

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

The ReNoC Reconfigurable Network-on-Chip
Architecture, Configuration Algorithms, and Evaluation

Stuart, Matthias Bo; Stensgaard, Mikkel Bystrup; Sparsø, Jens

Published in:
A C M Transactions on Embedded Computing Systems

Link to article, DOI:
10.1145/2043662.2043669

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Stuart, M. B., Stensgaard, M. B., & Sparsø, J. (2011). The ReNoC Reconfigurable Network-on-Chip:
Architecture, Configuration Algorithms, and Evaluation. A C M Transactions on Embedded Computing Systems,
10(4), 45:1-45:26. DOI: 10.1145/2043662.2043669

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13781634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2043662.2043669
http://orbit.dtu.dk/en/publications/the-renoc-reconfigurable-networkonchip(26c5e411-f6c0-41c1-8ca8-002187710e4b).html

45

The ReNoC Reconfigurable Network-on-Chip: Architecture,
Configuration Algorithms, and Evaluation

MATTHIAS BO STUART, MIKKEL BYSTRUP STENSGAARD, and JENS SPARSØ,
Technical University of Denmark

This article presents a reconfigurable network-on-chip architecture called ReNoC, which is intended for use
in general-purpose multiprocessor system-on-chip platforms, and which enables application-specific logical
NoC topologies to be configured, thus providing both efficiency and flexibility. The article presents three
novel algorithms that synthesize an application-specific NoC topology, map it onto the physical ReNoC
architecture, and create deadlock-free, application-specific routing algorithms. We apply our algorithms
to a mixture of real and synthetic applications and target three different physical architectures. Compared
to a conventional NoC, ReNoC reduces power consumption by up to 58% on average.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer-Aided Engineering—
Computer-aided design; B.4.3 [Input/Output and Data Communications]: Interconnections—Topology

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: System-on-chip, network-on-chip, routing, configuration, synthesis,
mapping

ACM Reference Format:
Stuart, M. B., Stensgaard, M. B., and Sparsø, J. 2011. The ReNoC reconfigurable network-on-chip: Archi-
tecture, configuration algorithms, and evaluation. ACM Trans. Embed. Comput. Syst. 10, 4, Article 45
(November 2011), 26 pages.
DOI = 10.1145/2043662.2043669 http://doi.acm.org/10.1145/2043662.2043669

1. INTRODUCTION

Every new CMOS technology generation enables the implementation of larger and
more complex systems on a single integrated circuit. This evolution is accompanied by
several challenges: The design effort is increasing, the time-to-market is increasing,
and the production cost (in particular the nonrecurring engineering cost) is increasing
as well.

As envisioned in Magarshack and Paulin [2003], this trend seems to make
application-specific integrated circuits infeasible for the main bulk of applications:
The development time will simply be too long and the development cost too high.

The article combines and extends two of our previous papers [Stensgaard and Sparsø 2008; Stuart et al.
2009] that respectively appeared in Proceedings of the 2nd ACM/IEEE International Symposium on
Networks-on-Chip and Proceedings of the International Conference on Hardware/Software Codesign and
System Synthesis 2009. This article provides a collected overview of the ReNoC architecture, challenges in
design automation posed by the architecture, solutions to those challenges, and extends the previous papers
with more elaborate explanations, more results, and a discussion on the use of ReNoC in a wider range of
systems.
Authors’ address: M. B. Stuart, M. B. Stensgaard, and J. Sparsø (corresponding author), Technical Univer-
sity of Denmark, Department of Informatics and Mathematical Modeling, Richard Petersens Plads, Building
322, 2800 Kgs. Lyngby, Denmark; email: jsp@imm.dtu.dk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1539-9087/2011/11-ART45 $10.00

DOI 10.1145/2043662.2043669 http://doi.acm.org/10.1145/2043662.2043669

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:2 M. B. Stuart et al.

Fig. 1. From left to right: A 3 × 4 2D mesh with double links, a detailed view of a network node with an IP
core and a router encircled by a topology switch, and a close-up view of a TS port.

In response to these challenges, today’s Systems-on-Chips (SoC) are increasingly
being designed in a modular fashion by integrating predesigned components such
as general-purpose processors, digital signal processors, hardware accelerators,
programmable logic blocks (i.e., FPGA-blocks), memories, and input-output units on a
single chip. The term IP core (intellectual property) is commonly used to denote such
predesigned blocks that may be provided by several independent vendors.

The interconnect in these IP-based systems has traditionally been implemented as
one or more busses, but such ad hoc solutions do not scale well when the number of IP
cores increases, and packet switched Networks-on-Chips (NoC) [Benini and De Micheli
2002; Dally and Towles 2001] have emerged as a structured and scalable approach to
implementing the interconnect. Figure 1(a) shows such a NoC-based SoC using a 2D
mesh network topology. Such a NoC-based and IP-based design approach makes the
design effort more manageable, and a large body of research has addressed synthesiz-
ing application-specific NoC topologies [Chan and Parameswaran 2008; Murali et al.
2006].

However, in order to increase the production volume, it is necessary to consider
more generic platform chips, which can be used (i.e., programmed and/or configured)
to implement a range of application-specific systems. A likely scenario is that platform
chips will be developed for particular application domains or classes of applications.
Using conventional methods, such platform chips will trade off power for the required
flexibility in the interconnect: In order to satisfy very varying application require-
ments, the NoC needs to be oversized and have a regular topology which is less power
efficient than a custom or application-specific topology.

The work presented in this article represents an attempt to find a more efficient
compromise between regularity and generality on one side and efficiency (area, speed,
and power) on the other. The article presents a reconfigurable network-on-chip ar-
chitecture – called ReNoC – which combines packet switching and physical circuit
switching techniques, and which allows (logical) application-specific network topolo-
gies to be configured on top of a (physical) platform, whose network topology is more
regular. This allows us to provide the required flexibility at the same time as the power
consumption in the interconnect reflects the actual needs of the IP cores.

In the ReNoC architecture, the NoC consists of network nodes and network links
as shown in Figure 1(a). One of the novel features of ReNoC is that a network node

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:3

Fig. 2. (a) The VOPD application from Murali et al. [2005] and (b) a logical topology configured on a 3 × 4
physical architecture.

consists of a traditional packet switched router wrapped in a layer of (reconfigurable)
FPGA-style switch boxes, which we denote Topology Switches (TS) due to their func-
tionality, Figure 1(b) and Figure 1(c). In this way, links to and from a network node
may be connected to ports on the router or directly to other links, effectively bypassing
the router in the node. Figure 2 shows an example of a logical network topology which
can be configured on the platform illustrated in Figure 1(a). Unused routers and IP
cores are assumed powered down. It should be noted that even though we use a spe-
cific router for evaluating ReNoC in this article, the ReNoC architecture is orthogonal
to the choice of router architecture; the ReNoC architecture can be combined with any
router. The router used in this article is a simple, low-power one in order to keep the
comparison between systems with and without ReNoC fair. More details about the
router are given in Section 6.

In order to exploit the ReNoC architecture, tools are needed to synthesize configu-
rations for the applications that will run on platforms using ReNoC. In this article, we
present three algorithms for solving this configuration problem or optimizing existing
solutions. The configuration problem includes synthesizing a logical topology, mapping
the synthesized topology to the platform, and deadlock-free routing in the synthesized
topology. These parts are described in more detail and formalized in later sections. We
evaluate the ReNoC architecture and our optimization algorithms using a mixture of
real and synthetic benchmark applications varying in size from 12 to 64 IP cores. Note
again that ReNoC is orthogonal to the architecture of the packet switched routers it is
combined with. Therefore, issues such as ordering of packets and message-dependent
deadlocks are also orthogonal to ReNoC and are not considered in this article.

The preceding discussion focused on MultiProcessor System-on-Chips (MPSoCs)
with a NoC interconnect (and this is what originally inspired the work) but ReNoC is
equally relevant for more general-purpose single-chip multiprocessors, CMP, [Asanovic
et al. 2006; Hammond et al. 1997; Olukotun et al. 1996], and Figure 1 may also be
taken as an illustration of a single-chip multiprocessor (CMP). In this context, ReNoC
may be seen as extending programmability to include the network topology. This may
be used to minimize power consumption as well as communication latency.

