Technical University of Denmark

Performance of a wet Flue Gas Desulphurisation Pilot Plant under Oxy-fuel Conditions

Hansen, Brian Brun; Kiil, Søren

Publication date: 2011

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Hansen, B. B., & Kiil, S. (2011). Performance of a wet Flue Gas Desulphurisation Pilot Plant under Oxy-fuel Conditions [Sound/Visual production (digital)]. IEAGHG workshop, Oxy-fuel combustion : SO2/SO3/Hg/Corrosion Issues in Oxyfuel Combustion Boiler and Flue Gas Processing Units, London, 01/01/2011

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Performance of a wet Flue Gas Desulphurisation Pilot Plant under Oxy-fuel Conditions

IEAGHG workshop, Oxy-fuel combustion, January 25/26, 2011

 $f(x+\Delta x) = \sum_{i=1}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}$

Brian B. Hansen and Søren Kiil Technical University of Denmark Department of Chemical and Biochemical Engineering Kgs Lyngby, Denmark

<u>Outline</u>

- Introduction
 - Technical University of Denmark
 - Objective
 - Wet FGD and Oxy-fuel combustion
- Experimental investigation
 - Pilot plant outline and methodology
 - Results

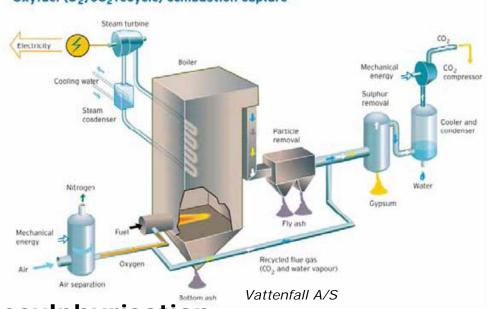
Absorber pH Desulphurisation degree Content of residual limestone

Conclusions and future work

Technical University of Denmark (DTU)

- Founded in 1829
 - Hans Christian Ørsted (Danish Physicist)
- Engineering education and research
- About DTU
 - 19 departements (Lyngby)
 - 4500 employes (1050 Ph.D. Students)
 - 6500 bachelor and master students

DTU Chemical Engineering Technical University of Denmark



Project objective

Objective

- To investigate the effect of oxy-fuel combustion on wet FGD operation Parameters studied:
 - CO₂ atmosphere
 - Higher flue gas temperature (H_2O content)
 - Higher SO₂ concentration
 - Reduced flue gas flow rate

Oxy-fuel and wet FGD

Oxyfuel (O2/CO2 recycle) combustion capture

Flue gas desulphurisation

- Ensuring a clean CO₂ stream or recycle stream
- Wet FGD widespread, traditional and highly efficient

 $CaCO_{3}(s) + SO_{2}(g) + 2H_{2}O + \frac{1}{2}O_{2} \rightarrow CaSO_{4} \cdot 2H_{2}O(s) + CO_{2}$

Potential process conditions dependent on recycle location

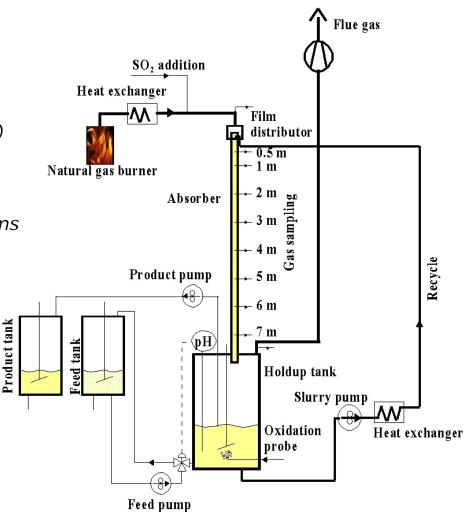
Potential wet FGD process changes

- CO₂ atmosphere
 - CO_2 absorption (absorber) and a decreased limestone dissolution rate $CaCO_3 + 2 H^+ \leftrightarrows Ca^{2+} + CO_2 + H_2O$

Higher saturation temperature

- Wet recycle yields higher gas phase water content
- Decreased SO₂ solubility

• SO₂ concentration/flue gas flow rate


- Recycle location or changing modes of operation (air-firing/oxy-fuel)
- Prolonged gas phase residence time
- Increased importance of liquid phase transport resistance

External oxidation

Pilot plant outline

Overview

- Packed tower absorber
 - Downscaled (single vertical channel)
 - Co-current flow
 - Multiple sampling sites
 - Well controlled gas and liquid streams

