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Abstract: The averaged point spread function (PSF) estimation of an image acquisition system is important for many 
computer vision applications, including edge detection and depth from defocus. The paper compares several mathematical 
models of the PSF and presents an improved measurement technique that enabled sub-pixel estimation of 2-D functions. 
New methods for noise suppression and uneven illumination modelling were incorporated. The PSF was computed from an 
ensemble of edge spread function measurements. The Generalized Gaussian was shown to be an 8 times better fit to the 
estimated PSF than the Gaussian and a 14 times better fit than the pillbox model. © 2007 Optical Society of America 

          OCIS codes: 110.2970, 110.4850, 220.4840, 350.4600, 150.5670, 220.2560. 

 

1 INTRODUCTION 
The research reported concerns mathematical 
modelling and practical measurement of the Point 
Spread Function (PSF) of focused and defocused 
image acquisition systems, such as digital TV 
cameras. This measure of image blur can be utilised to 
optimize image processing functions such as edge 
detection [1-3] and Depth From Defocus (DFD) depth 
estimation [4-11]. An image acquisition system 
typically consists of optical components (such as 
lenses and apertures) and electronic components (such 
as the 2-D CCD array, anti-aliasing and 
communication circuits). Each of the components in 
the optical and electronic paths can be considered as 
spatial low-pass filters. Considering the system in the 
terminology of system theory, the transfer functions 
of each of its components can be estimated and then 
all combined to find the overall transfer function. 
Alternatively, and the approach taken in this work, the 
transfer function for the entire system can be 
measured. Typically, input signals are provided in the 

form of bar patterns, point sources or step edges.  For 
entire system measurement, the output signal is the 
captured digital image. 
The Fourier transform of the PSF is the Optical 
Transfer Function (OTF), and both measures have 
been widely used to characterize systems. The lens can 
be thought of as a 2-D low-pass filter with a spatial 
cut-off frequency that is limited by diffraction and 
aberration effects. The 2-D array samples the image 
and also includes low-pass filtering as the individual 
sensor elements have a finite area required for low 
light operation. Together the elements tile the image 
plane. As a simple model, charge generated by a 
photon at a point in an element will distribute evenly 
across the tile [12]. The sampled value is then 
proportional to the accumulated charge from all the 
photons converted in the element during the 
acquisition phase and since the previous sample was 
acquired. The CCD is read by a raster scanning 
process [12]. Here the charge in each of the elements 
is transferred to vertical columns of shift registers. In 
turn these shift into a horizontal register and are 
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shifted to an analogue charge-to-voltage converter and 
then further electronics that provide, nominally, 1-D 
signal processes such as low-pass filtering and 
digitization. The low-pass filtering provided by the 
lens is necessary as it acts as an anti-aliasing filter for 
the image discretization. CCD elements require a 
relatively large area for the camera to work well at 
low light levels, and this finite area limits the high-
frequency response. 
PSF measurements can be limited by the Nyquist 
frequency of the discretization in the acquisition 
system, however an averaging and accumulation 
process was researched to overcome this [2,13,14]. 
This process required a knife or step edge to be 
imaged, i.e. this is not a general technique for all 
images. The image was of a blurred step and several 
edge-spread functions (ESF) were estimated along the 
length of the edge. The ESFs were then each 
registered to a reference point and accumulated to 
form a super-resolution ESF that contained frequency 
information above the Nyquist limit of the sampling 
grid. The PSF is more useful than the ESF for DFD 
measurement and image simulation as it can be 
directly convolved with an input image to estimate the 
output image [2,6,9]. The PSF is obtained by 
differentiating the ESF, however, even low levels of 
noise in the ESF can result in high levels of noise in 
the PSF and render it unusable. The source of the 
noise is in the imaging system’s sensors and 
electronics. In this research it was found that both 
digital and inexpensive analogue TV cameras had too 
poor a signal-to-noise ratio (SNR) for the previous 
PSF measurement techniques to work reliably. 
In this paper we compare research into several 
methods to both reduce the noise in the ESF 
estimation and to accurately model usable PSFs for 
the acquisition system. In Section 2 we review PSF 
measurement techniques and describe how a super-
resolution ESF, and eventually a PSF is computed 
from an ensemble of low-resolution measurements. In 
Section 3 we examine the theoretical PSF models that 
result from consideration of both geometric and 
diffraction optics. In Section 4 we describe 
improvements to the traditional super-resolution PSF 
measurement technique that involve:- (i) 
Compensation for non-uniform illumination within 
the light box used to produce the test images; (ii) A 
regularized numerical differentiation process to limit 
noise in the computed PSF; (iii) Models of the ESF 
that have been developed and used to compute PSFs 
that have then been compared with the theoretical 
models described in Section 2. Fitting the correct ESF 
model to the measured data is key to obtaining 
accurate PSFs for the system. Section 5 presents the 
experimental results from both focused and defocused 
systems. Specific 1-D results have been used to 