Another issue, which is probably more important, and equally important in both
CMPs and MPSoCs, is real-time requirements and analysis of timing aspects of a
design. In a CMP, as well as in a MPSoC, it is to be expected that several independent
applications may be running at the same time, each application possibly running

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:4 M. B. Stuart et al.

on its own subset of IP cores. As the NoC is a shared resource, the network traffic
related to one application may negatively impact the network traffic related to
another application, and this may make it impossible to analyze timing behavior and
to guarantee real-time requirements. Here, ReNoC offers the possibility of providing
direct, circuit switched connections. Alternatively it is possible to form partially or
fully disjoint (logical) subnetworks.

A final issue, which is also important in both CMPs and SoCs, is dynamic runtime
reconfiguration. We have just started exploring this issue and the article offers a dis-
cussion of the issue.

This article combines and extends two of our previous articles [Stensgaard and
Sparsø 2008; Stuart et al. 2009]. We provide additional and more in-depth explana-
tions and extend on the results from these previous papers. We also give a discussion
of future uses of ReNoC.

The article is organized as follows: Section 2 discusses related work and outlines
our contributions. Section 3 provides a detailed description of the ReNoC architec-
ture, while Section 4 presents our models of ReNoC platforms and applications. Our
algorithms for solving the configuration problem are presented in Section 5. Section 6
describes the experiments we use to evaluate the ReNoC architecture and our algo-
rithms, and Section 7 provides the results of these experiments. Section 8 discusses
the use of ReNoC in systems, where runtime reconfiguration is required, and the con-
figurations also need to be found at runtime. This section also discusses future work
in general. Finally, Section 9 concludes.

2. RELATED WORK

Improving the energy efficiency in NoCs and automating the process of doing so has
been considered previously in literature; the novelty of our approach is the combina-
tion of energy efficiency and flexibility achieved through a mixture of physical circuit
switching and packet switching.

In Ogras and Marculescu [2006], the authors show how to improve the energy
efficiency and decrease the traffic congestion in a regular mesh by inserting long,
application-specific links. Similarly, in Chan and Parameswaran [2008], point-to-point
links are inserted directly between IP cores in an application-specific topology. In both
cases, the application-specific topologies are an integral part of the platform design,
whereas in ReNoC they are configured at initialization or runtime.

ReNoC’s flexibility is achieved through a mixture of packet switching and physical
circuit switching. Physically circuit switched NoCs have been proposed in literature
[Lee et al. 2005; Wolkotte et al. 2005], but with the restriction that circuit switched
connections are used only to make end-to-end connections directly between two IP
cores. In ReNoC, a circuit switched connection may also be used to connect IP cores
directly, but we also allow circuit switched connections to form long links between
routers, that is, combining the best of packet and circuit switching.

An extensive body of research exists on automating design space exploration in
NoC-based SoCs with different optimization goals. Researchers have considered
the problem of mapping applications onto static NoC topologies [Ascia et al. 2004;
Hansson et al. 2005; Hu and Marculescu 2005], where energy consumption is reduced
by trying to minimize the average distance in the topology between communicating IP
cores. Although this mapping also has an impact on the power consumption in ReNoC,
automating the process in the context of ReNoC is left for future work. The methods
from literature are not directly applicable, as the mapping has interdependencies
with the ReNoC configuration problem that is described later. Other researchers have
considered selecting the best topology from a range of topologies or synthesizing a
custom topology for a given application [Chan and Parameswaran 2008; Murali et al.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:5

2006; Ogras and Marculescu 2006; Stuart and Sparsø 2007]. These approaches how-
ever, can not exploit the high level of flexibility provided by ReNoC. The combination
of the application mapping and topology selection or synthesis problems has also been
considered [Hansson et al. 2007; Murali et al. 2005]. These approaches have the same
weaknesses outlined before when it comes to ReNoC.

Another research direction for reducing power consumption in NoCs considers de-
signing router architectures for low power consumption, for example, Al Faruque et al.
[2007] and Modarressi et al. [2009]. These routers may be combined with our work, as
the ReNoC architecture is independent of and orthogonal to the router architecture.

Methods for creating deadlock-free routing algorithms in both regular and
application-specific networks have been considered previously [Duato 1993; Palesi
et al. 2006; Starobinski et al. 2003]. While these methods are not directly applica-
ble to our work, we use a very similar approach to achieve deadlock-free routing.

The previous paragraphs presented the related work. In the following, we outline
the contributions of this work. Given: (1) an abstract description of an application,
(2) a ReNoC-based SoC platform, and (3) a mapping of the application to IP cores,
we solve the following problems: (1) synthesis of a suitable application-specific topol-
ogy, (2) mapping of this topology onto the given SoC platform, and (3) generating an
application-specific, deadlock-free routing algorithm, all three with the aim of mini-
mizing power consumption while satisfying the application’s bandwidth requirements.
Mapping an application-specific topology to a ReNoC-based SoC platform is a new
problem in NoC research. We also refer to the collection of these problems as the con-
figuration problem. We solve the three parts of the configuration problem in one pass
in order to avoid situations where, for example, no feasible mapping of the synthesized
topology on the SoC platform exists. An example of a ReNoC-based SoC platform is
shown in Figure 1, an application in Figure 2(a), and a configuration, a solution to the
problem, in Figure 2(b).

The article also presents an extended version of the original ReNoC architecture, in
which there are more links than router ports. This allows long-range physically circuit
switched and short-range packet switched connections to coexist at the same network
node. We evaluate our algorithms and platforms using a mixture of real and synthetic
benchmark applications.

Note that we use the term “routing algorithm” in its most general sense of “how to
get from A to B” rather than an algorithmic description of a route between any two
points. Such a description is generally not possible for application-specific network
topologies.

3. SYSTEM ARCHITECTURE

The ReNoC architecture [Stensgaard and Sparsø 2008] was briefly introduced in
Section 1 and in Figure 1. In this section, we give a more detailed description of the
relevant details, first of the generic ReNoC architecture and then of the specific im-
plementation that we use in our evaluation of the architecture and the configuration
algorithms.

ReNoC is a generic architecture for NoCs that is orthogonal to the router architec-
ture. It can be used to add a layer of circuit switching to any packet switched NoC such
as MANGO [Bjerregaard and Sparsø 2005a] or ×pipes [Dall’Osso et al. 2003].

By configuring the Topology Switches (TSs) (setting the multiplexers’ control signals
in Figure 1), long, logical links bypassing routers can be formed, allowing single-hop
communication between nonneighboring routers. It is even possible to directly connect
two IP cores with such a logical link, giving a physical point-to-point connection. In
this way, an application can configure a logical, application-specific network topology.
We make the distinction between the physical architecture that is the topology in which

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:6 M. B. Stuart et al.

Fig. 3. A logical topology needs not have bidirectional links. Observe the north port of router R0, where the
output goes to the south port of router R3, but the input comes from the west port of router R2.

network nodes are connected and the logical or application-specific topology that is
configured on top of the physical architecture. An example of such a configuration is
shown in Figure 2 where an irregular, logical topology is configured on top of a 3 × 4
mesh like the one shown in Figure 1(a).

When configuring the logical topology, care must be taken that the latency of the
slowest, long, logical link does not exceed the clock period. Pessimistic models of the
links indicate a latency of 120ps for a flit on a 1mm link, thus (with a 100MHz clock)
very long, logical links can be formed with no need for pipelining [Stensgaard and
Sparsø 2008]. If needed, state holding repeaters can be inserted in all or a subset of
the TSs to allow very long, logical links to be pipelined. As NoCs typically employ flow
control at the flit level, synchronous latency-insensitive or elastic circuits [Carloni and
Sangiovanni-Vincentelli 2002; Carmona et al. 2009] may be used to arbitrarily add
pipeline registers without changing the circuits’ functionality. If the NoC is imple-
mented using asynchronous techniques [Sparsø and Furber 2001], such insensitivity
to the addition of pipeline registers is typically already present.

The detailed view of one of a TS’ ports in Figure 1(c) shows a conceptual implemen-
tation using multiplexers, but in actual implementations other possibilities exist.

— If the links use low-swing signaling, it is also possible to implement the topology
switches using low-swing switches as presented in Dally [2007].

— If reconfiguration is expected to occur infrequently or only at initialization of the
SoC platform, implementation styles similar to those used in FPGA switch boxes
can be used for the TSs, such as pass-gates, tristate buffers, or multiplexers as
shown in Figure 1(c).

As can be seen in the logical topology in Figure 2, the ReNoC architecture does not
impose any requirement on bidirectional connections through the NoC. For example,
considering R0 in Figure 3, a router’s north output port may be connected to the neigh-
boring router’s south input port, while its north input port is connected to a long,
logical link originating much further away on the SoC platform. Well-known deadlock-
free routing algorithms such as up-down routing or turn-prohibition [Starobinski et al.
2003] rely on bidirectional topologies and can thus not be applied to ReNoC in general.
We describe our approach to avoiding deadlocks in the next section.

