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Summary 

 

Due to the great loss of barley grain yield and quality in addition to mycotoxins contamination caused by 

Fusarium head blight (FHB), it is essential to understand the molecular interaction between barley and Fusarium 

graminearum, one of the primary Fusarium species causing FHB, in order to control the disease. Due to the 

advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be 

directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley-

Fusarium graminearum interaction form three different aspects in this thesis shown in Chapter 2, 3 and 4.  

In Chapter 2, the effect of nitrogen on FHB in a susceptible barley cultivar was investigated with using two 

levels of nitrogen fertilizers (15 and 100 kg ha-1). Albumin proteome analysis of the infected and control kernels 

under two N levels showed that i) spots increasing in intensity in the infected plants included fungal proteins and 

proteolytic fragments of plant proteins, ii) spots decreasing in intensity contained plant proteins possibly 

degraded by fungal proteases, iii) greater spot volume changes in response to the fungus were observed in plants 

under low N and iv) proteomes of uninfected plants were similar under two N levels. Correlation of level of 

proteolysis induced by the fungus with measurement of Fusarium-damaged kernels, fungal biomass and 

mycotoxin levels indicated that FHB was more severe in barley with low N.  

In Chapter 3, the molecular mechanisms of barley defense to Fusarium graminearum at the early infection 

stage were studied. Antibodies against barley β-amylases were shown to be the markers for infection at proteome 

level and for selection of the time for proteome analysis before extensive degradation caused by the fungus. 

Pathogenesis-related (PR) proteins and proteins involved in energy metabolism were induced and protein 

involved in the secondary metabolism and protein synthesis changed in abundance in the infected barley. qRT-

PCR analysis showed the upregulation of several PR genes and expression of two fungal genes encoding 

proteases which could be responsible for proteolysis of β-amylases in the infected barley. 

In Chapter 4, the in vitro secretome of F. graminearum on the 2-D gels in the presence of substrates of 

barley or wheat grain was studied. Totally 69 unique fungal proteins identified were mainly cell-wall-degrading 

enzymes and proteases. Besides Tri5 gene, ten selected genes encoding protein expressed in vitro were also 

expressed in the F. graminearum-infected wheat and barley from 2-6 day after inoculation (dai), suggesting the 

in vitro proteome approach may be an ideal strategy to discover pathogenicity factors. In addition, sharper 

increase in fungal biomass was observed in barley than in wheat and fungal induced proteolytic fragments of -

amylases were only observed in barley not in wheat.  

Furthermore, a barley PR17 protein and a fungal hypothetical protein were expressed in E. coli and purified 

in Chapter 5. The functional characterization of two proteins is undergoing. In Chapter 6, microarray data of F. 



 
 

  
 

graminearum during interaction with barley and wheat was analysed. The expression patterns of 11fungal genes 

in microarray analysis were different from qRT-PCR results in Chapter 4. 

Overall, our results will give some insights into the cellular activities during the interaction between barley 

and Fusarium graminearum for designing new efficient strategies for the control of FHB disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

  
 

Dansk Resumé 

 

Patogene svampearter af slægten Fusarium udgør et stigende problem i kornproduktionen verden over af flere 

grunde. På grund af et stort tab af bygkerner såvel i udbytte som af kvalitet samt en kontaminering af 

mykotoksiner forårsaget af svampen Fusarium er det vigtigt at forstå de molekylære interaktioner mellem byg 

og svampen Fusarium graminearum for derved at kunne nedsætte antallet af Fusarium-angreb i byg. Til at finde 

frem til hvilke proteiner, der har betydning for samspillet mellem svamp og plante, og samtidigt studere effekten 

af to forskellige niveauer (15 og 100 kg ha-1)af kvælstoftilførsel blev der udført proteomanalyse af 

albuminfraktionen fra såvel inficerede som kontrol bygkerner. Resultaterne viste at der var ændringer i mængden 

af proteinerne i Fusarium-inficerede bygkerner i forhold til kontrolplanter. I de Fusarium-inficerede bygkerner 

var der desuden svampeproteiner samt spaltede bygproteiner. I forhold til kontrolplanter havde bygplanter, der 

havde groet ved lav nitrogentilførsel, de største proteinpletforskelle som svar på svampeinfektion. Proteomet af 

bygkerner fra ikke-inficerede planter groet ved lav og høj nitrogentilførsel var sammenlignelige. 

En nærmere analyse af de molekylære mekanismer af bygs forsvar mod Fusarium graminearum ved et 

tidligt angreb og ved brug af byg beta-amylase antistoffer, som markører for infektion på proteomniveau, blev 

udført. Patogenese relaterede (PR) proteiner og proteiner i energistofskiftet blev induceret. I inficerede 

bygplanter blev indholdet af proteiner med funktion i sekundær stofskifte og proteinsyntesen ændret. 

Sammenhørende qRT-PCR analyse viste opregulering af adskillige PR-gener og udtryk af to svampegener 

kodende for proteaser som kunne bevirke en spaltning af -amylaser i inficeret byg. 

Ved et studium vha to-dimensional gelelektroforese af in vitro secretomet af F. graminearum sammen med 

byg og hvedekernesubstrater blev i alt 69 unikke svampeproteiner identificeret og som hovedsagligt var 

cellevægsnedbrydende enzymer og proteaser. Foruden Tri5-gen blev ti gener, som koder for proteiner, udtrykt in 

vitro og som også var udtrykt i F. graminearum–inficerede hvede- og byg-kerner fra 2-6- dage efter infektion. 

Resultaterne viser at data fra in vitro proteomanalyse kan være et godt udgangspunkt mhp at klarlægge 

patogenicitetsfaktorer. Resultaterne viste også, at i forhold til hvede sås i byg en større stigning i 

svampebiomasse, samt at svampeinduceret proteolytiske fragmenter af -amylaser kun sås i byg. 

I E. coli er et byg PR17-protein og et hypotetisk svampeprotein blevet udtrykt og oprenset med henblik på 

at karakterisere begge proteiner. Microarray-data af F. graminearum under interaktion med byg og hvede er 

analyseret. Ekspressionsmønstre af 11 svampegener var forskellige fra qRT-PCR-analysen. 

Sammenlagt vil vores resultater give indsigt i cellens aktiviteter under vekselvirkningen mellem byg og 

Fusarium graminearum som kan bruges i udvikling af effektive nye strategier i kontrollen af FHB sygdommen.   
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Chapter 1  

Introduction 

 

1.1 Fusarium head blight in barley and wheat 

 

Fusarium head blight (FHB) is a devastating disease of cereals including barley and wheat in humid and semi-

humid climates worldwide (Walter et al., 2009). FHB was first described in 1884 in England and has increased 

in Asia, Canada, Europe and South America since then (Stack, 1999). The disease has reached epidemic levels in 

several years and causes significant losses of grain yield and quality to be millions of dollars per annum in the 

USA alone (Nganje et al., 2004). FHB has been identified by International Maize and Wheat Improvement 

Center as a major factor limiting wheat production in many parts of world (Stack, 1999). The more important is 

the contamination of the mycotoxins produced by the fungus, which adversely affect grain quality and is an 

enormous challenge for cereal breeders and the food or milling industry. 

Several Fusarium species including F. sporotrichioides, F. culmorum, F. avenaceum, F. poae and the most 

prevalent F. graminearum (teleomorph: Gibberella zeae (Schwein) Petch) are the causal agents of FHB 

worldwide (Parry et al., 1995). As a result, F. graminearum quickly become one of the most intensively studied 

fungal plant pathogen. The genome sequence released by Broad Institute in 2003 has greatly stimulated the 

research activity on F. graminearum. The fungus has a genome size (36.1Mb) and contains genes encoding 

13937 predicted proteins distributed over four chromosomes with few repeat sequences (Cuomo et al., 2007; 

Trail, 2009). There are 2001 genes not similar to those of any other sequenced organisms and 5812 genes having 

homology to genes encoding proteins of unknown function (Trail, 2009). The availability of whole genome 

sequence provides the opportunity to study transcription and proteome profiling for identifying essential 

elements in pathogenesis and lead to development of new targets for fungal control. 

Fusarium graminearum colonizes living host tissue at specific stages and establishes itself in senescent 

tissue and debris as saprophytic mycelia due to a brief biotrophic relationship with its host before switching to 

the necrotrophic phase (Bai and Shaner, 1994; Goswami and Kistler, 2004). The necrotrophic stage is associated 

with an increase in vigour of colonization and eventually plant death leads to thorough colonization of the host 

substrate (Goswami and Kistler, 2004). The warm moist weather is favourable for the development and 

maturation of conidia and perithecia on the crop debris which produce ascospores (Goswami and Kistler, 2004). 

The rain and wind spread the soil-born inoculums, mainly ascospores to the plants (Bai and Shaner, 1994).  The 
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abundance of the primary inoculums and weather conditions, mainly moisture and temperature, during and after 

anthesis determine the severity of FHB (Bai and Shaner, 1994).  

The spikelets of barley and wheat are most susceptible at anthesis or during the early dough stage of grain 

development. The preferred infection site of Fusarium graminearum is the tip of the kernel. Fig. 1.1 shows 

Fusarium graminearum-infected barley and wheat. However, the development of FHB in wheat and barley is 

different. In wheat, the fungal hyphae develop on the exterior surfaces of florets and glumes, possible leading to 

direct penetration of the epidermal cell (Bushnell et al., 2003). Alternately, the fungus directly enters the stomata 

and underlying parenchyma, exposed anthers and openings between the lemma and palea of the spikelet 

(Bushnell et al., 2003). Spread of the fungus among florets is through the vascular bundles in the rachis and 

rachilla (Ribichich et al., 2000). It is mainly type I resistance to initial infection rather than type II resistance to 

spread of infection within a spike in wheat. By contrast, in barley, the fungus penetrates directly stomata and 

grows from abaxial to adaxial side of floral bracts. The internal spread through the rachis is more limited, 

indicating the type II resistance (Bushnell et al., 2003). It was reported that infection-related structure 

development and other morphological changes were observed around 12 to 24 h earlier in wheat than in barley 

(Boddu et al., 2006). The fungus can invade the aleurone layer and grow into the starchy endosperm. The light 

and electron microscopy studies have shown during infection of the endosperm the cell walls were macerated, 

the protein matrix disappeared and the starch granule structures were changed (Nightingale et al., 1999).  

 

 

  

Fig. 1.1. Disease symptoms on F. graminearum-infected spikelets of barley (left, photographed by Jens Due Jensen, University of 

Copenhagen) and wheat (right, Goswami and Kistler, 2004). The fourth barley spikelet from the bottom up to six spikelets shows 

premature necrosis and brown/grey discoloration. The third wheat spikelet from the bottom shows a darkened necrotic lesion whereas the 

second and fifth spikelets demonstrate tissue beaching (Goswami and Kistler, 2004). 
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During the penetration of cell wall and access to the plant nutrient for the growth, F. graminearum can 

produce an arsenal of hydrolases such as lipases, xylanases, pectinases, cellulases and proteases as well as the 

secondary metabolites mycotoxins such as the major trichothecene and zearalenone which are toxic to human or 

livestock consumption (Kang and Buchenauer, 2000; Maier et al., 2006). These secreted enzymes are known to 

have an important role in pathogenicity of F. graminearum (Kang and Buchenauer, 2000). The toxin 

trichothecene is involved in blocking peptidyl transferase activity at the 60S ribosomal subunit in eukaryotes. 

Blocking ribosomal activity can inhibit nucleic acid synthesis and mitochondrial function and interfere initiation, 

elongation or termination of protein synthesis as well as have negative effect on cell division and membrane 

integrity (Khachatourians, 1990). The most prevalent trichothecene derivatives deoxynivalenol (DON) levels are 

regulated in food supplies of many countries. For example, the European Community limits DON levels to 0.5 

µg g-1 for cereals and the United States limits DON levels to 1 µg g-1 for finished products for human 

consumption (Council for Agricultural Science and Technology, 2003) (Trail, 2009). Although zearalenone 

which causes estrogenic effects in animals and humans  is of concern to the U.S. Food and Drug Administration, 

there are currently no regulatory standards limiting its levels in grain (Council for Agricultural Science and 

Technology, 2003) (Trail, 2009). DON is the only mycotoxin shown to be a virulence factor (Trail, 2009) and 

mediates partially the shift from the biotrophic to the necrotrophic stage of the fungus (Bushnell et al., 2003). 

The accumulation of DON depends on the complicated interactions between the host and fungal genotypes as 

well as environmental conditions (Mesterhazy et al., 1999).  Generally speaking, there is a correlation between 

FHB severity and DON concentration in the infected grain (Bushnell et al., 2003).  F. graminearum expresses 

genes for DON biosynthesis immediately following the infection of wheat (Jansen et al., 2005). DON causing 

tissue necrosis allows F. graminearum to spread into the rachis from florets but is not necessary for the initial 

infection in wheat (Jansen et al., 2005; Bluhm et al., 2007). It has been reported that trichothecene non-

producing F. graminearum strain was pathogenic but produced a reduced incidence and severity of infection, 

less bleaching heads and less spread in spikelets in wheat comparing to the trichothecene-producing strain 

(Proctor et al., 1995; Maier et al., 2006). However, no significant difference in virulence was observed in barley 

between these F. graminearum strains (Maier et al., 2006).  Spread of the disease is limited and virulence does 

not appear to be due to the presence of the toxin in barley (Jansen et al., 2005).  

The main approaches for controlling FHB are management practices, fungicide application and 

development of resistant varieties. Management practices include crop rotation and tillage practice which can 

reduce the fungal survival on the residue and staggering planting of small grain crops (Stack, 1999). FHB 

severity can be reduced 50 to 60 % by application of the fungicides at early flowering stage in wheat and at the 

early heading stage in barley (Stack, 1999). However, results with application of fungicides can be variable due 

to the environmental effects and relationship between the cost and return is the limit factor (McMullen et al., 
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1997). Using genetic approach to control FHB is the most desirable option. However, since the resistance in 

wheat and barley to FHB is a complex and quantitative trait involving the interactions among pathogen, 

trichothecenes, environments and genotypes, the development of resistant cultivars is very challenging. Current 

breeding strategies focus on combination of desired agronomic traits and type I and type II resistance in addition 

to selection for low DON in the kernels (Bai and Shaner, 2004). Quantitative trait loci (QTL) mapping, the 

statistical study of the alleles occurring at a locus and the phenotypes that they produce using molecular markers 

is a powerful tool to select resistant plants in the breeding program. So far most of the FHB resistant QTLs have 

been mapped to the same locations as those associated with morphological traits such as heading date, plant 

height, lateral floret size, spike angle and kernel plumpness (Bai and Shaner, 2004). QTL analysis is often 

associated with global gene expression profiling to identify the key gene markers involved in plant defense 

against infection, providing insights into defense mechanism (Bai and Shaner, 2004). Furthermore, as growth 

environmental factors such as temperature, humidity and fertilization can affect the disease severity, adjusting 

time and places of planting or changing the amount and type of fertilizers can be the option to control the disease 

(Yang et al., 2010a). Application of biological control such as microorganisms Bacillus spp., yeasts and 

Trichoderma harzianum is an additional strategy in management of FHB in cereals (Corio da Luz et al., 2003). 

Alternatively, transgenic expression of genes for antifungal proteins, genes involved in defense reaction and 

genes involved in reduction of DON in wheat and barley is an approach against Fusarium infection (Dahleen et 

al., 2001). 

 

1.2 Molecular plant-pathogen interactions 

 

Plant-pathogen interactions have been studies for several years in order to understand how plants and pathogens 

recognize each other and differentiate to establish either a successful or an unsuccessful relationship (Mehta et 

al., 2008). The pathogens may use the following strategies to attack and colonize the hosts: they produce 

hydrolytic enzymes to degrade the cell wall and break down the protein for nutrients, synthesize molecules that 

can induce the production of enzyme that degrades cell walls, starch and protein and produce some secondary 

metabolites like mycotoxins to interfere host metabolism (Bluhm et al., 2007). Unlike many phytopathogenic 

fungi, F. graminearum does not produce specialized infection structures such as appressoria or haustoria which 

are invaginated into the host cell plasma membrane forming an intimate interface during interaction (Jones and 

Dongl, 2006; Bluhm et al., 2007). Instead, colonization of tissues is facilitated primarily by the production of 

cell-wall-degrading enzymes (CWDEs) such as cellulases, pectinases and xylanases as well as proteases (Bluhm 

et al., 2007).  
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In plant, the response of extracellular signals form pathogen must be rapid, reliable and specific. The 

pathogen infection can initiate very complex chains of reactions in plants that lead to various defense responses. 

The recognition of CWDEs or molecules from pathogens which is called microbial /pathogen-associated 

molecular patterns (PAMPs) can trigger the plant basal defense including thickening plant cell wall, papilla 

deposition, transduction of signals such as phytohormones salicylic acid, jasmonates and ethylene to the other 

parts of the plants and synthesis of antimicrobial compounds like phytoalexins and biosynthesis of pathogenesis-

related (PR) proteins and defense-related proteins in both compatible and incompatible interactions (Mehta et al., 

2008; Pieterse et al., 2009). In the incompatible interaction superimposed on the basal defense plants can express 

disease resistance (R) proteins recognizing the virulence effectors and induce hypersensitive response (HR), 

which is the second response or gene to gene specific resistance to prevent pathogen invasion and disease 

development (Jones and Dongl, 2006; Mehta et al., 2008) (Fig. 1.2). A series of biochemical perturbations such 

as ion flues, lipid hyperperoxidation, protein phosphorylation, nitric oxide generation, a burst of reactive oxygen 

species (ROS) and biosynthesis of antimicrobial compounds are stimulated in HR which keep the pathogen 

isolated from the rest of the plant and prevent further damage (Mehta et al., 2008; Pieterse et al., 2009). 

Moreover, pathogen may also express some proteins such as superoxide dismutase and catalases to overcome the 

plant defense or to inactivate ROS for protecting themselves. Therefore, the interaction between host plant and 

pathogen is in a complicated and dynamic manner.  
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Fig. 1.2. Overview of plant–pathogen interactions. Plants process receptors that can activate basal resistance, mediated by pathogen-

associated molecular patterns (PAMPs) or cell-wall-degrading enzymes (CWDEs), which may result in a compatible or incompatible 

interaction. In both interactions, several defense-related and biotic stress-responsive proteins are induced. Suppression of plant defenses 

by pathogen effectors leads to susceptibility in host plants. Some host plants express resistance (R) proteins, which guard against this 

interference and trigger a specific resistance, referred to as the hypersensitive response (HR) (Mehta et al., 2008). 

 

 

 

Given the essential role in plant defense, PR proteins have been studied for several years from sequence to 

the biological function properties. PR proteins are usually defined as host-specific proteins that are induced in 

several plant species during pathological or related situations such as pathogen attack, wounding and abiotic 

stress (van Loon et al., 2006). However, it does not state clearly that they have functional roles in defense (van 

Loon et al., 2006). PR proteins are often low molecular weight proteins (10 to 40 kDa) which can survive and 

remain soluble in harsh environments such as extreme pH and be resistant to proteolytic cleavage due to their 

biochemical properties. There are 17 PR families based on amino acid sequences, serological relationship and 

biological activity (Table 1) (van Loon et al., 2006). The families were originally identified from tobacco and 

also other plant species including barley, wheat, rice and maize and are numbered by the order in which they 

were discovered. In each family there can be several different isoforms.  
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.  

 

The specific functions of PR proteins are not fully understood. Various PR proteins have potential 

antimicrobial activity and are involved in defense mechanisms against pathogens (van Loon et al., 2006). 

Chitinase and β-1,3-glucanase have functions involved in the hydrolysis of fungal cell walls.  Peroxidase is an 

antioxidant and can function in plant cell wall rigidification. Oxalate oxidase is involved in signal transduction 

(Christensen et al., 2002). PR proteins can also be detected during plant development and senescence (van Loon 

et al., 2006), which may indicate a more physically protective role of the cellular structures in order to stabilize 

sensitive membranes or macromolecules (van Loon and van Strien, 1999). Genetic engineering of plants for 

introduction of PR genes by transformation or manipulation of the signals that trigger the expression of PR 

proteins may be the approaches to improve plant resistance against pathogen infection. Transgenic wheat and 

barley expressing genes encoding chitinase, α-thionin, thaumatin-like protein or β-1,3-glucanase have shown the 

enhanced resistance against Fusarium graminearum (Dahleen et al., 2001; Mackintosh et al., 2007; Shin et al., 

2008).  
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1.3 Technologies in proteomics 

 

Genome only represents the first step in the complexity of understanding biological function. Transcripts can not 

give complete information on cellular regulations as gene expression is regulated post-transcriptionally and 

proteins which are responsible for the cell biological functions are expressed in a highly dynamic and interacted 

manner (Dhingra et al., 2005). Thus, it is necessary to determine the protein levels directly. Proteomics is the 

systematic study of all the proteins expressed by a genome or by a cell or tissue, particularly their interactions, 

modification, localization and functions (Coiras et al., 2008). Currently, proteomics has established itself as an 

indispensable technology to interpret the information from genomics and has been most successfully applied in 

protein sequencing, protein quantification, post translational modifications (PTMs) and protein interactions 

(Aebersold and Mann, 2003). 

 

1.3.1 Proteomics workflow-protein preparation, separation and identification 

 

Proteomics workflow mainly consists of protein preparation, protein separation and protein identification by 

mass spectrometry (MS). Protein preparation includes tissue and cell homogenization, protein solubilisation and 

denaturation with use of detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, 

sodium dodecyl sulphate (SDS), urea and thiourea and removal of impurity in samples such as carbohydrates, 

lipids, salts, nucleic acids, etc which can interfere protein separation process. It is impossible to obtain the entire 

proteome at once since cellular protein populations have enormous diversity due to function, sequence, physical 

properties and relative abundance (Hurkman and Tanaka, 2007a). Proteins extracted strongly depend on the 

extraction protocols. The extraction of protein from plant samples is in particular challenging, because plants 

cells generally contain i) low amounts of proteins protected by cell walls that require extreme measures to 

disrupt, ii) proteases that remain active in the extraction buffer, reducing and altering protein populations and iii) 

various non-protein components such as cell wall, storage polysaccharides, lipids, phenolics, salts, nucleic acids 

and a broad array of secondary metabolites, which cause streaking and smearing of 2-DE patterns in the 

following separation procedure (Hurkman and Tanaka, 2007b). Therefore, the extraction methods should 

minimize protein degradation and eliminate non-protein components, which are the key steps for proteomic 

analysis, especially when 2-DE is used. In our study cases, the majority of barley seeds proteome is non-

metabolic storage protein hordein which is alcohol-soluble. In order to access to metabolic albumins, protein was 

extracted at low salt and neutral pH followed by acetone precipitation for concentration and cleanup of samples 

(Østergaard et al., 2004) 
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The traditional approach for separating proteins or peptides is two-dimensional gel electrophoresis (2-DE) 

separating hundreds of proteins according to their pI and mass (gel-based approach). Although 2-DE technique is 

quite clear and reproducible to show a full picture of protein pattern, it has some limitations such as 

solubilisation of membrane proteins, invisibility of very low abundant proteins and segregation of extreme pI 

and mass (Ong and Mann, 2005). Poor separation of basic proteins due to streaking of spots is also a limiting 

factor in 2-DE (Bae et al., 2003). Currently the most powerful strategy is mono- or multi-dimensional liquid 

chromatography (LC) which allows high throughput separation of complex protein or peptides mixtures (gel-free 

approach) (Coiras et al., 2008). LC separates proteins and peptides according to their affinity for a stationary 

phase when a mobile phase is forced through a fine capillary.  

Mass spectrometry consists of an ion source, a mass analyser that measures the mass to charge ratio (m/z) of 

the ionized analytes and a detector that registers the number of ions at each m/z value (Aebersold and Mann, 

2003). The most common techniques for ionizing samples are matrix assisted laser desorption/ionization 

(MALDI) and electrospray ionization (ESI). The mass analysers include time-of-flight (TOF), ion trap, 

quadruple and fourier transform ion cyclotron (Aebersold and Mann, 2003). They can be used alone, called MS, 

or put together in tandem, namely MS/MS.  In single mass analyser peptide ions are generated.  In MS/MS 

specific precursor ions produced in the initial mass analyser are chosen and fragmentized through collision 

resulting in fragment ion spectra. 

In general, 2-DE is often followed by MALDI-TOF or TOF-TOF mass spectrometry for analysis of 

relatively simple protein samples which are crystallized with matrix before ionization via laser pulses in MS. 

This instrument has high sensitivity, resolution and mass accuracy (Aebersold and Mann, 2003). LC is often 

coupled to ESI-tandem mass spectrometry (MS/MS) for analysis of samples in solution. This method can detect 

low abundant proteins and analyse proteolysed peptides without fractionation of protein samples comparing to 2-

DE-based approach. The strategy in MALDI MS for protein identification is peptide mass fingerprinting which 

requires purified protein samples. A list of peptide masses of protein generated by MS is searched against a 

database which supplies theoretical peptide masses of proteins. Additionally, the fragment ion masses from 

selected precursors can be used to match against protein sequence database when MS/MS instrument is used. 

The identification is based on matching score calculated by software algorithms. The MS/MS data enables de 

novo sequencing and PTM analysis (Coiras et al., 2008).  

 

1.3.2 Quantitative proteomics 

 

In the term of relative quantification of protein, there are two major approaches. The first one is gel-based 

quantitative studies relying on protein labelling for later image comparison (Fig.1.3). The second one is gel-free 
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techniques making use of isotopic or isobaric labelling of proteins or peptides for LC-MS/MS analysis (Gstaiger 

and Aebersold, 2009) (Fig.1.3).  

 

 

 

Fig. 1.3. Overview of quantitative proteomics workflow.  Gel-based approach is based on image analysis of protein spot intensity. Gel-

free approaches such as ICAT, SILAC and iTRAQ are based on isotope or isobaric labelling. The mass shift among the labelled peptides 

form different samples will be revealed in MS or MS/MS which allows identification and quantification of proteins.  

 

 

Briefly, in gel-based approach, proteins are separated by 2-DE and stained by dye. Besides Coomassie 

Brilliant Blue staining, there are several fluorescent staining methods that have been developed for the 

visualization of 2-DE patterns and detection of less abundant proteins, including sypro ruby staining, silver 

staining and Cy-dyes. Sypro ruby staining has a comparable sensitivity with silver staining and allows much 

higher reproducibility, wider dynamic range, less false-positive staining (Berggren et al., 2000). Alternately, 

protein samples are labelled with different fluorescence dyes (Cy2, Cy3 or Cy5) reacting with lysine in the 

protein and separated in one 2-DE gel, which will be fluorescent according to the wavelengths. This technique 



Chapter 1 Introduction 
 

                                                                                                      11 
 

called differential gel electrophoresis (DIGE) is quite sensitive to reveal the protein amounts,  has dramatically 

improved the reproducibility and accuracy of quantification, and avoids the gel-to-gel variation in the traditional 

2-DE which analyses multiple samples in one gel (Unlu et al., 1997; Coiras et al., 2008). The 2-D gels are 

scanned and gel images will be imported into gel analysis software for spot detection, pattern matching, spot 

quantification and statistic analysis. The spots significantly changing in intensity among samples will be shown 

in this software automatically.   

