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MOMENT DISTRIBUTIONS OF PHASE TYPE
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� Moment distributions of phase-type and matrix-exponential distributions are shown to
remain within their respective classes. We provide a probabilistic phase-type representation for
the former case and an alternative representation, with an analytically appealing form, for
the latter. First order moment distributions are of special interest in areas like demography and
economics, and we calculate explicit formulas for the Lorenz curve and Gini index used in
these disciplines.

Keywords Gini index; Lorenz curve; Matrix-exponential distributions; Moment
distribution; Phase-type distributions; Size-biasing; Waiting time paradox.
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1. INTRODUCTION

In this article, we consider moment distributions obtained from
distributions which are either of phase-type or matrix-exponential.
We shall prove that if the underlying distribution is of phase-type,
then the corresponding moment distribution of any order is also
phase-type distributed. If the underlying distribution is a matrix-exponential
distribution, then moment distributions of any order are again matrix-
exponential. For the phase-type case we shall provide two phase-type
representations of the moment distributions, whereas for the matrix-
exponential case we shall provide an alternative representation with an
appealing structure which in general will not be of phase-type.
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652 Bladt and Nielsen

Moment distributions are important in various fields of application
such as demography, economics, engineering and geology. They are
often referred to as distributions obtained by length biased (first order
moment distributions) or size-biased sampling. A well known application
is concerning the income distribution in a society. If one samples a dollar,
then there is an indication of inequality in the society if the probability
that the dollar belongs to a rich person is very different (much higher)
than the relative frequency of rich people. The situation is similar to the
inspection paradox from renewal theory. For the first order distribution we
present an explicit formula for the related Lorenz curve and Gini index,
which is a frequently used measure of inequality.

The article is organized as follows. In Section 2 we provide the
necessary background and notation on moment distributions and renewal
processes. In Section 3 we prove our main results and in Section 4 we
calculate the Lorenz curve and Gini index.

2. BACKGROUND AND NOTATION

Consider the density function f of a non-negative random variable
X , then

fi(x) = xi f (x)
�i

, where �i =
∫ ∞

0
xi f (x)dx ,

are densities of some non-negative random variables X (i) provided that �i

exists. We say that fi is the density of the ith order moment distribution
of f . Log-normal, Pareto, and gamma distributions are closed under the
formation of moment distributions.

A stationary renewal process with inter-arrival time distribution given
by the density f is a delayed renewal process, where the time until
the first arrival has density fe(x) = (1 − F (x))/�1 = �F (x)/�1. Here F and
�F are the distribution and survival functions corresponding to f . Let
At denote the age of the process at time t , i.e., the time from the
last arrival to t and Rt the residual life-time, which is the time from
t until the next arrival. Then the joint distribution of At and Rt is
given by (see, e.g., Ref.[9], Proposition 3.2) �(At > x ,Rt > y) = �Fe(x + y),
or equivalently f(At ,Rt )(x , y) = �1

−1f (x + y). The spread St = At + Rt is the
length of the inter-arrival interval which contains the time point t and is
then calculated to have density

fSt (x) =
∫ x

0
f(At ,Rt )(x − t , t)dt = xf (x)

�1
,

which is exactly the first order moment distribution of f .
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Moment Distributions of Phase Type 653

Size biasing in dimensions two and three occur in a similar fashion.
Consider a map of a country which is partitioned into counties. We could
be interested in estimating the distribution of the county sizes. Sampling
counties through realizing a two dimensional Poisson process over the
map results in an area biased distribution, where the probability of
choosing a county is proportional to its area. Three dimensional size-biased
distributions occur when estimating grain sizes by using sieves of increasing
fineness and then using the weight of the different groups, which is
approximately proportional to the cube of the grain diameters; see,
e.g., Ref.[10].

A distribution of a non-negative random variable is called matrix-
exponential if it has a density function f on the form f (x) = � exp(Sx)s,
where � and s are row and column vectors respectively and S is a matrix.
The triple (�, S, s) is called a representation of the matrix-exponential
distribution. With e being a column vector of ones, a representation
can always be chosen such that s = −Se and 0 ≤ �e ≤ 1. The common
dimension p is referred to as the order of the matrix-exponential
representation. The order is called minimal if it is not possible to find
another representation of f with a strictly lower order, in which case it is
called the order of the distribution.

