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Abstract: Photonic crystal fiber (PCF) designs with two zero-dispersion 

wavelengths (ZDWs) are experimentally investigated in order to suggest a 

novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. 

From our investigation, we select the optimum PCF design and demonstrate 

a tailored spectrum with power concentrated around the relevant 

wavelengths for lipid imaging (648 nm and 1027 nm). This new PCF is 

characterized by varying the fiber length, the average power, and the pulse 

width of the fs pump pulses. It was found that the selected PCF design gave 

a significantly improved spectral distribution compared to an existing PCF 

for CARS microscopy. Furthermore, the PCF is designed in a twofold 

symmetric structure allowing for polarization maintaining propagation. 

Finally, the pulse propagation is investigated numerically showing good 

agreement with the measured spectrum. From the numerical analysis, the 

nonlinear effects responsible for the spectral broadening are explained to be 

soliton fission processes, dispersive waves, and stimulated Raman 

scattering. 

©2011 Optical Society of America 

OCIS codes: (060.4005) Microstructured fibers; (060.4370) Nonlinear optics, fibers; 

(190.5530) Pulse propagation and solitons; (300.6230) spectroscopy, coherent anti-Stokes 

Raman scattering; (320.6629) Supercontinuum generation. 
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1. Introduction 

Coherent Anti-Stokes Raman Scattering [1] (CARS) microscopy is a nonlinear imaging 

technique sensitive to molecular vibrations, where a pump beam and a Stokes beam interact 

with a sample through the third order susceptibility. When the difference between the pump 

frequency and the Stokes frequency matches the Raman resonance frequency of the sample, a 

CARS signal is generated. CARS microscopy is an attractive tool for lipid imaging in tissue 

where the C-H stretch vibration resonance of 2840 cm
−1

 is excited. In particular, CARS 

microscopy has been demonstrated successfully in detecting lipid related diseases, such as 

multiple scleroses [2], atherosclerosis [3] and hepatitis C [4, 5]. 

Because of the need of two beams, conventional CARS setups have been based on 

complex systems with two synchronized lasers [6] or optical parametric amplifiers [7,8]. 

Instead, to provide a simple setup, the wavelengths needed for CARS microscopy may be 
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generated with a supercontinuum light source. Supercontinuum is typically generated by 

interplay between several nonlinear effects, such as self-phase modulation, solition fission 

processes, stimulated Raman scattering, dispersive waves, four-wave mixing and cross-phase 

modulation [9]. Usually, silica Photonic Crystal Fibers [10] (PCFs) pumped by short pulses in 

the ps or fs regime are preferred. The properties of high nonlinearities when pumping by 

using short pulses in conjunction with tailored dispersion profiles of the PCFs, offer the 

possibility of controlling the output spectra. Pumping the PCF close to a zero-dispersion-

wavelength (ZDW) yields efficient broadening of the spectrum, hence, PCF designs having 

ZDWs in the wavelength region of a fs Ti:Sapphire laser are attractive [11, 12]. 

PCFs with a single ZDW have been used for several applications, where a broad spectrum 

is generated and the relevant wavelengths are filtered out subsequently [13]. However, the 

power of the desired wavelengths might be low compared to the power used to generate the 

supercontinuum, and the efficiency of the system is low. To alleviate this issue, PCFs have 

been designed with two ZDWs in order to concentrate the power at specific wavelength 

ranges [12, 14]. By controlling the structural design of the PCF, mainly pitch size and relative 

hole diameter, it is possible to control the position of the ZDWs and thereby tailor the spectral 

distribution of the power at the output of the PCF. Based on such designs, PCFs that 

concentrate the power at the desired spectral ranges relevant for CARS microscopy have been 

developed [12]. 

Previously, CARS setups using PCF for generation of the Stokes wavelength have been 

presented [15, 16]. However, wavelength conversion to the relevant IR wavelength was weak. 

