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Abstract—The shift invariant multi-linear model based on
the CandeComp/PARAFAC (CP) model denoted ShiftCP has
proven useful for the modeling of latency changes in trial
based neuroimaging data[17]. In order to facilitate component
interpretation we presently extend the shiftCP model such that the
extracted components can be constrained to pertain to predefined
frequency ranges such as alpha, beta and gamma activity. To
infer the number of components in the model we propose to
apply automatic relevance determination by imposing priors that
define the range of variation of each component of the shiftCP
model and learning the hyper-parameters of these priors during
model estimation.

I. INTRODUCTION

Analysis of neuroimaging data sets such as electro- and
magneto-encephalography (EEG and MEG) or functional mag-
netic resonance imaging (fMRI), is hampered by noise, con-
founds, and the presence of multiple mixed signal components
of interest. To overcome poor signal to noise (SNR) data is
typically measured across multiple trials and subsequently
averaged. These averaged EEG and fMRI data may be rep-
resented by a space × time matrix X ∈ RI×J with elements
xi,j . Bi-linear component analyses are routinely applied to
neuroimaging data for exploratory investigations or as a pre-
processing step prior to signal detection, see for instance [5],
[12], [13]. The bi-linear model reads

xi,t =
∑D

d=1
ai,dbt,d + εi,t,

where the data is represented as a sum of components with
time profiles b1, . . . , bD and corresponding spatial topogra-
phies a1, . . . ,aD, and where εi,j is i.i.d. noise. Since such
factor analytic representations are ambiguous, additional con-
straints may be imposed. For singular value decomposition
(SVD) and principal component analysis (PCA) profiles are
assumed orthogonal as eigenvectors of the covariance matrix,
while for independent component analysis (ICA) an indepen-
dence assumption is imposed for one of the two modes.

When data are recorded over K repeated trials, we obtain a
space×time×trials hypermatrix X ∈ RI×T×K also commonly
denoted a multi-way array or tensor. A natural extension of the
bi-linear analysis is to introduce a trial dependent weight ck,d
which form the CandeComp/PARAFAC model [7], [4] jointly

abbreviated CP given by

xi,t,k =
∑D

d=1
ai,dbt,dck,d + εi,t,k.

Thus, cd represents the strength in which the profile time
series bd with spatial topography ad is expressed throughout
the trials. The CP model is unique under mild conditions
that in general are satisfied in the presence of noise [11].
Consequently, modeling repeated trials by CP in theory re-
solves the ambiguities encountered when modeling the data
by (bi-linear) factor analysis. The application of CP to EEG
was first suggested in [7] and was later reinvented in [14]
under the name topographic component analysis. In [1] it
was further demonstrated how the CP model is useful in the
analysis of fMRI. Unfortunately, the CP model is known to
suffer from degeneracy issues when analyzing neuroimaging
data such as EEG and fMRI [6], [2], [17] which hampers model
interpretation as the extracted components become highly
correlated. In [17] it was however demonstrated that extending
the CP model to include a trial specific delay forming the
shiftCP model [9], [10], [17] alleviates issues of degeneracy.
The shiftCP model is given by

xi,t,k =
∑D,T

d=1,τ=1
aidbt−τid,dckd + εi,t,k.

Here, the time profile bd is present with delay τkd in trial k.
In this contribution we elaborate on the above shiftCP

model. We presently extend the shiftCP model such that the
model can constrain the components to predefined frequency
ranges. As the interpretation of EEG signals is commonly based
on the spectral ranges of the signals in terms of activation
within frequency bands such as Delta (0-4 Hz), Theta (4-8
Hz), Alpha (8-13 Hz, Beta (13-30 Hz) and Gamma (>30 Hz)
constraining components in terms of these types of activation
can potentially facilitate component interpretation. We addi-
tionally propose the use of automatic relevance determination
which has recently been extended to multi-way models [18] in
order to infer the number of components in the shiftCP model.
The proposed extensions of the shiftCP model is evaluated on
synthetic data and real event related EEG. A Matlab imple-
mentation of the shiftCP model and the proposed extensions
are available for download from www.mortenmorup.dk.
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II. METHODS

