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∑
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xe ∈ {0, 1} ∀e ∈ E \ δ(0)

min
∑

p∈P
cpλp

s.t
∑

p∈P

∑

(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ Vc

λp ∈ {0, 1} ∀p ∈ P
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Chapter 1

Introduction

The Vehicle Routing Problem was introduced by Dantzig and Ramser [19]
under the name the truck dispatching problem. The problem consists of
findingm routes covering n customers with a common point called the depot.
The goal of the optimization is to find the set of routes with the minimal
overall distance. As time has passed, many variants of the problem have
been proposed. Today there probably exist more than 250 different variants
and at every major conference several new variants are proposed. The main
reason for this rapid growth in the number of problems are, in my opinion
be attributed to the importance of the problems in the real world and the
excellent solution methods that have been developed. For exact solution
methods the two problems that have been the center of the attention is
the Capacitated Vehicle Routing Problem (cvrp) where each costumer has
a demand and the vehicle has a fixed capacity, and the Vehicle Routing
Problem with Time Windows (vrptw) which is a cvrp problem where
each customer can only be serviced within a predefined time window.

Before 1980 very few exact algorithms for cvrp and vrptw had been
proposed, but in the early 1980s two new exact methods where proposed.
From this point the history of exact methods for cvrp and vrptw can
be divided into three phases. The first phase was the introduction of the
Set Partition and the development of Branch-and-Cut-and-Price (bp) algo-
rithms using a relaxed pricing problem. The second was the development of
Branch-and-Cut (bac) algorithms. In the current phase the pricing problem
is no longer relaxed and cuts in the master problem of the Branch-and-Cut-
and-Price algorithms is used. The first two phases where started at the same
point in time and there is still development on the algorithms in the context
of cvrp and vrptw. The algorithms from these two phases are also used
on several other variants of the Vehicle Routing Problem. The third phase
was started in the middle of the 2000s and the algorithms from this phase
are currently the best overall performing algorithms.

The main idea of this chapter is to review some of the known concepts
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Chapter 1

and methods from the literature. Whenever a method or concept is cen-
tral for the thesis it will be explained in more detail, while other concepts
or methods are only briefly mentioned. Section 1.1 is dedicated the cvrp
and vrptw, while section 1.2 is dedicated the Capacitated Location Rout-
ing Problem. For the cvrp and vrptw section 1.1.1 will review the basic
Branch-and-Cut algorithms and state two of the cutting planes which has
been of great importance for this thesis. Section 1.1.3 will review the Branch-
and-Cut-and-Price algorithms for the cvrp and vrptw. The section will
contain information about how cuts are handled and it will review the so-
lution methods for the Resource Constraint Shortest Path Problem and
Elementary Resource Constraint Shortest Path Problem, which are some of
the possible pricing problems. Either the bac and bcp principles for the
cvrp and vrptw or both serves as inspiration in all of the academic papers
in Part I and Part II. Section 1.2 will introduce some mathematical models
for the Capacitated Location Routing Problem and some of the fundamental
cutting for this problem. Both the models and cutting planes have served
as inspiration for the solution approach for the article in Chapter 3. Finally
section 1.3 will give a short summary of the academic papers in the thesis.

1.1 cvrp and vrptw

The symmetric capacitated vehicle routing problem can be formulated as
follows. Let V be a vertex set that consists of a set of customers Vc and the
depot set V0 = {0} and K be a set of vehicles. With each node i ∈ Vc there
is associated a positive integer di, which we refer to as the demand. Let E
be the set of edges connecting the vertices and let ce, e ∈ E be the cost of
traversing the edge. A feasible solution to cvrp is |K| cycles starting in the
depot, each customer is visited once and the sum of the customers visited
on the cycles does not exceed the capacity C. In the optimization version
we are seeking the feasible solution where the sum of the edge weights of
the selected cycles is minimal. cvrp is often defined on a complete graph
G(V,E) and test instances are available at www.branchandcut.org. Rather
than referring to a solution as a set of cycles the abbreviation routes is often
used and we will therefore use this.

A natural extension of cvrp is the inclusion of time windows. A time
window is defined as a time interval [ai, bi] for which a customer i ∈ Vc can be
serviced by the vehicle. Furthermore, a service time si is associated with the
customer i ∈ Vc. To include the time windows an asymmetric formulation
is often used. Let A be a set of arcs, where each arc (i, j) ∈ A has a cost
cij and a travel time τij associated. For the depot the lower value a0 = 0
and the upper value b0 = T . Given a route R with the ordered vertex set
V (R) = {v0, v1, v2, ..., vk−1, vk} where v0 = vk = 0 the accumulated time for
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Introduction

the route at a given customer is recursively defined as:

T (i) =

{
0 i = 0
max{T (vi−1) + τvi−1,vi + svi−1 , avi} i 6= 0

A route R is said to be feasible if T (i) ≤ bi,∀i ∈ V (R). It is possible to
include the service time s in the travel time τij by setting τij = τij + sj .

Aside from the feasibility of a route, vrptw is similar to cvrp, with
the only difference being that the number of routes in the minimum cost
solution is not predefined. The time windows are often tightened using
the rules suggested by Desrochers et al. [20] where the earliest arrival and
latest departure times are used to reduce the width of the time windows.
Furthermore, arc elimination can be carried out using a series of shortest
path calculations. Traditionally new algorithms for the vrptw is tested
on the 56 instances introduced by Solomon [60]. These benchmarks are
naturally refered to as the Solomon instances.

Throughout the thesis, some shorthand notations will be used when
modelling various vrps. In directed problems the two terms δ−(S) and
δ+(S) for some subset S ⊆ V are define as:

• δ−(S) = {(i, j) : i ∈ V \ S, j ∈ S, (i, j) ∈ A}, that is the set of arcs
entering the set S.

• δ+(S) = {(i, j) : i ∈ S, j ∈ V \ S, (i, j) ∈ A}, that is the set of arcs
leaving the set S.

Similar in the undirected variants, the term δ(S) for some S ⊆ V refers to
the possible empty set of edges with an endpoint in S and one in V \ S.
Common for both undirected and directed problems is the use of E(S) as
the arcs/edges where both end points are in S and E(S1 : S2) which is the
set of arcs/edges which originates in S1 and ends in S2.

One of many mathematical formulations of vrptw which also includes
cvrp is the three-index flow model (see Toth and Vigo [62]). The model is
based on the model introduced by Fisher and Jaikumar [30]. Let respectively
{o} and {o′} denote the depot at the start and end of the route. Assume that
the number of vehicles |K| is unbounded. Let tik be the time vehicle k ∈ K
visits node i ∈ V , if the vehicle visit the node and undefined otherwise.
Let xijk be a binary variable indicating whether vehicle k ∈ K traverses
arc (i, j) ∈ A. A mathematical model for cvrp and vrptw can then be
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formulated as:

min
∑

k∈K

∑

(i,j)∈A
cijxijk (1.1)

s.t.
∑

k∈K

∑

(i,j)∈δ+(i)

xijk = 1 ∀i ∈ Vc (1.2)

∑

(i,j)∈δ+(o)

xijk =
∑

(i,j)∈δ−(o′)

xijk = 1 ∀k ∈ K (1.3)

∑

(j,i)∈δ−(i)

xjik −
∑

(i,j)∈δ+(i)

xijk = 0 ∀i ∈ Vc, ∀k ∈ K (1.4)

∑

(i,j)∈E
dixijk ≤ C k ∈ K (1.5)

ai ≤ tik ≤ bi ∀i ∈ V, ∀k ∈ K (1.6)

xijk(tik + τij) ≤ tjk ∀(i, j) ∈ A, ∀k ∈ K (1.7)

xijk ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K (1.8)

Constraints (1.2) ensures that every customer i ∈ Vc is visited, while con-
straints (1.3) ensures that each route starts and ends in the depot. Con-
straint (1.4) maintains flow conservation, while (1.5) ensures that the capac-
ity of each vehicle is not exceeded. Constraints (1.6) and (1.7) ensure that
the time windows are satisfied. Note that (1.7) together with the assump-
tion that τij > 0 for all (i, j) ∈ E eliminates sub-tours. The last constraints
define the domain of the arc flow variables. Note that a zero-cost edge xoo′k
between the start and end depot must be present for all vehicles for (1.3)
to hold if not all vehicles are used. Constraints (1.7) are non linear but can
easily be linearized if needed. If the value of the travel time τij is set to 1
and ai = 0 and bi = |V |+ 1 the model is a formulation of the cvrp. In this
case the constraints correspond to the MTZ constraint introduced for the
traveling salesman problem by Miller et al. [49].

1.1.1 Branch-and-Cut

Most Branch-and-Cut algorithms for vrp are based on the two index for-
mulation introduced by Laporte and Nobert [42]. Let xe, e ∈ E \ δ(V0)
be a binary variable which is 1 iff the edge is used in the solution. Let
xe, e ∈ δ(V0) be an integer variable which is 1 iff the edge is used once and
2 iff the edge is used twice. When an edge out of the depot is used twice it
corresponds to a route which visits only a single customer. For some S ⊆ Vc
let r(S) be a lower bound on the number of vehicles needed to service S.
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The mathematical model by Laporte and Nobert [42] can then be stated as:

min
∑

e∈E
cexe (1.9)

s.t.
∑

e∈δ(i)
xe = 2 ∀i ∈ Vc (1.10)

∑

e∈δ(0)

xe = 2|K| (1.11)

∑

e∈δ(S)

xe ≥ 2r(S) ∀S ⊆ Vc, |S| ≥ 2 (1.12)

xe ∈ {0, 1, 2} ∀e ∈ δ(0) (1.13)

xe ∈ {0, 1} ∀e ∈ E \ δ(0) (1.14)

The objective minimizes the cost of the selected routes, constraints (1.10)
and (1.11) ensure that each customer is visited once and that |K| vehicles
are used. Constraints (1.12) are the capacity constraints which ensure that
the number of vehicles servicing the set S is sufficient. Finally (1.13) and
(1.14) define the domains of the variables. Cornuejols and Harche [17] have

shown that it is sufficient to use r(S) =
⌊∑

i∈Sdi
C

⌋
for the model to be a

correct formulation of the cvrp.
The basic idea in a Branch-and-Cut algorithm is to solve a Linear re-

laxation of the corresponding Integer Programming Problem and then cut
and branch when possible and needed. In the case of cvrp this means that
the domains of the variables (1.13) to (1.14) are substituted with the linear
bounds:

0 ≤ xe ≤ 2 ∀e ∈ δ(0) (1.15)

0 ≤ xe ≤ 1 ∀e ∈ E \ δ(0) (1.16)

Since the number of constraints (1.12) is exponential, the running time of
solving the linear relaxation is exponential, therefore these are removed and
added when needed. To identify when one of the inequalities (1.12) is vio-
lated a separation problem is solved. Let x∗ be a solution to the linear model
(1.9) to (1.11), with the bounds (1.15) and (1.16). Any off the constraints
(1.12) is said to be violated if:

∑

e∈δ(S)

x∗e < 2r(S), S ⊂ Vc, |S| ≥ 2

And the separation problem is to find a violated inequality. When such an
inequality is identified it is referred to as a cut since it cuts off the current
linear solution. Naddef and Rinaldi [51] have shown that the separation
of inequalities (1.12) is NP-hard and Lysgaard et al. [48] have developed
several heuristics to find violated inequalities for the rounded version.
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In a bac algorithm cuts are added iteratively and once no more cuts can
be found branching is performed. Naddef and Rinaldi [51] have suggested
to branch on a set S where 2 < x∗(S) < 4. The branch is then imposed
with the two constraints x(δ(S)) = 2 and x(δ(S)) ≥ 4. When |S| = 2 this
corresponds to an edge branch, since x(δ(S)) = 2 − 2x(E(S)) and E(S)
only contains the edge between the two nodes. Therefore an alternative
formulation of the two branches is x(E(S)) = 1 and x(E(S)) ≤ 0, which
forces the edge to be either 0 or 1.