Given the requirement of good resolution of 2-D patterns and poor correlation between spots intensity and 

protein abundance in gel-based approach, MS-based quantification techniques by introduction of stable isotope 

labelling to peptides have emerged. The isotope-code affinity tag (ICAT) is one of the most employed chemical 

isotope labelling methods. Each ICAT reagent consists of a thiol reactive group that reacts with cysteine residues, 

an isotope-coded light or heavy linker and a biotin segment for affinity purification. In this system, two samples 

are labelled with light and heavy reagents on cycteine thiols, respectively. Then both samples are mixed, 

digested by trypsin and separated through chromatography. The relative level of protein in the two samples is 

determined by the ratios of signal intensities of the isotopically labelled peptide pairs revealed in MS analysis 

(Sethuraman et al., 2004). Different software programs such as proICAT are developed to analyse ICAT labelled 

MS data. ICAT is very useful to detect low abundant proteins but has major limitation in only selecting protein 

of high cycteine content and low sensitivity to acidic proteins (Gygi and Aebersold, 2000). Another strategy for 

determining the differentially expressed proteins from different cellular populations is the stable isotope 

labelling with amino acids in cell culture (SILAC) (Ong and Mann, 2005). The cells from different biological 

conditions are cultured with media supplemented with isotopically labelled amino acids. After metabolic 

incorporation of isotopes during protein synthesis, proteins from each sample are isolated, mixed, digested and 

analysed by LC-MS.  The ratio of speak intensities of the isotopically labelled peptides in the mass spectrum 

reflects the ratio of the protein abundance. This technique is in vivo coding without chemical manipulation and 

allows comparison of expression levels of tissue proteome at different physiological states (Gruhler et al., 2005). 

Recently, a new approach called isobaric tags for relative and absolute quantitation (iTRAQ) has developed 

(Ross et al., 2004). The technique is based on chemically tagging the N-terminus of the digested peptides. The 

labelled samples are combined, fractionated by LC and analysed by MS/MS.  Fragmentation of the tags attached 

to the peptides generates the isotope-encoded reporter ions which provide relative quantitative information on 

protein. This technology offers several advantages including the ability to analyse multiplex samples and 

increased analytical precision and accuracy, but it need a powerful multidimensional fractionation method for 

peptides before MS/MS (Aggarwal et al., 2006).  Another method is 18O stable isotope labelling where proteins 

are isotopically tagged by means of enzyme-catalysed incorporation of 18O from 18O water during proteolysis 

(Aebersold and Mann, 2003). Each peptide generated by the enzymatic reaction carried out in heavy water is 
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labelled at the carboxyl terminal. The labelled peptides from each sample are combined and analysed by MS. 

The resulting mass shift between differentially labelled peptide ions permits identification and quantitation of 

protein. Furthermore, there is label-free quantification strategy present which is based on spectral counting or 

peptide precursors ion intensities obtained in the first MS in a tandem MS. Spectral counting is based on the 

assumption that the rate at which a peptide precursor ion is selected for fragmentation in a mass spectrometer is 

correlated to its abundance. The spectral counts are then averaged into a protein abundance index for relative 

protein quantification. This method works for large and abundant proteins, the number of peptides from small 

protein and low abundant proteins is often insufficient for accurate quantification (Gstaiger and Aebersold, 

2009).  

 

1.3.3 Analysis of PTMs  

 

Covalent modification of protein such as phosphorylation, glycosylation, acetylation and ubiquitin plays 

important roles in the control of the activity, localization and stability of proteins and their interactions with 

other macromolecules (Gstaiger and Aebersold, 2009). Functional genomics can not provide experimental 

evidence for protein modifications other than protein sequence information for the in silico prediction of 

candidate sites of modification (Gstaiger and Aebersold, 2009). MS is shown to be a useful tool for global and 

targeted analysis of PTMs of proteins. The principle is that the addition of a chemical moiety to an amino acid 

will lead to the mass shift of that residue, which will be revealed in MS. This will allow assignment of 

modifications to the peptide in MS or amino acid in MS/MS (Jensen, 2006). Computer programmes are 

continuously improved for the systematic scanning and annotation of PTMs from MS and MS/MS data.  

However, identification of PTM is quite challenging since the peptides bearing a particular modification can be a 

small fraction of the total amount of peptides in the samples (Dhingra et al., 2005; Gstaiger and Aebersold, 

2009). Therefore, modification-specific enrichment is usually integrated prior to MS and MS/MS analysis 

(Dhingra et al., 2005). Some PTMs can be enriched by derivatization of protein modifications to make them 

accessible to chemical solid-phase capture techniques, and other PTMs can be purified using affinity 

chromatography or antibodies that are specific for a given modification (Gstaiger and Aebersold, 2009). For 

instance, phosphopeptides can be enriched by immunoprecipitation and TiO2 column or immobilized metal-

affinity chromatography which is using Fe (III) or Ga (III) for affinity of the phosphate moiety (Jensen, 2006). 

Hydrophilic-interaction liquid chromatography and lectin-mediated affinity are useful methods for purification 

of glycopeptides (Jensen, 2006).  
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1.3.4 Analysis of protein-protein interaction 

 

Almost all the proteins function in the context of specific interactions with other proteins. In MS-based protein 

interaction experiments, there are three essential components including bait presentation, affinity purification of 

the complex and analysis of the bound proteins by LC-MS/MS (Aebersold and Mann, 2003). The workflow is 

that protein complexes are purified either using antibodies that recognize the endogenously expressed protein or 

using an affinity tag that is fused to the protein of interest, digested and analysed by LC-MS/MS. Compared with 

yeast two-hybrid and protein chip-based approaches, this strategy has the advantages that interactions take place 

in the native environment and cellular location, and that multicomponent complexes can be isolated and analysed 

in a single operation. However, this method can only detect a subset of protein interactions that actually occur 

since the biological interactions are of low affinity, transient and dependent on the specific cellular environment 

(Aebersold and Mann, 2003).   

 

1.3.5 Limitations and expectations in proteomics 

 

The proteomics research today is severely hampered by the lack of publicly available sequence information for 

the not completely sequenced organisms since protein identification is based on availability of the gene or 

protein sequences in the public databases (Grossmann et al., 2007). Peptide mass fingerprint is not well suited 

for protein identification for these organisms. In order to circumvent this limitation, two different approaches can 

lead to an increase in protein identifications. The first one is that MS or MS/MS data is searched against 

Expressed Sequence Tags (EST) database or a protein database of an evolutionarily closed related organism, 

although EST databases can have only partial coding sequences for the gene and many genes may not be 

represented in these databases due to the choice of tissue used for library construction or low mRNA abundance 

(Quirino et al., 2010). The second one is amino acid sequence of a peptide extracted from the MS/MS spectrum 

for de novo sequencing with aid of software tools. Peptide de novo sequencing can be combined with BLAST 

searches to identify peptides on the basis of their homology to peptides in the database (Grossmann et al., 2007).  

Other major bottlenecks in proteomics are related to analysis of huge amounts of MS data. Accurate, consistent 

and transparent data processing and analysis are integral and critical parts of proteomics workflows (Domon and 

Aebersold, 2006). Therefore, advanced bioinformatics tools are required for protein identification and validation 

and data repositories, which are challenging and ongoing tasks in proteomics.  
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1.4 Application of proteomics in plant-pathogen interaction 

 

The proteomics techniques are mainly utilised in the following aspects for plant-pathogen interactions including 

plant-virus, bacteria, fungi and nematodes interactions: a) detection of plant pathogens; b) comparison of 

proteomes and detection of differential protein expression at quantitative and qualitative terms in both plant and 

pathogen; c) analysis of PTMs like phosphorylation or modification of proteins induced by the infection. In this 

thesis, we will mainly focus on and give the examples of researches on the plant-fungus interactions. 

Traditionally, detection of plant pathogens may involve the use of time-consuming cultivation with a 

subsequent morphological or biochemical analysis of growth or biochemical characterization, bioassays, 

isolation and microscopy (Lopez et al., 2003). However, these techniques cause problems when different 

organisms produce similar symptoms in hosts or exhibit similar morphology. Lately, enzyme-linked 

immunosorbent assays, polymerase chain reaction, DNA sequencing, fluorescence in situ hybridization and 

DNA microarrays are the main techniques for phytopathogen detection (Lopez et al., 2003; Padliya and Cooper, 

2006). There are limitations to molecular biology-based or antibody-based techniques as many of these protocols 

require reagents that are highly specific for individual pathogens (Kav et al., 2007). The recent proteomics-based 

technology has been shown to be able to detect or identify phytopathogens accurately and efficiently which do 

not require pathogen-specific reagents (Kav et al., 2007). The technique is based on the identification of 

phytopathogen protein in MS analysis which typically is using various publicly available protein databases with 

information on phytopathogenic organisms including virus, fungi, oomycete and bacteria (Padliya and Cooper, 

2006). Thus, a relative paucity of data in genomic or protein databases pertaining to many pathogens is a 

significant obstacle in MS-based studies, but it can be solved partially by cross-species identification (Padliya 

and Cooper, 2006). With regard to pathogenic fungi, there are three other complications with identification by 

MS comparing to virus and bacteria (Padliya and Cooper, 2006). First, unpredictable PTM can confound the 

protein identifications. Second, pathogenic fungus can encode several thousands of proteins but no single protein 

will accumulate to high levels for good resolution in MS, especially with a complex plant protein background. 

Third, fungi can have several life cycle stages, indicating that the presence of some proteins used in 

identification can be in flux. So far, MS-based techniques have been successfully applied in the detection of 

phytopathogenic fungi such as Ustilago maydis, Trichoderma harzianum, Uromyces appendiculatus, 

Phytophthora palmivora and Phytophthora infestans (Shepherd et al., 2003; Ebstrup et al., 2005; Cooper et al., 

2006; Padliya and Cooper, 2006).  

In the plant-pathogen interaction system, it is still very challenging to study proteome of pathogen in planta 

since the biomass of the pathogen is a small portion of the total in the infected plant resulting in the dominance 
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of plant proteins. However, there is some achievement in the study of morphogenesis-, host- and signaling-

responsive protein and proteome mapping in fungal phytopathogens by proteomic techniques. M. grisea causing 

rice blast disease, one of the most damaging diseases of rice, forms an appressorium from a germinating 

conidium allowing the infection peg to penetrate the rice cuticle (Kim et al., 2004b). Due to the vital function of 

the appressorium in disease initiation, gel-based proteomics was used to identify proteins during formation of the 

appressorium, revealing five proteins including 2 α-subunits of the 20S proteasome, serine carboxypeptidase Y 

and scytalone dehydratase (Kim et al., 2004b). The changes of the extracellular and intracellular proteomes of M. 

grisea were examined when exposed to extracts from resistant and susceptible rice cultivars (Kachroo et al., 

1997). Protein spots induced by susceptible cultivar extracts were observed but not identified due to the limited 

availability of gene sequences at the time of study. U. maydis is the causal agent of smut in corn which 

undergoes a dimorphic transition from budding to form infective filamentous hypea (Bohmer et al., 2007). By 

using 2-DE, 250 different proteins were identified from cells of the fungus U. maydis cultured in vitro. In 

addition, in this study it was observed that 13 proteins involved in energy and general metabolism were 

upregulated during the filamentous growth stage and signaling pathway involving a small GTP binding protein is 

responsible for the generation of the filament during pathogenic development (Bohmer et al., 2007). The role of 

signal transduction in the pathogenicity of S. nodorum which causes glume blotch in wheat is well established 

(Tan et al., 2008). The Gna1 protein of cAMP pathway is of particular interest, as mutants displayed multiple 

phenotypic impairments such as reduced virulence, reduced extracellular depolymerase activities and abolished 

asexual sporulation (Tan et al., 2009). In order to identify the Gna1-regulated proteins, comparison of 2D 

proteome patterns of wildtype and gna1 mutant coupled with LC-MS/MS was conducted, resulting in 

identification of positively regulated short-chain dehydrogenase which has critical roles in asexual sporulation 

and mycotoxin production (Tan et al., 2008, 2009). Cooper et al. (2006, 2007) has identified 468 and 461 

proteins from uredospores and germlings, respectively, of U. appendiculatus, the rust fungus occurring on beans 

by LC-MS/MS. Both proteomes contained proteins involved in protein biosynthesis and folding, suggesting that 

spores and germlings become metabolically active primed by protein accumulation during infection. The 

proteome maps of B. cinerea mainly infecting wine grapes and S. sclerotiorum causing a disease called white 

mold in many flowers and vegetables were established (Fernandez-Acero et al., 2006; Yajima and Kav, 2006). A 

comparison of the mycelial protein profiles of B. cinerea strains differing in toxin production revealed 

differentially expressed malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase between stains 

(Fernandez-Acero et al., 2006). The mycelial proteome and the secretome of S. sclerotiorum were analysed, 

resulting in identification of approximately 100 mycelial protein and 18 secreted proteins including cell-wall-

degrading enzymes (Yajima and Kav, 2006). There are some proteomic studies on F. graminearum.  It was 

shown by 2-DE and MS that the in vitro exoproteome of F. graminearum grown on glucose and on hop cell 
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walls contained 23 and 84 unique proteins, respectively, mainly involved in cell wall polysaccharide degradation 

(Phalip et al., 2005). By high-throughput LC-MS/MS, 229 and 120 fungal proteins, mainly including glycoside 

hydrolases and proteases, were identified in the secretome of F. graminearum during growth on 13 synthetic 

media with carbon supplements and during infection of wheat heads, respectively (Paper et al., 2007). A gel-

based proteomic approach was employed to identify F. graminearum proteins secreted to culture medium 

containing barley or wheat grain flour, revealing 155 fungal protein identifications in 69 unique proteins in either 

medium which mainly included enzymes involved in degradation of cell walls, starch and proteins (Yang, 

unpublished data, see Chapter 4).  

With regard to the plant response to pathogens, it has been found that proteins involved in diverse biological 

processes including defense and stress response, signal transduction, photosynthesis, protein folding and 

degradation and energy metabolism are regulated (Thurston et al., 2005; Mehta et al., 2008).  Some examples 

reporting these proteins are mentioned here. The M. grisea-rice interaction has been well studied because of its 

great economic importance and availability of both genome sequences (Mehta et al., 2008). Gel-based proteomic 

analysis of rice leaves including the resistant and susceptible lines infected by M. grisea showed the induction of 

two receptor-like protein kinases, two β-1,3-glucanases, thaumatin-like protein, peroxidase, probenazole-

inducible protein and rice PR10 protein in both lines (Kim et al., 2004a). Callose deposition and hypersensitive 

response was clearly visible in incompatible interactions but excessive invading hypha with branches was 

evident only in compatible interactions in this study (Kim et al., 2004a). It was reported that susceptibility of rice 

to rice blast disease increased with the excessive application of nitrogen nutrients (Long et al., 2000). Therefore, 

a study about effect of nitrogen nutrients on rice blast disease by proteomic approach was conducted, suggesting 

that proteins involved in photosynthesis was affected in the interaction and twelve proteins changed in response 

to different levels of nitrogen nutrient. Among these proteins, level of ribulose-1,5-bisphosphate 

carboxylase/oxygenase was increased with higher level of N (Konishi et al., 2001). Protein profiles of blackleg-

resistant and susceptible canola cultivars after inoculation with Leptosphaeria maculans were investigated using 

2-DE and tandem MS. Several antioxidant enzymes, including dehydroascorbate reductase and peroxiredoxin 

along with proteins involved in photosynthetic and nitrogen metabolism were found to be upregulated in the 

resistant cultivar compared to the susceptible cultivar (Subramanian et al., 2005). Different Fusarium species 

can cause different diseases in a diversity of plant hosts. Proteome analysis of the xylem sap of tomato in 

response to Fusarium oxysporum infection revealed accumulation of PR proteins such as glucanases, 

peroxidases and chitinases, polygalacturonase and a subtilisin-like protease, which were involved in defense, 

antioxidant protection and cell structure, as well as seven fungal proteins including arabinanase, oxidoreductase 

and serine protease (Rep et al., 2002; Houterman et al., 2007).  Gel-based proteomics was performed to study 

the changes in the protein profiles of germinating maize embryos following infection by Fusarium verticillioides, 
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leading to the identification of PR proteins, antioxidant enzymes and protein involved in protein synthesis, 

folding and stabilization (Campo et al., 2004). Several proteome analysis of barley and wheat in response to 

Fusarium graminearum infection showed the induction of plant proteins associated with oxidative stress or 

pathogenesis-related responses and changes of abundance of the proteins involved in primary metabolism and 

protein synthesis (Zhou et al., 2006; Geddes et al., 2008; Yang et al., 2010b). In addition, transcriptome and 

metabolome analysis have been performed in Fusarium graminearum–barley or wheat interaction to gain more 

insights into the plant defense response to this pathogen.  Microarray analysis of Fusarium graminearum-

infected barley showed induction of plant genes encoding defense response proteins, oxidative burst-associated 

enzymes, phenylpropanoid pathway enzymes, and trichothecene and tryptophan catabolic enzymes (Boddu et al., 

2006). Metabolome analysis of wheat infected by Fusarium graminearum indicated the higher abundance of 

several fatty acids and aromatic compounds in both susceptible and relatively resistant cultivars whereas 

coumaric acids, myo-inositol, certain sugars and malonic acid were only found in the relatively resistant cultivar 

(Hamzehzarghani et al., 2005).  

Protein phosphorylation is considered as one of the most important PTMs because protein phosphorylation 

controls many basic cellular processes such as cell growth, differentiation, migration, metabolism, and cell death, 

and activates signal transduction pathways in cells in response to different stimuli such as growth factor 

stimulation or exposure to biotic and abiotic stress (Thingholm et al., 2009). The phosphorylated plant proteins 

in response to infection could be antioxidative enzymes or be involved in the early step of signal transduction 

pathways and located in the plasma membrane for the perception of a variety of microbial elicitors (Thurston et 

al., 2005). Particularly, the phosphorylation of plasma membrane proteins has wide-ranging implications for 

research in signal transduction, cell-cell communication and membrane transport processes, all of which are 

intimately in plant-microbe interactions (Thurston et al., 2005).  For example, by using 32P pulse-labelling in 

conjunction with 2DE and MS several phosphorylated proteins were identified including AtPhos43 protein in 

suspension-cultured cells of Arabidopsis in response to bacterial and fungal elicitors (Peck et al., 2001).  The 

phosphorylation of AtPhos43 is dependent on FLS2, a receptor-like kinase involved in signalling pathway for 

the perception of microbial elicitors. It has been reported that Ca2+-ATPase on the endoplasmic reticulum is 

involved in race-specific defense responses in tomato-Cladosporium fulvum interactions (Lam et al., 1998).  

However, PTMs which are very fast acting and dynamic mechanisms upon pathogen attack make it challenging 

to follow the early in vivo events (Thurston et al., 2005).  
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1.5 Objectives of the project 

 

The aim of the project is to gain some insights into control of FHB in barley with the application of gel-based 

proteomic techniques. In order to achieve the goal, we conducted the experiments from three different aspects: i) 

It has been reported that type and amount of nitrogen fertilizer can affect the incidence and severity of FHB with 

different results. Therefore, we have investigated the severity of FHB in the susceptible barley using two 

different amounts of nitrogen fertilizer in the first study (Chapter 2); ii) In order to study the molecular 

mechanisms of barley defense response to Fusarium graminearum, in the second study a proteomic analysis was 

conducted during the initial stages of the interaction due to the extensive degradation of barley seed proteome 

caused by the pathogen at mature stage (Chapter 3); iii) We would like to investigate the proteome of the 

pathogen, especially secreted proteins known for a role in pathogenicity during interaction.  However, it is very 

challenging to identify fungal proteins in the infected plants since fungal biomass is a small portion of the total. 

Therefore, in the third study we profiled the in vitro secreted proteome of F. graminearum on the 2-D gels in the 

presence of substrates of barley or wheat grains (Chapter 4). In addition, a PR17 protein was found to be 

upregulated in barley in response to F. graminearum in the second study and a fungal hypothetical protein 

(protein accession no: FG11033) was strongly upregulated in YAP- or AP-knockout F. graminearum mutant 

compared to wildtype (collaboration with Jens D. Jensen, see Appendix II), but the biological function of these 

two proteins is still unknown. Thus, recombinant proteins were made and bioassays were performed to examine 

their biological activity (Chapter 5).  In order to correlate the proteome to transcriptome of Fusarium 

graminearum, microarray data of Fusarium graminearum during infection of barley and wheat was obtained 

from Prof. Corby Kistler and analysed (Chapter 6).  
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The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was
investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha−1N
fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not
change significantly in response either to N level or Fg, whereas eighty protein spots in the
water-soluble albumin fraction increased and 108 spots decreased more than two-fold in
intensity in response to Fg. Spots with greater intensity in infected plants contained fungal
proteins (9 spots) and proteolytic fragments of plant proteins (65 spots). Identified fungal
proteins included two superoxide dismutases, L-xylulose reductase in two spots, peptidyl
prolyl cis–trans isomerase and triosephosphate isomerase, and proteins of unknown
function. Spots decreasing in intensity in response to Fg contained plant proteins possibly
degraded by fungal proteases. Greater spot volume changes occurred in response to Fg in
plants grown with low nitrogen, although proteomes of uninfected plants were similar for
both treatments. Correlation of proteome changes withmeasurement of Fusarium-damaged
kernels, fungal biomass and mycotoxin levels indicated that increased Fusarium infection
occurred in barley with low N and suggests control of N fertilization as a possible way to
minimise FHB in barley.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Fusarium Head Blight (FHB) or scab, caused by Fusarium
species including Fusarium graminearum (Fg) Schwabe (tele-
omorph: Gibberella zeae (Schwein) Petch) in humid and
semihumid climates, is a devastating disease in wheat
(Triticum aestivum), barley (Hordeum vulgare) and other cereals
and has the capacity to destroy a potentially high yield [1–3].
The disease reduces the grain yield due to floret sterility as

well as poor grain filling and reduced kernel size [4]. In addition
to deceased yield and quality, the infected grains often contain
mycotoxins like deoxynivalenol (DON), nivalenol (NIV) and
zearalenone (ZEA) which are hazardous to animals and
humans causing neurological disorders and immunosuppres-
sion due to inhibition of protein biosynthesis [5].

The pathogen Fg attacks the barley spikes after they
emerge from the flag leaf sheath in the late-milk to soft-
dough stages of seed development [6]. Disease symptoms
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include premature necrosis and a brown/grey discolouration
of spike tissue. In contrast to wheat, where the fungus spreads
between spikes of the ear through the rachis, the fungus does
not spread in barley [2,7].

It is highly challenging to control FHB in barley and wheat
due to the poor understanding of the mechanisms of plant
resistance, and since no highly resistant barley cultivar is yet
available [2]. Development of FHB-resistant cultivars is a high-
priority for many barley breeding programs worldwide.
Agronomic and crop management strategies aimed at con-
trolling FHB in wheat and barley include foliar fungicide
application, crop rotation and tillage practices, however these
are in general not highly effective [8–10]. Environmental
factors play an important role in pathogenesis. High temper-
ature and humidity levels (e.g. heavy dew) favour fungal
attack and disease development [11,12].

Several studies, all carried out in Canada, suggest that the
type and amount of nitrogen fertilizer can affect the incidence
and severity of FHB, however the observed effect on the
disease differed. Thus, in wheat and barley grown with an
initial application of 70 kg ha−1N (ammonium nitrate) at
seedling stage, a significant increase of FHB was observed on
plants supplied with an additional 50 kg ha−1 at Zadoks'
growth stages 30 and 45, in comparison with plants receiving
no supplement [10]. On the other hand, wheat grown in fields
with 90 kg ha−1N (ammonium nitrate, urea or both) or less
showed significantly higher levels of FHB than those with
more N [13]. It was also reported that wheat grown in clay
loam or sandy loam soil without application of N had a greater
incidence of FHB than with 100 kg ha−1N (ammonium nitrate)
[4]. In maize, soil N amendment with 100 kg ha−1 ammonium
nitrate decreased both disease severity and levels of DON [14].
It is clear from these results that more research is required to
determine how the N status of the host plant may influence
the interaction with Fg.

Transcriptome profiling using microarrays, metabolome
profiling by aid of GC/MS and proteome profiling have been
used to investigate plant responses during the infection by Fg
[2,3,7,15,16]. Microarray analysis of the barley–Fg interaction
showed induction of plant genes encoding defence response
proteins, oxidative burst-associated enzymes, phenylpropa-
noid pathway enzymes, and trichothecene and tryptophan
catabolic enzymes [7]. Metabolome analysis of wheat infected
by Fg indicated the higher abundance of several fatty acids
and aromatic compounds in both susceptible and relatively
resistant cultivars after infection whereas coumaric acids,
myo-inositol, certain sugars andmalonic acidwere only found
in the relatively resistant cultivar [15]. Gel-based proteome
analysis of barley and wheat in response to Fg infection
indicated that plant proteins associated with oxidative stress
or pathogenesis-related responses were induced whereas
proteins involved in photosynthesis and carbon metabolism
decreased in abundance [2,3,16]. Additionally, proteome
analysis was applied to Fg grown in vitro on synthetic media
and in planta during infection of wheat head. In that study, 120
fungal proteins including secreted proteins and housekeeping
enzymes were identified by LC-MS/MS in planta [17].

Proteomics is a useful approach for studying plant–
pathogen interactions as differentially expressed proteins
directly involved in plant–pathogen responses can be detected

by comparing protein profiles [2,16,18]. Barley seed proteomes
and their genetic and developmental variations have been
described in some detail [19] and include the identification of
several hundred proteins by mass spectrometry. This knowl-
edge provides a solid background on which to base an
investigation of the combined effect of N fertilization and
FHB on the barley seed proteome.

In the present study, 2-DE followed by MALDI-TOF mass
spectrometry was employed to examine changes in the
proteome of mature barley seeds caused by Fg infection
under different levels of N fertilization, providing the first
molecular insight into the effect of N on FHB infection of
barley. The proteome changes were correlated with quantifi-
cation of mycotoxins and fungal biomass and included
identification of some fungal proteins not previously observed
The results suggest that, even though the difference in

nitrogen level does not appear to greatly affect abundance or
composition of grain albumins and storage proteins, the
severity of Fg infection increases significantly in plants
grown with low N.

2. Materials and methods

2.1. Plant growth

Barley (cv. Scarlett) from a single batch was grown in plastic
pots containing soil:sand:peat 2:1:1 (w/w/w) and necessary
micro- and macronutrients with or without addition of
nitrogen fertilizer (ammonium nitrate) resulting in nitrogen
levels of around 100 (high N) or 15 kg ha−1 (low N). After
germination, excess seedlings were removed and twelve
seedlings per 8-litre pot (25 cm diameter) were grown to
maturity in an unheated greenhouse under natural light
conditions at 15–22 °C during the day (12 h) and 10–15 °C
during the night (12 h). Sufficient water was supplied using a
dripwatering system. The leafwater potentialwas determined
using a pressure chamber andwateringwas adjusted to a level
between0 and−0.5 mPa. Three biological replicates, consisting
of one pot each, were prepared for Fg and control inoculations
under low and high nitrogen levels.