A. notation

Let AI×D, BT×D and CK×D be matrices holding the
profiles defined in the shiftCP model in equation (I). Let
further ad denote the dth column of A and ai,: the ith

row of A. In the following B and B̃ will denote the same
matrix in the time and frequency domain respectively, i.e.
Ũ = F(U), U = F−1(Ũ) using the discrete fourier transform
(DFT) and inverse fourier transform along the modality indexed
by t ∈ {1, 2, ..., T}. Let further ◦ define the direct product,
i.e. (P ◦ Q)lm = plmqlm and � denote the Khatri-Rao
product given by (P �Q)(l−1)M+m,d = pldqmd. Finally, the
1-mode, 2-mode and 3-mode matricizing operation are given
by (X(1))i,j+(k−1)J = xi,j,k, (X(2))j,i+(k−1)I = xi,j,k and
(X(3))k,i+(j−1)I = xi,j,k respectively (see also [15] for further
details on these operators).

B. The frequency constrained shiftCP model

In the frequency domain the shiftCP model is given by [17]

x̃i,f,k =

D∑
d=1

ai,db̃f,dck,dexp[−ı2π
f − 1

T
τk,d] + ẽi,f,k.

Thus, the sources bd are assumed to be periodic such that shifts
τ k,d correspond to the complex multiplication of b̃d with the
factor exp[−ı2π f−1T τ k,d]. Notice, due to Parseval’s identity
there is a one-to-one correspondence between the least squares
error in the time and frequency domain such that the least
squares minimization can be performed arbitrarily between the
two domains∑

i,t,k
‖Ei,t,k‖2 =

1

T

∑
i,f,k
‖Ẽi,f,k‖2.

A simple approach to constrain the shiftCP model to a given
frequency range would be to band-pass filter the data X .
However, we are presently interested in extracting components
pertaining to specific frequency ranges such that the data X is
modelled as a mixture of components pertaining to different
frequency ranges. This can be expressed by the following
frequency constrained shiftCP model

xi,t,k =

D∑
d=1

ai,dbt−τk,d,dck,d + εi,t,k

s.t. b̃f,d = 0 if wfd = 0.

W is a binary matrix where the element wfd = 1 indicate
that frequency f is included in component d and wfd = 0

that the frequency is not included where b̃d corresponds to
the frequency domain representation of bd.

We will formulate the problem in a Bayesian framework
which admit model order estimation through automatic rel-
evance determination, see also [18]. We impose normal dis-
tributed priors on A, B and C with a shared componentwise
hyper-parameter λd as proposed in [19] for bi-linear models.

Thus,

P (A|λ) =
∏
d

(
λd
2π

)I/2 exp (−λd‖ad‖
2
F

2 )

P (B|λ) =
∏
d

(
λd
2π

)T/2 exp (
λd‖bd‖2F

2 )

P (C|λ) =
∏
d

(
λd
2π

)K/2 exp (
λd‖cd‖2F

2 )

We further specify i.i.d. Gamma priors on the elements of λ,
i.e.

P (λ|α, β) =
∏
d

βα

Γ(α)
λα−1d exp (−βλd)

On τ we use a uniform prior giving equal weight to all of the
T potential shifts

P (τ |J) =

{
1
T for − T/2 < τ ≤ T/2
0 otherwise

Further assuming Gaussian i.i.d. noise with variance σ2 we
have

P (X|A,B,C, τ , σ2) =
∏
itk

exp (−
(xi,t,k−

∑
d aidbt−τi,d,dci,d)

2

2σ2 )
√

2πσ2
,

such that the joint log-likelihood is given by

logP (X ,A,B,C, τ ,λ|σ2, α, β) =

− 1

2σ2

∑
itk

(xi,t,k −
∑
d

aidbt−τk,d,dck,d)
2

+
1

2

∑
d

(I + T +K + α− 1) log λd

−λd
2

(‖ad‖2F + ‖bd‖2F + ‖cd‖2F + β) + const.

const is a constant independent of the parameters we will
infer in the model. We estimate the model parameters by
maximizing the above joint posterior applying an alternating
strategy where we estimate one set of parameters keeping the
remaining set of parameters of the model fixed.

