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Hardware Support for Dynamic Languages
Pascal Schleuniger and Sven Karlsson and Christian W. Probst

Technical University of Denmark

Motivation

I Dynamic programming languages:
I enjoy increasing popularity
I run on a virtual machine
I have a long execution time

I Exploiting parallelism is difficult:
I runtime execution, just-in-time compilation
I no time for intensive code analysis
I e.g. JavaScript is single threaded by design

I Software speculation is an effective method to exploit
parallelism and speedup the code execution time

I We aim for hardware support for software speculation

Predicated Instructions

I Instruction that is executed if a condition that is
specified in the operation code is true, otherwise the
instruction is annulled

I Predicated instruction example: convert a control
dependence into data dependence

// C-code sequence:

if (a == 0){b = c + d ;}

// Predicated Instruction:

ADD b, c, d #a

I Eliminate some control dependencies
I Eases code analysis for parallelization process

Hardware Support for Rollback/Commit

I Software speculation can be applied for:
I thread level, functions, types

I We aim for HW-support for rollback/commit:
I shadow register-file with status bits
I checkpoint/rollback/commit instructions

I Thread level speculation example: Loop iterations
are handled as threads and are executed speculatively
in parallel. If dependencies among threads are
detected, the execution is rolled back to the
checkpoint and executed sequentially instead.

set checkpoint

loop barrier

rollback instruction
- swap current register-file 
  status bits with the
  checkpoint copy
- go back to checkpoint

commit instruction
- trigger write-back

checkpoint instruction
- take a copy of the register- 
  file status bits
- prevent write-back

conflict check ()

parallel loops (threads)

Hardware Support for Exceptions

I Suppress exceptions while code is executed
speculatively

I Hardware support for conflict check when executing
code speculatively (monitor data dependencies)

Hardware Support for Data Pre-fetching

I Speculative fetching of data and pre-computing
I Hides some of the memory access latency
I E.g. makes subsequent page loads of web

applications faster
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I Tinuso Processor Core:
I 32-bit, single-issue, RISC processor
I 8-stage pipeline, full forwarding
I predicated instructions
I instruction- and datacache
I barrel-shifter, multiplication unit
I optimized for FPGA implementation
I Xilinx Virtex6(-3): 370MHz

I Processing Tile:
I two Tinuso cores in one processing tile
I network-interface
I 2-nd level cache*
I scratchpad memory*
I hardware support for cache coherency*

I Network-on-Chip:
I packet-switched, mesh-4 network
I non-blocking, XY-routing

*implementation in progress
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