
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Distortional solutions for loaded semi-discretized thin-walled beams

Andreassen, Michael Joachim; Jönsson, Jeppe

Published in:
Thin-Walled Structures

Link to article, DOI:
10.1016/j.tws.2011.08.013

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Andreassen, M. J., & Jönsson, J. (2012). Distortional solutions for loaded semi-discretized thin-walled beams.
Thin-Walled Structures, 50(1), 116-127. DOI: 10.1016/j.tws.2011.08.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13780079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tws.2011.08.013
http://orbit.dtu.dk/en/publications/distortional-solutions-for-loaded-semidiscretized-thinwalled-beams(df0fc640-365b-4345-b3d1-7e8dceba488c).html


Distortional solutions for loaded semi-discretized thin-walled beams

M. J. Andreassen, J. Jönsson

Technical University of Denmark, Department of Civil Engineering, Brovej Building 118,
DK-2800 Kgs. Lyngby

Abstract

For thin-walled beams, the classic theory for flexural and torsional analysis of open and closed cross-sections can
be generalized by including distortional displacements. In a companion paper it is shown, that using a novel semi-
discretization process, it is possible to determine specific distortional displacement fields which decouple the reduced
order differential equations. In this process the cross section is discretized into finite cross-section elements, and the
natural distortional modes as well as the related axial variations are found as solutions to the established coupled
fourth order homogeneous differential equations of GBT.

In this paper the non-homogeneous distortional differential equations of GBT are formulated using this novel semi-
discretization process. Transforming these non-homogeneous distortional differential equations into the natural eigen-
mode space by using the distortional modal matrix found for the homogeneous system, we get the uncoupled set of
differential equations including the distributed loads. This uncoupling is very important in GBT, since the shear
stiffness contribution from St. Venant torsional shear stress as well as “Bredt’s shear flow” cannot be neglected nor
approximated by the combination of axial stiffness and transverse stiffness, especially for closed cross sections. The
full analytical solutions of these linear non-homogeneous differential equations are given, including four illustrative
examples, which illustrate the strength of this novel approach to GBT. This new approach is a considerable theoretical
achievement, since it without approximation gives the full analytical solution for a given discretization of the cross
section including distributed loading. The boundary conditions considered in the examples of this paper are restricted
to built in ends, which are needed for future displacement formulation of an exact first-order order distortional beam
element.

Key words: Distortion, Warping, Distortional beam theory, Generalized beam theory (GBT), Thin-walled beams,
Beam theory, Semi-discretization, Non-Homogeneous, Load.

1. Introduction

Thin-walled members are often used in the civil, me-
chanical and aerospace industry because of the high
strength and the effective use of material. Due to the in-
creased consumption of thin-walled structural elements
there has been increasing focus and need for more de-
tailed calculations. Thus, it has been necessary to ex-
tend the classic beam theory to include the distortion of
the cross section. Such an extension of the theory is
considered in this paper and in the companion paper [1]
where a novel approach to the determination of distor-
tional displacement modes of Generalized Beam Theory
(GBT) is formulated. This novel approach involves a

Email addresses: mican@byg.dtu.dk (M. J. Andreassen),
jej@byg.dtu.dk (J. Jönsson)

new cross-section semi-discretization process as well as
a novel determination of the natural cross-section eigen-
modes and related axial solution functions by exact an-
alytical solution of the related first-order GBT equa-
tions. A variety of other formulations including dis-
tortional displacements have been proposed for analy-
sis of both open and closed cross sections. Specially,
the traditional first generation of generalized beam the-
ory, known as GBT, initially proposed by Schardt in
1966 [2], has been very popular and fostered a lot of
research and developments, mostly undertaken by a few
independently working European groups, among others
by Schardt [3], Davies [4], Lepistö [5], Baláž and Ren-
dek [6], Simões da Silva and Simão [7], Gonçalves et
al [8], Gonçalves and Camotim [9] and Camotim & Sil-
vestre [10], [11]. In these developments the distortional
modes of traditional GBT have been extended (with
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“other” modes) in order to encompass shear through
shear modes, post buckling through inclusion of trans-
verse extension modes as well special modes to accom-
modate shear lag. However, these extensions with other
modes are not considered in the present paper, since
they are not part of a first generation GBT and may
be viewed as patches towards expanded use of a gen-
eralized beam theory in a finite element context. For a
more elaborate introduction see the companion paper,
[1]. Particularly relevant in relation to our research is
the closely related work of Hanf [12] as well as the work
on distortional theory of thin-walled beams by Jönsson
[13]. In contrast to and as a considerable advance on the
traditional GBT formulation this novel GBT approach
solves the fourth-order differential equations to obtain
the distortional displacements for a linear beam analy-
sis. This advance will enable future formulation of ex-
act distortional beam elements with distributed load for
first-order analysis using the found axial solution func-
tions (solutions of the GBT equations) instead of con-
ventional interpolation by third-order polynomials.

Thus, in this paper the distortional differential equa-
tions including distributed loads are formulated. Trans-
forming the non-homogeneous distortional differential
equations into an eigenmode space, by using the distor-
tional modal matrix found for the homogeneous system,
we get the diagonalized and thus uncoupled set of differ-
ential equations including the distributed loads. The full
solution of these uncoupled linear differential equations
is given and followed by four illustrative examples. The
boundary conditions considered in the examples of this
paper are restricted to built in ends, which are needed for
future displacement formulation of an exact first-order
distortional beam element. It should be mentioned that
the theory and formulations in paper [1] remain valid,
which implies that mainly the development of the par-
ticular part and the following final general solution will
be presented in this paper. It was found necessary to
follow the individual steps of the transformations and
eliminations in the companion paper [1], in order to en-
sure a correct formulation of the individual decoupled
non-homogeneous differential equation, especially for
the distortional modes where we have utilized reduction
of the order of the differential equations. Having done
this once we may use work or energy principles to iden-
tify the individual load terms in a more direct manner.

2. Basic kinematic assumptions

The theories of beams are derived on the basis of as-
sumed displacement fields which correspond to exten-
sion, flexure, torsion, warping and distortional displace-

Figure 1: Global and local Cartesian reference frames.

ments. This corresponds to a modal separation in which
each mode has a set of transverse and axial displace-
ment fields that may be coupled. Each of these cross-
section displacement fields is factorized in a displace-
ment mode which is a function of the in-plane coordi-
nates, multiplied by a function of the axial coordinate,
which describes the axial variation of the mode.

In the following the prismatic beam is described in
a global Cartesian (x, y, z) coordinate system as shown
in Figure 1. The figure introduces and shows the local
coordinates (z, n, s) corresponding to the axial, normal
and tangential directions. In the local coordinate sys-
tem the displacement components of one displacement
mode un, us and uz are given by the separated displace-
ment functions as follows

un(s, z) = wn(s) ψ(z) (1)

us(n, s, z) =
(
ws(s) − nwn,s(s)

)
ψ(z) (2)

uz(n, s, z) = −
(
Ω(s) + nwn(s)

)
ψ′(z) (3)

where the local components are shown in Figure 2. The
corresponding strains become

εz = −(Ω + nwn)ψ′′ (4)
εs = (ws,s − nwn,ss)ψ (5)
γ = γzs = uz,s + us,z = (ws −Ω,s −2nwn,s)ψ′ (6)

These are described in greater detail in the companion
paper [1].

