

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

The Logic of XACML

Ramli, Carroline Dewi Puspa Kencana; Nielson, Hanne Riis; Nielson, Flemming

Published in:
Proceedings of FACS 2011

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Ramli, C. D. P. K., Nielson, H. R., & Nielson, F. (2011). The Logic of XACML. In Proceedings of FACS 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13781773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/the-logic-of-xacml(d91823f0-c050-4755-9f14-edb2a4116011).html

The Logic of XACML

Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

Department of Informatics and Mathematical Modelling
Danmarks Tekniske Universitet

Lyngby, Denmark
{cdpu,riis,nielson}@imm.dtu.dk

Abstract We study the international standard XACML 3.0 for describing se-
curity access control policy in a compositional way. Our main contribution is to
derive a logic that precisely captures the idea behind the standard and to formally
define the semantics of the policy combining algorithms of XACML. To guard
against modelling artifacts we provide an alternative way of characterizing the
policy combining algorithms and we formally prove the equivalence of these ap-
proaches. This allows us to pinpoint the shortcoming of previous approaches to
formalization based either on Belnap logic or on D-algebra.

1 Introduction

XACML (eXtensible Access Control Markup Language) is an approved OASIS 1 Stand-
ard access control language [1,14]. XACML describes both an access control policy lan-
guage and a request/response language. The policy language is used to express access
control policies (who can do what when) while the request/response language expresses
queries about whether a particular access should be allowed (requests) and describes
answers to those queries (responses).

In order to manage modularity in access control, XACML constructs policies into
several components, namely PolicySet, Policy and Rule. A PolicySet is a collection of
others PolicySets or Policies whereas a Policy consists of one or more Rules. A Rule is
the smallest component of XACML policy and each Rule only either grants or denies
an access. As an illustration, suppose we have access control policies used within the
National Health Care System. The system is composed of several access control policies
of local hospitals. Each local hospital has its own policies such as patient policy, doctor
policy, administration policy, etc. Each policy contains one or more particular rules,
for example, in patient policy there is a rule that only the designated patient can read
his or her record. In this illustration, both the National Health Care System and local
hospital policies are PolicySets. However the patient policy is a Policy and one of its
rules is the patient record policy. Every policy is only applicable to a certain target
and a policy is applicable when a request matches to its target, otherwise, it is not

1 OASIS (Organization for the Advancement of Structured Information Standard) is a non-for-
profit, global consortium that drives the development, convergence, and adoption of e-business
standards. Information about OASIS can be found at http://www.oasis-open.org.

http://www.oasis-open.org

2 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

applicable. The evaluation of composing policies is based on a combining algorithm –
the procedure for combining decisions from multiple policies. There are four standard
combining algorithms in XACML i.e., (i) permit-overrides, (ii) deny-overrides, (iii)
first-applicable and (iv) only-one-applicable.

The syntax of XACML is based on XML format [2], while its standard semantics
is described normatively using natural language in [14]. Using English paragraphs in
standardization leads to misinterpretation and ambiguity. In order to avoid this draw-
back, we define an abstract syntax of XACML 3.0 and a formal XACML components
evaluation based on XACML 3.0 specification in Section 2. Furthermore, the evaluation
of the XACML combining algorithms is explained in Section 3.

Recently there are some approaches to formalizing the semantics of XACML. In [8],
Halpern and Weissman show XACML formalization using First Order Logic (FOL).
However, their formalization does not capture whole XACML specification. It is too
expensive to express XACML combining algorithms in FOL. Kolovski et al. in [10,11]
maps a large fragment of XACML to Description Logic (DL) – a subset of FOL –
but they leave out the formalization of only-one-applicable combining algorithm. An-
other approach is to represent XACML policies in term of Answer Set Programming
(ASP). Although Ahn et al. in [3] show a complete XACML formalization in ASP, their
formalization is based on XACML 2.0, which is out-of-date nowadays. More particu-
lar, the combining algorithms evaluation in XACML 2.0 is simpler than XACML 3.0.
Our XACML 3.0 formalization is closer to multi-valued logic approach such as Belnap
logic [4] and D-algebra [13]. Bruns et al. in [5,6] and Ni et al. in [13] define a logic
for XACML using Belnap logic andD-algebra, respectively. In some cases, both works
show different results from the XACML standard specification. We discuss the short-
coming of formalization based either on Belnap logic or on D-algebra in Section 4 and
we conclude in Section 5.

2 XACML Components

XACML syntax is describe verbosely in XML format. For our analysis purpose, we
do abstracting XACML components. From the abstraction XACML, we show how
XACML evaluates policies. We give an example how XACML policies can be de-
scribed in our abstraction and the components evaluation at the end of this section.

2.1 Abstracting XACML Components

There are three main policy components in XACML, namely PolicySet, Policy
and Rule. PolicySet is the root of all XACML policies. A PolicySet is com-
posed of a sequence of others PolicySet or Policy components along with a
policy combining algorithm ID and a Target. A Policy is composed of a sequence
of Rule, a Target and a rule combining algorithm ID. A Rule is a single entity
that defines the individual rule in the policy. A Rule is composed of a Target,
a Condition and its effect, i.e., either deny or permit. A Target is an XACML
component that indicates under which categories an XACML policy is applicable. A
Target consists of conjunction of AnyOf component with each AnyOf consists of

The Logic of XACML 3

disjunction of AllOf components and each AllOf consists of conjunction of Match.
Each Match contains only one particular category to be matched with the request.
Typical categories of XACML attributes are subject category (e.g. human user, worksta-
tion, etc) action category (e.g. read, write, delete, etc), resource category (e.g. database,
server, etc) and environment category (e.g. SAML, J2SE, CORBA, etc). A Condition
is a set of propositional formulae that refines the applicability of a Rule.