2.2. Inoculum preparation and spike inoculation

F. graminearum R-77550 was grown on potato-dextrose agar
(PDA) for 2 weeks before inoculation ofmung bean broth (MBB)
for macroconidia production. MBB was made by mixing 1 L
boiling water with 40 g of mung bean seeds for 10 min
followed by filtration through two layers of cheesecloth to
remove seeds before autoclaving. MBB was then inoculated
with 10 plugs (0.5 cm) of the Fg PDA culture and incubated on a
shaker (200 rpm) at 26 °C in darkness for 4 days. Macroconidia
were harvested by filtering the culture through two layers of
cheesecloth to remove mycelium. The concentration of
macroconidia was adjusted to 5×104spores/mL with deio-
nised water containing 0.1% Tween 20. Inoculation of barley
spikes was conducted by applying 5 mL of inoculum at the
anthesis stage 65 [20] using a “handsprayer”. Control plants
were mock-inoculated with water. After inoculation, spikes
were kept under sealed plastic for 72 h. At least five spikes
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were harvested at maturity stage for each replicate. The
percentage of Fusarium-damaged kernels (FDK) was deter-
mined based on kernel colour and degree of shrivelling for
each grain [21].

2.3. F. graminearum biomass determination

Kernels were ground in a cooled mill (4 °C) for 30 s and the
flour was used for fungal biomass determination, mycotoxin
analysis and protein extraction. Fg DNA was extracted from
100 mg of flour using a CTAB protocol followed by partial
purification of DNA on a Qiagen DNeasy plant mini kit as
described [22]. Samples were diluted to a concentration of
10 ng/nL total DNA before PCR. Primers for Fg elongation factor
1α (FusEF14 forward: 5′-ccacgtcgactctggcaag and FusEF125
reverse: 5′-cgcactggtagatcaagtgacc) were obtained from M.
Nicolaisen, University of Aarhus, DJF, Flakkebjerg, Denmark.
Both primer pairs were initially tested in the Mx3000P real-
time PCR machine (Stratagene) by making standard and
dissociation curves on a Fg DNA dilution series ranging from
10 ng to 1 pg, giving a detection limit of about 25 nuclei. PCR
was performed with 1 µL of template DNA, 10 pmol of each
forward and reverse primer, 12.5 µL of 2× SYBR Green master
mix (Applied Biosystems) and 0.4 µL of a 500× diluted
reference dye (Applied Biosystems) in a final volume of 25 µL
and using the following program 95 °C for 10 min, 40 cycles of
15 s at 95 °C, 30 s at 60 °C and 30 s at 72 °C. Fluorescence was
detected after each cycle. After the last amplification cycle, the
specificity of the PCR was determined in a melting curve
analysis by increasing the temperature from 60 °C to 95 °C
while measuring the fluorescence for every 0.5 °C increase. A
no-template control was run with the primer pair.

2.4. Mycotoxin analysis

The mycotoxin analysis was performed as described [23] with
slight modifications. One gram of milled grain was extracted
with 4 mL of acetonitrile:water [84:16 (v/v)], followed by
centrifugation. Two hundred microlitres of the supernatant
was mixed with 700 µL water and 100 µL internal standard
(13C-labelled DON in 25% acetonitrile/water). The samples
were filtered through a 0.45 µm filter before analysis by LC-MS/
MS. The chromatographic separation was performed with a
Hewlett-Packard 1100 system with gradient elution. Forty
microlitres was injected onto a 250×2.1 mm BDS Hypersil C
18.5 µm column (Thermo Electron Corporation, Waltham,
Massachusetts, US). The A-eluent was 99% water and 1%
methanol and the B-eluent was 10% water and 90% methanol.
MS/MS detection was carried out using a Sciex API 2000
instrument (Applied Biosystems) in electrospray negative
multiple reaction ionisation mode for DON, NIV and ZEA
toxins. Detection limits were 10 µg kg−1 for DON and NIV, and
2 µg kg−1 for ZEA. Relative standard deviations were 10%.

2.5. Protein extraction and quantification

Water-soluble protein was extracted as described [24] with
minor modifications. Flour (200 mg) was extracted with 1 mL
5 mM Tris–HCl, pH 7.5, 1 mM CaCl2 containing the protease
inhibitor cocktail “complete” (Roche) by shaking (Eppendorf

Thermomixer, maximum speed) for 30 min at 4 °C [25].
Duplicate extractions were carried out for each biological
replicate such that six protein extracts were prepared per
treatment. After centrifugation (20,000×g×30 min, 4 °C), the
supernatant was stored in aliquots at −80 °C until needed. The
protein concentration was determined by the Popov Amido
Black-based method [26] with bovine serum albumin as
standard. About 8 mg protein was obtained per gram flour.
After extraction of the soluble protein fraction, the flour
pellets were re-extracted with 800 µL of 70% ethanol as
described [27] to obtain the storage protein fraction. As the
Popov method is not ideal for determination of the concen-
tration of alcohol-soluble proteins, the protein concentration
of storage protein fractions was determined using the
Bradford assay [28]. Storage protein extractions yielded about
1.5 mg protein/g flour.

2.6. Two-dimensional gel electrophoresis

For 2-DE of water-soluble protein extracts, 200 µg protein was
precipitated by 4 volumes of acetone at −20 °C overnight.
Protein was dissolved in 350 µL of “reswelling” buffer contain-
ing 7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 0.5% (v/v) IPG
ampholytes (pH 4–7), “Destreak reagent” 1.2% (v/v) (GE
Healthcare) and a trace of bromophenol blue. The protease
inhibitor cocktail “complete” (Roche) was added to avoid
proteolysis during the isoelectric focusing step [25]. Samples
were centrifuged before application to 18 cm pI 4–7 IPG strips.
Isoelectric focusing (IEF) was run on an Ettan IPGphor (GE
Healthcare) for a total of 60,000 Vh as described [24]. Second
dimension SDS-PAGE (12–14%, 18 cm×24 cm, GE Healthcare)
was performed on a Multiphor II (GE Healthcare) as described
[24]. For 2-DE of storage protein extracts, 50 µg protein was
vacuum-dried before dissolving in 350 µL of “reswelling”
buffer as above. Gels were stained by colloidal Coomassie
Brilliant Blue [29].

2.7. Image analysis

Scanned gel images (greyscale, 16bit) were imported into the
image analysis software Progenesis SameSpots (Nonlinear
Dynamics, UK). All gel images were warped, matched and
aligned to a chosen reference gel. Six or four images
representing three or two biological and two technical
replicates for each of the four treatments were grouped to
gain the average volume of each spot. The protein spot
volumes were automatically normalised in the software. A
list of spots which changed in abundance among the four
treatments was generated. A threshold of ANOVA (p)<0.05,
q<0.05, power >0.8 and at least two-fold change in average
spot volume was used to define the protein spots chosen for
further analysis. Principal component analysis (PCA) in the
image analysis software was applied to analyse the similarity
of protein patterns among gels and the expression profiles of
protein spots fulfilling the above criteria.

2.8. In-gel digestion

Spots were excised from gels and subjected to in-gel trypsin
digestion as described [30] with minor modifications. Gel pieces
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werewashedwith 40% ethanol, shrunk by 100% acetonitrile and
soaked in 2 µL 11.1 ng/µL trypsin (Promega, porcine sequencing
grade) in 25mM NH4HCO3 on ice for 45 min. Six µL of 25 mM
NH4HCO3wasadded to gel pieces followedby incubationat 37 °C
overnight. Sampleswereprepared forMALDI-TOFanalysisonan
Anchorchip™ Target (Bruker-Daltonics, Bremen, Germany) as

described [30]. A tryptic digest of β-lactoglobulin was used for
external calibration.

2.9. Protein identification

An Ultraflex II mass spectrometer (Bruker-Daltonics, Bremen,
Germany) was used for peptide mass mapping or peptide
fragment ion mapping. An in-house Mascot server (http://
www.matrixscience.com) was used for database searches in
the NCBInr at the National Center for Biotechnology Informa-
tion, the HvGI barley gene index Release 10.0 (http://compbio.
dfci.harvard.edu/tgi) and the Broad Institute for F. graminearum
gene index (http://www.broad.mit.edu/annotation/genome/
fusarium_graminearum). The following parameters were used
for searching: allowed global modification, carbamidomethyl
cysteine; variable modification, oxidation of methionine;
missed cleavages, 1; peptide tolerance, 80 ppm and MS/MS
tolerance ±0.5 Da. To be considered asapositive identification, a
significant score calculated by the Mowse scoring algorithm in
MASCOT(above67, 69and54 respectively for theHvGI,NCBIand
Broad Institute databases) was required with at least four
matched independent peptides for peptide mass mapping
or two matched peptides in MS/MS analysis. All identified
fungal protein sequences were assessed for the presence of
signal peptides using SignalP (http://www.cbs.dtu.dk/services/
SignalP), andsequencesencodingproteinsofunknown function
were subjected to BLAST search in NCBI.

3. Results

3.1. Disease incidence

Barley plants grown with low or high N were inoculated with
Fg or water as control. The percentage of Fusarium-damaged
kernels (FDK) was higher for inoculated plants grownwith low
N than with high N (Fig. 1A). Since it can be difficult to
distinguish FDK from other types of kernel damage or
discolouration, fungal biomass and mycotoxin levels in the
sampleswere alsomeasured to determine the degree of fungal
infection more precisely.

In agreement with the FDK analysis, the concentration of
Fg DNA was very low or undetectable in control plants and
higher in Fg-infected plants grown with low N than with high
N (Fig. 1B). DON is the main mycotoxin produced by Fg, and
again there was a clear increase in DON in infected samples
treated with low N with respect to high N (Fig. 1C). Only very
low levels of NIV (Fig. 1D) and ZEA (Fig. 1E) could be detected.
Low levels of FgDNA andmycotoxins in some control samples
indicated low contamination from the natural environment.

Fig. 1 – Incidence of Fusarium infection in barley cv. Scarlett
grown under low and high N. A. Percentage of
Fusarium-damaged kernels (FDK); B. Fungal biomass expressed
as concentration of Fg DNA; C. Concentration of Fgmycotoxin
DON; D. Concentration of Fgmycotoxin NIV; E. Concentration of
Fgmycotoxin ZEA. The three biological replicates are shown for
each treatment. In some cases, indicated by #, measurements
were below the detection limit.
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When comparing the three biological replicates, it was
observed that both Fg DNA content and toxin concentration
were much lower in biological replicate 1 from Fg-infected,
low N than in replicates 2 and 3 (Fig. 1).

3.2. Proteome analysis

Two-dimensionalgelelectrophoresis (pH4–7)wasrunusing three
biological replicates and two technical replicates fromeach of the
four treatments. The 2-DE patterns of the non-infected samples
grown with high and low N were highly similar to each other.
Clear differences were apparent between Fg-infected and control
samples grown under lowNbutwere less apparent under highN
(Fig. 2A). In particular, the intensity of several high molecular
weight proteins decreased and many new spots with lower
molecular weight appeared in the Fg-infected extracts (Fig. 2). In
agreement with the FDK, fungal DNA and toxin analysis (Fig. 1),
the 2-DE pattern of biological replicate 1 from Fg-infected, low N
was intermediate between replicates 2 and 3 and the Fg-infected,
high N samples when the gel images were subjected to principal

component analysis (PCA; data not shown). This replicate was
therefore removed from the subsequent analysis of 2-DE spot
volumes. The statistical analysis was thus based on 22 gels. In
total, 466 protein spots were detected on all gel images based on
the criteria (ANOVA<0.05, q<0.05 and power >0.8). PCAwas used
to examine the relationship of the individual spots with the 2-DE
patterns (Fig. 3A). The biological and technical replicates from
each treatment clustered together, demonstrating the reproduc-
ibility of the 2-DE patterns. Sixty percent of the variance could be
explained by principal component 1, which separated the gels
according to the degree of Fg infection of the samples, whereas
only about 6% of the variance was explained by principal
component 2, separating gels based on the N level. The greatest
difference was observed between the Fg-infected and control
samples grown with low N in agreement with the FDK, Fg
biomass and toxin data (Fig. 1).

The average volumes of 188 spots varied by at least two-fold
among the four treatments. These spotswere chosen for further
analysis. The spots formed two clusters according to their
appearance profiles (Fig. 3B). Protein spots in cluster A (80 spots)

Fig. 2 – Water-soluble protein profiles of barley seeds. A. One representative colloidal Coomassie blue-stained gel covering the pH
range 4–7 is shown for each treatment.Molecular sizemarkers are indicated. Numbered boxes indicate selected regions of 2D-gels
showing differences between infected and control treatments; B. Close-up views of boxes for infected and control low N samples.

747J O U R N A L O F P R O T E O M I C S 7 3 ( 2 0 1 0 ) 7 4 3 – 7 5 2



increased and spots in cluster B (108 spots) decreased in
intensity in response to Fg. For each spot, a greater change in
intensity in response to Fgwas observed for lowN than for high
N except spots 119, 238 and 263 from cluster A which increased
more in intensity under high N. No spots showed greater than
1.9-fold changewhen comparing theuninfected samples grown
with low and high N (data not shown), supporting previous
findings that altered levels ofN fertilizerdonot greatly affect the
water-soluble seed proteome, although some individual pro-
teins may be differentially expressed [31]. Overall, the results
suggest that the observed changes in protein patterns are
caused mainly by the Fg infection, and that these changes are
greater in plants grown with lower levels of nitrogen.

In cluster A, containing the spots increasing in intensity in
response to Fg, 9 spots were identified as fungal proteins,

whereas 67 barley proteins were identified in 65 spots. Six
spots could not be identified. Based on sequence coverage
obtained in MS and lower observed molecular weight than
expected (Supplementary Table S1), as well as previous
identification of the same proteins in spots of expected
molecular weight [32], most of the identified plant proteins
were judged to be proteolytic fragments (Supplementary Table
S1, Fig. S1). In cluster B, 109 barley proteins were identified in
107 spots (Supplementary Table S2, Fig. S2). A single spot could
not be identified.

The identified plant proteins were assigned to functional
categories (Fig. 3B). Plant proteins of known function which
decreased in response to Fg infection were mainly chaperones,
defence-related proteins, proteins involved in desiccation and
oxidative stress, proteins involved in primary metabolism such

Fig. 3 – Protein spots varying in response to Fg infection and N level. A. Principal component analysis. Protein spots showing
significant variation are indicated by numbers and gel images are indicated by circles. Biological and technical replicates are
grouped in circles corresponding to the four treatments. B. Expression profiles of protein spots in cluster A (increased intensity
with Fg infection) and cluster B (decreased intensity with Fg infection). Each trace corresponds to one 2-DE spot and each node
corresponds to one replicate. Functional categories of the plant proteins identified in clusters A and B are indicated.
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as glycolysis, starchmetabolism, citric acid cycle and amino acid
biosynthesis, the volume of which changed between 7.7-fold
(Spot 1; protein similar to protamine P1; Supplementary Fig. S2)
and 2-fold (Spots 350,379,395; serpin; Supplementary Fig. S2). The
plant proteins in the spots increasing in intensity in response to
Fg infection belonged to similar functional categories as the
proteins that decreased in abundance, suggesting that plant
proteins in cluster B were degraded to produce the fragments in
cluster A. The main degradation products in cluster A were
generated frommajor seedwater-solubleproteins suchas serpin,
β-amylase and low molecular weight α-amylase and protease
inhibitors likeCI-1A,CI-1B,CI-2A,BMAIandBDAI.However, other
spots previously identified as α-amylase/trypsin inhibitors CMa,
CMb, CMd and trypsin/amylase inhibitor pUP 13 [32] were found
with slightly increased or unchanged intensity (data not shown).

Nine fungal proteins were identified, suggesting that these
were relatively abundant in the fungal in planta proteome
(Table 1). Six of these spots were identified as proteins of
annotated function. The remaining three fungal protein spots
were annotated as hypothetical proteins. None of the fungal
proteins were predicted to have signal peptides.

Analysis of the storage protein fractionswas also carried out,
but no spot volume change greater than 2-fold was observed in
these fractions (data not shown).

4. Discussion

4.1. The effect of nitrogen fertilization on the proteome of
infected grain

Analysis of FDK, fungal biomass and mycotoxin levels clearly
showed that Fg infection was more severe in barley plants
grown under low N compared to high N, suggesting that high
FHB incidence correlates with low N status. Nitrogen can
increase biomass of leaf and stalk tissue and enable higher
grain yield [33] as well as affect plant responses to pathogens
[14,33]. Furthermore, it has been reported that nitrogen
depletion in the medium used for in vitro fungal growth

could induce synthesis of trichothecene [34,35] and depletion
of nitrogen or nutrients was required for Fusarium spores to
germinate and infect plants [33,36]. However, in the present
study, although high N plants displayed delayed flowering
time and prolonged grain filling, no major difference was
observed in the appearance of the control plants under two
nitrogen levels at maturity stage. Since the ratio of DON to Fg
DNA was similar under low and high N, it seems unlikely that
the mycotoxin is produced as a response to low N status.

With respect to the analysis of the water-soluble proteome,
we observed similar protein profiles of the two uninoculated
groups and clear differences between infected and control
gels, where considerable differences in response to fungal
infection occurredwith lowN, indicating that incidence of FHB
disease in barley grain was increased. The proteome results
were in good agreement with analysis of FDK, fungal biomass
and mycotoxin levels.

The group of proteins down-regulated in response to Fg
infection include functions such as chaperones, defence-
related proteins, proteins related to desiccation and oxidative
stress and proteins involved in primary metabolism. Partial or
complete disappearance of the protein matrix and starch
granules has been reported in kernels of spring wheat
damaged by Fusarium using scanning electron microscopy
[37]. Protein bodies of wheat kernels were degraded to
polypeptides of lower molecular weight during infection by
Fg [38,39]. An increase in protease activity of diseased barley
grain has also been shown [40]. Fusarium species were
discovered to produce alkaline proteases associated with the
degradation of certain water-soluble proteins in infested
barley [41]. Several Fg peptidases and aspartyl proteases
were also identified during infection of wheat head [17]. It is
possible that in our study, the observed widespread proteolysis
was caused by fungal proteases acting as pathogenicity factors,
produced to obtain nutrition from the host [42,43]. While
fragments of barley protease inhibitors such as CI-1A, CI-1B,
CI-2A, BMAIandBDAIwere observed, others suchasα-amylase/
trypsin inhibitors were not reduced in amount, suggesting
differential sensitivity to proteases. Previous studies performed

Table 1 – Fusarium graminearum proteins identified in infected barley seed proteomes.

Spot
numbera

MASCOT
score

Matched
masses

Sequence
coverage

Theor./
Obs. MW

Theor./
Obs. pI

Accession
numberb

Protein and conserved domains

(%) (kDa)

29 159 11 56 28.6/30.7 5.6/5.8 FGSG_04826c L-xylulose reductase
36 55 4 30 25.0/25.0 7.1/6.3 FGSG_04454 Superoxide dismutase, mitochondrial precursor
49d 91 6 58 11.9/14.6 5.3/5.3 giI94711854c,e Peptidyl-prolyl cis–trans isomerase (PPIase)
64 56 5 14 64.7/57.7 5.9/4.8 FGSG_02625 Hypothetical protein, COG3670,

Lignostilbene-alpha, beta-dioxygenase
90 64 6 11 60.0/52.7 5.2/4.6 FGSG_06534 Hypothetical protein
102 87 6 29 27.2/28.7 5.2/5.2 FGSG_06702c Triosephosphate isomerase
143 55 6 20 28.6/30.7 5.6/5.5 FGSG_04826c L-xylulose reductase
157 73 8 26 40.2/49.3 9.2/4.3 FGSG_05460 Hypothetical protein
167d 127 8 61 16.0/17.8 5.8/6.2 FGSG_08721c,e Cu–Zn Superoxide dismutase

a Spot numbers refer to Supplementary Fig. S1.
b FGSG: accession number in Fusarium graminearum gene index from Broad Institute; gi: accession number in NCBI.
c Protein also identified in [17].
d Two peptides additionally confirmed by MS/MS analysis.
e Protein also identified in [3].
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on the barley protease inhibitors CI-1A, CI-1B, CI-2A, BASI and
barleyBowman-Birk inhibitor (BBBI) haveshownthat theydiffer
in their ability to inhibit Fusarium serine proteases [44,45]. The
interplay between fungal proteases and plant protease inhibi-
tors may thus influence the outcome of the host–pathogen
interaction [45].

Alternatively, the observed degradation may be a conse-
quence of endogenous proteases as a result of necrosis or
defence responses. Exactly which proteases contribute to the
degradation of albumins in vivo remains unclear since no
proteases were identified in the infected seed proteomes.
Further investigation of the proteases causing hydrolysis of
the barley proteome in vivo is required.

4.2. F. graminearum does not affect the storage protein
fraction

In contrast to the changes observed in the water-soluble seed
proteome, no significant alteration in 2-DE patterns of the
hordein storage protein fractionwas observed in response toN
and/or Fg infection although it has been reported previously
that higher N can result in an increase in hordein, whereas the
other protein fractions including the water-soluble albumin
fraction are relatively unaffected [46]. Our results indicated
that the low nitrogen conditions in this study caused very few
changes in storage protein or albumin fractions and that Fg-
induced proteolysis mainly occurred in the albumin fraction
regardless of fertilizer level. Fg may preferentially proteolyse
the more accessible albumin fraction to establish infection,
rather than the proline-rich storage proteins in the starchy
endosperm. In agreement with this hypothesis, it was shown
that a major reduction of Fg and DON in diseased wheat
kernels was achieved by pearling, a process in which most of
the outer layers, including the aleurone layer, are removed [47]
suggesting that the fungus has limited contact with the
storage proteins of the starchy endosperm. Our results suggest
that the observed effect of differential N levels on Fg infection
is not caused by a change in overall protein composition or
amount in the seeds.

4.3. Proteins of fungal origin

Nine proteins were identified that originated from Fg, the
genome of which is predicted to contain 13,332 genes (www.
broad.mit.edu). The Fg proteins were probably dominated by
the host plant proteins given the high ratio of plant to fungal
biomass [18]. In agreementwith this, only 25 Fg transcripts were
detected as accumulating 72h after inoculation of barley [7] and
only 8 fungal proteins were identified when the wheat–Fg
interaction was examined using 2-DE [3]. In contrast, 120 in
planta Fg proteins were identified in vacuum-infiltrated fluid
from infectedwheat heads [17], including five out of the 9 fungal
proteins identified in the present study. However, the fact that
four additional proteins were identified here strongly suggests
that complementary approaches are required to analyse the in
planta fungal proteome. The five proteins common to these
studies were Cu–Zn superoxide dismutase, triose phosphate
isomerase, peptidyl-prolyl cis–trans isomerase and L-xylulose
reductase (Table 1). The Cu–Zn superoxide dismutase and
peptidyl-prolyl cis–trans isomerase were also observed in the

Fg-infected wheat grain proteome [3]. The identification of an
additional form of superoxide dismutase in the present study
strongly suggests that the pathogen is exposed to, and attempts
to overcome plant defence-related reactive oxygen species. L-
Xylulose reductase is involved in the assimilation of L-
arabinose, derived from breakdown of plant cell walls, into
the fungal pentose phosphate pathway [48] and was identified
in two spots varying in pI, illustrating a strength of 2-DE based
studies and suggesting that the protein may be post-transla-
tionally modified. It was however not possible on the basis of
the MS data to determine the nature of the modification.

Three of the fungal proteins identified for the first time in
this study had unknown functions. One protein shared 82%
sequence identity with torulene oxygenase from Fusarium
fujikuroi. Torulene oxygenase is involved in the carotenoid
pigment biosynthetic pathway [49], the initial steps of which
are common to biosynthesis of gibberellin, which is produced
by F. fujikuroi in large amounts in low nitrogen medium [50].
Therefore, nitrogen depletion in our study possibly induces
the higher expression of genes in this pathway and suggests
that a role for gibberellins may be found in this interaction.

One of the identified Fg proteins (Spot 157) with unknown
function appeared in the 2-DE pattern with a pI of 4.2 which is
surprisingly lower than the predicted theoretical value of 9.2.
(Table 1, Supplementary Fig. S1). The observed molecular
mass (49 kDa) was also slightly higher than expected (40 kDa).
Such large pI discrepancy suggests that the protein is post-
translationally modified. The protein sequence contains a
potential Asn-X-Thr N-glycosylation site and the regions of
the protein not covered by peptide mass data are rich in Ser
and Thr, suggesting that the protein could be glycosylated,
however in-depth analysis by mass spectrometry will be
required to confirm this.

5. Conclusion

Taken together, the positive correlation of FDK, fungal
biomass, mycotoxins and proteome changes observed in this
study strongly suggests that FHB is more severe in barley
grown with low N than with high N. To our knowledge, this is
the first report to clarify the effect of nitrogen on FHB in barley
using proteomic approaches. The Fg-infected proteome pat-
terns of barley seeds reveal degradation of the water-soluble
albumin protein fraction and detection of fungal proteins with
metabolic and antioxidative functions. Further work will
confirm whether appropriate N amendments in the field can
decrease both disease severity and mycotoxin accumulation.
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A proteomic analysis was conducted to map the events during the initial stages of the

interaction between the fungal pathogen Fusarium graminearum and the susceptible barley

cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal

biomass in barley spikelets at 3 days after inoculation. This coincided with the appearance of

discrete F. graminearum-induced proteolytic fragments of b-amylase. Based on these results,

analysis of grain proteome changes prior to extensive proteolysis enabled identification of

barley proteins responding early to infection by the fungus. In total, the intensity of 51

protein spots was significantly changed in F. graminearum-infected spikelets and all but one

were identified. These included pathogenesis-related proteins, proteins involved in energy

metabolism, secondary metabolism and protein synthesis. A single fungal protein of

unknown function was identified. Quantitative real-time RT-PCR analysis of selected genes

showed a correlation between high gene expression and detection of the corresponding

proteins. Fungal genes encoding alkaline protease and endothiapepsin were expressed during

1–3 days after inoculation, making them candidates for generation of the observed b-amylase

fragments. These fragments have potential to be developed as proteome-level markers for

fungal infection that are also informative about grain protein quality.

Keywords:

Cereal grain / Fusarium head blight / Gene expression / Pathogenesis-

related proteins / Plant proteomics / Protease activity

1 Introduction

Fusarium head blight (FHB) of barley (Hordeum vulgare)
and other cereals is a destructive disease worldwide due to

yield loss, reduced grain quality and contamination by

mycotoxins hazardous to animals and humans [1]. Espe-

cially in humid weather conditions, the disease can be

caused by many Fusarium species including the prevalent

Fusarium graminearum Schwabe (teleomorph: Gibberella
zeae (Schwein) Petch) [1]. Controlling FHB is challenging

due to (i) lack of completely resistant cultivars, (ii) ineffective

fungicides and (iii) limited understanding of mechanisms of

plant resistance at the molecular level.

