View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Efficient Co-Simulation of Multicore Systems

Brock-Nannestad, Laust; Karlsson, Sven

Published in:
Proceedings of the Fourth Swedish Workshop on Multicore Computing

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Brock-Nannestad, L., & Karlsson, S. (2011). Efficient Co-Simulation of Multicore Systems. In Proceedings of the
Fourth Swedish Workshop on Multicore Computing

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/13780621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/efficient-cosimulation-of-multicore-systems(daf870d4-aa45-441c-979b-9c0dcbbeca45).html

Efficient Co-Simulation of Multicore Systems

Laust Brock-Nannestad
DTU Informatics
Technical University of Denmark

s060339@student.dtu.dk

ABSTRACT

Simulation is an indispensable tool for debugging and ver-
ification of multicore systems. However simulation is slow.
For complex multicore systems a simulation model will ex-
ecute several orders of magnitude slower than the actual
hardware implementation. We propose a method for cap-
turing the hardware state of a multicore design while it is
running on an FPGA. With minimal changes to the design
and using only the built-in JTAG programming and debug-
ging facilities, we describe how to transfer the state from an
FPGA to a simulator. We also show how the state can be
transferred back from the simulator to FPGA. Given that
the design runs in real-time on the FPGA, the end result is
speed improvements of orders of magnitude over traditional
pure software simulation.

1. APPROACH

We propose a method which complements a normal FPGA
design work flow. The design on the FPGA is halted and
its state transferred to a PC using a so-called Readback. We
correlate the captured state of memory blocks and registers
with the equivalent variables in the HDL model. We then
update the HDL model so that it may be started in a sim-
ulator at the point in time where the hardware design was
halted. Likewise we perform the opposite process, captur-
ing values from the simulator and generating a new bitstream
for the FPGA so it can be started where the simulator was
halted. A set of tools help automate these steps. This it-
erative process can be used to speed up execution by only
employing the slow but detailed simulator when the design
is executing at a point of interest.

Similar approaches can be found in other projects. gNO-
SIS [2] focuses on verification by running a design on an
FPGA and in a simulator in parallel, the goal being to find
simulation mismatches by comparing their state. Proto-
Flex [1] is a hybrid simulation/emulation platform which
partially models I/O devices or processors in FPGAs. The
FPGA only implements common operations and is backed
by a full software model, which requires that the state be
transferred between the two models. Where ProtoFlex uses
FPGASs to speed up full system simulation, we want to im-
prove the simulation time for generic hardware designs.

2. EXPERIMENTAL RESULTS

We employ two circuits: a small circuit which is used for
validation and a larger circuit to estimate real world impact.
The larger circuit is roughly equal in size and complexity to

Sven Karlsson
DTU Informatics
Technical University of Denmark
ska@imm.dtu.dk

a single node in an FPGA based multicore system and is the
one being presented here. The Xilinx FPGA ran at 50 MHz.

The execution time of various tasks can be seen in table
As one can see, there is a high initial cost for execution on
the FPGA, taken up by initial bitstream generation, see Syn-
thesis, Place € Route. If the state of the FPGA is captured
after less than 50,000,000 cycles, corresponding to one sec-
ond of execution on the FPGA, simulation in ModelSim is
faster. For longer simulation times, executing on the FPGA
is clearly beneficial. Once the initial bitstream has been gen-
erated, subsequent modifications are considerably faster as
they only modify register and memory values and not the
layout of the design.

Task Duration (sec.)
Synthesis, Place & Route 309
Run 50,000,000 cycles on FPGA 1
Readback and Parse captured state 37
Simulate 50,000,000 cycles 355
Modification of bitstream 33

Table 1: Execution times for steps in the workflow.

3. CONCLUSION AND FUTURE WORK

We have found our approach useful when a long simulation
time is required. The proposed workflow incurs a high initial
time penalty, especially due to synthesis and mapping, but
these only need to execute as part of the first iteration and
subsequently performance improves significantly. For our
test circuit, execution on the FPGA was found to be over
300 times faster than in the simulator. While we have shown
the our approach is feasible, there are still issues to tackle.
Certain HDL constructs leave the concrete implementation
up to the synthesizer, making it difficult to automatically
map their state back into the simulation model. In addition,
we only consider state inside the FPGA and not devices
attached to it, e.g. external memories.

4. REFERENCES

[1] E. S. Chung, J. C. Hoe, and B. Falsafi. Protoflex:
Co-simulation for component-wise fpga emulator
development. In 2nd Workshop on Architecture
Research using FPGA Platforms, 2006.

[2] A. Khan, R. N. Pittman, and A. Forin. gnosis: A
board-level debugging and verification tool. In
International Conference on Reconfigurable Computing
and FPGAs, 2010.



	Approach
	Experimental Results
	Conclusion and Future work
	References