Furthermore, the PCFs did not have a polarization maintaining structure. The control of the 

polarization is an important feature for CARS microscopy, since it is possible to suppress the 

non-resonant background from electronic contributions to χ
(3)

 [17] with appropriate alignment 

of the polarization state of the beams interacting with the sample. With the polarization CARS 

method Lu et al. [18] have shown a fivefold higher contrast than with conventional CARS for 

imaging of unstained human epithelial cells. 

In this study, we present five different fiber designs with two ZDWs in order to 

demonstrate the ability to control the spectrum generated in a PCF, i.e., tailoring the generated 

spectrum for applications in CARS. Based on this study we describe some general guidelines 

for choosing a suitable PCF design for various input beam parameters. Equally important, the 

PCF structures are designed in a twofold symmetric structure in order to ensure polarization 

maintaining (PM) propagation. As mentioned above, this is crucial for further optimization of 

CARS. For the sake of completeness we compare the novel designs with a PCF having an all-

normal dispersion profile. 

An experimental procedure for spectral broadening of fs pulses in the PCFs is presented 

showing the desired control of the output spectrum and its PM properties. The spectral 

broadening is investigated with the aim of suggesting an optimum PCF candidate for CARS 

microscopy. In our setup, the PCFs are pumped using a fs Ti:Sapphire laser at center 

wavelength 795 nm. When this wavelength is used as either the Stokes or the pump beam, we 

suggest an optimum PCF candidate to generate the second wavelength needed for lipid 

imaging at either 648 nm or 1027 nm, respectively. This enables a compact system where the 

generated supercontinuum can be used either as Stokes and pump beam, and the Ti:Sapphire 

laser can be used as the other wavelength. The CARS signal depends on the pump beam 

intensity IP and the Stokes beam intensity IS as 2

CARS p SI I I∝ . Therefore, the longer Stokes 

wavelength is usually generated with the PCF while the more powerful beam obtained 

directly from the fs-laser is used as the pump. An alternative choice is to use the generated 

short wavelength as the pump and the laser for the Stokes beam. The use of the shorter 

wavelengths improves the diffraction limit significantly, hence, the resolution increases [15]. 

Experiments where the power coupled into the fiber and the fiber length have been varied 

are presented, and the nonlinear effects in the PCF are analyzed with respect to these 
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parameters. Furthermore, the observed spectral broadening is compared to numerical 

solutions of the generalized nonlinear Schrödinger equation (GNLSE) using the split-step 

method [9]. Finally,the spectral broadening of the optimum PCF is compared to an existing 

commercially available CARS PCF [19]. 

2. Photonic crystal fiber designs 

We consider six different PCF designs manufactured at NKT Photonics A/S. The fibers are 

made in pure silica and produced by the stack and draw technique [20]. The nonlinear 

coefficients of all fibers are relatively large, i.e., in the range of 0.13-0.15 W
−1

m
−1

. Finally, a 

twofold symmetric cladding structure provides birefringence, thus, the desired polarization 

maintaining behavior [21]. A microscope image of one of the structures is shown in Fig. 1. 

The two larger holes near the core induce birefringence that was measured to be 1.5 10
−3

 

using white light interferometry [22]. 

The main design parameters for each PCF are shown in Table 1. The PCFs are labeled 

such that the pitch, Λ, decreases with the PCF number. The relative hole diameter, d/Λ, 

decreases slightly as well. The MIT Photonics Bands package [23] was used to calculate the 

dispersion profiles for each PCF with the parameters given in Table 1. The six calculated 

dispersion profiles are shown in Fig. 2. It is seen that the PCFs 1 to 5 have two ZDWs and the 

separation between the ZDWs decreases. PCF 6 has an all normal dispersion profile. 

 

Fig. 1. Microscope image of PCF cross section. 

Table 1. Structural parameters of the six PCFs. 