Experimental overview

Air-firing - pH 5.4

• Base-case

Oxy-fuel - pH 5.4

- Oxy-fuel (~ 90 % CO₂)
- Oxy-fuel and 10 mM adipic acid

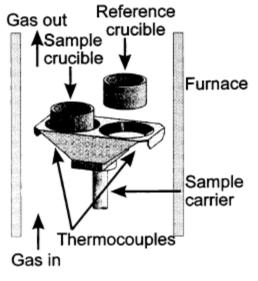
Oxy-fuel - pH 5.0

- Oxy-fuel
- Oxy-fuel and low gas flow rate
- Oxy-fuel, low flow and T (~ 53 °C)

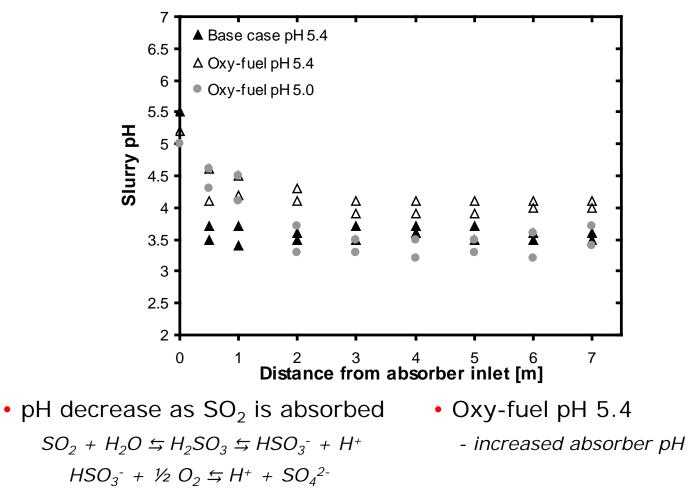
Experimental methodology

Experimental procedure

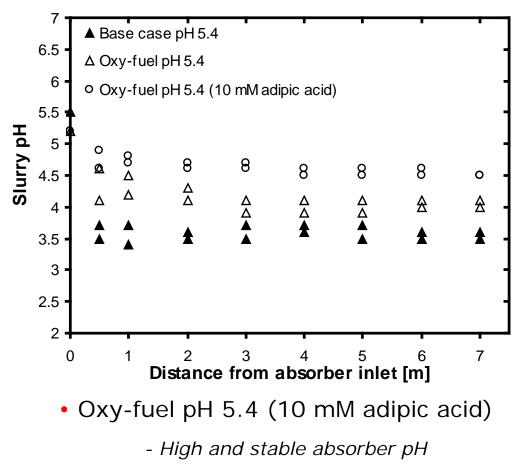
- Steady state
 - 5 days desulphurisation
 - 1000 ppm SO_2 flue gas (natural gas burner)
- Oxy-fuel experiments
 - 1000 ppm SO_2 flue gas (gas cylinders)
 - Until a steady limestone consumption rate



Sampling procedure

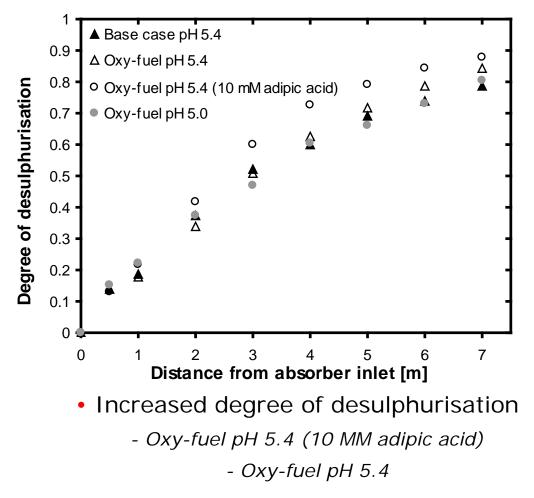

Sampling

- Gas phase composition
 - Absorber profile
 - Overall degree of desulphurisation
- Absorber pH
 - Multiple sampling points
- Residual limestone
 - Thermal analysis in STA