3. Energy Assumptions

The internal energy potential introduced in paper [1]
will be briefly presented in this section followed by a
separate introduction of the external energy potential for
distributed loads.
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Figure 2: Local components of displacements and assumed shear stresses.

3.1. Internal energy potential

In the classic beam theory simple constitutive rela-
tions are used, which means that the material is assumed
to be linear elastic with a modulus of elasticity E and
shear modulus G. In this paper also a plate elasticity
modulus Es = E/(1−ν2) in the transverse direction will
be utilized. The axial stress is determined as σz = Eεz,
the shear stress as τ = Gγ and finally the transverse
stress as σs = Esεs. Thus taking the transverse plate
bending effect into account but neglecting the coupling
of axial strain εz and transverse strain εs. With the con-
stitutive relations assumed the elastic energy potential
becomes

Πint =

∫
V

(
1
2 Eε2

z + 1
2Gγ2 + 1

2 Esε
2
s

)
dV (7)

Let us introduce a thin-walled cross section assembled
by using straight cross sectional elements. This allows
us to integrate the internal energy across the volume of
the thin-walled beam. In the following we will denote
the thickness of the individual plane cross section ele-
ments by t and the width by bel. The elastic potential
energy of one mode takes the following form after the
introduction of the strains expressed by the separated

displacement functions:

Πint =

1
2

∫ L

0

[∑
el

∫ bel

0

{ [
Et(Ωψ′′)2 + 1

12 Et3(wnψ
′′)2

]
+

[
Gt(wsψ

′)2 + Gt(Ω,s ψ′)2

−2Gt(wsψ
′)(Ω,s ψ′) + 1

3Gt3(wn,sψ
′)2

]
+

[
Est(ws,sψ)2 + 1

12 Est3(wn,ssψ)2
] }

ds
]
dz (8)

The elastic energy terms have been grouped in axial
strain energy, shear energy, and transverse strain en-
ergy. Introducing the displacement interpolation func-
tions leads to the definition of several stiffness sub-
matrices as given in Table 1. The superscripts σ, τ and
s correspond to components of the axial stiffness, shear
stiffness and transverse stiffness, respectively.

3.2. External energy potential for distributed loads

Let us now introduce three types of distributed loads
qz, qs, qn which act on the mid plane of the individual
walls in the z, s, n directions, respectively. The external
load potential for these distributed loads can then for
one mode be found as

Πext = −

∫ L

0

∫ bel

0

[
qzuz + qsus + qnun

]
ds dz (9)

3



Figure 3: Load distribution.

Using separation of variables for the distributed loads as
for the displacements, we introduce the following load
variables qs = ps(s)φ(z), qn = pn(s)φ(z), qz = pz(s)φ(z).
In this formulation ps, pn, pz represent the cross-section
load distribution, and the function φ represents the ax-
ial variation of the loads. In the following formulation
we operate with only one cross-section load distribu-
tion, which may be modified by summation of various
different cross section load distributions and axial load
variation functions. The load separation is illustrated in
Figure 3 for a distributed load qn = pn(s)φ(z) on the up-
per flange of a thin-walled beam. The local components
of the loads and force vectors for a cross section wall
element is shown in Figure 4. Hereby the contribution
to the external load potential of a single wall element
takes the following form

Πext,el = −

∫ L

0

∫ bel

0
φ
[
pswsψ + pnwnψ

−pzΩψ
′

]
ds dz (10)

which is suited for adequate interpolation in the follow-
ing. Note that the two first load terms perform work
through the transverse displacements and the last load
term performs work through the axial warping displace-
ments. Since the formulation of distortion has much in
common with torsion the first two terms may be de-
scribed as distortional moment loads and the last term
as distortional bimoment load, see [13]. For the classic

torsional equilibrium equation including warping of the
cross section, see [14], these loads correspond to tor-
sional moment load and torsional bimoment load.

4. Interpolation within cross-section elements

The interpolations related to the cross section are the
displacement interpolations for ws, wn and Ω described
in the companion paper [1], and the interpolation of the
cross section loads ps, pn and pz introduced in the fol-
lowing. The distributed load shown in Figure 3 will
be defined by a linear interpolation of the load on each
cross section wall element multiplied by an axial shape
function φ(z), for which we will introduce a specific in-
terpolation later in a following section. The load inter-
polation in a cross-section wall is given by

ps = Nppel
s , pn = Nppel

n , pz = Nppel
z (11)

in which Np(s) = [1 − s/bel, s/bel] is the linear inter-
polation matrix, and where the nodal end values of a
cross-section wall element are given as

pel
s =

[
ps1
ps2

]
, pel

n =

[
pn1
pn2

]
, pel

z =

[
pz1
pz2

]
(12)

Using the introduced interpolations for the displace-
ments and the loads, the external potential energy now
takes the following form for a single wall element

Πext,el =

−

∫ L

0

∫ bel

0

[
ψvel

w
T Ns

T Nppel
s + ψvel

w
T Nn

T Nppel
n

−ψ′vel
Ω

T NΩ
T Nppel

z

]
φ ds dz (13)

This formulation allows us to write the element load
vector in the same format as the element stiffness con-
tributions from paper [1]. These are shown in Table
1, where we have also included the nodal cross section
wall loads Pel

w and Pel
Ω

corresponding to line loads also
varying along the beam with φ. Hereby the walls of
the thin-walled beam can be loaded by line loads acting
at the cross section nodes, and by surface loads acting
on the mid-plane of a cross section wall. Both of these
loads are distributed along the beam as given by the φ-
function. Now we can rewrite the external load potential
of a single wall element as,

Πext,el = −

∫ L

0

[
ψvel

w
T rel

wφ − ψ
′vel

Ω

T rel
Ωφ

]
dz (14)

where we have introduced the axial and transverse nodal
load components of a straight cross-section element as,

rel
Ω =

[
rel
Ω1 rel

Ω2

]T
(15)

rel
w =

[
rel

w1 rel
w2 rel

w3 rel
w4 rel

w5 rel
w6

]T
(16)

4



kσ
ΩΩ

=
∫ be

0 EtNT
Ω

N
Ω

ds

kσww =
∫ be

0
Et3

12 NT
n Nnds

ks =
∫ be

0

(
EstNT

s,sNs,s +
Est3

12 NT
n,ssNn,ss

)
ds

kτww =
∫ be

0

(
GtNT

s Ns + Gt3

3 NT
n,sNn,s

)
ds

kτ
ΩΩ

=
∫ be

0 GtNT
Ω,sNΩ,sds

kτwΩ
=

[
kτ

Ωw

]T
= −

∫ be

0 GtNT
s N

Ω,sds

rel
Ω

=
∫ be

0 NT
Ω

Np ds pel
z + Pel

Ω

rel
w =

∫ be

0 NT
s Np ds pel

s +
∫ be

0 NT
n Np ds pel

n + Pel
w

Table 1: Straight-element stiffness and load contributions.

