
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 19, 2017

The Role of Top-Down Attention in the Cocktail Party: Revisiting Cherry’s Experiment
after Sixty Years

Marchegiani, Letizia; Karadogan, Seliz Gülzen; Andersen, Tobias; Larsen, Jan; Hansen, Lars Kai

Published in:
Proceedings of the tenth International Conference on Machine Learning and Applications (ICMLA'11)

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Marchegiani, L., Karadogan, S., Andersen, T., Larsen, J., & Hansen, L. K. (2011). The Role of Top-Down
Attention in the Cocktail Party: Revisiting Cherry’s Experiment after Sixty Years. In Proceedings of the tenth
International Conference on Machine Learning and Applications (ICMLA'11) IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13780588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/the-role-of-topdown-attention-in-the-cocktail-party-revisiting-cherrys-experiment-after-sixty-years(dcf0cf04-8c1a-48f7-85fd-5daa4880ea06).html


The Role of Top-Down Attention in the Cocktail Party:

Revisiting Cherry’s Experiment after Sixty Years

Letizia Marchegiani∗†, Seliz G. Karadog̃an∗, Tobias Andersen∗, Jan Larsen∗ and Lars Kai Hansen∗‡
∗DTU Informatics, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark

Email: malet,seka,ta,jl,lkh@imm.dtu.dk
†Department of Computer and System Sciences,

Sapienza, University of Rome, 00185 Roma, Italy
‡Department of Signals and Communications,

University Carlos III, Madrid, Spain

Abstract—We investigate the role of top-down task drive attention
in the cocktail party problem. In a recently proposed computational
model of top-down attention it is possible to simulate the cocktail party

problem and make predictions about sensitivity to confounders under
different levels of attention. Based on such simulations we expect that
under strong top-down attention pattern recognition is improved as the
model can compensate for noise and confounders. We next investigate

the role of temporal and spectral overlaps and speech intelligibility in
humans, and how the presence of a task influences their relation. For this
purpose, we perform behavioral experiments inspired by Cherry’s classic
experiments carried out almost sixty years ago. We make participants

listen to a mono signal consisting of two different narratives pronounced
by a speech synthesizer under two different conditions. In the first case,
participants listen with no specific task, while in the second one they are
asked to follow one of the stories. Participants report the words they heard

by choosing from a list which also includes terms not present in any of
the narratives. We define temporal and spectral overlaps using the ideal
binary mask (IBMs) as a gauge. We analyze the correlation between
overlaps and the amount of reported words. We observe a significant

negative correlation when there is no task, while no correlation is detected
when a task is involved. Hence, results that are well aligned with the
simulation results in our computational top-down attention model.

I. INTRODUCTION

The cocktail party is an often used analogy in machine learning

and signal processing, referring to the situation in which multiple

signals are mixed and the aim is to separate these, or to recover at

least one of the signals in the mixture. In the case of audio mixtures

humans are very efficient cocktail party solvers, using a multitude

of cues including spatial, spectral, and content as was demonstrated

in the famous experiments carried out by Colin Cherry almost sixty

years ago [1].

We note that many machine learning applications face ’cocktail

parties’. In biomedical signals noise and confounders are often

structured and share features with the wanted signal, hence, prior

information about the signals and the ways they are mixed plays an

important role [2]. Modern telecommunication systems are critically

dependent on the ability to recover individual signals from spread

spectrum mixtures [3]. Most of the general methods use low level

statistical properties of the signals, such as independence [4], or other

simple distributional assumptions.

We are interested in the audio cocktail party problem, in particular,

the ’hard version’ considered in [1], in which, conventional audio

cues (spatial and spectral) are removed and the solution is based

on high level features related to content. As discussed in [1], this

problem can help shed light on the mechanisms applied by human

cognition. We are particularly interested in the influence of top-down

attention [5], [6].

The audio cocktail party problem is also of great practical im-

portance, e.g., in the transcription of multi-speaker conferences,

meetings, seminars and in dialogue systems of robots operating in

complex acoustic scenes. Automatic speech recognition procedures

need to isolate the voice of interest within confounding sounds and

voices around and to track it, to be able to recognize the words

pronounced ([7], [8]).

