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Approximately dual frames in Hilbert spaces
and applications to Gabor frames

Ole Christensen and Richard S. Laugesen
October 22, 2010

Abstract

Approximately dual frames are studied in the Hilbert space setting.
Approximate duals are easier to construct than classical dual frames,
and can be tailored to yield almost perfect reconstruction.

Bounds on the deviation from perfect reconstruction are obtained
for approximately dual frames constructed via perturbation theory.
An alternative bound is derived for the rich class of Gabor frames, by
using the Walnut representation of the frame operator to estimate the
deviation from equality in the duality conditions.

To illustrate these results, we construct explicit approximate duals
of Gabor frames generated by the Gaussian; these approximate duals
yield almost perfect reconstruction. Surprisingly, the method applies
also to certain Gabor frames that are far from being tight.

1 Introduction

Let ‘H be a separable Hilbert space with inner product (-,-). Given a frame
{fr} for H, it is well known that there exists at least one dual frame {gx},
that is, a frame for which

F=> (f fidaw, VIfeEH.

Unfortunately, it is usually complicated to calculate a dual frame explicitly.
Hence we seek methods for constructing approximate duals.

AMS MSC: 42C15. Key Words: Frames, approximate duals, Gabor frames, Gaussian.



An approximately dual frame {g;} associated with {f;} satisfies

1f =D fdanll < ellfll, VfeH, (1)

for some ¢ < 1; here € measures the deviation from equality in the frame
duality condition. The bound (1) is particularly interesting when e is small,
but for any ¢ < 1 we will obtain a family of frames that interpolate between
the approximately dual frame {g;} and a classical dual frame.

We further use perturbation ideas to construct approximately dual frames.
There are situations where it is hard to find a dual frame for a given frame
{fx}, but where { f} lies close to a frame {h;} for which a dual frame {g;}
is known explicitly. We present conditions under which such a frame {g;} is
approximately dual to { fz}, both in the case where {g;} is an arbitrary dual
of {hx} and for the particular case where it is the canonical dual.

Such general Hilbert space estimates might of course be improved for
concrete classes of frames. For Gabor frames in L*(R) we present a bet-
ter, direct argument for obtaining an inequality of type (1), based on the
Walnut representation of the frame operator. By this method, we construct
approximately dual frames for two Gabor frames generated by the Gaussian,
obtaining very small values for e.

Note that the idea of approximately dual frames has appeared previously,
especially for wavelets [2], [7], [9, Section 2.13], Gabor systems [1], [6, Sections
3,4], [16], in the general context of coorbit theory [5], and in sensor modeling
[13]. The paper [13] also deals with frames in general Hilbert spaces, and we
will comment on the connections with the present paper in Section 4.

2 Basic frame theory

A sequence { f} in H, indexed by an arbitrary countable index set, is a frame
if there exist constants A, B > 0 such that

AIFIP <D L P < BIFIP  VfeH (2)

Any numbers A, B such that (2) holds are called (lower and upper) frame
bounds. For the introductory frame material that follows, see any standard
reference on frames, such as [4], [17], [3, Chapter 5].

If the upper inequality in (2) holds, then {fx} is a Bessel sequence. In
that case so is {W fy}, for any bounded operator W : H — H.
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Given a Bessel sequence {fi.}, the synthesis operator T : (> — H given
by

T{cx} = cxfr

is linear and bounded, with ||T'|| < v/B; the series converges unconditionally
for all {c;} € (2. The adjoint of T is the analysis operator T* : H — (? given
by

" f ={(f, fu)}-

Given a Bessel sequence {fx}, a Bessel sequence {g;} is called a dual
frame if

F=> (f fidaw, VIfeH. (3)

Condition (3) means that analysis using {fx} followed by synthesis using
{gx} yields the identity operator. We then adopt the terminology of signal
processing and speak about perfect reconstruction.

The frame operator is TT*, which is well defined and bounded whenever
{fx} is a Bessel sequence. If {f;} is a frame, then one choice of dual is the
canonical dual frame {(TT*)~' fr}. When {f;} is redundant, infinitely many
other dual frames exist.

3 Approximate duality

In order to apply the dual frame expansion (3), we first need a dual frame.
Unfortunately, it might be cumbersome — or even impossible — to calculate
a dual frame explicitly. In the literature one finds only a few infinite dimen-
sional non-tight frames for which a dual has been constructed. This paucity
of constructions leads us to seek frames that are “close to dual”.

Suppose that {fi} and {gr} are Bessel sequences in H. Denote their
synthesis operators by T : ¢ — H and U : £> — H, respectively. Then

TU" f = Z(fa%)fk, J €N,

and

UT'f => (f, fi)gr, fEH.

