Downloaded from orbit.dtu.dk on: Dec 19, 2017

Technical University of Denmark

=
—
—

i

Implementation and Test of Demand Response using Behaviour Descriptions

Kullmann, Daniel; Gehrke, Oliver; Bindner, Henrik W.

Published in:
Proceedings

Link to article, DOI:
10.1109/ISAP.2011.6082246

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Kullmann, D., Gehrke, O., & Bindner, H. W. (2011). Implementation and Test of Demand Response using
Behaviour Descriptions. In Proceedings (pp. 6082246). IEEE. DOI: 10.1109/ISAP.2011.6082246

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://dx.doi.org/10.1109/ISAP.2011.6082246
http://orbit.dtu.dk/en/publications/implementation-and-test-of-demand-response-using-behaviour-descriptions(0b5de81a-6c16-4039-af50-e3b4cc804f26).html

Implementation and Test of Demand Response
using Behaviour Descriptions

Daniel Kullmann, Oliver Gehrke and Henrik Bindner
Risg National Laboratory for Sustainable Energy, Roskilde, Denmark

Abstract—The term Smart Grid describes the effort to enable
the integration of large numbers of renewable distributed energy
resources into the power grid. The fluctuations inherent in
renewable energy resources imply the need to also integrate the
demand side actively into the control of the power system. For
this effort to succeed, a new control infrastructure has to be
put into place. The power system is a distributed system, and
it needs a sophisticated communication framework to cope with
communication problems, such as delays and failures. Recently,
behaviour descriptions have been proposed as an alternative to
synchronous communication in power systems, especially with
small distributed energy resources. This article presents an
implementation of behaviour descriptions and an experiment
that has been carried out to evaluate the feasibility of such an
approach.

Index Terms—Smart grids, Communication systems, Intelli-
gent systems

I. INTRODUCTION

Electrical power systems face the challenge of integrating
large numbers of distributed energy resources (DER). The
power production of most renewable energy sources such as
wind turbines and photovoltaics fluctuates. These fluctuations
have to be balanced in some way, which leads to the desire
to include the demand side actively into the control of power
systems. This means that the behaviour of large numbers of
very different components, located mostly at the distribution
level, has to be coordinated.

The term Smart Grid has been coined to describe a collec-
tion of possible technologies to address the challenges for the
electrical power system. It has no single authoritative defini-
tion, but most descriptions (e.g. [1]) agree on some common
elements: Usage of information and communication technol-
ogy (ICT), control of the consumption side, improvement of
grid reliability, enabling market-driven approaches, integration
of different kinds of DER units (generation, consumption and
storage).

Control implies communication: the distributed components
in the system have to be coordinated to achieve the goal of a
stable system. Different control concepts put different demands
on the underlying communication system: Most importantly,
the communication has to be fast enough for the specific
control system, both in terms of latency and bandwidth. Con-
versely, the existing communication infrastructure may also
require modifications to the control system: If communication
failures are possible, the control system must be able to handle
them gracefully.

Recent work [2], [3] has suggested that smart grid ap-
plications may require more abstract, higher-level forms of

Aggregator

House GW

Appliance
Appliance

Assumed System Structure

Appliance
Appliance

Fig. 1.

communication than provided by the established standards for
power system communication such as IEC 61850 and IEC
61970. This aligns well with other ongoing work: e.g. a recent
effort to create a “Smart Inverter” standard which defines
a certain set of services that inverters should be able to
provide [4], and research to extend the use of the “function
blocks” originally defined in IEC 61499 for use in production
automation systems, to the automation of power systems [5].

This article assumes a specific structure of a control system
for demand-side components: An aggregation hierarchy that
controls many, mostly small, resources. This is exemplified
in Figure 1. The components that are controlled, in this
case household appliances, are directly controlled by a house
gateway. Because the capacity of a single household to pro-
vide system services is not large enough to be of interest
to the system, an aggregator aggregates the capabilities of
multiple households. This aggregator controls the components
indirectly, via the house gateway.