C. Estimating A, B and C

Let c̃
(f)
k,d = ck,d exp[−ı2π f−1J τk,d] and define b̃

(k)
f,d =

b̃f,d exp[−ı2π f−1J τk,d], i.e. B̃ componentwise shifted accord-
ing to the delays to the kth channel and. Setting zt+T (k−1),d =

ck,db
(k)
t,d , i.e. the Khatri-Rao product between C and the shifted

version of B and using n-mode matricizing and the Khatri-
Rao product operations we can state the estimation of A, B
and C according to

A← X(1)Z(σ
2
diag(λ) + Z

>
Z)
−1
,

B̃f,Wf
← X̃(2)f,:

(C̃
(f)
Wf
�AWf )(σ

2
diag(λWf ) + C̃

(f)T

Wf
C̃

(f)
Wf
◦AT
Wf
AWf )

−1
,

Ck,: ← X(3)k,:
(B

(k) �A)(σ
2
diag(λ) +B

(k)T
B

(k) ◦AT
A)
−1
.

The frequency domain constraints on the components of B
are imposed by changing the update for B in the frequency
domain to only include the components that are active at the



Fig. 1. Synthetic data example. Data is generated according to the shiftCP
model and the parameters are inferred without frequency constraints, con-
straining all the components to disregard the 50 Hz and both 12 Hz and 50
Hz activity respectively. The automatic relevance determination framework
was applied in order to prune irrelevant components of the 10 components
fitted to the data.

given frequency f given by the set Wf = {d′|wf,d′ = 1}.
Thus, if a component d′′ is constrained to not include fre-
quency f we force b̃f,d′′ = 0. Notice, whereas A and C
are updated in the real domain B is updated in the complex
domain. However, B is only real valued in the time domain
if the following relation holds in the frequency domain [17]

b̃T−f+1,d = b̃∗f,d,

such that B̃ is conjugate symmetric. This constraint is en-
forced by updating the first bT/2c + 1 elements, i.e. up to
the Nyquist frequency, while setting the remaining elements
according to equation the above. Since the estimation is stated
as regular factor analysis problems non-negativity constraints
for A and C can be imposed using the active set procedure
given in [3], see also [17].

D. Estimating τ

Following [17] we define

R
(d′)
(3)k,:

= X(3)k,: −
∑

d6=d′
ck,d(b

(k)
d � ad)

T,

i.e. R(d′)
(3)k,:

is the remaining signal at the kth row when
projecting all but the d′th source out of X(3). Let,

sk,d′(t) =
∑

i
R(d′)
i,t,kai,d′ ,

ṽk,d′(f) = s̃∗k,d′(f)b̃f,d′ .

τk,d′ is then estimated according to [17]

τ̂k,d′ = argmax
t
|vk,d′(t)|

τk,d′ = τ̂k,d′ − (T + 1).

I.e. as the delay corresponding to maximum absolute cross-
correlation between sk,d′(t) – the time profile of the residual
for the d′ component and bd′ -the component time profile.

E. Estimating λ and setting σ2

Differentiating the joint likelihood with respect to λd and
setting the gradient to zero we obtain the update

λd =
I + T +K + α− 1

‖ad‖2F + ‖bd‖2F + ‖cd‖2F + β
.

Rather than estimating σ2 from data we follow [18] and set
σ2 according to a predefined signal to noise ratio (SNR) of
0db. As a result we have

σ2 =
‖X‖2F

(1 + 10SNR/10)ITK
=
‖X‖2F
2ITK

.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In our analysis we set α = 1 and β = 10−9 ‖X‖ITK . The
convergence criterion of the algorithm was set to a relative
change in fit less than 10−6 or when the algorithm had run
for 500 iterations. The parameters in the frequency constrained
shiftCP model were updated in the sequence; B, τ , A, C and
the updates were accelerated using the approach suggested
in [20]. By imposing the componentwise hyper-parameter λd
defining the range of variation of each component the model
order is estimated based on the update for λ, i.e. the larger λd
becomes the more the parameters of the dth component will be
regularized towards zero. We updated λ every 5th iteration.
For details on the implementation consult the Matlab script
available for download at www.mortenmorup.dk.

A. Simulated data

To investigate that the frequency constrained shiftCP model
is able to infer only components within given frequency ranges
and that the proposed model order selection approach based
on ARD can be used to infer the number of components we
considered a synthetical dataset generated according the the
shiftCP model based on the following four components; a
drift, 12 Hz, 24 Hz and 50 Hz oscillations given by perfect
sinusoids. The data was generated with SNR = 5dB.