These operators are called mized frame operators. In terms of these op-
erators, the Bessel sequences {f} and {gx} are dual frames if and only if
TU*=1Tor UT* = 1.



Definition 3.1 Two Bessel sequences {fr} and {gx} are approximately
dual frames if |I —TU*|| <1 or ||I - UT*| < 1.

This notion of approximately dual frames does not incorporate the natural
desire for (1) to hold with a small value of € : it is only guaranteed that (1)
holds with some € < 1. However, as we will see in Proposition 3.2, there is an
inductive procedure that leads us arbitrarily close to perfect reconstruction,
based on any pair of approximately dual frames.

The two conditions in Definition 3.1 are equivalent, by taking adjoints.
Note that if { fx} and {gx} are approximately dual frames, then the operator
UT™ is invertible, and each f € H has the representation

f=UT)UTf = (f, fe)UT) g

From here, a standard argument shows that {fx} is a frame, with dual
{(UT*) ' gx}. By symmetry, {gx} is a frame as well.

Proposition 3.2 Assume that { fi} and {gy} are approzimately dual frames.
Then the following hold:

(i) The dual frame {(UT*)"gi} of {fix} can be written

n=1

(ii) For fited N € N, consider the corresponding partial sum,

N
W =g+ Y (I - UT*)"g. (4)

n=1

Then {y,iN)} is an approximate dual of {fx}. Denoting its associated
synthesis operator by Zy, we have

|l — ZNT*|| < || = UT* "™ -0  as N — oo.

Proof. Assuming that {f.} and {gx} are approximately dual frames, the
inverse of UT™ can be written via a Neumann series as
UTH) = (I - -UT")) " => (I -UT*)" (5)

n=0



The result in (i) now follows. For (ii), note that {%EJN)} is a Bessel sequence
since it is obtained from the Bessel sequence {gx} by a bounded transforma-
tion. And

INTF =D (f fn = DY (= UT)"
n=0

N
= ) (I-UT)"UT"f

n=0

[
NE

([ -UT)"(I - -UT))f

= f—(I—-UTHN*f
by telescoping. Thus

I —2yT*|| = |0 -UT")™
< |[I-UT* " < 1.

O

The approximately dual frame {gx} can be regarded as a zero-th order
approximation to the (exact) dual frame {(UT*) g}, in part (i) of Propo-
sition 3.2. In case || — UT™| is small, reconstruction using the approximate
dual {gx} gives close to perfect reconstruction. Part (ii) of the proposition
yields a family of approximately dual frames that interpolates between the
approximate dual {g;} and the dual frame {(UT™*) 'g.}; by choosing N suf-
ficiently large, we can obtain a reconstruction that is “almost perfect”. The
drawback of the result with respect to potential applications is the compli-

cated structure of the operator in (4) defining the sequence %EJN).

4 Perturbation and approximately dual frames

Consider approximately dual frames { f;} and {gx} , with associated synthesis
operators 1" and U, respectively. To motivate the results, we note once more
that it can be a nontrivial task to find the canonical dual frame (or any other
dual) associated with {fx}. We seek to connect this fact with perturbation
theory by asking the following question: if we can find a frame {h;} that
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is close to {fr} and for which it is possible to find a dual frame {g;}, does
it follow that {gx} is an approximate dual of {fx}? We will present some
sufficient conditions for an affirmative answer.

First we state a general result valid for dual frames {g;} with sufficiently
small Bessel bound (Proposition 4.1); later we state a more explicit con-
sequence for the case where {g;} is the canonical dual frame (Proposition
4.3).

Technically, we need not assume that {fx} is a frame in the next result,
because the frame property follows as a conclusion. On the other hand, as
explained above, the main use of the result is when { fi} is known in advance
to be a frame.

Proposition 4.1 (Dual of perturbed sequence) Assume that {fy} is a
sequence in H and that {hy} is a frame for which

Y Kffe=h)lP <RSP, VfeH, (6)

for some R > 0. Consider a dual frame {g} of {hx} with synthesis operator
U, and assume {g} has upper frame bound C.
If CR < 1 then {fx} and {gr} are approrimately dual frames, with

I -UT*|| < |U|VR < VCR< 1.

Proof. With our usual notation, we have UV* = [ since {gx} and {h;} are
dual frames. Hence

=0T | = [[U(V" =T < [U[[|[V" =T*| < VCR < 1.
O

It is crucial in Proposition 4.1 that the dual frame {gx} has upper frame
bound less than 1/R. Otherwise {gx} need not be an approximate dual of
{fx}, as the next example shows.