A Request contains a set of available informations on desired access request such
as subject, action, resource and environment categories. A Request also contains ad-
ditional information about external state, e.g. the current time, the temperature, etc.

We present in Table 1 a succinct syntax of XACML 3.0 that is faithful to the more
verbose syntax used in the standard [14].

Table 1. Abstraction of XACML 3.0 Components

XACML Policy Components
PolicySet ::= 〈Target, 〈PolicySet1, . . . ,PolicySetm〉, θ〉

| 〈Target, 〈Policy1, . . . ,Policym〉, θ〉 where m ≥ 0
Policy ::= 〈Target, 〈Rule1, . . . ,Rulem〉, θ〉 where m ≥ 1
Rule ::= 〈Effect,Target,Condition〉
Condition ::= propositional formulae
Target ::= Null

| AnyOf1 ∧ . . . ∧ AnyOfm where m ≥ 1
AnyOf ::= AllOf1 ∨ . . . ∧ AllOfm where m ≥ 1
AllOf ::= Match1 ∧ . . . ∧ Matchm where m ≥ 1
Match ::= Φ(α)
Φ ::= subject | action | resource | enviroment
α ::= attribute value
θ ::= p− o | d− o | f − a | o− 1− a
Effect ::= d | p

XACML Request Component
Request ::= {A1, . . . , Am } where m ≥ 1
A ::= Φ(α) | external state

2.2 XACML Evaluation

The evaluation of XACML components starts fromMatch evaluation and it is contin-
ued iteratively until the PolicySet evaluation. The Match, AllOf, AnyOf, and
Target values are either match, not match or indeterminate. The value can be inde-
terminate if there is an error during the evaluation so that the decision cannot be made at
that moment. The Rule evaluation depends on Target evaluation and Condition
evaluation. The Condition component is a set of propositional formulae which each
formula is evaluated to either true, false or indeterminate. An empty Condition is
always evaluated to true. The result of Rule is either applicable, not applicable or
indeterminate. An applicable Rule has effect either deny or permit. Finally, the evalu-
ation of Policy and PolicySet are based on a combining algorithm of which the
result can be either applicable (with its effect either deny or permit), not applicable or
indeterminate.

4 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

2.2.1 Three-Valued Lattice

We use three-valued logic to determine XACML evaluation value. We define L3 =
〈V3,≤〉 be three-valued lattice where V3 is the set { >, I,⊥ } and ⊥ ≤ I ≤ >. Given
a subset S of V3, we denote the greatest lower bound (glb) and the least upper bound
(lub) at S (w.r.t. L3) by

d
S and

⊔
S, respectively. Recall that

d
∅ = > and

⊔
∅ = ⊥.

We use J.K notation to map XACML elements into their evaluation values. The
evaluation of XACML components to values in V3 is summarized in Table 2.

Table 2. Mapping V3 into XACML Evaluation Values

V3 Match and Target value Condition value Rule, Policy and PolicySetvalue
> match true applicable (either deny or permit)
⊥ not match false not applicable
I indeterminate indeterminate indeterminate

2.2.2 Match Evaluation

A Match element M is an attribute value that the request should fulfill. Given a
Request component Q, the evaluation of Match element is as follows:

JMK(Q) =

> M ∈ Q
⊥ M 6∈ Q
I there is an error during the evaluation

(1)

2.2.3 Target Evaluation

LetM be a Match, A =M1 ∧ . . . ∧Mm be an AllOf, E = A1 ∨ . . . ∨ An be an
AnyOf, T = E1 ∧ . . . ∧ Eo be a Target and Q be a Request. Then, the evaluations
of AllOf, AnyOf, and Target are as follows:

JAK(Q) =
ml

i=1

JMiK(Q) (2)

JEK(Q) =
n⊔
i=1

JAiK(Q) (3)

JT K(Q) =
ol

i=1

JEiK(Q) (4)

In summary, we can simplify the Target evaluation as follows:

JT K(Q) =
l⊔l

JMK(Q) (5)

An empty Target – indicated by Null – is always evaluated to >.

The Logic of XACML 5

2.2.4 Condition Evaluation

We define the conditional evaluation function eval as an arbitrary function to evalu-
ate Condition to value in V3 given a Request component Q. The evaluation of
Condition is defined as follows:

JCK(Q) = eval(C,Q) (6)

2.2.5 Extended Values

In order to distinguish an applicable policy to permit an access from applicable policy
to deny an access, we extend > in V3 to >p and >d, respectively. The same case also
applies to indeterminate value. The extended indeterminate value contains the potential
effect values which could have occurred if there would not have been an error during a
evaluation. The possible extended indeterminate values are [14]:

– Indeterminate Deny (Id): an indeterminate from a policy which could have evalu-
ated to deny but not permit, e.g., a Rule which evaluates to indeterminate and its
effect is deny.