Lysgaard et al. [48] have developed a very successful bac algorithm and
have furthermore published the source code for the separation algorithms
in the package CVRPSEP [47]. The separation routines have been used in
many of this thesis academic papers, but the methods have not been altered
and we therefore refer the reader to Lysgaard et al. [48] for details. Instead
we will focus on two valid inequalities that are used as a basis for many of
the inequalities in the academic papers in chapter 3 and 4. The General-
ized Large Multistar inequalities(GLM) were introduced by Letchford and
Salazar-González [46] and can be stated as:

∑

e∈δ(S)

xe ≥
2

C


∑

i∈S
di +

∑

j∈Vc\S

∑

e∈E(j:S)

djxe


 S ⊂ Vc, |S| ≥ 2 (1.17)

The idea in the GLM is to consider the number of vehicles needed to service
the set S. A valid lower bound for this is the demand of the set plus any
customer visited directly from the set divided by the capacity. The GLM
can be separated in polynomial time by solving a series of minimum cut
problems. The Knapsack Large Multistar(KLM) inequality introduced by
Letchford et al. [44] and Letchford and Salazar-González [45] show how to
form these inequalities based on the three-index flow model and then project
them to the two index formulation. The knapsack polytope is defined as:

PK = conv

{
y ∈ {0, 1}|Vc| :

∑

i∈Vc
diyi ≤ C

}

Let a, b ≥ 0 and let the inequality
∑

i∈Vc aiyi ≤ b be valid for PK . Then the
KLM is defined as:

∑

e∈δ(S)

xe ≥
2

b


∑

i∈S
ai +

∑

j∈Vc\S

∑

e∈E(j:S)

ajxe


 S ⊆ Vc, |S| ≥ 2 (1.18)

There are many ways to select the coefficients a and b. Letchford et al.
[44] suggest to find a violated cover inequality and then use the polynomial
time algorithm for the GLM inequalities to separate the most violated KLM
inequality.
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Introduction

bac algorithms for the cvrp have been very successful, but for the
vrptw the results are not as convincing although some good results ex-
ist. Bard et al. [6] were among the first to develop a bac algorithm for the
vrptw. They present a compact two index flow formulation which uses
2|Vc| continuous variables and |A| binary variables. The objective consid-
ered were to minimize the number of vehicles, which is slightly different from
minimizing the cost of the selected routes, however this is easily changed in
their model. For all (i, j) ∈ A let xij be a binary variable, which is one if
the arc is used. For all i ∈ Vc let yi be the vehicles load when departing
the customer and ti equal the time when the vehicle departs customer. We
assume that t0 = 0. Let Mij = bi−aj , a mathematical model for the vrptw
can then be formulated as:

min
∑

(i,j)∈A
cijxij (1.19)

s.t.
∑

(ij)∈δ+(i)

xij = 1 ∀i ∈ Vc (1.20)

∑

(i,j)∈δ+(i)

xij =
∑

(j,i)∈δ−(i)

xji ∀i ∈ Vc (1.21)

tj ≥ ti + τijxij −Mij(1− xij) ∀i ∈ V,∀j ∈ Vc (1.22)

yj ≥ yi + qj − C(1− xij) ∀i, j ∈ V 2
c (1.23)

ai ≤ ti ≤ bi ∀i ∈ Vc (1.24)

di ≤ yi ≤ C ∀i ∈ Vc (1.25)

xij ∈ {0, 1} ∀(i, j) ∈ A (1.26)

(1.27)

The objective (1.19) minimizes the cost of the selected arcs and thereby the
cost of the routes. Constraints (1.20) and (1.21) ensure that a customer
is visited once and that a customer have both an entering and leaving arc.
Constraints (1.22) and (1.23) ensure that the time and capacity when the
vehicle leaves is set correctly. (1.22) can be explained as follows: When the
arc between customers i and j is not used(xij = 0) the constraints reduces
to:

tj ≥ ti − bi + aj ∀i ∈ V,∀j ∈ Vc

From the domain constraints (1.24) it follows that ti ≤ bi and therefore
ti − bi ≤ 0, which implies that tj ≥ aj which is correct and does not cut off
any feasible solution. In the case where the arc is used(xij = 1) it follows
that:

tj ≥ ti + τij ∀i ∈ V,∀j ∈ Vc

7
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This correspond to accumulating the time of the route. A similar analysis
can be made for constraints (1.23). The domains of the variables are defined
by constraints (1.24) to (1.26).

Although (1.22) and (1.23) can be used to obtain an integer solution it
is possible to omit these constraints and replace them with an exponential
set of constraints. Kallehauge et al. [37] followed this direction and replaced
constraints (1.22) and (1.23) with path inequalities. A path Q is an ordered
vertex set with vertices V (Q) = {v1, v2, ..., vk−1, vk} and an arc set A(Q). A
path is infeasible if either

∑
i∈V (Q) di > C or T (vi) > bvi for some vi ∈ V (Q).

If the path Q is infeasible the inequality:

x(A(Q)) ≤ |A(Q)| − 1

is a valid inequality. If QI is the set of all infeasible paths then it is possible
to substitute the constraints (1.22) to (1.25) with:

x(A(Q)) ≤ |A(Q)| − 1 ∀Q ∈ QI (1.28)

It is possible to strengthen the infeasible path inequalities and show that
these are facet defining(see Kallehauge et al. [37] for details). The corre-
sponding bac algorithm based on the model with infeasible path inequalities
resulted in the solution of a previously unsolved Solomon instance. Kalle-
hauge et al. [37] also suggest to include precedence constraints and Bard
et al. [6] showed that many of the inequalities known from the Traveling
Salesman polytope can be used.

1.1.2 Set Partition Formulation

The set partition formulation was introduced by Balinski and Quandt [5].
Let P be the set of all feasible routes, the binary constant αijp is 1 iff arc
(i, j) is used by route p ∈ P , and the binary variable λp indicates whether
route p is used. The Set Partitioning formulation of vrp is then:

min
∑

p∈P

∑

(i,j)∈A
cijαijpλp (1.29)

s.t
∑

p∈P

∑

(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ Vc (1.30)

λp ∈ {0, 1} ∀p ∈ P (1.31)

The cost function (1.29) minimized the cost of the selected routes, con-
straints (1.30) ensure that all customers are visited once and constraints
(1.31) are the domains of the variables. The Set Partition formulation is
not usable in practice since the number of feasible routes is exponential in
worst case. It is, however usable in a column generation approach which we
shall consider in the next section.
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1.1.3 Branch-and-Cut-and-Price

Branch-and-Cut-and-Price(bcp) algorithms originate from solving the Set
Partition model of vrp. The Set Partition formulation can be viewed as a
Danzig-Wolfe reformulation of the three-index-flow formulation where the
sub problems are recognized to be identical. In a bcp algorithm a restricted
master problem containing a partial portion of the columns is solved to linear
optimality and from that solution, new columns and cuts are generated.

The binary constraints on the variables are relaxed to 0 ≤ λp ≤ 1,∀p ∈ P
and the routes are generated on demand using the so called pricing problem.
The pricing problem considers the reduced cost of a column by taking the
current dual solution into account. Consider a subset of columns P ⊆ P .
The corresponding reduced and relaxed master problem is then:

min
∑

p∈P

∑

(i,j)∈A
cijαijpλp (1.32)

s.t
∑

p∈P

∑

(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ Vc (1.33)

0 ≤ λp ≤ 1 ∀p ∈ P (1.34)

Let π ∈ R be the dual variables of (1.33) and let π0 = 0. The reduced cost
of a route in p ∈ P \ P is then given as:

cp =
∑

(i,j)∈E
cijαijp −

∑

(i,j)∈E
πjαijp =

∑

(i,j)∈E
(cij − πj)αijp (1.35)

The pricing problem is then to solve an Elementary Resource Constrained
Shortest Path Problem with Resource Constraints(espprc). Given a di-
rected weighted graph G(V,E) with weight function w(u, v), (u, v) ∈ E and
a resource set R, where the resources R are a time window resource and a
capacity resource, the espprc is defined as follows: Find the shortest path
from a source node s to a target node t such that the path is feasible with
respect to the resources. To solve the pricing problem for vrp as an espprc,
the weights on the edges is set as:

w(i, j) = cij −
1

2
πi −

1

2
πj , (i, j) ∈ A

The source and the target are set to be the depot out and the depot in. Note
that subtracting half the dual from cost will help maintain symmetry if the
original cost is also symmetric which is the case in cvrp. When solving the
specific pricing problems of cvrp and vrptw the problem solved is referred
to as respectively the Elementary Shortest Path Problem with Capacity
Constraint(esppcc) and Elementary Shortest Path Problem with Capacity
Constraint and Time Windows(espptwcc). Dror [25] has proven that the
espptwcc is NP-hard. The reduction is based on the time windows so it
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does not apply to the esppcc case. However the reduction for this esppcc
can easily be made from the Traveling Salesman Problem and will only rely
on the fact that the graph may contain negative cycles.

Rather than solving the master problem using a linear optimization
solver Christofides et al. [13] suggested to find the dual variables through
Lagrangian relaxation. The same approach has been followed by Kohl and
Madsen [38] and Baldacci et al. [3] for vrptw and Baldacci et al. [1] for
cvrp who use subgradient optimization until the last stages of the algo-
rithms. Solving the Lagrangian dual has also been explored by Kallehauge
et al. [36] who use a trust region to stabilize the duals. Furthermore the
work by Kolen et al. [40] can also be viewed as an Lagrangian approach.

Solving the Pricing Problem

In early column generation approaches from the late sixties to the late sev-
enties the algorithms reduced the route sets, to routes with a given mathe-
matical structure. This includes the algorithms proposed by Rao and Zionts
[56] and Foster and Ryan [31]. The reduction in the size of the Set Partition
problem and the reduction in the complexity of the pricing problem made
it possible to obtain feasible solutions.

In the early eighties an alternative approach, where the elementary prop-
erty of the routes where relaxed, was proposed. This includes the so-called
q-route relaxation suggested by Christofides et al. [13] based on the state-
space relaxations by Christofides et al. [14] and the SPTW (Shortest Path
With Time Windows) relaxation suggested by Desrosiers et al. [24]. The
results of these relaxed problems are a connected path where a customers
may be visited more than once. In both cases path containing cycles of size
two were eliminated. In general this problem is referred to as the 2-cycle
free shortest path problem (2spprc) . A relaxation of the route set where
2spprc is used provide a valid lower bound to the vrps and by branching on
edges/arcs in the original problem (variables xijk) a feasible integer solution
can be obtained.

In both of the above papers the solution method for the 2spprc was
dynamic programming. A state L in the dynamic programming table is
often referred to as a label. A label represents a partial solution which is
feasible with respect to the resources. Each label is connected to a node
in the graph and the labels are constructed by extending some label from
its current node to a new node in the graph. Each label has the following
functions associated:

• c(L) is the cost of the label.

• v(L) is the node the label is connected to.

• Π(L) is the predecessor label, from which the label was constructed.

10
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• d(L) is the accumulated capacity of the label and is defined recursively
as d(L) = d(Π(L)) + dv(L).

• t(L) is the accumulated time of the label and is defined recursively
as:t(L) = max{av(L), t(Π(L)) + τv(Π(L)),v(L)}.

A label represents a feasible path segment from the depot to the current node
v(L). A feasible extension to the label is therefore a path segment from the
labels current node v(L) to the target node, such that the two combined
segments are feasible. In the case of 2spprc this excludes extensions which
visit the node v(Π(L)) as the first node. However, an extension which visit
the node as the second node is feasible.

To avoid labels that cannot lead to an optimal solution, the concept of
dominance has been introduced.

Definition 1. A label L is dominated if there exist no feasible extension
that can lead to an optimal solution.

A very simple dominance rule which is:

Dominance 1. A label L1 dominates a label L2 if:

c(L1) ≤ c(L2) d(L1) ≤ d(L2) t(L1) ≤ t(L2) v(Π(L1)) = v(Π(L2))

The idea behind dominance rule 1 is that any feasible extension of the
label L2 is also feasible for the label L1. Since the cost of L1 is less than
the cost of L2 we can conclude that a feasible solution constructed using the
label L1 will always be less expensive.

A slightly more complex dominance rule is to use two labels to dominate
a single label:

Dominance 2. A label L1 and L2 dominate a label L3 if v(Π(L1)) 6=
v(Π(L2)) and:

c(L1) ≤ c(L3) d(L1) ≤ d(L3) t(L1) ≤ t(L3)

c(L2) ≤ c(L3) d(L2) ≤ d(L3) t(L1) ≤ t(L3)

The idea in dominance rule 2 is that the only feasible extension of label
L3 that label L1 does not cover are the ones that start in the node v(Π(L1)).
Since v(Π(L1)) 6= v(Π(L2)) these extensions are feasible for label L2.

The above two propositions form the basis for the pseudo polynomial
algorithms proposed by the Christofides et al. [14] and Desrosiers et al. [24]
for the two special cases of 2spprc . The algorithm can be implemented in
a general labeling framework for solving resource constrained shortest path
problems. The generic framework is given in algorithm 1. As input the
algorithm takes the data of the instance and returns a set of labels which
can be converted to a feasible solution. The algorithm uses a priority queue
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(see [16]) and two auxiliary functions. EXTENDLABEL constructs a new
label NewL from a label L and ensures that both the capacity and the time
does not violate any of the rules. The function DOMINATE tests the
appropriate dominance rules for the concrete algorithm and updates the set
of non dominated labels in the node v (Lv). Lines 1-3 construct an initial
label at the start node, enqueues the label in the priority queue and initializes
the solution pool with the empty set. As long as there are unprocessed labels
a label is selected in lines 5-6. Lines 8-11 try to create a new label from the
selected label for each node adjacent to the labels node. Lines 12 to 14 store
the new label if it was an extension to the target node. Line 15-18 call the
dominance function and store the new label if needed. Finally all solutions
are returned in line 21. To solve the 2spprc the function DOMINATE is

Algorithm 1 Generic label algorithm

1: GENSPPRC(G, s, t, d, C, a, b, τ, T )
2: L← {0, s, 0, 0, 0}
3: PQ.ENQUEUE(L)
4: SOL← ∅
5: while PQ.TOP () 6= ∅ do
6: L← PQ.DEQUEUE()
7: for e(u, v) ∈ δ+(v(L)) do
8: NewL← EXTENDLABEL(L, v, d, C, a, b, τ, T )
9: if NewL = NIL then

10: continue
11: end if
12: if v = t then
13: SOL.ENQUEUE(Newl)
14: end if
15: if DOMINATE(NewL,Lv) then
16: continue
17: end if
18: PQ.ENQUEUE(NewL)
19: end for
20: end while
21: return SOL

implemented using proposition 1 and 2. It is common to order the labels in
a priority queue after a non decreasing resource (see [35]). This will yield
an algorithm where at most two labels L1, L2 ∈ Lv have d(L1) = d(L2) and
t(L1) = t(L2).