Example 4.2 Consider H = C? with the standard basis {ej, es}. Let € > 0
and consider the frames

{fi} =10,e1,e2}, {hi} = {eer,er,ea}, {o} = {6_161,0, e}
Write T, V, U for the associated synthesis operators. Note that

TUf = (f, e2)e;
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this operator is neither injective nor surjective, and so { fx} and {gx} are not
approximate dual frames. Clearly, {h.} is a frame for C?, regardless of the
choice of €. Now, because

3
D= )P = (e < ENfIP Ve,

k=1

the condition in Proposition 4.1 is satisfied with R = €2. But no matter how
close {hy} gets to {fr} (meaning, no matter how small € is), the frame {g;}
is not an approximate dual of {f;}. Note that for e < 1, the frame {g;}
has the upper frame bound C' = € ? = 1/R; thus, Proposition 4.1 is not
contradicted. U

For practical applications of Proposition 4.1, it is problematic that the
possible values of R in (6) are related to the upper bound of {g;}. By letting
{gx} be the canonical dual of {h;} this problem is avoided:

Proposition 4.3 (Canonical dual of perturbed frame) Let {fi} be a
frame for H with frame bounds A, B. Let {hy} be a sequence in H for which

STUL e — )P < RIFIP VfeH

for some R < A/4. Denote the synthesis operator for {hy} by V.
Then {hy} is a frame. Its canonical dual frame {gp} = {(VV*)" hy} is
an approximate dual of { f} with

11 =UT"|| <

1
— < 1,
VA/R—1
where U denotes the synthesis operator for {gy}.

Proof. The sequence {h;} is a frame with frame bounds (v/A — v/R)? and
(VB 4+ V/R)?, by [3, Corollary 5.6.3]. The canonical dual frame of {h;} is

{gx} = {(VV*)"1h;}, with frame bounds
1 1

WVBAVR? 0 (VA-VR?

by [3, Lemma 5.1.6]. In terms of the synthesis operator U for {g}, the upper
bound says
1
V|l < ———.
W=z
7



Proposition 4.1 therefore implies

|1 -vTe| < |UIVER

_VE

VA- VR
1

VA/R—1

To complete the proof, just notice this last expression is smaller than 1 if

and only if R < A/4. O

IN

We note that the idea of approximate duals also appear in the paper [13]
by Li and Yan. The motivation in [13] comes from sensor modeling, but they
treat approximate duals from the mathematical point of view. Technically,
the approach in [13] is different from the one presented here. In particular,
[13] does not apply a condition of the form (6), which implies that it is
necessary to assume {fi} as well as {h;} to be a frame. In [13], it is just
assumed that || fr — hy|| is sufficiently small for all k; this does not imply that
{ht} is a frame whenever {f;} is a frame. In addition, [13] applies a decay
condition on the inner products (fy — hg, fo — he) which does not appear in
our work.

5 Gabor frames and approximate duals

A Gabor frame is a frame for L*(R) of the form

{e%imbg(l’ o na)}m,neZ
for suitably chosen parameters a,b > 0 and a fixed function g € L*(R), called
the window function. The number a is called the translation parameter and
b is the modulation parameter. Introducing the operators

(Thg)(x) = g(x —a), (Epg)(z) = eZszg(x), for a,b,x € R,

the Gabor system can be written in the short form {E,,,70.09}mnez. For
more information on Gabor analysis and its role in time—frequency analysis
we refer to the book by Grochenig [8].

Recall the duality conditions for a pair of Gabor systems, due to Janssen
[10] and Ron and Shen [14]:



Lemma 5.1 Two Bessel sequences { EnpTn@ tmnez and { EppT0g}mnez form
dual frames for L*(R) if and only if the equations

ng(az —ak)g(x —ak)—b = 0, (7)

keZ

Zcp(x—n/b—ak)g(:p—ak) = 0, neZ\{0}, (8)

kEZ

hold a.e.

Recall that the Wiener space W consists of all bounded measurable func-
tions g : R — C for which

ZHQX[n,nJrl[Hoo < Q.
nez

It is well known that if g € W then {E,,,T509 }mnez is a Bessel sequence for
each choice of a,b > 0.

Proposition 5.2 Given two functions p,g € W and two parameters a,b >
0, let T denote the synthesis operator associated with the Gabor system
{EmpThap}mnez, and U the synthesis operator associated with { Epp 109 bmnez-
Then

1 — _
||I_UT*|| S E [Hb_ZTakgTak@H +ZHZTn/bTak9Taka ] .
kEZ ® n#0 keZ °°

Proof. The starting point is the Walnut representation [15] of the mixed
frame operator associated with {E,pT00}tmnez and {EnpTnagtmnez. Ac-
cording to Theorem 6.3.2 in [§],

UT*f() = %Z (Z Tak@(' - n/b)Takg()> Tn/bf(')v f € LQ(R)

n€Z \keZ



Thus,

If =UT f|

1_12%%/&9(') f
b
bHZ(ZTa’““@ — n/b)Tug (- )n/be

n#0 k€EZ

1 _— 1 _
< 3o =TT _ 151+ 3 S| S T T Tas |11
keZ > n#0  keZ >

which concludes the proof. O]

Observe that the terms appearing in the estimate in Proposition 5.2 mea-
sure the deviation from equality in the duality relations in Lemma 5.1, with
respect to the ||-||o-norm. In particular, in case of perfect reconstruction our
estimate gives the optimal result ||/ — UT*|| = 0.