demonstrate problems with noise in the ESF 
estimation, and bias to the PSF when non-uniform 
illumination remains uncompensated. Then the results 
of ESF fitting experiments have been reported and 
discussed. Finally 2-D PSF plots have been produced 
for the most successful fitting methods. Section 6 
provides conclusions. 

2 MEASUREMENT TECHNIQUES 
Here we have proposed PSF measurement of the 
whole system, however methods exist to measure 
individual PSFs for each component. These can then 
be combined to give the overall PSF. Lasers have been 
used to measure the PSFs of individual pixels within 
the CCD array [15,16]. These are a function of 
wavelength, and so a complete characterization is 
lengthy and complex. However the PSF for the array is 
spatially variant and widely used in image restoration. 
Classically, images of sinusoidal gratings have been 
used for OTF lens measurements. When a  
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Fig. 1. Migration of samples onto the ESF 
 
focal plane array (FPA) images the grating the 
discretization means that the FPA must be moved 
relative to the image to give minimum and maximum 
MTF curves [17]. Sinusoidal laser interference 
patterns have been used by Marchywka and Socker 
[18], and laser speckle techniques can also be 
employed [19]. The main limitation of lasers is the 
monochromatic light. Spatial domain techniques have 
been used to measure the PSF of the lens. A scanned 
point source can be used to obtain a 2D PSF 
containing local blur and aberration information up to 
the Nyquist limit of the FPA. A 2D unit intensity step, 
known as a knife-edge can be easily produced 
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experimentally, using a lightbox. Differentiating the 
response of the lens, the ESF, gives the PSF. 
The knife-edge technique can be extended to 
acquisition system measurement. If the system 
contains a FPA then undersampling effects cause 
errors in the PSF estimation due to aliasing. In 
practice PSF information beyond the Nyquist limit of 
the array is often required. Reichenbach et al. [13] 
solved the problem by using many ESF profiles to 
create a super-resolution image of a 1D edge. Tzannes 
and Mooney [14] fitted a sum of three Fermi-Dirac 

functions to the edge to reduce the noise during 
differentiation to obtain the PSF, and Staunton [2] 
extended the technique to measure the ESF for many 
differently angled edges to produce a 2D PSF and 
MTF. At edge angles other than 0 or 90 degrees, a 
resampling of the data was performed to obtain the 
discrete ESFs along normals to the edge. A normal 
was set and then the closest samples to it projected on 
to it from a direction parallel to the edge as shown by 
the dashed lines in Fig. 1. The sampled values were 
then not equally spaced along the normal, but this
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Fig. 2. Simple model of the optical system with the image plane on the left. 
 
 

 
 
 
 
 
 
 
 

 (a)      (b) 

-100 -50 50 100
x ê µm

0.2

0.4

0.6

0.8

1

1.2

Magnitude

-15 -10 -5 5 10 15
x ê µm

0.2

0.4

0.6

0.8

1

Magnitude

 
Fig. 3. Normalized-magnitude PSFs for a 16mm, f4 lens. (a) Focused. (b) Defocused. 

 
 

was irrelevant to the following super-resolution stage. 
To understand the super-resolution stage used in 
[2,13,14], consider an edge oriented close to zero 
degrees, but not actually at zero. The edge cuts each 
pixel along its length so that part of the pixel is 
brightly illuminated, and part is dark. The sampled 

value for each pixel along the edge is proportional to 
the averaged illumination throughout the pixel. Each 
sampled value along the edge is therefore different. In 
the same way each of the many ESFs located at the 
pixels along the edge comprises differently sampled 
values. These low-resolution ESFs are then registered 
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with one another and assembled to form a single high 
resolution ESF that is resampled onto typically a 0.1 
pixel grid. 