PCF 

no 
Pitch 

Λ, µm 
Relative hole diameter, 

d/Λ 
Position of first ZDW, 

nm 
Position of second 

ZDW, nm 

PCF 1 1.13 0.57 773 1138 

PCF 2 1.07 0.56 782 1030 

PCF 3 1.05 0.56 783 1001 

PCF 4 1.00 0.56 800 916 

PCF 5 0.96 0.56 803 867 

PCF 6 0.90 0.55 - - 

 

Fig. 2. Dispersion profiles of the PCFs calculated from the parameters given in Table 1. 
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3. Setup 

The setup used for supercontinuum generation in the PCFs is shown in Fig. 3. A commercial 

fs laser system (FEMTOLASERS Produktions GmbH) centered at 795 nm was used to 

produce pulses of 11 fs at the output of the laser. Due to temporal dispersion of the optical 

components, mainly from the microscope objective, the pulse width in focus of the 

microscope objective is expected to be longer. By using a tunable dispersion compensator 

(MOSAIC Pro V, setting II = −1650 fs
2
) the temporal dispersion was compensated. The pulse 

width was measured with an autocorrelator (FEMTOLASERS, FemtoMeter) in the focus of 

the objective to be 89 fs. The input average power is controlled by inserting neutral density 

filters, and the input polarization is controlled by using a λ/2-plate. The PCFs implemented in 

the setup were SM fibers with high NAs larger than 0.4. For optimal coupling into the PCFs, a 

40X / 0.65-NA microscope objective is used. The output light is collimated with an NIR 

coated lens having an NA of 0.68 and a focal length of 3.1 mm. The collimated light is 

collected with a Fiber Optical Integrating Sphere (FOIS, Ocean Optics) and fed to an Optical 

Spectrum Analyzer (OSA, Ando AQ-6315E) with a 600-µm-core MM fiber. 

 

Fig. 3. Ti:Sapphire fs laser (795 nm center wavelength); FemtoSource Compact from 

FEMTOLASERS; Neutral density filter; MOSAIC dispersion compensator; λ/2-plate; 40X / 

NA 0.65 microscope objective; 3d translation stage; Photonic Crystal Fiber (PCF); NA 0.68, f 

−3.1 collimating lense; Fiber Optical Integrating Sphere (FOIS); 600 µm MultiMode (MM) 

coupling fiber; Optical Spectrum Analyser (OSA). 

4. Results 

We experimentally investigated the six PCF designs by inserting each of them in the setup 

with 35 mW of average power coupled to the core. The measured spectra are shown in Fig. 4. 

The ZDWs and the central wavelength of the Ti:Sapphire laser, λ0 = 795nm, are shown 

together with the spectra as the dashed and the dotted lines, respectively. The spectra from 

PCFs 1 to 4 show similar spectral shapes, in which the light is distributed in three main 

regions: a sharp blue-shifted signal, a broad central region and a weak red-shifted signal. In 

agreement with [24], the observed blue-shifted and red-shifted signals on each side on the 

anomalous dispersion region (ADR) are dispersive waves. The central region of the spectrum 

is comprised by soliton formation in the ADR. It is seen how the coupling to dispersive waves 

in the blue-shifted region increases when the first ZDW is positioned closer to the pump 

wavelength. Thereby an increasing signal in the blue-shifted region is observed. When the 

second ZDW moves to shorter wavelengths the broad central signal gets narrower, i.e., the 

second ZDW prevents further red-shifting of the central spectrum. In the case of PCF 5, the 

ADR is sufficiently narrow and only two peaks are observed in the generated spectrum. The 

generated solitons “recoil” out of the ADR and stabilize in the normal dispersion regime 

(NDR). The red-shifted peak moves further to IR due to stimulated Raman scattering. For the 

sake of completeness, PCF 6 generates a spectrum mainly distributed in two weakly separated 
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peaks. Because of the all-normal dispersion profile, the broadening is purely caused by self-

phase modulation. 