Barley spikes are most susceptible to F. graminearum at

anthesis or during the early dough stage of grain develop-

ment [1, 2]. The preferred infection site is the extruded ovary

epithelial hairs on the kernel tip and fungal growth proceeds

along the epicarp at the space between the lemma and palea

[2]. The pericarp may be colonised within 2 days after

inoculation (dai) [2]. Fungal hyphal growth is delayed by the

testa for some time before invasion of aleurone layer and

endosperm occurs [3]. In contrast to wheat, symptoms do

not spread along the spikes in many barley cultivars,

including those susceptible to the fungus, indicating so-

called type II resistance of barley. Fusarium produces cell

wall degrading enzymes and proteases to obtain nutrients

Abbreviations: dai, days after inoculation; FHB, Fusarium head

blight; PR, pathogenesis-related; qRT-PCR, quantitative real-time

RT-PCR
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from the host plant, and mycotoxins for increased virulence

[1]. Plant defence responses triggered upon pathogen attack

can include cell wall fortification, production of anti-

microbial secondary metabolites, accumulation of patho-

genesis-related (PR) proteins and programmed cell death [4].

Several genomic, transcriptomic and proteomic studies

have been performed to investigate responses of wheat and

barley to F. graminearum. Northern blotting analysis indi-

cated that genes encoding PR proteins PR-1, PR-2 (b-1,3-

glucanases), PR-3 and PR-4 (chitinases), PR-5 (thaumatin-

like protein) and PR-9 (peroxidase) were induced from 6 to

12 h with highest expression 36�48 h after inoculation [5, 6].

Microarray analysis showed limited fungal development and

little change in barley transcript accumulation before 2 dai,

increased fungal development and transcript accumulation

between 2 and 4 dai with a majority of host transcripts

accumulating at 3 dai and reduction of transcript levels

between 4 and 6 dai [2]. Accumulating barley transcripts

included genes encoding defence response proteins, oxida-

tive burst-associated enzymes, phenylpropanoid pathway

enzymes, and trichothecene and tryptophan catabolic

enzymes [2]. Gel-based proteomic analysis of a susceptible

wheat cultivar 1�3 dai with F. graminearum revealed accu-

mulation of plant proteins involved in oxidative stress, PR

responses and nitrogen metabolism [7]. Proteomic analysis

of six barley cultivars with varying resistance to F. grami-
nearum also revealed upregulation of PR proteins and

proteins associated with oxidative stress at 3 dai [8]. It was

recently demonstrated that the proteome of mature

F. graminearum-infected barley seeds is considerably degra-

ded, based on the identification of numerous plant protein

fragments [9], which may be the result of fungal protease

activity. The F. graminearum exoproteome from F. grami-
nearum-infected mature wheat heads was also analysed by

LC-MS/MS, resulting in identification of 120 fungal

proteins including several secreted proteases [10]. The

infection stage at which degradation of plant proteins occurs

and the responsible fungal proteases are still unknown. In

the present study, for the first time, plant defence gene

expression and proteome changes including proteolysis in

response to F. graminearum are correlated with fungal gene

expression and quantification of fungal biomass. Further-

more, pathogen-dependent proteolytic fragments of

b-amylase are identified as markers of F. graminearum
infection at the proteomic level.

2 Materials and methods

2.1 Plant growth and spike inoculation

Barley cultivar Scarlett was grown in 2-litre plastic pots

containing the soil mix Pindstrup Substrate 2 (Pindstrup

Mosebrug A/S, Denmark) in a greenhouse (181C, 60–70%

relative humidity in the day/151C, 80�90% relative

humidity in the night, 16-h photoperiod) supplemented

with light from fluorescent tubes (Philips Son-T Agro

400 W). After germination, excess seedlings were removed

leaving three seedlings per pot. Plants were watered every

second day and fertilised with a 0.5% standard nutrient

solution (NPK 5-1-41Mg and S) (Hornum, Brøste A/S,

Copenhagen, Denmark) once a week from the tillering stage

21 [11] throughout the experiment.

F. graminearum strain PH1 (ARS Culture Collection,

NRRL 31084) macroconidial suspension was prepared as

described [12] and stored at �801C in 10% glycerol until

inoculation. The concentration of macroconidia was deter-

mined using a haemocytometer and adjusted to 105 spores/

mL. Point inoculation was conducted at anthesis stage 65

[11] by micropipetting 5mL into approximately 16 out of total

24 spikelets leaving the bottom and top three spikelets

uninoculated. Separate control plants were mock-inoculated

with water. After inoculation, spikes were covered in sealed

water-sprayed plastic bags to maintain humidity and plants

were sealed in dark for 72 h. Three biological replicates for

each time-point (1, 2 and 3 dai) were prepared, consisting of

48 inoculated spikelets from three spikes collected from

different plants for each biological replicate. Spikelets were

lyophilised and ground into fine powder in liquid nitrogen

using a mortar and pestle. The powder was used for DNA,

RNA and protein extractions as described below.

2.2 Fusarium graminearum biomass determination

Total DNA was extracted from 25 mg ground samples using

DNeasy plant mini kit (Qiagen, Venlo, Netherlands)

following the manufacturer’s protocol and diluted to 10 ng/

mL for PCR. Determination of Fusarium DNA by quantitative

PCR was carried out as described [9]. Plant DNA was

determined by quantitative PCR using primers for the wheat

elongation factor gene (Forward primer: 50-ACCCTGA-

CAAGGTTCCCTTC-30; Reverse primer: 50-ACCAGT-

CAAGGTTGGTGGAC-30). F. graminearum biomass was

expressed as Fusarium DNA/plant DNA (ng/mg). Data

represent a continuous variable and were analysed by

analysis of variance assuming a normal distribution.

Variances were stabilised by appropriate transformations

when necessary. Data were analysed by PC-SAS (release 9.1;

SAS Institute, Cary, NC, USA).

2.3 Protein extraction and western blot analysis

Water-soluble proteins were extracted from 200 mg ground

samples with 1 mL of buffer containing 5 mM Tris-HCl, pH

7.5, 1 mM CaCl2 and the protease inhibitor cocktail

‘‘complete’’ (Roche) as described [9]. Protein concentration

was determined by Amido Black [13] with bovine serum

albumin as standard. Five micrograms protein were sepa-

rated on 4�12% BisTris NuPAGE gels (Invitrogen) followed

by blotting to nitrocellulose membranes (Hybond-N, GE
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Healthcare). Antibodies recognising b-amylase (kindly

provided by Evan Evans, University of Tasmania) were used

for Western blotting. Polyclonal goat anti-rabbit immu-

noglobulins conjugated with alkaline phosphatase (Dako A/

S) were used as secondary antibody. The BCIP/NBT chlor-

ide system (Sigma) was used for detection.

2.4 Two-dimensional gel electrophoresis and

protein identification

Two hundred micrograms protein was precipitated by 4

volumes of acetone overnight at �201C. IPG gels (pH 4�7,

GE Healthcare) and second dimension SDS-PAGE (12–14%,

18 cm� 24 cm, GE Healthcare) were run as described [9].

Duplicate gels for each biological replicate were run and

stained by colloidal Coomassie Brilliant Blue [14]. Scanned

gel images (300 dpi, 16-bit greyscale) were imported into

Progenesis SameSpots (Nonlinear Dynamics, UK), warped,

matched and aligned to a chosen reference gel. Quantifica-

tion of spots was based on the average normalised volumes

from six gels. A threshold of ANOVA (p)o0.05 and at least

1.5-fold change in average spot volume in infected samples

was used to define the protein spots chosen for further

analysis. Protein spots were excised from gels and in-gel

digested with trypsin followed by MALDI-TOF analysis

(Ultraflex II, Bruker-Daltonics, Bremen, Germany) as

described [9]. Protein identification by peptide mass

mapping was done using an in-house Mascot server (http://

www.matrixscience.com) to search the NCBInr at the

National Center for Biotechnology Information, the HvGI

barley gene index Release 10.0 (http://compbio.

dfci.harvard.edu/tgi) and the Broad Institute for Fusarium
graminearum gene index (http://www.broad.mit.edu/

annotation/genome/fusarium_graminearum). Details of

search criteria are given in Supporting Information

Table S2.

2.5 RNA extraction and qRT-PCR analysis

Total RNA was extracted from 50 mg of ground sample

using the RNeasy Plant Mini Kit (Qiagen) with addition of

50mL Plant RNA Isolation Aid (AM9690, Ambion) following

the manufacturer’s protocol. Removal of genomic DNA and

cDNA synthesis were carried out as described [15]. Primers

(Supporting Information Table S1) were designed using

primer3 (http://fokker.wi.mit.edu/primer3/input.htm).

Primer specificity was tested by blasting primer sequences

against the NCBI database. The barley 18S rRNA gene [16]

and F. graminearum EF1a and GAPDH [17] served as

reference genes for quantification of barley and fungal gene

expression, respectively. Real-time PCR was carried out in

technical duplicates, using 25-fold dilutions of reverse

transcription mixtures as template [15]. After the last

amplification cycle, a melting curve analysis for each primer

pair verified amplification of a specific product. Difference

in Ct value between technical replicates was under 0.5.

Relative expression of genes was determined using the

formula: relative expression 5 2 –[DCt target geneDCt reference

gene] [18] where Ct refers to the threshold cycle. The detec-

tion limit for plant gene relative expression was around �25

(2-log scale) due to 40 cycles of setup amplification and a

threshold cycle of approximately 15 for the 18S rRNA gene.

Statistical analysis of plant gene expression in infected versus
control samples was performed by Student’s t-test. Regula-

tion of plant genes during 1�3 days after anthesis was

tested by ANOVA.

3 Results

3.1 Development of FHB

To investigate initial stages of infection of barley by

F. graminearum, spikelets must be infected uniformly and at

the same time. Since it is difficult to distinguish uninfected

from infected spikelets at early stages and in our experience,

use of the point inoculation method almost completely

eliminates the FHB disease variation, point rather than

spray inoculation was used, which enabled infected spikelets

to be marked. Discoloration symptoms appeared on some

spikelets at 2 dai, developing rapidly at 3 dai (Supporting

Information Fig. S1). No symptoms were observed in

uninoculated spikelets. Fungal biomass was determined to

quantify the infection. No F. graminearum DNA was detec-

ted in control samples. The concentration of F. graminearum
DNA in infected spikelets was very low at 1 dai, increased

slightly at 2 dai and dramatically at 3 dai (Fig. 1A), indi-

cating rapid colonisation by F. graminearum from 2 to 3 dai.

3.2 F. graminearum-induced proteolysis of

b-amylase

The proteome of mature barley seeds infected by F. grami-
nearum contained many proteolytic fragments [9]. To identify

changes related to the early stages of infection, spikelets must

be analysed prior to extensive proteolysis, since widespread

breakdown of proteins will induce secondary effects on meta-

bolism and numerous proteolytic fragments on 2-D gels will

mask proteins of interest. To determine the stage at which

proteolytic degradation occurred, and identify the ideal time-

point for proteome analysis, polyclonal antibodies were used to

detect fragments of b-amylase, a major grain protein for which

proteolytic fragments were observed in 2-D gel patterns of F.
graminearum-infected grains [9]. Bands corresponding to full-

length b-amylase were observed on SDS-PAGE in control and

F. graminearum-infected samples at 1, 2 and 3 dai (Fig. 1B).

The two b-amylase isoforms, b-amylase 1 (gi|29134855) and

b-amylase 2 (gi|61006818) were identified from corresponding

2-D gels (data not shown). In agreement with these observa-
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tions, the most abundant endosperm-specific b-amylase 1

accumulates during grain filling whereas the less abundant

b-amylase 2 is highly expressed at 5 days after anthesis but is

undetectable during later stages of seed development [19].

Discrete bands with lower molecular mass were observed in

infected samples only at 3 dai (Fig. 1B), confirming

F. graminearum-induced degradation of b-amylase. The

degradation after 3 dai corresponds with the increase in

F. graminearum biomass observed at this time-point. The

generation of discrete fragments suggests the action of a

specific endoprotease. Mass spectrometry resulted only in

identification of b-amylase 1 in fragments separated on 2-D

gels (data not shown), suggesting that b-amylases 1 and 2

differ in susceptibility to the proteases, despite sharing 82%

sequence identity.

3.3 Proteome analysis

Based on fungal biomass and F. graminearum-induced

proteolysis, fungal colonisation was significant at 2 dai,

although degradation of the plant proteome was not yet

severe. Samples at 2 dai were thus chosen for analysis.

Approximately 500 spots were resolved on 2-D gels. The

volume of 38 spots increased and 13 decreased in intensity

in response to F. graminearum infection based on the criteria

(po0.05 and fold Z1.5; Fig. 2). Fifty of the 51 differentially

displayed protein spots were identified by MS (Fig. 2;

Supporting Information Table S3). Ten spots with greater

intensity in infected samples were judged to be proteolytic

fragments based on sequence coverage obtained in MS and

an observed molecular weight much lower than expected

(Supporting Information Table S3).

3.4 PR-gene expression analysis

Proteins accumulating following F. graminearum infection

included PR-3 (Supporting Information Table S3) and the

basic PR-1 and PR-5 proteins, which were observed on gels

covering pI range 6�11 (data not shown) and increased 1.5

and 1.6-fold (po0.05), respectively. Expression profiles of

the corresponding genes were analysed by qRT-PCR with
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additional PR genes PR-1b, PR-2, PR-9 and PR-15. No

significant changes in expression level were observed in

control plants. Comparison based on normalised gene

expression levels indicated that the PR-1, PR-2, PR-3 and

PR-5 genes were more highly expressed in control plants

than the other PR genes examined. Expression of PR-15 was

not detected in control plants (Table 1). All except PR-2 were

significantly upregulated from 2 dai in response to

F. graminearum. PR-1, PR-3 and PR-5 were strongly upre-

gulated compared to the other PR genes in accordance with

detection of the corresponding protein spots.

3.5 Fungal gene expression analysis

A single fungal protein (FGSG10974) was identified

(Supporting Information Table S3), which was also found at

3 dai in F. graminearum-infected wheat [7]. This was also

chosen for gene expression analysis, together with alkaline

protease, a subtilisin-like serine protease (FGSG00806) and

endothiapepsin, an aspartic protease (FGSG07775), which

were identified in the secretome of F. graminearum grown in

medium containing barley flour (F. Yang, unpublished data)

and therefore candidates for the proteolysis of barley

proteins observed after 3 dai.

All three fungal transcripts were detected in infected

samples but not in controls (Fig. 3).The relative expression

level of FGSG10974 did not change significantly during

infection. In agreement with its detection in the grain

proteome, its expression level was much higher than the two

protease-encoding genes. The proteases showed contrasting

expression profiles, the alkaline protease being upregulated

whereas endothiapepsin was strongly downregulated during

1�3 dai (Fig. 3).

4 Discussion

Several proteomics studies have analysed the effect of

F. graminearum on cereal seed proteomes [7–10]. However,

due to different inoculation methods (spray inoculation

versus point inoculation) and growth conditions between

laboratories, infection levels in many studies may not be

comparable. The aim of this study was to compare the

proteome with gene expression profiles at clearly defined

levels of fungal infection, determined by measurements of

fungal biomass after point inoculation of barley spikelets.

One effect of F. graminearum on barley is widespread

protein degradation [9]. To determine when this proteolysis

occurs and to select the time-point for proteome analysis, we

exploited antibodies against b-amylase, one of the proteins

degraded in F. graminearum-infected seeds [9]. Discrete

b-amylase fragments were observed at 3 dai, correlating with

the increase in fungal biomass observed from 2 dai to 3 dai.

This supports previous suggestions that F. graminearum
operates as an endophyte or biotroph during the initial 2–3 T
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dai and switches to a necrotrophic phase at approximately 3

dai [2]. The discrete fragments of b-amylase can be devel-

oped as a proteome-level marker for F. graminearum infec-

tion. b-amylase is one of the most abundant water-soluble

grain proteins and thus readily extractable and detectable.

Since F. graminearum-induced proteolysis has a severe effect

on grain proteins, such a proteome-level marker is a highly

informative indicator of grain quality.

Alkaline protease activity in Fusarium has been associated

with degradation of water-soluble proteins in infected barley

[20]. For insight into which fungal proteases might contribute

to proteolysis, qRT-PCR was used to monitor the in planta
expression of two F. graminearum genes encoding proteases

with different specificities. Differential regulation of the

alkaline protease and endothiapepsin transcripts suggests that

these proteases play different roles in fungal nutrition and

development. The high transcript level of FGSG10974

compared to the protease-encoding genes, and its relative

abundance allowing detection on 2-D gels, suggest that this

protein may have an important structural or functional role in

the initial colonisation of the plant by F. graminearum.

Many proteins affected by F. graminearum infection were

involved in defence or stress responses such as aldehyde

dehydrogenase. Aldehyde dehydrogenase detoxifies aldehydes

formed by lipid peroxidation due to ROS generated during

abiotic and biotic stress [21, 22]. A previous proteomics study

on barley responding to F. graminearum at 3 dai showed that

ascorbate peroxidases, peroxidase, glutathione transferase,

malate dehydrogeneses and peroxiredoxins increased in

abundance [8]. Aldehyde dehydrogenase gene expression was

also upregulated during the incompatible interaction between

barley and the fungus Pyrenophora teres [22]. Overexpression of

the gene in Arabidopsis resulted in improved tolerance to

oxidative stress [23]. Accumulation of this protein in the

present study suggests an oxidative burst in the interaction

between F. graminearum and a susceptible barley cultivar.

As expected, several PR proteins were upregulated in

response to F. graminearum infection. Previous proteomic

analysis of barley infected with F. graminearum revealed

upregulation of one PR-3 and three PR-5 proteins [8]. In the

present study, three spots containing PR-3 (increasing by

2.0, 2.1 and 2.5 fold, respectively), one containing basic PR-1

(increasing by 1.5-fold) and one containing PR-5 (increasing

by 1.6-fold) accumulated at 2 dai. Good agreement was

observed between protein and transcript levels for these PR

genes and significant increases in transcript abundance

were observed for PR -1b, -3, -5, -9 and -15 in barley from 2

to 3 dai (Table 1). However, in contrast to the strong accu-

mulation of both PR-2 protein and transcript observed in

F. graminearum-infected wheat [5–7], PR-2 transcripts did

not change significantly 1�3 dai in the present study.

Others showed barley PR-2 gene expression to increase after

3 dai using microarray analysis and Northern blotting [2].
The lack of PR-2 accumulation observed here may reflect

different responses of wheat and barley, or cultivar-related

differences to F. graminearum infection.

Other proteins affected by F. graminearum infection were

involved in primary metabolism. Enzymes in glycolysis,

pyruvate metabolism, citric acid cycle, as well as ribulose

1,5-bisphosphate carboxylase/oxygenase were upregulated,

suggesting an increased energy requirement during initial

stages of infection. Similar observations were made for a

compatible interaction between cotton and the fungus

Thielaviopsis basicola [24]. It was suggested previously that

ribulose 1,5-bisphosphate carboxylase/oxygenase may be

downregulated in wheat infected with F. graminearum at 3

dai; however, this was based on the appearance of proteolytic

fragments on 2-D gels and not on a change in amount of

full-length protein [7]. Enzymes in starch metabolism were

also affected. The observed decrease in sucrose synthase

may result in a reduction in starch synthesis in infected

kernels. An increase in the amount of b-amylase 1 was also

observed. The increase in abundance of ribosomal protein,

translation initiation factor and isovaleryl-CoA dehy-

drogenase, and decrease in abundance of elongation factor

and alanine aminotransferase suggest changes in protein

synthesis and turnover. Combined with the potential

reduction in starch synthesis this may indicate a shift in the

balance of carbon–nitrogen metabolism in the infected

grains. Nitrogen metabolism is important for several aspects

of the F. graminearum interaction with cereals although the

molecular mechanisms are not fully understood. The

fungus is thought to be in a state of nitrogen starvation

during interaction with the plant [25] and depletion of

nitrogen or nutrients is required for Fusarium spores to

germinate and infect plants [26]. Recently, proteome analy-

sis of mature barley seeds from plants grown with low or

high levels of nitrogen and infected with F. graminearum
indicated that FHB and F. graminearum-induced proteolysis

was more severe in plants grown with low N [9].

Several spots containing HSP 70 either increased or

decreased in intensity in infected plants. Interestingly, most

of the HSP70 spots decreasing in intensity in infected barley

were predicted to be chloroplastic forms that were not the

source of the proteolytic fragments which increased in

intensity (Supporting Information Table S3). HSP70 has

been shown to have a protective role during abiotic and

biotic stresses [24]. One spot containing S-adenosyl-L-

homocysteine hydrolase, an enzyme in the activated methyl
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Figure 3. Fungal gene expression analysis in barley spikelets by

qRT-PCR at 1�3 dai.
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cycle, increased in response to F. graminearum. S-adenosyl-L-

methionine, the major methyl-group donor in the cycle, is

required for the biosynthesis of various phenylpropanoid

derivatives and is also an intermediate in the biosynthesis of

ethylene, both of which are associated with plant defence [2,

27]. The gene encoding S-adenosyl-L-homocysteine hydro-

lase was activated rapidly in cultured cells and leaves of

parsley after treatment with fungal elicitors [27, 28]. An

expansin-like protein was also upregulated, possibly result-

ing in cell wall alterations affecting susceptibility to patho-

gens [29]. Two spots with decreased intensity in

F. graminearum-infected spikelets contained thiamine

biosynthetic enzyme and progesterone 5-b-reductase,

involved in biosynthesis of secondary metabolites thiamine

and cardenolide, respectively, which may affect plant

responses to pathogens [30, 31]. The decrease in abundance

of cell division control protein in two spots in infected plants

suggested that fungal attack may reduce cell division and

thus interfere with grain development.

The proteins identified here are probably among the

most abundant proteins responding to the early stages of

F. graminearum infection. A deeper insight into less abun-

dant proteins would be achieved by applying enrichment

strategies combined with LC-MS/MS for protein identifica-

tion. However, it is worth noting that the identification and

analysis of proteolytic fragments necessitates a gel-based

approach since information about protein mass is lost in

gel-free approaches. In fact, in cases such as F. graminearum
infection, where one of the biological effects is significant

proteolysis, misleading quantification of proteins may result

from gel-free analysis.

In conclusion, by characterising the degree of F. grami-
nearum colonisation based on measurements of fungal

biomass and fungal-induced proteolysis it was possible to

carry out proteome analysis at a well-defined stage prior to

extensive degradation of plant proteins. This enabled iden-

tification of barley proteins responding early to infection by

the fungus. These changes were compared with the induc-

tion of PR-gene expression in the first days of infection. The

results suggest that initially there is an increased energy

metabolism in infected seeds that may aid the growth of the

fungus. Protease genes expressed by the fungus are likely to

cause the massive degradation of plant proteins previously

observed. Proteolytic activity in infected grains causes the

early appearance of discrete fragments of b-amylase, which

can serve as a proteome-level indicator of infection and grain

protein quality.
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SUMMARY 

Fusarium graminearum is a phytopathogenic fungus infecting a number of small grain cereals including 

barley and wheat. Secreted enzymes are known to have an important role in pathogenicity of many fungi. In 

order to access the secretome of F. graminearum, a gel-based proteomic approach was employed to identify 

proteins secreted to culture medium containing barley or wheat grain flour, the most natural host, for the first 

time, revealing 155 fungal protein identifications in 69 unique proteins in either medium. The proteins 

identified mainly included enzymes involved in degradation of cell walls, starch and proteins. Seventy-two 

spots significantly changing in intensity between two media were identified to be proteins with diverse 

function. Subsequently, some genes encoding proteins expressed in the two media were examined by qRT-

PCR analysis in F. graminearum–infected spikelets of barley and wheat from 2 to 6 days after inoculation 

(dai), showing expression of all selected genes and similar down-regulation profiles of most genes during 

infection in both hosts. The correlation between protein in vitro and the corresponding gene expression in 

planta indicates that the in vitro proteome approach may be an ideal strategy to discover proteins involved in 

pathogenicity during plant infection. Differences in host-F. graminearum interactions were noted between 

barley and wheat, e.g. an increase in fungal biomass in barley was correlated with the appearance of fungal 

induced proteolytic fragments of -amylase in barley, but not in wheat.  

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

Fusarium graminearum is a pathogenic filamentous fungus, which can infect barley, wheat and other small 

grain cereals, causing a destructive disease, namely Fusarium head blight (FHB). The disease results in 

reduced grain yield and quality. However, more important is the contamination by mycotoxins including 

tricothecenes such as deoxynivalenol (DON) and derivatives, as well as the polyketide zearalenone which 

poses a significant hazard to food safety and human health (Desjardins, 2007). Control of the disease has 

attracted much attention including management practices and breeding for resistant cultivars (Bai and Shaner 

2004). 

     The development of FHB in barley and wheat is a complex process. In barley, the infection is usually 

initiated after the spikes emerge from the flag leaf sheath in the late-milk to soft-dough stages of seed 

development (Bushnell et al., 2003). The preferred infection site is the extruded ovary epithelial hairs on the 

kernel tip and F. graminearum colonizes the pericarp within 2 dai (Skadsen et al., 2000; Boddu et al., 2006). 

Disease symptoms do not spread in the spikes of most barley cultivars, indicating type II resistance of barley 

(Jansen et al., 2005). In contrast, wheat spikes are vulnerable to F. graminearum mainly during anthesis. 

Fungal hyphae attack the host via the stomatal openings and through the inner surfaces of the glumes, lemma 

and palea and then colonize the ovary and floral bract (Boddu et al., 2006). The disease can spread by the 

way of the vascular tissues in the rachilla and rachis, although some resistant wheat cultivars show type II 

resistance to pathogen spread (Boddu et al., 2006; Jansen et al., 2005). During seed development, the fungus 

invades the aleurone layer and grows into the endosperm. This is associated with disintegration of cell walls, 

disappearance of protein bodies and alteration of the starch granule structure (Jansen et al., 2005; Jackowiak 

et al., 2005).  

     The pathogen must penetrate the cell wall and consume plant nutrients for its growth, suggesting the 

secretion of an arsenal of hydrolases (Kang and Buchenauer, 2000). Proteomic techniques revealed that F. 

graminearum produced several extracellular proteins such as lipases, xylanases, pectinases, cellulases and 

proteases when grown in synthetic or hop cell wall medium (Paper et al., 2007; Phalip et al., 2005) and some 

of these proteins were also observed in infected wheat spikes by using enzyme labelling and LC-MS (Kang 

and Buchenauer, 2000; Paper et al., 2007). Alkaline proteases were detected by western blotting from protein 



extracts of barley seeds infected with F. culmorum, but not in uninfected barley grain (Pekkarinen et al., 

2003). Fusarium can also produce some other proteins such as hydrophobins, small cysteine-rich proteins, 

which may act as pathogenicity factors in plant-microbe interactions (Kleemola et al., 2001). Some F. 

graminearum extracellular proteins, including oligogalacturonases degrading pectin, can act as elicitors of 

defence reactions (Paper et al., 2007). Additionally, certain mycotoxins produced by F. graminearum, such 

as DON which inhibits protein synthesis, are often considered as virulence factors in pathogenesis (Boddu et 

al., 2006; Maier et al. 2006), others apparently do not, e.g., the oestrogenic zearalenone (Lysøe et al. 2006). 

The biological role of the mycotoxins and other natural products (or secondary metabolites) is, in general, 

still unclear.,.  

     The availability of the complete genome sequence for F. graminearum provides increased opportunity to 

understand the pathogenicity of the fungus such as secreted proteins involved by using functional genomics, 

transcriptomics and proteomics analysis (Paper et al., 2007; Phalip et al., 2005; Güldener et al., 2006). 