The preceding paragraphs concerned the generic ReNoC architecture. In the fol-
lowing, we present the specific implementation that is used in the evaluation. In this
work, we use mesh-based physical architectures, but keep in mind that the ReNoC

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:7

architecture is not limited to these. While allowing any circuit switched connection to
be established in the TSs would provide the highest amount of flexibility, we impose
a few restrictions on the possible connections in order to minimize the overhead. The
following circuit switched connections are the ones allowed.

(1) Any link input can be connected straight to any link output except back in the
direction of the link input; no U-turns are allowed. This effectively bypasses the
router.

(2) A port on a router may be connected only to the link in the corresponding direction,
that is, the router’s north port may only be connected to the links on the TS’ north
port. This goes for both in- and output ports.

The connection to the IP core’s network interface is considered a link similar to
those connecting neighboring network nodes for this purpose, that is, the IP core can
only be connected to the local router on the router’s port in the direction of the IP core.
However, an IP core may use a long link to connect to any port on a different router,
except for the IP port, which can exclusively be used by the local IP core, refer to the
preceding item number (2). If an application decides not to use a given TS port, an
enable-bit prevents the port from forwarding flits.

4. SYSTEM MODEL

This section describes the models we use for representing applications, physical
architectures, etc., and formalizes the configuration problem. Applications are charac-
terized by bandwidth graphs that describe the bandwidth requirements between sets
of tasks, where all tasks in a set are mapped to the same IP core. We consider a fixed
mapping of the application to IP cores. Using O for the set of IP cores, we have the
following.

Definition 1. A bandwidth graph is a directed graph BG = (T, C), where each ver-
tex ti ∈ T represents a task set and each directed edge ci, j = (ti, tj) ∈ C represents a
connection from ti to tj. Each edge ci, j has a weight bi, j that indicates the connection’s
bandwidth requirement.

Definition 2. A mapping M : T → O maps a task set t ∈ T on an IP core o ∈ O. M
is assumed to be fixed and given as input for each run of the algorithms.

We also use a graph representation to represent the physical architecture. Most
graph representations of networks use vertices to represent routers and edges to rep-
resent links between routers. We need to model at a finer level of granularity due to
the nature of ReNoC where the output ports a packet can leave a network node on
depends on what input port it arrived on. Therefore, we use vertices to represent ports
on both routers, TSs, and IP cores. We call the sets of router, TS, and IP core ports U,
S and O respectively. These are also indicated in Figure 4. We find it useful to distin-
guish between these three sets, as edges internal to TSs need to be handled differently
from other edges in the algorithms: An edge between two router ports indicates that it
is possible to come from one port to the other, while an edge between two TS ports in-
dicates that it is possible to come from one input port to the multiplexer on the output
port (see Figure 1), but the setting of the multiplexer control signal determines which
input port is actually connected to the output port. These multiplexer control signals
are what are actually set in order to configure a logical topology.

Definition 3. A network graph is a directed graph NG = (P, L) where the set of
vertices P = U ∪ S ∪ O is the union of the sets of router, TS, and IP core ports, and
each directed edge li, j = (pi, pj) ∈ L represents a link from pi to pj. Note that we

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:8 M. B. Stuart et al.

Fig. 4. The vertices contributing to the sets O, S, and U from a single network node. The full sets are found
by taking the union of these subsets over all network nodes. Edges internal to the TS and the router are not
shown.

use the term “link” to describe any edge in the NG; when we are referring to links
between network nodes, we will use the term “NoC links.” For IP cores, we discern
between input and output ports using subscripts, for example, oi,in. We associate two
parameters with each link l ∈ L.

(1) An energy per packet, e, that denotes the amount of energy expended in transmit-
ting a packet along l. This not only covers the energy consumption in inter-node
links but also the energy consumed internally in routers and TSs, that is, in the
buffers and the switch in routers and in the multiplexers in the TSs.

(2) A capacity q that denotes the sustainable throughput of the link, which is a frac-
tion of the peak throughput, q = α × peak, 0 < α ≤ 1. In practice, α represents
the saturation load of the network. By setting the available capacity on a link to
α, we ensure that the saturation point is never reached. This approach is equiva-
lent to the one used in Murali et al. [2006], where the bandwidth requirements of
connections in the application model are increased until simulations show that the
synthesized NoC can support the actually required bandwidth.

In general, for a graph G = (V, E), given two vertices u, v ∈ V and an edge between
them e = (u, v) ∈ E, we specify that u is the source and v the destination of e, src(e) =
u, dst(e) = v.

Routes are paths in the network between pairs of IP cores. In the context of our
graph representations, a route contains all ports that a packet passes through, not
only the ones where actual routing decisions are made. The routes will be trimmed
down to the necessary parts as a postprocessing step.

Definition 4. A route R(oi, o j) between the IP cores oi, o j ∈ O is a path
〈p0 p1 . . . pn−1〉 where p0 = oi,out and pn−1 = o j,in. We define the route servicing a con-
nection R(c) = R(M(src(c))out, M(dst(c))in), c ∈ C, that is, as the route originating at the
IP core the source of the connection is mapped to and terminating at the IP core the
destination of the connection is mapped to. The notation Ri indicates the ith element
in R. The set of all routes is denoted R = {R(c)|c ∈ C}.

A routing deadlock is characterized by a cyclic dependency of flits in the network.
We can determine if a deadlock is possible by analyzing if the set of all routes form a

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:9

Fig. 5. Care must be taken when unconfiguring links. In (c), the dashed link should not be added when
unconfiguring (0, 1), as this would inadvertently unconfigure (2, 0).

cycle in a graph. To do so, we make use of a dependency graph that is similar to the
application-specific channel dependency graph in Palesi et al. [2006].

Definition 5. A dependency graph is a directed graph DG = (P, D) where the set
of vertices P is identical to that in the NG, but each directed edge di, j = (pi, pj) ∈ D
represents a dependency by pi on pj. A dependency di, j signifies that ∃R ∈ R∃i.Ri =
pi ∧Ri+1 = pj, that is, there exists a route where pj is the immediate successor of pi: If
a flit arrives at pi, it may need to proceed to pj.

In order to describe a solution to the configuration problem we use a configuration
graph that has the same vertices as the NG but whose edges are a subset of those in
the NG. Specifically, internally to TSs we only include those edges that correspond to
the connections between ports, that is, an output port has multiple incoming edges but
in the configuration graph we only include the one from the input port that is selected
by the multiplexer shown in Figure 1(c). We allow partial configurations meaning that
the configuration graph contains multiple edges for one TS port. This is useful when
building solutions iteratively.

Definition 6. A configuration graph is a directed graph CG = (P, A). The two edge
properties are copied from the NG for each link a ∈ A.

An edge a ∈ A in a TS is said to be configured by removing the other edges incident
on src(a) or dst(a) and internal to the TS (the links that are not selected with the
multiplexer control signal), and to be unconfigured by adding (some of) these edges
back. When unconfiguring, care must be taken to not inadvertently unconfigure a
different edge than the one actually being unconfigured. Consider Figure 5, where a
TS with four input and output ports is shown. In Figure 5(a), the unconfigured TS is
shown, in Figure 5(b), the links (0, 1) and (2, 0) have been configured, while Figure 5(c)
shows what will happen if (0, 1) is then unconfigured. Note the dashed line that, if
added, would cause (2, 0) to be unconfigured as well. Therefore, this dashed line should
not be added to A when unconfiguring (0, 1).

The energy per packet of a route is calculated by summing the energy per packet of
each edge, eRi,Ri+1 , in the route.

ER =
|R|−2∑

i=0

eRi,Ri+1

The power consumption of the connection serviced by the route is found by multi-
plying the energy per packet with the bandwidth of the connection.

Pc = ER(c) × bc

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:10 M. B. Stuart et al.

Additionally, routers have an idle power, Pidle, and both routers and TSs have a
leakage power, Pleak. If a router is unused in a configuration (no routes contain any of
the router’s ports), it is assumed to be power gated, reducing both its idle and leakage
power to approximately zero.

The total power consumption in the interconnect of a platform SoC executing an
application is made up of leakage, idle, and communication power.