 

Fig. 4. Spectra measured from (a) PCF 1 and PCF 2, (b) PCF 3 and PCF 4, (c) PCF 5 and PCF 

6. All spectra are measured with a PCF length from 35 cm to 40 cm and with a coupled 

average power of approximately 35 mW. 

Selection of optimum PCF for CARS 

Based on the observations above, it is possible to set some general guidelines for selecting an 

optimal PCF for CARS. First, the separation of the two ZDWs must be sufficiently narrow to 

generate a dual-peak spectrum at the desired wavelengths. Second, the pump wavelength 

should be centered close to the first ZDW in order to achieve an efficient broadening of the 

spectrum [14]. In addition, it is required that the anomalous dispersion is sufficiently low 

between the two ZDWs in order to efficiently initiate self-phase modulation. Too high 
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dispersion broadens the pulses in time and, thus, inhibits the nonlinear process needed for 

spectral broadening. 

When using the central wavelength of the Ti:Sapphire laser of 795 nm as one of the 

wavelengths in the CARS process, the second wavelength should be chosen at 1027 nm or 

648 nm for imaging lipids. Around these wavelengths two relevant CARS regions are defined 

to be within 648 nm ± 15 nm and 1027 nm ± 20 nm, where a Raman linewidth of 100 cm
−1

 

and the possibility of some tunability have been taken into account. The conversion 

efficiencies to the CARS regions are shown in Table 2. PCF 5 renders itself a suitable 

candidate as a CARS source based on its spectral properties: in the NDR a spectrum with the 

power distributed in the two ranges around the relevant wavelengths is generated, hence 

showing the most efficient conversion of 12.1% and 16.9% to relevant CARS wavelengths in 

the blue-shifted and the red-shifted region, respectively. In agreement with [24] the 

dominating effects are soliton fission processes, generation of dispersive waves and 

stimulated Raman scattering. In the case of PCF 6 where no solitons are generated, the 

spectral broadening is insufficient. In the case of PCF 1 to 4, the ADR is too wide and the 

solitons stay in the ADR. This gives simultaneously a blue-shifted dispersive wave at 

wavelengths shorter than relevant for CARS microscopy. 

In the following we will focus on characterizing PCF 5 as it seems the optimum candidate 

for an improved CARS fiber. 

Table 2. Conversion efficiencies to relevant wavelengths 

PCF 

no 
Blue-shifted conversion efficiency, % Red-shifted conversion efficiency, % 

 

PCF 1 2.7 5.6 

PCF 2 1.6 6.6 

PCF 3 2.0 6.7 

PCF 4 1.8 1.4 

PCF 5 12.1 16.9 

PCF 6 8.7 0.01 

Fixed pulsewidth, decreased peak power 

In Fig. 5 it is shown how the spectrum from PCF 5 changes when varying the coupled average 

power. The pulse width measured in focus of the objective is 89 fs. In order to consider the 

shape of the spectra, the measurements are normalized to the total area, i.e., the total coupled 

power. The average power was varied by changing the neutral density filter seen on Fig. 3. 

The power coupled to the PCF is measured with a powermeter at the PCF output. In general, 

it is seen how the spectrum narrows with less average power coupled to the PCF. However, 

the two peaks at 648 nm and 1027 nm are still visible until the average power is attenuated to 

3.6 mW. Moreover, less light is converted when the average power is lower than 17 mW. 

When the average power has been decreased to 0.60 mW, the pulse is only broadened slightly 

from self-phase modulation. 
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Fig. 5. Spectra measured with average power varied from 0.60 mW to 8.0 mW (left) and 11 

mW to 22 mW (right). 

 

Fig. 6. Spectra measured with the input pulse duration of 11 fs and 29.0 fs (left), and 89 fs and 

107 fs (right). The dotted lines indicates the relevant CARS wavelengths around 648 nm ± 15 

nm and 1027 nm ± 20 nm. 