Differential transcript accumulation was detected using a F. graminearum GeneChip when the fungus was 

cultivated in media or infected barley plants (Güldener et al., 2006). It was shown by 2-DE and MS that the 

in vitro exoproteome of F. graminearum grown on glucose and on hop cell walls contained 23 and 84 unique 

proteins, respectively, mainly involved in cell wall polysaccharide degradation (Phalip et al., 2005). By high-

throughput LC-MS/MS, 229 and 120 fungal proteins, mainly including glycoside hydrolases and proteases, 

were identified in the secretome of F. graminearum during growth on 13 synthetic media with carbon 

supplements and during infection of wheat heads, respectively (Paper et al., 2007). However, half of the in 

planta proteins lacked signal peptides in that study. Overall, it is still highly challenging to study secreted 

proteins involved in pathogenicity in plantadue to high ratio of biomass and genome size between host and 

pathogen resulting in the dominance of host proteins.  

      To obtain a better understanding of pathogenicity during the interaction between F. graminearum and its 

hosts barley and wheat, the fungal extracellular proteins were studied by 2-DE-based proteomics. To best of 

our knowledge, it is the first time that the approach of accessing fungal secreted proteins by growing F. 

graminearum in liquid medium only containing barley grain or wheat grain which is the most natural host 

have been applied. This system is easily manipulated. Subsequently, the in vitro secretome was examined in 



a real biological plant–pathogen interaction system. We observed a high abundance of cell wall-, starch- and 

protein-degrading enzymes displayed in the secretome which was dependent on the medium composition and 

partially different from protein identifications in the previous secretomic studies and noticed a good 

correlation between secreted proteins in vitro and corresponding transcripts in planta.  

 

RESULTS 

Secretome in vitro 

The 2D patterns of culture supernatants from F. graminearum grown in barley and wheat grain media were 

similar (Fig. 1). Approximately 170 protein spots were resolved on both representative 2D gels (Fig. 1). In 

total, proteins in 158 spots were identified in 71 unique protein accessions (Table S1). Of these, six spots 

were identified as belonging to two plant proteins, namely serpin and fasciclin-like protein. Based on much 

lower observed molecular weight than expected for the full-length protein, some identifications (i.e. 

FG05292, FG11097, FG00806, FG04527, FG03975, FG03687, FG11008 and FG01956) might represent 

proteolytic fragments (Table S1). Most identified fungal proteins were present in several spots exhibiting 

distinct pI values, indicating possible post-translational modifications (PTMs) of the same gene product or 

sequence-related isoforms. According to the predicted biological function, the identified fungal proteins were 

assigned to categories including glycoside hydrolases (38%), proteases (31%), esterases (16%), 

oxidoreductases (21%), nucleases (7%), lyases (1%), housekeeping enzymes (11%), proteins with other 

function (19%) such as involvement in cell wall organization and biogenesis and proteins with unknown 

function (11%) (Fig. 2). In total, 119 fungal identifications of 48 unique proteins had N-terminal signal 

peptide sequences predicted by SignalP (http://www.cbs.dtu.dk/services/SignalP/), indicating that they are 

extracellular proteins whereas 16 fungal identifications of 11 unique fungal proteins were predicted to 

represent proteins secreted in a non-classical way using SecretomeP (using algorithm for mammalian protein, 

http://www.cbs.dtu.dk/services/SecretomeP/) (Table S1). Given the previous findings that pathogenesis 

genes with putative secreted function such as genes encoding cell wall-degrading enzymes could be clustered 

into “pathogenicity islands” (Paper et al., 2007) and are often highly enriched in the high- single nucleotide 

polymorphism (SNP)-density regions (Cuomo et al., 2007), we examined the location of the corresponding 



genes of identified proteins. This revealed that around 34% of the genes encoding putative secreted enzymes 

predicted to function in the penetration and maceration of plant tissues for the acquisition of nutrients were in 

high-SNP-density regions, of which around 82% were located in chromosome 2 and 3 (Table S1).  

     Seventy-two spots significantly changed in intensity when comparing F. graminearum growth in barley 

and wheat flour medium. Of these, 48 exhibited greater intensity in the wheat medium and 24 in the barley 

medium (Table S1). Sixty-eight of these spots identified as fungal proteins had diverse function such as 

glycoside hydrolases, proteases, esterases, oxidoreductases and housekeeping enzymes. Additionally, in 

some cases multiple spots with altered pI representing the same protein (e.g. FG04527 and FG02658) 

exhibited different expression patterns between two media.  

 

Fungal infection and disease development in barley and wheat 

The disease symptom of brown discolouration was visible in barley spikelets, but not in wheat at 2 dai. From 

4 to 6 dai, clear symptoms were observed in both plant species with more rapid development in barley (Fig. 

S1). In order to examine the disease development and levels of infection more accurately, fungal biomass 

associated with proteome degradation patterns in plants induced by F. graminearum was determined. 

Consistent with disease symptoms, the concentration of F. graminearum DNA was very low at 2 dai in 

infected spikelets of both plants and increased more dramatically from 4 to 6 dai in barley than wheat (Fig. 

3A). Furthermore, it was demonstrated previously by western blotting that proteolytic fragments of barley β-

amylase were induced by F. graminearum in infected barley at 3 dai which could serve as proteome-level 

indicator of fungal infection (Yang et al., 2010b). In the present study, β-amylase antibodies were therefore 

used to detect proteolysis, revealing the appearance of discrete proteolytic fragments of β-amylase at 4 and 6 

dai in barley, but not in wheat (Fig. 3C). This may be due to differences in the susceptibilities of the β-

amylases in barley and wheat to fungal proteases despite their 82% sequence identity or the distinct type or 

amount of fungal proteases produced in the different host plants. The observation of sharper increases in 

fungal biomass in barley than in wheat from 2 to 6 dai might be connected with the appearance of β-amylase 

fragments in barley, but not in wheat. Furthermore, there was no significant difference in the concentration 

of DON relative to fungal biomass at 6 dai between infected wheat and barley despite of a higher level of 



infection in barley (Fig. 3B). The production of DON is clearly implicated as a virulence factor in 

pathogenesis in FHB (Boddu et al., 2006) and greater disease severity in wheat grain was observed by 

inoculation with a DON-producing F. graminearum strain than a non-producing strain (Nicholson et al., 

1998). Therefore, our results support that different severity of infection in wheat and barley is not due to the 

difference in DON production levels. 

 

Gene expression in planta 

The expression patterns of ten fungal genes encoding proteins identified in vitro including peroxidase, 

proteases, glycoside hydrolases, chitin deacetylase as well as proteins of unknown function were examined 

in planta by qRT-PCR at 2, 4 and 6 dai. In addition, the Tri5 gene encoding trichodiene synthase, an enzyme 

which catalyses the folding of farnesyl pyrophosphate to trichodiene as the first specific step in the 

biosynthesis of all trichothecene mycotoxins (Niessen et al., 2004) was included in the analysis. The 

expression of all selected genes was detectable in infected plants, but not in the controls. Surprisingly, no 

substantial difference in relative expression profiles of fungal genes at 2-6 dai were observed between barley 

and wheat although some genes were significantly differentially expressed between barley and wheat at 

certain time points (Fig. 4). The examined transcripts were down-regulated at 2-6 dai, except three (FG04732, 

FG06616 and FG11468), with the highest relative expression at 4 dai. Five  transcripts (FG00806, FG06278, 

FG02616, FG06993 and FG06549) showed a stable relative expression at 2-4 dai. Furthermore, there was an 

increased relative expression level of the Tri5 gene in barley compared to wheat at 2-6 dai (Fig. 4), despite a 

similar amount of DON production per fungal biomass in two hosts. The reason of the poor correlation 

between Tris5 gene expression and DON production may be that trichodiene synthase is not the sole enzyme 

involved in biosynthesis of DON. 

 

DISCUSSION 

Given the great losses in the yield and quality of cereal grain caused by F. graminearum, it is important to 

investigate the mechanisms underlying the pathogenic processes of this fungus. In particular, the fungal 

secreted degradative enzymes, which play an important role in nutrient acquisition, substrate colonization 



and ecological interactions have attracted attention (Kang and Buchenauer, 2000), but the fact that the fungal 

biomass constitute a small portion of the total interaction in infected plants makes it very challenging to 

identify fungal proteins in planta. So far, only a few proteomic studies have been performed on this organism 

with host plant substrates. Although high-throughput LC-MS/MS has been applied to protein extracts from F. 

graminearum–infected wheat heads obtained by vacuum infiltration, resulting in identification of 120 fungal 

proteins, surprisingly half of protein identifications lacked signal peptides including several housekeeping 

enzymes (Paper et al., 2007). Possible explanations for this could be breakage of fungal cells by extraction, 

fungal cell lysis or that proteins without signal peptides are in fact secreted. Therefore,  we profiled the 

secreted proteome of F. graminearum on 2D gels in the presence of substrates of barley and wheat grains 

flour which are the most natural hosts for the fungus, unlike the substrates used in the previous studies of F. 

graminearum in vitro secretome (Paper et al., 2007; Phalip et al., 2005). Approximately 80% of protein 

identifications were predicted to be extracellular. This approach provides an ideal model to understand plant–

pathogen interactions and offers a major advance in identification of a large number of fungal secreted 

proteins displayed on a 2D map, especially providing valuable information on mass and pI of proteins, which 

are generally known to be present in multiple forms in the fungal secretome. This study considerably 

expands the current database of F. graminearum secreted proteins which can be involved in FHB.  

     Among the proteins indentified, putative cell wall-, starch- and protein-degrading enzymes were 

predominant in the fungal secretome (approximately 54% of the identifications) and these appeared in 

multiple forms, strongly suggesting the fungus may be able to disrupt host cell wall and access the internal 

protein and starch in the grains for growth. Some proteins were identified as cell wall proteins (FG03017, 

FG05292, FG04074 and FG10089), chitin deacetylase (FG06549) which converts chitin, the main 

component of the fungal cell wall, β-1,6-glucanase (FG08265) and β-1,6-galactanase (FG11184) which act 

on polysaccharides not found in plant cell walls. They may function in supporting vegetative growth by 

remodelling the fungal cell wall during growth and development (Nagendran et al., 2009). All these proteins 

or the corresponding genes, except FG05292, were also detected in previous proteome studies (Paper et al., 

2007; Phalip et al., 2005) and microarray analysis of infected barley (Güldener et al., 2006). These types of 

secreted proteins or genes encoding putative secreted enzymes with similar function have been found in 



several other fungi, including Saccharomyces cerevisiae, Ustilago maydis, Trichoderma reesei and 

ectomycorrhizal fungi, and are assumed to be involved in modification of fungal cell walls (Mueller et al., 

2008; Nagendran et al., 2009). However, there are very few reports on changes of fungal cell wall structure 

during growth, especially in pathogenic fungi such as Ustilago maydis and F. graminearum during infection. 

Thirty-six fungal identifications including 11 annotated as putative housekeeping enzymes lacked N-terminal 

peptides. Of these, 16 including housekeeping enzymes glyceraldehyde-3-phosphate dehydrogenase, 

cysteine synthase and ubiquitin-like proteins were predicted to be secreted in a non-classical way using 

SecretomeP (using the algorithm for mammalian proteins, http://www.cbs.dtu.dk/services/SecretomeP/).The 

observation of identifications without predicted signal peptides might due to the lysis of fungal cells occurred 

during experimental operation or growth in vitro. Alternatively, these fungal proteins may in fact be secreted 

in the non-classical pathway which has been demonstrated in several fungi such as yeast, Aspergillus 

fumigates and Claviceps purpurea (Nombela et al., 2006) and in bacteria and mammals 

(http://www.cbs.dtu.dk/services/SecretomeP/). Pancholi et al. (2003) reported that several housekeeping 

enzymes without extracellular functions were present on the surface of pathogens serving as virulence 

factors such as glyceraldehyde-3-phosphate dehydrogenase, which was also identified in three spots in the 

present work. Some fungal proteins, such as β-xylosidase, lectin and superoxide dismutase, which do not 

possess signal peptides, have been found to be truly secreted by experimental characterization (Paper et al., 

2007).  

      The proteins in the present study shared 17 and 41 fungal protein identifications from the secretome of F. 

graminearum in infected wheat heads and grown on 13 media consisting of synthetic medium with variable 

carbon supplements by LC-MS/MS (Paper et al.,2007), respectively. The proteins shared 8 and 15 protein 

identifications from secretome of F. graminearum grown on glucose and on hop cell walls by 2-DE/MS 

(Phalip et al., 2005), respectively (Table S1). Most common in vitro identifications were glycoside 

hydrolases, proteases and esterases whereas most common identifications included mainly glycoside 

hydrolases, housekeeping enzymes and cell wall proteins when comparing the present in vitro secretome to 

the in planta secretome. It is not surprising that a higher number of common identifications were obtained 

when the fungus was grown in vitro than in planta because different fungal regulatory mechanisms can be 



triggered during the interaction with a plant compared to growth in vitro where enzymes for degradation of 

substrates were mainly produced. More interestingly, despite the presence of housekeeping proteins in the in 

planta secretome, but absent from the in vitro secretome with a synthetic medium (Paper et al., 2007; Phalip 

et al., 2005), several housekeeping proteins were identified from the in vitro secretome in this study with 

barley or wheat flour medium, suggesting they may be secreted in response to the plant milieu. Thus, our 

results demonstrate that an in vitro grain medium may more closely reflect infection conditions in planta 

than a chemical medium. Moreover, besides housekeeping enzymes, most of the proteins identified only in 

our study were glycoside hydrolases, oxidoreductases and proteins with unknown function which most likely 

reflect the different growth conditions.  

     A direct comparison between two fungal proteomic maps can lead to rapid identification of medium-

specific secretion responses. Therefore, we conducted the comparative proteome analysis of fungal 

secretomes. As expected, some proteins, differentially expressed at transcript level or differentially modified 

at post-translational levels under the two growth conditions, were involved in degradation of plant cell walls, 

starch and protein (Table S1) since there sre notable differences in cell wall and grain composition between 

barley and wheat. Arabinoxylans (70% w/w) are the main non-starch polysaccharides of cell walls of the 

mature wheat endosperm. Other components are β-(1→3)-(1→4) glucans (20-29% w/w), which are in higher 

proportion in the aleurone layer with minor amounts of glucomannans (2-7% w/w) and cellulose (2-4% w/w) 

(Philippe et al., 2006). In contrast, barley endosperm cell walls contain a high level (71%) of β-(1→3)-(1→4) 

glucans (Noots et al., 2003). Aleurone cell walls in barley consist almost entirely of arabinoxylans (80%) 

with lesser amounts of cellulose (8%) and protein (6%) (McNeil et al., 1975). The increased abundance of 

glucan 1,3-β-glucosidase (FG06616) in the wheat medium and xylosidase (FG11468) in the barley medium 

suggests that the cell walls of the aleurone layer may be the first access to nutrient acquisition during growth. 

Wheat grain has higher starch content than barley grain (Andersson et al., 2001), which may explain the 

greater abundance of fungal glucoamylase (FG06278) observed in wheat than in barley medium. Overall, our 

results suggest the F. graminearum secretome is medium-dependent and that the fungus has the capacity to 

adapt to the growth conditions. 

     One way to confirm that protein secreted in vitro may be produced in planta is to examine identified 



proteins at the transcription level in planta. Despite the similar growth behaviour of the fungus in barley and 

wheat media, based on similar concentration and numbers of secreted proteins, there were significant 

differences in F. graminearum colonization between barley and wheat grain at 2-6 dai, based on 

measurements of the fungal biomass and fungal induced proteolysis. Thus, it was informative to profile the 

regulation of several fungal genes during infection of these two host plants. The detection of all the chosen 

transcripts for proteins, identified from the in vitro experiments, in planta further confirms that our approach 

is a promising strategy for studying fungal pathogenicity factors. Despite of similar alkaline protease and 

endothiapepsin gene expression in both plants, the appearance of plant β-amylase fragments only in barley, 

but not in wheat, at 4 and 6 dai, indicates that these proteases may not be the essential contributors for 

discrete proteolytic fragments of β-amylase in barley. For all the genes tested, the relative expression levels 

decreased or did not change significantly at 4-6 dai, but they had variable regulation profiles at 2-4 dai, 

which may be the important stage of fungal development. Up-regulation of xylosidase and β-1,3-glucosidase 

and consistently expressed glucoamylase, alkaline protease and hydrolase at 2-4 dai suggests that the 

pathogen attempts to degrade the cell walls and consume the grain protein for nutrition. Down-regulation of 

peroxidase at 2-4 dai suggests that the fungus is under decreased oxidative stress during colonization. It has 

been reported that increased fungal infection and barley transcript accumulation correlated to higher DON 

accumulation were observed at 2-4 dai, the majority of host gene transcripts detected at 3 dai as well as 

development of hyphal mats and high DON accumulation. Reduction of host transcripts accumulation was 

observed at 4-6 dai (Boddu et al., 2006). It has also been shown that proteolytic fragments of barley β-

amylase were induced by F. graminearum in infected barley at 3 dai (Yang et al, 2010b). Approximately day 

3 is proposed as the timeponit for switching from a biotroph to a necrotrophic phase in F. graminearum 

(Kang and Buchenauer, 1999). Taken together, it strongly suggests day 3 is an important time point for the 

interaction in barley and wheat. The reason for the observed gene regulation profiles at 2-6 dai may be that 

the fungus needs to secrete higher amount of enzymes involved in breakdown of complex substrates to 

establish the initial colonization in plants. After a certain time of invasion (around 3 dai), when the fungus 

becomes necrotrophic, decreased biosynthesis of some enzymes are required due to the massively damaged 

host tissues. On the other hand, F. graminearum microarray analysis of all the examined genes in infected 



barley at 1-6 dai showed an increased accumulation of most of fungal transcripts up to 6 dai except FG02616 

and FG07775 (Güldener et al., 2006). The reason for differences in fungal gene expression profiles 

compared to previous microarray studies may be that microarray analysis only reflects the absolute transcript 

abundance during the infection process rather than gene regulation since the increased fungal biomass is not 

taken in account (Güldener et al., 2006). Our results showing gene regulation patterns at 2-6 dai are highly 

complementary to microarray analysis. Further detailed studies are needed on fungal gene regulation 

profiling at a genome-wide scale during the host-pathogen interaction and responding to different infection 

stages and toxin accumulation.  

     In conclusion, 2-DE-based proteomics was successfully used to study the secretome of F. graminearum 

grown in medium containing barley or wheat grain flour, revealing nutrition-dependent secretion and the 

dominance of plant cell wall-, starch- and protein-degrading enzymes. Unlike similar growth in two media, 

the fungus exhibited faster development in barley than in wheat based on the measurements of fungal 

biomass and fungal induced proteolysis. All ten selected genes with diverse functions, encoding proteins 

found on 2D maps in vitro were similarly expressed in both host plants at 2-6 dai, generally with decreased 

transcript abundance. This suggests that our in vitro approach is promising to study pathogenicity factors 

during infection and colonization.  

 

EXPERIMENTAL PROCEDURES 

Preparation of fungal culture  

Macro-conidial suspensions of F. graminearum strain PH1 (ARS Culture Collection, NRRL 31084) were 

prepared as described by Yang et al. (2010b) and used for in vitro growth and plant inoculation studies. The 

growth medium was prepared by mixing 50 g ground grain flour of barley (cv. Hydrogen) or wheat (cv. 

Vinjett) with 1 L water prior to autoclaving (Schmidt-Heydt and Geisen, 2007). Erlenmeyer flasks 

containing 100 mL of liquid medium were inoculated with 1 mL macro-conidial suspension (106 spores / 

mL). The flasks were gently shaken by hand and incubated in darkness at 20˚C. Three independent 

biological replications for each growth condition were carried out. After 7 days, the supernatant was 

collected by filtration through cheesecloth and centrifugation (14000 g x 30 min, 4⁰C).  



 

Isolation of secreted proteins and two-dimensional gel electrophoresis 

The supernatant was ultrafiltrated (4000 g, 4⁰C) through Centriprep® centrifugal filters (molecular mass cut-

off: 3000 Da). The protein concentration was determined by the Bradford assay (Bradford, 1976) with 

bovine serum albumin as standard. Twenty µg protein was precipitated by 4 volumes of 10% w/v TCA and 

acetone at -20°C overnight. Protein pellets were sequentially washed three times with 80% v/v acetone 

before they were dissolved in 200 μL of “reswelling” buffer as described by Yang et al. (2010a). Samples 

were applied to 11 cm pI 3–10 IPG strips. Isoelectric focusing (IEF) was run on an Ettan IPGphor (GE 

Healthcare) with the following programme: 6 h at 30 V, 6 h at 60 V, 1 h at 500 V, 1 h at 1000 V, 30 min 

gradient to 8000 V and 4 h at 8000V. After IPG strips were cut 1.5 cm at acidic end and 2.5 cm at basic end, 

resulting in a pH range from 4 to 8.5, the second dimension SDS-PAGE (NuPAGE® Novex 4-12% Bis-Tris 

ZOOM® Gel, Invitrogen) was performed in the XCell SureLock™ Mini-Cell system(Invitrogen) according to 

the manufacturer‟ instructions. Duplicate gels were run for each biological replication. Gels were stained by 

Sypro Ruby (Invitrogen). 

 

Image analysis 

Images of the Sypro Ruby-stained gels were captured in a Typhoon® scanner (GE Healthcare) with the 

following settings: filter, 580 BP30; laser, green (532 nm); sensitivity, normal; photomultiplier, 520 V; pixel 

size, 100 microns. In total, six images for each growth condition were imported to Progenesis SameSpots 

(Nonlinear Dynamics, UK) for quantification of spot volume and statistic analysis. After warping, matching 

and aligning to a chosen reference gel, six gels for each growth condition were grouped to calculate the 

average volume of each spot. A minimum threshold of 1.5-fold change in normalized average volume of 

spots between two groups and ANOVA (p) < 0.05 were set to define more or less abundant proteins. 

 

In-gel digestion and protein identification 

Spots were excised from the Sypro-Ruby-stained gels after post-staining with colloidal Coomassie Brilliant 



Blue (Rabilloud and Charmont, 2000) and subjected to in-gel digestion followed by MALDI-TOF analysis in 

an Ultraflex II mass spectrometer (Bruker-Daltonics, Bremen, Germany) as described by Yang et al. (2010b). 

Positive protein identifications were determined as described by Yang et al. (2010a) by searching databases 

at the Broad Institute for Fusarium graminearum gene index 

(http://www.broad.mit.edu/annotation/genome/fusarium_graminearum), the NCBInr at the National Center 

for Biotechnology Information and the wheat gene index Release11.0 (http://compbio.dfci.harvard.edu/tgi). 

The following parameters were set for searching: allowed global modification: carbamidomethyl cysteine; 

variable modification: oxidation of methionine; missed cleavages: 1; peptide tolerance: 80 ppm and MS/MS 

tolerance: ±0.5 Da. In some cases, MS/MS was used to confirm identifications. To be considered as a 

positive identification, the following criteria were fulfilled: a significant score calculated by the Mowse 

scoring algorithm in MASCOT and at least four matched independent peptides in MS analysis or one peptide 

in MS/MS analysis. Hypothetical proteins with unknown function were annotated by BLAST search in 

NCBI. All identified proteins were assessed for signal peptides using SignalP 

(http://www.cbs.dtu.dk/services/SignalP) and for non-classical secretion using SecretomeP (Mammalian) 

(http://www.cbs.dtu.dk/services/SecretomeP). The chromosome location and SNP identification of genes 

encoding the identified proteins were determined by searching in databases from Broad Institute for 

Fusarium graminearum.  

 

Plant growth and inoculation 

The susceptible barley cv. Hydrogen and wheat cv. Vinjett were grown in the greenhouse as described  by 

Yang et al. (2010b). Spikelets of wheat and barley were point-inoculated at anthesis (stage 65, Zadoks et al., 

1974) by micro-pipetting 5 µL of a macro-conidial suspension (105 spores/mL) into the flower, leaving the 

bottom and top two spikelets uninoculated. Separate control plants were mock-inoculated with water. The 

inoculated spikes were covered in sealed water-sprayed plastic bags in darkness for 72 h. Three spikes 

collected from different plants served as one biological replication. Three biological replications were 

harvested at 2, 4 and 6 dai and stored at -80˚C until use. Inoculated spikelets were lyophilized and ground 

into fine powder in liquid nitrogen.  

http://www.broad.mit.edu/annotation/genome/fusarium_graminearum
http://compbio.dfci.harvard.edu/tgi
http://www.cbs.dtu.dk/services/SignalP


 

Determination of fungal biomass and DON 

Total DNA was extracted from 20 mg ground plant material of each sample and determination of the 

amounts of Fusarium and plant DNA by qPCR was carried out as described by Yang et al. (2010b). F. 

graminearum biomass was expressed as Fusarium DNA / plant DNA (ng/µg). DON concentration from 100 

mg ground plant sample at 6 dai was determined by the RIDASCREEN® DON kit (R-Biopharm AG, 

Germany) following the manufacturer‟s protocol.  

 

Protein extraction and western blotting 

Water-soluble proteins were extracted from 20 mg ground plant material of each sample with 400 µL of 

buffer containing 5 mM Tris-HCl, pH 7.5, 1 mM CaCl2 and the protease inhibitor cocktail “complete” 

(Roche) as described (Yang et al., 2010a). Protein concentration was determined by the Bradford assay 

(Bradford, 1976) with bovine serum albumin as standard. Western blotting with -amylase antibodies was 

carried out as described by Yang et al. (2010b). 

 

qRT-PCR analysis 

RNA was extracted from 30 mg ground plant material of each sample prior to removal of genomic DNA as 

well as cDNA synthesis took place as described by Yang et al. (2010b). Primers for F. graminearum genes 

(Table S2) were designed and specificity tested as before and F. graminearum GAPDH served as a reference 

gene for quantification of gene expression (Yang et al., 2010b). Real-time PCR was set up with 40 cycles of 

amplification and carried out in technical duplicates with 10-fold dilution of cDNA templates (Yang et al., 

2010b). All relative expression values of genes were reported as means ± S.D. in 2-log scale. Statistical 

analysis of gene expression in barley versus wheat at each time point was performed by Student‟s t-test. 
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     SUPPORTING INFORMATION 

Fig. S1 Disease symptoms on water (control) or F. graminearum-inoculated spikelets of barley (upper panel) 

and wheat (bottom panel) at 6 dai. 

Table S1 Identification of F. graminearum proteins from culture supernatants of the medium containing 

barley grain flour or wheat grain flour (in CD-ROM).  

Table S2 Primer sequences for qRT-PCR analysis of fungal genes. 

 

Figure legends 

 

Fig. 1 2-DE Sypro-Ruby stained gels from the secretome of F. graminearum grown in medium containing 

(A) barley grain flour or (B) wheat grain flour. Molecular size markers and pI ranges are indicated. Protein 

spots which are identified are numbered.  

Fig. 2 Classification of identified F. graminearum proteins into different functional categories. 

