =
 1

ut

vt

⊗ 1

σ ∗
v,t(1 − ρ2

t )

(
vt −µ∗

v,t

σ ∗
v,t

−ρt
ut −µ∗

u,t

σ ∗
u,t

)
.

(24)

These expressions can then be plugged into (17) and
subsequent equations for the updating of the mean model
parameters.

3.4. RML estimation for the dilation factors

In the second stage we look at the model parameters for the
variance models related to dilation factors. Considering first
the parameters γ u, the information vector to be employed
at time t is

ht = diag{exp(γ̂ u,t−1)}
[

1
σu,t

]
⊗ 1

σ ∗
u,t

×
{

ut −µ∗
u,t

σ ∗
u,t(1−ρ2

t )

(
ut −µ∗

u,t

σ ∗
u,t

−ρt
vt −µ∗

v,t

σ ∗
v,t

)
− 1

}
,

(25)

where diag{exp(γ̂ u,t−1)} is a diagonal matrix with the
elements of exp(γ̂ u,t−1) on its diagonal. In a symmetric
manner, the information vector for updating the parameters
γ v at time t is written as

ht =diag{exp(γ̂ v,t−1)}
[

1
σv,t

]
⊗ 1

σ ∗
v,t

×
{

vt −µ∗
v,t

σ ∗
v,t(1−ρ2

t )

(
vt −µ∗

v,t

σ ∗
v,t

−ρt
ut −µ∗

u,t

σ ∗
u,t

)
− 1

}
.

(26)

Similarly to the above, these expressions are to be plugged
into (17) and subsequent equations for the updating of the
variance model parameters.

4. Applications and test cases

4.1. Test case and available data

The ensemble forecasts of (u, v)-wind at 10 m above ground
level originate from the operational ensemble forecasting
system at ECMWF. The forecast length considered is
5 days, corresponding to the lead times of interest for
most of the decision-making problems involving wind
forecasts. Another reason for this choice of a limited
range of lead times is that we do not expect calibration
to be necessary or bringing substantial benefits for
further lead times. The domain chosen for this study is
Europe–defined here by longitudes between –10 and 23◦E,
and latitudes between 35 and 58◦N. This domain covers
a rectangular latitude–longitude grid with S = 80 × 57 =
4560 grid nodes. Future work may consider the possibility
of evaluating the approach proposed here over the whole
globe, in order to assess its interest under various climates.

Data including ensemble forecasts and the related
model analyses from ECMWF have been collected over
a period spanning December 2006 to December 2009. These
ensemble forecasts are issued twice a day at 0000 UTC and
1200 UTC, with a horizontal resolution of about 50 km
(corresponding to a spectral truncation at wave number
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399) and a temporal resolution of 3 h. But since the model
analysis which is seen as a reference has a temporal resolution
of 6 h only, we consider this coarser temporal resolution in
the present study.

The methodology employed for the generation of the
ECMWF ensemble forecasts is well documented and a
number of publications can be cited for its various
components. Palmer (2000) provides a general overview.
It is not our objective to discuss competing methodologies
for the generation of ensemble forecasts or more generally
of probabilistic forecasts of meteorological variables. A
comparison with other global ensemble prediction systems
can be found in e.g. Buizza et al. (2005). The ECMWF
ensemble predictions aim to represent uncertainties in both
the knowledge of the initial state of the atmosphere and
in the physical parametrisation of the numerical model
used for integrating these initial conditions. For the former
uncertainties, singular vectors are employed, the core
methodology being extensively described by Leutbecher and
Palmer (2008). A comparison of the different methodologies
for the generation of initial perturbations can be found in
Magnusson et al. (2008). In parallel for the latter type of
uncertainties, stochastic physics is employed for sampling
uncertainties in the parametrisation of the numerical model
(Buizza et al., 1999; Palmer et al., 2005). Note that the
potential structural model uncertainty is therefore not
accounted for.

4.2. Model configuration and estimation set-up

From the available data, two periods are defined: the
first one for identification (and initial training) of the
statistical models, and the second one for evaluating what
the performance of these models may be under operational
conditions. The first year of data is employed as the
training set, exactly covering the months from December
2006 to November 2007. The remainder of the dataset
(December 2007 to November 2009) is used for out-of-
sample evaluation of the reliability and skill of the ensemble
forecasts of (u, v)-wind, before and after calibration. We do
not use the month of December 2009 for the out-of-sample
forecast evaluation since we focus on complete quarters
only.