Ptotal =
∑

routers

(Pleak + Pidle) +
∑

TSs

Pleak +
∑

c∈C

Pc

The configuration problem can now be formalized: Given BG, NG, and M, synthesize
CG with the objective of minimizing Ptotal, subject to

∀c ∈ C : R(c) ∈ R (1)
∀R ∈ R∀i < |R| − 1 : (Ri,Ri+1) ∈ A (2)

∀pi, pj

∑

{c∈C|(pi,pj)∈R(c)}
bc ≤ qpi,pj (3)

∀〈. . . pi−1 pi pi+1 . . . 〉 ∈ DG : �i.pi = pj ∧ i �= j. (4)

The first requirement states that all connections in the BG have a route, while the
second requirement is that for all of these routes, the edges that comprise the route
exist in A, that is, the routing and the configuration of the network correspond to each
other. Together, these two requirements state that the configured network can service
all requests the application will make. The third requirement states that for each
link, the sum of the bandwidth requirements of the connections routed on that link
does not exceed the link’s capacity. The last requirements states that no cycles exist
in the DG. As the edges in a DG is the collection of all edges used in all routes, the
absence of cycles guarantees freedom from deadlocks. A solution that fulfills all four
requirements is said to be valid.

5. OPTIMIZATION ALGORITHMS

In this section, we present our algorithms for solving the configuration problem. The
algorithms all work at application design time (as opposed to SoC platform design
time) and take different approaches: The constructive algorithm starts from an un-
configured CG and configures routes for one connection at a time in a greedy manner,
while the specializing algorithms start from an already configured CG with deadlock-
free routes and makes modifications (specializations) to these.

In general, these algorithms work from the realization that the function of routers
is to split and merge traffic streams, while simply moving packets along may be done
much more efficiently in long, logical links. The objective of the algorithms is to min-
imize the power consumption, which may lead to some counter-intuitive situations
where the algorithms prefer a long, logical link with a nonminimal hop count to a min-
imal route that passes through a router. Depending on the relative power consumption
of links and routers, these longer routes may have lower power consumption than the
minimal ones. Due to their greedy nature, the algorithms may find locally optimal
solutions instead of the globally optimal solution. Finding the optimal solution with
minimal energy consumption would require an exhaustive search.

5.1 Constructive Algorithm

The constructive algorithm is a greedy algorithm that starts from an unconfigured CG.
The pseudocode is given in Figure 6. For each connection in the BG, the route with
the lowest ER and with sufficient (residual) capacity is found. As this route may be a

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:11

Fig. 6. The constructive algorithm.

long link directly between IP cores, it is necessary to consider if this is allowed for the
given connection, that is, if the source IP core is not the source of any other connection,
and the destination IP core is not the destination of any other connection, and if not,
to make sure the route passes through a router. This is done in lines 5–12. Finally, the
found route is configured, the residual capacity of the links in the route is updated, and
the DG is tested for possible deadlocks. The constructive algorithm is unable to handle
these for now, but in the future we plan to implement either backtracking or rerouting
to resolve deadlocks. For now, the algorithm fails to find a solution. Another scenario
in which the algorithm fails is if no route is found between the specified endpoints.
This may happen from a combination of edges removed from A by configurations in
previous iterations and edges excluded because of insufficient residual capacity.

When finding routes in the CG, Dijkstra’s algorithm is used with the energy per
packets as weights on the edges. Edges with insufficient residual capacity are excluded
from the search. Doing so finds the route with the lowest ER and ensures that the
capacity of individual links are not exceeded.

As mentioned before, the found route may be an end-to-end circuit switched link
directly between the two IP cores, which may not be allowed. In case such a disallowed,
direct link is formed, a change in the route to include a router is required. The if-
statement in line 5 first tests if either endpoint of c is involved in multiple connections,
thus requiring merging or splitting of traffic streams, and then if the route does not
include any routers (the route is a end-to-end circuit switched link). If both are true,
three cases can occur.

(1) This is the only connection from src(c), but dst(c) is the destination of multiple con-
nections. M(dst(c))in is connected to the closest router such that the traffic streams
are merged as close to the destination IP core as possible.

(2) Multiple connections originate in src(c), but this is the only connection to dst(c).
M(src(c))out is connected to the closest router, such that the traffic streams are split
as close to the source IP core as possible.

(3) src(c) is the source of multiple connections and dst(c) the destination of multiple
connections. We find the sum of the bandwidth requirement of the connections
originating and terminating in src(c) and dst(c) respectively. The task set with
the greater sum has its traffic streams split or merged as close to the IP core
it is mapped to as possible. Alternatively, the sources and destinations of these

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:12 M. B. Stuart et al.

other connections could be taken into consideration by finding a router closer to
the middle of the route. Exploring different methods to optimizing the splitting
and merging points in this case is left for future work.

After a router has been inserted in the route, a new route is found in line 12 that
this time passes through a router. The final steps are to configure the route in CG, add
it to the set of routes R, and update the dependency graph, DG. The algorithm actively
fails if no route was found or a deadlock has become possible.

Unless the algorithm fails, the generated solutions satisfy the requirement that all
connections have routes in Eq. (1) as the loop is over all c ∈ C.

The routability requirement in Eq. (2) is also satisfied. To realize this, first assume
that the requirement is violated, that is, ∃Ri.(Ri,Ri+1) /∈ A. For this to occur, either
the edge (Ri,Ri+1) was not configured in the first place or it was unconfigured at a later
place in the algorithm. As the algorithm never unconfigures an edge, the second case
can be readily dismissed. The first case does not occur either, as can be realized by
tracing all paths through the body of the for-loop: In all paths, a route is first found
and then configured.

The requirement of not exceeding any link capacity in Eq. (3) is satisfied as edges
with insufficient residual capacity are excluded when searching for a route. Therefore,
it is impossible for an edge’s capacity to be exceeded. Finally, the deadlock-free routing
requirement in Eq. (4) is satisfied, as the algorithm actively fails in case of a deadlock,
that is, no solution is generated in case a deadlock may occur.

The complexity of the constructive algorithm is O(|C|2 + |C|(|P| log |P| + |L|)),
where |C||P| log |P| dominates. Quicksort is used for sorting the connections accord-
ing to bandwidth requirements, which requires O(|C|2) in the worst case, but only
O(|C| log |C|) in the average case. Then, the loop is over all connections, O(|C|), while
Dijkstra’s algorithm, O(|P| log |P|), is run for each of these. The found route then needs
to be configured, O(|L|), thereby producing the second term.

An example execution of the algorithm on a small problem is shown in Figure 7.
The BG is shown in (a). First, a route for the connection (t0, t3) is found and configured
in (b). As this is the only connection out of t0 and the only one into t3, the route in this
case is simply a long, logical link connecting the two network interfaces directly. In (c),
the connection (t3, t2) is being routed. In line 4, an end-to-end circuit switched route is
found, but both the out-degree of t3 and the in-degree of t2 are greater than 1. In line
11, it is found that t2 has greater incoming bandwidth than t3 has outgoing. Therefore,
IP2’s network interface’s input terminal is connected to R2. Then a new route is found,
this time going through R2. The final configuration is shown in (d).

We have also implemented a small variation of the algorithm in which paths are
initially configured between those IP cores that are the source or destination of multi-
ple connections and their closest router, but no paths are configured between routers.
This preprocessing step makes the algorithm generate valid solutions in some cases
where it otherwise fails. The variation has no impact on the validity of the generated
solutions.

5.2 Specializing Algorithms

The specializing algorithms take a significantly different approach to solving the con-
figuration problem compared to the constructive algorithm. Instead of constructing
a solution from scratch, they make modifications (specializations) to an existing solu-
tion. These specializations are designed to exploit the unique combination of packet
and circuit switching in the ReNoC architecture.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:13

Fig. 7. An example of the constructive algorithm’s execution. The BG is shown in (a), intermediate steps in
(b) and (c), and the solution in (d).

Fig. 8. Pseudocode for generating an initial configuration that matches the physical architecture, here a
mesh.

5.2.1 Initial Configuration. The starting point of the specializations, the initial con-
figuration, can be any valid solution. The idea of the specializations is to make
modifications that maintain the validity of the solution. In this article, we use two
ways of acquiring the initial configuration: (1) Let the greedy algorithm generate the
initial configuration and (2) generate an initial configuration in which the TSs are
configured such that the logical topology matches the physical architecture, in our
case a 2D mesh. In the second case, the TSs simply constitute an overhead compared
to a static mesh.