These components are shown in Figure 4 along with the
direction of the wall element coordinates (n, s) as well
as the positive direction of the load components. We
choose to assemble the single element components into
two separate global vectors containing the axial load
and the transverse load, respectively. These global vec-
tors we will write as follows:

rΩ = [rΩ1 rΩ2 rΩ3 . . .]T (17)
rw = [rw1 rw2 rw3 rw4 rw5 rw6 . . .]T (18)

where the transformation from local to global compo-
nents is performed using a formal standard transforma-
tion of the components in the cross-section plane, i.e.

rΩ =
∑

el

TΩ
T rel

Ω (19)

rw =
∑

el

Tw
T rel

w (20)

See Table 2 for a overview of the important transforma-
tions used in this and in the companion paper [1]. Now
we can write the total potential energy by summation of
each element contribution as

Πtot = Πint + Πext , where Πext =
∑

el

Πext,el (21)

where Πint is the contribution to the potential energy
from the internal properties found in paper [1], and Πext

is the contribution from the external loads. Introduc-
ing the described interpolation and matrix calculation
scheme allows us to write the total potential energy as

Πtot = Πint −

∫ L

0

{
(ψvT

w)rwφ − (ψvT
Ω)′rΩφ

}
dz (22)

Figure 4: Distributed loads and the resulting load vectors.

The first term corresponds to the distortional moment
load which performs work through the transverse dis-
placements. The second term corresponds to the dis-
tortional bimoment load which performes work through
the axial displacements.

5. Modal loads and modal solutions

To obtain a formulation resembling the generalization
of Vlasov beam theory including distortion, the follow-
ing three main steps are performed as in the companion
paper [1]. This allows us to properly identify modal
load components as well as the contributions to the in-
dividual modal differential equations.

5.1. Step I - Pure axial load and shear constraints

Following the procedure which is used to identify
pure axial extension as an eigenmode and to introduce
shear constraints, we will identify the axial load com-
ponents and separate these from the remaining equa-
tions. The potential energy formulation including the
load terms in equation (22) have to be modified, so that
the pure axial extension is described by the separate
degree of freedom va

Ω
, and so that the shear constraint

equations are enforced. This modification is performed
using the following transformation No. 5 described in
Table 2:

vΩ = Tr
Ωwvw + Ta

Ωva
Ω (23)
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No. Description Transformations

1 Transformation from local to global axial d.o.f. vΩ = TΩvel
Ω

2 Transformation from local to global transverse d.o.f. vw = Twvel
w

3 Transformation from pure axial extension and other axial
d.o.f. to global axial d.o.f.

vΩ =
[
Ta

Ω
To

Ω

] [va
Ω

vo
Ω

]
4 Transformation from transverse d.o.f. to the other axial d.o.f.

(without pure axial extension) based on the shear constrains
vo

Ω
= TΩwvw

5 Transformation from transverse d.o.f. and pure axial exten-
sion d.o.f. to the global axial d.o.f. vΩ =

[
Tr

Ωw Ta
Ω

] [vw
va

Ω

]
6 Transformation from pure transverse translation d.o.f., pure

rotation d.o.f., constant wall-width constrained d.o.f. and un-
constrained d.o.f. to global transverse d.o.f. (wall-width con-
straints not applied)

vw =
[
Tα

w T3
w Tc

w Tu
w

] 
vαw
v3

w
vc

w
vu

w


7 Transformation from pure transverse translation d.o.f., pure

rotation d.o.f. and unconstrained d.o.f. to global transverse
d.o.f. (wall-width constraints applied)

vw =
[
Tα

w T3
w T̃u

w

] v
α
w

v3
w

vu
w


8 Transformation from constrained transverse d.o.f. and trans-

verse GBT d.o.f. to global transverse d.o.f.
vw =

[
Tc

w Tg
w
] [vc

w
vg

w

]

9 Transformation from FE space to GBT space
[
vg

w
va

Ω

]
=

[
Tg

w
T 0

0 Ta
Ω

T

] [
vw
vΩ

]

10 Transformation from GBT space to FE space
[
vw
vΩ

]
=

[
T̃g

w 0
Tr

ΩwT̃g
w Ta

Ω
T

] [
vg

w
va

Ω

]

Table 2: Transformations
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ra
Ω

= Ta
Ω

T rΩ r̄Ω = Tr
Ωw

T rΩ −Kσra
ΩΩ

(Kσaa
ΩΩ

)−1ra
Ω

Table 3: Transformation of load vectors related to Step I.

To clarify the variational treatment of pure axial exten-
sion, we also temporally rewrite the terms pertaining to
axial extension using ζva

Ω
= −ψ′va

Ω
. The modified elas-

tic potential energy (for a single mode) takes the follow-
ing form:

Πtot = Πint− (24)∫ L

0

{
(ψvT

w)rwφ − (ψvT
w)′ Tr

Ωw
T rΩφ + (ζva

Ω)ra
Ωφ

}
dz

in which the pure axial loading is identified as ra
Ω

. It
is as given in Table 3 identified as the product of the
transpose of the pure axial deformation mode and the
global axial load vector .

To obtain the differential equations of GBT, the first
variation of the elastic potential energy is investigated
by taking variations in the complete displacement field.
This gives

δΠtot = δΠint− (25)∫ L

0

{
δ(ψvT

w)rwφ − δ(ψvT
w)′ Tr

Ωw
T rΩφ + δ(ζva

Ω)ra
Ωφ

}
dz

After performing partial integrations on the terms that
involve axial derivatives of the (virtual) varied displace-
ment field, δ( )′, the first variation of the elastic potential
energy takes the form

δΠtot = δΠint− (26)∫ L

0

{
δ(ψvT

w)
[
rwφ + Tr

Ωw
T rΩφ

′
]

+ δ(ζva
Ω)ra

Ωφ

}
ds

+

[
δ(ψvT

w)
[
Tr

Ωw
T rΩφ

]]L

0

For internal variation in the displacement fields δ(ψvw)
and δ(ζva

Ω
), the elastic potential energy should be sta-

tionary and therefore its first variation must be equal to
zero. Here the terms in the squared bracket correspond
to the boundary loads and boundary conditions. Substi-
tuting δΠint from the companion paper [1] leads to the
following coupled non-homogeneous differential equa-
tions of GBT in which we note that ζ = −ψ′:

K̄σvwψ
′′′′ −Kσra

ΩΩ va
Ωζ
′′′ −Kτvwψ

′′ + Ksvwψ

= rwφ + Tr
Ωw

T rΩφ
′ (27)

Kσar
ΩΩ vwψ

′′′ − Kσaa
ΩΩ va

Ωζ
′′ = ra

Ωφ (28)

Here the left hand side of the equations corresponds to
the homogeneous equations, and the right hand side are
the non homogeneous (load) terms. The stiffness matri-
ces, K, are found and described in paper [1].

These equations establish a coupled set of non-
homogeneous GBT differential equations, that deter-
mine the displacements of a thin-walled beam for a
given set of boundary conditions. The homogeneous
parts of the solution have been found, and now we seek
particular solutions to the modal equations. Let us start
out by isolating the term va

Ω
ζ′′ in equation (28) as

va
Ωζ
′′ = (Kσaa

ΩΩ )−1[Kσar
ΩΩ vwψ

′′′ − ra
Ωφ] (29)

Let us then first consider the pure axial extension mode,
which has been identified as (vw, va

Ω
) = (0, 1), where we

introduce the notation bold zero 0 for a suitable size ma-
trix or vector of zeroes. Introducing this mode in equa-
tion (29) uncouples the equation (since vw = 0). In-
tegrating the particular solution for the axial mode, the
complete solution for the axial variation is then given
by adding the homogeneous part of the solution and the
particular part as follows:

ζ(z) =
[
1 z

] [ca1
ca2

]
− (Kσaa

ΩΩ )−1ra
Ω

∫∫
φ dzdz (30)

where ca1 and ca2 are constants determined by the
boundary conditions of axial extension.