– Indeterminate Permit (Ip): an indeterminate from a policy which could have eval-
uated to permit but not deny, e.g., a Rule which evaluates to indeterminate and its
effect is permit.

– Indeterminate Deny Permit (Idp): an indeterminate from a policy which could have
effect either deny or permit.

We extend the set V3 to V6 = { >p,>d, Id, Ip, Idp,⊥ } and we use V6 for for XACML
policies evaluations.

2.2.6 Rule Evaluation

Let R = 〈∗, T , C〉 be a Rule and Q be a Request. Then, the evaluation of Rule is
determined as follows:

JRK(Q) =

>∗ JT K(Q) = > and JCK(Q) = >
⊥

(
JT K(Q) = > and JCK(Q) = ⊥

)
or JT K(Q) = ⊥

I∗ otherwise
(7)

Let F and G be two values in V3. We define a new operator ;: V3 × V3 → V3 as
follows:

F ; G =

{
G F = >
F otherwise

(8)

We define a function σ : V3 ×{ p,d } → V6 that maps a value in V3 into a value in
V6 given a particular Rule’s effect as follows:

σ(X, ∗) =

{
X X = ⊥
X∗ otherwise

(9)

6 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

Proposition 1. LetR = 〈∗, T , C〉 be a Rule andQ be a Request. Then, the follow-
ing equation holds

JRK(Q) = σ (JT K(Q) ; JCK(Q), ∗) (10)

2.2.7 Policy Evaluation

The standard evaluation of Policy element taken from [14] is as follows

Target value Rule value Policy Value
match At least one Rule value is applicable Specified by the combining algorithm
match All Rule values are not applicable not applicable
match At least one Rule value is indeterminate Specified by the combining algorithm

not match Don’t care not applicable
indeterminate Don’t care indeterminate

Let P = 〈T ,R, θ〉 be a Policy where R = 〈R1, . . . ,Rn〉. Let Q be a Request
and R′ = 〈JR1K(Q), . . . , JRnK(Q)〉. The evaluation of Policy is defined as follows:

JPK(Q) =

I∗ JT K(Q) = I and

⊕
θ(R′) ∈ { >∗, I∗ }

⊥ JT K(Q) = ⊥ or
JT K(Q) = > and ∀Ri : JRiK(Q) = ⊥⊕

θ(R′) otherwise

(11)

Note 1. The combining algorithms denoted by
⊕

is explained in Section 3.

2.2.8 PolicySet Evaluation

The evaluation of PolicySet is similar to Policy evaluation. However, the input of
the combining algorithm is a sequence of either PolicySet or Policy components.

Let PS = 〈T ,P, θ〉 be a PolicySet where P = 〈P1, . . . ,Pn〉. Let Q be a
Request and P′ = 〈JP1K(Q), . . . , JPnK(Q)〉. The evaluation of PolicySet is defined
as follows:

JPSK(Q) =

I∗ JT K(Q) = I and

⊕
θ(P′) ∈ { >∗, I∗ }

⊥ JT K(Q) = ⊥ or
JT K(Q) = > and ∀Pi : JPiK(Q) = ⊥⊕

θ(P′) otherwise

(12)

2.3 Example

The following example simulates briefly how a policy is built using the abstraction. The
example is motivated by [7,9] which presents a health information system for a small
nursing home in New South Wales, Australia.

Example 1 (Patient Policy). The general policy in the hospital in particular:

The Logic of XACML 7

1. Patient Record Policy
– RP1: only designated patient can read his or her patient record except that if

the patient is less than 18 years old, the patient’s guardian is permitted also
read the patient’s record,

– RP2: patients may only write patient surveys into their own records
– RP3: both doctors and nurses are permitted to read any patient records,

2. Medical Record Policy
– RM1: doctors may only write medical records for their own patients and
– RM2: may not write any other patient records,

The XACML policies for this example is shown in Figure 1. The topmost policy in
this example is the Patient Policy that contains two policies, namely the Patient Record
Policy and the Medical Record Policy. The access is granted if either one of the Patient
Record Policy or the Medical Record Policy gives a permit access. Thus in this case,
we use permit-overrides combining algorithm to combine those two policies. In order
to restrict the access, each policy denies an access if there is a rule denies it. Thus, we
use deny-overrides combining algorithms to combine the rules.

PS_patient = <Null, <P_patient_record, P_medical_record>, po>
P_patient_record = <Null, <RP1, RP2, RP3>, do>
P_medical_record = <Null, <RM1, RM2>, do>

RP1 =
< p,

subject(patient) /\ action(read) /\ resource(patient_record),
patient(id,X) /\ patient_record(id,Y) /\
(X = Y \/ (age(Y) < 18 /\ guardian(X,Y))>

RP2 =
< p,

subject(patient) /\ action(write) /\ resource(patient_survey),
patient(id,X) /\ patient_survey(id, X)>

RP3=
< p,

(subject(doctor) \/ subject(nurse)) /\ action(read) /\ resource(patient_record),
true>

RM1 =
< p,

subject(doctor) /\ action(write) /\ resource(medical_record),
doctor(id,X) /\ patient(id,Y) /\ medical_record(id, Y) /\ patient_doctor(Y,X)>

RM1 =
< d,

subject(doctor) /\ action(write) /\ resource(medical_record),
doctor(id,X), patient(id,Y), medical_record(id, Y), not patient_doctor(Y,X)>