6 Applications to Gabor frames generated by
the Gaussian

The Gaussian is well known to generate a Gabor frame whenever ab < 1.
With the scaling chosen as

pla) =2 e,

it was shown by Janssen [11] that for any € > 0, € < 1 — ab, the function
Yelw) = 27K e Y "(—1)ke T MY exfel(x — (k + 1/2)a)\/7/e] (9)
kEZ
with
K = Z M2k + 1 7”“(”1/2)2, erfc(x) : / ~* ds
keZ \/_

generates a dual frame of {E£,,,T500}mnez.
The expression (9) is appealing, but quite complicated, and so it is natural
to ask for approximately dual frames with a simpler expression.
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We will construct explicit, approximately dual frames associated with the
Gaussian, for certain choices of a and b. These approximately dual frames
provide almost perfect reconstruction; Example 6.1 is particularly interesting
because it deals with a frame that is far from being tight, 7.e., no easy way
of obtaining an approximately dual frame is available.

Example 6.1 Let

o(z) = e
An application of Theorem 5.1.5 in [3] shows that the functions { Ey 1,100 }m.nez
form a frame for L?(R) with frame bounds A = 2.6, B = 10.1. Let h = By

denote the eighth-order B-spline, centered at the origin. The function

1
h(z) = %88(2.3655)
yields a close approximation of ¢, see Figure 1(a). A numerical calculation
based on Theorem 5.1.5 in [3] shows that the functions { Ey 1,15 (¢—h) bmnez
form a Bessel sequence with Bessel bound R = 6.5-107* < A/4.
The function h has support on [—4/2.36,4/2.36], an interval of length
8/2.36. Since the modulation parameter b = 0.1 is smaller than (8/2.36)~!

and the function

H(z) = 3 b + k)]

kEZ

is bounded above and below away from zero, it follows from Corollary 9.1.7 in
3] that the frame { Ey 1m 171 }im.nez has the canonical dual frame { Ey 1,709 }m.nez,
where

0.1
g(l‘) = Znez|h($+n)|2 h(x)
15.1 1
T 315 Y., |Bs(2:36(z +n)) P2 Bs(2.36z). (10)

See Figure 1(b).

The frame { Ey 1m 73,9} m.nez is approximately dual to { Eo 1m1n@ }mnez, bY
Proposition 4.3. Denoting their synthesis operators by U and T respectively,
the approximation rate in Proposition 4.3 is measured by

I —UT* < 0.016. (11)

1
HSW
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(a) (b)
Figure 1: (a): The function  — e~%** =32 B¢(2.36x); (b): the approximately
dual window ¢ in (10).

On the other hand, Proposition 5.2 yields the somewhat better estimate

I —UT* < 0.009. (12)

1
HSW

Thus the approximate dual frame almost yields perfect reconstruction.

Note that the frame {Ej 1,7, }tmnez is far from being tight. Thus, the
sequence { FEo 1,1, (AJ%B <p) }mmez 18 a poor approximate dual: the standard
estimate

2 B—-A
I———9|| <
| A+bS” ~ B+ A
yields
2 B _
I— <4— =05
I~ g1 < 5y =059
which is far worse than the result in (12). O

Remark 6.2 In case a closer approximation than in (12) is required, an
application of the iterative procedure in Proposition 3.2 (ii) can bring us
as close to perfect reconstruction as desired. Letting {fx} be a Gabor
frame {E,pThaf}mnez and {gr} be an approximately dual Gabor frame
{EmpThag}mnez, each approximate dual {fy,(cN)} constructed in Proposition
3.2 will again have Gabor structure. For N = 1, an easy calculation shows

12



that {y,iN)} will be the Gabor system {E,,5T547 }mnez, where

Y=9+U-UT")g = 29-UT"g
= 2g - Z <g7 Em’an’af>Em’an/ag
m/ n'€Z
= (2 - <g7 f)) g — Z <g7 Em’an’af>Em’an/ag-
(m/,n")#(0,0)

For the particular case considered in Example 6.1, and denoting the synthesis
operator for {EpTha? tmnez by Z, Proposition 3.2 shows that the estimate
in (11) will be replaced by

|1 — Z*T|| <0.009° = 8.1 x 1077,
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