 

Fig. 7. Spectra measured from PCF 5 when the length is varied from 12 cm to 20 cm (left) and 

30 cm to 50 cm (right). The dotted lines indicates the relevant CARS wavelengths around 648 

nm ± 15 nm and 1027 nm ± 20 nm. 

Varying the pulse width 

Figure 6 shows the spectral broadening when changing the pulse width and thereby the peak 

power for a fixed average power of 22 mW. The relevant wavelength regions for CARS 

microscopy around 648 nm and 1027 nm are also shown. The chirp of the input pulse was 

controlled with the MOSAIC dispersion compensator and some additional glass plates in the 

setup. The pulse width was measured with an autocorrelator in focus of the microscope 

#156640 - $15.00 USD Received 17 Oct 2011; revised 2 Dec 2011; accepted 5 Dec 2011; published 14 Dec 2011
(C) 2011 OSA 19 December 2011 / Vol. 19,  No. 27 / OPTICS EXPRESS  26679



  

objective. In the standard setup with the MOSAIC setting II and no additional glass the pulse 

width was measured to be 89 fs. When the pulse width is shortened compared to this, the 

spectrum broadens further in the blue-shifted wavelength region due to an increase in the peak 

power. Some broadening in the red-shifted region is observed as well, but the power 

conversion efficiency to the relevant CARS wavelengths is not changed significantly. One 

spectrum was measured also with a longer pulse width where the MOSAIC setting III (−2310 

fs
2
) was used. For the pulse width of 107 fs, the wavelength conversion was found to decline 

when compared to the standard setting. In general, shortening the pulse width improves 

conversion to the blue-shifted and the red-shifted peaks. Unfortunately, in our experiment 

with PCF 5 the blue-shifted signal moves out of the relevant wavelength region when the 

shortest pulses are used. As a trade-off, for a simultaneously efficient conversion to both the 

relevant wavelength regions, the pulse width of 89 fs was chosen. 

Chirped pulses have been found to alter the output spectrum and introduce noise when 

compared to pumping with transform limited pulses [25, 26]. However, based on an earlier 

study with a double-ZDW fiber similar to ours, we expect the chirp of the input pulses to have 

only a minor effect on the output spectrum [12]. Furthermore, in the same study the noise in 

the output spectrum from this type of a PCF was measured to be lower than the one reported 

for standard PCFs. 

Cutback measurements 

In Fig. 7 the length of the PCF has been varied. The fiber output spectra were measured using 

the cutback method, i.e. the setup was fixed except for the fiber length. The spectra are again 

normalized to the total, coupled power calculated from each spectrum. It is clearly seen how 

the IR peak shifts to longer wavelengths when the fiber length is increased, which is caused 

by Stimulated Raman Scattering. Also the shape of the peaks varies when changing the fiber 

length. Considering the IR peak, the most suitable spectrum for CARS microscopy is from 20 

cm to 50 cm, but because of fiber losses, i.e. signal attenuation from mechanisms as 

absorption, scattering [27] and confinement losses [28], it is convenient to choose the shortest 

possible fiber length. For this reason a length of 28 cm is chosen for the following 

experiments. 

Polarization maintaining properties 

Existing commercially available CARS PCFs are not designed for PM propagation. If the 

polarization is maintained in the PCF, no polarization filtering is necessary after the PCF for 

CARS excitation, i.e., no excitation power loss. Furthermore, as discussed in the introduction, 

polarization of the excitation light is important due to the improved signal-to-noise for the 

resulting CARS signal due to non-resonant background suppression. Accordingly, an 

important motivation for the new design, and thus this study, was to investigate the PM 

properties of the novel design. It was experimentally verified that the input polarization state 

was maintained by inserting a λ/2-plate and a polarizing beam splitter (PBS) at the PCF 

output. Transmitted polarization state contained 93% of the light, while 7% was reflected in 

the PBS. Taking the imperfect optics for broadband light sources (PBS is coated for 650-900 

nm) into account, we conclude that the PCF is polarization maintaining. 