In the context of the current work we will interpo-
late the cross section load using one distribution func-
tion φ(z), which varies linearly between two end values
(φ1 and φ2) representing the values of the multiplicative
function at the ends of the profile. Thus we introduce φ
as

φ =
[
1 − z

L
z
L

]
φ , where φ =

[
φ1
φ2

]
(31)

Using this linear interpolation the full integrated solu-
tion of equation (30) takes the form

ζ(z) = −Ψah
′(z) ca −Ψap

′(z) φ (32)

where

Ψah
′ = −

[
1 z

]
ca =

[
ca1
ca2

]
Ψap

′ =
L2ra

Ω

6Kσaa
ΩΩ

[
3( z

L )2 − ( z
L )3 ( z

L )3
]

The introduced subscripts h and p denote the homoge-
neous and the particular parts of the solution, respec-
tively.

Next let us consider the formulation of the remain-
ing transverse displacement modes. Inserting equation
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rαw = Tα
w

T rw r3
w = T3

w
T rw

ru
w = T̃u T

w rw ruα
w = ru

w −Kσ
αu

T (Kσ
αα)−1rαw

r̄α
Ω

= Tα
w

T r̄Ω r̄3
Ω

= T3
w

T r̄Ω

r̄u
Ω

= T̃u T
w r̄Ω r̄uα

Ω
= r̄u

Ω
−Kσ

αu
T (Kσ

αα)−1r̄α
Ω

Table 4: Transformation of load vectors related to Step II.

(29) differentiated once into equation (27) we eliminate
pure axial extension. Introducing Kσ as in paper [1],
we obtain the following non-homogeneous fourth order
differential equations for determination of the transverse
(global, distortional and local) distortional displacement
modes of GBT:

Kσvwψ
′′′′ −Kτvwψ

′′ + Ksvwψ (33)
= rwφ + (Tr

Ωw
T rΩ −Kσra

ΩΩ (Kσaa
ΩΩ )−1ra

Ω)φ′

which we choose to abbreviate and write as

Kσvwψ
′′′′ −Kτvwψ

′′ + Ksvwψ = rwφ + r̄Ωφ
′ (34)

where r̄Ω is given in Table 3.

5.2. Step II - Flexural loading and constant wall width

In this step we treat two modes corresponding to
transverse translations of the cross section, and one
mode corresponding to pure rotation. We also constrain
the transverse displacement field so that the wall widths
remain constant, i.e. we enforce ws,s ≡ 0.

Let us do this by first introducing transformation No.
7 from Table 2 into the differential equations in (34),
and also introduce the null terms corresponding to the
rigid-body modes and zero shear strain for translational
and flexural modes. Hereby the differential equations
including the load terms take the following form:K

σ
αα 0 Kσ

αu
0 Kσ

33 Kσ
3u

Kσ
uα Kσ

u3 Kσ
uu


v
α
w

v3
w

vu
w

ψ′′′′ −
0 0 0
0 Kτ

33 Kτ
3u

0 Kτ
u3 Kτ

uu


v
α
w

v3
w

vu
w

ψ′′

+

0 0 0
0 0 0
0 0 Ks

uu


v
α
w

v3
w

vu
w

ψ =

r
α
w

r3
w

ru
w

 φ +

r̄
α
Ω

r̄3
Ω

r̄u
Ω

 φ′ (35)

where the transformed stiffness matrices are found and
described in paper [1] and the load vectors are given in
table 4. The two-dimensional upper block matrix equa-
tion yields the translation displacements as

vαwψ
′′′′ = Kσ

αα
−1[rαwφ + r̄αΩφ

′ −Kσ
αuvu

wψ
′′′′] (36)

where α = 1 or α = 2. We can identify the two or-
thogonal pure translational modes, (v1

w, v
2
w, v

3
w, vu

w) =

(1, 0, 0, 0) and (0, 1, 0, 0), as eigenmodes or full solu-
tions to the homogeneous part of equation (35). A par-
ticular solution for the axial variation of the pure trans-
lational modes is determined by quadruple integration
of the non homogeneous load terms (since vu

w = 0). The
complete solution is then given by summation of the
full homogeneous solution and the particular solution,
which we can express as

ψα(z) = cα1 + cα2z + cα3z2 + cα4z3 (37)

+

∫∫∫∫
(Kσ

αα)−1(rαwφ + r̄αΩφ
′) dz dz dz dz

Remembering that we in the present context introduce φ
as one linear function as given in equation (31), we can
perform the quadruple integration and get

ψα(z) = Ψαh(z) cα +Ψαp(z) φ (38)

Here cα is a vector containing four constants of the ho-
mogeneous part of the solution, and

Ψαp(z) = Ψw
αp(z) +ΨΩ

αp(z) (39)

Ψαh(z) =
[
1 z z2 z3

]
(40)

Ψw
αp(z) =

L4

120
(Kσ

αα)−1rαw
[
5( z

L )4 − ( z
L )5 ( z

L )5
]

(41)

ΨΩ
αp(z) =

L3

24
(Kσ

αα)−1r̄αΩ
[
4( z

L )3 − ( z
L )4 ( z

L )4
]

(42)

Having identified the solutions related to the two pure
translational modes we return to the remaining block
equations of equation (35). Eliminating the two pure
flexural degrees of freedom using equation (36) we ob-
tain the condensed version of the differential equation
(35) as[
Kσ

33 Kσ
3u

Kσ
u3 K̄σ

uu

] [
v3

w
vu

w

]
ψ′′′′ −

[
Kτ

33 Kτ
3u

Kτ
u3 Kτ

uu

] [
v3

w
vu

w

]
ψ′′

+

[
0 0
0 Ks

uu

] [
v3

w
vu

w

]
ψ =

[
r3

w
ruα

w

]
φ +

[
r̄3
Ω

r̄uα
Ω

]
φ′ (43)

The stiffness matrix K̄σ
uu is found in the companion pa-

per [1] and the vectors ruα
w and r̄uα

Ω
are given in Table

4. This equation constitutes the GBT differential equa-
tions constrained by shear flow constraints and wall-
width constraints after the elimination of the classical
axial and two translational (flexural beam) modes.