The proposed knife-edge technique is simple 
to perform, but the PSF measurements are averaged 
along the length of the edge. Such an average is 
advantageous for shift invariant models used in 
processes such as edge detector testing [2], depth 
from defocus [6], or image simulation, but may be 
disadvantageous for processes that require models of 
lens aberrations in addition to spherical aberration, 
such as may be required for image restoration [20]. 
These may require space variant estimation of the 
PSF. 

3 THEORETICAL PSF MODELS 

A Geometrical Optics 
Pentland [4] showed that for the simple defocused 
optical system shown in Fig. 2, and assuming 
geometrical optics, the PSF is a pillbox shape with a 
blur circle radius given by 
 

fu
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where vo is the distance between the lens and the 
CCD, u is the depth of the object, F is the focal length 
of the lens and f is the f-number, which is defined as f 
= F/d, where d is the diameter of the aperture. The 
distance uo is the distance at which an object would 
appear in focus on the image plane. 

B Diffraction Approach 
The PSF h(x) of a focused lens that is subject to 
diffraction effects and with optical aberrations as a 
function θ(x), but neglecting sampling due to the 
FPA, is given by [21] as 
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where x is a position vector, A(ξ) is the aperture 
function, λ is the wavelength of light and F is the 
focal length of the lens. Out-of-focus blurring can be 
modelled as a quadratic aberration of the form 
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where u is the distance between the object and the 
lens, and v is the distance between the FPA and the 

lens. Substituting (3) into (2), assuming polychromatic 
light with equal intensities between wavelengths λ1and 
λ2, and the aperture function, A(ξ), to be a circle, 
radius r, then in 1D the PSF becomes 
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Fig. 3(a) shows a PSF expected for a focused system 
where only diffraction is present. The polychromatic 
light is modelled as white light with equal intensity 
components in the range 400 to 700 nm. The PSF 
looks similar to a Gaussian. Fig. 3(b) shows a PSF for 
a defocused 16mm lens where the camera is focused at 
0.464m and the point source is at 0.8m. The PSF has 
been flattened out and made to look more like a 
pillbox function. 

4 IMPROVEMENTS TO EDGE SPREAD 
FUNCTION ESTIMATION 
In this research the knife-edge technique was 
employed and this section firstly considers an 
improvement to Staunton’s [2] algorithm that 
incorporates the effect of non-uniform illumination of 
the lightbox. Without noise the ESF could be 
differentiated to yield the PSF, but differentiating a 
noisy function amplifies the noise. In this paper 
models of the ESF are developed from several PSF 
models and then compared. A regularized numerical 
differentiation process is proposed. 
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Fig. 4. ESF with a pillbox PSF where σ = 5 (solid) and 
the ideal step edge (dashed) 

A Compensation for Non-Uniform 
Illumination 
An ideal brightness step changes abruptly from one 
constant brightness level to the other. Experimentally a 
light box was employed with a knife-edge to 
approximate the step, however, in practice the 
brightness of each region was significantly non-
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uniform. This resulted in erroneous PSFs. We propose 
a new model that retains the abrupt transition, but 
allows each region to have a linear change in intensity 
as a function of spatial position. As an example, 
shown by the dotted trace in Fig. 4, both the bright 
and darker areas of this particular light box increase in 
intensity towards the knife-edge. However other 
linear illumination field conditions can also be 
modelled by this scheme. The modified step was 
given by 

)()()()()( 022011 xxucxmxxucxmxs −++++=    (5) 
 

where u(x) is the unit step function, c1 and c2 are the 
brightness of the upper and lower regions and m1 and 
m2 are the gradients of the brightness. 