Figure 1. The XACML Policy for Patient Policy

Suppose now there is an emergency situation and a doctor D asks permission to
read patient record P . The Request is as follows:

{ subject(doctor), action(read), resource(patient_record),
doctor(id,d), patient(id,p), patient_record(id,p)}

8 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

Only Target RP3 matches for this request and the effect of RP3 is permit. Thus,
the final result is doctor D is allowed to read patient record P . Now, suppose that after
doing some treatment, the doctor wants to update the medical record. A request is sent

{ subject(doctor), action(write), resource(medical_record),
doctor(id,d), patient(id,p), medical_record(id,p)}

The Target RM1 and the Target RM2 match for this request, however because
doctor D is not registered as patient P ’s doctor thus Condition RM1 is evaluated to
false while Condition RM2 is evaluated to true . In consequence, Rule RM1 is not
applicable while Rule RM2 is applicable with effect deny.

3 Combining Algorithms

Currently, there are four basic combining algorithms in XACML, namely (i) permit-
overrides, (ii) deny-overrides, (iii) first-applicable, and (iv) only-one-applicable.
The input of a combining algorithm is a sequence of Rule, Policy or PolicySet
values. In this section we give formalizations of the XACML 3.0 combining algorithms
based on [14]. To guard against modelling artifacts we provide an alternative way of
characterizing the policy combining algorithms and we formally prove the equivalence
of these approaches.2

3.1 Pairwise Policy Values

In V6 we define the truth values of XACML components by extending > to >p and >d

and I to Id, Ip and Idp. This approach shows straightforwardly the status of XACML
component. However, it is easier if we use numerical encoding when we need to do a
computation, especially for computing policies compositions. Thus, we encode all the
values returned by algorithms as pairs of natural numbers.

In this numerical encoding, the value 1 represents an applicable value (either deny
or permit), 1

2 represents indeterminate value and 0 means there is no applicable value.
In each tuple, the first element represents the Deny value (>d) and the later represents
Permit value (>p). We can say [0, 0] for not applicable (⊥) because neither Deny nor
Permit is applicable, [1, 0] for applicable with deny effect (>d) because only Deny
value is applicable, [12 , 0] for Id because the Deny part is indeterminate, [12 ,

1
2] for Idp

because both Deny and Permit have indeterminate values. The conversion applies
also for Permit.

A set of pairwise policy values is P =
{
[0, 0], [12 , 0], [0,

1
2], [1, 0], [

1
2 ,

1
2], [0, 1]

}
.

Let [D,P] be an element on P. We denote d([D,P]) = D and p([D,P]) = P for the
function that returns the Deny value and Permit value, respectively.

2 An extended version of this paper with all the proofs is available at http://www2.imm.
dtu.dk/˜cdpu/Papers/the_logic_of_XACML-extended.pdf.

http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf
http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf

The Logic of XACML 9

We define δ : V6 → P as a mapping function that maps V6 into P as follows:

δ(X) =

[0, 0] X = ⊥
[1, 0] X = >d

[0, 1] X = >p

[12 , 0] X = Id

[0, 12] X = Ip

[12 ,
1
2] X = Idp

(13)

We define δ over a sequence S as δ(S) = 〈δ(s)|s ∈ S〉.
We use pairwise comparison for the order of P. We define an order vP for P as

follows [D1, P1] vP [D2, P2] iff D1 ≤ D2 and P1 ≤ P2 with 0 ≤ 1
2 ≤ 1. We write

PP for the partial ordered set (poset) (P,vP) illustrated in Figure 2.

[0, 0] = ⊥

[1
2
, 0] = Id [0, 1

2
] = Ip

[1, 0] = >d [1
2
, 1
2
] = Idp [0, 1] = >p

Figure 2. The Partial Ordered Set PP for Pairwise Policy Values

Let max : 2R → R be a function that returns the maximum value of a set of rational
numbers and let min : 2R → R be a function that returns the minimum value of a set of
rational numbers. We define MaxvP

: 2P → P as a function that returns the maximum
pairwise policy value which is defined as follows:

MaxvP
(S) = [max ({ d(X) | X ∈ S }),max ({ p(X) | X ∈ S })] (14)

and MinvP
: 2P → P as a function that return the minimum pairwise policy value

which is defined as follows:

MinvP
(S) = [min({ d(X) | X ∈ S }),min({ p(X) | X ∈ S })] (15)

3.2 Permit-Overrides Combining Algorithm

The permit-overrides combining algorithm is intended for those cases where a permit
decision should have priority over a deny decision. This algorithm (taken from [14])
has the following behaviour:

1. If any decision is >p then the result is >p,

10 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

⊥

Ip Id

>d

Idp

>p

⊥

Ip

>p

Id

Idp

>d

⊥

>d

Id

>p

Ip

Idp

Figure 3. The Lattice Lp−o for The Permit-Overrides Combining Algorithm (left), The Lattice
Ld−o for The Deny-Overrides Combining Algorithm (middle) and The Lattice Lo−1−a for The
Only-One-Applicable Combining Algorithm (right)

2. otherwise, if any decision is Idp then the result is Idp,
3. otherwise, if any decision is Ip and another decision is Id or >d, then the result is
Idp,

4. otherwise, if any decision is Ip then the result is Ip,
5. otherwise, if decision is >d then the result is >d,
6. otherwise, if any decision is Id then the result is Id,
7. otherwise, the result is ⊥.