Over the training period, a part of the data is used for one-
fold cross-validation (the last 6 months), in order to select
an optimal forgetting factor for the various models involved
in the translation and dilation of the ensemble forecasts.
Actually, instead of considering the forgetting factor itself,
it is preferable to use the corresponding effective number
of observations nλ = 1/(1 − λ). This allows one to better
appraise the size of the equivalent ‘sliding window’ in the
adaptive estimation of the dynamic model parameters, such
as that considered by Gneiting and Raftery (2005) and
Hering and Genton (2009) for instance. The selection of
optimal values for the model structure and parameters
nλ is done in a trial-and-error manner, by evaluating the
results obtained from a set of different set-ups. For more
information on cross-validation, we refer to Stone (1974).
The criterion to be minimised over the cross-validation set
is the Energy Score, ES. This score comprises a multivariate
generalisation of the more common Continuous Ranked
Probability Score (CRPS). It is a proper skill score already
employed by Gneiting et al. (2008) for the evaluation of
density forecasts of (u, v)-wind. It will also be considered

as a lead score for the out-of-sample evaluation of the skill
of our calibrated ensemble forecasts. For a given location
s, at a given time t for a lead time k, the value of ES for

a set of ensemble forecasts {̂y
(j)
s,t+k|t}j with corresponding

observation ys,t+k is obtained as

ESs,t,k = 1

m

m∑
j=1

||y(j)
s,t+k|t − ys,t+k||

− 1

2m2

m∑
i=1

m∑
j=1

||y(i)
s,t+k|t − y

(j)
s,t+k|t || ,

(27)

where ||.|| denotes the Euclidean norm. Over an evaluation
set of N time steps, the ES value for a given lead time k and
for a given grid node is given by

ESk = 1

N

1

S

N∑
t=1

S∑
t=1

ESs,t,k . (28)

Based on this cross-validation exercise, it was found
that an optimal value for the forgetting factor would
be λ = 0.996, corresponding to a equivalent number of
observations nλ = 250 (or in other words 125 days).

4.3. Deterministic skill of the ensemble mean

Our aim in the first stage is to assess to what extent the
deterministic skill of some single-valued forecast extracted
from the ensembles is improved through recalibration.
We concentrate on the ensemble mean since this is the
most common single-valued forecast extracted from a set
of ensemble forecasts. The ensemble mean is expected to
minimise a quadratic loss function because it is an estimate
of the conditional expectation of the stochastic process.
Following the argument of Gneiting (2011), the criterion
of choice for the evaluation of these deterministic forecasts
is the bivariate Root Mean Square Error (bRMSE) for lead
time k, calculated as

bRMSEk =
(

1

N

1

S

N∑
t=1

S∑
t=1

||ys,t+k|t − ys,t+k||2
)1

2

, (29)

where ys,t+k|t is the mean of the ensemble forecasts issued at
time t for time t + k, and at the grid node s.

The bRMSE criterion is evaluated as a function of the
lead time for the original and calibrated ensemble forecasts,
for the eight quarters of the evaluation period (DJF2008,
MAM2008, . . ., SON2009). The bRMSE of the ensemble
forecasts after bivariate calibration is also compared to that
of ensemble forecasts calibrated in a univariate fashion,
i.e. for the u and v components, independently. The
improvement in bRMSE is quantified as the percentage
of the bRMSE of the original ensemble forecasts. The results
obtained are gathered in Figure 3. Note that similar curves
would be obtained if skill scores were considered instead,
i.e. by normalising the bRMSE of the ensemble mean by
that of a benchmark like climatology. This is because the
normalisation of the scores for both sets of forecasts would
cancel out.