B ESF Assuming a Pillbox PSF 
For a defocused lens under geometrical optics the PSF 
is a pillbox and given by 
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where σ is the radius of the pillbox, and hence the blur 
circle. The ESF assuming a pillbox PSF and using (5) 
becomes 
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where x0 is the location of the transition [22]. An 
example of the ESF for a PSF with a blur circle radius 
σ = 5 is shown in Fig. 4 where the original step is 
shown with a dotted line. 
Note that there are two sharp transitions in the 
resulting ESF. A pillbox PSF would result if the lens 
passed every spatial frequency, however, due to 
diffraction it is known that this is not possible and a 
smoother PSF will result. 
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Fig. 5. ESF when the PSF is a Gaussian with σ = 5 
(solid line) and unevenly illuminated ideal step edge 

(dashed line). 

C ESF Modelled as a Sum of Fermi-Dirac 
Functions 
Tzannes and Mooney [14] fitted a sum of three Fermi-
Dirac functions to the ESF. Their technique resulted 
in a smoothed transition across the edge. In general 
form the sum of N Fermi-Dirac functions for 
modelling the ESF is 
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where constants ai have been added to normalize the 
intensity, bi to set the centre point, ci to control the 
gradient and d to account for the non-zero brightness 
of the lowest level. In order to recover the PSF the 
ESF must be differentiated, which is given by [22] as 
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However a problem with this model is that it cannot 
readily take into account the non-uniform illumination 
in a way that allows the step and the PSF to be 
separated. The PSFs determined experimentally were 
consequently non-symmetrical, as shown for example 
in Figure 10. 

D ESF Assuming a Gaussian PSF 
The Gaussian PSF is the most frequently assumed 
model found in the literature on defocused lenses and 
this is partly due to its simplicity. A 1D Gaussian with 
a standard deviation σ and centered at xx = is then 
given by 
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The ESF assuming a Gaussian PSF and a step edge 
with non-uniform illumination is given by [22] 
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where erf(·) is the error function, defined as 
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If the ideal step with non-uniform illumination as 
shown in Fig. 4 is defocused with a Gaussian (σ = 5, 
x  = 0) then the ESF is as shown in Fig. 5. 
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Fig. 6. Generalized Gaussian PSFs where (left) (p = 1, σ = 5) and (right) (p = 4, σ = 5) 

 

E ESF Assuming a Generalized Gaussian PSF 
The Generalized Gaussian function [23] is being proposed 
here as a model of the PSF of a defocused lens. Along 
with the mean x  and the standard deviation σ, the power 
p of the function is required. The function can take the 
form of a Gaussian when the power p = 2 and a pillbox 
when p = ∞, and thus encompasses both of the frequently 
used models of defocus. The Generalized Gaussian is 
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where Г(·) is the Gamma function and |·| represents the 
modulus. The term before the exponential ensures the 
function has unit area. Two Generalized Gaussian 
functions are presented in Fig. 6, where p=1 (eg for a lens 
in focus), and p=4 (eg defocused). 
The ESF, assuming a step edge with non-uniform 
illumination and a Generalized Gaussian PSF, is given by 
the convolution of (11) with (13). A closed form, 
algebraic solution could not be found so the convolution 
integral was evaluated numerically. The ESF is given by 
[22] as 
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Using the PSFs shown in Fig. 6 and the ideal step with 
non-uniform illumination the resulting ESFs are shown in 
Fig. 7. 

F Regularized Numerical Differentiation 
In order to recover the PSF from the super-resolution Edge 
Spread Function (ESF) the response must be differentiated 
and as the data is discrete, finite-difference 
approximations must be employed. However the ESF is 
noisy and both two and five point numerical 
differentiation were found to give poor results. Chartrand 
[24] considered the problem of finding the derivative of a 
function when the underlying function is noisy and has a 
discontinuity in the derivative. The solution proposed uses 
total-variation regularization where the derivative of a 
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function y(x) defined on the closed interval [0, L] is the 
minimizer of the function 
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where u′(x) is the first derivative of the function y(x) and 
α is a regularization term that weights the first term, a 
penalty term, against the second term, the data fidelity 
term. 