Numerical calculation of pulses evolving in PCF 

In order to investigate the spectral broadening when pulses propagate in a PCF, the split-step 

Fourier method [6] is used to solve the generalized nonlinear Schrödinger equation 
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where A(z,t) is the pulse envelope moving in the retarded time frame t with the group velocity 

of the pump along the z-axis. D̂ is the operator from where the dispersion of the PCF acts on 

the pulse given as 
2
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∂
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∂∑ . The dispersion coefficients of PCF 5 are calculated 

with the MIT Photonics Bands package of the design with the pitch and the relative hole 

diameter given in Table 1. ( )R t ′  is the Raman response function. 

 

Fig. 8. Numerical calculation of an 11 fs pulse propagating in PCF 5, where red indicates high 

intensity (left), and the simulated spectrum together with measured spectrum after 28 cm of 

propagation in PCF 5 (right). 

Figure 8 (left) shows the simulated spectral broadening of a Gaussian pulse in PCF 5. The 

input pulse has a temporal width of 11 fs comparable to the pulses from the Ti:Sapphire laser. 

The peak power of the input pulse was set to be 4 kW. The pump pulses have a repetition rate 

of 75 MHz yielding a coupled average power of 29 mW, in agreement with our experimental 

observation. It is seen how the pulse immediately broadens to a blue-shifted dispersive wave 

and red-shifted solitons that are further red-shifted by stimulated Raman scattering. Figure 8 

(right) shows the spectrum calculated with the split-step method after 28 cm propagation (blue 

curve) and the measured spectrum at the same distance of propagation (green curve), 

respectively. The broadening of the two spectra is comparable. The power coupled to the fiber 

was approximately 35 mW, although some power is expected to be lost to cladding modes. 

The intensity of the IR region is seen to be higher in the simulated case than for the measured 

spectrum. This was also observed in [12], and it is mainly expected to be caused by 

confinement losses [28]. 

Varying the pump wavelength 

The experimental studies were carried out with the pump wavelength centered at 795 nm. 

However, the generated spectrum is expected to be dependent on the center wavelength of the 

pump. For this reason it was investigated numerically how the spectrum changes when 

pumping PCF 5 at different center wavelengths. In Fig. 9 (left) calculated spectra are shown 

when pumping by center wavelengths at both sides of the first ZDW, i.e. at NDR (λ0 = 775 

nm and λ0 = 795 nm) and ADR (λ0 = 815 nm). Other parameters of the pulse and the PCF are 

the same as in the previous section. It is seen that the spectrum broadens more when the 

center wavelength of the pump is increased. For all three cases, the red-shifted peak stays in 

the regime where it is useful as a Stokes wavelength, since the ideal Stokes wavelength is 

shifted towards longer wavelengths, when the pump wavelength increases. The black lines 

indicate the ideal Stokes wavelength for the shortest and the longest pump wavelength, 

respectively. From the three shown curves in Fig. 9 (left), it is seen that 795 nm is preferred as 

the center wavelength because of the best power conversion to the relevant regimes, but minor 

deviations within ± 15 nm are not considered critical. This insensitivity to variations of the 
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center wavelength when pumping close to the first ZDW is explained by the small change in 

the absolute dispersion value when moving from the NDR to the ADR. Fig. 9 (right) shows 

spectra calculated with λ0 = 840 nm and λ0 = 880 nm. In the case of λ0 = 840 nm, the center 

wavelength of the pump is close to the vertex of the dispersion curve. We observe no 

broadening to relevant CARS wavelengths with this pump wavelength, and we exclude 

further studies of this case. The center wavelength of λ0 = 880 nm is in the vicinity of the 

second ZDW. Again, the broadening to the regimes relevant as Stokes wavelength is limited 

and the spectrum exhibits also large ripple compared to the red-shifted peak generated when 

pumping close to the first ZDW. At the same time it should be noted that loss mechanisms are 

not included in the simulations. In particular confinement loss may prevent the use of the 

longer wavelengths as the Stokes wavelength. 