Figure 1 shows the frequency constrained shiftCP analysis of
the synthetically generated data without frequency constraints,
all components constrained to not include 50 Hz and all
components constrained to disregard both 50 Hz and 12 Hz.
By updating the hyper-parameters for each of the 10 imposed
components (i.e., λd) only relevant components prevailed
while additional components were pruned from the model.
Thus, the model correctly identifies all four components when
there is no frequency constraints, three components when
constrained for the 50 Hz component and 2 components when



Less than 12 Hz 12-30 Hz 30-80 Hz more than 80 Hz

Fig. 2. Top panel: 40 component analysis of the real event related EEG data without frequency constraints. Bottom panel: 40 component analysis of
the real event related EEG data with frequency constraints. The delay and trial dependent strength is plotted in a 2D-plane as a complex vector given by
ck,d exp(−i2πτk,d/T )

constrained both for the 12 Hz and 50 Hz components. Notice
that when constraining the components for 12 Hz and both 12
Hz and 50 Hz the drift which also contain 12 Hz and 50 Hz
activation is no longer perfectly recovered.

B. Real event related EEG data

We finally analyzed the real event related EEG data consid-
ered in [17]. The data is based on a visual object identification
task. The data contain a 64 channel recording of a healthy
male subject based on the visual stimulus paradigm [8]. The
paradigm consists of two types of black and white drawings:
(1) objects (Ob), which are easily recognizable everyday type
of objects like a chair, a number or a pipe, and (2) non-objects
(Nob), which are random re-arrangements of the Ob drawings.
Each stimulus category included 313 events and an object was
presented up to three times. The data were down sampled
to 512 Hz and referenced to digitally linked earlobes. No
trials were rejected – instead the data were high-pass filtered
> 3Hz to remove the most heavily confounding drift and slow

wave effects. 50 Hz electronic noise was projected out using a
multiple linear regression filter in intervals of 2 seconds. The
data were cut into trials −500 to 1500 ms forming the data
array I = 64 channel × T = 1024 time-points × K = 313
trials.

The data was analyzed using both an unconstrained shiftCP
model as well as a frequency constrained shiftCP model
including 40 components such that sets of 10 components were
defined to disregard activation above 12 Hz, frequencies below
12 Hz and above 30 Hz, frequencies below 30 Hz and above
80 Hz and frequencies below 80 Hz respectively. We further
constrained C to be non-negative in order to model the trial
specific strength such that the sign of topography and time
courses for each component are consistent across the trials. In
both analysis we used ARD in order to attempt to infer the
model order.

In the top panel of figure 2 is shown a 40 component shiftCP
analysis of the data. The extracted components are all mixtures
of various frequency bands. In the bottom panel of figure 2



is given the analysis imposing various frequency constraints
on the components. Clearly the patterns of activation pertains
to these specified frequency ranges. In particular, the high
frequency components appear to model a strongly localized
activation in the left hemisphere. For both models no compo-
nents were pruned by ARD.

IV. CONCLUSION

We presently extended the shiftCP model of [17] such that
the components could be constrained to specific frequency
ranges. We further formulated the shiftCP model in a Bayesian
framework and used automatic relevance determination (ARD)
to automatically estimate from the data the number of com-
ponents. The success of the approach was demonstrated on
synthetic data where the components of the model when
constrained for given frequencies disregarded these patterns
of activations while the ARD framework correctly pruned all
unnecessary components.

In the analysis of real event related EEG it was demonstrated
how components could be constrained to capture different
consistent frequency domain signatures of the data in separate
components. However, in both the shiftCP and the frequency
constrained shiftCP analyses no components were pruned by
ARD. We attribute this to the EEG data supporting more than
the presently considered 40 components. In particular, many
of the components extracted resembles patterns of bursts.
These bursts may appear multiple times across the duration
of each trial of 2 seconds. However, multiple bursts within
trials varying in amplitude, shape and relative onsets across
trials can only well be accommodated by the shiftCP model
by including separate components for each burst. We believe
a convolutive CP model as proposed in [16] may be able to
address this issue. This will be the focus of future research.

The proposed framework readily generalize to other multi-
way models such as the Tucker model, see also [15] for a
review of multi-way modeling approaches. By the frequency
constrained shiftCP model we have demonstrated how domain
knowledge such as frequency information can be imposed in
the unsupervised modeling of multi-way neuroimaging data.
We note that the proposed frequency constrained modeling
approach can also be combined with other types of domain
specific constraints such as constraining the estimated tempo-
ral delays to given time intervals or imposing orthogonality
constraints on the extracted topographic maps.
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