 

The total variation suppresses the noise without removing 
discontinuities in the derivative. The appeal of this 
approach is that a pillbox PSF has two finite 
discontinuities and this method ensures that they can be 
recovered and that additionally noise suppression is 
achievable. The main problem is the choice of the 
regularization parameter α as it affects the derivative 
produced. 
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Fig. 7. The ideal steps (dashed lines) and the ESFs (solid lines) assuming Generalized Gaussian PSFs with (left) (p = 1, σ = 

5) and (right) (p = 4, σ = 5) 
 
 

 
 

Fig. 8. An example of the windowed image 
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Fig. 9. Five-point numerical differentiation results for f2.8, z=0.725m, angle=0 degrees with ESF shown on the left and the 

PSF on the right 
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5 EXPERIMENTAL RESULTS, FOCUSED 
AND DEFOCUSED SYSTEMS 

A The PSF Recovery Algorithm 
Initially a knife-edge was setup on a lightbox so that it 
was angled with a slight offset to a row of pixels in the 
FPA. Its image was windowed (51 x 500 pixels) as shown 
in Fig. 8. Individual ESFs along the edge therefore 
contained 51 samples from black to white. This width was 
sufficient even for defocused lens measurements. 
The sampled ESFs were normalized to remove non-
uniform illumination along the direction of the edge. Next 
the central brightness positions of the ESFs were 
estimated using a cubic fit and the ESFs aligned to these. 
This alignment resulted in the samples being displaced 
relative to each other. The super-resolution edge was 
created by averaging the pixel intensities within sub-pixel 
bins to give a ten times resolution improvement. Having  
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obtained the mean ESF for a given distance, f-number and 
knife-edge angle it was necessary to find the PSF. The 
methods examined were:- Five-point numerical 
differentiation; Regularized numerical differentiation 
using Chartrand’s algorithm; Regularized numerical 
differentiation using Chartrand’s algorithm followed by a 
fit of the resulting PSF to a Generalized Gaussian 
function; Fitting the ESF to a sum of Fermi-Dirac 
functions [14]; Fitting the ESF to a defocused step 
assuming even illumination and a Gaussian PSF; Fitting 
the ESF to a defocused step where the illumination is 
assumed to have a linear dependence on position and a 
Gaussian PSF; Fitting the ESF to a defocused step 
assuming even illumination and a Generalized Gaussian 
PSF; Fitting the ESF to a defocused step where the 
illumination is assumed to have a linear dependence on 
position and a Generalized Gaussian PSF. In this section 
results for a 24mm photographic lens fitted to a Basler 
A631fc color camera are presented when the lightbox was 
0.725m from the camera. 
 

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x / pixels

A
m

pl
itu

de

 
Fig. 10. The actual ESF (dashed line) and Fermi-Dirac fitted ESF (solid line) results for f/2.8, 
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Fig. 11. Regularized numerical differentiation results 
(right) for α = 10 (dashed), α = 100 (dash-dot) and α = 

1000 (solid) 
 

B Specific 1D Results 
The results from the five-point numerical differentiation 
in Fig. 9 show that although the ESF looks fairly smooth, 
the noise is swamping the underlying PSF, thus making 
this approach unusable without further processing. 

When the measured ESF was fitted to a sum of 
Fermi-Dirac functions, as shown in Fig. 10, the ESF 
appeared to have a good fit, however the PSF neither had 
symmetry or a single peak. These are properties expected 
of a physical PSF.  

C Regularized Numerical Differentiation 
In order to determine the optimum regularization 
parameter α, a series of simulations were performed. 
Both pillbox and Gaussian PSFs were used to defocus an 
ideal step. Three levels of noise were added with SNRs 
of 20 (high noise), 25, and 30 (low noise) dB, and then 
the ESF was differentiated using Chartrand’s algorithm 

 8



[24]. The MSE was employed as a distance measure 
between the actual PSF and the result of the numerical 
differentiation. The value: α = 1000 was optimum for the 

SNR = 20 dB case, while α = 100 was optimum for 25 
and 30 dB. These values were employed in the modelling

 
Table 1. MSE results for f/2.8 as a function of the depth to the light box 
 Mean Square Error (MSE) / 10-3

Method 0.414m  0.491m  0.569m  0.647m  0.725m 
Fermi-Dirac  25.2  29.2  34.3  28.3  26.1 
Generalized Gaussian 
without I.C. 

10.3 7.37 9.03 5.58 6.45 

Generalized Gaussian 
with I.C. 