Fig. 3 The development of F. graminearum infection of barley and wheat spikelets at 2, 4 and 6 dai. (A) 

Fungal biomass determined in triplicate and expressed as content of fungal DNA. (B) Concentration of the 

mycotoxin DON related to the fungal biomass at 6 dai, determined in triplicate. (C) Western blotting using 

antibodies recognizing -amylase in protein extracts from control (left panel) and F. graminearum -infected 

spikelets (right panel). Bands corresponding to full-length forms of -amylase are indicated. Three biological 

replicates are shown for each time point.  

Fig. 4 Fungal gene expression analysis in infected barley and wheat spikelets by qRT-PCR at 2-6 dai (2-log 

scale). Asterisks indicate significant differences (p<0.05) in relative gene expression after normalization to 

GAPDH between barley and wheat plants at each time point. The fold-changes is indicated by „+‟ or „-‟  (+: 

more in wheat; -: more in barley).  
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Table S2 Primer sequences for qRT-PCR analysis of fungal genes. 

Gene Accession noa Primer Sequences (5’→3’) 

GAPDH FGSG_06257 F 

R 

CGTCTCCGTTGTTGACTTGA 

GTAGGCCAGAACACCCTTGA 

Peroxidase FGSG_12369 F CTTATTGTTCTCGGCGGTGT 

  R TCCTGAGTAGCATCGACACG 

Hypothetical protein FGSG_04732 F TTATTCGAAAGGTGGCCAAG 

  R GTCGCTGAACACTTCAAGCA 

Alkaline protease FGSG_00806 F 

R 

TTCAACAACGCTGTCGAGTC 

GAGCAGAGGCAGGAGAAGTG 

Glucan 1,3-beta-glucosidase GLUC78 FGSG_06616 F GTATCAGCACCAAGGCCAGT 

  R AAAAGTTGTTGCGGTTGTCC 

Xylosidase FGSG_11468 F ATTCTGGAGCCAGTTGATGG 

  R CCTGGCGAAGATAGTCCTTG 

Glucoamylase FGSG_06278 F CAATATCCCCGCTCTTGGTA 

  R AGAGAGATGGTTGCCTTCCA 

α/β hydrolase FGSG_02616 F GTCACTTTGGAGGCGACACT 

  R CAAATTGACCGCTTCCTCAT 

Secreted protein FGSG_06993 F ACTGCACCTACGCCAAGAGT 

  R GCATAGAGCCGAGAGCAGTC 

Chitin deacetylase FGSG_06549 F TCAGACTGTACCACCCACCA 

  R GGCAAGTGTAGCCAGTGTCA 

Endothiapepsin FGSG_07775 F 

R 

GCACAGACACTCAACCTGGA 

CTTGGCAGGGTTGTACTCGT 

Trichodiene synthase  FGSG_03537 F CCTGCCATGAGATCACTCTG 

  R CATCACCTGAGGGTCCTTGT 
a Accession numbers in Fusarium graminearum gene index from Broad Institute 
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Chapter 5 

Expression, purification and characterization of a barley PR17a protein 

and a Fusarium graminearum hypothetical protein  

 

 

1. Introduction 

 

 A large array of defense response can be activated in plant attacked by the pathogens including cell wall 

fortification, production of antimicrobial secondary metabolites such as phytoalexins, accumulation of 

pathogenesis-related (PR) proteins and programmed cell death (McDowell and Dangl, 2000). Among those, PR 

proteins are generally believed to have an important role in the resistance to pathogen. PR proteins can exert the 

anti-fungal activity through inhibition of hypal growth and spore germination, spore lysis, reduction in viability 

of germinated spore, permeabilization of fungal membranes or triggering plant defense (Campos et al., 2008). 

Based on structural and functional properties, up to 17 families of PR proteins have been identified so far with 

functions involved in hydrolysis of fungal cell walls (PR2, β-1,3-glucanase; PR3, chitinase), plant cell wall 

rigidification (PR9, peroxidase) and signal transduction (PR15, oxalate oxidase) (Christensen et al., 2002). Most 

of them are the extracellular proteins (Christensen et al., 2002).  

      The first step to discover the role of the protein in defense is the phenomena of accumulation upon infection. 

During barley-Fusarium graminearum interaction, several PR transcripts or proteins including PR3, PR4, PR5, 

PR9 and PR15 were found to be upregulated (Yang et al., 2010).  Interestingly, two spots identified as secreted 

hypothetical protein (accession no: gi2266664) increased in intensity in that study (Yang et al., 2010). This gene 

transcript was shown to be induced in barley in response to Blumeria graminis and the protein product belongs 

to PR17 family defined as PR17a (Christensen et al., 2002). Some proteins such as NtPRp27 from tobacco and 

WCI-5 from wheat belonging to PR17 family were found to respond to viral or fungal infection, respectively 

(Christensen et al., 2002). However, the function of the PR17a in plant defense to pathogen is still unknown.  

      Currently two fungi Bipolaris sorokiniana and Septoria tritici have received much attention since they are 

the main pathogens resulting in the most serious foliar disease and significant yield losses in cereal worldwide. B. 

sorokiniana can cause foliar spot blotch, root rot, and black point on cereal grains, as well as head blight and 
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seedling blight of wheat and barley (Kumar et al., 2002). As a hemibiotrophic pathogen, B. sorokiniana exerts a 

biotrophic and a subsequent necrotrophic growth phase. B. sorokiniana development intracellularly and 

intercellularly includes cuticle and cell wall penetration followed by the development of hyphae within the 

invaded and living epidermal host cell (biotrophic phase) and hyphae invasion into the mesophyll layer, 

accompanied by epidermal and mesophyll cell death (necrotrophic phase) (Kumar et al., 2002). Toxins are 

produced to kill the tissue and aid the infection (Kumar et al., 2002). The disease symptoms occur in few days. 

Septoria tritici, a hemibiotrophic fungus, mainly causes speckled leaf blotch of wheat (Shetty et al., 2003).  

Septoria tritici invades the host through stomata and grows only intercellularly. Usually no disease symptom can 

be observed for a long time (10-15 days) and suddenly the plant tissue dies (Shetty et al., 2003). Thus, in the 

present study of the recombinant PR17a protein was made to elucidate its molecular function in cereal resistance 

to these two pathogens.  

      Additionally, the study on two Fusarium graminearum mutants which have been knocked out transcription 

factors YAP and AP, respectively, showed more aggressiveness than wildtype in planta. A hypothetical protein 

(accession no: FG11033) was strongly upregulated in both mutants (Jensen, unpublished data, see Appendix II).  

In order to gain some insights of the function of this protein and its relation to the transcription factors and 

pathogenesis, we expressed and functional characterized the protein in the effect on appearance of wheat leaves. 

 

2. Materials and Methods 

 

2.1 Cloning of two genes 

 

Two purchased plasmids pCR2.1 containing cDNAs encoding proteins after removal of signal peptides with 

restriction enzyme sites NdeI (5’ site) and BamHI (3’ site) were digested and cloned into pET-15b expression 

vector (Novagen). The resulting constructs were introduced into Escherichia coli strain DH5α® cells and then 

into Escherichia coli expression strain Rossetta® cells.  

 

2.2 Purification and properties of recombinant proteins 

 

Rossetta® cells were grown in LB medium supplemented with 100 µg/mL ampicillin and 5 µg/mL 

chloramphenicol at 37 °C until the absorbance at 600 nm reached to 0.6. Expression of His6-tagged barley 

protein and fungal protein was induced with 100 µM isopropyl-β-D-thiogalactopyranoside (IPTG) at 20 °C 

overnight and at 37 °C for 3 h, respectively. Protein was extracted from cell pellets by mixing with Bugbuster 

reagent and Benzonase (Novagen) for barley protein and by mixing with buffer containing 8 M urea and 0.5 M 
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Tris-HCl, pH 8.3 for fungal protein prior to purification by a 5 mL His-Trap HP column (GE Healthcare) 

according to manufacturer’s protocols. After the eluted fractions for two proteins were dialysed with buffer 

containing 100 mM NaCl, 50mM Tris-HCl, pH 8 and 1mM EDTA twice at 4°C overnight and concentrated to 5 

mL by ultrafiltration through Centriprep® centrifugal filter (mass cut off: 3 kDa), they were purified on 

Superdex® 75 column (GE Healthcare) according to manufacturer’s instruction. The proteins were analysed by 

SDS-PAGE followed by staining with Coomassie blue or Sypro Ruby solution.  Protein concentration (unit: M) 

was determined by the following formula: (OD280-OD320)/extinction coefficient. Mass spectrometric analysis of 

intact proteins was performed as described (Shahpiri et al., 2008). IEF for recombinant proteins was performed 

using Novex IFE gels (pH3–10) according to manufacturer’s instruction. Protein sequences were further 

subjected to BLAST search in NCBI. 

 

2.3 Free thiol assay  

 

Thiol quantification was determined as described (Ellman, 1959) with some modifications. Fifty µL of samples 

were mixed with 50 µL of reagent containing 6 M guanidium hydrochloride, 100 mM Tris-HCl, pH 8 and 400 

µM DTNB and incubated for 10 min at room temperature in dark. If no free thiol was detected from native 

protein, fifty µL of samples were mixed with 50 µL of buffer containing 8M urea, 100 mM Tris-HCl, pH 8 and 

20 mM DTT and incubated for 30 min at room temperature. Afterwards the sample was applied to NAP-5 

column (GE Healthcare) which was equilibrated with 10 mL of buffer containing 4 M urea, 50 mM Tris-HCl, 

pH 8  and 0.2 mM EDTA followed by washing with 400 µL and elution with 500 µL of equilibration buffer. N-

acetyl cysteine was used as standard. The concentration of the free thiol was determined by measuring 

absorbance at 412 nM. 

 

2.4 Inoculum preparation and plant growth  

 

The spore suspension of Septoria tritici isolate IPO323 (106 spores/mL) and Bipolaris sorokiniana isolate 

CP1623 (4 x 103 spores/mL) were prepared as described (Jørgensen et al., 1996; Shetty et al., 2003). Wheat cv. 

Sevin and barley cv. Pallas near-isogenic line P0-1 were cultivated as described (Shetty et al., 2003). 

 

2.5 Infiltration of protein and plant inoculation 

 

When plants were 14-day-old, leaves were infiltrated with 300 µL of protein solution containing 2, 4 or 7 µg 

barley protein by using a plasitic syringe until complete saturation. Water was used as control. Inoculum of 
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Bipolaris sorokiniana was immediately sprayed onto the fixed wheat and barley leaves after infiltration whereas 

Septoria tritici inoculum was sprayed only onto wheat leaves.  Leaves were harvested at 1, 3 and 6 days after 

inoculation (dai) for Bipolaris sorokiniana inoculation and 6 and 15 dai for Septoria tritici inoculation. At least 

three leaves were prepared for each treatment at each time point. Additionally, two wheat or barley leaves were 

infiltrated with 2, 4, 7 µg barley protein or water as control without inoculation and harvested after 3, 6 and 15 

days. For fungal protein, one 14-day-old wheat leaf was infiltrated with 300 µL protein solution containing 0.2, 1, 

2, 4, 8 µg protein or water as control.  Samples were harvested after 8 days. 

 

3. Results and discussions 

 

3.1 Barley recombinant protein 

 

3.1.1 Protein purification 

 

Upon the SDS-PAGE gel of the purified barley protein, two bands were visualized with molecular weight 

around 25 and 51 kDa when stained with Sypro Ruby (Fig. 1A), which might be monomer and dimer, 

respectively.  The results were in agreement with the theoretical mass.  

 

3.1.2 Experimental molecular weight and pI 

 

Two groups of peaks were observed in mass spectrum of barley protein (Fig. 2A). The mass of the first peak 

indicating a singly charged ion in the first group was around 25122 Da which was expected for barley protein 

with removal of methionine (Kim et al., 2001). A singly charged ion corresponding to an additional 176 Da in 

mass, 25298 Da, was observed for the major peak. This additional mass might be resulted from spontaneous α-

N-6-phosphogluconoylation in E.coli (Geoghegan et al., 1999). The mass range of the second group of peaks 

with poor resolution was from around 50244 to 50672 Da (Fig. 2A), which could be the protein dimers. IEF 

analysis of barley protein revealed two major bands at pI 5.1 and 5.4 (the theoretical pI) as well as several weak 

bands (Fig. 3), suggesting the possible degradation of protein or post-translational modification at His-tagged 

fragment or internal protein sequence.  

 

3.1.3 Amino acid sequence analysis 
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By BLAST search in NCBI with protein sequence, recombinant barley protein has 58% and 67% homology to 

barley PR17c and PR17d proteins, respectively (Fig. 4A). Comparing the previous published sequences of so-

called PR17b which were also upregulated in barley in response to the fungus Blumeria graminis up to 96 hours 

after inoculation (hai) (Christensen et al., 2002), the proteins share 60% identify (Fig. 4A).  It has been reported 

that five regions (Fig. 4A) are highly conserved in the family. The first and second regions are significantly 

similar to zinc metalloproteinases covering the zinc-binding motif, the active site and the peptide-binding groove. 

The third and fifth regions contain protein kinase C phosphorylation site and the tyrosine residue possibly to be a 

proton donor, respectively. Additionally, the free thiol experiment showed that the only cysteine in the sequence 

was not modified. 

 

3.1.4 Effect of barley protein on fungal pathogen infection of plants 

 

Disease symptoms caused by Bipolaris sorokiniana developed more rapidly in wheat than barley at early stage 

of infection (Fig. 5A, Fig. 5B). Less disease symptom in barley and wheat leaves during 1 to 6 dai with 

infiltration of barley protein with amount up to 7 µg was observed than control (Fig. 5A, Fig. 5B). Growth of 

Septoria tritici was slower than Bipolaris sorokiniana in planta (Fig. 5). However, wheat leaves with infiltration 

of barley protein showed different responses to Septoria tritici infection at 15 dai that more disease severity was 

observed in most of leaves (Fig. 5C). The reason for the different effects on growth of two pathogens in planta is 

still unknown. Further, to examine the effect of protein on plant growth, the pathogen was not introduced to 

plants after infiltration of protein. No significant influence by barley protein on appearance of plants was 

observed (Fig. 5D).   

 

3.2 Fungal recombinant protein 

 

3.2.1 Recombinant protein purification 

 

There was one visible band for purified fungal protein on SDS-PAGE gel stained with Coomassie blue (Fig. 1B), 

which had molecular weight around 12 kDa in agreement with theoretical mass. 

 

3.2.2 Experimental molecular weight and pI 

 

A group of peaks was revealed in the spectrum of fungal protein (Fig. 2B). The mass of the first singly charged 

ion was the theoretical mass with removal of methionine. Two peaks with addition of mass 178 and 258 Da to 
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first peak mass, respectively, were observed. It was reported that extra 178 or 258 Da mass in His-tagged fusion 

protein occurs resulted from spontaneous α-N-6-phosphogluconoylation in E.coli (Geoghegan et al., 1999). One 

band at pI 7.45 was shown on IEF gel for fungal protein which was lower than the expected pI 8 (Fig. 3).  

 

3.2.3 Amino acid sequence analysis 

 

Blast searches revealed no obvious identity to the recombinant protein (Fig. 4B). Two cysteines in the protein 

were modified. However, after reduction with DTT, the free thiol was still not detectable. The reason was 

unknown. 

 

3.2.4 Effect of fungal protein on wheat leaves 

 

There was no visible difference on the appearance of leaves between control and the ones infiltrated with fungal 

protein with variable amounts (Fig. 6).  

 

4. Conclusion 

 

PR17a gene has been cloned and expressed in E.coli since its transcript was accumulated strongly in barley in 

response to Blumeria graminis. Despite of its similarity to aminopeptidase N from eukaryotes and thermolysin 

from bacteria in the sequence analysis, the recombinant protein did not show any protease activity in the 

previous study (Christensen et al., 2002). In order to illustrate the function of this protein during plant-pathogen 

interaction, we expressed and characterized the PR17a protein in the present study. The results revealed that the 

recombinant protein might inhibit fungal pathogen Bipolaris sorokiniana infection of barley and wheat leaves 

and promote Septoria tritici infection of wheat leaves, which may relative to the different pathogenicity 

mechanisms of two pathogens. The mechanism by which PR17a functions to control and restrict invasion of 

Bipolaris sorokiniana and structure-based function characterization will be focused on in the future research. 

Different proteases assays from the ones in the previous study will be tested on this protein as well. 

      The recombinant Fusarium graminearum protein (FG11033) was successfully expressed in E.coli and 

purified for the first time. No visible effect of this protein on appearance of wheat leaves was observed. Future 

work will focus on metabolic changes triggered by this protein in plant leaves if any.  

 

 

 



Chapter 5 
 

                                                                                                     80 
 

 

                                                 

Fig. 1. Purity of recombinant barley protein (A) and fungal protein (B) analysed by SDS-PAGE stained by Sypro Ruby and Coomassie 

blue staining, respectively. Molecular size markers are indicated.  

 

 

 

Fig. 2. MS analysis of purified recombinant barley protein (A) and fungal protein (B). The mass (Da) of each peak is indicated.  
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Fig. 3. Coomassie blue-stained IEF electrophoresis analysis of recombinant barley protein (lane 1) and fungal protein (lane 2). pI markers 

are indicated.  

 

(A) 

  

(B) Recombinant fungal protein             

MGSSHHHHHHSSGLVPRGSHMASIKVNFYSDTGCRNFIGSRFIDYNANQGGTYHTGGPAG    60 

SRGGLYVDSNNSGLSYRGFSNHADGSSPFTGNVRDGQCIGTLDGLYAVFTV                             111 

 

Fig. 4. Sequence analysis of barley protein (A) and fungal protein (B). Predicted signal peptides are highlighted in blue. Additional his-

tags are highlighted in purple. Cysteine is highlighted in red.  * indicates identical residues. ‘:’ and ‘.’ indicates ‘strong’ and ‘weaker’ 

conservation, respectively, as defined in the ClustalX documentation. ‘-’ indicates sequence gaps. Highly conserved regions are boxed. 
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Fig. 5.  Effect of the recombinant barley protein (2, 4 and 7µg) on the growth of Bipolaris sorokiniana on barley leaves (A) at 1, 3 and 6 

dai and wheat leaves (B) at 3 and 6 dai and Septoria tritici on wheat leaves (C) at 6 and 15 dai. Water is used as control. Barley and wheat 

leaves after infiltration of protein or water were not inoculated and harvested after 3, 6 and 15 days (D). Leaf 1 to 8: water, water, 2, 2, 4, 

4, 7, 7 µg of protein. 

 

 

                                                       

Fig. 6. Effect of the recombinant fungal protein on the appearance of wheat leaves. Leaf 1 to 6: water, 0.2, 1, 2, 4, 8 µg of protein.       
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Chapter 6 

Gene expression of Fusarium graminearum during infection in wheat 

and barley spikelets  

In collaboration with Prof. Corby Kistler, Cereal Disease Laboratory, Minnesota, US and Senior Researcher 

Laurent Gautier, Center for Biological Sequence Analysis (CBS), Technical University of Denmark 

 

1. Introduction 

 

Secreted enzymes have an important role in pathogenicity for Fusarium graminearum which is a causal fungal 

pathogen causing destructive disease namely Fusarium head blight in wheat and barley. In Chapter 4, fungal 

secreted proteins were identified in the culture medium containing barley or wheat grain flour. Ten genes 

encoding proteins expressed in vitro in addition to Tri5 were examined by qRT-PCR for transcription analysis in 

F. graminearum-infected spikelets of barley and wheat from 2 to 6 dai.  

      Another approach to study gene expression patterns in planta is DNA microarray. In 2003 F. graminearum 

genome sequence was publicly released by the Broad Institute, which provides good opportunity for designing 

Affymetrix GeneChip. Differential transcript accumulation has been detected using GeneChip which represented 

putative genes (~14000) when fungi were grown in culture under three nutritional regimes and in infected barley 

spikelets (Güldener et al., 2006). Recently, a more comprehensive GeneChip covering approximate 18000 genes 

has been developed and released by the group of Prof. Corby Kistler. They have applied the new DNA chip to 

Fusarium graminearum-infected wheat to further detect the fungal pathogenicity genes. The experiments 

including fungal spores preparation, plant inoculation, RNA extraction, labeling and hybridization were 

conducted as described (Güldener et al., 2006, personal communication). Wheat was point-inoculated and 

harvested at 24, 48, 72, 96, 144 and 192 hours after inoculation (hai) whereas barley was spray-inoculated and 

harvested at the same time point without 192 dai. RNA from water treated plants from the last time point was 

used as control. Three biological replicates were prepared for each time point (personal communication with 

Prof. Corby Kistler). 

      The aim of this study is to compare microarray results with qRT-PCR results of these 11 genes firstly and to 

profile the major F. graminearum global gene expression patterns in the infected barley and wheat secondly. 

Microarray data of F. graminearum gene expression during infection in wheat and barley spikelets was given by 

Prof. Corby Kistler. Senior Researcher Laurent Gautier from CBS, Department of Systems Biology, DTU helped 

visualizing and analyzing the data. 
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2. Results and discussion 

 

The expression patterns for the 11 genes from 24 h to 96 h were similar in barley and wheat (Fig. 6.1). However, 

from 96 h to 144 h most genes were decreased expressed in wheat but stable or increased expressed in barley 

(Fig. 6.1). The results can indicate that fungus establishes colonization more rapidly in wheat than barley which 

has been demonstrated by the globe comparison of fungal transcriptome data in the infected wheat and barley 

(personal communication with Corby Kistler). The explanation may be the different inoculation approaches in 

barley and wheat that point-inoculation is more efficient than spray inoculation for infection. Alternatively, the 

reason can be partially that the experiments for two plants were conducted by different persons at different time. 

Thus, the same inoculation method and growth condition for two plants are essential for more accurate 

comparison. Furthermore, the expression patterns analysed by microarray and qRT-PCR were different (see 

Chapter 4). It may due to that microarray analysis reflects the accumulation of absolute transcript abundance 

during infection process rather than gene regulation in qRT-PCR analysis. 

      The major gene expression patterns included 360 and 348 fungal genes in F. graminearum-infected barley 

(Fig. 6.2, Supplementary Table 6.1 in CD-ROM) and wheat (Fig. 6.3, Supplementary Table 6.1 in CD-ROM), 

respectively. The patterns in barley and wheat (Fig. 6.2, Fig. 6.3) showed that 72 h seemed to be an important 

timepoint for interaction since most genes were increased expressed up to 72 h whereas variable expression 

profiles could be obtained after 72 h. This timepoint is when F. graminearum switches from a biotrophic to a 

necrotrophic phase (Kang and Buchenauer, 1999). In barley, the genes with decreased or stable expression from 

72 h to 144 h were mainly annotated as carbohydrate-degraded enzymes, trichothecene biosynthesis enzymes, 

cytochrome P450, heat shock proteins and elongation factors (Cluster 1–5, 11, 12, 16–18, 20, 21, 25). The major 

genes with increased expression from 72 h encoded enzymes including proteases, chitin binding proteins, 

housekeeping enzymes and antioxidant enzymes such as thioredoxins and catalases (Cluster 6–10, 13-15, 19, 

22–24). In wheat, the genes with decreased or stable expression from 72 h were mainly annotated as 

carbohydrate-degraded enzymes, trichothecene biosynthesis enzymes and housekeeping enzymes such as 

glyceraldehyde 3-phosphate dehydrogenase (Cluster 2, 6, 11–15, 18, 20–23, 25). The genes with increased 

expression after 72 h mainly functioned as oxidoreductases and antioxidant enzymes such as thioredoxins 

(Cluster 1, 3–5, 7–10, 16, 17, 19, 24).  
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Fig. 6.1. Expression profiles of eleven fungal genes in F. graminearum-infected barley and wheat spikelets at 24, 48, 72, 96, 144 and 192 

hai. No 192 hai is shown for barley. Each node corresponds to one time point. Probe ID (_at) and accession number (FG) for gene are 

indicated.  
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Fig. 6.2. Twenty-five patterns of gene expression in F. graminearum-infected barley spikelets at 24, 48, 72, 96 and 144 hai. Cluster 

numbers are indicated. Each trace corresponds to one gene and each node corresponds to one time point. The genes in the box in the 

Cluster 2 belong to E.coli or rice genes which are designed to be on gene chip.  
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Fig. 6.3. Twenty-five patterns of gene expression in F. graminearum-infected wheat spikelets at 24, 48, 72, 96, 144 and 192 hai. Cluster 

numbers are indicated. Each trace corresponds to one gene and each node corresponds to one time point.  
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Concluding remarks and perspectives 

 

FHB mainly caused by Fusarium graminearum in cereals leads to huge loss of grain yield and quality with 

mycotoxin contamination worldwide. The problems have increased in Denmark during the recent years, 

especially the toxins. Fungicides and crop management practices are ineffective in reducing infection. 

Fungicides may even lead to accumulation of mycotoxins by stressing the pathogens. Highly resistant cereal 

cultivars are not available yet. Therefore, it is highly required to understand the underlying interaction between 

cereal plants and Fusarium graminearum at molecular level to control Fusarium graminearum infection and 

minimizing toxin levels.  

In order to solve the problem and achieve the goals, the present Ph.D. project was carried out with gel-based 

proteomic approaches from both plant and pathogen sides. We have investigated the severity of FHB in the 

susceptible barley using two different amounts of nitrogen fertilizer in the first study. The results showed that 

there was a good correlation among fungal biomass, mycotoxins and levels of proteome degradation caused by 

fungus suggesting FHB was more severe in barley grown with low N than with high N. However, the reason 

why lower level of N fertilizer causes higher level of infection is still not clear, which will be the focus in the 

future research. Proteomic analysis of barley infected by Fusarium graminearum from 1 to 3 dai showed the 

upregulation of pathogenesis-related proteins, increased energy metabolism and changes of the secondary 

metabolism and protein synthesis in the infected barley. Barley β-amylases were shown to be markers for 

infection at proteome level. The identified proteins can be the targets to further study the functional role in plant 

defense. Therefore, a PR17 protein which was upregulated in barley in response to F. graminearum was chosen 

for expression. It was shown that there was an effect of this protein on growth of Bipolaris sorokiniana and 

Septoria tritici in planta. By profiling the in vitro secreted proteome of F. graminearum on the 2-D gels in the 

presence of substrates of barley or wheat grain, it was possible to identify 69 unique fungal proteins in either 

medium mainly including enzymes involved in degradation of cell walls, starch and protein. The expression of 

some genes encoding in vitro protein was examined in the infected wheat and barley. This result was also 

compared to microarray data of F. graminearum during infection of wheat and barley. Furthermore, a fungal 

hypothetical protein which was strongly upregulated in YAP- or AP-knockout F. graminearum mutant compared 

to wildtype (collaboration with Jens D. Jensen) were expressed and initial bioassays were tested. 

In conclusion, gel-based proteomics has been shown to be a useful tool for understanding cellular 

mechanisms, plant pathology and plant-microbe interactions in the present studies. However, there are certain 

limitations to this method. For instance, only most abundant proteins are detected on 2-D gels whereas the key 

proteins during interaction expressed in low abundance can not be identified. This issue may be partially 



                                                          Concluding remarks and perspectives 
 

                                                                                         92 
 

addressed by using high throughput LC-MS/MS coupled to quantification techniques such as ICAT and iTRAQ. 