5.3. Step III - Reduction of order and torsional load
The fourth order differential equation (43) can be

transformed into twice as many second order differ-
8



ential equations by introducing a so called state vec-
tor. There are a number of different possible formu-
lations, however we choose the use of the state vector
(v3

wψ, vu
wψ, v

3
wψ
′′, vu

wψ
′′)T . By introducing this state vec-

tor we obtain a reformulation of equation (43), leading
to a formal second order matrix differential equation of
double size, which takes the form
0 0 0 0
0 Ks

uu 0 0
0 0 −Kσ

33 −Kσ
3u

0 0 −Kσ
u3 −K̄σ

uu




v3
wψ

vu
wψ

v3
wψ
′′

vu
wψ
′′

 (44)

−


Kτ

33 Kτ
3u −Kσ

33 −Kσ
3u

Kτ
u3 Kτ

uu −Kσ
u3 −K̄σ

uu
−Kσ

33 −Kσ
3u 0 0

−Kσ
u3 −K̄σ

uu 0 0




v3
wψ

vu
wψ

v3
wψ
′′

vu
wψ
′′


′′

=


r3

w
ruα

w
0
0

 φ +


r̄3
Ω

r̄uα
Ω

0
0

 φ′
To keep the matrix operations as simple as possible we
introduce a new vector ve

w, three new block matrices,
Kσ

ee, Kσ
3e, and Kσ

ue given by

ve
w =

[
v3

w
vu

w

]
Kσ

ee =

[
Kσ

3e
Kσ

ue

]
=

[
[ Kσ

33 Kσ
3u ]

[ Kσ
u3 K̄σ

uu ]

]
(45)

and the force vectors are given by

re
w =

[
0
0

]
, re

Ω =

[
0
0

]
(46)

Introducing the new vectors and block matrices defined
by equation (45) and (46), and the transformed loads
given in Table 5, the second order differential equations
(44) can be rewritten as0 0 0
0 Ks

uu 0
0 0 −Kσ

ee


 v3

wψ
vu

wψ
ve

wψ
′′

 (47)

−

 Kτ
33 Kτ

3u −Kσ
3e

Kτ
u3 Kτ

uu −Kσ
ue

−Kσ
e3 −Kσ

eu 0


 v3

wψ
vu

wψ
ve

wψ
′′


′′

=

 r3
w

ruα
w

re
w

 φ +

 r̄3
Ω

r̄uα
Ω

re
Ω

 φ′
From the first equation we can isolate the pure rotational
term resulting in the following differential equation:

v3
wψ
′′ = (48)

−(Kτ
33)−1

(
Kτ

3uvu
wψ
′′ −Kσ

3eve
wψ
′′′′ + r3

wφ + r̄3
Ωφ
′
)

It can be seen that pure torsion (with free warping), cor-
responding to the solution vector, (v3

wψ, vu
wψ, ve

wψ
′′) =

(c32z + c31, 0, 0), is a solution of the homogeneous sec-
ond order differential equations in (47). Hereby the par-
ticular solution for the axial variation of the pure torsion
mode is determined by double integration of particular
part, and the full solution is found by addition of the
homogeneous solution. This results in

ψ3(z) = c31 + c32z −
∫∫

(Kτ
33)−1(r̄3

wφ + r̄3
Ωφ
′) dz dz (49)

Inserting the linear function φ from equation (31) we
can evaluate the integrals in (49) and find the full solu-
tion of pure St. Venant torsion as

ψ3(z) = Ψ3h(z) c3 +Ψ3p(z) φ (50)

Here c3 is a vector containing two constants of the ho-
mogeneous part of the solution, and

Ψ3p(z) = Ψw
3p(z) +ΨΩ

3p(z) (51)

Ψ3h(z) =
[
1 z

]
(52)

Ψw
3p(z) = −

L2r3
w

6Kτ
33

[
3( z

L )2 − ( z
L )3 ( z

L )3
]

(53)

ΨΩ
3p(z) = −

Lr̄3
Ω

2Kτ
33

[
2( z

L ) − ( z
L )2 ( z

L )2
]

(54)

Using equation (48) we eliminate v3
w from the differen-

tial equations in (47) and find the final distortional non-
homogeneous differential equations of GBT that deter-
mine all the distortional displacement modes as[
Ks

uu 0
0 −Kσ

ee

][
vu

wψ
ve

wψ
′′

]
−

[
K̄τ

uu −K̄σ
ue

−K̄σ
eu −K̄σ

ee

][
vu

wψ
ve

wψ
′′

]′′
=

[
rαu3

w
re3

w

]
φ +

[
r̄αu3

Ω

re3
Ω

]
φ′ (55)

The block matrices and the transformed stiffness matri-
ces are introduced in the companion paper [1] and the
load vectors are given in Table 5.

rαu3
w = ruα

w −Kτ
u3Kτ

33
−1r3

w re3
w = re

w + Kσ
e3Kτ

33
−1r3

w

r̄αu3
Ω

= r̄uα
Ω
−Kτ

u3Kτ
33
−1r̄3

Ω
re3

Ω
= re

Ω
+ Kσ

e3Kτ
33
−1r̄3

Ω

Table 5: Transformation of load vectors related to Step III.

6. Solution of distortional equations

The distortional eigenvalue problem for the homoge-
neous system of equations (55) was solved in the com-
panion paper [1]. Here the eigenvalues, λi = ξ2

i , and the
9



corresponding eigenvectors was given by[
vu

w
ve

wξ
2

]
i
=

[
vu

wi
ve

wiξi
2

]
(56)

In the presents context these eigenvectors can be used to
decouple the system of equations in (55). The i’th de-
coupled equation which determines the axial variation
ψdi(z) of the distortional eigenvector is found by insert-
ing the i’th eigenvector and pre multiplying by it, which
results in the following equation:[

vu
w

ve
wξ

2

]T

i

[
Ks

uu 0
0 −Kσ

ee

][
vu

w
ve

wξ
2

]
i
ψdi

−

[
vu

w
ve

wξ
2

]T

i

[
K̄τ

uu −K̄σ
ue

−K̄σ
eu −K̄σ

ee

][
vu

w
ve

wξ
2

]
i
ψdi
′′ (57)

=

[
vu

w
ve

wξ
2

]T

i

[
rαu3

w
re3

w

]
φ +

[
vu

w
ve

wξ
2

]T

i

[
r̄αu3

Ω

re3
Ω

]
φ′

which we abbreviate as

Kg
iiψdi − Kd

iiψdi
′′ = rd

wiφ + rd
Ωiφ

′ (58)

Normalizing this equation and introducing that the
eigenvalue ξi

2 is equal to Kg
ii/K

d
ii , it takes the following

standard form

ψdi
′′ − ξi

2ψdi = −
1

Kd
ii

(rd
wiφ + rd

Ωiφ
′) (59)

The above introduced distortional stiffness and load
terms are given in Table 6. Note that rd

wiψ is the dis-
tortional moment load and rd

Ωiψ
′ is the distortional bi-

moment load.
We find that the full solution of each of these uncou-

pled non-homogeneous linear 2. order differential equa-
tions is given by

ψdi(z) = c1eξiz + c2e−ξiz (60)

−
1

2ξi
eξiz

∫
e−ξiz 1

Kd
ii

(rd
wiφ + rd

Ωiφ
′) dz

+
1

2ξi
e−ξiz

∫
eξiz 1

Kd
ii

(rd
wiφ + rd

Ωiφ
′) dz

Using that φ is a linear function as given in equation
(31) and performing integration or by guessing the so-
lution we get

ψd i (z) = Ψdh i (z) cd i +Ψdp i (z) φ (61)

Here cdi is a vector containing the two constants cd 2i−1

and cd 2i of the homogeneous part of the solution, and

Ψdp i (z) = Ψw
dp i

(z) +ΨΩ
dp i

(z) (62)

Ψdh i (z) =
[
eξiz e−ξiz

]
(63)

Ψw
dp i

=
rd

wi

ξi
2Kd

ii

[
1 − z

L
z
L

]
(64)

ΨΩ
dp i

=
rd
Ωi

ξi
2Kd

ii

[
−1
L

1
L

]
(65)

This concludes the determination of all the solutions for
all the displacement modes of GBT.