Experiments have been conducted to investigate which character-

istics of the auditory scene could help the segregation process of a

mixture of stimuli and in which way they can influence each other

and the human ability to discriminate within the different signals.

The majority of these experiments make use of pure tones, see e.g.

[9]). But there are also cases in which human auditory behaviours

are tested in situations with multiple speakers, see e.g., [9], [10] and

[11]. Sound fission seems to be more pronounced with the voices of

the same gender [11], with sounds emitted from close positions in

the scene or sounds having enough difference in their fundamental

frequencies, in their phase spectrum or in their intensities [10].

Meanwhile, also the vocal tract size, accent or other prosodic features

can change the complexity of the grouping of signals belonging to

the same stream [9]. For a more complete review, see [12] and the

more recent [13].

Bregman and others ([9], [14], [15]), argue that the way in which

stimuli are perceived as part of the same flow (coming from the

same acoustic source), and the proficiency in selecting just one of

these flows and understanding its content, is widely affected by

attention, both on a bottom-up and a top-down perspective. It should

also be considered that, in fact, the segregation ability is a learned

skill and is improved by experience. In psychoacoustics masking

refers to the effect that one signal prohibits the other from being

detected. Brungart et al. make a distinction between energetic and

informational masking: ”Traditional energetic masking occurs when

both utterances contain energy in the same critical bands at the same

time and portions of one or both of the speech signals are rendered

inaudible at the periphery. Higher-level informational masking occurs

when the signal and masker are both audible but the listener is

unable to disentangle the elements of the target signal from a similar-

sounding distracter” [16].

In order to better understand top-down attention, and how it

may modulate informational masking effects we return to Cherry’s

basic experimental setup, i.e., a listening experiment in which we

investigate participants’ ability to hear individual naturally sounding

speech signals in a mixture with reduced spatial and speaker cues. In

particular, we present the audio signal to the listener as a monaural

mixture of two different narratives uttered by a speech synthesizer



(TTS project at AT&T Labs Research [17]), using the same virtual

speaker. In this way, we eliminate cues to separation related to

different spatial locations of the sound sources, different accents,

different genders of the speakers etc. However, we still want the

speech to sound natural, hence, the speech synthesizer does produce

prosodic speech which also provides a cue to stream separation and

tracking [18]. It is known that the introduction of this kind of voice

modifications effects detectability [19], however, we expect these

effects to be reduced compared to conventional human speech. To

further reduce energetic masking, we equalized the total energy of

the mixed signals.

In order to reduce basic semantic masking effects we opted for

narratives with little expected interest to the listeners. In particular

we chose as excerpts from neutral texts used in preparation for the

TOEFL (Test of English as a Foreign Language) test [20]. These texts

are more coherent and naturally sounding than the short command

sentences used in [16].

We have recently proposed a computational mechanism for task

driven top-down attention based on a generative statistical model of

inputs, corresponding to a ’gist’ of the scene and to potential elements

for attention, and task labels corresponding to possible actions chosen

based on gist and attended inputs ([5], [6]). The notion of gist refers

to unspecific inputs generated in part by bottom-up attention [21].

This model can be used to make predictions about the influence

of confounders on task labeling performance, in both strongly task

dependent attention and under weakened task influence. Thus we

have designed experiments so that they test both of these cases. In

the first set of experiments (we call it undirected attention (UNDIR)),

the subjects do not have any specific task rather than simply aim to

hear as many words as possible, thus they may follow any of the two

narratives, while, in the second set of experiments (directed attention

(DIR)), they are asked to focus on just one of the two narratives (the

choice about which of them is left to the subject).

To test the relative influence of top-down and bottom-up infor-

mation flow on attention and masking we estimate new overlap

scores defined in this papers and based on the so-called ideal binary

mask (IBM) [22]. An IBM consists of zeros and ones where ones

represent the powerful parts of the target audio signal compared to an

interference audio signal. IBMs have been shown to improve human

speech intelligibility when applied to noisy speech signals. Subjects

have been exposed to the re-synthesized speech signals from the IBM-

gated (segregated) signal and they recognized words quite well even

for a signal-to-noise-ratio (SNR) as low as -60 dB which corresponds

to pure noise ([23], [24]). In addition,the features obtained from IBMs

have worked successfully for an automatic speech recognition (ASR)

application [8].