7.91 5.92 7.95 4.99 6.01 

Gaussian without I.C. 64.6 51.1 64.9 68.2 70.2 
Gaussian with I.C. 47.6 43.4 55.0 51.1 48.5 
Pillbox without I.C. 130.0 90.9 90.7 86.0 85.5 
Pillbox withI.C. 102.0 70.3 72.4 70.8 68.3 
 
of real ESFs. An example is shown in Fig. 11 where we 
have taken the low noise case because it illustrates a 
problem with the method in that it could not take into 
account non-uniform illumination and produced non-
symmetric PSFs.  
The remaining fitting methods produced PSFs with less 
noise and better symmetry, and so were processed further 
to give 2D results. 
 
Table 2. Mean MSE results for all three apertures from 
best to worst 
Method Average MSE / 

10-3

Generalized Gaussian with 
Illumination Correction 

5.04 

Generalized Gaussian without 
Illumination Correction 

6.93 

Sum of three Fermi-Dirac functions 26.7 
Gaussian with Illumination 
Correction 

42.5 

Gaussian without Illumination 
Correction 

56.7 

Pillbox with Illumination Correction 72.0 
Pillbox without Illumination 
Correction 

97.6 

 

D Edge Spread Function Fitting Experiments 
The ESFs were fitted to the various functions for a range 
of distances. The results for aperture f2.8 are displayed in 
Table 1. It shows the MSE of the fit as an average for all 
angles tested, which were -80 to +90 degrees in 10-degree 
intervals. The plane in-focus was at 0.414m in front of the 
lens. 
The results show that the error assuming a pillbox PSF 
decreases for increasing defocusing, which was expected 
from the diffraction-based optics theory in Section 3. The 
MSEs of the fits using Generalized Gaussian, Gaussian 

and pillbox models are lower when the non-uniform 
illumination was taken into account. The experiment was 
repeated for f-numbers of f4 and f5.6. In Table 2, the 
summarized results for all apertures show that the 
Generalized Gaussian with illumination correction has 
resulted in the lowest MSE, thus giving the best fit to the 
data. The pillbox model produced the worst results with a 
MSE about 14 times greater than that of the Generalized 
Gaussian. The MSE of the Gaussian fell almost half way 
between the Generalized Gaussian and the pillbox. 

E Results assuming Gaussian and Generalized 
Gaussian PSFs 
Images of the knife-edge were obtained in 1mm 
increments over a 30cm depth range for angles of -80 to 
+90 degrees in 10-degree increments. Each image gave a 
single mean ESF and that ESF was fitted assuming both 
Gaussian and Generalized Gaussian PSFs, as derived in 
Section 4. The PSFs were found to be very nearly 
circularly symmetric and so the following results are given 
for the x direction only. Fig. 12 shows the standard 
deviation of both the Gaussian and Generalized Gaussian 
as a function of distance for three different f-numbers 
tested. The plots appear to be smooth and increase 
monotonically, except for the Gaussian at the maximum 
distance tested for f2.8. Being more robust with increasing 
depth, the Generalized Gaussian is considered a better 
model for use with DFD [22]. 
The Generalized Gaussian PSF has two parameters, the 
standard deviation σ and the power p. When the power as 
a function of depth was plotted it was found to be noisier 
than σ as shown in Fig. 13. 

F Two-dimensional PSFs 
Complete 2D-PSFs are presented below assuming pillbox, 
Gaussian and Generalized Gaussian PSF models for two 
depths, corresponding to the furthest and closest positions 
tested. The non-uniform illumination improvement was 
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used. Figs. 14 to 16 show the PSFs for a distance, z = 
0.725m, between the camera and the lightbox for an 
aperture of f/2.8. 
The Gaussian PSF model shown in Fig. 14 is for a 
defocused lens, and is clearly circularly symmetric. The 

fit has resulted in a smooth contour plot. The Generalized 
Gaussian PSF model shown in Fig. 15 appears to be a  
cross between the Gaussian and a pillbox. The fit has 
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Fig. 12: Standard deviation against depth when fitting (left) a Gaussian PSF and (right) a Generalized Gaussian PSF 

 

0.4 0.5 0.6 0.7 0.8
0.5

1

1.5

2

2.5

3

3.5

4

4.5

depth / m

po
w

er

f/2.8 (x)
f/4 (x)
f/5.6 (x)

