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Generic Single-Channel Detection of Absence Seizures

Eline B. Petersena, Jonas Duun-Henriksena,c, Andrea Mazzarettoa, Troels W. Kjærb, Carsten E. Thomsend

and Helge B. D. Sorensena

Abstract— A long-term EEG-monitoring system, which au-
tomatically marks seizure events, is useful for diagnosing and
treating epilepsy. A generic method utilizing the low inter-
and intra-patient variabilities in EEG-characteristics during
absence seizures is proposed. This paper investigates if the
spike-and-wave behaviour during absence seizures is so distinct
that a single-channel implementation is possible. 18 channels of
scalp electroencephalography (EEG), from 19 patients suffering
from childhood absence epilepsy, are analysed individually. The
characteristics of the seizures are captured using the energy
content of wavelet transform subbands and classified using a
support vector machine. To ease the evaluation of the method,
we present a new graphical visualization of the performance
based on the topographical distribution on the scalp.

The presented seizure detection method shows that the best
result is obtained for the derivation F7-FP1. Using this channel
a sensitivity of 99.1 %, positive predictive value of 94.8 %, mean
detection latency of 3.7 s, and false detection rate value of 0.5/h
was obtained. The topographical visualization of the results
clearly shows that the frontal, midline, and parietal channels
outperform detection based on the channels in the occipital
region.

I. INTRODUCTION

The incidence of childhood absence epilepsy (CAE) is
reported as high as 9.6/100.000 in children younger than
15 years of age [1]. CAE has its onset in children age
4-10 years and causes the patient to experience frequent
seizures up to hundreds a day. The clinical manifestation of
an absence seizure is loss of conciousness and for some this
is accompanied by eye blinking or lip smacking, but often
no physical signs are observed. Seizures without clinical
manifestations are termed paroxysms, but for convenience
we use the term seizures for all epileptic activity. Long-term
monitoring of CAE patients is highly relevant since the large
number of seizures and sparse physical manifestation make
it difficult to otherwise recognize absences for diagnostic and
treatment purposes.

Absence seizures are very characteristic in the discharge
of 3 Hz spike-and-wave complexes [2]. The duration of a
seizure is reported to vary from a few seconds to half a
minute. Furthermore, the patients also experience bursts of
spike-and-wave complexes of shorter duration which do not
affect the consciousness. Generally, seizures of a duration
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shorter than 3 seconds have no impact on the consciousness
of the patient [2].

In the field of seizure detection, patient-specific methods
are generally reported to have a higher performance com-
pared to generic methods [5] . However, generic methods
are easier and faster to apply and therefore more relevant for
clinical use. The characteristics of epileptic seizures of the
same type are generally described to have large inter-patient
variability, but small intra-patient variability [3], which
is why patient-specific methods often outperform generic.
However, patients suffering from CAE have relatively little
inter-patient variability in the seizure characteristics [4].

A generic method of automatic detection of typical ab-
sence seizures is prosed for EEG monitoring of CAE pa-
tients. Due to the very characteristic nature of the absence
seizures it is investigated if a method based on single-channel
EEG is feasible. As stated, only seizures longer than 3
seconds have an impairing effect on the patients conscious-
ness. To ensure that all impairing seizures are detected, we
aim at detecting all seizures with a duration longer than 2
seconds. The result of the single-channel implementation is
presented graphically to ease the topographical evaluation of
the performance.

II. METHOD

A. Clinical Data

In this study scalp-EEG from 19 CAE patients (10 fe-
males, 9 males), with a mean age of 7.6±1.7 years. 24
recordings with a total duration of 11 hours and 48 minutes,
containing a total of 177 seizures, the 111 seizures with a
duration longer than 2 seconds are detectable, see Section
II-D. Data were recorded using a Cadwell Easy II from
Cadwell LaboratoriesTM as part of routine examinations
performed at the Department of Clinical Neurophysiology
at the Rigshospitalet University Hospital. The electrodes are
placed according to the international 10-20 system and the 18
EEG channels are extracted with a transversal montage. The
recordings are sampled with a frequency of 200 Hz, bandpass
filtered from 0.53-70 Hz, and notch filtered to remove 50 Hz
power-line noise.