Another major problem in proteomic analysis is the fact that identification is usually achieved when the genome 

sequence or a large amount of sequence data is available in public databases. Although identification can also be 

performed by de novo sequencing, it requires more sophisticated instruments and bioinformatics tools. These 

technical limitations in proteomics studies need to be overcome in order to enlarge the knowledge on cellular 

mechanisms during plant-pathogen interaction. Currently high throughput proteome techniques are continuing to 

develop for identification of novel targets for increased resistant plants.  

Another important aspect in classical proteome analysis is the follow-up study of the identified proteins, 

which will be validation of the expression of the genes, the elucidation of the functional activities of proteins in 

pathogenicity and disease resistance and how they interact with other proteins. Several techniques such as qRT-

PCR, microarray, protein crystallization and structure determination, yeast two hybrids, protein chips and gene 

knockout or overexpression experiments can be applied and significantly complementary to proteomics-based 

research.  

Here we have mainly focused on the proteomics in understanding of barley-F. graminearum interaction. 

However, in order to fully comprehend all the diverse and complicated cellular activities that are involved in 

interaction, it is important to integrate all the information generated from studies of genomics, transcriptomics, 

metabolomics, proteomics, traditional plant pathology and genetic engineering. This will ultimately contribute to 

the development of novel disease resistant cultivars of cereals.  
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Abstract  

 

Increased climatic variability is resulting in an increase of both the frequency and the magnitude of extreme 

climate events. Therefore, cereals may be exposed to more than one stress event in the growing season, 

which may ultimately affect crop yield and quality. Here, effects are reported of interaction of water deficits 

and/or a high temperature event (32 
o
C) during vegetative growth (terminal spikelet) with either of these 

stress events applied during generative growth (anthesis) in wheat. Influence of combinations of stress on 

protein fractions (albumins, globulins, gliadins and glutenins) in grains and stress-induced changes on the 

albumin and gliadin proteomes were investigated by two-dimensional gel electrophoresis and mass 

spectrometry.  The synthesis of individual protein fractions was shown to be affected by both the type and 

time of the applied stresses.  Identified drought or high-temperature-responsive proteins included proteins 

involved in primary metabolism, storage and stress response such as late embryogenesis abundant proteins, 

peroxiredoxins and α-amylase/trypsin inhibitors. Several proteins e.g. heat shock protein and 14-3-3 protein 

changed in abundance only under multiple high temperatures.  
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1 Introduction 

 

Climate change is likely to become an even more acute problem than previously anticipated [1]. Accelerated 

climatic variability is resulting in an increase of both the frequency and the magnitude of extreme events [2, 

3]. More frequent extreme climatic episodes result in cereals being exposed to several stress events during 

the growing season, ultimately affecting cereal production [4–6]. The most sensitive growth stages in cereals 

are stem elongation, booting and anthesis [7]. Extreme heat episodes after anthesis increase development of 

the crops, shorten the grain filling period [8] resulting in reduction of kernel weight and of grain quality 

parameters (starch and protein) [9]. Moderately high temperatures after cold winter periods increase cereal 

yields [10]. An extreme heat event at the double-ridge stage did not affect the response of wheat to heat 

stress at anthesis [2]. Drought has also become a limiting factor for cereal production worldwide resulting in 

significant grain yield losses [4, 11, 12] and increased heavy rainfalls lead to waterlogging and nutrient 

leaching resulting in reductions of cereal growth and quality [5, 13].  

     Wheat grain quality receives increasing attention because of its economic and nutritional importance 

[14]. Protein fractions including albumins, globulins, gliadins and glutenins are the most important 

components of wheat grains for end-use quality [15]. In order to maintain grain yield and quality under 

increased climatic variability it is important to understand both the effect of single environmental constraints 

and of the combination of extreme climate events on grain protein composition. It has been shown that 

increases in temperature induce synthesis of gliadins at the expense of glutenins in wheat [16]. Furthermore, 

high temperature applied from anthesis to maturity decreased the contents of the albumin and globulin 

fractions, while drought applied after anthesis decreased the albumin and globulin fraction, but had no 

significant effect on gliadins and glutenins [17]. Several studies have been performed to investigate the 

response of wheat grain proteins to either long-term drought during vegetative growth or long-term high 

temperature applied during grain filling, showing up-regulation of pathogenesis-related (PR) proteins, 

allergens, protease inhibitors, heat shock proteins, and proteins involved in oxidative stress and starch 

biosynthesis [14, 18, 19].  However, little is known about the effect of the combination of short-term (days) 

water deficits and high temperature during grain development on wheat grain proteins. Although grain 

protein content and composition - the key parameters of grain quality - are primarily genetically controlled, 

environmental factors can influence the synthesis of protein throughout grain growth [20]. The interactions 

of multiple episodes as well as multiple forms of stress so far have not been investigated extensively.  

       The aim of the present study was to investigate implications of the interactions of short-term drought 

and high temperature events applied at two different growth stages of wheat (terminal spikelet and anthesis). 

Changes in grain proteins were monitored by 2-DE MALDI-MS based proteomics. This approach has been 

shown to be very useful in characterizing changes in protein profiles of plants under stress episodes [19]. 

The results are discussed in relation to the general use of proteomics to identify traits relevant for stress 

tolerant cereals and identification of wheat cultivars with drought and high-temperature tolerance. 
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2 Materials and methods 

 

2.1 Plant growth 

 

A pot experiment was conducted at the ‘semifield’ station of Research Center Flakkebjerg, Department of 

Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Denmark in the growing 

season of 2007. Pots with both depth and diameter of 25 cm were filled with 4.2 kg of a 1:2:1 (v/v/v) 

mixture of peat substrate, loamy soil and sand. A dose of 5.25 g K2SO4, 3.5 g (NH4)2SO4, 4.67 g NH4NO3, 

1.9 g CaSO4, 1.9 g MgSO4, 0.4 g MnSO4, 0.4 g CuSO4 and 11.67 g CaCO3 per pot was mixed in the soil. 

Spring wheat (Triticum aestivum L. cv. Vinjett) was sown (15 seeds per pot) and thinned to 5 seedlings per 

pot at the three-leaf stage. The main shoot of each plant was labeled. From the third-leaf stage, three to five 

seedlings were taken for observation of spike initiation by dissection at an interval of about two to three 

days, until the terminal spikelet stage was identified.  

     An automatic irrigation system was used, and the total (not for individual pots) applied water was 

recorded. Water deficits and high temperature stresses were implemented at terminal spikelet (the first stage, 

denoted A) and anthesis (the second stage, denoted B) as specified below. At the first stage, three treatments 

were implemented in three growth chambers, namely temperate conditions as control (cA), water deficits 

(wdA) and high temperature (htA). At the second stage, plants from each of the above treatments were 

further exposed to three treatments in the three chambers, as control (cB), water deficit (wdB) and high 

temperature (htB). In total 9 combinations of stress types were implemented: cA-cB, cA-wdB, cA-htB, 

wdA-cB, wdA-htB, htA-cB, htA-wdB, htA-htB and wdA-wdB. The experiment was a completely random 

block design with three biological replicates.  

      In the high temperature treatment at both stages the temperature in the growth chambers was set to 

increase from 24 
o
C at night (8 h) to a maximum of 32 °C for 2 h during the day (16 h). The temperature in 

the control and water deficits treatments was set to increase from 12°C to 20 
o
C at the first stage and from 16 

°C to 24 
o
C at the second stage. The heat treatment lasted for 10 d. Water supply was withheld in the pots in 

the semifield for 7 d (at the 3-leaf stage) before the first stage and for 6 d (just after the spike emerged) 

before the second stage. Thereafter the pots were moved into the growth chambers in order to apply the 

different treatments.  

 

2.2 Protein extraction and quantification 

  

Grain fresh weight and raw protein% (derived from total N * 5.7) were measured and shown in 

supplementary Figs. s1 and s2. Kernels from 5 individual ears of the main tillers in 5 individual pots were 

harvested at 19, 26, 32 and 52 days (at maturity) post anthesis (dpa). For each treatment, biological 

triplicates of wheat kernels were freeze dried and ground to a fine powder in liquid nitrogen.  Based on the 

solubility in a series of solvents, the classified grain protein fractions of albumins, globulins, gliadins and 

glutenins [15] were extracted as described in [21] with minor modifications. Briefly, albumins were 
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extracted from 100 mg flour that was mixed continuously with 1 mL of buffer containing 25 mM sodium 

phosphate (pH 7.5) for 60 min at 4 °C. The flour was re-extracted with 1 mL of a solution containing 0.1 M 

NaCl and 20 mM DTT by incubation in an ultrasonic bath (2210 BRANSON) for 60 min at 4 °C to obtain 

the globulins. The gliadins were extracted from the resulting pellet using 1 mL of a solution containing 50% 

(v/v) 1-propanol, 1% (v/v) acetic acid, 2% (w/v) DTT by incubating the samples in the ultrasonic bath for 60 

min at 4 °C. Then the glutenins were extracted from the resulting pellet with 1 mL of 1 mM HCl by mixing 

for 60 min followed by ultrasonication for 1 min at 4 °C. After each extraction, the suspension was collected 

by centrifugation at 20800 x g for 10 min. The residue was washed and re-extracted with the same buffer 

twice before the extraction of the following fraction. Protein concentration of albumins, globulins and 

gliadins from supernatants was determined using the Amido black method [22] with bovine serum albumin 

as standard. As this method is not ideal for determination of the concentration of acid-soluble proteins, the 

concentration of glutenins was determined using the Bradford assay [23]. Statistical analysis of differences 

in contents of protein fractions between stress and control treatments was performed by Student´s t-test (p < 

0.05). 

 

2.3 Two-dimensional gel electrophoresis  

 

2-DE was run according to [24] with minor modifications. Albumins (150 μg depending on the sample in a 

volume of 200300 μL) were precipitated by 4 volumes of acetone at -20 °C overnight. The albumin pellets 

or gliadins (100 μg corresponding to a volume of 25-30 μL depending on the sample) were added 350 µL of 

rehydration buffer (8 M urea (GE Healthcare), 2% (w/v) CHAPS (Sigma), 0.5% (v/v) IPG buffer pH 3–10 

(GE Healthcare), 0.3% (w/v) DTT (Sigma) and a trace of orange G). The solution was thoroughly vortexed 

and centrifuged (20800 x g for 10 min). The supernatant was applied to an IPG strip pH 3–10 (18 cm; GE 

Healthcare) and IEF was run (Ettan IPGphor; GE Healthcare) as described [25]. After IEF, the strips were 

equilibrated first with a solution containing 6 M urea (GE Healthcare), 30% (v/v) glycerol (GE Healthcare), 

50 mM Tris (Sigma) pH 8.8, 0.01% (w/v) Bromophenol Blue (Sigma), 2% (w/v) SDS (BDH/Merck) with 

1% (w/v) DTT (Sigma) for 15 min and then with a similar solution without DTT, but containing 2.5% (w/v) 

iodoacetamide (Sigma) for 15 min. The strips were placed on top of 12.5% acrylamide gels (3% C/0.375% 

bisacrylamide) and the second dimension was run (Ettan DALTsix electrophoresis unit; GE Healthcare) 

according to the manufacturer’s protocol. The gels were stained in Blue Silver stain [26]. One gel was run 

for each biological replicate. 

 

2.4 Image analysis 

 

The gels were scanned using a ScanMaker 9800XL, Microtek at 300 dpi resolution in both color and 

grayscale (16 bits). All grayscale gel images were imported into the Progenesis SameSpots software 

(Nonlinear Dynamics Ltd, Newcastle upon Tyne, UK). One gel image from the cA-cB control treatment was 

chosen as a reference image and all gel images were warped and matched to the reference image. Three gel 
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images representing three biological replicates for each treatment were grouped to obtain the average 

volume of each spot. Images from each stress treatment were compared to images from cA-cB. A threshold 

of ANOVA (p) < 0.05 and at least 1.5-fold change in average spot volume between a stress treatments and 

the corresponding control treatment was used to select the protein spots for further MS analysis.   

 

2.5 Enzymatic digestion and mass spectrometry 

                                               

In-gel digestion was performed as described [25], albumins and gliadins being digested by trypsin 

(Promega) and chymotrypsin (sequencing grade, Roche) [27], respectively. The peptide mixtures were 

prepared for MS analysis on a washed MALDI 600 µL AnchorChip target plate (Bruker-Daltonics, Bremen, 

Germany) as described [25]. A tryptic digest of β-lactoglobulin was used for external calibration. Tryptic 

and chymotryptic peptides were analysed in Ultraflex II MALDI-TOF-TOF mass spectrometer (Bruker-

Daltonics, Bremen, Germany) in positive reflector mode for peptide mass mapping or peptide fragment ion 

mapping. Internal calibration was carried out using trypsin autolysis products (m/z 842.51 and m/z 2211.10). 

An in-house Mascot server (http://www.matrixscience.com) was used for database searches in the NCBInr 

(National Center for Biotechnology Information) and the TaGI wheat gene index Release 11.0 

(http://compbio.dfci.harvard.edu/tgi). The following parameters were used for searching: allowed global 

modification, carbamidomethyl cysteine; variable modification, oxidation of methionine; missed cleavages, 

1; peptide tolerance, 80 ppm and MS/MS tolerance ±0.5 Da. The positive identification had to meet the 

following criteria: a significant MASCOT score and at least four matched peptides in MS analysis or two 

matched peptides in MS/MS analysis.  

 

3 Results and discussion 

 

Overall, no significant differences in final grain weights have been found (Supplementary data, Fig. s1). 

When heat was applied in the vegetative stages (htA), the grain weight at 12 dpa was significantly higher 

than in the other treatments (Fig. s1 C), probably indicating enhanced growth during these treatments. No 

significant differences in the total protein content of these grains have been found, although the protein 

content was more variable when heat was applied during the vegetative stage (Supplementary data, Fig. S2). 

 

3.1 The effect of stress on accumulation of protein fractions 

 

The albumin content in all treatments decreased significantly (5680%) during grain filling (Fig. 1A, 1E). 

At 19 dpa, all stress treatments applied had decreased the albumin fractions significantly, where the lowest 

contents were found in the htA-htB treatment. By contrast, at 32 dpa the albumin content in all of the stress 

treatments were higher than for the control and at maturity, only the albumin contents in cA-wdB and wdA-

cB treatments were significantly higher than in the control. High-temperature stress resulted in higher 

albumin contents at maturity when applied at anthesis than at terminal spikelet. By contrast, no significant 

difference in albumin contents was observed when drought was applied at both growth stages.         
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      The relatively low globulin content increased differently (22135%) under treatments during grain 

filling. Compared to the earlier growth stages, greater differences in globulin contents between stress and 

control were observed at maturity (Fig. 1B, 1F). The stress treatments except htA-cB (Fig. 1F) significantly 

increased the contents of globulins at maturity. A larger increase in globulins at maturity was observed when 

drought was applied at anthesis or terminal spikelet than high temperature (Fig. 1B, 1F). 

     Gliadins showed with the exception of the htA-cB treatment increased (39166%) contents during grain 

filling, but stress treatment did not significantly affect the rate of accumulation of gliadins (Fig. 1C, 1G). At 

maturity only htA-cB treatment decreased gliadin contents, similar to globulins. The highest contents of 

gliadins were observed at 19 dpa in htA-htB and at maturity in cA-wdB, cA-htB and in wdA-cB. 

     The glutenins accumulated during grain filling increased (85159%) in response to different stress 

treatments (Fig. 1D, 1H). The htA-htB treatment resulted at maturity in higher contents of glutenins as well 

as gliadins, which is contrary to findings by others that in wheat high temperature can induce synthesis of 

gliadins at the expense of glutenins [16]. As with the globulins, stress caused greater differences in glutenin 

contents at maturity than at 19 dpa. In contrast to the albumin and gliadin fractions, multiple high 

temperature events (htA-htB, Fig. 1D) or water deficits (wdA-wdB, Fig. 1H) applied at both terminal 

spikelet and anthesis resulted in significantly higher contents of glutenins at maturity than in the single stress 

treatments.  

      At maturity the highest contents of albumins, globulins and gliadins were obtained under the single 

drought stress applied at either stage whereas glutenins increased under the htA-htB treatment, indicating 

differences in the response of grain protein fractions to drought and heat stress. High temperature was 

capable of causing substantial changes in the accumulation level of gluten proteins during grain filling, in 

agreement with previous findings [9]. In addition, higher contents of albumins, globulins, gliadins and 

glutenins were observed when high temperature was applied at anthesis than terminal spikelet. This is in 

contrast to the finding of no significant differences in protein fractions under drought stress applied at either 

stage, which indicates that grain protein contents were greatly affected by both the type and the exposure 

time of the stress applied. During the period from terminal spikelet to anthesis, high temperature stress is 

reported to have a damaging effect on the viability of pollen, resulting in failure of fertilization [20]. As a 

consequence, the poor development of fertilized ovaries into caryopses may affect protein synthesis during 

grain filling. Water deficit was found to inhibit photosynthesis at both stages, which can influence the 

formation of generative organs and consequently grain protein synthesis [20, 28]. It has previously been 

shown that both grain yield and grain number were influenced more by stress at anthesis than at heading [9]. 

Furthermore, it was observed that the combination of drought and heat stress applied at two stages did not 

have a greater effect on the albumin, globulin and gliadin contents during grain filling, compared with either 

of the stresses applied individually. It has been reported that different stresses may require antagonistic 

responses and that a combination of drought and heat stress may alter plant metabolism resulting in a new 

pattern of defense response compared to single stress [20, 29]. Thus, the combination of different stresses 

might not cause more changes to grain protein content than a single stress event. 
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3.2 Drought or high-temperature-responsive albumins  

 

Albumins and gliadins from mature grains (52 dpa) in the cA-wdB, cA-htB, htA-htB and cA-cB (control) 

treatments were chosen for detailed 2D-based proteome analysis, because these stress scenarios resulted in 

significant increases of albumins, globulins, gliadins and glutenins at maturity. 

      The representative 2D protein patterns of albumins and gliadins for all the treatments (Fig. 2 and 3), 

allowed detection of approximately 250 and 100 spots, respectively. ANOVA was applied to evaluate spots 

differing significantly in abundance between stress treatments and control and to confirm the reproducibility 

of the data. Based on the selection criteria (at least 1.5-fold change, see section 2.4), in the cA-wdB, cA-htB 

and htA-htB treatments, 16/5, 10/11 and 31/8 spots exhibited significant changes (between 1.5 and 2.4-fold) 

in intensity in the albumin/gliadin fractions due to stress, respectively. All differentially displayed spots 

were identified by MS except spot a3 of decreased intensity in cA-wdB (Fig. 2) and spots e14, e18 and e26 

in htA-htB (Fig. 2 and Table 1). The difference of pI and MW between experimental and theoretical data 

may have resulted from experimental error, post-translational modification or protein turnover occurring in 

the cell. According to the function the proteins identified from different stress treatments were mainly 

involved in stress response, carbohydrate metabolism and storage in addition to protein synthesis. 

 

3.2.1 Stress-related albumins 

 

The first major group of the responsive albumins had functions related to stress and defense. A late 

embryogenesis abundant protein which is associated with desiccation stress was up-regulated in response to 

drought stress (1.8 fold, spot a9, Fig. 2), possibly due to its role in protection of proteins and cell membranes 

from disruption or damage in the near-dry state [30]. A number of proteins related to oxidative stress 

showed a different expression behavior in response to temperature or drought stress. For instance, 1-Cys 

peroxiredoxin was down-regulated under drought treatment (2.4 fold, spot a4, Fig. 2), whereas up-regulation 

of 1-Cys peroxiredoxin (1.9 fold, spot b1, Fig. 2) and a 27 kDa hypothetical protein belonging to the thiol 

reductase superfamily (1.5 fold, spot b7, Fig. 2) and down-regulation of a hypothetical protein belonging to 

the thioredoxin superfamily (1.5 fold, spot b5, Fig. 2)  were observed in plants under single high temperature 

stress but not with multiple high temperature stress. During exposure to abiotic stress, ROS are often 

produced in plants and can cause oxidative damage to proteins, DNA and lipids in the cells [19, 31]. The 

quantitative alteration of the above ROS-scavenging enzymes suggests their different roles in oxidative 

stress. Similar observations were made in wheat leaves after a 7-day exposure to drought [31]. Lipoxygenase 

which is considered to be partly responsible for the formation of lipid peroxidation products as well as ROS 

was down-regulated with high temperature probably as a consequence of the inhibition of ROS production 

[32]. Additionally, lipoxygenase is known to be involved in jasmonic acid biosynthesis, which often 

accumulates in plants in response to biotic and abiotic stress [33].    
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      Several spots changing in abundance were identified as defense-related proteins, including α-amylase 

inhibitors, α-amylase/trypsin inhibitors CM1, CM3, CM17, serpin and cystatin. Similar results were also 

observed in seeds of durum wheat subjected to heat for five days after anthesis [34]. The α-amylase/trypsin 

protease inhibitors have been shown to guard against digestive enzymes of insects and fungi and are often 

accumulated in response to biotic stress [19, 34]. Interestingly, α-amylase inhibitor in one spot (1.5 fold, 

spot a8, Fig. 2) was up-regulated and down-regulated in another spot (1.5 fold, spot a11, Fig. 2) under 

drought. This may be due to PTMs of the protein such as dephosphorylation resulting in pI shift from acid to 

base. It is well known that the phosphorylation of proteins can change in response to stress [31]. 

Furthermore, the up-regulation of three α-amylase inhibitors and the down-regulation of α-amylase inhibitor 

CM1 and cystatin under htA-htB may reflect their different roles in response to high-temperature treatments.     

 

3.2.2 Albumins involved in primary metabolism 

 

The second group of identified albumins is involved in primary metabolism. In response to drought, 3-

phosphoglycerate kinase involved in the glycolysis was up-regulated (1.6 fold, spot a16, Fig. 2) and 

glucose/ribitol dehydrogenase, which is related to glucose degradation and has a role in desiccation and 

salinity tolerance in barley seeds [35, 36] (2.1 fold, spot a12, Fig. 2) was down-regulated, suggesting 

changes in carbohydrate metabolism. In addition, enzymes such as triosephosphate isomerase (1.5 fold, 

spot b10, Fig. 2) and succinyl-CoA ligase (1.9 fold, spot b2, Fig. 2) participating in glycolysis and in citric 

acid cycle, respectively, were down-regulated by a single high temperature event, whereas fructose-6-

phosphate-2-kinase (2.0 fold, spot e8, Fig.2) enolase 2 (1.9 fold, spot e10, Fig. 2) and β-amylase (1.6 fold, 

spot e7, Fig. 2) increased and aldose reductase decreased (1.9 fold, spot e16, Fig. 2) in abundance with 

multiple high temperature events. It has been reported by others that several glycolytic enzymes including 

triosephosphate isomerase were increased in the grain in response to high temperature initiated at 10 dpa 

[19]. This is in contrast to the present results and be explained by the duration of stress exposure or be 

cultivar-specific. Furthermore, changes in the abundance of 40S ribosomal protein S8 and glutamine 

synthetase in the single high temperature treatment and of ribosomal protein S2, methionine synthase and 

glutamate-cysteine ligase in the multiple high temperature treatment may reflect alterations in protein and 

amino acid biosynthesis.  

 

3.2.3 Albumins with other functions 

 

The identified calmodulin TaCaM2-2 decreased in response to drought (1.7 fold, spot a5, Fig. 2). Many 

extracellular signals such as biotic and abiotic stress can elicit changes in cellular Ca
2+

 concentration in 

plants [37].  Calmodulin is a Ca
2+

 binding protein involved in calcium signaling under stress conditions [37]. 

Several proteins changed in abundance only under multiple high temperatures including up-regulated 

cinnamoyl-CoA reductase, translationally-controlled tumor protein, cell division control protein and heat 
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shock cognate 70 (1.6 fold, spot e28; 1.5 fold, spot e24; 1.9 fold, spot e3; 1.9 fold, spot e19, respectively), 

and the down-regulated 14-3-3 protein (1.9 fold, spot e22, Fig. 2). Cinnamoyl-CoA reductase is involved in 

lignin biosynthesis. Lignin is an important factor in plant defense response because pathogens are not able to 

degrade this mechanical barrier [38]. It has recently been reported that the expression of genes encoding 

translationally-controlled tumor protein which is related to diverse cellular processes such as apoptosis, 

microtubule organization and ion homeostasis in eukaryotes was enhanced by stress including high 

temperature and salt in cabbage [39]. Up-regulation of cell division control protein suggests enhanced cell 

division as respond to high temperature stress. Heat shock proteins, known as molecular chaperones 

assisting in the correct folding of polypeptides, have been shown to have a protective role during abiotic and 

biotic stress [40]. 14-3-3 proteins function as major regulators of primary metabolism and cellular signal 

transduction in plants. They were shown to regulate target proteins that are involved in response to stress 

[41]. Several 14-3-3 genes were differentially regulated in rice in response to biotic and abiotic stress [41]. 

Transcripts encoding proteins belonging to the 14-3-3 family accumulated in barley after biotic stress [34]. 

Hurkman et al. [19] and Laino et al. [34] have observed the decreased abundance of the spots belonging to 

the 14-3-3 family in wheat after heat stress. The down-regulation of 14-3-3 protein in the present study may 

indicate that 14-3-3-interactor negatively regulates factors that mediate stress response. 

  

3.3 Drought or high-temperature-responsive storage proteins 

 

Expression of several storage proteins were modulated under stress as well. Some storage proteins 

including α-gliadin, γ-gliadin, low molecular weight glutenin and globulins decreased and one globulin 

and one low molecular weight glutenin increased in abundance in response to water deficits. Several α-

gliadins, γ-gliadins and low molecular weight glutenins increased and α/β-gliadin, ω-gliadin and globulins 

decreased in abundance in response to high temperature. Our results indicate that stress could increase the 

abundance of some gliadins at expense of other gliadins which have highly variable sequences [27]. 

However, the reason why different components of gliadins and globulins vary in response to abiotic stress 

is still unknown.      

 

3.4 Comparison of plant responses under three different stress events 

 

No common spot from the albumin and gliadin fractions was found to respond to both drought and high 

temperature stress. Furthermore, 1-Cys peroxiredoxin was regulated in opposite ways at single drought 

and high temperature events. The results indicate different responses of wheat grain protein to drought and 

to high temperature events. Drought can cause stomatal closure, decrease of photosynthetic activity, 

increased oxidative stress, alteration of cell wall elasticity and generation of toxic metabolites causing 

plant death [31]. Here, proteins involved in stress/defense, signaling pathways, redox regulation and 

energy metabolism were found. High temperature stress often results in increases of stomatal conductance, 
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respiration, leaf transpiration and oxidative stress [42], shortens the duration of grain filling in cereals and 

enhances gluten protein accumulation and starch synthesis [19]. Plants respond to heat by signaling via 

abscisic acid, ethylene and salicylic acid, scavenging of ROS via production of antioxidants, and 

transcriptional activation of stress-related proteins [43]. Here, a number of proteins including heat shock 

proteins, carbohydrate metabolism and storage proteins were found to be responsive to high temperature.  