Improvements in the bRMSE criterion are positive for all
lead times considered. Even though the level of improvement
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Figure 3. Improvements in the bRMSE score as a function of the lead time, computed for various quarters over 2008 and 2009. Positive improvements
are for a higher skill of the ensemble mean extracted from the calibrated ensemble forecasts. Comparison is made between no calibration and bivariate
calibration, and between univariate and bivariate calibration. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

varies among the various quarters, it appears to be consistent
and fairly independent of the season. For the overall bivariate
calibration methodology, the trend is that this improvement
diminishes with the lead time, being above 5% up to the
3-day lead time, then slowly fading out as the lead time
increases. It is substantial for the short to early-medium
range, even reaching 10–15% for the first day. The main
contributor to this improvement is certainly the translation
of the ensemble forecasts, since this allows correction for
the (bivariate) bias of the ensemble mean. In parallel, the
benefits of jointly calibrating the u and v components can
be seen from the positive improvement when going from
univariate to bivariate calibration. Even though of lower
magnitude (1% on average over the period and over all lead
times), it clearly contributes to enhancing the skill of the
ensemble mean.

4.4. Reliability and skill of ensemble forecasts of (u, v)-wind

The above improvements in the bRMSE of the ensemble
mean are certainly non-negligible, though they do not
reveal to what extent the calibration procedure allows for
an improvement of the stochastic characteristics of the
ensemble forecasts. For that purpose, it is necessary to look
at improvements in the ES instead, since this is a proper
score that evaluate the full (bivariate) predictive densities
sampled by the ensembles. The improvements are evaluated
in a similar manner to the bRMSE; they are a function of
the lead time for the various quarters, while they give the
percentage improvement of the ES when going
(i) from uncalibrated to bivariate calibration, and
(ii) from univariate calibration of the u and v components
to bivariate calibration.
The results are depicted in Figure 4.

The observed pattern is similar to the case of the bRMSE
score for the ensemble mean. For the overall calibration
methodology the ES improvement diminishes with the
lead time, while being substantial for the first 2–3 days
(between 5 and 25%) and then fading out for further
lead times. The contribution of going from univariate to
bivariate calibration is also fairly limited (1% on average
over the period and over all lead times), though always

positive. In parallel, the improvement in the probabilistic
score does not seem to be dependent upon the season. This
may well be an advantage of the adaptive and recursive
estimation of the model parameters. Remember that the
optimal forgetting factor as determined through the cross-
validation exercise corresponds to an equivalent window
of 125 days (∼ 4 months). It therefore allows for a smooth
tracking of potential changes in the need for translation and
dilation of the ensemble forecasts.

This improvement in skill obviously originates from the
complete calibration of the ensemble forecasts, through
translation and dilation. Consequently we aim at verifying
the bivariate reliability of the ensemble forecast of (u, v)-
wind before and after calibration. Bivariate reliability of these
ensemble forecasts can be assessed thanks to multivariate
rank histograms such as those described and discussed by
Gneiting et al. (2008). They consist of a simple multivariate
generalisation of the common rank histogram, even though
their determination may appear slightly technical. We will
not get into detail on how to produce these bivariate rank
histograms since they are thoroughly described by Gneiting
et al. (2008) as being as easy to read and interpret as their
univariate counterparts. As an example of our evaluation of
the reliability of ensemble forecasts of (u, v)-wind before and
after calibration, we show in Figure 5 rank histograms for
24 h and 48 h forecasts for the JJA2008 quarter. This period
is chosen arbitrarily since the results for other quarters
have been found to be qualitatively and quantitatively
similar. These two lead times are chosen since obviously
the reliability improvements through calibration are more
evident for shorter lead times when considering this type of
ensemble forecast.

From a qualitative point of view for all lead times
and quarters considered, the under-dispersiveness of the
ensemble forecasts of (u, v)-wind appears to be corrected
thanks to the calibration method proposed. The bivariate
rank histograms after calibration look fairly flat, even though
there seem to be too many events observed outside the
coverage of the ensemble forecasts (corresponding to the
last bin on the right). This may be explained by the fact that
the distribution of forecast errors from the ensemble mean
is not perfectly bivariate Gaussian, with a tail being slightly
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Figure 4. Improvements in the Energy Score as a function of the lead time, computed for various quarters over 2008 and 2009. Positive improvements
indicate a higher skill of the calibrated ensemble forecasts. Comparison is made between no calibration and bivariate calibration, and between univariate
and bivariate calibration. This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 5. Bivariate rank histograms for the evaluation of the reliability of ensemble forecasts (a) before and (b) after calibration for a lead time of 24 h.
(c, d) are as (a, b), but for 48 h lead time.

fatter than in the bivariate Gaussian distribution due to high
winds originating from the south to west directions.