In the special case where only one of the resources is used, that is C =
di = 0 ∀i ∈ Vc or ai = bi = 0 = T ∀i ∈ Vc and τij = 0∀(i, j) ∈ A. When
only a single resource is present it is possible to reduce the size of Lv to
2. Assume that the capacity is the single resource used. Since labels are
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processed in an increasing order it follows that the labels created in line 7-11
(Extended to node v) in algorithm 1 have capacity greater than or equal to
any label in Lv. Therefore dominance can be implemented by maintaining
two labels with different predecessors in each set Lv, v ∈ Vc.

Irnich and Villeneuve [35] have generalized the idea of cycle elimination
and used an algorithm that ensured that the columns generated did not
contain cycles of size k. Using an algorithm that eliminated cycles of size 3
they solved several unsolved vrptw Solomon instances. In parallel with the
success of Irnich and Villeneuve [35] the first successful bcp algorithm using
elementary routes was proposed by Chabrier [12] therefore general k-cycle
algorithms has not been studied in great details.

There exist several algorithms for solving the espprc. If there are no
cycles with negative cost in the graph G, then the espprc is solvable in
pseudo-polynomial time since connectivity of the path is implicitly ensured.
In this particular case several algorithms based on dynamic programming
exist for the esppcc, see e.g., Beasley and Christofides [7],Carlyle et al. [11],
Dumitrescu and Boland [26], and Muhandiramge and Boland [50]. These
algorithms exploit that when the capacity constraint is relaxed the cor-
responding problem is a regular shortest path problem with negative arcs.
Since shortest path problem is polynomial solvable and is a valid lower bound
it can be used to eliminate labels.

In the case where the graph may contain negative cycles, which is the
case in the column generation context some of the most important events
for the dynamic programming algorithms are as follows. Feillet et al. [27]
present a dynamic programming algorithm where the elementary property
of the path is ensured by use of an additional resource per node. Righini
and Salani [57] proposed a general bi-directional approach to solve the esp-
prc. In a bi-directional algorithm a set of forward and backwards labels
are computed and the labels from the two sets is then spliced together. In
the case where the resources are capacity and time and the splice point is
selected as C

2 in advance, it is possible to construct a graph (see [3] for de-
tails) for calculating the backward label set. With some adjustments of the
generic framework (algorithm 1) the forward and backward label sets can
be generated using this. Irnich and Desaulniers [34] characterized a resource
using the so-called resource extension functions. As the name suggest the
function defines how an extension by a label L to a node v is done. Ir-
nich [33] analyses the properties of these functions. If all resource extension
functions can be inverted it can be shown that there exist a bi-directional
algorithm. Independently, Boland et al. [10] and Righini and Salani [58]
proposed to initially relax the node resources and add them iteratively until
the path is elementary. In the former paper this is referred to as a state
space augmentation algorithm and in the latter it is denoted a decremental
state space relaxation algorithm.

The standard implementation of a labeling algorithm for espprc uses
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a bit vector to store the node resources. A bit is set if a node has been
visited or is unreachable. A node is unreachable for a label, if there does
not exist a feasible extension of the label to that node in the graph. Let
the function U(L) return the set of vertexes that have been either visited
or are unreachable. The dominance criteria introduced by Feillet et al. [27]
can then be stated as:

Proposition 1. A label L1 dominates a label L2 if:

c(L1) ≤ c(L2) d(L1) ≤ d(L2) t(L1) ≤ t(L2) U(L1) ⊆ U(L2)

The intuition behind the dominance in proposition 1 is, that any feasible
extension for L2 is feasible for L1. Since L1 has a lower cost than L2 any
feasible path constructed from the same extension will always have a lower
cost when combined with L1.

To reduce the number of labels Chabrier [12] suggested to adjust the cost
of a label L1 where L1 * L2. The cost adjustment was made by subtracting
the dual variable πi ≥ 0 if the node was in the set U(L1) but not in U(L2).
Through computational studies Chabrier [12] choose to restrict the number
of bits the labels differed with to two bits.

Righini and Salani [57] proposed a bounding procedure to fathom labels.
The idea is formalized in the following proposition:

Proposition 2. Given a label L and an upper bound UB on the solution.
If LLB is a lower bound on the value of any feasible extension of L and
c(L) + LLB ≥ UB. No extension of L can lead to an optimal solution.

The bounding procedure of Righini and Salani [57] calculates a lower
bound for a label based on a linear knapsack relaxation for a single label. In
the context of esppcc Baldacci et al. [1] suggest to use the 2spprc relaxation
as bounding function. It should be noted that they precomputed the bounds
in each node, by solving a single 2spprc . For the vrptw Baldacci et al.
[3] has proposed to use the so called NG-routes as a bounding, which yields
better bounds and can also be precomputed.

Cuts

It is possible to improve the quality of the lower bound obtained when solving
the LP relaxation of the Set Partition. This is done by adding cutting planes
in a approach similar to the one in bac. In the context of vrp Kohl et al.
[39] were among the first to improve the Set Partition formulation with
the introduction of the K-Path Cuts for vrptw. Desaulniers et al. [22]
later generalized these inequalities and reported some good computational
results for the Solomon instances. In the context of cvrp Fukasawa et al.
[32] integrated the valid inequalities used by Lysgaard et al. [48] to solve the
cvrp trough bac. Common for the above valid inequalities is that they are
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formulated in the two index formulation(1.1.1). When a violated inequality
is found it is decomposed on the fly and kept in the master problem. The
only consequence is that the objective of the pricing problem is modified.
We refer to cuts formed in this fashion as cuts formed in the original solution
space. Due to the collapse of the identical pricing problems into one, cuts
formed in the original space must be identical for each vehicle, otherwise
the property of identical pricing problems is lost. For a general discussion
of cutting planes in bcp algorithms refer to Desaulniers et al. [23].

To cut in the original solution space the current solution of the master
problem is transformed to a solution in the original space. In the case of vrp
this poses some challenges since the pricing problems have been collapsed
into a single pricing problem. Therefore a transformation is made back to a
relaxed version of the two index edge/arc flow model from section 1.1.1. In
this variant the variables xij , (i, j) ∈ A are equal to the amount of flow on
arc (i, j) ∈ A. Regardless of the pricing problem any solution to the master
problem can then be transformed back to this space as follows:

xij =
∑

p∈P
αijpλp (1.36)

Once the master solution has been transformed to the original space the
usual separation routines can be used.

When a violated inequality is found it needs to be decomposed into the
master problem. As an example we shall consider how to handle the capacity
constraints from section 1.1.1. For some S ⊆ Vc, |S| ≥ 2, the undirected
version of (1.12) is: ∑

(i,j)∈δ(S)

xij ≥ 2r(S)

When decomposed into the master problem the inequality becomes:
∑

p∈P

∑

(i,j)∈δ(S)

αijpλp ≥ 2r(S)

To handle the cut in the pricing problem, let σ ≥ 0 denote the dual of the
constraint. Then the edge weights for any (i, j) ∈ δ(S) become:

w(i, j) = cij −
1

2
πi −

1

2
πj − σ, (i, j) ∈ A

The pricing problem is then solved using these arc weights. New columns
that use any arc (i, j) ∈ δ(S) are then added to the cut in the master problem
when generated.

It is possible to formulate inequalities directly based on the variables in
the Set Partition formulation. This was proposed independently by Bal-
dacci et al. [1] who proposed the strong capacity inequalities and Jepsen et
al.(chapter 2) who proposed the subset row inequalities (SR). The strong
capacity inequalities can be defined as follows.
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Proposition 3. Given S ⊆ Vc the inequality:

∑

p∈P:
∑

(i,j)∈δ(S) αijp≥1

λp ≥ r(S)

is valid

The idea behind the strong capacity inequalities is the observation that
even though a route may visit the set S more than once, a route corresponds
to a single vehicle visit and therefore it is valid only to account for it once.
To handle the cuts in the pricing problem the dominance rule of the espprc
is modified as follows:

Proposition 4. A label L1 dominates a label L2 if:

c(L1) ≤ c(L2) d(L1) ≤ d(L2) t(L1) ≤ t(L2) U(L1) = U(L2)

The only difference between proposition 4 and 1 is that we now use an
equality when comparing the set of unreachable nodes. This is needed since
the cost of a feasible extension for L2 may have a different cost for L1. This
difference in cost appears when L2 has entered and left a set of a strong
capacity cut but L1 has not done that.

Jepsen et al.(Chapter 2) introduce the subset-row(SR) inequalities which
can be stated as:

Proposition 5. Given a S ⊆ Vc and constant 0 < k ≤ |S| the inequalities :

∑

p∈P

1

k

∑

(i,j)∈δ+(S)

αijp

λp ≤
⌊ |S|
k

⌋

are valid for the set partition formulation

The idea behind the SR-inequalities is to count the number of routes
that intersects the set S a certain number of times. Whenever this number
of routes becomes larger than the constant |S|k the set S the number of routes
that visit the set S is to high. The dominance rule in proposition 5 can be
used, but we will present an alternative dominance rule in Chapter 2. It
is worth mentioning that the separation routines in chapter 2 only include
inequalities where |S| ≤ 7 and k ≤ 3. Petersen et al. [53] has conducted
computational results for Chvátal-Gomory Rank-1 Cuts and showed that
the bcp algorithms were often able to solve the vrptw instances in the
root node. Desaulniers et al. [22] and Baldacci et al. [3] restrict the use of
SR-inequalities to |S| = 3 and k = 2 which seems to yield bcp algorithms
that perform better in practice. Spoorendonk and Desaulniers [61] studied
how to handle clique inequalities but the computational results were not as
good as the results obtained using the SR-inequalities.
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It is important to note that when a bounding function is used, inequali-
ties that have a positive dual variable associated must be taken into account
in the relaxation. As an example, if a strong capacity constraint is added to
the master problem with dual variable σ ≥ 0, the dual is subtracted from
all arcs in δ(S), when the relaxation is solved. An alternative solution is
clearly to handle the cut directly in the relaxation but that may often be as
difficult as handling it in the espprc.

Obtaining Integer Solutions

First, it is important to note that an feasible integer solution to the original
vrp can be a fractional solution in the Set Partition model. Therefore a
fractional solution should always be converted to the original model using
the transformation in equation (1.36) and if the transformed solution is
feasible the optimization is complete. Once it is verified that the current
master solution is not feasible in the original space and that there is no more
columns with negative reduced cost, an integer solution can be found using
one of the following two methods:

• Traditional branch and bound where branching is done on an arc or a
hyperplane in the original space.

• Using enumeration.

Similar to cutting branching in the original space, branching needs to be
enforced in such a way that the property of the identical sub problems is
not lost, for a general discussion on how to branch in a bcp algorithm with
identical pricing problems we refer the reader to Vanderbeck [63]. The first
branching rule in the bcp algorithms for the vrp is in principle hyperplane
branches where it is enforced that either zero or one of the vehicles must
use a given arc. This branch can be enforced by adding a cut in the master
problem, but in early algorithms such as the one by Desrosiers et al. [24]
the branch was incorporated in the pricing problem. Fukasawa et al. [32]
extended the branch rule to use the traditional hyperplane branch know
from the cvrp.

The other method is enumeration which has proven to be very successful
for both cvrp[1] and vrptw[3]. In enumeration an upper bound UB and
a lower bound LB are used. From reduced cost fixing of a binary variable
it is know that any non basic column with a reduced cost strictly greater
than the gap ub − lb can not be part of an integer solution which is an
improvement of the current solution. This complete set of columns can be
found by solving an espprc using the dominance rule in proposition 5 and
bounding functions. Once we have added the columns with reduced cost less
than or equal to the gap the resulting problem can be solved as an integer
optimization problem.
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1.1.4 Exact versus Heuristic Solutions

Although the main focus of this thesis is exact solution methods, it is impor-
tant to remember that in real life the computational time needed to find the
optimal solution is not always available therefore it is important that the
exact solution algorithms can find good solutions within reasonable time.
Danna and Le Pape [18] have shown how to integrate the Branch-and-Price
algorithm with a local search framework. This integration helps the bcp
algorithm with finding good integer solutions in the early stages of the al-
gorithm. The method has show to result in reasonable good solutions for
the vrptw. Prescott-Gagnon et al. [55] have improved the heuristic ap-
proach for bcp algorithms further by integrating the bcp algorithm with
large neighbourhood search. For bac algorithms methods such as local
branching introduced by Fischetti and Lodi [28] and the feasibility pump
introduced by Fischetti et al. [29] can be used to find fast and good solu-
tions. The main benefit of the exact solution approach is that it provides
both an upper and lower bound.