     Albumin proteins involved in primary metabolism did not change in abundance between the cA-htB 

and htA-htB treatments. However, a 27 kDa hypothetical protein belonging to thiol reductase superfamily 

was regulated in opposite ways between these two treatments. Several proteins with other functions than 

involvement in stress and primary metabolism were found to be regulated only in response to two high 

temperature events.  

 

4 Concluding remarks 

 

The combination of drought and heat stress applied at two stages of grain filling did not have a significant 

effect on albumin contents, compared with either of the stresses applied individually. Globulins and gliadins 

showed with exception htA-cB increased protein fraction contents from 19 dpa. The glutenins accumulated 

during grain filling in response to different treatments.  Some stress treatments can significantly modify 

contents of individual proteins in grain. Changes of grain protein contents that strongly depended on the type 

of stress applied. It was possible to identify several proteins responsive to drought and high temperature 

episodes. Few common proteins were observed responding to single and multiple high temperature events. 

The identified proteins play key roles in anti-desiccation, antioxidation, defense, carbohydrate metabolism 

and storage. These protein markers identified in this study might be relevant for plant breeding. Thus the 

present findings indicating effects of more than one stress event and type on the grain protein composition, 

will contribute to the identification of cultivars with increased tolerance to increasing climate variability. 
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Figure and table legends 

 

Figure 1. The accumulation of albumins (A+E), globulins (B+F), gliadins (C+G) and glutenins (D+H) in 

wheat grain under high temperature and/or water deficit stress treatments applied at terminal spikelet 

and/or anthesis. The treatments are denoted as outlined in Materials and Methods. The cA-cB, cA-wdB, 

cA-htB and htA-htB treatments selected for proteomic analysis are shown in left column, other treatments 

are shown in right column. 

 

Figure 2. Albumin profiles of mature wheat grain. The representative 2D-gels (pI range 410) are shown 

for control (cA-cB) and samples under water deficit (cA-wdB), single high temperature (cA-htB) and 

multiple high temperatures (htA-htB) treatments. Molecular size markers are indicated. Protein spots 

changing in intensity in response to stress are numbered. 

 

Figure 3. Gliadin profiles of mature wheat grain. The representative 2D-gels (pI range 410) are shown 

for control (cA-cB) and samples under water deficit (cA-wdB), single high temperature (cA-htB) and 

multiple high temperatures (htA-htB) treatments. Molecular size markers are indicated. Protein spots 

changing in intensity in response to stress are numbered. 
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Table 1. Identification of wheat grain proteins in response to high temperature (ht) and water deficit (wd) 

 
Spot 

no
a
 

Spot 

relative 

intensity
b
 

MS 

scorec  

Number 

of 

matched 
peptides 

Sequence 

coverage 

(%) 

Theor. 

MW(kDa)/

pI 

Exp. 

MW(kD)/

pI 

Accession 

number
d
 

Organism
e
 Protein and conserved domain MS/MS (sequence of 

matched peptides)
f
 

cA-wdB treatment 
        a8 1.5 78 7 34 16.6/7.45 13.0/7.40 TC264942 Triticum aestivum Monomeric α-amylase inhibitor  

a9 1.8 86 7 66 10.0/5.50 12.8/7.67 gi|1169516  Triticum aestivum Late embryogenesis abundant protein H2  

a16 1.6 82 8 31 31.3/5.05 45.7/7.77 gi|28172913  Hordeum vulgare  Cytosolic 3-phosphoglycerate kinase   

a1 1.9 72 6 14 72.6/5.63 62.5/7.63 gi|218683839  Isomeris arborea Phytochrome B  

a2 1.6 102 12 42 26.4/5.58 30.1/7.70 TC235043  Oryza sativa  Embryo-specific protein  

a7 1.6 75 7 35 66.3/7.78 17.0/7.70 TC234137 Triticum aestivum Embryo globulin  

a4 -2.4 89 8 44 24.0/6.31 28.6/5.78 TC265183 Triticum aestivum 1-Cys peroxiredoxin  

a11 -1.5 75 5 30 13.6/5.37 12.9/6.53 gi|134034615  Triticum aestivum Monomeric α-amylase inhibitor  

a14 -1.7 89 7 57 18.9/7.44 15.3/6.75 gi|123957  Triticum aestivum  α-amylase/trypsin inhibitor CM3  

a12 -2.1 77 6 20 31.9/6.54 37.1/5.53 gi|7431022  Hordeum vulgare Glucose and ribitol dehydrogenase  

a10 -2.1 133 10 52 25.5/6.66 31.3/5.70 gi|16903082  Triticum aestivum Small Ras-related GTP-binding protein   

a5 -1.7 76 5 22 16.9/4.10 19.3/5.90 gi|1754999  Triticum aestivum Calmodulin TaCaM2-2  

a6 -2.1 137 16 28 49.9/6.16 54.8/5.27 TC246874 Zea mays Globulin-like protein  

a13 -1.6 93 15 36 49.9/6.16 56.1/5.98 TC246759 Zea mays Globulin-like protein  

a15 -1.5 108 10 22 49.9/6.16 29.4/5.60 TC246874  Zea mays Globulin-like protein  

c3 1.5 72 5 40 34.6/8.71 43.6/5.39 BQ243369 Triticum aestivum Low molecular weight glutenin   

c2 -1.5 72 5 38 32.8/8.50 47.5/5.04 BQ242949  Triticum aestivum α-gliadin   

c4 -1.5 76 4 37 34.6/8.71 68.6/7.37 BQ243369 Triticum aestivum Low molecular weight glutenin   

c5 -1.5    32.3/7.16 61.3/7.20 TC250312 Triticum aestivum γ-gliadin  RWDIHVAHGW, 

ATNPRDYAGKW 
c1 -1.5    32.3/7.16 26.3/6.50 BJ233925  Triticum aestivum γ-gliadin TRGMTPMTQVCIVARGY, 

TRGMTPMTQVCIVARGYSCM 

GSTVVVEMVE 

cA-htB treatment 
        b1 1.9 72 7 31 24.1/6.31 28.4/6.60 gi|1710077  Hordeum vulgare 1-Cys peroxiredoxin PER1  

b7 1.5 102 8 31 23.9/6.06 27.1/6.85 TC250400 Triticum aestivum  27K protein, pfam03227, γ-interferon 

inducible lysosomal thiol reductase  

  

b4 1.5 76 9 22 43.5/5.11 46.1/8.03 gi|224589268  Triticum aestivum  Serpin 2  

b6 1.8 76 5 35 16.5/5.07 17.2/8.30 gi|21711  Triticum aestivum α-amylase/trypsin inhibitor CM17  
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b3 -1.8 75 8 17 50.5/5.68 45.3/7.57 gi|1495812  Solanum 

tuberosum 

Lipoxygenase  

b5 -1.5 73 6 51 14.8/5.68 14.9/7.37 gi|242032659  Sorghum bicolor Hypothetical protein, cd02947, 

thioredoxin family 

 

b2 -1.9 72 7 22 45.6/6.08 46.1/7.57 gi|226500228  Zea mays Succinyl-CoA ligase β-chain   

b10 -1.5 109 11 39 26.8/5.38 29.0/7.07 TC246911  Triticum aestivum  Triosephosphate isomerase  

b9 -1.5 81 9 18 39.4/5.38 40.5/5.93 gi|1419094  Nicotiana 

tabacum 

Glutamine synthetase   

b8 -1.8 72 5 20 24.8/10.41 14.1/9.24 TC264449 Oryza sativa  40S ribosomal protein S8  

d1 1.5    32.8/8.50 47.5/8.25 BQ244309  Triticum aestivum α-gliadin  PIEPGIFPTAFATISIRPGL,  

GFCPASTIAPVRGNRDPRVPD 

VPCNVQCL 
d6 1.5 77 4 33 32.8/8.50 46.2/8.83 BQ242040 Triticum aestivum α-gliadin   

d7 1.7 79 5 31 34.6/6.62 34.4/7.61 BQ167777 Triticum aestivum α/β-gliadin A-V  

d9 1.6 72 4 23 32.8/8.50 45.6/9.01 BE424082 Triticum aestivum α-gliadin   

d10 1.7 74 4 25 34.6/6.62 42.5/8.48 BQ245636  Triticum aestivum α/β-gliadin A-V   

d11 1.6 72 4 23 32.8/8.50 71.9/9.18 BE424082 Triticum aestivum α-gliadin   

d2 1.8    32.3/7.16 61.3/9.01 TC250312 Triticum aestivum γ-gliadin  RWDIHVAHGW, 

ATNPRDYAGKW 

d3 1.6  

 
 

  34.6/8.71 22.2/7.84 BQ243369  Triticum aestivum Low molecular weight glutenin  KKIGSPL,  
GVHSILGGGTPTGGAMCFPTP 

TAVGGGNW 

 d4 1.9    34.6/8.71 67.6/7.08 BQ243369 Triticum aestivum Low molecular weight glutenin  KKIGSPL,  
GVHSILGGGTPTGGAMCFPTP 

TAVGGGNW 

 d5 1.9    34.6/8.71 35.8/8.07 BQ243369 Triticum aestivum Low molecular weight glutenin  WAVVQNPP,  
GVHSILGGGTPTGGAMCFPTP 

TAVGGGNW 

 d8 -2.0 75 5 17 34.6/6.62 54.0/5.77 TC249891  Triticum aestivum α/β-gliadin   

htA-htB treatment 
        e27 1.6 76 6 35 16.5/5.07 17.1/8.13 gi|21711  Triticum aestivum α-amylase inhibitor CM17  

e30 1.6 115 7 65 13.7/6.18 14.5/7.38 gi|134034577  Triticum aestivum Monomeric α-amylase inhibitor   

e29 1.5 101 8 72 13.7/5.23 14.0/7.58  gi|56480630 Triticum aestivum 0.19 dimeric α-amylase inhibitor  

e8 2.0 74 6 14 84.8/6.05 70.3/8.17 TC249217  Oryza sativa  Fructose-6-phosphate-2-kinase  

e10 1.9 72 9 31 48.4/5.70 50.9/7.34 gi|162460735  Zea mays Enolase 2  

e7 1.6 94 11 19 59.6/5.66 60.5/6.89 TC249933  Hordeum vulgare  β-amylase   

e11 2.0 86 10 28 40.9/9.35 42.0/8.24 gi|81176532  Triticum aestivum Ribosomal protein S2   

e28 1.6 77 6 46 18.7/8.62 18.3/8.92  gi|15822545  Triticum aestivum Cinnamoyl-CoA reductase   

e24 1.5 79 5 33 18.9/4.55 28.7/9.61 gi|75246527  Triticum aestivum Translationally-controlled tumor protein    

e3 1.9 81 10 13 89.7/5.12 88.7/7.73 TC233240 Oryza sativa  Cell division control protein 48 homolog E   

http://bio-d1319/mascot/cgi/protein_view.pl?file=../data/20100608/F076765.dat&hit=1
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e19 1.9 96 11 37 71.6/5.30 32.8/5.86 TC264180  Oryza sativa  Heat shock cognate 70 kDa protein   

e23 1.5 72 4 20 18.7/6.04 29.6/7.49 TC237069 Triticum aestivum NADH dehydrogenase subunit J   

e13 1.6 72 7 22 41.2/6.60 38.5/7.40 gi|242046234 Sorghum bicolor Hypothetical protein, pfam03214, 

reversibly glycosylated polypeptide 

  

e12 2.0 87 6 23 37.4/5.85 38.7/6.85 gi|218197438  Oryza sativa  Hypothetical protein   

e25 2.2 72 5 51 15.2/11.62 21.9/7.69 CA739630  Triticum aestivum Predicted protein  

e9 1.7 78 11 12 134.3/9.05 87.5/8.75 gi|224099935  Populus 

trichocarpa 

Predicted protein  

e20 -2.2 112 7 35 23.3/6.06 31.4/5.97 gi|30793446  Triticum aestivum 27K protein, pfam03227, γ-interferon 

inducible lysosomal thiol reductase  

  

e31 -1.9 82 5 55 13.7/6.73 13.7/6.45 gi|253783731  Triticum aestivum α-amylase inhibitor CM1   

e21 -2.0 117 8 34 26.6/6.37 31.1/6.40 gi|90959771  Triticum aestivum Multidomain cystatin   

e16 -1.9 113 12 34 35.8/6.51 36.1/6.00 TC264995 Hordeum vulgare Aldose reductase    

e4 -1.5 72 5 11 84.8/5.68 77.2/7.03 gi|50897038  Hordeum vulgare  Methionine synthase   

e5 -1.6 94 15 32 59.5/6.27 54.1/5.71 gi|3913791  Solanum 

lycopersicum 

Glutamate--cysteine ligase, chloroplastic  

e22 -1.9 95 8 40 29.4/4.83 33.8/8.13 gi|40781605  Triticum aestivum 14-3-3 protein   

e1 -1.6 72 8 16 71.2/6.25 82.7/5.71 TC252572  Oryza sativa  Ste20-related protein   

e17 -1.9 75 9 20 66.7/7.78 36.6/5.86 gi|215398470  Triticum aestivum Globulin 3   

e15 -1.6 92 8 19 66.6/7.78 36.6/6.56 gi|215398470 Triticum aestivum Globulin 3  

e6 -1.9 75 9 15 49.9/6.16 55.3/5.81 TC246703  Zea mays Globulin-like protein  

e2 -1.7 73 6 15 57.8/8.19 91.3/6.61 gi|225450579  Vitis vinifera Hypothetical protein, cl03252, PPR repeat  

f1 1.6 75 4 23 32.8/8.50 71.9/8.46 BE424082 Triticum aestivum α-gliadin   
f2 1.8 81 4 23 32.8/8.50 71.9/9.05 BE424082 Triticum aestivum α-gliadin   
f5 1.5    32.3/7.16 39.2/8.20 TC250312 Triticum aestivum γ-gliadin  VPPECSIIRAPF,  

VPPECSIIRAPFASIVAGIGGQ 

  f6 1.5 73 4 33 32.8/8.50 39.2/8.67 BQ242040 Triticum aestivum α-gliadin    

  f7 1.9    35.0/8.60 38.4/8.52 BQ241281 Triticum aestivum Low-molecular-weight glutenin subunit 

group 4 type II  

HNSNHVHSNNNHHYRSNNN 

HHF,  
HCNKHYRTTNNNNPSNNNH 

NHF 
f8 1.6 72 4 8 32.3/7.16 32.3/8.30 TC249991 Triticum aestivum γ-gliadin    

 f3 -2.0    34.6/6.62 47.9/5.44 BQ244076 Triticum aestivum α/β-gliadin  SSRSAKPSPMLSML, 

SVLTEKKITL 

f4 -1.6    44.6/6.12 44.0/5.33 CA726637 Triticum aestivum ω-gliadin AMFIAMARRTNMMK, 
IAMARRTNMMKVL 

 

a
 Spot numbers a, b and e refer to Fig. 2 (albumin fractions), spot numbers c, d and f refer to Fig. 3 (gliadin fractions). 

b
 +: spots increasing in intensity under stress treatments; -: spots decreasing in intensity under stress treatments. 
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c
 Significant MS score is above 71 for NCBI and HvGI. 

d
 gi: accession number in NCBI; TC, BQ, BE, BJ: accession number in the TaGI wheat gene index Release 11.0. 

e
 When the identification was based on EST sequence, the organism with the most homologous sequence is given. The theoretical pI and MW are calculated from the 

homologous sequence of that organism. 
f
 Significant MS/MS score is above 26 for TaGI.  
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Appendix II 

Secretome analysis of YAP- or AP-knockout mutant of Fusarium 

graminearum 

Collaboration with Ph.D. student Jens Due Jensen, Department of Plant Biology and Biotechnology, University 

of Copenhagen 

 

YAP and AP are known as transcription factors which regulate genes encoding antioxidants such as catalases and 

superoxide dismutases and are required for the response to oxidative stress (personal communication with Jens 

Due Jensen). Two Fusarium graminearum mutants have been knocked out YAP and AP genes, respectively, 

constructed by Jens Due Jensen, to investigate the role of antioxidants in pathogenesis. In in planta experiments, 

these two mutants are more aggressive than wildtype strain during infection of wheat. In order to gain some 

insights into the molecular mechanism of infection in the mutants, we conducted in vitro secretome analysis with 

the substrate of wheat grain flour due to difficulty of obtaining fungal proteins in planta and the important role 

of secreted proteins in pathogenicity. The methods of isolation of fungal secreted proteins, 2-DE, image analysis 

and protein identification were performed as described in Chapter 4. In total, 38 and 34 spots changed in 

intensity in AP and YAP mutants compared to the wildtype, of which 35 and 31 spots were identified, 

respectively.  There was one spot identified as wheat abundant protein serpin in either mutant. The identified 

fungal proteins were mainly involved in the degradation of plant substrate cell wall, starch and protein. The 2-D 

patterns of mutants as well as wildtype and protein identification were shown in Fig. S1 and Table S1, 

respectively.   
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Fig. S1. 2-DE Sypro-Ruby stained gels from the secretome of wildtype (PH1), AP-knockout and YAP-knockout F. graminearum grown in 

medium containing wheat grain flour. Molecular size markers and pI ranges are indicated. Protein spots changing in intensity between the 

AP or YAP mutant and wildtype are numbered as Axx and Yxx, respectively.  
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Table S1. Identification list of F. graminearum proteins varying between mutants and wildtype 

Spot 

no 

Spot 

relative 

intensitya 

MS 

score 

Number 

of 

peptides 

matched 

Sequence 

coverage 

(%) 

Theor./Exp. 

pI 

Theor./Exp. 

MW (kDa) 

Accession 

numberb 

Protein and conserved domain Signal 

peptidec 

AP mutant 

A256 1.8 55 4 10 6.40/6.86 43.72/45.07 FGSG01596 Hypothetical protein, pfam00150, cellulase superfamily Yes 

A260 2.6 58 3 8 6.38/6.59 45.90/44.69 FGSG01596 Hypothetical protein, pfam00150, cellulase superfamily Yes 

A356 2.9 58 5 7 9.01/5.52 37.65/23.00 FGSG02658  Endoglucanase-5 Yes 

A295 -2.1 55 5 17 4.70/4.58 40.51/36.26 FGSG05292  GPI-anchored cell wall β-1,3-endoglucanase EglC  Yes 

A93 1.7 63 7 9 4.72/5.25 94.93/142.12 FGSG11097 Hypothetical protein, cl02568, WSC superfamily involved in 

carbohydrate binding, cl09101, sugar utilizing enzymes 

Yes 

A651d 2.1 57 3 6 5.37/5.65 48.84/46.38 FGSG03842 α-amylase 1   Yes 

A604d 2.5 91 7 29 5.62/6.81 33.63/32.57 FGSG01818 Leucine aminopeptidase   Yes 

A603d 2.7 57 5 24 5.62/6.72 33.63/32.57 FGSG01818 Leucine aminopeptidase Yes 

A261d 2.5 56 4 11 5.51/6.19 66.83/44.69 FGSG03467 Extracellular elastinolytic metalloproteinase precursor   Yes 

A647 1.9 58 5 15 5.39/5.43 49.76/48.54 FGSG04527  Carboxypeptidase S1 Yes 

A655d 1.8 96 7 21 5.39/5.52 49.76/46.38 FGSG04527 Carboxypeptidase S1   Yes 

A648 1.6 100 8 26 5.39/5.41 49.76/46.38 FGSG04527 Carboxypeptidase S1   Yes 

A234 -3.1 81 5 8 5.81/5.52 50.54/54.80 FGSG04936  Aminopeptidase Y Yes 

A639 -1.5 64 5 22 5.82/5.85 36.60/38.33 FGSG05738 Hypothetical protein,  cd01310, TatD_DNAse, 

cl00281,metallo-dependent-hydrolases superfamily 

No 

A362 2.1 71 6 22 5.58/6.50 28.59/21.85 FGSG04826 L-xylulose reductase   No 

A623d -2 61 5 13 6.68/6.52 48.03/65.26 FGSG06549  Chitin deacetylase  Yes 

A203 -1.8 78 6 16 6.68/6.36 48.03/65.26 FGSG06549  Chitin deacetylase  Yes 

A206 -1.5 57 4 12 6.68/6.23 48.03/65.26 FGSG06549  Chitin deacetylase  Yes 

A374d 2.1 172 7 39 6.31/6.72 19.61/18.46 FGSG00777 Cyclophilin, mitochondrial   No 

A611d 2.2 194 15 77 6.92/7.17 18.61/23.00 FGSG04074 Hypothetical protein, cell wall protein Yes 

A363d 1.7 62 5 21 6.92/6.30 18.61/21.85 FGSG04074 Hypothetical protein, cell wall protein Yes 

A359d 1.8 113 8 44 6.92/6.77 18.61/23.57 FGSG04074 Hypothetical protein, cell wall protein Yes 

A612d 1.7 62 7 26 6.92/7.17 18.61/20.70 FGSG04074 Hypothetical protein, cell wall protein Yes 

A631 -2.1 56 4 17 5.08/4.80 33.22/29.83 FGSG07603  Hypothetical protein,  cl09931, NADB_Rossmann superfamily No 

A622d 1.8 112 6 52 5.71/5.96 21.80/19.57 FGSG01403 Hypothetical protein, cl00438, FMN_red superfamily No 

A393 -1.6 58 4 32 6.23/6.90 16.84/16.30 FGSG09570  Predicted protein  Yes 

A641 -1.8 55 5 14 5.37/5.70 48.21/36.26 FGSG08833 Hypothetical protein No 

A493d 12 415 4 58 6.94/7.12 9.46/6.37 FGSG11033 Predicted protein   Yes 

A614d 3.8 254 4 58 6.94/6.41 9.46/5.96 FGSG11033 Predicted protein   Yes 

A302 3.8 68 5 18 5.86/6.28 35.21/33.63 FGSG11204  Hypothetical protein Yes 

A609 4.3 59 6 12 6.36/6.39 49.24/44.69 FGSG01637 Hypothetical protein Yes 

A245 2.2 64 5 13 7.82/7.06 40.30/48.09 FGSG02721  Hypothetical protein , pfam10282, DUF2394 unknown Yes 



  Appendix II 
 

                                                                                                                                          119 
 

function 

A482 1.5 85 5 76 6.10/6.68 10.22/6.83 FGSG04000 Hypothetical protein No 

A401 1.8 94 6 45 6.11/6.32 13.43/14.26 FGSG04741  Hypothetical protein  Yes 

A635 -1.5 100 10 24 6.64/5.96 50.57/36.26 TC253068  Serpin No 

 

YAP mutant 

Y658 2 58 7 13 5.11/5.59 84.17/83.26 FGSG06616 Glucan 1,3-β-glucosidase GLUC78 Yes 

Y696 2.2 55 7 13 5.11/5.67 84.17/83.26 FGSG06616 Glucan 1,3-β-glucosidase GLUC78 Yes 

Y170 1.7 55 7 13 5.11/5.46 84.17/83.26 FGSG06616 Glucan 1,3-β-glucosidase GLUC78 Yes 

Y295 -1.6 56 5 17 4.70/4.58 40.51/34.42 FGSG05292  GPI-anchored cell wall β-1,3-endoglucanase EglC  Yes 

Y267 2.2 57 4 12 5.84/5.82 47.50/41.45 FGSG08265  β-1,6-glucanase precursor  Yes 

Y260d 2 58 3 8 6.40/6.59 43.72/44.35 FGSG01596 Hypothetical protein, pfam00150, cellulase superfamily Yes 

Y300 1.6 62 5 15 6.22/6.47 45.48/32.48 FGSG00047  Hypothetical protein,cl09107, esterase_lipase superfamily No 

Y646 -1.8 75 5 9 5.43/5.76 56.08/54.61 FGSG11386 Hypothetical protein, cl09107, esterase-lipase superfamily Yes 

Y286e 2    6.80/8.15 40.85/35.38 FGSG00806 Alkaline protease Yes 

Y261 2.3 56 4 11 5.51/6.20 66.83/44.35 FGSG03467 Extracellular elastinolytic metalloproteinase precursor   Yes 

Y692 1.7 63 4 18 5.62/6.80 33.63/31.51 FGSG01818  Leucine aminopeptidase  Yes 

Y690 2.1 58 5 24 5.62/6.72 33.63/31.51 FGSG01818 Leucine aminopeptidase  Yes 

Y234 -1.9 81 5 8 5.81/5.50 50.54/52.66 FGSG04936  Aminopeptidase Y Yes 

Y651d 2.5 128 9 27 5.39/5.67 49.76/44.98 FGSG04527 Carboxypeptidase S1 Yes 

Y137 1.6 68 8 16 5.19/5.29 92.40/99.56 FGSG06572  Hypothetical protein, pfam00082, peptidase_S8, Subtilase 

family, pfam06280, DUF1034 

Yes 

Y359 1.6 93 7 43 6.92/6.80 18.61/22.46 FGSG04074  Hypothetical protein,cell wall protein Yes 

Y685 -1.9 74 5 22 5.58/5.80 28.59/28.05 FGSG04826 L-xylulose reductase   No 

Y623 -1.6 68 5 15 6.68/6.51 48.03/64.43 FGSG06549  Chitin deacetylase  Yes 

Y659 -1.8 60 5 19 5.87/6.34 32.32/37.33 FGSG06257  Glyceraldehyde-3-phosphate dehydrogenase  No 

Y688 -1.9 73 7 31 5.87/6.13 32.32/37.33 FGSG06257 Glyceraldehyde-3-phosphate dehydrogenase No 

Y631 -1.9 56 4 17 5.08/4.79 33.22/29.05 FGSG07603  Hypothetical protein,  cl09931, NADB_Rossmann superfamily No 

Y235 1.6 56 4 14 4.83/4.33 38.37/51.75 FGSG08037  Hypothetical protein, cl01383, intradiol_dioxygenases 

superfamily 

Yes 

Y245 2 62 5 13 7.82/7.06 40.30/47.71 FGSG02721  Hypothetical protein , pfam10282, DUF2394 unknown 

function 

Yes 

Y641 -1.7 55 5 14 5.37/5.67 48.21/34.90 FGSG08833 Hypothetical protein No 

Y493d 15 310 4 58 6.94/7.14 9.46/6.33 FGSG11033 Predicted protein   Yes 

Y614d 5.9 260 3 49 6.94/6.43 9.46/5.66 FGSG11033 Predicted protein   Yes 

Y459 1.5 58 3 49 6.94/8.10 9.46/9.14 FGSG11033  Predicted protein  Yes 

Y302 4 63 5 18 5.86/6.26 35.21/32.48 FGSG11204  Hypothetical protein  Yes 

Y393 -1.7 58 4 32 6.23/6.89 16.84/15.54 FGSG09570  Predicted protein  Yes 

Y609 3.6 59 6 12 6.36/6.38 49.24/44.35 FGSG01637 Hypothetical protein Yes 

Y635d -1.5 85 13 27 6.64/6.01 50.57/34.90 TC253068  Serpin No 
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a +: increasing in intensity in the mutants; -: decreasing in intensity in the mutants 
b FGSG: accession number in Fusarium graminearum gene index from Broad Institute; TC: accession number in the TaGI wheat gene index Release 11.0 
c If the signal peptide is contained, the theoretical pI and MW are calculated after removal of signal peptide 
d At least one peptide additionally confirmed by MS/MS analysis 
e Identified by MS/MS analysis 
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