 
Fig. 13: The power of the Generalized Gaussian against 

depth 
 

resulted in a contour plot that is less smooth than for the 
Gaussian, which is probably due to noise in the ESFs and 
increased complexity of the function due to it having more 
parameters than all the other models. The pillbox model, 
Fig. 16, has resulted in a reasonably circular PSF. Figs. 17 
to 19 show the PSFs for z = 0.414m, the in focus case.  
Note the change of x and y axis scales in Figs. 17 to 19. 
Now all three models have less circularly symmetry and 
have a maximum spread at approximately 45 degrees to 
the x axis. The power of the Generalized Gaussian is less 
than two, and so the function is more pointed than that for 
the Gaussian. 

G Discussion 
The goodness-of-fit of the Generalized Gaussian PSF is 
exemplified by the results of Table 3. Where the non-
uniform illumination model was employed, the fit was 
between 9 and 16 times better than using a Gaussian PSF. 
The Gaussian PSF has a faster roll-off when the camera is 
very defocused compared to that using the Generalized 
Gaussian because the power of the Generalized Gaussian 
increases with defocus, making it more pillbox in shape, as 
highlighted in Fig. 20. 
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Fig. 14. 2D PSF assuming a Gaussian model for z = 0.725m and f2.8 where x and y are in pixels 
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Fig. 15: 2D PSF assuming a Generalized Gaussian model for z = 0.725m and f2.8 where x and y are in pixels 
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Fig. 16: 2D PSF assuming a Pillbox model for z = 0.725m and f2.8 where x and y are in pixels 
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Fig, 17: 2D PSF assuming a Gaussian model for z = 0.414m and f2.8 where x and y are in pixels 
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Fig. 18: 2D PSF assuming a Generalized Gaussian model for z = 0.414m and f2.8 where x and y are in pixels 
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Fig. 19: 2D PSF assuming a Pillbox model for z = 0.414m and f2.8 where x and y are in pixels 
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Table 3. The average MSE for each method 
Average Mean Square Error (MSE) 
/ 10-3

Method, direction  f/2.8 f/4  f/5.6 

Gaussian, x-
direction  31.7 21.9  23.3  

Gaussian, y-
direction  46.1 27.3  23.7  

Generalized 
Gaussian,  
x-direction  

2.20 1.67  1.42  

Generalized 
Gaussian,  
y-direction  

4.99 2.44  1.87  
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Fig. 20: Comparison between PSFs for the Gaussian 
(dashed line) and Generalized Gaussian (solid line) 

 

6 CONCLUSION 
We have reported improvements to an easily performed 
super-resolution, but averaged, PSF estimation method 
that enables it to be used for focused and defocused lenses 
and with noise generated within the camera. The method 
involved the initial accumulation of a super-resolution 
ESF. Previously the calculation of the PSF from the ESF 
could give both noisy and distorted results.  
Distortions were attributed to non-uniform illumination of 
the knife-edge test object. Where a model of the 
illumination could be incorporated into the computation 
of the PSF, symmetrical functions resulted.  
Previously noise in the ESF was amplified when it was 
differentiated to form the PSF. We researched a 
regularized numerical differentiation that greatly reduced 
the noise. However changes to the value of the 
regularization parameter chosen resulted in varying 
distortions of the PSF. The method was not constrained 
by any assumption of an underlying model of the ESF or 
PSF, but in practice, it was found to be outperformed by 
methods that did. 
Several widely used models of the PSF were investigated 
including the pillbox and Gaussian, together with the use 

of Fermi-Dirac fitting functions. A Generalized Gaussian 
that incorporated both pillbox, Gaussian, and a continuum 
of models in between, through the choice of a parameter, 
was also used to model the PSF. The corresponding 
models for the ESF were derived from these as reported in 
the paper. The results showed that the MSE of the fit using 
the Generalized Gaussian performed best across the range 
of distances and f-numbers tested and that it was 8 times 
better than the Gaussian model and 14 times better than 
the pillbox model. Pillbox and Gaussian models are often 
assumed in DFD work and this research has shown that 
both are sub-optimum. Finally, 1D PSFs for various knife-
edge angles were combined to form 2D PSFs. 
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