A special sub-class of matrix-exponential distributions are the so-called
phase-type distributions. They are defined as the distributions of the
times until absorption of Markov jump processes with a finite number of
transient states and one absorbing state. In this case, the representations
(�, S, s) may be taken to have probabilistic interpretations as respectively �
the initial distribution of the underlying Markov jump process generating
the phase-type distribution, S a sub-intensity matrix of transition rates
between the transient states, and s the exit rate vector of intensities for
jumping to an absorbing state.

The nth moment of a matrix exponential distribution with represen-
tation (�, S, s) is given by (−1)n+1n!�S−(n+1)s. If s = −Se, which is true
for phase-type representations, the formula for the nth moment reduces
to n!�(−S)−ne. The cumulative distribution functions are, respectively,
given by 1 + � exp(Sx)S−1s and 1 − � exp(Sx)e. For more details on matrix-
exponential and phase-type distributions we refer to Refs.[2,3,7].

Representations of matrix-exponential and phase-type distributions
are not unique. If for example (�, S, s) is a representation of a
matrix-exponential distribution and M is a non-singular matrix, then
(�M−1,MSM−1,Ms) is another representation of the same distribution. Of
special interest is the case where M = �(m) is a diagonal matrix with
m = (m1,m2, � � � ,mp) and mi �= 0 for all i in which case we may construct
the time-reversed (or dual) representation by letting m = −�S−1 for a
phase-type representation (�, S). The time reversed representation (�̂, Ŝ) is
then given by �̂ = s′M and Ŝ = M−1S′M. For more details, see Refs.[1,4,8].
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654 Bladt and Nielsen

Consider a delayed renewal process, where the distribution of
the time until the first arrival is matrix-exponentially distributed with
representation (�, S, s) and the remaining inter-arrivals are matrix-
exponentially distributed with common representation (�, S, s). Then the
renewal density is given by u(x) = � exp((S + s�)x)s and the residual life-
time Rt is matrix-exponentially distributed with representation (� exp((S +
s�)t), S, s) (see Ref.[2] for details and further properties). The renewal
process is stationary if the delay is matrix-exponentially distributed with
representation (−�S−1/�S−2s, S, s).

3. MOMENT DISTRIBUTIONS OF MATRIX-EXPONENTIAL
DISTRIBUTIONS

Let f be the density of a matrix-exponential distribution with
representation (�, S, s). Then it is clear that any moment distribution fi is
again a matrix-exponential distribution. This follows directly from

di

dsi
f̂ (s) =

∫ ∞

0
(−1)i x i e−sx f (x)dx = (−1)i�i f̂i(s)�

Since f̂ (s) is a rational function, so is its ith derivative, and hence f̂i(s)
is also a rational function which, in turn, is equivalent to fi being matrix-
exponential. We next address the problem of finding representations for
such distributions.

It is often an advantage, in particular in applications of non-linear
models, that a matrix-exponential distribution with representation (�, S, s)
satisfies s = −Se and 0 ≤ �e ≤ 1; see Ref.[3]. In the following we shall
restrict attention to matrix-exponential representations satisfying these two
properties.

Theorem 3.1. Consider a matrix-exponential distribution with representation
(�, S, s) such that s = −Se and 0 ≤ �e ≤ 1. Then its nth moment distribution is
also matrix-exponential with representation (�n , Sn , sn), where

�n =
(

�S−n

�S−ne
, 0, � � � , 0

)
Sn =


S −S 0 � � � 0
0 S −S � � � 0
� � � � � � � � � � � � � � �
0 0 0 0 S

 , sn =


0
0
��
s

 �

Proof. When calculating �n exp(Snx)sn we see that only the upper right
term is of importance in the matrix-exponential. This term is calculated to
be ((−1)n/n!)xnSn exp(Sx) by taking powers of Ŝ and summing up. Thus

�neSnxsn = �S−n

�S−ne
(−1)n

n! xnSneSxs = xn�eSxs
(−1)nn!�S−ne

= xn�eSxs
�n

,
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Moment Distributions of Phase Type 655

where �n (as usual) denotes the nth moment of the matrix-exponential
distribution. �

Corollary 3.2. A similar calculation yields the following

Fn(x) = 1 − �S−n

�S−ne

n∑
i=0

(−xS)i

i! eSxe�

The nth order moment distributions of an exponential distribution
with intensity � is an Erlangn+1(�) distribution. Theorem 3.1 and
Corollary 3.2 are nice examples of the generalization of the exponential
distribution to matrix-exponential distributions. As ((�S−1e)−1�S−1, S, s)
is a representation for a matrix-exponential distribution we see
that also ((�S−ne)−1�S−n , S, s) is a representation for a matrix-
exponential distribution for all non-negative integer n, implying that
((�(−S)i eSxe)−1�(−S)i eSx , S, s) is a representation for a matrix-exponential
distribution for all non-negative integer i and non-negative x . It follows
that the nth order moment distribution can be interpreted as the
distribution of a sum of n identically distributed matrix-exponentially
distributed random variables, exactly as for the exponential distribution,
although the individual random variables are dependent in the matrix-
exponential case. The representation for each of the individual variables
can be chosen as ((�S−ne)−1�S−n , S, s).

If the underlying distribution is a phase-type distribution with
representation (�, S), then the above representation for the nth order
moment distribution will only yield a phase-type representation when the
distribution is exponential or hyper-exponential, since otherwise there
will be negative off-diagonal elements present. In the case of phase-type
distributions, the above representation will therefore be of limited use.

We still need to prove that the nth order moment distribution of a
phase-type distribution is of phase-type. To this end it is sufficient to prove
that the first order moment distribution is of phase-type as the nth order
can be obtained by an iterative argument.

Theorem 3.3. Consider a phase-type distribution with representation (�, S).
Then the first moment distribution is again of phase-type. A representation is
(�̂1, Ŝ1), where

�̂1 = (s′�(m2), 0), Ŝ1 =
(
�−1(m2)S′�(m2) �

−1
1 �−1(m2)�(m1)

0 �−1(m1)S′�(m1)

)
,

with �i = �(−S−i)e and mi = �−1
i−1�(−S)−i .
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656 Bladt and Nielsen

Proof. Consider a stationary renewal process with an inter-arrival time
distribution which is of phase-type with representation (�, S). Then
the distribution of the phases by time t is �1 = �−1

1 m1, with �1 = m1e.
Hence both Rt and At are phase-type distributed with representation (�1, S)
or (�1, Ŝ) with Ŝ = �−1(m1)S′�(m1). The distribution of the spread, At + Rt ,
is the first order moment distribution of the phase-type distribution with
representation (�, S). A representation of the spread can be established
using a phase-type argument as follows. The development is illustrated
in Figure 1. The phase at t of the Markov jump process is the phase
of At immediately before absorption and the initial phase of Rt . To find
the distribution of At we realize that the time to the initial point of the
interval is found by running the phase-type renewal process in reversed
time, such that a representation of Ât is (�1, Ŝ). To obtain a phase type
representation for the spread we must ensure that the initial phase of Rt

is the same as the phase of At immediately before absorption, or when
considering the process in reversed time, that the initial phase of Ât is the
phase of R̂t immediately before absorption. To complete the argument we
need the time reversed representation of (�1, S). Here m = −�1S−1 = m2

and the time reversed representation for Rt (the representation for R̂t) is

FIGURE 1 At time t the distribution of states in the stationary PH renewal process is �1. At and
Rt can be generated by initiating according to �1 in the same phase as shown above the time axis
and running them in each their direction. The dashed trajectory corresponds to the At process
running reverse in time and the continuous lines corresponds to the Rt process running forward
in time. Under the time axis is a realization of the time-reversed Markov jump process generating
the reversed versions R̂t and Ât of Rt and At . The transition from the upper to the lower block
corresponds to the inspection time “t” and the phase of the underlying process is not changed,
while the marginal distribution of phases at the time of change from the process generating R̂t to
the process generating Ât is �1.

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 0

5:
27

 1
5 

D
ec

em
be

r 
20

11
 



Moment Distributions of Phase Type 657

(s′�(m2),�−1(m2)S′�(m2)), with exit vector

−�−1(m2)S′�(m2)e = −�−1(m2)�
−1
1 (�(−S)−2S)′ = �−1

1 �−1(m2)m′
1� (1)

Now when the process of R̂t terminates, the process for the spread resumes
in reversed time according to the standard reversed generator Ŝ to account
for the At part of the spread, so the block matrix leading from the states
representing R̂t to the states representing Ât is a diagonal matrix of the
vector given by Eq. (1). �

As the representation of Theorem 3.3 and its proof is motivated by
a time reversal argument it is tempting to investigate the corresponding
time reversed representation. One would think that there should be such
a forward representation where the lower order block would be simply S
and where the initial distribution into that block would be �1 to ensure the
correct marginal distribution of Rt .