7. Assembly of the full solution

The axial variation of the four beam modes have been
identified in equations (32), (37) and (50) and can be as-
sembled in the beam solution function matrices Ψbh(z)
and Ψbp(z) which are multiplied by the vector of beam
displacement constants cb and the load vector φ respec-
tively. This results in

Ψbh(z) cb +Ψbp(z) φ = (66)Ψah(z) 0 0
0 Ψαh(z) 0
0 0 Ψ3h(z)


ca

cα
c3

 +

Ψap(z)
Ψαp(z)
Ψ3p(z)

φ
where

Ψαh(z) =

[
Ψ1h(z) 0

0 Ψ2h(z)

]
(67)

Ψαp(z) =

[
Ψ1p(z)
Ψ2p(z)

]
(68)

Furthermore the distortional solution functions can be
assembled and described as

Ψdh(z)cd +Ψdp(z)φ = (69)
Ψdh 1 (z) 0 0 · · ·

0 Ψdh 2 (z) 0 · · ·

0 0 Ψdh 3 (z) · · ·

...
...

...
. . .



cd 1

cd 2

cd 3

...

 +


Ψdp 1 (z)
Ψdp 2 (z)
Ψdp 3 (z)

...

φ
Now all the solution functions are obtained and can be
assembled using the previously defined block matrices
and vectors as

Ψh(z)c +Ψp(z)φ (70)

in which

Ψh(z) c =

[
Ψbh(z) 0

0 Ψdh(z)

] [
cb

cd

]
(71)
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Kd
ii =

[
vu

w
ve

wξ
2

]T

i

[
K̄τ

uu −K̄σ
ue

−K̄σ
eu −K̄σ

ee

][
vu

w
ve

wξ
2

]
i

rd
wi =

[
vu

w
ve

wξ
2

]T

i

[
rαu3

w
re3

w

]

Kg
ii = ξi

2Kd
ii =

[
vu

w
ve

wξ
2

]T

i

[
Ks

uu 0
0 −Kσ

ee

][
vu

w
ve

wξ
2

]
i

rd
Ωi =

[
vu

w
ve

wξ
2

]T

i

[
r̄αu3

Ω

re3
Ω

]

Table 6: Modal distortional stiffness and load terms.

and

Ψp(z) φ =

[
Ψbp(z)
Ψdp(z)

]
φ (72)

As we are using the in-plane modes found in the
companion paper [1], the back substitution process of
distortional and eliminated beam displacement in-plane
modes is identical to the process performed in the com-
panion paper. Hereby all the in-plane modes are as-
sembled column-wise in a modal matrix of transverse
displacement vectors Vw and a modal matrix of axial
warping displacement vectors VΩ, by joining the modal
matrices of the beam eigenvectors and the distortional
eigenvectors as

Vw =
[

Vb
w Vd

w

]
VΩ =

[
Vb

Ω
Vd

Ω

]
(73)

Having obtained and assembled all the full solution
functions and in-plane modes, the full solution along
the beam can be presented in the nodal solution vectors
uw(z) and uΩ(z) as follows:

uw(z) = Vw
[
Ψh(z) c +Ψp(z)φ

]
uz(z) = −VΩ

[
Ψ′h(z) c +Ψ′p(z)φ

]
(74)

The constants, c, have to be determined by the boundary
conditions of the thin-walled beam.

7.1. Transformation to real modes and real solution
functions

Some of the distortional solution functions found are
complex. Because these complex numbers are awkward
to handle it is a matter of considerable importance to
construct a more convenient complete solution when we
have complex numbers. In [1] we introduce the follow-
ing notation for the positive square root values and the
related eigenvector columns v j and v j+1:

ξ j = λ j + µ ji ξ j+1 = ξ̄ j = λ j − µ ji (75)
v j = a j + b ji v j+1 = v̄ j = a j − b ji (76)

in which we have introduced the real and imaginary
parts of the eigenvalues and eigenvectors. The complex

eigenvectors in equation (76) may be conveniently writ-
ten as[
v j v j+1

]
=

[
a j b j

] [1 1
i −i

]
(77)

The constants of the related parts of the homogeneous
solution are also complex quantities. However we are
able to assemble the two complex conjugated modal so-
lutions into two real (but pairwise coupled) solutions by
introducing the real constant vectors c̃ j and c̃ j+1 as fol-
lows:[

c j

c j+1

]
= 1

2

[
1 −i
1 i

] [
c̃ j

c̃ j+1

]
(78)

The j’th complex part of the full solution in equation
(74) can now be rewritten using the transformations in
equations (77) and (78). After multiplication and iden-
tification of real and imaginary parts we find the follow-
ing result:

[
v j v j+1

] { [
Ψdh j 0

0 Ψdh j

] [
c j

c j+1

]
+

[
Ψdp j

Ψdp j

] [
φ1
φ2

] }
=

[
a j b j

] { [
Re(Ψdh j ) Im(Ψdh j )
Im(Ψdh j ) Re(Ψdh j )

] [
c̃ j

c̃ j+1

]
+

[
2Re(Ψdp j )
−2Im(Ψdp j )

] [
φ1
φ2

] }
(79)

Hereby it is possible to rewrite the complex quantities
into real quantities. Now the modal matrices Vw and
VΩ are modified as Ṽw and ṼΩ by substituting the com-
plex pairs of eigenvectors with their respective real and
imaginary parts. Furthermore we also introduce the
modified solution matrices Ψ̃dh and Ψ̃dp and the related
modified vector of constants c̃ by substituting the solu-
tions (and constants) of the complex pairs using equa-
tion (79). Now the full solution along the beam can be
written using real numbers as

uw(z) = Ṽw

[
Ψ̃h(z) c̃ + Ψ̃p(z) φ

]
uz(z) = −ṼΩ

[
Ψ̃′h(z) c̃ + Ψ̃′p(z) φ

]
(80)
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Hereby it is possible to work with this real formulation
or continue working with complex numbers using the
full solution formulated in equation (74). In the follow-
ing context we will use the real formulation in equation
(80).