We call Lp−o = (V6,vp−o) for the lattice using the permit-overrides combining
algorithm where vp−o is the ordering depicted in Figure 3. The least upper bound
operator for Lp−o is denoted by

⊔
p−o.

Definition 1. The permit-overrides combining algorithm
⊕V6

p−o is a mapping function
from a sequence of V6 elements into an element in V6 as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ = { s1, . . . , sn }. We
define the permit-overrides combining algorithm under V6 as follows:

V6⊕
p−o

(S) =
⊔
p−o

S′ (16)

The permit-overrides combining algorithm can also be expressed under P. The idea
is that we inspect the maximum value of Deny and Permit in the set of pairwise
policy values. We conclude that the decision is permit if the Permit is applicable (i.e.
it has value 1). If the Permit is indeterminate (i.e. it has value 1

2) then the decision
is Idp if the Deny is either indeterminate (i.e. it has value 1

2) or applicable (i.e. it has
value 1). Otherwise we take the maximum value of Deny and Permit from the set of
pairwise policy values as the result of permit-overrides combining algorithm.

Definition 2. The permit-overrides combining algorithm
⊕P

p−o is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of pairwise policy values and S′ = { s1, . . . , sn }.

The Logic of XACML 11

We define the permit-overrides combining algorithm under P as follows:

P⊕
p−o

(S) =

[0, 1] MaxvP

(S′) = [, 1]

[12 ,
1
2] MaxvP

(S′) = [D, 12], D ≥
1
2

MaxvP
(S′) otherwise

(17)

Proposition 2. Let S be a sequence of policy values in V6. Then

δ(

V6⊕
p−o

(S)) =

P⊕
p−o

(δ(S))

3.3 Deny-Overrides Combining Algorithm

The deny-overrides combining algorithm is intended for those cases where a deny de-
cision should have priority over a permit decision. This algorithm (taken from [14]) has
the following behaviour:

1. If any decision is >d then the result is >d,
2. otherwise, if any decision is Idp then the result is Idp,
3. otherwise, if any decision is Id and another decision is Ip or >p, then the result is
Idp,

4. otherwise, if any decision is Id then the result is Id,
5. otherwise, if decision is >p then the result is >p,
6. otherwise, if any decision is Ip then the result is Ip,
7. otherwise, the result is ⊥.

We call Ld−o = (V6,vd−o) for the lattice using the deny-overrides combining
algorithm where vd−o is the ordering depicted in Figure 3. The least upper bound
operator for Ld−o is denoted by

⊔
d−o.

Definition 3. The deny-overrides combining algorithm
⊕V6

d−o is a mapping function
from a sequence of V6 elements into an element in V6 as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ = { s1, . . . , sn }. We
define the deny-overrides combining algorithm under V6 as follows:

V6⊕
d−o

(S) =
⊔
d−o

S′ (18)

The deny-overrides combining algorithm can also be expressed under P. The idea
is similar to permit-overrides combining algorithm by symmetry.

Definition 4. The deny-overrides combining algorithm
⊕P

d−o is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P and S′ = { s1, . . . , sn }. We
define the deny-overrides combining algorithm under P as follows:

P⊕
d−o

(S) =

[1, 0] MaxvP

(S′) = [1,]

[12 ,
1
2] MaxvP

(S′) = [12 , P], P ≥
1
2

MaxvP
(S′) otherwise

(19)

12 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

Proposition 3. Let S be a sequence of policy values in V6. Then

δ(

V6⊕
d−o

(S)) =

P⊕
d−o

(δ(S))

3.4 First-Applicable Combining Algorithm

The result of first-applicable algorithm is the first Rule, Policy or PolicySet
element in the sequence whose Target and Condition is applicable. The pseudo-
code of the first-applicable combining algorithm in XACML 3.0 [14] shows that the
result of this algorithm is the first Rule, Policy or PolicySet that is not ”not
applicable”. The idea is that there is a possibility an indeterminate policy could return
to be an applicable policy. The first-applicable combining algorithm under V6 and P
are defined below.

Definition 5 (First-Applicable Combining Algorithm). The first-applicable combin-
ing algorithm

⊕V6

f−a is a mapping function from a sequence of V6 elements into an
element in V6 as the result of composing policies. Let S = 〈s1, . . . , sn〉 be a sequence
of policy values in V6. We define the first-applicable combining algorithm under V6 as
follows:

V6⊕
f−a

(S) =

{
si ∃i : si 6= ⊥ and ∀j < i : sj = ⊥
⊥ otherwise

(20)

Definition 6. The first-applicable combining algorithm
⊕P

f−a is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P. We define the first applicable
combining algorithm under P as follows:

P⊕
f−a

(S) =

{
si ∃i : si 6= [0, 0] and ∀j < i : sj = [0, 0]

[0, 0] otherwise
(21)

Proposition 4. Let S be a sequence of policy values in V6. Then

δ(

V6⊕
f−a

(S)) =

P⊕
f−a

(δ(S))

3.5 Only-One-Applicable Combining Algorithm

The result of the only-one-applicable combining algorithm ensures that one and only
one policy is applicable by virtue of their Target. If no policy applies, then the result is
not applicable, but if more than one policy is applicable, then the result is indeterminate.
When exactly one policy is applicable, the result of the combining algorithm is the result
of evaluating the single applicable policy.