The influence of masking is measured as the correlation between

the number of times specific words are heard (WOH) and the relative

overlap. IBM control parameters are first chosen taking as references

previous works on speech intelligibility [24] and ASR [8] as a pre-

analysis step. Then, we optimize those parameters to have the most

negative correlation. In particular, we analyze local criteria (LC),

the window length (winLength) and number of frequency channels

(numChan).

The paper is organized as follows; first we discuss the proposed

top-down attention model and the experiments designed to investigate

the role of attention in the hard cocktail party problem, we present

simulation results of the model and experimental results, and finally

give our interpretation of the findings in the discussion section.

II. METHODS

A. Attention Model

By means of movement and information processing the brain

actively selects its input. In the broadest sense attention is the

mechanism by which the brain selects relevant input. Bottom-up

attention is typically driven by statistical novelty, i.e., we attend to the

un-expected, while top-down attention select input that is relevant to

a given task. While the latter definition is in broad consensus, there

has been remarkably few attempts to formalize top-down attention

as a statistical problem. In [5] we model the top-down attention as a

decision problem based on incomplete information and analyze which

feature to measure next in a classification problem.

Attention is implemented in a statistical model as the selection

of additional input features based on an initial subset of features

representing the ’gist’. We attend to features that reduce confusion

at the models’ output level, i.e., features that have high expected

information given the ’gist’.

We represent the task by probability distribution over a set of C
’actions’ or classes indexed by the discrete variable c, (c = 1, ..., C).
Initially, for decision making we have access to the gist, a vectorial

observation x with components xi, i = 1, ..., I . The second

step concerns an additional measurement zj which is obtained by

attending to a specific channel j, chosen among the set of missing

features z with components z1, ..., zJ . The joint probability of the

classes and all features observed and missing is p(c,x, z). Attention

is based on the information available in x, giving us the pre-attention

posterior probabilities for the task

p(c|x) =

∫

p(c, z|x)dz

=

∫

p(c,x, z)dz
∑C

c=1

∫

p(c,x, z)dz
. (1)

Using the top down attention mechanism we will select an additional

feature zj , which will result in the distribution

p(c|x, zj) =

C
∑

c=1

∫

p(c, z|x)
∏

i 6=j

dzi

=

∫

p(c,x, z)
∏

i 6=j
dzi

∑C

c=1

∫

p(c,x, z)
∏

i 6=j
dzi

(2)

The information value of this choice is given as the difference in

confusion (entropy) before and after the attended measurement, which

will depend on the particular outcome of the sequential measurement,

zj ,

∆Sj(x, zj) =

C
∑

c=1

log p(c|x, zj)p(c|x, zj)

−

C
∑

c=1

∫

log p(c, z|x)p(c, z|x)dz (3)

As zj is unknown before attending, we base the choice on the

expected gain expected information gain of measuring the value of



feature j,

Gj(x) ≡

∫

∆Sj(x, zj)p(zj |x)dzj

=

C
∑

c=1

∫

log p(c|x, zj)p(c, zj |x)dzj

−

C
∑

c=1

∫

log p(c, z|x)p(c, z|x)dz. (4)

The Gaussian Discrete mixture model (GDMM) is a generative

model of the joint distribution, see e.g., [25]

p(c,x, z) =

K
∑

k=1

p(k)p(c|k)p(x, z|k) (5)

where K is the number of components, p(k) are component prob-

abilities, p(c|k) is a C ×K probability table, and p(x, z|k) are K
Gaussian pdfs. The GDMM is convenient as both conditioning and

marginalization are computationally tractable. We choose a generative

representation to allow for modeling of input dependencies which

is necessary in order to make inference about missing features.

Maximum likelihood parameter estimation in the GDMM leads to a

straightforward generalization of expectation maximization algorithm

for conventional mixtures.