For the routing in such a mesh, we make use of two different routing functions:
dimension ordered XY- and YX-routing and north-, south-, east-, and west-first routing.
These routing functions are implemented by removing the prohibited edges from A
and L. Note that our earlier comment about not being able to use deadlock-free routing

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:14 M. B. Stuart et al.

Fig. 9. Pseudocode for specialization A: Bypass Router.

Fig. 10. An example of specialization A: (a) before and (b) after inserting a bypass.

algorithms from literature does not apply here, as we in fact do have a regular topology
with bidirectional links in this case. A greedy algorithm as shown in Figure 8 is used
to select the routes for all connections. In dimension ordered routing, only one route
exists for each connection, whereas in, for example, north-first routing, each connection
can select from multiple routes. As in the constructive algorithm, Dijkstra’s algorithm
is used to find the route with sufficient capacity and lowest energy consumption per
packet.

The algorithm in Figure 8 is quite similar to the constructive algorithm with the
exception that we are not required to check if an IP core is connected to a router,
because of the initial configuration. The complexity analysis is also similar to that of
the constructive algorithm. Configuring a logical mesh and removing the prohibited
edges requires inspecting each edge in the CG once, O(|L|). Sorting C is O(|C|2) in
the worst case, while the loop is over all elements in C and contains an O(|P| log |P|)
search. The total complexity is O(|L| + |C|2 + |C||P| log |P|).

Solutions generated by this algorithm satisfy the requirements that all connections
have routes and the link capacities are not exceeded in Eqs. (1) and (3) respectively
with identical arguments to those for the constructive algorithm. As all modifications
to the CG are done before routing commences, the routability requirement in Eq. (2)
is also satisfied, and the chosen routing functions are known from literature to be
deadlock-free. With the initial configuration now in place, we can start considering the
specializations.

5.2.2 Specialization A: Bypass Router. The pseudocode for the first specialization is
given in Figure 9 with an example shown in Figure 10. The specialization consists of
detecting cases where all traffic entering a router on one port, ui ∈ U, exits on one other
port, uo ∈ U, and all traffic exiting through uo originate in ui. As DG describes which
edges in A are actually used, this can be formalized as (ui, uo) ∈ D ∧ out-degree(ui) =
1 ∧ in-degree(uo) = 1. Whenever this situation occurs, ui and uo are not involved in

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:15

merging or splitting traffic streams and there is thus no reason for the traffic stream
to pass through the router. Therefore, we insert a bypass using the TS.

Referring to the example in Figure 10, consider a subpath, φ, in CG that is used
by at least one route {R ∈ R|φ = 〈sisriuiuosroso〉 ∈ R} as seen in Figure 10(a). By
unconfiguring the two edges (si, sri) and (sro, so), the edge (si, so) is restored in A among
others. By configuring (si, so) and modifying φ such that φ′ = 〈siso〉 we have bypassed
the router as shown in Figure 10(b). Corresponding changes are made to D as well. No
further bypasses can be made in the example in Figure 10 because the traffic entering
the router on the IP core’s port exits the router on two different ports. By applying
this specialization across the entire CG, multiple bypasses may be inserted, taking
advantage of the TSs’ much lower power consumption compared to that of the routers.
This specialization’s complexity is O(|L||S′|2), where S′ is the set of ports in a single TS.
The exponent comes from the fact that all combinations of ports need to be examined
to unconfigure an edge safely, as described previously.

When considering the validity of the generated solutions, first recall that we as-
sume a valid solution before the specialization is applied. Thus, we only need to prove
that the specialization does not violate any of the requirements. As no elements are
removed from R, all connections have routes, and the first requirement thus remains
satisfied. The routability requirement is also satisfied, because we replace φ with φ′ in
all routes where φ occurs and make changes to A that correspond to this replacement.
In other words, all routes previously using φ will use φ′ after the specialization has
been applied and A has been updated to include φ′ instead of φ.

For the capacity requirement, we utilize the fact that the capacity q of all links
belonging to TSs are identical: The number of flits per time unit that can be moved
through a TS is independent of the path taken through the TS. Thus, as we assume
that the capacity of (si, sri) is sufficient before applying the specialization, the capacity
of (si, so) is sufficient after applying the specialization.

Finally, the specialization does not introduce deadlocks (cycles in the DG). Before
the specialization was applied, we knew that the out-degree of all vertices in φ was
one (the very reason we could introduce the bypass). Thus, there existed one and only
one path from si to so , and this path did not form any cycles in the DG. After the
specialization has been applied, there is still only one path from si to so (φ′ instead of
φ) which neither forms any cycles in the DG. No cycles can possibly be introduced in
the DG by this specialization.

5.2.3 Specialization B: Insert Long Links. This specialization takes a route and modifies
it by trying to insert the longest link possible. The pseudocode can be found in
Figure 11.

Given S′ ⊆ S is the set of ports on one TS, two sets Xin and Xout of vertices on the
route are found, where:

Xin = {Ri|Ri,Ri+1 ∈ S′}
Xout = {Ri|Ri,Ri−1 ∈ S′}.

That is, Xin is the set of TS input ports in R, while Xout is the set of TS output ports in
R. By finding all the pairs with one element xin ∈ Xin and the other element xout ∈ Xout
where xin = Ri, xout = R j, j > i and sorting them according to their distance j − i, we
can make an exhaustive search of the possible long links to insert, terminating when
we find the longest possible one. We call this sorted set of pairs Y . Finding a long link
requires unconfiguring the two edges (Ri,Ri+1) and (R j−1,R j). This naturally impacts
all routes utilizing these two edges. The set of these routes is denoted Rupd. When
considering a pair y ∈ Y in a route R(c), if ∃R(ci) ∈ Rupd.bci > bc, then y is ignored,
that is, if inserting a long link for a connection requires another connection with a

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:16 M. B. Stuart et al.

Fig. 11. Pseudocode for inserting long links using specialization B.

higher bandwidth requirement to be rerouted, the algorithm proceeds to the next y. If
all the routes in Rupd belong to connections with a lower bandwidth requirement, these
connections are rerouted at the end of each iteration.

This specialization has a higher complexity than the other algorithms considered
so far. The for-loops in lines 2 and 4 contribute with O(|C||P|2). The unconfiguring
in line 5 potentially considers each edge in the CG and is O(|L|), while the for-loop
in line 10 is O(|C|). The body of this loop is O(|P| log |P|). In total, the complexity is
O(|C||P|2(|L| + |C||P| log |P|)).

The requirement that all connections have routes is satisfied, because we never
remove a route from R. The routability requirement is also satisfied, as whenever we
make changes to the CG, the affected routes are updated correspondingly. As in the
other algorithms, edges with too little residual capacity are omitted from searches in
the graph, thus the capacity requirement is also satisfied. Finally, the requirement
of no deadlocks is satisfied by the final if-statement that reverts the changes to the
solution in case a deadlock is possible.

An example of the execution of this algorithm is shown in Figure 12, where the route
between IP0 and IP1 shares two router ports with the dashed route in (a), thus spe-
cialization A is unable to make any modifications in this situation. By unconfiguring
the edges out of xin and in to xout, searching for a new route in line 6 yields a circuit
switched route directly between the two IP cores in (b). No other routes are affected
by this specialization.

6. EXPERIMENTAL SETUP

This section describes the physical architectures and the applications used along with
the experiments we conduct.

As we focus on the power savings by using ReNoC to move traffic out of routers and
onto long, logical links, it would be an unfair comparison to use a large router with
many features and high power consumption. Therefore we use routers similar to those
in Stensgaard and Sparsø [2008]: low-power, single-cycle, source routed, wormhole
routers at 100 MHz with two virtual channel buffers in each input port, each buffer
being four flits deep. A packet consists of four flits of which one is a header flit and the
remaining three are payload.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:17

Fig. 12. An example of specialization B. (a) shows two connections before the specialization is applied, while
(b) shows the two connections after the specialization has been applied.

For comparison purposes, we consider three different physical architectures, all
based on a 2D mesh topology. Again, the ReNoC architecture is in no way limited
to meshes.

— A conventional mesh of routers without TSs gives us a baseline to evaluate the
overhead of the TSs. This physical architecture will be referred to as a static mesh.
For routing in this mesh, we use both dimension ordered (XY and YX) and north-,
south-, east-, and west-first routing.

— The first ReNoC-based physical architecture is, as earlier, a standard mesh of net-
work nodes, where network nodes here consist of a router, a TS, and an IP core.
This physical architecture will be referred to as the Single-Link architecture (SL).
An example can be seen in Figure 3.