We callLo−1−a = (V6,vo−1−a) for the lattice using the only-one-applicable com-
bining algorithm where vo−1−a is the ordering depicted in Figure 3. The least upper
bound operator for Lo−1−a is denoted by

⊔
o−1−a.

The Logic of XACML 13

Definition 7. The only-one-applicable combining algorithm
⊕V6

o−1−a is a mapping
function from a sequence of V6 elements into an element in V6 as the result of com-
posing policies. Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ =
{ s1, . . . , sn }. We define only-one-applicable combining algorithm under V6 as follows

V6⊕
o−1−a

(S) =

Id ∃i, j : i 6= j, si = sj = >d and
∀k : sk 6= >d → sk = ⊥

Ip ∃i, j : i 6= j, si = sj = >p and
∀k : sk 6= >p → sk = ⊥⊔

o−1−a S
′ otherwise

(22)

The only-one-applicable combining algorithm also can be expressed under P. The
idea is that we inspect the maximum value of Deny and Permit returned from the
given set of pairwise policy values. By inspecting the maximum value for each ele-
ment, we know exactly the combination of pairwise policy values i.e., if we find that
both Deny and Permit are not 0, it means that the Deny and the Permit are either
applicable (i.e. it has value 1) or indeterminate (i.e. it has value 1

2). Thus, the result of
this algorithm is Idp (based on the XACML 3.0 Specification [14]). However if only
one element is not 0 then there is a possibility that many policies have the same ap-
plicable (or indeterminate) values. If there are at least two policies with the Deny (or
Permit) are either applicable or indeterminate value, then the result is Id (or Ip).
Otherwise we take the maximum value of Deny and Permit from the given set of
pairwise policy values as the result of only-one-applicable combining algorithm.

Definition 8. The only-one-applicable combining algorithm
⊕P

o−1−a is a mapping
function from a sequence of P elements into an element in P as the result of com-
posing policies. Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P and S′ =
{ s1, . . . , sn }. We define only-one-applicable combining algorithm under P as follows

P⊕
o−1−a

(S) =

[12 ,
1
2] MaxvP

(S′) = [D,P], D, P ≥ 1
2

[12 , 0] MaxvP
(S′) = [D, 0], D ≥ 1

2 and
∃i, j : i 6= j, d(si), d(sj) ≥ 1

2

[0, 12] MaxvP
(S′) = [0, P], P ≥ 1

2 and
∃i, j : i 6= j, p(si), p(sj) ≥ 1

2

MaxvP
(S′) otherwise

(23)

Proposition 5. Let S be a sequence of policy values in V6. Then

δ(

V6⊕
o−1−a

(S)) =

P⊕
o−1−a

(δ(S))

4 Related Work

We will focus the discussion on the formalization of XACML using Belnap logic [4]
and D-Algebra [13] – those two have a similar approach to the pairwise policy values

14 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

approach explained in Section 3. We show the shortcoming of the formalization on
Bruns et al. work in [6] and Ni et al. work in [13].

4.1 XACML Semantics under Belnap Four-Valued Logic

Belnap in his paper [4] defines a four-valued logic over four = { >>, tt, ff ,⊥⊥ }.
There are two orderings in Belnap logic, i.e., the knowledge ordering (≤k) and the truth
ordering (≤t) (see Figure 4).

⊥⊥

tt ff

>>

ff

>> ⊥⊥

tt

≤k ≤t

glb = ⊗B

lub = ⊕B

glb = ∧
lub = ∨

knowledge ordering truth ordering

Figure 4. Bi-lattice of Belnap Four-Valued Logic

Bruns et al. in PBel [5,6] and also Hankin et al. in AspectKB [9] use Belnap four-
valued logic to represent the composition of access control policies. The responses of
an access control system are tt when the policy is granted or access permitted, ff when
the policy is not granted or access is denied, ⊥⊥ when there is no applicable policy
and >> when conflict arises, i.e., an access is both permitted and denied. Additional
operators are added as follows [6]:

– overwriting operator [y 7→ z] with y, z ∈ four. Expression x[y 7→ z] yields x if
x 6= y, and z otherwise.

– priority operator x > y; it is a syntactic sugar of x[⊥⊥ 7→ y].

Bruns et al. defined XACML combining algorithms using Belnap four-valued logic
as follows [6]:

– permit-overrides: (p⊕B q)[>> 7→ ff]
– first-applicable: p > q
– only-one-applicable: (p⊕B q)⊕B ((p⊕B ¬p)⊗B (q ⊕B ¬q))

Bruns et al. suggested that the indeterminate value is treated as >>. However, with
indeterminate as>>, the permit-overrides combining algorithm is not defined correctly.
Suppose we have two policies: p and q where p is permit and q is indeterminate. The
result of the permit-overrides combining algorithm is as follows (p⊕B q)[>> 7→ ff] =
(tt ⊕B >>)[>> 7→ ff] = >>[>> 7→ ff] = ff . Based on the XACML 2.0 [12] and the
XACML 3.0 [14], the result of permit-overrides combining algorithm should be permit
(tt). However, based on Belnap four-valued logic, the result is deny (ff).