If we introduce the GDMM in the information gain expression we

obtain

Gj(x) =

C
∑

c=1

K
∑

k=1

p(c|k)p(k|x)×

∫

log [p(c,x, zj)] p(zj |x, k)dzj

−

K
∑

k=1

p(k|x)

∫

log [p(x, zj)] p(zj |x, k)dzj

+ const. (6)

where p(c,x, zj) =
∑K

k=1
p(k)p(c|k)p(x, zj |k) and p(x, zj) =

∑K

k=1
p(k)p(x, zj |k). Thus, computing G for all I features amounts

to computing Q = I ∗ (C + 1) ∗ K one-dimensional integrals over

Gaussian measures p(zj |x, k) = N (µj(x, k), σ
2

j (x, k)) with

µj(x, k) = µj,k +Σzj ,x,kΣ
−1

x,x,k(x− µ
x,k)

σ2

j (x, k) = σ2

j,k −Σzj ,x,kΣ
−1

x,x,kΣx,zj ,k. (7)

In these expressions µj,k, σ
2

j,k are the mean and variance of the

jth feature in the kth component, while Σa,b,k is the part of the

covariance matrix of the k component corresponding to variable sets

a, b.

More details and further references are given in [5], where the

attention model was validated on four benchmark classification

problems and shown to outperform a ’random’ attention alternative.

To simulate strong and weak top-down attention we augment

the model by smoothing the label-component table p(c|k) →
p(c|k, β) = p(c|k)β/

∑

c
p(c|k)β and by letting the attention selec-

tion be stochastic based on the expected gains, i.e., we select attention

using the induced probability distribution,

P (j) =
exp(γGj)

∑

j
exp(γGj′)

(8)

Task-driven top-down attention as in [5] is obtained when β = 1, γ =
∞. In this work we use β = 0.2, γ = 0.33.

We challenge the strong and weak top-down attention models by

a simulated cocktail party by confounding the input of test data for a

C = 2 environment. In particular we mix for each pattern a fraction

f (mixing fraction) of the input features with a randomly chosen

input feature vector from the opposite class (confounder):

overlapped signal = (1− f) ∗ input signal + f ∗ confounder

The C = 2 simulated decision problem is based on a four

component Gaussian mixture, the resulting configuration is first

established in two dimensions and resembles the well-known XOR-

problem, hence can not be separated linearly. The two dimensional

input space is augmented by six noise dimensions SNR ≈ 1, so that

the total input dimension is eight. In the attention experiments one

signal dimension and one noise dimension is provided as ’gist’.

B. Behavioral Experiments

While it is not possible to directly read out the informations

flows in the human brain while solving a difficult speech separation

task, some insight can be obtained by observing the macroscopic

behavior. Here we design a behavioral experiment inspired by the

pioneering work of Cherry [1]. Basically, we design a hard cocktail

party problem by reducing conventional auditory cues as described

above, leaving only high-level cognitive cues such as semantic and

context representation in narratives. Cherry alluded to these high-

level representations as what he called word transition probabilities.

Our hypothesis is that these representations precisely are subject to

top-down attention and should be task dependent, while the more

basic cues could be more automatic and operate beyond conscious

control.

Subjects are presented with two different narratives combined in

a mono audio file with a headphone. The stories are generated by

a speech synthesizer (TTS project at AT&T Labs Research [17]),

using the same virtual speaker.

We recruited twelve participants among master students, PhD

students and post-docs from the Technical University of Denmark.

Two participants were not able to accomplish any of the experiments

and were excluded.

We perform two different types of experiments which we will refer

to as undirected attention and directed attention experiments. In the

first case the listener is free to follow either narrative. In the directed

attention case, participants are asked to follow one narrative story at

their own discretion. At the end of an audio presentation, a list of

terms is presented and they are asked to check which terms they have

heard. The list contains words which are in the narratives and words

which are not, but are related to the content.

Cherry made his participants listen as many times as the they

wanted; we perform three different trials (4 people for each trial).

In the first and in the second, we make them listen just once and

then we ask for the words. They repeat the same process three times.

In the third, we make them listen twice before presented with the

term lists.

The words in the list can appear various numbers of times in the

narratives, but we balance this number, in total, for both tracks. In

particular, the total number of occurrences of all the words we ask

for is the same in both stories. Moreover, we aimed to balance the

frequency of each word in the list; which means, for example, that if

there are two words appearing in the list, respectively, three and five

times in the first story, there are also two words appearing three and

five times in the second one. The list of words contains 48 words: 24



of these are truly present in the audio signal and each story contains

half of them.