— The second ReNoC-based physical architecture is also a mesh of network nodes as
before, but with the difference that the number of NoC links is doubled while the
routers’ sizes are as in the other two physical architectures. This means that there
are twice as many links as router ports, which, for example, allows a long, logical
link to skip unaffected through an area that is otherwise congested. This physical
architecture will be referred to as the Double-Link architecture (DL). This is the
architecture shown in Figure 1.

Table I presents the energy consumption per packet in the different components of
a ReNoC-based NoC. Routers and topology switches have been synthesized and their
power consumption determined using commercial synthesis and power characteriza-
tion tools using estimated wire-load models, while link characterization is based on
figures from SPICE simulations [Banerjee et al. 2007; Stensgaard and Sparsø 2008].
All figures in the table are prelayout, based on low-leakage cells from a commercial
90-nm standard cell library, using a 1V supply voltage at nominal parameters. The
energy per packet is the average energy consumed when sending a packet based on
random data, leakage is the leakage power consumption, and idle power is the dy-
namic power that is always consumed, independent of the use. Idle power accounts for
clocking of clock-gates and registers that are not clock-gated. The TSs have previously
been shown to add around 10% to the area of the interconnect [Stensgaard and Sparsø
2008].

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:18 M. B. Stuart et al.

Table I. Energy and Power Consumption of the Components
in a ReNoC-Based NoC

Module Energy/packet Leakage Idle power
(pJ) (μW) (μW)

Link, 1mm 21 - -
5x5 Router 32 8.6 136

TS SL 0.48/1.05 0.55 1.44
TS DL 0.9/1.4 2.65 1.61

4x4 Router 31 6.7 109
TS SL 0.4/0.87 0.43 1.44
TS DL 0.71/1.2 1.64 1.44

3x3 Router 30 4.7 82
TS SL 0.41/0.43 0.22 1.44
TS DL 0.72/1.05 0.55 1.44

The two energy/packet values are to a router input and to
a NoC link output respectively.

Table II. Characteristics of the Applications

App. name |T| |C| Phys. arch.

VOPD 12 14 3 × 4
R12 12 11 3 × 4
C12 12 12 3 × 4
MMS 16 30 4 × 4
R16 16 14 4 × 4
C16 16 16 4 × 4
S64 64 83 8 × 8
R64 64 62 8 × 8
C64 64 64 8 × 8

|T| is the number of task sets (IP cores),
and |C| is the number of connections be-
tween these.

We use a mixture of real and synthetic applications to evaluate our algorithms and
physical architectures. The following applications can be found in literature.

— VOPD: A multimedia application [Murali et al. 2005].
— MMS: A multimedia system [Hu and Marculescu 2005].
— Rotate and complement: Well-known traffic patterns from computer networks

[Dally and Towles 2003] that have also been suggested for use in NoC micro bench-
marks [Salminen et al. 2008].

We also use a larger synthetic application (S64) that incorporates some of the patterns
suggested in Salminen et al. [2008]. Characteristics of the different applications can
be found in Table II.

The mapping M has been generated by hand for the VOPD, MMS, and S64 applica-
tions. For the remaining applications, the mapping is determined from the addresses
of task sets (t ∈ T) that are an integral part of forming the traffic patterns. The IP core
with address zero has been put in the lower-left corner of the mesh, and addresses
increment by one along the x-axis.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:19

Fig. 13. ReNoC power overhead. The bars represent the power consumption normalized to the static archi-
tecture. The order of the bars is: Static, SL, and DL.

The experiments we conduct are (for all applications on SL and DL) as follows.

— Configure a logical mesh and route using the algorithm in Figure 8. This allows us
to evaluate the overhead of the TSs.

— Use the constructive algorithm (Figure 6) to configure each application on each
platform.

— Generate an initial configuration using the algorithm in Figure 8 and apply each of
specialization A, specialization B, specialization A on the output of specialization B
(BA), and vice versa (AB).

— Generate an initial configuration using the constructive algorithm and apply both
specializations and both combinations of specializations to this solution.

In the static architecture, we evaluate the power consumption using both the six
mentioned routing functions and also using the constructive algorithm to make an
application-specific routing algorithm. For the results section, from those experiments
where multiple routing functions are used, we select the best of the results, as we
are not specifically interested in whether, for example, XY routing is better than YX
routing.

7. RESULTS

In this section, we present and discuss our results. The power consumption in “links”
shown in the graphs in this section relates to “NoC links,” that is, links between net-
work nodes.

In Figure 13, we see the overhead of the ReNoC architecture when the logical topol-
ogy forms a mesh. The power consumption of each application has been normalized to
that of the static architecture. As can be seen, the TSs only add between 2–5% to the
power consumption. This is the worst-case scenario as the TSs’ ability to move traffic
out of routers is not utilized.

Figure 14 shows a comparison of the different physical architectures. For each
combination of physical architecture and application, we selected the best solution
from all the experiments in order to show the potential of the ReNoC architecture.
The ReNoC architecture clearly leads to lower power consumption with the decrease
primarily found in routers and secondarily in reduced idle and leakage power from
clock- and power-gating. For SL, the reduction in power consumption averages 36%

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:20 M. B. Stuart et al.

Fig. 14. Comparison of the physical architectures. The order of the bars is: Static, SL, DL.

Table III. The Number of Powered-On Routers
and Total Power Consumption in the Best
Configuration of All Physical Architectures

and Applications

Routers on
App No. routers Static SL DL

VOPD 12 12 4 4
R12 12 12 4 1
C12 12 12 6 0
MMS 16 16 11 10
R16 16 16 4 0
C16 16 16 10 0
S64 64 64 19 19
R64 64 64 52 0
C64 64 64 56 51

with a minimum of 6% for C64 and a maximum of 61% for R16. DL has lower power
consumption than SL due to the greater possibilities of moving traffic out of routers
and on to long, logical links, which is seen from the even lower power consumption in
routers. On average, DL reduces power consumption by 58% compared to the static
architecture, varying between 17% for C64 and 80% for R16. For some applications
(R16, R64, C12, C16) the traffic pattern can even be implemented fully using only
circuit switching in DL. This clearly demonstrates the potential of reducing power
consumption using the ReNoC architecture.

Table III shows the number of routers that are powered on in the same solutions
whose power consumption is shown in Figure 14. The main trend to notice is that
more routers can be powered off when going from SL to DL indicating that more
traffic is moved out of routers and onto long links, thereby reducing the overall power
consumption. The exceptions to this trend are VOPD and S64 where the same number
of routers are powered on in SL and DL. For VOPD it simply does not pay off to use
less than four routers. Doing so would require significant detours of the traffic streams
to be split or merged, easily outweighing the gains of powering off another router. The

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:21

Fig. 15. Comparison of the optimization algorithms for SL (a) and DL (b). The order of columns are con-
structive algorithm, specialization A, specialization B, AB, and BA. Bars are normalized to the first nonzero
bar for each application.

power consumption of VOPD is slightly higher on DL because the configurations on
SL and DL are identical, but DL has larger, more power-consuming TSs.

In S64 when going from the static architecture to SL in Figure 14, it can be seen
that both overall and router power consumption decrease while link power increases.
This is caused by the algorithms sending some traffic streams out on minor circuit
switched detours in order to avoid going through some routers where the streams in
question are neither split nor merged. In Figure 14 the router power remains the
same in DL, but the link power decreases because shorter circuit switched paths have
replaced some longer ones. This demonstrates the potential of DL to move traffic that
simply passes through a busy region of the network onto a long link that passes right
by the busy routers.

Figures 15(a) and 15(b) give a comparison of the algorithms on SL and DL, respec-
tively. The bars are normalized to the first nonzero bar for each application. For SL,
the constructive algorithm only produces a valid solution for two of the applications.
However, for those two it produces the best solution of all the algorithms. In general
the algorithms’ performance is almost uniform with most solutions within 12% of
the reference. The outlier is specialization B that produces the worst solutions by up
to 30%, which is interesting since BA often produces the best solutions. This can be

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:22 M. B. Stuart et al.

explained by B maximally inserting one long link per connection: When a change has
been made for a connection, the algorithm proceeds to the next connection. If instead,
the algorithm would continue trying to insert long links for the current connection,
specialization B is expected to perform at least as well as BA. Investigating this is left
for future work.

For DL, the constructive algorithm produces valid solutions for eight of the applica-
tions. In all but one case, these solutions have the lowest power consumption. This is
explained by the greater freedom in generating solutions when starting from an un-
configured CG compared to starting from an already valid solution and making modi-
fications. Considering the specializations, A on its own generally produces much worse
solutions than the other specializations by up to 200%. This is explained by A not being
able to exploit the extra links, as it operates on subpaths that are internal in network
nodes. As for SL, BA produces the best solutions of the specializations, although the
distribution again is rather uniform.