4.5. Example calibration results and maps of calibration
factors

After evaluating the comparative skill and reliability of
the ensemble forecasts of (u, v)-wind before and after
calibration, we illustrate here some example results from
our proposal calibration method. We place emphasis on a
set of ensemble forecasts issued for a specific location, which
is the Horns Rev wind farm in Denmark (55.51◦N, 7.87◦E),
on 8 February 2009 at 0000 UTC. One of the reasons for

carrying out a bivariate calibration of the (u, v)-wind is that
it is then straightforward to derive wind speed and direction
ensemble forecasts.

Consider as an illustrative example the ensemble forecasts
of wind speed, before and after calibration, as presented
in Figure 6. The same range of wind speed values is
used for both plots, i.e. from 0 to 18 m s−1, in order
to ease comparison. This example illustrates the way the
set of ensemble members is translated and dilated. The
reduction in the bRMSE criterion discussed above also
implies that on average the ensemble mean of wind speed
has a lower RMSE. These evaluation results are not shown
here in order to be concise. The ensemble mean appears
to match more closely the observations for the calibrated
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Figure 6. Ensemble forecasts of wind speed (a) before and (b) after calibration. These forecasts are extracted from the archive of (u, v)-wind forecasts,
at the location of the Horns Rev wind farm in Denmark. They were issued on 8 February 2009 at 0000 UTC. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj
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Figure 7. Maps of translation factors over Europe on 31 December 2009 and for 48 h forecasts for for (a) u and (b) v components. This figure is available
in colour online at wileyonlinelibrary.com/journal/qj

ensembles especially for the early range. Remember that
the ensemble mean of (u, v)-wind is linearly shifted with
respect to u and v. In terms of the corresponding wind
speed, this does not lead to a linear bias correction of the
ensemble members, owing to the nonlinear relationship
between (u, v) and corresponding wind speed. The same
goes for the dilation of the set of ensemble members which,
despite the simplicity of the correction applied in u and
v, implies a nonlinear correction of the dispersion of the
ensemble forecasts of wind speed. Similar comments could
be formulated for the case of wind direction. In Figure 6
the dispersion of ensembles is increased through calibration
for short lead times, say until around 40 h ahead, and
then reduced or kept at a similar level for longer ones.
This figure nicely illustrates the importance of performing
calibration based on different models and parameters for
every lead time individually, since the deficiencies of the
NWP-based ensemble forecasts are known to significantly
evolve with the forecast horizon. Interestingly and maybe
counter-intuitively for most practitioners, these deficiencies
are stronger for short lead times while vanishing for lead
times further than 3–4 days ahead.

We now look at some maps of translation and dilation
factors obtained from the methodology. The values of these
factors are a function of u and v themselves, and the lead
time, in addition to varying in time and in space. Their maps
are consequently fairly dynamic and those presented here
should be seen as illustrative examples only. The maps shown
in Figure 7 are for the translation factors along the zonal and
meridional components, obtained at the end of the dataset
on 31 December 2009 at 0000 UTC and for the 48 h lead
time. In parallel, Figure 8 is for the related dilation factors

(also for zonal and meridional components) at the same date
and for the same lead time. The variations in all these factors
are smooth in space, even though the magnitude of these
variations is substantial. This smoothness lets us believe that,
instead of estimating model parameters for each grid point
individually, one may consider in the future proposing and
estimating a spatial model of these parameters. This would
have the consequence of clearly decreasing the costs of their
estimation. As a reference for the empirical study in this
article, it took around 12 min (on a recent laptop) to update
the model parameters at all grid points (4560) and for all
lead times (25) every time a new set of ensemble forecasts
was considered.