II. STATE OF THE ART

A number of approaches have been proposed to realise the
Smart Grid vision. Some of those use power markets as a
central concept, such as the PowerMatcher system [6] or the
DEZENT project [7]. Other approaches split up the system
into smaller parts that are easier to control; examples for these
are Microgrids [8] and the Cell controller [9].

Aggregation approaches have been suggested as a way to
cope with the complexity of the system. An example for this
are Virtual Power Plants (VPPs), e.g. [10].

All these approaches assume implicitly that communication
just happens; the possibility of failure is silently ignored.
However, a control structure that can allow failures to happen
increases the reliability of a system.

Todays control systems use synchronous communication,
where a controlled device responds immediately to the control
command of a controller. An example for this is the classical
closed-loop control, as employed e.g. in the droop control of a
generator. Here, real-time communication between controller
and controlled system is important because effects of control
impulses have to be visible to the controller (via the feedback
loop) as soon as possible.

Work has started recently to create a “Smart Inverter” stan-
dard [4] whose idea is to provide a standard set of services that
all inverters should provide, among others connect/disconnect,
power factor setting and Volt/VAR settings. Standards like
these are the foundation on which intelligent, reliable, and
distributed control systems can be built. The standard does not
describe how to organize communication in the power system
to build an intelligent control infrastructure, and it does not
address the problem of unreliable communication.

Much research is going on in devising control algorithms for
demand-side components, such as heaters and fridges [11] [12]
[13]. These control systems must in some way be coordinated
to provide a or maximise the benefit for the power system.

[5] proposes to use IEC 61499, the “function block™ stan-
dard, for defining and providing standardised functionality in
power system components. Using the standard is a flexible
way to create units (“function blocks™) that provide certain
functions, but the standard does not contain means to flexibly
activate that functionality.

A different approach is to use dynamic power prices to
control the behaviour of many units. A dynamic power price
contains important information about the state of the power
system, in just a single value. The FlexPower project [14]
has recently started its work. Its goal is to investigate how
a dynamic power price that changes every few minutes can
be used to schedule regulating power from small distributed
energy resources and from demand side resources.

III. BEHAVIOUR DESCRIPTIONS

As stated above, communication is an essential part of the
control of a distributed power system. In order to use the full
technical potential of a controllable energy resource, it has to
be individually addressable (unicast), and the communication
must be bidirectional in order to close the control loop.
Depending on the services offered by the resource, a minimum
bandwidth and/or maximum communication latency may be
required. Generally, the communication must be reliable. If the
number of controlled energy resources is large, communication
must most importantly be low-cost.

For small resources such as controllable loads at the house-
hold level, these requirements are difficult to fulfil at the same
time. Typically, a solution will be chosen based on cost, and
the control system will be limited by the properties of the
communication channel.

A solution to this dilemma can be found using a divide-and-
conquer approach: If the individual communication acts, which
together form a communication process, could be organised in
such a way that each of the individual communication acts has
lower requirements to the communication media compared to

the whole communication process, a combination of different
low-cost technologies could offer equal performance to a
single, more expensive technology.

In particular, the communication for many control tasks can
be separated into communication acts which require unicast
addressing and bidirectional communication but are not time-
critical, and other communication acts which demand reliable
communication with low latency but can be served by a unidi-
rectional broadcast medium. Both technologies are inexpensive
and readily available: consumer DSL connections offer unicast
and bidirectional communication but are unreliable and do not
give any latency guarantees. Broadcast media have been used
for the control of power systems for decades; the most com-
mon variants are FM transmitters and tone-frequency ripple
control systems. These provide high reliability and defined
latency, but do not support bidirectional communication or
unicasting.

We will call the first type of communication act a “behaviour
description” and the second type a “trigger signal”. The trigger
signal contains very little information, and is either a locally
observable quantity or can be transmitted by unidirectional
broadcast medium. The behaviour description, on the other
hand, provides a flexible way to specify behaviour. It tells a
component how to react to certain situations. An example is
to couple power consumption of a heater to a dynamic power
price: When the price is high, the consumption is reduced as
much as possible; when the price is low, the consumption is
increased as much as possible.