Corollary 3.4. Consider a phase-type distribution with representation (�, S). Its
first order moment distribution can be represented by a phase-type representation
(�1, S1) with

�1 = (�−1
1 ��(�1), 0), S1 =

(
�−1(�1)S�(�1) �

−1(�1)

0 S

)
, where �1 = (−S)−1e�

Proof. The time reversed representation is found by calculating
m = �̂(−Ŝ)−1, �−1(m)̂S′�(m), and (−Ŝe)′�(m). By reordering the state
space such that the phases related to At precede those related to Rt we
get the formulation of the corollary. �

The ith element of the initial vector �−1
1 ��(�1) is the proportional

contribution to the mean from trajectories initiated in state i , and the ith
diagonal element of the block transition matrix �−1(�1) is the reciprocal
of that same mean and can be interpreted as the rate of absorption
from phase i . The interpretation of the (i , j)th off-diagonal element
of the sub-generator �−1(�1)S�(�1) is the original transition rate Sij
multiplied with the ratio of the mean time before absorption of trajectories
initiated in state j and i , respectively. Thus in the forward representation
the generator, somewhat surprisingly, does not depend on the initial
distribution, so the generator is the same for all moment distributions
of phase-type distributions with the sub-generator S. As an example of
Corollary 3.4 we have that the (�1, S1) representation for an Erlang2(�)
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658 Bladt and Nielsen

distribution becomes(1, 0, 0, 0),


−� 1

2�
1
2� 0

0 −� 0 �

0 0 −� �

0 0 0 −�


 �

As the first order moment distribution of an Erlang2(�) distribution
is an Erlang3(�) distribution the (�1, S1) representation is not minimal.
Nevertheless, that representation gives some probabilistic insight. The
transition from the upper to the lower block corresponds to the time “t”
of inspection. The probability that inspection will occur in each of the two
phases is 1

2 . We have failed, to make a direct probabilistic argument that
leads to the representation (�1, S1) in general. By considering the case of a
hyper-exponential distribution one sees that the dimension of the (�1, S1)
representation can not always be reduced. The distribution of the spread
for a phase-type renewal process was discussed in Ref.[6] but neither the
phase-type property nor its representation was given there.

Since the second order moment distribution can be obtained as the
first order moment distribution of the first order moment distribution,
then by applying Theorem 3.3 to the phase-type representation (�̂1, Ŝ1) we
see that the second order moment distribution is again of phase-type. If the
order of (�, S) is p, then the order of the first order moment distribution is
2p and the order of the second order moment distribution 4p. Proceeding
in this way, we see that the nth order moment distribution is of phase-type
of order 2np. We now provide an alternative phase-type representation for
the nth order moment distribution of order (n + 1)p. The representation
provided coincides with the representation of Theorem 3.3 for first order
moment distributions.

Theorem 3.5. Consider a phase-type distribution with representation (�, S).
Then the nth order moment distribution is again of phase-type with representation
(�̂n , Ŝn), where

�̂n =
(
�n+1

�n
s′�(�n+1), 0, � � � , 0

)

Ŝn =



Cn+1 Dn+1 0 � � � 0 0

0 Cn Dn � � � 0 0

0 0 Cn−1 � � � 0 0
���

���
���

���
���
���

���
���

0 0 0 � � � C2 D2

0 0 0 � � � 0 C1
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Moment Distributions of Phase Type 659

and �i = �i/i! = �(−S)−ie are the reduced moments,

�i = �−1
i �(−S)−i , Ci = �(�i)

−1S′�(�i) and Di = �i−1

�i
�(�i)

−1�(�i−1)�

Proof. We lack a probabilistic argument so the proof is purely analytical.
We prove that the Laplace transform corresponding to (�n , Sn) is identical
to the one of Theorem 3.1. Noticing that (uI − �−1S′�)−1 = �−1(uI −
S′)−1� it is readily seen that the Laplace transform L(u) corresponding to
(�n , Sn) amounts to

L(u) =
(
�n+1

�n
s′�(�n+1)

)

×
[

n−1∏
i=0

(uI − �(�n+1−i)
−1S′�(�n+1−i))