Considering the execution time of the different algorithms AB and BA are the slow-
est, but even for the large problems the solution is found in less than a minute.

Using the specializations to optimize the solutions produced by the variation of the
constructive algorithm where IP cores are connected to the closest router in a prepro-
cessing step gives some improvement in a few cases. However, in no case are these so-
lutions better than the best one produced either by the constructive algorithm without
the preprocessing step and without subsequent specialization or by the specializations
applied to the initial configuration where a logical mesh is formed. Furthermore, the
specializations are unable to improve on the solutions generated by the constructive
algorithm without the preprocessing step for our benchmarks.

For VOPD on both SL and DL, specialization B improves the solutions generated by
the constructive algorithm with the preprocessing step by 14% and 19%, respectively.
For S64, improvements of around 4% are also seen on both SL and DL using special-
ization B. In both benchmarks, the improvements come from traffic being moved out
of routers and onto long links, leading to lower power consumption in the routers and
in some cases also unused routers that are powered down. For the remaining bench-
marks, no improvements are made by the specializations on the solutions from the
constructive algorithm. As mentioned before, for the applications considered here, ap-
plying the specializations to the output of the constructive algorithm never produces a
better solution than that produced by the constructive algorithm itself or by the apply-
ing the specializations to the initial configuration where the logical topology matches
the physical architecture. However, it cannot be ruled out that some applications exist
for which applying the specializations to the output of the greedy algorithm produces
the best results.

We also tried using the constructive algorithm to generate application-specific,
deadlock-free routing algorithms in the static mesh. However, for our benchmark
applications, only insignificant differences (less than 0.2%) are seen between the well-
known routing algorithms and application-specific routing. In order for application-
specific routing to be beneficial, the other routing algorithms need to break down from
insufficient capacity along their restricted sets of allowed routes.

The results presented in this section have focused on ReNoC’s advantage in power
consumption over a conventional NoC, and on the relative performance of the algo-
rithms for automatically solving the configuration problem. However, one of ReNoC’s
key features is difficult to put into numbers, namely its flexibility. By providing a
reconfigurable interconnect, we can on a single chip switch between the best found
configuration for the different applications. This is one of ReNoC’s strengths: The
interconnect in a single SoC platform chip can be used to provide energy efficient,
intra-chip communication for a wide range of applications.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:23

8. DISCUSSION AND FUTURE WORK

Up to now, we have focused on initialization-time configuration. In the following, we
discuss some initial thoughts on runtime reconfiguration, and show how ReNoC can
be used to overcome some of the issues that arise when using a regular NoC.

Let us consider the general case of a system with a heterogeneous set of IP cores.
A process executing on this platform is assigned a set of resources (IP cores and net-
work connections), and the communication between these can be described by a graph
similar to the BG in the previous section. A process may require exclusive or shared
access to IP cores. An exclusively owned IP core is allocated to one and only one pro-
cess until the process releases the IP core or terminates. A shared IP core can be
allocated to multiple processes, in which case some local scheduling is performed in
the IP core. Furthermore, processes may request guaranteed service of the NoC (if the
routers implement such a feature) or exclusive access to end-to-end connections in the
NoC. Providing GS in NoCs is a major topic which has been covered in the literature
and will not be discussed further here [Bjerregaard and Sparsø 2005b; Millberg et al.
2004; Rijpkema et al. 2001].

In such a system, an operating system executing on one of the IP cores will han-
dle resource allocation requests and scheduling of processes on shared IP cores. The
scheduling of processes in a multiprocessor system is a well-known subject, and will
not be discussed further here. Considering the allocation of IP cores, two situations
can occur: (i) A process requests an IP core of a given type, or (ii) a process releases
an IP core. In the first situation, the OS needs to find a suitable instance of the spec-
ified IP core type and connect it to those parts of the requesting process that it needs
to communicate with, all without interfering with other processes’ exclusively owned
connections. It may be acceptable to interrupt communication on shared connections,
although doing so will have to be done in a safe manner [Hansson and Goossens 2007].
The second case is somewhat simpler to handle, as the OS here simply needs to tear
down the no longer used connections, although the safety requirements of course still
need to be satisfied.

During the execution of such a system, it may obviously not be possible to assign
processes to IP cores in such a way that the IP cores assigned to the different pro-
cesses form disjoint subnetworks. Therefore, in a traditional packet switched NoC,
traffic relating to different processes will interfere, and this may compromise real-
time properties. For virtualization purposes (running a virtual machine in a process),
the lack of traffic separation may even be a security concern [Duato 2008].

In a conventional NoC, the only possibility for connecting distant IP cores is to es-
tablish a packet switched connection between them. While this is no problem in itself,
when coupled with the requirement of separation of traffic, significant detours may be
necessary, if it even is possible to find such detours. With a reconfigurable intercon-
nect such as ReNoC, it is possible to take advantage of the circuit switched topology
switches to overcome these issues, either by establishing end-to-end connections or by
establishing a long link which passes through another processes’ exclusively owned re-
gion of IP cores. Exploring these issues in online mapping and allocation in the context
of ReNoC is left for future work.

We will also be investigating other specializations, including one where we try to
take advantage of the multitude of possible routes in, for example, north-first rout-
ing: By making a route follow a detour, it may be possible to collect the NoC traffic
in fewer routers, allowing more routers to be powered down. Concerning the exist-
ing algorithms, modifications to the constructive algorithm to better handle deadlocks
will also be considered. This could, for example, be done by backtracking once the
dependency graph becomes cyclic and finding alternative routes.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:24 M. B. Stuart et al.

In this article, we made a comparison between a generic NoC (the static architec-
ture) and ReNoC-based physical architectures. It will be very interesting to compare
with the other end of the spectrum: application-specific topologies generated using
state-of-the-art methods. Although these methods do not produce flexible NoCs (as
ReNoC does), it will be highly interesting to determine the cost (if any) of the added
flexibility of ReNoC.

9. CONCLUSION

In this article, we have presented the ReNoC architecture, a generic network-on-chip
architecture which combines packet switching, physical circuit switching, and (initial-
ization time) reconfigurability. The key idea is to augment the routers in a conven-
tional packet switched NoC with a layer of so-called topology switches, which are very
similar to the switch-boxes used in FPGAs. In this way, it is possible to implement
a generic MPSoC platform with a particular NoC topology, and to configure different
logical NoC topologies on this platform, thereby efficiently supporting different appli-
cations. ReNoC is a generic architectural idea which can be combined with any NoC
topology and NoC router. The article presented two example architectures both using
a 2D mesh NoC: one in which the number of links matches the number of router ports
and one in which the number of links has been doubled. These platforms are called
SL (Single Link) and DL (Double Link) respectively, and the article compares the per-
formance of these against a conventional 2D mesh topology without topology switches
(denoted “static”).

The configuration of a ReNoC platform for a given application involves solving the
following problems: topology synthesis, topology mapping, and routing that together
constitute the configuration problem. We have presented three algorithms that solve
these problems concurrently with the objective of minimizing energy consumption in
the NoC. The algorithms are applied to two real and seven synthetic benchmark ap-
plications, and they are all configured onto the three physical architectures mentioned
earlier. In this way, the experiments evaluate both the algorithms and the ReNoC
architecture.

No algorithm can be said to be the best in general, because their relative perfor-
mance depends on both the application and the physical architecture. In general,
the constructive algorithm produces the best results, when it does not encounter a
deadlock. In case of deadlocks, the specializations can be used to find a guaranteed
nondeadlocking solution. The combination of specializations B and A consistently pro-
duces good results, but not always the best ones, across the applications and physical
architectures.

The SL architecture produces solutions with 36 % lower power consumption than
what is possible in the conventional, static architecture, while the DL architecture
reduces the power consumption by 58 % compared to the static architecture.

REFERENCES
AL FARUQUE, M. A., EBI, T., AND HENKEL, J. 2007. Run-Time adaptive on-chip communication scheme. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’07). IEEE
Press, 26–31.

ASANOVIC, K., BODIK, R., CATANZARO, B. C., GEBIS, J. J., HUSBANDS, P., KEUTZER, K., PATTERSON,
D. A., PLISHKER, W. L., SHALF, J., WILLIAMS, S. W., AND YELICK, K. A. 2006. The landscape of
parallel computing research: A view from Berkeley. Tech. rep. UCB/EECS-2006-183, EECS Department,
University of California, Berkeley.