We use two different narratives for each experiment, making small

changes (removing or adding sentences or words, switching the

order of some sentences or words) to the original texts. This is

necessary to have stories with the same length and in which pauses

are synchronized as much as possible, to avoid the so called ‘listening

in the gaps’ effect, described by Bregman [9] and by Bronkhorst [12].

C. Audio Analysis

The basis for our audio analysis is the ideal binary masks (IBMs)

which we use to measure the cross channel interference in terms

of temporal and spectral overlap. It is obtained by comparing the

spectrogram of a target sound signal to that of the interference signal

and to keep only the strong time-frequency regions of it. More

specifically, its value is one when the target is stronger than the

interference for a local criterion (LC), and zero elsewhere. The time-

frequency (T-F) representation is obtained by using the model of the

human cochlea as the basis for data representation [26]. If T (t, f) and

I(t, f) denote the target and interference time-frequency magnitude,

then the IBM is defined as

IBM(t, f) =

{

1, if T (t, f)− I(t, f) > LC

0, otherwise
(9)

In Figure 1, we show an example of an IBM obtained with a

sample sound from one of the stories (the sound relative to the

word ‘navigate’) compared to a speech shaped noise (SSN) as the

interference signal. The most energetic parts of the target signal are

kept. We measure the spectral and temporal overlap between two
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Fig. 1. The spectrograms of a target sound signal, the interference signal
(SSN) and the resultant IBM (SNR=0 dB, LC=-4 dB, windows length=20 ms
(50% overlap), frequency channels=32, frequency bins are not equally spaced,
gammatone filtering is used, 1 = black 0 = white)

sound signals, specifically between a word in one of the narratives

pronounced by the speech synthesizer and the corresponding part

in the second story. We define the temporal overlap between them

as a percentage of the whole duration without silence in the time

domain. We use IBMs of the sound signals as mentioned before and

we compress both IBMs over frequency. For a time slot, we assign

one if there is at least one one on the mask, otherwise zero where

zeros are considered as silence. Then, the temporal overlap is simply

the overlap of ones on the masks (see Figure 2).

The spectral overlap is defined similarly based on co-occurrence

of signals in the time-frequency bins. Once we have IBMs for both

sound signals, we simply compute the percentage of the overlapping

ones on both masks over the whole time-frequency bins (see Figure

2).

Fig. 2. The illustrations of temporal and spectral overlap definitions, the bins
represent time-frequency regions of an IBM (frequency bins are not equally
spaced, gammatone filtering is used). Only black regions represent overlapped
parts on (c).

Based on the temporal and spectral overlaps for words in both

stories, we explore the correlation between the overlaps and the

number of times the words were heard by the subjects for both

directed and undirected cases.

The overlap values depend on parameters that change the resultant

IBMs, while the number of times the words were heard is fixed. In

particular, for each word, the number we consider in the analysis

is computed averaging out the total number of times the word was

heard (in all the experiments, in all the trials, by all the subjects)

against the number of times the same word occurs in the stories. IBM

parameter values are first chosen taking as references previous works

on speech intelligibility [24] and on ASR [8] as a pre-analysis step. In

[24], subjects listened to IBM-gated (multiplying the spectrogram of a

noisy-speech with IBM of it, and resynthesizing in time domain) and

for a range of IBM parameter values, the best speech intelligibility

results(recognizing which word is pronounced) are obtained. In [8],

the best performance for an ASR system is obtained again with

same range of values. However, referenced to those studies, even

if those parameters are expected to result in overlaps closer to what

humans perceive, they are not necessarily optimal to investigate the

correlation between overlap and word detection rates. Therefore we

optimize the IBM parameters including the local criteria (LC) with

fixed SNR, the windows length and the number of frequency channels

to gain the most negative correlation. We keep other two parameters

constant while optimizing one. With the optimized values, we apply

a permutation test with 10000 resamples, at 5% significance level, to

validate the results.

III. EXPERIMENTAL RESULTS

First, we set up a simulation experiment with the top-down

attention model emulating the Cherry experiment, as described above.