−1�(�n+1−i)
−1�(�n−i)

�n−i

�n+1−i

]

× (uI − �(�1)
−1S′�1)

−1�(�1)
−1�′

0

1
�1

= �−1
n s′(uI − S′)−n−1�′

= �−1
n �(uI − S)−(n+1)s

= �n[(uI − S)−1(−S)]n(uI − S)−1s

coinciding with the Laplace transform of Theorem 3.1. �

The forward representation generalized from Corollary 3.4 is

Corollary 3.6. The nth order moment distribution of a phase-type distribution
with representation (�, S) has a phase-type representation (�n , Sn) with

�n = (�−1
n ��(�n), 0, 0, � � � , 0)

Sn =



�−1(�n)S�(�n) �−1(�n)�(�n−1) 0 � � � 0

0 �−1(�n−1)S�(�n−1) �−1(�n−1)�(�n−2) � � � 0

0 0 �−1(�n−2)S�(�n−2) � � � 0
���

���
���

���
���
���

���

0 0 0 � � � S


,

with �n = (−S)−ne and �n = ��n.

Proof. The proof technique is similar to that of Corollary 3.4. �
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660 Bladt and Nielsen

4. LORENZ CURVE AND THE GINI INDEX

If F is a distribution function and F1 the distribution function of the
corresponding first order moment distribution, then the parametric curve
� : t → (F (t), F1(t)), t ∈ [0,∞) is called the Lorenz curve. Traditionally
the Lorenz curve is used to illustrate inequality in a society with the
interpretation that the poorest x = F (t) per cent of the population posses
y = F1(t) per cent of the total wealth. Another measure frequently used is
the Gini index, which is defined as twice the area between the curve � and
the line y = x . It compares the area between the curve � and the line y = x
to the area of the triangle under the line y = x for x = [0, 1], which is one
half. The larger the Gini index, the larger the inequality of incomes. If �
is the straight line y = x , then there would be complete equality with the
Gini index being zero.

If F is matrix-exponentially distributed we are able to provide explicit
formulas for both the Lorenz curve and the Gini index.

Theorem 4.1. Let F be the distribution function of a matrix-exponential
distribution with representation (�, S, s), where s = −Se. Then the Lorenz curve is
given by the formula

� : t →
(
1 − �eSte, 1 − �S−1

�S−1e

(
eSte + teSts

))
and the Gini index G by

G = 2(� ⊗ �1)(−(S ⊕ S1))
−1(s ⊗ e) − 1�

Proof. The Lorenz curve representation follows from Corollary 3.2 with
n = 1. The area A under the curve � is given by

A =
∫ ∞

0
F ′(t)F1(t)dt

=
∫ ∞

0
�eSts

(
1 − �1eS1te

)
dt

= 1 −
∫ ∞

0
�eSts�1eS1tedt

= 1 + (� ⊗ �1)(S ⊕ S1)
−1(s ⊗ e),

where the last equality follows from Ref.[5] and where ⊗ and ⊕ are
the Kronecker product and sum respectively. The result now follows as
G = 2( 12 − A). �
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Moment Distributions of Phase Type 661

FIGURE 2 Left: Densities f (solid) and its first order moment density f1 (dashed). Right:
Corresponding Lorenz curve. The Gini index is 0.3750 (color figure available online).

FIGURE 3 Left: Densities g (solid) and its first order moment density g1 (dashed). Right:
Corresponding Lorenz curve. The Gini index is 0.8962 (color figure available online).

FIGURE 4 Left: Densities h (solid) and its first order moment density h1 (dashed). Right:
Corresponding Lorenz curve. The Gini index is 0.4917 (color figure available online).
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662 Bladt and Nielsen

Example 4.2. Consider the densities

f (x) = 4xe−2x ,

g (x) = 9e−10x + 1
91

e−10x/91,

h(x) = 2
3
e−x(1 + cos(x))�

The former two are phase-type with representations

(
(1, 0),

(−2 2
0 −2

))
,

((
9
10

,
1
10

)
,

(−10 0

0 −10
91

))

respectively while the latter is a matrix-exponential distribution not being
phase-type with representation(0, 0, 1),

−1 0 0

− 2
3 −1 1

2
3 −1 −1

 ,


1
2
3

4
3


 �

The three cases are plotted in Figures 2, 3, and 4.
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