The behaviour is negotiated between a component and its
supervisory controller. The negotiation happens some time
before the behaviour is actually needed. When the behaviour
is active, the local component just react to situations as
described in the behaviour description. The decisions are based
on the trigger signals the component can observe, such as
system frequency, voltage, and dynamic power price. The
component’s ability to take autonomous decisions removes the
need for time-critical communication between component and
supervisory controller.

The negotiated behaviour depends on the capabilities of the
controlled component, i.e. the kinds of services it can provide,
and on the constraints the component has to comply with,
such as owner preferences or constraints coming from the
environment. An example for an owner preference is that the
temperature in a house should be in a certain range.

Behaviour descriptions can be interpreted as contracts be-
tween a supervisory controller and the components it controls.
A contract is a binding document, and so is a behaviour
description: Once a component has accepted a behaviour
description, it has to adhere to it. This way, the supervisory
controller knows how a component will react to certain sit-
uations even though there is no continuous communication
between the two parties. Behaviour descriptions are also called
“policies” due to the similarity to contracts.

Behaviour descriptions offer a good compromise between
having autonomous behaviour of the single components, and
still being able to control how they behave. This is a crucial
characteristic for power systems, because the behaviour of
components has to be coordinated to maintain an overall

stable system, while the complexity of the system favours a
distributed approach to control.

More complete rationales for using behaviour descriptions
have been given in [2] and [3].

The basic building blocks of behaviour descriptions are
the services that components can offer to the rest of the
system. Some common way to specify and activate services is
needed. Components use specifications of services to tell their
aggregator what it is they are able to do. Service activations
are what the aggregator then sends to the components. This is
different from sending the component a command to activate
the service; behaviour descriptions contain information about
future, not current, behaviour.

Behaviour descriptions offer a number of interesting fea-
tures. First of all, they enable asynchronous control, i.e. be-
haviours can be activated without having to communicate
directly with the component at that point in time. This
makes behaviour-description-based systems much more re-
silient against communication failures. The second feature is
that they enable behaviour on multiple levels. One example for
that is a behaviour description containing service activations
for a frequency control service and a price-based consumption
service. When the frequency is outside its allowed range, the
behaviour description will tell the component to react. When
the frequency is inside the allowed range, the description
allows the component to react to a dynamic power price, thus
optimising the electricity costs for the component. Behaviour
descriptions can of course contain more than two such levels.
Another example for flexibility is letting the component choose
from several options for a service. An example for that is to
send a list of schedules to the component, and having the
component choose a certain schedule, depending on some
value that can be obtained by the component (e.g. a broadcast
schedule number).

IV. USING RULES TO IMPLEMENT BEHAVIOUR
DESCRIPTIONS

There are many options for how behaviour descriptions can
be expressed. For this work, a rule-based system [15] has
been chosen, where a behaviour description consists of a set
of rules. A rule has the form if (condition) then actions.
The if part contains the condition of the rule, i.e. a Boolean
expression. When the expression evaluates to true, the actions
in the then part are executed. The basic structure of a rule
set is illustrated in Figure 2. The rule base is embedded in
the environment of the component. The conditions reference
values from the environment, and the actions change the
environment.

Often, several rules apply to the same situation. If the
actions of those rules conflict, a single rule has to be selected
for execution. This process is called disambiguation. The
easiest disambiguation strategy is the “first-one-wins” strategy:
The rules are set in a particular order, and they are evaluated
in that order. The first rule whose condition is true is the one
to be executed.