Bruns et al. tried to define indeterminate value as a conflict by formalizing it as
>>. However, their formulation of permit-overrides combining algorithm is inconsist-
ent based on the standard XACML specification. Moreover, they said that sometimes

The Logic of XACML 15

indeterminate should be treated as ⊥⊥ and sometimes as >> [5], but there is no ex-
planation about under which circumstances that indeterminate is treated as >> or as
⊥⊥. The treatment of indeterminate as>> is too strong because indeterminate does not
always contains information about deny and permit in the same time. Only Idp contains
information both deny and permit. However, Id and Ip only contain information only
about deny and permit, respectively. Even so, the value ⊥⊥ for indeterminate is too
weak because indeterminate is treated as not applicable despite that there is informa-
tion contained inside indeterminate value. The Belnap four-valued logic has no explicit
definition of indeterminate. In contrast, the Belnap four-valued has a conflict value (i.e.
>>).

4.2 XACML Semantics under D-Algebra

Ni et al. in [13] define D-algebra as a decision set together with some operations on it.

Definition 9 (D-algebra [13]). Let D be a nonempty set of elements, 0 be a constant
element of D, ¬ be a unary operation on elements in D, and ⊕D,⊗D be binary op-
erations on elements in D. A D-algebra is an algebraic structure 〈D,¬,⊕D,⊗D, 0〉
closed on ¬,⊕D,⊗D and satisfying the following axioms:

1. x⊕D y = y ⊕D x
2. (x⊕D y)⊕D z = x⊕D (y ⊕D z)
3. x⊕D 0 = x
4. ¬¬x = x
5. x⊕D ¬0 = ¬0
6. ¬(¬x⊕D y)⊕D y = ¬(¬y ⊕D x)⊕D x

7. x⊗D y =

{
¬0 : x = y

0 : x 6= y

In order to write formulae in a compact form, for x, y ∈ D, x�D y = ¬(¬x⊕D¬y)
and x	D y = x�D ¬y.

Ni et al. [13] show that XACML decisions contain three different value, i.e. permit
({p}), deny ({d}) and not applicable ({na }). Those decision are deterministic decisions.
The non-deterministic decisions such as Id, Ip and Idp are denoted by

{
d, na

}
,
{
p, na

}
,

and
{
d,p, na

}
, respectively. The interpretation of a D-algebra on XACML decisions

is as follows [13]:

– D is represented by P(
{
p,d, na

}
)

– 0 is represented by ∅
– ¬x is represented by

{
p,d, na

}
− x where x ∈ D

– x⊕D y is represented by x ∪ y where x, y ∈ D
– ⊗D is defined by axiom 7

There are two values which are not in XACML, i.e. ∅ and { p,d }. Simply we say
∅ for empty policy (or there is no policy) and { p,d } for a conflict.

16 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

The composition function of permit-overrides using D-Algebra is as follows:

fpo(x, y) = (x⊕D y)
	D(((x⊗D { p })⊕D (y ⊗D { p }))�D

{
d, na

}
)

	D(¬((x�D y)⊗D
{

n
a

}
)�D

{
n
a

}
�D ¬((x⊗D ∅)⊕D (y ⊗D ∅)))

The composition function that Ni et al. proposed is inconsistent with neither the
XACML 3.0 [14] nor the XACML 2.0 [12] as they claimed in [13]. Below we show an
example that compares all of the results of permit-overrides combining algorithm under
the logics discussed in this paper.

Example 2. Given two policies P1 and P2 where P1 is Indeterminate Permit and P2

is Deny. Let us use the permit-overrides combining algorithm to compose those two
policies. Table 3 shows the result of combining polices under Belnap logic, D-algebra,
V6 and P.

Table 3. Result of Permit-Overrides Combining Algorithm for Composing Two Policies P1 and
P2 where P1 is Indeterminate Permit and P2 is Deny Under Various Logic

Logic P1 P2 Permit-Overrides Function Result
Belnap logic >> ff (>>⊕B ff)[>> 7→ ff] ff
D-algebra

{
p, n

a

}
{ d } fpo(

{
p, n

a

}
, { d }) { p,d }

V6 Ip >d

⊕V6
p−o(〈Ip,>d〉) Idp

P [0, 1
2
] [1, 0]

⊕P
p−o(〈[0,

1
2
], [1, 0]〉) [1

2
, 1
2
]

The result of permit-overrides combining algorithm under Belnap logic is ff and
underD-algebra is { p,d }. Under Bruns et al. approach using Belnap logic, the access
is denied while under Ni et al. approach using D-algebra, a conflict occurs. Both Bruns
et al. and Ni et al. claim that their approaches fit with XACML 2.0 [12]. Moreover
D-algebra claims that it fits with XACML 3.0 [14]. However based on XACML 2.0
the result should be Indeterminate and based on XACML 3.0 the result should be In-
determinate Deny Permit and neither Belnap logic nor D-algebra fits the specifications.
We have illustrated that Belnap logic and D-algebra in some cases give different result
with the XACML specification. Conversely, our approach gives consistent result based
on the XACML 3.0 [14] and on the XACML 2.0 [12].