Though when a fast good solution is needed a heuristics such as the
adaptive large scale neighbourhood search by Pisinger and Ropke [54] for
cvrp, vrptw and many other Vehicle Routing variants or the local search
heuristic by Zachariadis and Kiranoudis [65] are preferable.

1.1.5 Applications of the bac and bcp Algorithms

The solution methods for the Traveling Salesman Problem has served as
a big inspiration in the first steps of the modern bac and bcp algorithms
for the cvrp and vrptw. Today the bac and bcp algorithms for these
problems serve as sources of inspiration when new problems within the field
of routing are encountered and are often a fundamental for the successful
solution of these problems. Therefore an improvement of the bac and bcp
algorithms for cvrp and vrptw does not only serve these problems, but
may benefit a whole range of problems. Some examples of problems where
the bac and bcp algorithms have been a source of inspiration are the Split
Delivery Vehicle Routing Problem, the Pickup-and-Delivery Vehicle Routing
Problem and the Capacitated Location Routing Problem in the following
section.

In the Split Delivery Vehicle Routing Problem the customers may be
serviced by more than one vehicle. The problem is solved with a capacity
bound as the cvrp and time windows are also included. Belenguer et al.
[9] have developed lower bounds and a bac algorithm where the model
and cuts used in the bac algorithm for cvrp serve as a major inspiration.
Desaulniers [21] has developed a bcp algorithm where the solution approach
for the espprc has been a source of inspiration for the solution of the pricing
problem. Furthermore, the k-path inequalities introduced for the vrptw are
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used as cutting planes.

In the Pickup-and-Delivery Vehicle Routing Problem a given quantity
must be transported between a pickup point and a delivery point. The
problem is typically studied with time windows and in this case Ropke et al.
[59] have constructed a bac algorithm where many of the aspects of the
bac algorithm for cvrp are incorporated. Ropke et al. [59] developed a bcp
algorithm where the solution method of the pricing problem was inspired
by the solution method for the espprc and Baldacci et al. [4] extended the
bcp algorithm for cvrp by Baldacci et al. [1].

1.2 Capacitated Location Routing Problem

The Capacitated Location Routing Problem(clrp) is closely related to the
two echelon vehicle routing problem considered in Chapter 3 and some of
the ideas from clrp have therefore been adapted to this problem. The
Location Routing Problem (lrp) is a strategic planning problem where a
set of distribution locations have to be selected and a set of routes connected
to these location must be found. The goal is to minimize the sum of the cost
for opening the locations, using the vehicles and traversing the arcs. The
problem differs from the classic Facility Location problem [64] where the
cost of connecting a customer to the facility is measured in the Euclidean
distance. The first exact algorithm for lrp was a bac algorithm introduced
by Laporte and Nobert [41]. This algorithm was later extended to the
more general case of the capacitated location routing problem by Laporte
et al. [43]. Belenguer et al. [8] introduced several new cutting planes and
improved the model and Contardo et al. [15] introduced a symmetric model
and introduced new cutting planes. For a literature review on other variants
of the problem and heuristics we refer the reader to Nagy and Salhi [52]. To
formulate the problem mathematically let:

• Vc define the set of customers

• Vs define the set of locations

• E define the set of edges.

• ce is the cost of using edge e ∈ E
• xe ∈ {0, 1}, e ∈ E is 1 if the edge is used.

• ze ∈ {0, 1}, e ∈ E is 1 if the edge between a satellite and a customer
is used twice, the customer is visited on a single customer route.

For each location r ∈ Vs let:

• gr be the fixed charge of using the location

• fr be the fixed charge of using a vehicle from a location
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• m̂r and mr are respectively a lower and a upper bound on the number
of vehicles that must/can be used at the location

• yr ∈ {0, 1} is 1 if the location is used and 0 otherwise

• mr is equal to the number of vehicles used at the facility

Finally let P denote the set of all paths between two locations sj , sk ∈
Vs, sj 6= sk. For a path P ∈ P let e1(P ) be the first edge on the path and
el(P ) the last edge on the path that is the edges from the two satellites to
the customers on the path. The set of edges excluding the first and the last
is defined as P̄ that is the edges that connects the customers.

The mathematical model introduced by Laporte et al. [43] can then be
formulated as:

min
∑

e∈E(Vc)

cexe +
∑

E(Vs:Vc)

ze +
∑

r∈Vs
(gryr + frmr)

subject to
∑

e∈δ(i)
xe + 2ze = 2 ∀i ∈ Vc (1.37)

∑

e∈E(r:Vc)

xe + 2ze = 2mr ∀r ∈ Vs (1.38)

∑

e∈δ(S)

xe ≥ 2r(S) ∀S ⊆ Vc, |S| ≥ 3 (1.39)

∑

E(Vs:i)

xe ≤ 1 ∀i ∈ Vc (1.40)

xe1 + 3xe + xe2 ≤ 4 ∀e1, e2 ∈ E(Vs : Vc)

e1 6= e2,∀e ∈ E(Vc) (1.41)

xe1(P ) + xel(P ) + 2
∑

e∈P̄
xe ≤ 2|P | − 5 ∀P ∈ P, |P | ≥ 3 (1.42)

yr ≤ mr ≤ |Vc|yr ∀r ∈ Vs (1.43)

m̂r ≤ mr ≤ mr ∀r ∈ Vs (1.44)

xe ∈ {0, 1} ∀e ∈ E(Vc) (1.45)

ze ∈ {0, 1} ∀e ∈ E(Vs : Vc) (1.46)

yr ∈ {0, 1} ∀r ∈ Vs (1.47)

The objective minimizes the sum of the routing cost, location cost and
start up cost of vehicles. Constraints (1.37) ensure that each customer is
visited, constraints (1.38) binds the number of used vehicles to the number
of entering and leaving edges of the location. Constraints (1.39) eliminate
sub tours and ensure that a set is visited by the number of vehicles needed.
Constraints (1.40) to constraints (1.42) ensures that a route starts and ends
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in the same location. Constraints (1.43) force at least one vehicle out of a
location that is used and ensures that the location is used when a vehicle
leaves it. Constraints (1.44) impose bounds on the number of vehicles that
can be used from a location. Finally constraints (1.45) to (1.47) are the
domains of the variables. Constraints

(1.42) are commonly referred to as the chain barring constraints. Figure
1.1 (a) shows a solution which is feasible to the model for clrp if constraints
(1.42) are not included. The solution is then cut of by adding a chain
barring constraint for the path P = {1, 2, 3, 4, 5}. Although the addition of
the chain barring leads to an optimal integer solution the inequalities are
weak when the flow on the edges are not integer. Such an issue is illustrated
on figure 1.1 (b) where there are no violated chain barring constraints. As
the reader may note it is not feasible for a customer to use edges to two
different locations. This observation has led to the development of the path
elimination constraint which was introduced by Belenguer et al. [8]:
∑

e∈δ(S)

xe ≥
∑

e∈E({i}:I)
2xe+

∑

e∈E({j}:Vs\I)
2xe∀S ⊆ Vc, |S| ≥ 2, ∀i, j ∈ S, ∀I ⊂ Vs

(1.48)
The idea of the constraint is to partition the locations into two sets and then
enforce that if both customers are connected to a location (In a fractional
solution it may be more than one) then the flow out of the set is at least
twice the size of the flow from the two location sets. For a formal proof of
the constraints the reader is referred to Belenguer et al. [8]. By selecting
the sets I = {1, 6} and S = {2, 3, 4} and the customers as i = 2 and j = 4 a
violated path elimination constraint constraint is obtained and the solution
can be cut off.

Belenguer et al. [8] has shown that cutting planes valid for the cvrp
can be used for the clrp. To separate valid inequalities for the cvrp all
locations are contracted into a single depot. When the cut is added the
contracted edges are then expanded to obtain a valid inequality. A similar
approach is used for the 2ecvrp in section 3.

Additional valid inequalities has been introduced for the clrp by both
Belenguer et al. [8] and Contardo et al. [15]. Some of these may be valid for
the 2ecvrp and a future research direction for this problem could therefore
be to adapt these inequalities.

1.3 Overview of Thesis

The remaining part of the thesis chapters contains a set of papers which
have been constructed in collaboration with many authors and a conclusion
in chapter 7. Each chapter has been written as a self containing paper, but
especially Chapter 6 is dependant on the techniques in some of the other
chapters. Therefore this Chapter has been placed as the final Chapter of
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Figure 1.1: Illustration of customer connections to locations. Triangles are
locations and circles are customers. Solid lines indicate xe = 1 and dashed
lines indicate xe = 0.5. (a) shows an example of a solution that violate
constraints (1.42) and (b) shows an example of a solution that violate con-
straints (1.48), but not any of constraints (1.42)

the thesis and the two Chapters which it relates to proceeds it. The final
two chapters are ordered Chronological after finish date. In the following a
summary of each of the chapters is given:

Chapter 2: Subset-Row Inequalities Applied to the Vehicle Rout-
ing Problem with Time Windows The paper considers the classical
Danzig-Wolfe decomposition of vrptw and develops a bcp algorithm, where
cuts are added to the master problem. The cuts in the master problem are
the SR-inequalities, which are valid inequalities for the set packing poly-
tope. The cuts are derived as a Chvátal Gomory cut, but possesses some
good properties that make it possible to integrate them into the dominance
criteria of the espprc. The new algorithm for vrptw was able to solve
8 previously unsolved instances and. The paper is published in Operation
Research.

Chapter 3: A Branch-and-Cut Algorithm for the Symmetric Two-
echelon Capacitated Vehicle Routing Problem . The 2ecvrp con-
siders distribution of goods from the depot to the customers through a set
of satellites. Two sets of vehicle types are considered, a large capacity ve-
hicle type going between the depot and the satellites and a small capacity
vehicle type servicing the customers from the satellites. If the two echelon is
considered interdependently, the first echelon is a split delivery problem and
the second echelon is a Location Routing Problem. The paper introduces a
model which is a lower bound for the 2ecvrp, adapts cutting planes from
the clrp and cvrp and devises a specialized branching rule to obtain an
integer feasible solution. The paper is accepted in Transportation Science
with revisions.

Chapter 4: A Branch-and-Cut Algorithm for the Capacitated
Profitable Tour Problem The Capacitated Profitable Tour Problem(CPTP)
is closely related to the espprc. The difference is that a simple cycle is to
be found, such that the sum of the capacities of the nodes on the cycle does
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not exceed a given threshold and the cost of the used edges minus the profit
of the nodes is minimized. The paper introduces many cutting planes from
related polytopes, as well as several new cutting planes based on the GLM
and KLM inequalities described in section 1.1.1. The computational results
show that instances with up to 800 nodes can be solved to optimality within
an hour of CPU time. The paper is submitted.

Chapters 5: Partial Path Column Generation for the Vehicle Rout-
ing Problem The paper introduces a new formulation for the cvrp and
vrptw, where small path segments are combined to form a solution. Using
a Dantzig-Wolfe reformulation a master problem which contains additional
constraints(Compared to the Set Partition Model) and a espprc pricing
problem is formed. In the pricing problem one of the resources is reduced
which reduces the state-space used when solving the problem with dynamic
programming. The bcp algorithm is tested and computational results are
reported. The chapter is based on a conference papers presented at INOC09,
which can be found in appendix C.

Chapter 6: Partial Path Column Generation for the Elementary
Shortest Path Problem with a Capacity Constraints The paper
considers an alternative formulation for the espprc. The formulation is re-
lated to the ideas presented in Chapter 5 but the master and pricing problem
are slightly different. Both the master and pricing problems have a structure
similar to the espprc. Computational results are presented and discussed .
The chapter is based on a conference papers presented at INOC09 and has
been extended with some computational results. Furthermore references to
the papers in this thesis has been changed to refer to the relevant chapter
rather than the preliminary technical reports.

Appendix A: The vehicle routing problem with edge set costs
The paper introduces an extension of the vrptw where there is a penalty
associated with different subset of edges. The problem is solved using the
Branch-and-Cut-and-Price algorithm developed in Chapter 2 as a key com-
ponent. The key in the solution approach is that the constraints associated
with the set penalties are kept in the master problem, which leads to a so-
lution method where the standard pricing problem of vrptw is solved. A
set of benchmark instances based on the Solomon instances are introduced
and computational results are presented. The paper is submitted.

Appendix B: A Path Based Model for a Green Liner Shipping
Network Design Problem The paper contains a new formulation for
the Liner Shipping Network Design Problem, where the network rotation
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patterns are generated using a dynamic programming algorithm. The al-
gorithmic approaches are similar to the solution approach used in the bcp
algorithms for the cvrp and vrptw and the dynamic programming algo-
rithm for generating the rotations is also inspired by the solution methods
for the espprc. The paper is an extended version of the conference paper
for the 2011IANENG International Conference on Operational Research.