An important part of the rule-based system is the environ-
ment the rule is situated in; without it, a rule would have no

& [Behaviour] . €
qg”—{Condition Action 9——» qé
o —{Condition Action 9——» o
S S
LICJ —gCondition Action %—» LICJ

Fig. 2. Behaviour Description with Rules

access to the state of the physical system (e.g. measurements)
and would not be able to perform any actions. Because
behaviour descriptions are meant to be a generic expression
of control, it is important that the environment is standardised.
This implies the need for a common ontology. A suitable
environment consists of the following parts:

o A facility to get access to events generated by the
outside world, such as local measurements and broadcast
messages received.

o Descriptions of services (e.g. “Frequency Response”)

« Descriptions of service instantiations, i.e. service descrip-
tions plus a set of parameters needed to use the service
(e.g. the droop curve used in a droop controller)

« A mechanism to activate a particular service

Rules are a good way to express behaviour descriptions:
First of all, rules are easy to understand for both humans and
computers, making human supervision of the control system
possible. Rules can also be generated easily with a computer
program, because of their strict structure. Flexibility is a key
feature of behaviour descriptions, and rules do provide this
flexibility: rule sets can be arbitrarily complex, and rules can
be adapted to obey local constraints of components.

V. PoLICY FRAMEWORK

The implementation of the example case explained in the
next section is based on the policy framework, a Java library
developed by the authors. It provides a mechanism for using
arbitrary behaviour descriptions in a control system. The
policy framework was originally developed on top of the JADE
multi-agent platform, but has since been extended to also
support a simple http-based transport layer which is easier to
configure and use. The framework does not put any constraints
on the type of behaviour descriptions that can be used; this
allows for experimentation with different ways of expressing
them.

The policy framework implements the protocol for negoti-
ating policies. The protocol consists of a number of steps that
components have to go through:

1) The component is new, and registers at its aggregator

2) The aggregator starts a negotiation round

3) The component sends information about itself to the
aggregator: the state it is in, the services it supports and
the constraints it has to comply with

4) The aggregator creates a behaviour description/policy
and sends it to the component

5) The component accepts the behaviour description

6) The component activates the behaviour description as
soon as it becomes valid

7) Before the validity interval expires, the component starts
a new negotiation

To implement a specific control system, several classes have

to be implemented that have to be registered in the framework
during runtime:

1) The actual behaviour description(s) used; this includes
serialisation of the descriptions into a text format that is
transferred between server and client

2) Descriptions of the components of the client side; this
includes the description of supported services, and of
the constraints the clients have to obey

3) The server implementation; this part is responsible for
creating the behaviour descriptions for each client

4) The client implementation; it provides the component
descriptions from item #2, receives the behaviour de-
scriptions, and acts according to them

VI. IMPLEMENTATION

A proof-of-concept demonstration for the control of heaters
in a household has been implemented at the SYSLAB facility
[16]. SYSLAB is a small power system designed to facilitate
the development and testing of distributed control algorithms
for power systems. A part of SYSLAB is PowerFlexhouse,
an intelligent office building equipped with a large number
of sensors and various types of controllable demand. An em-
bedded controller in the building is able to execute behaviour
descriptions. In the following example, we will demonstrate
how the policy framework can be used to implement reliable
dynamic demand response.

In the example, the building is set up to respond to two types
of external events: Changes in system frequency, and changes
in a dynamic power price. Depending on these parameters and
the behaviour description in effect, the building can modify the
setpoints of the heater thermostats in individual rooms, in order
to decrease or increase the overall power consumption. The
system frequency is measured directly at the building’s grid
connection point. The Nordic power system does not currently
have a mechanism for the generation or broadcast of fast
dynamic power price signals, although such a mechanism is
likely to exist in the future. For the sake of this demonstration,
a real-time artificial price signal has been generated, based on
production and consumption data in the Danish power system.
The price calculation is based on the rationale that a high
penetration of wind energy works towards lower spot prices,
since the marginal production cost of wind energy is very low.

The implementation uses rules that access service objects as
black boxes. That means that the actual implementation of the
service is unknown to the rule, and only accessible through
a uniform interface. In this way, any kind of service can be
used in a rule-based system, without having to expose the
implementation details of the service.

