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Reflection spectra and radar cross sections (RCS) at terahertz
frequencies are measured on structures incorporating absorbing
metamaterials. Reduction of the RCS by the factor of 375 at the
resonant frequencies is observed.

Introduction

Absorbing metamaterials (MM) offer the exciting possibility of near-unity absorption at
specific resonance frequencies where the characteristic impedance Z(w) is designed to
match the free-space impedance and the imaginary part of the refractive index k(w) is
as high as possible. Such materials have been realized in the form of thin, flexible
metalized films of polyimide (PI) [1]. Terahertz time-domain spectroscopy confirmed
the very high absorption at the resonance frequencies.

The real-world applications of such absorbing materials are plentiful,
including suppression of unwanted reflections, stealth operation, and frequency-
selective filters for chemical imaging applications. Here we apply a near-unity
absorbing MM as a way to reduce the radar cross section of an object, and consider
the real-life situation where the probe beam is significantly larger than the MM film
and the object under investigation. Thus we need to be concerned not only about the
intrinsic properties of the MM film, but also on scattering from edges of the object and
other disturbances.

Experimental setup
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Metamaterial samples

8-um-thick flexible polyimide layer
—

200-nm-thick gold layer

8-um-thick polyimide layer

U, 200-nm-thick gold metamaterial structure

Fig. 3. Terahertz metamaterial absorber consisting of 2D array of split ring resonators. Unit cell size
a: 36pm, size of the split ring resonator b: 26um, capacitor gap 2um.

Metamaterial samples — reflectivity
measurements
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RCS measurements on metamaterials
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Fig. 7. Normalized frequency resolved radar cross sections for samples 1 and 2 at frequency 0.4 and
0.867 THz.

* Maximum decrease of normalized RCS for 0.867 THz to 0.0027 (factor of 375)
* Strong scattering resulting in high noise at the directions of interfaces
* RCS decreased in 70% of angular range corresponding to the metamaterial presence
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Fig. 6. Frequency resolved reflectivity along the sample 2.
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