General Overview The chapters in Part I and II gives an overview of how
the two solution methods bac and bcp can be used in the context of Vehicle
Routing and how they can be improved. The thesis considers six different
problems. In many of the papers the standard methods known from the
literature are either changed or improved significantly. The chapters gives
an overview on how to apply and improve the bcp and bac algorithms
known from the cvrp and vrptw.
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Abstract

This paper presents a branch-and-cut-and-price algorithm for the vehicle
routing problem with time windows. The standard Dantzig-Wolfe decompo-
sition of the arc flow formulation leads to a set partitioning problem as the
master problem and an elementary shortest path problem with resource con-
straints as the pricing problem. We introduce the subset-row inequalities,
which are Chvatal-Gomory rank-1 cuts based on a subset of the constraints
in the master problem. Applying a subset-row inequality in the master prob-
lem increases the complexity of the label-setting algorithm used to solve the
pricing problem since an additional resource is added for each inequality. We
propose a modified dominance criterion that makes it possible to dominate
more labels by exploiting the step-like structure of the objective function of
the pricing problem. Computational experiments have been performed on
the Solomon benchmarks where we were able to close several instances. The
results show that applying subset-row inequalities in the master problem
significantly improves the lower bound, and in many cases makes it possible
to prove optimality in the root node.

2.1 Introduction

The vehicle routing problem with time windows (VRPTW) can be described
as follows: A set of customers, each with a demand, needs to be serviced
by a number of vehicles all starting and ending at a central depot. Each
customer must be visited exactly once within a given time window, and the
capacity of the vehicles must not be exceeded. The objective is to service
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all customers traveling the least possible distance. In this paper we consider
a homogenous fleet, i.e., all vehicles are identical.

The standard Dantzig-Wolfe decomposition of the arc flow formulation
of the VRPTW is to split the problem into a master problem (a set partition-
ing problem) and a pricing problem (an elementary shortest path problem
with resource constraints (ESPPRC), where capacity and time are the con-
strained resources). A restricted master problem can be solved with delayed
column generation and embedded in a branch-and-bound framework to en-
sure integrality. Applying cutting planes either in the master or the pricing
problem leads to a branch-and-cut-and-price algorithm (BCP).

Kohl et al. [23] implemented a successful BCP algorithm for the VRPTW
by applying subtour elimination constraints and two-path cuts. Cook and
Rich [8] generalized the two-path cuts to the k-path cuts. Common for
these BCP algorithms is that all applied cuts are valid inequalities for the
VRPTW, i.e., the original arc flow formulation, and contain a structure
making it possible to handle values of the dual variables in the pricing prob-
lem without increasing the complexity of the problem. Fukasawa et al. [17]
refer to this as a robust approach in their paper, where a range of valid
inequalities for the capacitated vehicle routing problem are used in a BCP
algorithm. The topic of column generation and BCP algorithms has been
surveyed by Barnhart et al. [3] and Lubbecke and Desrosiers [25].

Dror [13] showed that the ESPPRC is strongly NP-hard, hence a re-
laxation of the ESPPRC was used as a pricing problem in earlier BCP ap-
proaches for the VRPTW. The relaxed pricing problem where non-elementary
paths are allowed is denoted the shortest path problem with resource con-
straints (SPPRC) and can be solved in pseudo-polynomial time using a
label-setting algorithm, which was initially done by Desrochers [12]. To
improve lower bounds of the master problem, Desrochers et al. [10] used 2-
cycle elimination, which was later extended by Irnich and Villeneuve [20] to
k-cycle elimination (k-cyc-SPPRC) where cycles containing k or less nodes
are not permitted.

Beasley and Christofides [4] proposed to solve the ESPPRC using La-
grangian relaxation. However, recently label-setting algorithms have become
the most popular approach to solve the ESPPRC; see e.g. Dumitrescu [14]
and Feillet et al. [16]. When solving the ESPPRC with a label-setting algo-
rithm a binary resource for each node is added, which increases the complex-
ity of the algorithm compared to solving the SPPRC or the k-cyc-SPPRC.
Righini and Salani [31] developed a label-setting algorithm using the idea of
Dijkstra’s bi-directional shortest path algorithm that expands both forward
and backward from the depot and connects routes in the middle, thereby
potentially reducing the running time of the algorithm. Furthermore Righ-
ini and Salani [31] and Boland et al. [5] proposed a decremental state space
algorithm that iteratively solves a SPPRC by applying resources that force
nodes to be visited at most once. Recently Chabrier [7], Danna and Pape
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[9], and Salani [32] successfully solved several previously unsolved instances
of the VRPTW from the benchmarks of Solomon [33] using a label-setting
algorithm for the ESPPRC.

In this paper, we extend the BCP framework to include valid inequalities
for the master problem, more specifically by applying the subset-row (SR)
inequalities to the set partitioning master problem. Nemhauser and Park
[28] developed a similar BCP algorithm for the edge coloring problem, but
to our knowledge no such algorithms for the VRPTW have been presented.
Applying the SR inequalities leads to an increased complexity of the pric-
ing problem since each inequality is represented by an additional resource.
To improve the performance of the label-setting algorithm, we introduce a
modified dominance criterion that handles the reduced cost calculation in
a reasonable way. Moreover, the SR inequalities potentially provide better
lower bounds and smaller branch trees.

The paper is organized as follows: In Section 2.2 we give an overview
of the Dantzig-Wolfe decomposition of the VRPTW and describe how to
calculate the reduced cost of columns when column generation is used. In
Section 2.3 we introduce the SR inequalities and show that the separation
problem is NP-complete. In Section 2.4 we review the basics of a label-
setting algorithm for solving the ESPPRC and show how to handle the
modified pricing problem in the same label-setting algorithm. For details
regarding label-setting algorithms (including bi-directionality) we refer to
Desaulniers et al. [11], Irnich and Desaulniers [19], Irnich [18], Righini and
Salani [31]. An algorithmic outline and computational results, using the
Solomon benchmark instances, are presented in Section 2.5. Section 2.6
concludes the paper.

2.2 Decomposition

Let C be the set of customers, let the set of nodes be V = C ∪ {o, o′} where
{o} denotes the depot at the start of the routes and {o′} denotes the depot
at the end; and let E = {(i, j) : i, j ∈ V, i 6= j} be the edges between the
nodes. Let K be the set of vehicles with |K| unbounded, each vehicle having
capacity D, and let di be the demand of customer i ∈ C and do = do′ = 0.
Let ai be the beginning and bi be the end of the time window for node i ∈ V .
Let si be the service time for i ∈ V and let tik be the time vehicle k ∈ K
visits node i ∈ V , if k visits i. Let cij be the travel cost on edge (i, j) ∈ E
and let xijk be a variable indicating whether vehicle k ∈ K traverses edge
(i, j) ∈ E. Last let τij = cij + si > 0 be the travel time on edge (i, j) ∈ E
plus the service time of customer i. The three-index flow model (Toth and
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Vigo [35]) for the VRPTW is:

min
∑

k∈K

∑

(i,j)∈E
cijxijk (2.1)

s.t.
∑

k∈K

∑

(i,j)∈δ+(i)

xijk = 1 ∀i ∈ C (2.2)

∑

(i,j)∈δ+(o)

xijk =
∑

(i,j)∈δ−(o′)

xijk = 1 ∀k ∈ K (2.3)

∑

(j,i)∈δ−(i)

xjik −
∑

(i,j)∈δ+(i)

xijk = 0 ∀i ∈ C, ∀k ∈ K (2.4)

∑

(i,j)∈E
dixijk ≤ D k ∈ K (2.5)

ai ≤ tik ≤ bi ∀i ∈ V, ∀k ∈ K (2.6)

xijk(tik + τij) ≤ tjk ∀(i, j) ∈ E, ∀k ∈ K (2.7)

xijk ∈ {0, 1} ∀(i, j) ∈ E, ∀k ∈ K (2.8)

Here (2.2) ensures that every customer i ∈ C is visited, while (2.3) ensures
that each route starts and ends in the depot. Constraint (2.4) maintains
flow conservation, while (2.5) ensures that the capacity of each vehicle is
not exceeded. Constraints (2.6), (2.7) ensure that the time windows are
satisfied. Note that (2.7) together with the assumption that τij > 0 for all
(i, j) ∈ E eliminates sub-tours. The last constraints define the domain of
the arc flow variables. Note that a zero-cost edge xoo′k between the start
and end depot must be present for all vehicles for (2.3) to hold if not all
vehicles are used.

The standard Dantzig-Wolfe decomposition of the VRPTW, see e.g. Des-
rochers et al. [10], leads to the following master problem:

min
∑

p∈P

∑

(i,j)∈E
cijαijpλp (2.9)

s.t
∑

p∈P

∑

(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ C (2.10)

λp ∈ {0, 1} ∀p ∈ P (2.11)

where P is the set of all feasible routes, the binary constant αijp is one if
and only if edge (i, j) is used by route p ∈ P , and the binary variable λp

indicates whether route p is used. The master problem can be recognized
as a set partitioning problem, and the LP relaxation may be solved using
delayed column generation. Let π ∈ R be the dual variables of (2.10) and
let π0 = 0. Then the reduced cost of a route p is:

cp =
∑

(i,j)∈E
cijαijp −

∑

(i,j)∈E
πjαijp =

∑

(i,j)∈E
(cij − πj)αijp (2.12)
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The pricing problem becomes an ESPPRC where the cost of each edge is
cij = cij − πj for all edges (i, j) ∈ E. When applying cuts during column
generation we will distinguish between valid inequalities for the VRPTW
constraints (2.2)-(2.8) and valid inequalities for the set partitioning con-
straints (2.10)-(2.11).

Consider a valid inequality for the VRPTW constraints (2.2)–(2.8) in
terms of the arc flow variables x:

∑

k∈K

∑

(i,j)∈E
βijxijk ≤ β0 (2.13)

When decomposed into the master problem, inequality (2.13) is reformulated
as: ∑

p∈P

∑

(i,j)∈E
βijαijpλp ≤ β0 (2.14)

Let µ ≤ 0 be the dual variable of (2.14). The reduced cost of a column p is
then

cp =
∑

(i,j)∈E
cijαijp −

∑

(i,j)∈E
πjαijp − µ

∑

(i,j)∈E
βijαijp

=
∑

(i,j)∈E
(cij − πj − µβij)αijp (2.15)

Compared to (2.12) an additional coefficient µβij is subtracted from the cost
of edge (i, j) and the complexity of the pricing problem remains unchanged
if we use the edge costs cij = cij − πj − µβij .

Now, consider adding a valid inequality for the set partitioning master
problem (2.10)–(2.11) that cannot be written as a linear combination of the
arc flow variables:

∑

p∈P
βpλp ≤ β0 (2.16)

Let σ ≤ 0 be the dual variable of (2.16). The reduced cost of a column p is:

ĉp = cp − σβp =
∑

(i,j)∈E
cijαijp − σβp (2.17)

In addition to the reduced cost computed for a column p in (2.15) the cost
−σβp must be considered. To reflect the possible extra cost −σβp it may be
necessary to modify the pricing problem by adding constraints or variables,
thereby increasing its complexity.
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2.3 Subset-Row Inequalities

The set of valid inequalities for the set packing problem is a subset of the set
of valid inequalities for the set partitioning problem since the latter prob-
lem is a special case of first-mentioned. Two well-known valid inequalities
for the set packing problem are the clique and the odd-hole inequalities,
where the first is known to be facet-defining for the set partitioning problem
(Nemhauser and Wolsey [29]).

Since the master problem is a set partitioning problem, it would be obvi-
ous to go in this direction when looking for valid inequalities for the master
problem. Consider the separation of a clique or an odd-hole inequality. The
undirected conflict graph G′(P,E′) is defined as follows: Each column is a
vertex in G′ and the edge set is given as:

E′ =



(p, q) :

∑

(i,j)∈δ+(i)

αijp = 1 ∧
∑

(i,j)∈δ+(i)

αijq = 1, i ∈ C, p, q ∈ P, p 6= q





That is, an edge is present if the two columns p and q have coefficient one in
the same row. In a VRPTW context it reads: Two routes are conflicting if
they are visiting the same customer. A clique in G′ leads to the valid clique
inequality: ∑

p∈P̂
λp ≤ 1 (2.18)

where P̂ ⊆ P are the columns corresponding to the vertices of a clique in
G′. A cycle visiting an odd number of vertices P in G′ leads to the valid
odd-hole inequality:

∑

p∈P̂
λp ≤

⌊
|P̂ |
2

⌋
(2.19)

where P̂ ⊆ P are the columns corresponding to the vertices visited on the
cycle in G′. However, when column generation is applied, it is not obvious
how to reflect the reduced cost of (2.18) or (2.19) in the pricing problem
since there is no specific knowledge of the columns of the master problem
when solving the pricing problem.

Inspired by the above inequalities (2.18) and (2.19) we introduce the
subset-row inequalities (SR inequalities). These inequalities are specifically
linked to the rows (rather than the columns) of the set packing problem,
hence making it possible to identify the coefficient of a column in an SR
inequality.