5 Conclusion

We have shown the formalization of XACML version 3.0 step by step. We believe that
with our approach, the user can understand better about how XACML works especially
in the behaviour of combining algorithms. We show two approaches to formalizing
standard XACML combining algorithms, i.e., using V6 and P. To guard against model-
ling artifacts, we formally prove the equivalence of these approaches.

The pairwise policy values approach is useful in defining new combining algorithms.
For example, suppose we have a new combining algorithm ”all permit”, i.e., the result

The Logic of XACML 17

of composing policies is permit if all policies give permit values, otherwise it is deny.
Using pairwise policy values approach the result of composing a set of policies values
S is permit ([0,1]) if MinvP

(S) = [0, 1] = MaxvP
(S), otherwise, it is deny ([1,0]).

Ni et al. proposes a D-algebra over a set of decisions for XACML combining
algorithms in [13]. However, there are some mismatches between their results and the
XACML specifications. Their formulations are inconsistent based both on the XACML
2.0 [12] and on the XACML 3.0 [14].3

Both Belnap four-valued logic andD-Algebra have a conflict value. In XACML, the
conflict will never occur because the combining algorithms do not allow that. Conflict
value might be a good indication that the policies are not well design. We propose an
extended P which captures a conflict value in Appendix A.

References

1. eXtensible Access Control Markup Language (XACML). http://xml.coverpages.
org/xacml.html.

2. XML 1.0 specification. w3.org. retrieved 2010-08-22. http://www.w3.org/TR/xml/.
3. Gail-Joon Ahn, Hongxin Hu, Joohyung Lee, and Yunsong Meng. Reasoning about xacml

policy descriptions in answer set programming (preliminary report). In 13th International
Workshop on Nonmonotonic Reasoning (NMR 2010), 2010.

4. N.D. Belnap. A useful four-valued logic. In G. Epstein and J.M. Dunn, editors, Modern Uses
of Multiple-Valued Logic, pages 8–37. D. Reidel, Dordrecht, 1977.

5. Glenn Bruns, Daniel S Dantas, and Michael Huth. A simple and expressive semantic frame-
work for policy composition in access control. In Proceedings of the 2007 ACM workshop
on Formal methods in security engineering, FMSE ’07, pages 12–21, New York, NY, USA,
2007. ACM.

6. Glenn Bruns and Michael Huth. Access-control via belnap logic: Effective and efficient
composition and analysis. In 21st IEEE Computer Security Foundations Symposium, June
2008.

7. Mark Evered and Serge Bögeholz. A case study in access control requirements for a health
information systems. In Proceedings of the second workshop on Australasian information
security, Data Mining and Web Intelligence, and Software Internationalisation - Volume
32, ACSW Frontiers ’04, pages 53–61, Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc.

8. Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about policies.
ACM Transaction on Information and System Security (TISSEC), 11(4):1 – 41, 2008.

9. Chris Hankin, Flemming Nielson, and Hanne Riis Nielson. Advice from belnap policies.
Computer Security Foundations Symposium, IEEE, 0:234–247, 2009.

10. Vladimir Kolovski and James Hendler. Xacml policy analysis using description logics. In
Proceedings of the 15th International World Wide Web Conference (WWW), 2007.

11. Vladimir Kolovski, James Hendler, and Bijan Parsia. Formalizing xacml using defeasible
description logics. In Proceedings of the 15th International World Wide Web Conference
(WWW), 2007.

3 The detail of all of XACML decisions under D-algebra can be seen in ex-
tended paper at http://www2.imm.dtu.dk/˜cdpu/Papers/the_logic_of_
XACML-extended.pdf.

http://xml.coverpages.org/xacml.html
http://xml.coverpages.org/xacml.html
http://www.w3.org/TR/xml/
http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf
http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf

18 Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, Flemming Nielson

12. Tim Moses. eXtensible Access Control Markup Language (XACML) version 2.0. Tech-
nical report, OASIS, http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-
spec-os.pdf, August 2010.

13. Qun Ni, Elisa Bertino, and Jorge Lobo. D-algebra for composing access control policy
decisions. In ASIACCS ’09: Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security, pages 298–309, New York, NY, USA, 2009. ACM.

14. Erik Rissanen. eXtensible Access Control Markup Language (XACML) ver-
sion 3.0 (committe specification 01). Technical report, OASIS, http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf, August 2010.

A Extended Pairwise Policy Values

We add three values into P, i.e. deny with indeterminate permit ([1, 12]), permit with
indeterminate deny ([12 , 1]) and conflict ([1, 1]) and we call the extended pairwise policy
values P9 = P ∪

{
[1, 12], [

1
2 , 1], [1, 1]

}
. The extended pairwise policy values shows

all possible combination of pairwise policy values. The ordering of P9 is illustrated in
Figure 5.

[0, 0] = ⊥

[1
2
, 0] = Id [0, 1

2
] = Ip

[1, 0] = >d [1
2
, 1
2
] = Idp [0, 1] = >p

[1
2
, 1] = Id>p[1, 1

2
] = >dIp

[1, 1] = >d>p

Figure 5. Nine-Valued Lattice

We can see that P9 forms a lattice (we call this L9) where the top element is [1, 1]
and the bottom element is [0, 0]. The ordering of this lattice is the same as vP where
the greatest lower bound and the least upper bound for S ⊆ P9 are defined as follows:

l

L9

S = MaxvP
(S) and

⊔
L9

S = MinvP
(S)

	The Logic of XACML

