

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Hardware Support for Dynamic Languages

Schleuniger, Pascal; Karlsson, Sven ; Probst, Christian W.

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schleuniger, P., Karlsson, S., & Probst, C. W. (2011). Hardware Support for Dynamic Languages. Poster
session presented at 7th International Summer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems, Fiuggi, Italy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13780611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/hardware-support-for-dynamic-languages(d13a06b2-8f59-4b11-97af-1b22e96def11).html

Hardware Support for Dynamic Languages
Pascal Schleuniger and Sven Karlsson and Christian W. Probst

Technical University of Denmark

Motivation

I Dynamic programming languages:
I enjoy increasing popularity
I run on a virtual machine
I have a long execution time

I Exploiting parallelism is difficult:
I runtime execution, just-in-time compilation
I no time for intensive code analysis
I e.g. JavaScript is single threaded by design

I Software speculation is an effective method to exploit
parallelism and speedup the code execution time

I We aim for hardware support for software speculation

Predicated Instructions

I Instruction that is executed if a condition that is
specified in the operation code is true, otherwise the
instruction is annulled

I Predicated instruction example: convert a control
dependence into data dependence

// C-code sequence:

if (a == 0){b = c + d ;}

// Predicated Instruction:

ADD b, c, d #a

I Eliminate some control dependencies
I Eases code analysis for parallelization process

Hardware Support for Rollback/Commit

I Software speculation can be applied for:
I thread level, functions, types

I We aim for HW-support for rollback/commit:
I shadow register-file with status bits
I checkpoint/rollback/commit instructions

I Thread level speculation example: Loop iterations
are handled as threads and are executed speculatively
in parallel. If dependencies among threads are
detected, the execution is rolled back to the
checkpoint and executed sequentially instead.

set checkpoint

loop barrier

rollback instruction
- swap current register-file
 status bits with the
 checkpoint copy
- go back to checkpoint

commit instruction
- trigger write-back

checkpoint instruction
- take a copy of the register-
 file status bits
- prevent write-back

conflict check ()

parallel loops (threads)

Hardware Support for Exceptions

I Suppress exceptions while code is executed
speculatively

I Hardware support for conflict check when executing
code speculatively (monitor data dependencies)

Hardware Support for Data Pre-fetching

I Speculative fetching of data and pre-computing
I Hides some of the memory access latency
I E.g. makes subsequent page loads of web

applications faster

Hardware Experimentation Platform

dyn. lang.
support

co
re

T
in

u
so

I$
D

$
L2 $

$
controller

dyn. lang.
supportNI

dyn. lang.
support

co
re

T
in

u
so

I$

P

P

MC

R R

R

R

Processing Tile
Router
Memory Controller
Network Interface
Scratchpad Mem.
Cache

P
R
MC
NI
SP
$

SP

D
$

I Tinuso Processor Core:
I 32-bit, single-issue, RISC processor
I 8-stage pipeline, full forwarding
I predicated instructions
I instruction- and datacache
I barrel-shifter, multiplication unit
I optimized for FPGA implementation
I Xilinx Virtex6(-3): 370MHz

I Processing Tile:
I two Tinuso cores in one processing tile
I network-interface
I 2-nd level cache*
I scratchpad memory*
I hardware support for cache coherency*

I Network-on-Chip:
I packet-switched, mesh-4 network
I non-blocking, XY-routing

*implementation in progress

DTU Informatics - Technical University of Denmark pass@imm.dtu.dk http://www.imm.dtu.dk