B. Data Processing

Each EEG-channel is analysed in extracted epochs of 2
seconds (400 samples) overlapping with 1 second (50%). For
each epoch, features are calculated, classified, and processed
by temporal constraints before the performance is calculated.
Figure 1 shows the flow diagram for the seizure detection
algorithm.
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Fig. 1. Flow diagram of the automatic seizure detection scheme. 2-second epochs from each of the 18 EEG-channels are extracted and a 6-level wavelet
decomposition made. The log-sum energy is calculated based on the wavelet subbands and classified using a support vector machine with a non-linear
radial basis kernel. A temporal constraint is made so that a seizure is not detected before three consecutive epochs is classified as such. The red examples
with the value 0 indicates normal epochs and green examples with value 1 are seizure epochs.

1) Feature Calculation: For seizure detection a feature is
a distinct property or characteristic which clearly separates
normal and ictal EEG. Studies such as [5] and [6] have
proven the strength of using the energy of wavelet transform
subbands for patient-specific seizure detection. This study
will be based on the same approach, but changed slightly to
favour generic detection of absences.

The frequency analysis was performed based on the
wavelet transform (WT) rather than the traditionally used
short time Fourier transform (STFT). In the STFT the
constant-length window, used for the analysis, leads to a
constant frequency resolution, which is not optimal for all
frequencies. The WT, however, varies the window length
to provide poor frequency resolution for high frequencies,
but good resolution for low frequencies. Since time and
frequency resolution are inversely proportional, a good fre-
quency resolution is provided by a poor time resolution and
vice versa. Another difference is found in the choice of basis-
function; where STFT decomposes the signal into sinusoid
functions, the WT uses a mother wavelet which is scaled
and shifted in time in order to decompose the signal into
subbands of different frequency content. The discrete WT
is implemented using high- and low-pass filters which are
characterized by the chosen mother wavelet. These filters
decompose the signal into low frequency approximation
bands, aL, and high frequency detail bands, dL. For each
level, L, of the WT the approximation band can be further
decomposed into a detail and an approximation band, dL+1

and aL+1, see Figure 2. At each level, the frequency content
is bisected, and therefore the number of data points can
also be down-sampled with a factor two without loosing
information.

2) Log-Sum Energy: Because the coefficients of the detail
bands are highly sensitive to noise, these are rarely used as

Fig. 2. Wavelet decomposition of the EEG signal x(n), sampled at 200
Hz, into 6 levels. At each level L an approximation band, aL, and a detail
band dL are generated by low- and high-pass filtering, respectively. The
numbers above indicate the frequency range contained in the approximation
and detail bands.

features. Shoeb et. al. [5] suggested applying the log-sum
energy of the subband coefficients as features:

f(epoch) =

log10(
∑

n |di(n)|)
...

log10(
∑

n |dj(n)|)

 (1)

where n runs over the WT coefficients, i is the lowest
subband included, and j is the highest subband included. A
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Fig. 3. Topographical distribution of the overall performance. Each EEG-
electrode is marked with a black square. The performance of a given channel
is located between the two electrodes from which they are made. For
each channel both the sensitivity and FDR are specified. The sensitivity
is illustrated by the diameter of the circle, with the rectangle indicating
100%. The sensitivities are scaled exponentially. The colored circles marks
the sensitivities of 50% (red), 70% (yellow), and 90% (green). The FDR is
interpreted from the grey level of the circle, the value of the FDR is shown
in the colorbar on the right.

non-linear scaling of the energy using the logarithm amplifies
small energy differences to better separate seizure and non-
seizure activity.