ASCIA, G., CATANIA, V., AND PALESI, M. 2004. Multi-Objective mapping for mesh-based NoC architectures.
In Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis. 182–187.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

The ReNoC Reconfigurable Network-on-Chip 45:25

BANERJEE, A., MULLINS, R., AND MOORE, S. 2007. A power and energy exploration of network-on-chip ar-
chitectures. In Proceedings of the 1st International Symposium on Networks-on-Chip (NOCS’07). IEEE
Computer Society, Los Alamitos, CA, 163–172.

BENINI, L. AND DE MICHELI, G. 2002. Networks on chips: A new SoC paradigm. Comput. 35, 1, 70–78.
BJERREGAARD, T. AND SPARSØ, J. 2005a. A router architecture for connection-oriented service guarantees

in the mango clockless network-on-chip. In Proceedings of the Conference on Design, Automation and
Test in Europe (DATE’05). IEEE Computer Society, 1226–1231.

BJERREGAARD, T. AND SPARSØ, J. 2005b. A scheduling discipline for latency and bandwidth guarantees
in asynchronous network-on-chip. In Proceedings of the International Symposium on Asynchronous Cir-
cuits and Systems. IEEE Computer Society, Los Alamitos, CA, 34–43.

CARLONI, L. P. AND SANGIOVANNI-VINCENTELLI, A. L. 2002. Coping with latency in soc design. IEEE
Micro 22, 5, 24–35.

CARMONA, J., CORTADELLA, J., KISHINEVSKY, M., AND TAUBIN, A. 2009. Elastic circuits. IEEE Trans.
Comput.-Aid. Des. Integr. Circ. Syst. 28, 10, 1437–1455.

CHAN, J. AND PARAMESWARAN, S. 2008. Nocout: Noc topology generation with mixed packet-switched and
point-to-point networks. In Proceedings of the Asia and South Pacific Design Automation Conference
(ASP-DAC ’08). IEEE Computer Society Press, Los Alamitos, CA, 265–270.

DALL’OSSO, M., BICCARI, G., GIOVANNINI, L., BERTOZZI, D., AND BENINI, L. 2003. Xpipes: A latency
insensitive parameterized network-on-chip architecture for multiprocessor socs. In Proceedings of the
21st International Conference on Computer Design. 536–539.

DALLY, B. 2007. Enabling technology for on-chip interconnection networks. In Proceedings of the 1st Inter-
national Symposium on Networks-on-Chip. 3–3.

DALLY, W. J. AND TOWLES, B. 2001. Route packets, not wires: On-Chip interconnection networks. In Pro-
ceedings of Design Automation Conference. IEEE Computer Society, Los Alamitos, CA, 684–689.

DALLY, W. J. AND TOWLES, B. 2003. Principles and Practices of Interconnection Networks. Morgan Kauf-
mann, San Francisco, CA.

DUATO, J. 1993. A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Trans. Paral.
Distrib. Syst. 4, 12, 1320–1331.

DUATO, J. 2008. Managing heterogeneity in future NoCs. In Proceedings of the 1st International Workshop
on Network on Chip Architectures. 2–4.

HAMMOND, L., NAYFEH, B. A., AND OLUKOTUN, K. 1997. A single-chip multiprocessor. Comput. 30, 9,
79–85.

HANSSON, A. AND GOOSSENS, K. 2007. Trade-Offs in the configuration of a network on chip for multiple
use-cases. In Proceedings of the 1st International Symposium on Networks-on-Chip (NOCS’07). IEEE
Computer Society, Los Alamitos, CA, 233–242.

HANSSON, A., GOOSSENS, K., AND RǍDULESCU, A. 2005. A unified approach to constrained mapping and
routing on network-on-chip architectures. In Proceedings of the 3rd IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’05). ACM, New York,
75–80.

HANSSON, A., COENEN, M., AND GOOSSENS, K. 2007. Undisrupted quality-of-service during reconfigura-
tion of multiple applications in networks on chip. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE’07). 954–959.

HU, J. AND MARCULESCU, R. 2005. Energy- and performance-aware mapping for regular noc architectures.
Comput.-Aid. Des. Integr. Circ. Syst. 24, 4, 551–562.

LEE, S.-J., LEE, K., AND YOO, H.-J. 2005. Analysis and implementation of practical, cost-effective networks
on chips. IEEE Des. Test Comput. 22, 5, 422–433.

MAGARSHACK, P. AND PAULIN, P. G. 2003. System-on-chip beyond the nanometer wall. In Proceedings of
the 40th Annual Design Automation Conference (DAC’03). ACM, New York, 419–424.

MILLBERG, M., NILSSON, E., THID, R., AND JANTSCH, A. 2004. Guaranteed bandwidth using looped con-
tainers in temporally disjoint networks within the nostrum network on chip. In Proceedings of the Con-
ference on Design, Automation and Test in Europe (DATE’04). IEEE Computer Society, Los Alamitos,
CA, 20890.

MODARRESSI, M., SARBAZI-AZAD, H., AND TAVAKKOL, A. 2009. Performance and power efficient on-chip
communication using adaptive virtual point-to-point connections. In Proceedings of the International
Symposium on Networks-on-Chip. 203–212.

MURALI, S., BENINI, L., AND DE MICHELI, G. 2005. Mapping and physical planning of networks-on-chip
architectures with quality-of-service guarantees. In Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC’05). ACM, New York, 27–32.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

45:26 M. B. Stuart et al.

MURALI, S., MELONI, P., ANGIOLINI, F., ATIENZA, D., CARTA, S., BENINI, L., DE MICHELI, G., AND
RAFFO, L. 2006. Designing application-specific networks on chips with floorplan information. In Pro-
ceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’06). ACM, New
York, 355–362.

OGRAS, U. AND MARCULESCU, R. 2006. “It’s a small world after all”: Noc performance optimization via
long-range link insertion. IEEE Trans. VLSI Syst. 14, 7, 693–706.

OLUKOTUN, K., NAYFEH, B. A., HAMMOND, L., WILSON, K., AND CHANG, K. 1996. The case for a single-
chip multiprocessor. SIGPLAN Not. 31, 9, 2–11.

PALESI, M., HOLSMARK, R., KUMAR, S., AND CATANIA, V. 2006. A methodology for design of application
specific deadlock-free routing algorithms for noc systems. In Proceedings of the 4th International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’06). ACM, New York,
142–147.

RIJPKEMA, E., GOOSSENS, K., AND WIELAGE, P. 2001. A router architecture for networks on silicon. In
Proceedings of the 2nd Workshop on Embedded Systems (Progress’01).

SALMINEN, E., GRECU, C., HÄMÄLÄINEN, T. D., AND IVANOV, A. 2008. Network-on-Chip benchmark
specification part 1: Application modelling and hardware description version 1.0. Tech. rep., OCP
(http://www.ocpip.org).

SPARSØ, J. AND FURBER, S., Eds. 2001. Principles of Asynchronous Circuit Design – A Systems Perspective.
Kluwer Academic Publishers.

STAROBINSKI, D., KARPOVSKY, M., AND ZAKREVSKI, L. 2003. Application of network calculus to general
topologies using turn-prohibition. IEEE/ACM Trans. Netw. 11, 3, 411–421.

STENSGAARD, M. B. AND SPARSØ, J. 2008. Renoc: A network-on-chip architecture with reconfigurable topol-
ogy. In Proceedings of the 2nd ACM/IEEE International Symposium on Networks-on-Chip (NOCS’08).
IEEE Computer Society, Los Alamitos, CA, 55–64.

STUART, M. B. AND SPARSØ, J. 2007. Custom topology generation for network-on-chip. In Proceedings of
the Norchip Conference. 1–4.

STUART, M. B., STENSGAARD, M. B., AND SPARSØ, J. 2009. Synthesis of topology configurations and dead-
lock free routing algorithms for renoc-based systems-on-chip. In Proceedings of the 7th IEEE/ACM Inter-
national Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’09). ACM,
New York, 481–490.

WOLKOTTE, P. T., SMIT, G. J. M., RAUWERDA, G. K., AND SMIT, L. T. 2005. An energy-efficient recon-
figurable circuit switched network-on-chip. In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) - 12th Reconfigurable Architecture Workshop (RAW’05).
IEEE Computer Society, 155.

Received June 2009; revised December 2009; accepted January 2010

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 45, Publication date: November 2011.