Definition 1. Consider the set packing structure

X = {λ ∈ B|P | : Aλ ≤ 1} (2.20)
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SR inequalities derived from the conflict graph of a set packing problem. In
the LP-solution to Aλ ≤ 1 all λ variables are 1

2 , which results in two violated
SR inequalities:

• With |S| = 3 and k = 2 due to variables λ1, λ2, and λ3 giving the set
of rows S = {r1, r2, r3}

• With n = 5 and k = 2 due to variables λ1, λ2, λ3, λ4, and λ5 giving
the set of rows S = {r1, r3, r4, r5, r6}

λ1 λ2 λ3 λ4 λ5

r1 1 1 ≤ 1
r2 1 1 ≤ 1
r3 1 1 ≤ 1
r4 1 1 ≤ 1
r5 1 1 ≤ 1
r6 1 1 ≤ 1

Set packing problem Aλ ≤ 1.

u u

u
u

u

λ1 λ2

λ3

λ4

λ5

r1

r2 r3r4

r5r6

Corresponding conflict graph.

with the set of rows M and columns P , and a |M | × |P | binary coefficient
matrix A. The SR inequality is defined as:

∑

p∈P

⌊
1

k

∑

i∈S
αip

⌋
λp ≤

⌊ |S|
k

⌋
(2.21)

where S ⊆ M and 0 < k ≤ |S|.

Example 2.3 illustrates some SR inequalities derived from the conflict
graph of a set packing problem.

Given a column p ∈ P we need to have
∑

i∈S αip ≥ k to get a non-zero
coefficient of λp in (2.21). For the master problem of VRPTW the coefficient
matrix can be translated as αip =

∑
(i,j)∈δ+(i) αijp, i.e., αip is the sum of all

the outgoing edges of a customer i. Hence,

⌊
1

k

∑

i∈S
αip

⌋
=

1

k

∑

i∈S

∑

(i,j)∈δ+(i)

αijp



which is only 1 or larger when k or more customers of S are visited on route
p.
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Proposition 1. The SR inequalities (2.21) are valid for the Set Packing
structure X.

Proof. The proof follows directly from Chavtal-Gomory’s procedure to con-
struct valid inequalities (Wolsey [36]). Scale the |S| inequalities∑p∈P αipλp ≤
1 for each row i ∈ S ⊆ M from (2.20) with 1

k ≥ 0 and add them:

∑

p∈P

1

k

∑

i∈S
αipλp ≤

|S|
k

Flooring on left side and right side leads to (2.21).

Observe that, when the coefficient
⌊
1
k

∑
i∈S αip

⌋
evaluates to 0 or 1 for

all p ∈ P and the right hand side
⌊
|S|
k

⌋
= 1 then the set of SR inequalities

(2.21) is a subset of the clique inequalities (2.18).
From Definition 1 it is clear that the SR inequalities are Chvatal-Gomory

rank-1 cuts, see atal [2]. Eisenbrand [15] has shown that the separation prob-
lem is NP-complete for general Chvatal-Gomory rank-1 cuts. However, in
some special cases polynomial time separation is possible, e.g. the maxi-
mally violated mod-k cuts for a fixed k by Caprara et al. [6]. Since the SR
inequalities are another special case, the separation problem will be investi-
gated further.

2.3.1 Separation of Subset-Row Inequalities

The separation problem of SR inequalities is defined as follows: Given the
current LP-solution λ where λp < 1 for all p ∈ P , and let n be the size of S.
For some fixed values n and k where 1 < k ≤ n, find the most violated SR
inequality. Using the binary variable xi to denote whether i ∈ S this can be
stated as:

max
∑

p∈P

⌊
1

k

∑

i∈M
aipxi

⌋
λp −

⌊n
k

⌋
(2.22)

s.t.
∑

i∈M
xi = n (2.23)

xi ∈ {0, 1} ∀i ∈ M (2.24)

The corresponding decision problem SR-DECISION asks whether

∑

p∈P

⌊
1

k

∑

i∈M
aipxi

⌋
λp ≥ c (2.25)

is feasible subject to (2.23) and (2.24), where 1 ≤ c < n and c ∈ Z. Since we
may multiply (2.25) by any coefficient 1

γ > 0, the coefficient bounds λp < 1
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and c < n can be softened to

λp <
1

γ
, c <

n

γ
(2.26)

This leads to the following proposition:

Proposition 2. The separation problem SR-DECISION is NP-complete.

Proof. We will show the statement by reduction from 3-conjunctive normal
form satisfiability (3CNF-SAT). Given an expression φ written in three-
conjunctive normal form, the 3CNF-SAT problem asks whether there is an
assignment of binary values to the variables such that φ evaluates to true.
An expression is in three-conjunctive normal form when it consists of a
collection of disjunctive clauses C1, . . . , Cm of literals, where a literal is a
variable xi or a negated variable ¬xi, and each clause contains exactly three
literals.

Let x1, . . . , xn be the set of variables which occurs in the clause φ. We
transform the 3CNF-SAT instance to a SR-DECISION instance by con-
structing a matrix A = (aij) with 2n+ 3 rows and m+ n+ 1 columns, i.e.,
M = {1, . . . , 2n+ 3} and P = {1, . . . ,m+ n+ 1}.

The rows 1, . . . , 2n of matrixA corresponds to literals x1,¬x1, x2,¬x2, . . . ,
xn,¬xn, while columns j = 1, . . . ,m correspond to clauses C1, . . . , Cm, and
columns j = m+ 1, . . . ,m+ n correspond to variables x1, . . . , xn.

We now define matrix A as follows: For j = 1, . . . ,m let aij = 1 iff the
corresponding literal appears in clause Cj . For j = 1, . . . , n let ai,j+m = 1 iff
the corresponding literal is xj or ¬xj . For j = m+n+1 let aij = 0. The last
three rows of A are defined as follows: For j = 1, . . . ,m+ n let a2n+1,j = 0,
while a2n+1,m+n+1 = 1. For j = 1, . . . ,m+ n+ 1 let a2n+2,j = a2n+3,j = 1.
Finally we set k = 3, λp = 1 for all p ∈ P and c = m+ n+ 1. Note that all
coefficients are within the bounds (2.26) for γ sufficiently large. An example
of the transformation is illustrated in Example 2.3.1.

With the chosen constants, the SR-DECISION problem (2.25) reads

∑

p∈P

⌊
1

3

∑

i∈M
aipxi

⌋
≥ m+ n+ 1 = |P |

which is satisfied if and only if

∑

i∈M
aipxi ≥ 3 ∀p ∈ P

As the last three rows of A always must be chosen, it is equivalent to

2n∑

i=1

aipxi ≥ 1 ∀p = 1, . . . ,m+ n
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Illustration of the transformation 3CNF-SAT to SR-DECISION. Given the
3CNF-SAT expression

φ = (x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

the matrix A = (aij) becomes

1 . . . m m+ 1 . . . . . . m+ n m+ n+ 1
C1 . . . Cm x1 . . . . . . xn

1 x1 1 1
2 ¬x1 1 1 1

x2 1 1
... ¬x2 1 1

x3 1 1
¬x3 1 1
x4 1 1

2n ¬x4 1 1

2n+ 1 1
2n+ 2 1 1 1 1 1 1 1 1
2n+ 3 1 1 1 1 1 1 1 1

while we set k = 3, λp = 1 for p ∈ P and c = 8.

(i) Assume that there is a feasible assignment of binary values to x1, . . . , xn
such that φ evaluates to true in the 3CNF-SAT instance. In the cor-
responding SR-DECISION problem choose row i if and only if the
corresponding literal is true in φ. Since exactly n literals are true, we
will in this way choose n rows. Since at least one literal is true in each
clause, and each column 1, . . . ,m corresponds to a clause in A we will
get a contribution of at least one in each of these columns. Moreover,
since exactly one of xi and ¬xi is true in φ we will get a contribution
of exactly one in column m+ 1, . . . ,m+ n. Hence, the corresponding
SR-DECISION problem is true.

(ii) Assume on the other hand that SR-DECISION is true. Let P ′ ⊆ P be
the set of rows corresponding to the solution. By assumption |P ′| =
n. First we notice that exactly one of the rows corresponding to the
literals xi and ¬xi is chosen. This follows from the fact that we have
n columns m+1, . . . ,m+n which needs to be covered by n rows, and
each row covers exactly one column. For each literal in φ let xi or ¬xi
be true if the corresponding row was chosen in SR-DECISION. Each
variable will be well-defined due to the above argument. Moreover,
since the rows P ′ must cover at least one api = 1 for each column
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To illustrate that the bounds (2.26) indeed are realistic consider the case
k = 3. Choose γ = m+n+1

β where β = n−2
3 or β = n−1

3 depending on which
of the expressions that evaluates to an integral value. The right hand side
of (2.25) evaluates to

c · 1
γ
= (m+ n+ 1) · β

m+ n+ 1
= β

where an integral value of β gives

β =
⌊n
3

⌋
< n

The value of λ gives

λp ·
1

γ
= 1 · β

m+ n+ 1
≤ 1 ∀p ∈ P

Hence all bounds are valid according to the separation problem (2.22)-(2.24).

j = 1, . . . ,m, we see that each clause in φ becomes true.

Since the reduction is polynomial, and SR-DECISION obviously is in NP,
we have proved the statement.

Example 2.3.1 shows that typical separation problems of SR inequalities
actually possess the properties assumed in the NP-completeness proof.

2.4 Label-Setting Algorithm

When solving the pricing problem, it is noted that finding a route with neg-
ative reduced cost corresponds to finding a negative cost path starting and
ending at the depot, i.e., an ESPPRC. Our ESPPRC algorithm is based on
standard label setting techniques presented by e.g. Beasley and Christofides
[4], Dumitrescu [14], Feillet et al. [16], Chabrier [7], Danna and Pape [9];
hence in the following we mainly focus on the dominance criterion used for
handling the modifications stemming from the SR inequalities of the master
problem.

The ESPPRC can be formally defined as: Given a weighted directed
graph G(V,E) with nodes V and edges E, and a set of resources R. For each
edge (i, j) ∈ E and resource r ∈ R three parameters are given: A lower limit
ar(i, j) on the accumulation of resource r when traversing edge (i, j) ∈ E;
an upper limit br(i, j) on the accumulation of resource r when traversing
edge (i, j) ∈ E; and finally an amount cr(i, j) of resource r consumed by
traversing edge (i, j) ∈ E. The objective is to find a minimum cost path p
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from a source node o ∈ V to a target node o′ ∈ V , where the accumulated
resources of p satisfy the limits for all resources r ∈ R. Without loss of
generality, we assume that the limits must be satisfied at the start of each
edge (i, j), i.e., before cr(i, j) has been consumed.

Remark that equivalent upper and lower limits and consumptions on the
nodes can be “pushed” onto the edges, e.g., the ingoing edges of the node.

For the pricing problem of the VRPTW, the resources are demand d,
time t, a binary visit-counter for each customer v ∈ C and reduced cost c.
Note that also the reduced cost is considered a resource. When considering
the pricing problem of the VRPTW, the consumptions and upper and lower
limits of the resources at each edge (i, j) in ESPPRC are:

ad(i, j) = 0, bd(i, j) = D − dj , cd(i, j) = dj ∀(i, j) ∈ E
at(i, j) = ai, bt(i, j) = bi, ct(i, j) = τij ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 1 ∀v ∈ V : v = j, ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 0 ∀v ∈ V : v 6= j, ∀(i, j) ∈ E
ac(i, j) = −∞, bc(i, j) = ∞ , cc(i, j) = cij ∀(i, j) ∈ E

In the label-setting algorithm labels at node v represent partial paths
from o to v. The following attributes for a label L are considered:

v(L) The current end-node of the partial path represented by L.
c(L) The sum of the reduced cost along path L.
r(L) The accumulated consumption of resource r ∈ R along path L.

A feasible extension ǫ ∈ E(L) of a label L is a partial path starting in a
node v(L) ∈ V and ending in the target node o′, that does not violate any
resources when concatenated with the partial path represented by L.

In the following it is assumed that all resources are bounded strongly
from above, and weakly from below. This means that if the current resource
accumulation of a label is below the lower limit on a given edge, it is allowed
to fill up the resource to the lower limit, e.g., waiting for a time window to
open. This means that two consecutive labels Lu and Lv related by an edge
(u, v), i.e., Lu is extended and creates Lv, where v(Lu) = u and v(Lv) = v,
must satisfy

r(Lv) ≤ br(u, v), ∀r ∈ R (2.27)

r(Lv) = max{r(Lu) + cr(u, v), ar(u, v)}, ∀r ∈ R (2.28)

Here (2.27) demands that each label Lu satisfies the upper limit br(u, v)
of resource r corresponding to edge (u, v), while (2.28) states that resource
r at label Lv corresponds to the resource consumption at label Lu plus
the amount consumed by traversing edge (u, v), respecting the lower limit
ar(u, v) on edge (u, v).

A simple enumeration algorithm could be used to produce all these la-
bels, but to limit the number of labels considered, dominance rules are
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introduced to fathom labels which do not lead to an optimal solution.