The syntax of the rules comes from the Drools expert
system, a Java-based rule engine [17]. The Drools system
supports two different syntaxes, one a XML format, the other
one more programming-language like, which is the one used
here.

package heatercontrol;

rule "setup"
when
registrar: Registrar () and
ctrl : HeaterController() and
sourcel SystemFrequency () and
source?2 : PowerPrice()
then
registrar.register (
new FreqgControl (
new Thresholds (49.98,
sourcel, ctrl));
registrar.register (
new PriceCtrl (

50.01),

new Thresholds (55.745, 64.546),
source2, ctrl));
end
rule "frequency-1"
activation-group "hc"
when
ctrl : FregControl (activate == true) and
sched : HeaterController ()
then
sched.use(ctrl);
end
rule "price-2"
activation-group "hc"
when
ctrl : PriceCtrl(activate == true) and
sched : HeaterController ()
then
sched.use(ctrl);
end
Fig. 3. Simplified Example Rule Base

Another issue is how to provide the rule bases with the
environment they have to work in. In our example case, the
environment consists of the following parts (compare this with
the list of environment parts in section IV):

e Measurements of frequency and dynamic power price

o Abstractions of the frequency control and price reaction
services

¢ A mechanism to tell the system to activate a certain
service, i.e. a service scheduler

The two kinds of services (frequency control and price
control) have a similar API for usage in the rule bases:

o A method to create an instance of a service

o Methods to start and stop the service; these are used by
the service scheduler

¢ A method to evaluate whether a service would like to be
activated; only the first such service that is found in the
rule base is actually activated

Since the implementation is based on Java, the environment
of the rules is also specified using Java interfaces and classes.
The measurements of frequency and power are provided by
a unified interface which can inject measured (or received)
values into the services. The services provide a common
interface which has three main functions: a method to inject
measured values into the service, a method to ask a service
whether it wants to be activated, and a means to activate a
service. The service activation is provided by a scheduling

agent that is always present in the environment of the rule
base.

A big implementation issue is how to get service instances
with the right parameters into the rule base. The services
need certain parameters to be able to function; in the ex-
ample case, both services worked with low/high thresholds,
so two parameters are needed for each service instantiation.
The problem is how these service instances are put into the
environment of the rule base. It would have been possible
to send additional information about the services along with
the behaviour description, but this meant that a separate data
format for service activations would be necessary. The option
that is implemented adds an additional “setup” rule to the rule
base that is triggered exactly once. This extra rule contains
code to initialise the services and to register them in the
environment.

An example rule base is shown in Figure 3. This is a
cleaned-up version of a rule base that was actually used in
the experiment; names and values have been shortened to
make it more readable. The first rule setup is the setup rule
mentioned in the last paragraph; it sets up the two service
activations with the appropriate thresholds and registers them
in the environment. The other two rules, frequency-1 and
power-1, are the actual work rules of the rule base. They just
evaluate whether the service in question wants to be activated
(i.e. the measurement is outside the service deadband), and if
this is true the service scheduler is instructed to activate the
service. The two rules exclude themselves mutually (this is
done with the activation—-group directive), so only the
first of them that fires is activated. The rule base is very simple
because the work of the services is hidden inside the blackbox
of the service activation implementation.

VII. CASE EXPERIMENT

The experimental setup of the example case controlled the
eight rooms in PowerFlexhouse individually using behaviour
descriptions. Each room was controlled by its own client which
offered maximally two services to the system: a frequency
control service, and a service that reacted to the dynamic
power price. The price reaction service was offered by all
clients, but not all offered the frequency control service. This
was done to demonstrate that behaviour descriptions can in fact
be adapted to the capabilities of the individual components.
Both offered services are parametrised by high and low
thresholds. The services are kept simple on purpose, because it
was not the purpose of the experiment to demonstrate complex
control algorithms, but rather to show that a system based on
behaviour descriptions actually works, and to evaluate how
behaviour descriptions can combine simple services to allow
for more complex behaviour.

A server program running on a different computer calculated
the behaviours for the single rooms. The thresholds for the
services are calculated in a way to provide smooth reaction to
changes in frequency and power price.