8. Displacement boundary conditions

In this section we will introduce a method for deter-
mining the constants of the non-homogeneous solutions
found. This is to be done in the GBT space, which
has been constrained by the relevant assumptions of the
beam theory. As seen from the first variation of the
potential energy, the natural boundary displacements of
the GBT at each boundary are the pure axial displace-
ment ua

Ω
of the beam, the transverse displacements ug

w,
and the axial derivative of the transverse displacements
ug

w
′. In the following the generalized internal displace-

ments of the GBT beam will be expressed by using the
transformation from FE to GBT displacements as fol-
lows: uz(z)

ug
w(z)

ug
w
′(z)

 =


−Ta

Ω
T ṼΩΨ̃

′
h(z)

Tg
w

T ṼwΨ̃h(z)
Tg

w
T ṼwΨ̃

′
h(z)

 c̃ +


−Ta

Ω
T ṼΩΨ̃

′
p(z)

Tg
w

T ṼwΨ̃p(z)
Tg

w
T ṼwΨ̃

′
p(z)

φ (81)

To determine the constants using displacement bound-
ary conditions as in finite element or stiffness formu-
lations, the boundary displacements at the two ends of
a finite length beam are needed , i.e. at z = 0 and at
z = L, where L is the length of the beam. The assembled
boundary displacement vector is denoted by ub. This
leads to the following equation for the determination of
the solution constants:

ub =



ua
z (0)

ug
w(0)

ug
w
′(0)

ua
z (L)

ug
w(L)

ug
w
′(L)


(82)

=



−Ta
Ω

T ṼΩΨ̃
′
h(0)

Tg
w

T ṼwΨ̃h(0)
Tg

w
T ṼwΨ̃

′
h(0)

−Ta
Ω

T ṼΩΨ̃
′
h(L)

Tg
w

T ṼwΨ̃h(L)
Tg

w
T ṼwΨ̃

′
h(L)


c̃ +



−Ta
Ω

T ṼΩΨ̃
′
p(0)

Tg
w

T ṼwΨ̃p(0)
Tg

w
T ṼwΨ̃

′
p(0)

−Ta
Ω

T ṼΩΨ̃
′
p(L)

Tg
w

T ṼwΨ̃p(L)
Tg

w
T ṼwΨ̃

′
p(L)


φ (83)

= Ã̃c + B̃φ (84)

⇒ c̃ = Ã−1(ub − B̃φ) (85)

where we have introduced the matrix Ã and B̃, were Ã is
an invertible positive definite “square” matrix. To avoid
numerical problems the exponential solution functions
in Ψ̃h(z) may have to be modified by replacing c̃ieξiz by
ĉieξi(z−L) so that the positive ξiz exponent is bounded.

To see the effect of the load as it would be in a finite
element context with built in edges, we choose to plot
the solution by using equation (80), with all boundary
displacements being zero (built in) as

uT
b =

[
0 0 0 0 0 0

]T
(86)

This is done in the following examples.

9. Examples

In this section four examples will be given and nodal
displacement results as well as stress distribution results
of GBT will be compared to those found using the com-
mercial FE program Abaqus. In the examples we con-
sider a lipped channel and a box beam, both for two
different load cases. For all load cases the loads are uni-
formly distributed and thus given by a cross-section load
distribution multiplied by φ(z) = 1. In all four examples
the beams have a length of L = 2000 mm, an elastic-
ity modulus E = 2.1 · 105 MPa and a Poisson ratio of
ν = 0.3.

The results found using Abaqus are based on
isotropic material and the S4 shell element with full 4
point integration. The linear elastic finite element calcu-
lations are based on a structured rectangular mesh with
a side length seed of 5 mm.

9.1. Example 1 – Flexural load on lipped channel
Using the full solution in equation (80) with parame-

ters, discretization and distributed cross-section load as
given and shown in Figure 5 leads to the deformations
shown in Figure 6. Here it is seen that the main defor-
mation is related to flexure, however also an in-plane
deformation of the cross section becomes clear. This
points out the importance of taking distortion into ac-
count in order to obtain a good approximation of the
deformation shape even in simple load cases.

Comparing a nodal displacement of GBT to the one
found from a model in the commercial FE program
Abaqus, gives the values and the corresponding devi-
ations shown in Table 7. The values corresponds to the
node marked on the deformed plot of the GBT solution
in Figure 6 at mid-span of the beam. From Table 7 the
deviation from Abaqus results of the displacement, ux,
in the horizontal direction is 0.6%. As the present ap-
proach is based on a beam theory this deviation may

12



h = 50
w = 100
c = 25
t = 2.0
pn = 0.1 N/mm
◦ Node

Figure 5: Geometry, parameter values and load for the lipped channel.

Figure 6: GBT plot of the lipped channel with a flexural load.

be expected. In contrast, the deviation for the vertical
displacement, uy, is as large as 3.3%, however this can
be explained by the formulation of the present theory,
which is based on a beam theory where the shear de-
formations are neglected. In our Abaqus model we are
using shell elements which include in-plane shear de-
formation. Calculating the contribution of shear defor-
mations to the displacement as follows gives

∆uy(z) =
1
8

pL2

AwebG
= 0.31 mm (87)

which is based on a web area of Aweb = 2ht and a load of
p = pnw in which h is the height of one of the two webs
and w is the width of the loaded flange. Adding this
contribution to the vertical GBT displacement value in
Table 7 gives uy = 10.844 mm + 0.3 mm = 11.144 mm,
which then corresponds to a deviation of 0.6%. Having

GBT [mm] Abaqus [mm] Difference [%]

ux 2.409 2.395 0.6
uy -10.844 -11.213 3.3

Table 7: Example 1: Nodal displacements of GBT and FE analysis.

compared the nodal displacement obtained with GBT
and Abaqus we will now take a look at the stress dis-
tributions. A comparison of the membrane stresses in

the z direction at mid-span are shown in Figure 7 which
gives a maximum deviation of 0.5 % as shown in Table
8. As the present approach is based on a beam theory

154.0154.0

-226.0 -226.0-232.8 -232.8

154.8154.8

-225.3 -225.3-233.0 -233.0

GBT Abaqus

Figure 7: Comparison between the axial normal stress distributions
obtained with GBT and Abaqus at mid-span. All values are in MPa.

GBT [MPa] Abaqus [MPa] Difference [%]

σz 154.0 154.8 0.5
σs -73.1 -69.4 5.3

Table 8: Example 1: Stress distributions of GBT and FE analysis.

-260.7

-73.1-73.1

0.0 0.00.3 0.3

-259.4

-69.4-69.4

0.0 0.00.2 0.2

GBT Abaqus

Figure 8: Comparison between the transverse bending stress distribu-
tions obtained with GBT and Abaqus at mid-span. All values are in
MPa.

this deviation may be expected. The transverse bending
stresses at mid-span are shown in Figure 8 and shows a
maximum deviation in the corner at the bottom of 5.3 %
which is caused by the approach based on a beam theory
and by the chosen mesh size. Reducing the mesh side
length seed to 3 mm the maximum deviation is reduced
to 3.1 %.

9.2. Example 2 – Distortional load on lipped channel

In this example the same lipped channel cross sec-
tion as in the first example is now loaded by a distor-
tional load as shown in Figure 9. Solving the equations
leads to the GBT deformation solution shown in Figure
10, which has displacements of the lips in both trans-
verse coordinate directions with the maximum value at
mid-span. It is seen that the distortional deformation
dominates and that the boundary conditions give raise
to relatively local end effects, whereas the deformations
around mid span are relatively constant. Comparing the
nodal displacements of the node marked in Figure 10
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ps = 0.1 N/mm

Figure 9: Distributed distortional load.