Definition 2. A label Li dominates label Lj if

v(Li) = v(Lj) (2.29)

c(Li) ≤ c(Lj) (2.30)

E(Lj) ⊆ E(Li) (2.31)

In other words, the paths corresponding to labels Li and Lj should end
at the same node v(Li) = v(Lj) ∈ V , the path corresponding to label Li

should cost no more than the path corresponding to label Lj , and finally
any feasible extension of Lj is also a feasible extension of Li.

Feillet et al. [16] suggested to consider the set of nodes that cannot be
reached from a label Li and compare the set with the unreachable nodes of
a label Lj in order to determine if some extensions are impossible. Or in
other words: update the node resources in an eager fashion instead of a lazy.
The following definition is a generalization of Definition 3 in Feillet et al.
[16].

Definition 3. Given a start node o ∈ V , a label L, and a node u ∈ V
where v(L) = u a node v ∈ V is considered unreachable if v has already
been visited on the path from o to u or if a resource window is violated, e.g.:

∃r ∈ R r(L) + ℓr(u, v) > br(v)

where ℓr(u, v) is a lower bound on the consumption of resource r on all
feasible paths from u to v. The node resources are then given as: v(L) = 1
indicates that node v ∈ V is unreachable from node v(L) ∈ V , and v(L) = 0
otherwise.

Determining if (2.31) holds can be quite cumbersome because the straight-
forward definition demands that we calculate all extensions of the two labels.
Therefore, a sufficient criterion for (2.31) is sought that can be computed
faster. If label Li has consumed less resources than label Lj then no re-
sources are limiting the possibilities of extending Li compared to Lj , hence
the following proposition can be used as a relaxed version of the dominance
criterion.

Proposition 3. Desaulniers et al. [11]. If all resource extension functions
are non-decreasing, then label Li dominates label Lj if:

v(Li) = v(Lj) (2.32)

c(Li) ≤ c(Lj) (2.33)

r(Li) ≤ r(Lj) ∀r ∈ R (2.34)

Using Proposition 3 as a dominance criterion is a relaxation of the domi-
nance criterion of Definition 2 since only a subset of labels satisfying (2.29),
(2.30) and (2.31) satisfies inequalities (2.32), (2.33) and (2.34).
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2.4.1 Solving the Modified Pricing Problem

Consider some valid SR inequality of the form (2.21),

∑

p∈P

⌊
1

k

∑

i∈S
αip

⌋
λp ≤

⌊ |S|
k

⌋

where S ⊆ M and 0 < k ≤ |S|. Let σ ≤ 0 be the corresponding dual
variable when solving the master problem to LP-optimality. From (2.17)
the reduced cost of a column in the VRPTW master problem is:

ĉp = cp−σ

⌊∑
i∈S

∑
(i,j)∈δ+(i) αijp

k

⌋
=

∑

(i,j)∈E
cijαijp−σ

⌊∑
i∈S

∑
(i,j)∈δ+(i) αijp

k

⌋

(2.35)
We analyze how this additional cost can be handled in the label-setting
algorithm for ESPPRC.

Let V (L) be the nodes visited on the partial path of label L. The cost
of a label L can then be expressed as:

ĉ(L) = c(L)− σ

⌊ |S ∩ V (L)|
k

⌋
(2.36)

A new resource m can be used to compute the coefficient of penalty σ for
label L, i.e., m(L) = |S ∩ V (L)|, the number of customers involved in the
cut. Note that the consumption of resource m is 1 for each e.g. outgoing
edge of the involved customers. Therefore the usual dominance criterion of
Proposition 3 can be used. Note that in case Li dominates Lj , c(Li) ≤ c(Lj)
and m(Li) ≤ m(Lj) so ĉ(Li) ≤ ĉ(Lj) since −σ > 0. Hence the penalty term
must only be considered on the last edge to the target node to compute the
reduced cost ĉ(L) of path L. However, further labels can be eliminated by
exploiting the structure of (2.36).

For a label L let

T (L) = |S ∩ V (L)| mod k

be the number of visits made to S since the last penalty was paid for visiting
k nodes in S. Recall E(L) as the set of feasible extensions from the label L
to the target node o′ and note that when label Li dominates label Lj , their
common extensions are E(Lj) due to (2.31). The following cost dominance
criterion is obtained for a single SR inequality:

Proposition 4. If T (Li) ≤ T (Lj), v(Li) = v(Lj), ĉ(Li) ≤ ĉ(Lj), and
r(Li) ≤ r(Lj) ∀r ∈ R, then label Li dominates label Lj.

Proof. Consider any common extension ǫ ∈ E(Lj). Since T (Li) ≤ T (Lj)
the relation between the number of future penalties for the two labels when
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concatenated with ǫ is:
⌊ |S ∩ ǫ|+ T (Li)

k

⌋
≤

⌊ |S ∩ ǫ|+ T (Lj)

k

⌋

This leads to the following relation between the costs:

ĉ(Li + ǫ) = ĉ(Li) + c(ǫ)− σ

⌊ |S ∩ ǫ|+ T (Li)

k

⌋

≤ ĉ(Lj + ǫ) = ĉ(Lj) + c(ǫ)− σ

⌊ |S ∩ ǫ|+ T (Lj)

k

⌋

Hence label Li dominates label Lj .

Proposition 5. If T (Li) > T (Lj), v(Li) = v(Lj), ĉ(Li) − σ ≤ ĉ(Lj), and
r(Li) ≤ r(Lj) ∀r ∈ R, then label Li dominates label Lj.

Proof. Consider any common extension ǫ ∈ E(Lj). Since T (Li) > T (Lj)
the relation between the number of future penalties for the two labels when
concatenated with ǫ is:

⌊ |S ∩ ǫ|+ T (Li)

k

⌋
≥

⌊ |S ∩ ǫ|+ T (Lj)

k

⌋
(2.37)

Since 0 ≤ T (Lj) < T (Li) ≤ k it is clear that the left hand side of (2.37) is
at most one unit larger than the right hand side, i.e., label Li will pay the
penalty at most one more time than label Lj . Hence,

⌊ |S ∩ ǫ|+ T (Li)

k

⌋
− 1 ≤

⌊ |S ∩ ǫ|+ T (Lj)

k

⌋

That is, the additional cost of extending Li with ǫ is at most −σ more than
extending Lj with ǫ. This leads to the following relation between the costs:

ĉ(Li + ǫ) = ĉ(Li) + c(ǫ)− σ

⌊ |S ∩ ǫ|+ T (Li)

k

⌋

= ĉ(Li)− σ + c(ǫ)− σ

(⌊ |S ∩ ǫ|+ T (Li)

k

⌋
− 1

)

≤ ĉ(Lj) + c(ǫ)− σ

⌊ |S ∩ ǫ|+ T (Lj)

k

⌋

= ĉ(Lj + ǫ)

Hence label Li dominates label Lj .

Observe that if T (Li) + |S ∩ ǫ| < k for all ǫ ∈ E(Lj), it is not possible to
visit S enough times to trigger a penalty, i.e., the temporary penalty to the
cost of Li can be disregarded.

In case of several SR inequalities, the new dominance criterion is as
follows:
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Proposition 6. Let Q = {q : σq < 0 ∧ Tq(Li) > Tq(Lj)}. Then label Li

dominates label Lj if:

v(Li) = v(Lj) (2.38)

ĉ(Li)−
∑

q∈Q
σq ≤ ĉ(Lj) (2.39)

r(Li) ≤ r(Lj) ∀r ∈ R (2.40)

Proof. The validity of (2.39) follows directly from Propositions 4 and 5. The
validity of (2.38) and (2.40) follows from Proposition 3.

2.5 Computational Results

The BCP algorithm has been implemented using the BCP framework and
the open source linear programming solver CLP, both parts of the framework
coi [1]. All tests are run on an Intel R© Pentium R© 4 3.0 GHz PC with 4 GB
of memory.

The benchmarks of Solomon [33] follow a naming convention of DTm.n.
The distribution D can be R, C and RC, where the C instances have a clus-
tered distribution of customers, the R instances have a random distribution
of customers, and the RC instances are a mix of clustered and randomly
distributed customers. The time window T is either 1 or 2, where instances
of type 1 have tighter time windows than instances of type 2. The instance
number is given by m and the number of customers is given by n.

The outline of the BCP algorithm presented in this paper is as follows:

Step 1. Choose an unprocessed branch node. If the lower bound is above
the upper bound, then fathom branch node.

Step 2. Solve the LP master problem.

Step 3. Solve the pricing problem heuristically. If columns with negative
reduced cost have been found, then add them to the master problem and go
back to Step 2.

Step 4. Solve the pricing problem to optimality. Update the lower bound.
If the lower bound is above the upper bound, then fathom the branch node.
If some new columns have been found, then add them to the master problem
and go to Step 2.

Step 5. Separate SR inequalities. If any violated cuts are found, then
add them to the master problem and go to Step 2.

Step 6. If the LP solution is fractional then branch and add the children
to the set of unprocessed branch nodes. Mark the current node as processed
and go to Step 1.

We allow a maximum of 400 variables and 50 cuts to be generated in
each of steps 3, 4, and 5 respectively. The pricing-problem heuristic is based
on the label-setting algorithm but a simpler heuristic dominance criterion
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is used. If a label Li dominates Lj on cost, demand and time it is regarded
as dominated and Lj is discarded. That is, no concern is taken to the
node resources. The separation of SR inequalities is done with a complete
enumeration of all inequalities with |S| = 3 and k = 2. Let B be the set
of basic variables in the current LP solution and C be the set of customers,
then the separation can be done in O(|C|3|B|). Preliminary tests showed
that SR inequalities with different values of n and k seldom appeared in the
VRPTW instances, hence no separation of these inequalities was done.

The branch tree is explored with a best-bound search strategy, i.e., the
node with the lowest lower bound is chosen first, breaking ties based on the
LP result of the strong branching. We have adapted the branching rule used
by Fukasawa et al. [17]: For a subset of customers S ⊂ C the number of
vehicles to visit that set is either two or greater than or equal to four, i.e.,

∑

k∈K

∑

(i,j)∈δ+(S)

(xijk + xjik) = 2

and ∑

k∈K

∑

(i,j)∈δ+(S)

(xijk + xjik) ≥ 4

We are using the cut library of Lysgaard [26] to separate candidate sets for
branching, which is an implementation of the heuristic methods described
in Lysgaard et al. [27].

Author(s) CPU SpecINT SpecCFP Normalized

Irnich and Villeneuve [20] P3 600 MHz∗ 295 204 0.23
Chabrier [7] P4 1.5 GHz 526 606 0.52
Jepsen et al. [this paper] P4 3.0 GHz 1099 1077 1.00

Table 2.1: Comparison of computer speed. Based on CPU2000 benchmarks from SPEC
[34]. (∗) benchmarks are given for P3 650 MHz since no benchmarks were available for
P3 600. The normalized value is an average of SpecINT and SpecCFP.

2.5.1 Running Times

To give a fair comparison between running times of our algorithm and the
two most recent algorithms presented by Irnich and Villeneuve [20] and
Chabrier [7], the CPU speed is taken into account. This is done accord-
ing to the CPU2000 benchmarks reported by The Standard Performance
Evaluation Corporation SPEC [34]. Table 2.1 gives the integer and floating
point benchmark scores and a normalized value, e.g. our computations were
carried out on a computer approximately twice as fast as that of Chabrier.

A comparison of running times is shown in Table 2.2. To save space we
only report results on what we consider hard instances, i.e., the Solomon
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instances that were closed by either Irnich and Villeneuve [20] or Chabrier
[7] and by us.

Our algorithm outperforms those of Irnich and Villeneuve and Chabrier
for 17 out of 22 instances. Seven of these instances were solved without any
SR inequalities. In these cases, the faster running times were probably due
to the bi-directional label-setting algorithm.

With the introduction of SR inequalities our algorithm becomes com-
petitive with the algorithm based on solving k-cyc-SPPRC (e.g. instances
R104.100, RC104.100, RC107.100, RC108.100, and R211.50) and clearly
outperforms the ESPPRC based algorithm on the harder instances (e.g.,
instances R210.50, RC202.100, RC205.100, and RC208.25). In some cases
when solving the C1 and C2 instances the BCP algorithm tails off leading
to slow solution times or no solution at all. However, this must be seen in
the light of a simple implementation and no use of other cutting planes than
the SR inequalities.

2.5.2 Comparing Lower Bounds in the Root Node

Table 2.3 reports the lower bounds obtained in the root node of the master
problem with and without SR inequalities and with best bounds obtained by
Irnich and Villeneuve [20] using k-cyc-SPPRC. Again we only report results
on what we consider the hard instances from Table 2.2 plus the instances
closed by us.