The policies for the frequency service change every two
hours: Three different widths of the frequency controller dead-
band are used. This was done to demonstrate the flexibiulity
of policies. This can be seen in the middle plot of figure 5.

50-6_I T T T T T T T T T T T I T T I:67-5
504 M““‘W E P S
Foy I Frequency § <
S - Price =460 %
S 50.21— g &
8 [=57.5
© i 155 =
&5 50 E

! | | | =525

49-8 1 1 1 I 1 1 1 1 1 1 I 1 1 1 I 1 1 I:SO

10_I T T T T T T T T T T T T T I_
= 8:_ . o din] L Ll]
= %]
s E 1) i
AR |
s 4 It :
= 0 :
S 2 |]
- "ttt
S W wuLruu | RIRIRin
S, | I |

g LU uruvrvururr Uy Ut
i AN O 1 A
=
3
E [T
£ NAANOMOA0N0N[NNNRONCTACE

0 2 4 6 8 10
Time [h]

Fig. 4. Overall results

VIII. OBSERVATIONS

The plots in figure 4 contain measured data from a single,
10-hour run of the experiment. During the experiment period,
the power price input signal decreases steadily with few and
small upward excursions. The system frequency input shows
a slowly increasing trend, followed by a marked drop towards
the end of the period.

In the second subfigure, the overall power consumption of
the building exhibits a strong oscillatory pattern caused by the
underlying thermostatic control of the heaters. A correlation
between power consumption and system frequency can be
observed. The price, on the other hand, does not appear
to have a strong impact on the consumption. This can be
explained by the fact that the price controller only acts as
a secondary control loop, and is overridden whenever the
primary frequency controller is active. During the period of
the experiment, this was the case for most of the time.

The switching state of the individual heaters is shown in
the bottom subplot. Due to low outside temperatures during
the experiment, some heaters can be seen to be on almost all
of the time.

Figure 5 details the behaviour of a single room during the
same experiment. In the first hours of the experiment, the
temperature setpoint (red) remains largely at 19°C due to

215 :
21
205
20
195

s A M A

s AR N S R
50.2 :

Measured

Setpoint IU"LIJLIJJ

T

Temperature [°C]

P I I N Y

50.1F

NI

50 Fr i b e B

49.9-

Thresholds
Frequency

49.8 ! ! ! ! ! ! ! ! 1 I 1 1 1 I ! ! !

Grid frequency [Hz]

Thresholds

641+ Price

Laady

60{-

L

Energy price [€/MWh]
(2]
N
T

S8 0w

o
N
IN
o
@
=

Time [h]

Fig. 5. Results for Room #6

the high power price and low system frequency. The room
temperature (black) follows the setpoint within the hysteresis
of the thermostatic control.

The second and third subplots show the relationship be-
tween the two input signals - price and frequency - and the
thresholds in effect according to the active policy. The two-
hour period for policy changes is easy to observe.

In hour 6 of the experiment, an increase in system frequency
triggers the upper frequency threshold. At nearly the same
time, the power price begins to drop, first below the upper,
then below the lower threshold. This leads to an almost
constant temperature setpoint of 21°C for the remainder of
the experiment.

The observations demonstrate that individual clients do react
to the frequency and power policies sent to them through
the policy framework. However, more and longer experiments
as well as a deeper analysis of measured data is needed to
determine and quantify the precise effect of changing policies.
In the experiment presented in this paper, the thermostatic
control of the heaters and external influences such as the
outside temperature interfere with the effects caused by the
controller. Further statistical analysis is needed to separate
these effects.

IX. CONCLUSION

This article explained the concept behind behaviour descrip-
tions, demonstrated an implementation in the Java program-
ming language, and showed the results of an experimental test
of behaviour descriptions in Risg’s SYSLAB facility.

Behaviour descriptions enable control systems to deal with
communication failures, and they reduce computational and
communication load on supervisory controllers, because they
decouple supervisory controller and controlled components

and make more autonomous, yet still controlled, behaviour
of components possible.

