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Summary. The present study is dedicated to the dimension reduction of high-dimensional FE models of mechanical systems in which
low-dimensional behaviour is observable. A low-dimensional model of the such a FE model is constructed and the bifurcation diagram
of the low-dimensional system is compared with that of the FE model in order to investigate the range of validity of the low-dimensional
model.

Low-dimensional behaviour of high-dimensional mechanical models

We construct a low-dimensional approximation of a FE model of some mechanical system (e.g. Figure 1) and check how
well the low-dimensional model captures the essential behaviour by comparing the bifurcation diagrams.
We do this because most mechanical systems are described by physical laws in the form of partial differential equations,
and in many applications — industrial as well as academic — the systems are too complex to be handled analytically.
When confronted with these problems where standard analytical methods are not suitable, usually one resorts to numerical
approximations such as FE modeling.
Often numerical approximations have the drawback of being so high-dimensional that numerical bifurcation methods for
obtaining the essential dynamical system behaviour are unlikely to be successful due to computational limitations.
This curse of high-dimensionality can be alleviated by dimension reduction methods. When macroscopic behaviour can
be observed, it indicates the existence of an attracting low-dimensional submanifold of the phase space such as periodic
orbits or tori.

The object of interest in this study is high-dimensional FE models of driven nonlinear mechanical systems where low-
dimensional behaviour has been observed. The considered FE model will typically be some variant of eq. (1)

Mẍ + Cẋ + Kx = f(x, ẋ) + g(t) where x ∈ Rn, M,C,K ∈ Rn×n (1)

where n is large, f could be some nonlinear function of displacements and velocities, x, and g is a T-periodic function of
time, t.

Figure 1: Sketch of a driven beam with a nonlinear spring and an impact.

In dynamical systems theory the low-dimensional manifolds are referred to under different names such as inertial mani-
folds, slow manifolds and center manifolds - all of which are conceptually very similar in the present subject. In the next
section dimension reduction is introduced in terms of the slow manifold.

Mathematical Assumptions and Modelling

Consider the slow manifold approach for the n-dimensional ordinary differential equation (ODE)

u̇ = F(u, µ) ∀(u, µ) ∈ Rn×k, (2)

where F is an n-dimensional nonlinear function. Letting n be large this system could very well be the representation of
some FE model of a mechanical system. Let us assume the existence of a spectral gap that seperates the slow and fast
dynamics of eq. (2)

ẋs = Fs(xs, xf , µ) ∀xs ∈ Rm, (3)
εẋf = Ff (xs, xf , µ) ∀xf ∈ Rn-m and 0 < ε� 1 (4)

where n� m and the subscripts s and f denote slow and fast, respectively, then the system might be restricted to a slow
manifold. In general all of the aforementioned low-dimensional manifolds give rise to a slaving property — a map from
the low-dimensional space to the high-dimensional space defined by

Φ : xs 7→ xf .
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Given the existence of this slow manifold, xf = Φ(xs), eq. (3) can be made independent of the slaved variables, which
leads to a low-dimensional dynamical system. The reduction by the slow manifold is given by

ẋs = Fs(xs,Φ(xs)) ∀xs ∈ Rm. (5)

This means that trajectories can be computed without error and bifurcation analysis might now become realistic. Notice
that, although the dimensionality of the problem was reduced, the complexity of the problem was shifted to a large number
of Cauchy problems that have to be solved in order to obtain the slaving relationship Φ. For the slow manifold it is n-m
Cauchy problems that are derived by substituting the slaving xf = Φ(xs) into (4)

ε
∂Φ

∂xs
Fs(xs,Φ(xs)) = Ff (xs,Φ(xs)), (6)

which is n-m first-order nonlinear PDEs. In a first order approximation Φ can be captured as the solution of

0 = Ff (xs,Φ(xs)). (7)

Next we consider a fundamental example in which the slow manifold is explicitly given. The example is illustrative of the
strength of the idea but also acts as a warning because the dynamical system is only partly restricted to the slow manifold.

A classical example of a slow manifold
Consider the van der Pol equation, ü − µ(1 − u2)u̇ + u = 0 (µ � 1), by a change of variables the following slow-fast
system can be achieved

ẋs = xf (8)

εẋf = −xs + xf −
1

3
x3f where 0 < ε =

1

µ2
� 1. (9)

Considering the limit ε→ 0 the slow manifold is given by 0 = −xs +xf − 1
3x

3
f and it is sketched in Figure 2 where thick

gray line is the slow manifold and the black line is the low-dimensional manifold. It is evident that a naive slow manifold
reduction is not a good choice for the dimension reduction in this particular example, it does however offer some crucial
geometrical insight to the low-dimensional manifold through the fold points.
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Figure 2: Sketch of the dynamics for the van der Pol equation.

Exploration, Aim & Method

The present study is an exploration of low-dimensional manifolds — e.g. center and/or slow manifolds — of FE models
of mechanical systems and the aim is to check how well the low-dimensional models represent the essential behaviour of
the high-dimensional full systems, i.e. to check the correspondence between the bifurcation diagrams.
As of now the work is still in progress. The mechanical system of the study is a FE model of a driven beam with a
nonlinearity e.g. through friction and/or springs. The plan is to construct a low-dimensional system of the FE model
by introducing a slaving like the one used by Jiang et al. [2], however, differing by the numerical construction of the
low-dimensional manifold through explicitly including the bifurcation-parameters by continuation methods i.e. letting

Φ : (xs, µ) 7→ xf , (10)

and by considering a different nonlinearity.
The hope is that this analysis will reveal some limitations and in turn offer some insight on how to solve these.
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