Shoeb et. al. applied a 7-level WT using a Daubechies 4
(Db4) mother wavelet at a sampling frequency of 256 Hz
and calculated the energy of subbands d4 − d7 containing
frequencies from 1 to 16 Hz. Since this study works with
a different kind of epilepsy and with a lower sampling
frequency, the optimal choice of subbands may also differ.
Different combinations of subbands were investigated and
the results showed that including more subbands improved
the performance. The best performance was found using the
subbands d1 − d6.

C. Feature Classification

The binary classification problem of determining whether
an epoch belongs to the class of normal or ictal is solved
by using a support vector machine (SVM). The SVM is a
supervised learning approach that conveys the classification
problem into a convex optimization problem such that a
global optimum exists [7]. The classification works in two
steps; a learning and a test step. In the learning step a
decision boundary is created based on training data. This
decision boundary is then applied in the test step to classify
each epoch of the test data.

The linear SVM will create a linear decision boundary by
maximizing the distance between the boundary cases (the
support vectors) of each class. When non-linear trends are
present in the data, as in the case of this study, a non-linear

TABLE I
PERFORMANCE OF THE SEIZURE DETECTION FOR EACH OF THE 18

CHANNELS. THE LINES INDICATE THE SEPARATION BETWEEN FRONTAL,
MIDLINE, PARIETAL, AND OCCIPITAL CHANNELS. THE BEST RESULTS

ARE UNDERLINED.

Channel SE (%) FDR (/h) PPV (%) Latency (%)
F7-FP1 99.1 0.5 94.8 3.7
FP1-FP2 93.7 1.4 86.7 3.9
FP2-F8 96.4 0.6 93.9 3.7
F7-F3 99.1 1.0 90.2 3.9
F3-FZ 97.3 1.4 86.4 3.8
FZ-F4 92.8 2.1 80.5 3.7
F4-F8 97.3 2.7 77.1 3.7
T7-C3 95.5 2.1 80.9 3.9
C3-CZ 91.9 2.3 79.1 3.6
CZ-C4 92.8 2.1 80.5 4.0
C4-T8 93.7 0.6 93.7 3.8
P7-P3 96.4 1.5 85.6 3.7
P3-PZ 89.2 2.6 76.2 3.7
PZ-P4 91.0 2.7 75.9 4.0
P4-P8 91.0 1.8 82.8 4.0
P7-O1 85.6 4.1 66.0 4.0
O1-O2 68.5 6.9 48.4 4.3
O2-P8 86.5 3.9 67.6 4.1

version of the SVM is applied. The non-linear SVM uses a
kernel function to project the data into a higher-dimensional
space where a linear decision boundary can successfully
separate the two classes. The SVMlight package [8] is used
with a non-linear radial basis kernel with the width γ set to
1.1. The SVM parameters J and C define the cost by which
the training errors on positive examples outweigh errors on
negative examples and the trade-off between training errors
and margin, respectively. The parameters are set to J = 1.3
and C = 1. Originally, the SVM-parameters were to be
optimized for each EEG-channel individually, but extensive
analysis revealed that the optimal parameter choice does not
change significantly between channels.

The test and training data are separated using the leave-
one-out approach such that data from one patient is tested
using an SVM trained on all of the remaining data. Due to the
higher amount of normal data a ratio r between the number
of non-ictal and ictal epochs is chosen to reduce the size of
the training set and thereby the computation time. The value
of r is optimized to ensure that enough normal epochs are
included to generate a satisfactory decision boundary. The
optimum is found for r = 10.

D. Temporal Constraints

To avoid a high number of false detections the result from
the SVM classification is adjusted by temporal constraints.
We wish to avoid detections due to seizure-like activity of
short duration, but still detect all seizures with a duration
longer than 2 seconds. This is obtained by incorporating a
temporal constraint so that at least 3 consecutive (2 seconds)
epochs must be classified as containing seizure activity
before a seizure is detected. However, when examining the
result it was seen that some seizures shorter than 2 seconds
were recognized by the algorithm as 3 consecutive seizure
epochs. These short seizures do not affect the patient and are
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therefore not the main interest for the neurophysiologist and
can be disregarded. However, the method is not wrong in
recognizing the epochs as containing seizure activity. This
issue was dealt with by allowing the algorithm to detect
seizures, but not including them as true positive events if
they are detected or as false positives if they are not.