Behaviour descriptions don’t rely on specific services that
components offer to the power system. This is an intentional
feature of behaviour descriptions: They provide a container
for the flexible and reliable execution of services; the only
things needed from the services is the means to describe and
to control them.

The experimental results show that behaviour descriptions
can have a positive effect on the power system by controlling
the power consumption of demand-side consumers. The ser-
vices used in the experiment are very simple, so the effect of
more sophisticated services can be expected to be better.

REFERENCES

[1] The Modern Grid Initiative, “The Modern Grid Initiative Version
2.0, Conducted by the National Energy Technology Laboratory
for the U.S. Department of Energy Office of Electricity
Delivery and Energy Reliability,” Jan. 2007. [Online]. Available:
http://www.netl.doe.gov/moderngrid/resources.html

[2] Daniel Kullmann, Henrik W. Bindner, and Oliver Gehrke, “Towards
flexible control and communication of minigrids,” in 5th European
Conference on PV-Hybrid and Mini-Grid, Tarragona, Spain, 2010.

[3] Daniel Kullmann and Henrik W. Bindner, “Using Rules in High-level
Communication for the Control of Power Systems,” in 2nd International
Conference in Microgeneration and Related Technologies in Buildings,
Glasgow, United Kingdom, 2011.

[4] Electric Power Research Institute (EPRI), “Standard Language Protocols
for Photovoltaics and Storage Grid Integration — Developing a Common
Method for Communicating with Inverter-Based Systems,” 2010.

[5]1 N. Higgins, V. Vyatkin, N. C. Nair, and K. Schwarz, “Distributed power
system automation with iec 61850, iec 61499, and intelligent control,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 41, no. 1, pp. 81 =92, 2011.

[6] J. Kok, C. Warmer, I. Kamphuis, P. Mellstrand, and R. Gustavsson,
“Distributed control in the electricity infrastructure,” Presented at Inter-
national Conference on Future Power Systems 2005, 2006.

[71 H. F. Wedde, S. Lehnhoff, C. Rehtanz, and O. Krause, “Bottom-up self-
organization of unpredictable demand and supply under decentralized
power management,” in SASO, S. A. Brueckner, P. Robertson, and
U. Bellur, Eds. IEEE Computer Society, 2008, pp. 74-83.

[8] Microgrids & More Microgrids, http://www.microgrids.eu.

[9] energinet.dk, “The Cell Project home
http://www.energinet.dk/en/menu/R+and+D/The+Cell+Project/.

[10] Danny Pudjianto, Charlotte Ramsay, and Goran Strbac, “The FENIX
vision: The Virtual Power Plant and system integration of distributed
energy resources,” Imperial College, Tech. Rep., 21 Dec. 2006.

[11] Yi Zong, Daniel Kullmann, Anders Thavlov, Oliver Gehrke, and Henrik
'W. Bindner, “Model Predictive Control Strategy for a Load Management
Research Facility in the Distributed Power System with High Wind Pen-
etration -Towards a Danish Power System with 50% Wind Penetration,”
2011.

[12] Preben Nyeng, Jacob @stergaard, Mikael Togeby, and Janos Hethey,
“A pooling-based load shift strategy for household appliances,” in 24th
International Conference on Informatics for Environmental Protection,
2010, pp. 734-743.

[13] Ontje Liinsdorf and Michael Sonnenschein, “A pooling-based load shift
strategy for household appliances,” in 24th International Conference on
Informatics for Environmental Protection, 2010, pp. 734-743.

[14] FlexPower project partners, “FlexPower Project Description,”

page,”

http://www.ea-energianalyse.dk/reports/1027_flexpower_project_description.pdf,

Tech. Rep., 2010.

[15] J. C. Giarratano and G. D. Riley, Expert Systems: Principles and
Programming, 4th ed. Course Technology, 2004.

[16] O. Gehrke and H. Bindner, “Building a test platform for agents in power
system control: Experience from SYSLAB,” in International Conference
on Intelligent Systems Applications to Power Systems 2007, 2007, pp.
1-5.

[17] The JBoss Project, “Drools,” http://www.jboss.org/drools/.