We mentioned that the magnitude of the variations of
translation and dilation factors was substantial. In terms
of translation on that day and for that lead time, the u-
component of ensemble forecasts was mainly increased over
the north of the European domain, while being substantially
decreased for near-coastal areas around the Mediterranean
Sea. In contrast, the correction of the v-component is more
mixed, with weaker corrections overall, while more (positive
or negative) corrections were carried out over Ireland and
Scotland, over the Mediterranean Sea and Northeast Europe.
The maps of dilation factors for the u and v components
appear more alike with a slightly higher average level for
the meridional component. The values of dilation factors
vary between 0.8 and 6.25, though most of their values are
below 2.5. The range of values for these maps have hence
been constrained to [0.8, 3] to better highlight contrast in
the most usual range of variation for the dilation factors.
The darkest areas are for locations where dilation factors are
equal to or above 3. It is no surprise that for this lead time the
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Figure 8. Maps of dilation factors over Europe on 31 December 2009 and for 48 h forecasts for (a) u and (b) v components. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

dispersion of ensemble forecasts is mainly increased over the
whole domain. There are, however, a few areas over which
the dispersion is actually decreased–they include Germany,
the Netherlands, as well as parts of the North Sea and of the
Atlantic Ocean.

5. Conclusions and discussion

The original approach described for the calibration of
ensemble forecasts of (u, v)-wind relies on an adaptive and
recursive estimation of the parameters of mean and variance
models in a ML framework. It has the advantage of having
solid theoretical foundations while being computationally
cheap. This is because model parameters are updated based
on the last forecasts and analysis only, each time this
analysis is made available. It contrasts with the idea of
having sliding windows for estimation, for which a complete
batch estimation would need to be performed at every time
step. The advantage here is that this calibration smoothly
accommodates changes in the ensemble forecast reliability
characteristics, e.g. due to seasons and upgrades in the
operational forecasting system. Here the forgetting factor
controlling the speed of adaptation was picked from a cross-
validation exercise. In the future, we may consider dynamic
forgetting factors in order to better adapt to successive phases
when quasi-steady state of the dynamics of the joint forecast-
verification process are followed by abrupt changes in such
dynamics (e.g. originating from operational upgrades in the
forecasting system). Examples of dynamic approaches to the
definition of forgetting factors include Leung and So (2005)
and Paleologu et al. (2008) among others.

Our calibration approach relies on a translation and
dilation of the sets of ensemble forecasts of (u, v)-wind,
in turn based on linear models allowing improvement of
the stochastic characteristics of the ensemble generating
process. It was shown that this approach led to substantial
improvements of deterministic scores for the ensemble mean
and of probabilistic scores for the ensembles themselves.
All scores and diagnostics considered were defined within
a bivariate framework, i.e. based on the bivariate RMSE
of the ensemble mean, Energy Score and bivariate rank
histograms for the ensemble forecasts. This improvement
of probabilistic scores originates from the correction for the
lack of sufficient reliability of the original ensemble forecasts
of (u, v)-wind. As in Sloughter (2009), it has previously
been considered that original data should be transformed
to a bivariate Gaussian framework, with linear models for
the mean and variance. The use of such a transformation

was not deemed necessary in the present study based on
ECMWF data. Consideration of more advanced models
for the calibration of ensemble forecasts of (u, v)-wind
may be the topic of further research. From the empirical
work performed, we do not expect that substantial further
improvements in forecast skill and reliability of the ensemble
forecasts would be obtained, while computational costs
would increase rapidly. An important observation from
the empirical work and the maps of translation and dilation
factors is that model parameters may certainly be represented
by a spatial model, since they exhibit smooth variations in
space. The simplification resulting from using a spatial
model would also contribute to lowering computational
costs. Note also that, since the calibrated ensemble forecasts
are kept as (space–time) trajectories, it would be of particular
interest in the future to evaluate them as trajectories instead
of calculating scores and employing a diagnostic approach
for each grid point and lead time independently. This may be
revealing if the space–time structure of the original ensemble
forecasts is affected or improved.

From a more general point of view, we explained that
a prime assumption of our work relates to the role of
a meteorological forecast provider to calibrate ensemble
forecasts with respect to its own target. One should
understand, however, that for forecast users the actual
target may be different and may depend upon the intended
application e.g. in the case of local observations of wind speed
and direction at a wind farm. Hence, even if ensembles are
calibrated with respect to their own target, further calibration
may be necessary before ensemble/probabilistic forecasts are
to be used in decision making.
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