 

Fig. 9. Calculated spectra with the pump wavelength centered close to the first ZDW (left) and 

at 840 nm and 870 nm representing pump wavelengths in the middle of the ADR and close to 

the second ZDW, respectively (right). 

Optimum PCF for CARS 

The spectrum generated from PCF 5 was compared to a spectrum generated from a 

commercially available CARS PCF ‘femtoWHITE CARS’ produced by NKT Photonics A/S. 

In both cases the coupled average power of the pump light was 35 mW, which was the 

maximum power available in our experiment. The commercial PCF was designed to a length 

of 12 cm whereas PCF 5 had a length of 28 cm. Figure 10 shows the spectra from PCF 5 and 

‘femtoWHITE CARS’, respectively. It is seen how the broadening of the two spectra are 

comparable, but the spectrum from PCF 5 has its power concentrated in two peaks around the 

relevant CARS wavelengths. The spectrum from ‘femtoWHITE CARS’ has, especially in the 

red-shifted wavelength region, a non-localized distribution of power, hence, the power for the 

actually needed wavelength in the CARS process is low. With the power distribution of the 

spectrum of PCF 5, the power of the second wavelength in the CARS process generated with 

the PCF is increased. The highest spectral densities for relevant CARS wavelengths generated 

with PCF 5 were measured to be 201 µW/nm and 206 µW/nm for blue-shifted and red-shifted 

wavelengths, respectively. In addition, PCF 5 generates a spectral power density higher than 

100 µW/nm for all relevant CARS wavelengths. CARS experiments have successfully been 

performed with ‘femtoWHITE CARS’ where 12 mW of power was achieved when using the 

red-shifted part of the spectrum as Stokes beam, while the blue-shifted peak was filtered away 

[29]. With the improved power distribution, an enhanced CARS signal can be achieved when 

using PCF 5 i.e. a faster imaging process than achieved with other PCF based CARS systems 

(4 µs/pixel) [16]. Note that the commercially available fiber is not polarization maintaining. 
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Fig. 10. Spectra measured from PCF 5 (blue curve) and ‘femtoWHITE CARS’ (green curve). 

Both spectra are measured with 35 mW of coupled average power, and are normalized to this. 

5. Conclusion 

In conclusion, we have investigated PCF designs with two ZDWs in order to suggest a novel 

PCF design for generating the second wavelength needed for CARS microscopy. From this 

investigation, we select the optimum PCF design having the pitch size of Λ = 0.96 µm and the 

relative hole diameter of d/Λ = 0.56, respectively. Spectral broadening covering relevant 

CARS wavelengths at 648 nm and 1027 nm was demonstrated experimentally with sufficient 

power conversion efficiency. Simultaneously, the PCF had a twofold symmetric structure 

ensuring polarization maintaining propagation, which was experimentally verified. The PCF 

design was characterized by varying the input parameters, i.e., average power, pulse width 

and PCF length. By using pulses from a Ti:Sapphire laser of 89 fs, centered at 795 nm, and a 

coupled average power of 35 mW to the PCF of length 28 cm, a spectrum with power 

concentrated at the relevant wavelengths was generated. Furthermore, the measured spectrum 

was in good agreement with numerical calculations, and from this, it was found that the 

nonlinear effects responsible for the spectral broadening are due to soliton fission processes, 

dispersive waves and stimulated Raman scattering. 

The spectrum generated from the novel, optimum PCF was compared to a spectrum 

generated from a commercially available CARS PCF. We demonstrated enhanced power 

distribution localized at the relevant IR wavelengths as well as maintaining of the polarization 

state for the new CARS PCF. It is expected that the increased power gives an enhanced CARS 

signal and thereby a faster imaging than previously achieved with the commercially available 

CARS PCF. Equally important is that the polarization maintaining propagation provides an 

improvement in the signal-to-noise ratio in CARS applications. 
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