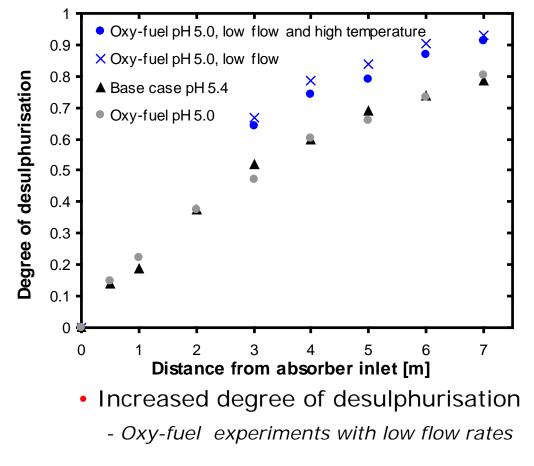


Netzsch-Gerätebau GmbH

Absorber pH



Absorber pH



Absorber desulphurisation

Absorber desulphurisation

• Base-case 5.4 and Oxy-fuel pH 5.0 very similar

Total degree of desulphurisation

Experiment	C _{so2} [ppm]	С _{со2} [%]	рН	Т [°С]	η (±1) [%]
Air-firing	1070	7	5.4	46	91
CO ₂ atmosphere (pH 5.4)	1040	90	5.4	44	94
- pH 5.4 (10 mM adipic acid)	1030	90	5.4	44	97
- pH 5.0	1030	91	5.0	43	92
- Reduced flow rate	4940	90	5.0	44	99
- Elevated Temperature	4950	85	5.0	53	99

• CO₂ atmosphere

- Increased desulphurisation degree
- Lower pH counters the effect
- High degree of desulphurisation with 10 mM adipic acid or low Q_{flue}

DTU Chemical Engineering

Technical University of Denmark

Residual limestone

Experiment	C _{so2} [ppm]	C _{CO2} [%]	pН	CaCO₃(±0.6) [g/l]	η (±1) [%]
Air-firing	1070	7	5.4	3.2	91
CO ₂ atmosphere (pH 5.4)	1040	90	5.4	5.0	94
- pH 5.4 (10 mM adipic acid)	1030	90	5.4	5.2	97
- pH 5.0	1030	91	5.0	2.3	92
- Reduced flow rate	4940	90	5.0	1.9	99
- Elevated Temperature	4950	85	5.0	1.7	99

- CO₂ atmosphere
 - Increased residual limestone content
 - Also with 10 mM adipic acid
 - Lower pH counters this effect

DTU Chemical Engineering

Technical University of Denmark

Discussion

Dissolution of limestone

 $CaCO_3 (s) \leftrightarrows Ca^{2+} + CO_3^{2-} \tag{1}$

$$H^+ + CO_3^{2-} \leftrightarrows HCO_3^{-} \tag{2}$$

- $HCO_{3^{-}} + H^{+} \leftrightarrows CO_{2} + H_{2}O \tag{3}$
- $CO_2(aq) \leftrightarrows CO_2(g)$ (4)
- Critical pH changes with CO₂
- Above critical pH (5.2-5.5)
 - Increased HCO₃⁻ concentration
 - Increased CO_3^{2-} at the particle surface
 - Lower Ca²⁺ concentration at the particle surface
 - Drastic reduction in limestone dissolution rate (ΔCa^{2+})
- Verified experimentally by Allers et al. 2003 and Chan et al. 1982

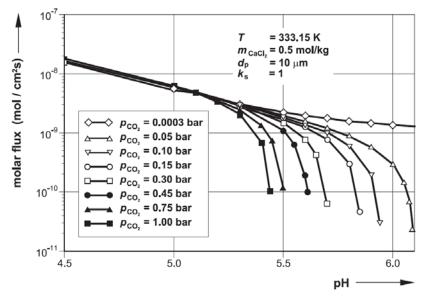


Figure 1. Dissolution rate of limestone particles with a diameter of 10 μ m. Allers et. Al 2003

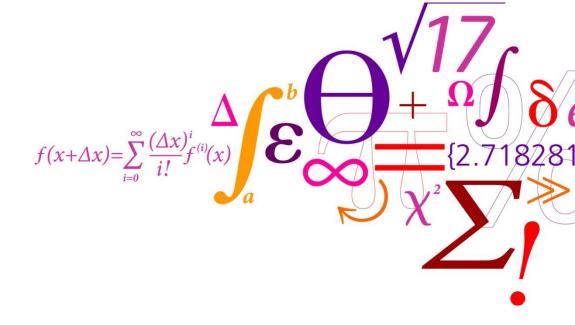
Conclusions

Desulphurisation of an oxy-fuel flue gas stream

- A higher absorber pH
- An increased content of residual limestone
- An increased degree of desulphurisation
- A minor correction of pH (5.0 vs. 5.4) compensate for the changes
- High degrees of desulphurisation obtained for low flow rates
 - No temperature effect could be distinguished

Publication

- Manuscript "Performance of a wet flue gas desulphurisation pilot plant under oxy-fuel conditions" accepted by Industrial and Engineering Chemistry Research
- Expected publication in spring 2011



Thank you for the Attention

Further information:

www.chec.kt.dtu.dk

bbh@kt.dtu.dk

DTU Chemical Engineering Technical University of Denmark