For a range of mixing fractions f ∈ [0.0 0.2] we measure the

resulting error rates for the models using the attention mechanism

to select an additional feature among the six remaining after having

provided the 2-dimensional gist. The strong and weak top-down

attention response is shown in figure 3. The rates are represented as

relative excess errors: [E(f) − E(0)]/(B − E(0)), where B = 0.5
is the baseline error rate. The error rate of the top-down attention

model is EDIR(0) = 0.08 while the error rate of the weak attention

is EUNDIR(0) = 0.23. The experiment indicates that strong top-down

attention model (DIR) is less sensitive to the confounding mixture



than the weak attention model, hence it will make more informed

decisions in the cocktail party.
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Fig. 3. The resulting error rates for the models using the attention mechanism
to select an additional feature among the six remaining after have provided
the 2-dimensional gist for a range of mixing fractions f ∈ [0.0 0.2].

The behavioural experiments are carried out using a GUI im-

plemented in Java, while the results are analysed using MATLAB.

The word boundaries are determined manually to be more precise

(The limited number of words enables us to do so). The sampling

frequency of the audio signals is 16 kHz. We use gammatone filters

which is a commonly used model for auditory filters in the auditory

system to obtain IBMs.

Figures 4 and 5 show the temporal and spectral overlaps for each

word, for UNDIR and DIR cases respectively, using non-optimized

parameters from [24], [8]. We observe that the correlation between

overlaps (temporal and spectral) and rate of heard words are -0.35 and

-0.31 respectively. While, for DIR case, we find positive correlations

of 0.23 for temporal and 0.34 for spectral. We next optimize the
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Fig. 4. Temporal and spectral overlap versus the averaged number of times
the words heard (WOH) for UNDIR case, and the correlation between them
shown on the legend

three IBM parameters, LC, WinLength and NumChan, to produce the

most negative correlation between overlaps and words detected. The

resulting figures show that optimal LC values are around -10dB for

all cases except for the spectral overlap in the UNDIR case, which is

-14dB (see Figure 6). We also conclude that 20ms is the optimal value

for the windows length for all cases (see Figure 7). We see that for the

spectral overlap in the DIR case, the correlation values for WinLength
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Fig. 5. Temporal and spectral overlap versus the averaged number of times
the words (WOH) heard for DIR case, and the correlation between them
shown on the legend

greater than 20ms are not present. This is due to the fact that with

the high optimal value found previously, the resultant IBMs were all

zeros (we did not try to play with the values, because it is already

hard to find significant results for DIR case). Finally, we observe

that the optimal values for number of frequency channels is 16 and

32 (see Figure 8). Using optimal IBM parameters for each case
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(UNDIR,DIR, temporal and spectral) we obtain similar results. The

correlations between overlaps (temporal and spectral) and WOH are

-0.59 and -0.43 (more negative than not-optimized case) respectively

for UNDIR case. However, for DIR case, they are -0.20 for temporal

and -0.03 for spectral. Even if the results for DIR case also are more

negative than not-optimized case , they are evidently less than those of

UNDIR case (almost no correlation for DIR spectral case). Finaly, we

apply the permutation test to these data, as mentioned in the section

II-C. In both spectral and temporal overlaps, for UNDIR experiments,

under the 5% significance level, the null hypothesis that the data is

uncorrelated is rejected (spectral = 3.1% and temporal = 0.07%). In

the DIR experiments the null hypothesis is accepted, indicating the

influence of masking is compensated by a more detailed model.

A. Discussion and Conclusion

Based on our recent top-down attention model we can simulate the

cocktail party effect. We found that the top-down attention model

showed less sensitivity to the amount of the confounding overlap,

than the weak attention model. This indicates that the top-down

mechanism can assist to compensate for structured noise.

In the ’hard cocktail party’ behavioral experiment we found signifi-

cant negative correlations between overlaps of two concurrent sounds

and speech intelligibility for the data collected in the undirected at-

tention experiments (UNDIR, no task). While in the directed attention

experiments (DIR, task-driven) we accepted the no-correlation null

hypothesis, even after careful optimization for correlation, a finding

well-aligned with the simulation result.

We conclude that the relation between energetic masking and

speech intelligibility is modulated by the presence of a task, hence

top-down controlled attention. Based on our top-down attention

model we expect this to be a special case of a more general

phenomenon, namely that the top-down knowledge can enhance

pattern recognition by compensating for noise and the presence of

confounders.
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