Four performance measures are calculated; sensitivity
(SE), the number of false detections per hours (FDR),
mean detection latency, and positive predictive value (PPV)
denoting the proportion of true seizures in the total number
of detections.

III. RESULTS AND DISCUSSION

The four performance measures for each of the 18 chan-
nels are shown in Table I. The corresponding topographical
visualization of the performance is shown in Figure 3, where
the color of the circles indicates the FDR, and the radius
shows the sensitivity. The radius is scaled exponentially to
emphasise differences between high sensitivities.

The best performance is found for the electrodes in the
frontal region. The best overall performance is found in the
channel F7-FP1. The sensitivity of F7-FP1 is matched in the
other channel incorporating F7, while the FDR, PPV, and
latency are higher. Generally channels located in the frontal,
midline, and parietal regions show a better performance when
compared to the channels in the occipital region. This is in
accordance with the biological findings that spike-and-wave
complexes during an absence peak in the frontal regions, but
also have a high activity over the midline region [9].

The FDR for all the channels are high, but it should be
noted that the EEG recordings are of short duration (mean
duration 29 minutes and 32 seconds). This means that a
single false detection will result in an FDR of 2/h. It should
also be kept in mind that the CAE patients experience a high
number of seizures. One patient has 13 seizures (23 including
seizures shorter than 2 seconds) in a 30 minute recording.
The PPV takes this into account by describing the percentage
of all detection that is in fact true seizures. A PPV of 94.8%
is found in F7-FP1 meaning that only 5.2% of all detected
seizures are false detections.

Generally very few studies focus on generic detection of
absence seizures; only one directly comparable study was
found [10]. Here the EEG is decomposed into half-waves and
classified using thresholding of different half-wave features.
The method is based on three channels, but allows detection
of seizures from just one channel, the result is given as a
mean for different combinations of channels. They obtained
a sensitivity of 70% and an FDR varying from 2.4-10/h. In
comparison, our best result is obtained in the channel F7-FP1
with a sensitivity of 99.1% and an FDR of 0.5/h.

IV. CONCLUSION AND FUTURE WORK

A. Conclusion

The very characteristic spike-and-wave discharges during
absence seizures were the basis of developing a single-
channel generic method for seizure detection. Based on

an approach successfully applied for multi-channel patient-
specific seizure detection we obtained a good result using
a single-channel generic implementation. High sensitivities
and low mean detection delays were obtained. The high
PPV values indicate that although the FDR are high, the
number of false detections relative to the number of true
detections are low. The overall best result is obtained for
the frontal channel F7-FP1 with a sensitivity of 99.1 %,
an FDR of 0.5, a PPV of 94.8 %, and a mean detection
delay of 3.7 s. The novel topographical visualization of the
performance measure eased the interpretation of the result
and clearly showed that channels in the frontal, midline,
and parietal regions performed better than channels in the
occipital region. Comparing the result to a similar method,
[10], we obtained better sensitivity for all the channels and
a better or matching FDR for all the channels.

B. Future Work

One task which should be looked into is to reduce the
number of false detections. This could be done including an
additional feature relating more to the size of the amplitude
than the frequency content.

Two other idiopathic generalized epilepsies exist, the ju-
venile absence epilepsy (JAE) and the juvenile myoclonic
epilepsy (JME), in which absence seizures are seen. These
absences are described to be less ’pure’ than the CAE
absences [2]. However, it could be interesting to apply
the method described here to investigate if it is equally
successful in detecting these seizures and if the topographical
distribution vary between the different epilepsies.
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