Figure 10: GBT plot of the lipped channel with a distortional load.

to the displacements found using a model in the com-
mercial FE program Abaqus gives the displacement val-
ues and the corresponding deviations shown in Table 9.
Here the deviation according to the maximum displace-
ment in the horizontal direction, ux, is 0.2% and the de-
viation for the vertical direction, uy, is 0.4%. Again we

GBT [mm] Abaqus [mm] Difference [%]

ux -2.847 -2.841 0.2
uy 2.093 2.084 0.4

Table 9: Example 2: Nodal displacements of GBT and FE analysis.

also want a comparison between the stress distributions
obtained with GBT and Abaqus. In order to have com-
parable values different from zero the results concerning
the axial normal stresses are obtained from the end sec-
tion. A comparison of the axial membrane stresses in
the z direction are shown in Figure 11 and shows a max-
imum deviation of 7.9% as given in Table 10. This

15.915.9

287.8 287.8

-127.8 -127.8

GBT Abaqus

15.615.6

303.0 303.0

-138.7 -138.7

Figure 11: Comparison between the axial normal stress distributions
obtained with GBT and Abaqus at the end of the beam. All values are
in MPa.

GBT [MPa] Abaqus [MPa] Difference [%]

σz 127.7 138.7 7.9
σs 197.2 196.9 0.2

Table 10: Example 2: Stress distributions of GBT and FE analysis.

deviation can be explained by shear lag as the results
are here from the end section. The transverse bending
stresses at mid-span are shown in Figure 12. Here the

197.2197.2

0.0 0.0-0.3 -0.3

196.9196.9

0.0 0.0-0.2 -0.2

GBT Abaqus

Figure 12: Comparison between the transverse bending stress distri-
butions obtained with GBT and Abaqus at mid-span. All values are in
MPa.

maximum deviation is 0.2 % and obtained at the corner
in the bottom.

9.3. Example 3 – Flexural load on box section

In this third example a box beam is loaded by a flex-
ural load. The geometry, parameters values, discretiza-
tion of the cross section and the distributed vertical load
are as given and shown in Figure 13. This leads to the

h = 50
w = 100
t = 2.0
pn = 0.1 N/mm
◦ Node

Figure 13: Geometry, parameter values and load for the box beam.

deformation shown in Figure 14. As seen for the lipped
channel in example 1, the main deformation is also here
related to flexure of the beam. A comparison of the
displacement values found using GBT to the FE results
found using a Abaqus model is given in Table 11 Here it
is seen that the deviation of the maximum displacement
in the horizontal direction, ux, is 0.0% and the deviation
for the vertical direction, uy, is 5.5%. Again the large
deviation can be explained by the neglected shear de-
formations. Calculating the effect of shear deformations
as in equation (87) gives a contribution to the displace-
ment of ∆uy(z) = 0.31 mm and thus a total displacement
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Figure 14: GBT plot of the box beam with a flexural load.

of uy = 6.802 mm + 0.31 mm = 7.112 mm. Hereby
the deviation is reduced to 1.2%. Making a comparison

GBT [mm] Abaqus [mm] Difference [%]

ux 0.056 0.056 0.0
uy -6.802 -7.200 5.5

Table 11: Example 3: Nodal displacements of GBT and FE analysis.

between the stress distributions obtained with GBT and
Abaqus we obtain the following results. Concerning

142.8 142.8

-142.8 -142.8

GBT Abaqus

144.0 144.0

-144.0 -144.0

Figure 15: Comparison between the axial membrane stress distribu-
tions obtained with GBT and Abaqus for at mid-span. All values are
in MPa.

94.994.9

-11.9 -11.9

GBT Abaqus

-92.6

94.794.7

-11.7 -11.7

-92.7

Figure 16: Comparison between the transverse bending stress distri-
butions obtained with GBT and Abaqus at mid-span. All values are in
MPa.

the axial membrane stresses in the z direction at mid-
span we obtain the values and distribution presented in
Figure 15. In this case a maximum deviation of 0.8% is
obtained as given in Table 12. The transverse bending
stresses at mid-span are shown in Figure 16 and shows
a maximum deviation of 1.7 %.

GBT [MPa] Abaqus [MPa] Difference [%]

σz 142.8 144.0 0.8
σs -11.9 -11.7 1.7

Table 12: Example 3:Stress distributions of GBT and FE analysis.

9.4. Example 4 – Distortional load on box section

In this last example the same box beam as in the pre-
vious third example is now loaded by a distortional load
as shown in Figure 17. Solving the differential equa-

ps = 0.1 N/mm

Figure 17: Distributed distortional load.

tions of GBT leads to deformations shown in Figure 18.
A comparison of the GBT displacements of the node

Figure 18: GBT plot of the box beam with a distortional load.

marked in the figure to those found using the Abaqus
finite element model, the values is given in in Table 13.
Here it is seen that the deviation of the maximum dis-
placement in the horizontal direction, ux, is 1.5% and
the deviation for the vertical direction is 1.2%. Having

GBT [mm] Abaqus [mm] Difference [%]

ux 0.266 0.262 1.5
uy 0.515 0.509 1.2

Table 13: Example 4: Nodal displacements of GBT and FE analysis.

compared the nodal displacement obtained with GBT
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and Abaqus we take a look at the stress distributions.
A comparison of the membrane stresses in the z direc-
tion at mid-span are shown in Figure 19 which gives a
maximum deviation of 2.5 % as shown in Table 14.

102.7

102.7

-102.7

-102.7

GBT Abaqus

105.3

105.3

-105.3

-105.3

Figure 19: Comparison between the axial normal stress distributions
obtained with GBT and Abaqus at mid-span of the beam. All values
are in MPa.

GBT [MPa] Abaqus [MPa] Difference [%]

σz 102.7 105.3 2.5
σs 193.2 192.8 0.2

Table 14: Example 4: Stress distributions of GBT and FE analysis.

The transverse bending stresses at mid-span are shown
in Figure 20. In this case a maximum deviation of 0.2

193.2

-193.2

193.2

-193.2

GBT Abaqus

192.8

-192.8

192.8

-192.8

Figure 20: Comparison between the transverse bending stress distri-
butions obtained with GBT and Abaqus at mid-span. All values are in
MPa.

% is obtained.

10. Conclusion

In this paper we have included distributed loads in
a novel semi-discretized formulation of the distortional
differential equations. By using the distortional modal
matrix found for the homogeneous system we have
transformed the non-homogeneous distortional differen-
tial equations into the eigenmode space, and then ob-
tained the uncoupled set of differential equations includ-
ing the distributed loads. This uncoupling is very im-
portant in GBT, since the shear stiffness contribution
cannot be neglected nor approximated by the combi-
nation of axial stiffness and transverse stiffness, espe-
cially for closed cross sections. This means that con-
ventional modal analysis (corresponding to orthogonal

damping) cannot be used to solve the equations and an-
alytical solutions must therefore be based on the eigen-
modes found for the reduced order distortional differ-
ential equations. Examples have been given for thin-
walled beams with distributed uniform loads. The cho-
sen examples show solutions which are applicable to fi-
nite element formulation of a future distortional beam
element with applied loads, i.e. with fixed boundary
conditions. The boundary conditions will be handled
by the eigenmodes of the homogeneous solution. The
examples also show that shear deformation is only in-
cluded for “Bredt’s shear flow” around closed cells. The
examples also show that the presented theory does not
include shear lag effects. However these and other ef-
fects may be included as extensions in approximate en-
ergy based finite element formulations which may be
used to extend the capabilities of beam elements. The
novel approach presented in this paper is a considerable
theoretical achievement, since it without approximation
gives the full analytical solution of the GBT equations
with distributed loads for a given discretization of the
cross section.
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