As seen, the lower bounds obtained with SR inequalities are improved
quite significantly for most of the instances. Moreover, in most cases the
problems are solved without branching. Out of the 32 instances considered,
the gap was closed in the root node in 8 instances due to the ESPPRC
and in an additional 16 instances due to the SR inequalities. However, one
needs to take into account that the running time of solving the root node is
increased due to the increased difficulty of the pricing problems.
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Irnich and Villeneuve [20] Chabrier [7] Jepsen et al.
[this paper]

Instance Time (s) Time (s) Time (s) Speedup

R104.100 268106.0 - 32343.9 1.9 / -

RC104.100 986809.0 - 65806.8 3.4 / -
RC107.100 42770.7 - 153.8 64.0 / -
RC108.100 71263.0 - 3365.0 4.9 / -

R203.50 217.1 3320.9 50.8 1.0 / 34.0
R204.25 123.1 171.6 7.5 3.8 / 11.9
R205.50 585.7 531.0 15.5 8.6 / 17.8
R206.50 22455.3 4656.1 190.9 27.1 / 12.7
R208.25 321.9 741.5 ∗2.9 25.5 / 133.0
R209.50 142.4 195.4 16.6 2.0 / 6.1
R210.50 11551.4 65638.6 ∗332.7 8.0 / 102.6
R211.50 21323.0 - 10543.8 0.5 / -

RC202.50 241.6 13.0 ∗10.7 5.2 / 0.6
RC202.100 124018.0 19636.5 312.6 91.2 / 32.7
RC203.25 1876.0 5.1 ∗0.7 616.4 / 3.8
RC203.50 54229.2 4481.5 ∗190.9 65.3 / 12.2
RC204.25 - 13.0 ∗2.0 - / 3.4
RC205.50 52.6 10.6 ∗5.9 2.1 / 0.9
RC205.100 13295.9 15151.7 221.2 13.8 / 35.6
RC206.50 469.1 9.4 ∗8.2 13.2 / 0.6
RC207.50 - 71.1 ∗21.5 - / 1.7
RC208.25 - 33785.3 78.4 - / 224.1

Table 2.2: Comparison of running time. Speedup is calculated based on the normalized
values in Table 2.1 and are versus Irnich and Villeneuve and Chabrier respectively. Results
with (∗) are based on an algorithm without the SR inequalities. Results in boldface
indicate the fastest algorithm after normalization. (-) indicates that no running times
were provided by the author(s) or that the instance was not solved.
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Irnich and Villeneuve [20] Jepsen et al. [this paper]

Instance UB k LB LB(1) LB(2)

R104.100 971.5 3 955.8 956.9 971.3
R108.100 932.1 4 913.9 913.6 932.1
R112.100 948.6 3 925.9 926.8 946.7

RC104.100 1132.3 3 1114.4 1101.9 1129.9
RC106.100 1372.7 4 1343.1 1318.8 1367.3
RC107.100 1207.8 4 1195.4 1183.4 1207.8
RC108.100 1114.2 3 1100.5 1073.5 1114.2

R202.100 1029.6 0 933.5 1022.3 1027.3
R203.50 605.3 4 598.6 598.6 605.3
R203.100 870.8 2 847.1 867.0 870.8
R204.25 355.0 4 349.1 350.5 355.0
R205.50 690.1 4 682.8 682.9 690.1
R206.50 632.4 4 621.3 626.4 632.4
R207.50 575.5 4 557.4 564.1 575.5
R208.25 328.2 4 327.1 328.2 328.2
R209.50 600.6 4 599.9 599.9 600.6
R209.100 854.8 3 834.4 841.5 854.4
R210.50 645.6 4 633.1 636.1 645.3
R211.50 535.5 4 526.0 528.7 535.5

RC202.50 613.6 4 604.5 613.6 613.6
RC202.100 1092.3 3 1055.0 1088.1 1092.3
RC203.25 326.9 4 297.7 326.9 326.9
RC203.50 555.3 4 530.0 555.3 555.3
RC203.100 923.7 0 693.7 922.6 923.7
RC204.25 299.7 4 266.3 299.7 299.7
RC205.50 630.2 4 630.2 630.2 630.2
RC205.100 1154.0 3 1130.5 1147.7 1154.0
RC206.50 610.0 4 597.1 610.0 610.0
RC206.100 1051.1 3 1017.0 1038.6 1051.1
RC207.50 558.6 4 504.9 558.6 558.6
RC208.25 269.1 4 238.3 269.1 269.1
RC208.50 476.7 3 422.3 472.3 476.7

Table 2.3: Comparison of root lower bounds. LB by Irnich and Villeneuve is the best
lower bound obtained with k-cyc-SPPRC and valid inequalities, LB(1) is with ESPPRC
and LB(2) is with ESPPRC and SR inequalities. Lower bounds in boldface indicate
lower bounds equal to the upper bound. Instances in boldface are the Solomon instances
closed by us.
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25 customers 50 customers 100 customers

Class No. Prev. Jepsen et al. Prev. Jepsen et al. Prev Jepsen et al.

[this paper] [this paper] [this paper]

R1 12 12 12 12 12 10 12
C1 9 9 9 9 9 9 9
RC1 8 8 8 8 8 8 8

R2 11 11 11 9 9 1 4
C2 8 8 8 8 7 8 7
RC2 8 8 8 8 7 3 5

Summary 56 56 56 55 52 39 45

Table 2.4: Summary of solved Solomon instances. No. is the number of instances in that
class, and for 25, 50 and 100 customers the two columns refers to the number of instances
previously solved to optimality and the number of instances solved to optimality by us.

Instance UB LB M B LP Timer(s) Timevar(s) TimeLP(s) Time (s)

R108.100 932.1 932.1 10 1 132 5911.71 5796.04 77.36 5911.74
R112.100 948.6 946.7 10 9 351 55573.68 199907.03 1598.63 202803.94
R202.100 1029.6 1027.3 8 13 514 974.51 730.04 4810.47 8282.38
R203.100 870.8 870.8 6 1 447 54187.15 48474.45 3973.42 54187.40
R207.50 575.5 575.5 3 1 107 34406.92 34282.47 118.69 34406.96
R209.100 854.8 854.4 5 3 337 31547.45 74779.58 2978.42 78560.47
RC203.100 923.7 923.7 5 1 402 14917.18 13873.53 1025.65 14917.36
RC206.100 1051.1 1051.1 7 1 179 339.63 159.33 171.34 339.69

Table 2.5: Instances closed by Jepsen et al. [this paper]. UB is the optimal solution
found by us, LB is lower bound at the root node, M is the number of vehicles in the
solution, B is the number of branch nodes, LP is the number of LP iterations, Timer is
the time solving the root node, Timevar is time spent solving the pricing problem, TimeLP
is the time spent solving LP problems, and Time is the total time.

2.5.3 Closed Solomon Instances

Table 2.4 gives an overview of how many instances were solved for each
class of the Solomon instances. We were able to close 8 previously unsolved
instances. We did not succeed to solve four previously solved instances
(R204.50, C204.50, C204.100, and RC204.50).

Information on all solved Solomon instances can be found in Tables A.6–
A.8 in Appendix A.1. Furthermore Table 2.5 provides detailed information
of the instances closed in this paper. The solutions can be found in Tables
A.9–A.16 in Appendix A.2.
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2.6 Concluding Remarks

The introduction of the SR inequalities significantly improved the results of
the BCP algorithm. This made it possible to solve 8 previously unsolved
instances from the Solomon benchmarks.

Except for four cases (R204.50, C204.50 and C204.100 solved with k-
cyc-SPPRC by Irnich and Villeneuve [20] and RC204.50 solved by Danna
and Pape [9]) our BCP algorithm is competitive and in most cases superior
to earlier algorithms within this field. With minor modifications in the
definition of the conflict graph the SR inequalities can be applied to the k-
cyc-SPPRC algorithm using the same cost-modified dominance criterion as
described in this paper. Preliminary results by Jepsen et al. [21] have shown
that the lower bounds obtained in a BCP algorithm for VRPTW using the
k-cyc-SPPRC algorithm and SR inequalities are almost as good as those
obtained using the approach presented in this paper. This seems to be a
promising direction of research in order to solve large VRPTW instances,
since the ESPPRC algorithm is considerably slower than the k-cyc-SPPRC
algorithm when the number of customers increases.

Moreover, we note that the SR inequalities can be applied to any set
packing problem. That is, they can be used in BCP algorithms for other
problems with a set packing problem master problem. One only needs to
consider how the dual variables of the SR inequalities are handled in the
pricing problems, however this is not necessarily trivial and must be inves-
tigated for the individual pricing problems.

Adding SR inequalities to the master problem means that the pricing
problem becomes a shortest path problem with non-additive non-decreasing
constraints or objective function. By modifying the dominance criterion,
we have shown that this is tractable in a label-setting algorithm. A further
discussion of shortest path problems with various non-additive constraints
can be found in Pisinger and Reinhardt [30]. The development of algorithms
which efficiently handle non-additive constraints is important to increase the
number of valid inequalities which can be handled.

A.1 Results on Solomon Instances

This appendix contains detailed information about solved Solomon instances.
The first column of the tables is the instance name, then three columns
for the branch-and-cut-and-price algorithm with ESPPRC and with ESP-
PRC and SR-inequalities follow. The columns are the lower bound in
the root node, the number of branch tree nodes and the total running
time. A (-) means that the instance was not solved. The last two columns
are the optimal upper bound and a reference to the authors who were
the first to solve that instance, disregarding Desrochers et al. [10] who
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solved many of the instances with a different calculation of the travel times
making it hard to compare with later solutions. The author legend is:
C: Chabrier [7]
CR: Cook and Rich [8]
DLP: Danna and Pape [9]
IV: Irnich and Villeneuve [20]
JPSP: Jepsen et al. [this paper]
KDMSS: Kohl et al. [23]
KLM: Kallehauge et al. [22]
L: Larsen [24]
S: Salani [32]
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 617.1 1 0.02 617.1 1 0.02 617.1 KDMSS
R102 546.4 3 0.13 547.1 1 0.09 547.1 KDMSS
R103 454.6 1 0.11 454.6 1 0.11 454.6 KDMSS
R104 416.9 1 0.12 416.9 1 0.12 416.9 KDMSS
R105 530.5 1 0.02 530.5 1 0.02 530.5 KDMSS
R106 457.3 5 0.29 465.4 1 0.10 465.4 KDMSS
R107 424.3 1 0.12 424.3 1 0.12 424.3 KDMSS
R108 396.9 3 0.31 397.3 1 0.24 397.3 KDMSS
R109 441.3 1 0.06 441.3 1 0.06 441.3 KDMSS
R110 438.4 17 1.16 444.1 3 0.29 444.1 KDMSS
R111 427.3 3 0.23 428.8 1 0.13 428.8 KDMSS
R112 387.1 13 1.19 393.0 1 0.52 393.0 KDMSS

C101 191.3 1 0.13 191.3 1 0.13 191.3 KDMSS
C102 190.3 1 0.53 190.3 1 0.53 190.3 KDMSS
C103 190.3 1 0.80 190.3 1 0.80 190.3 KDMSS
C104 186.9 1 3.29 186.9 1 3.29 186.9 KDMSS
C105 191.3 1 0.17 191.3 1 0.17 191.3 KDMSS
C106 191.3 1 0.14 191.3 1 0.14 191.3 KDMSS
C107 191.3 1 0.20 191.3 1 0.20 191.3 KDMSS
C108 191.3 1 0.37 191.3 1 0.37 191.3 KDMSS
C109 191.3 1 0.62 191.3 1 0.62 191.3 KDMSS

RC101 406.7 5 0.20 461.1 1 0.09 461.1 KDMSS
RC102 351.8 1 0.05 351.8 1 0.05 351.8 KDMSS
RC103 332.8 1 0.19 332.8 1 0.19 332.8 KDMSS
RC104 306.6 1 0.52 306.6 1 0.52 306.6 KDMSS
RC105 411.3 1 0.06 411.3 1 0.06 411.3 KDMSS
RC106 345.5 1 0.10 345.5 1 0.10 345.5 KDMSS
RC107 298.3 1 0.29 298.3 1 0.29 298.3 KDMSS
RC108 294.5 1 0.67 294.5 1 0.67 294.5 KDMSS

R201 460.1 3 0.44 463.3 1 0.27 463.3 CR+KLM
R202 410.5 1 0.61 410.5 1 0.61 410.5 CR+KLM
R203 391.4 1 0.80 391.4 1 0.80 391.4 CR+KLM
R204 350.5 19 18.40 355.0 1 7.51 355.0 IV+C
R205 390.6 3 1.62 393.0 1 1.06 393.0 CR+KLM
R206 373.6 3 1.67 374.4 1 0.93 374.4 CR+KLM
R207 360.1 5 4.03 361.6 1 1.39 361.6 KLM
R208 328.2 1 2.87 328.2 1 2.87 328.2 IV+C
R209 364.1 9 4.99 370.7 1 2.26 370.7 KLM
R210 404.2 3 1.52 404.6 1 1.04 404.6 CR+KLM
R211 341.4 29 38.17 350.9 1 22.62 350.9 KLM

C201 214.7 1 0.84 214.7 1 0.84 214.7 CR+L
C202 214.7 1 3.00 214.7 1 3.00 214.7 CR+L
C203 214.7 1 3.02 214.7 1 3.02 214.7 CR+L
C204 213.1 1 7.00 213.1 1 7.00 213.1 CR+KLM
C205 214.7 1 1.10 214.7 1 1.10 214.7 CR+L
C206 214.7 1 1.75 214.7 1 1.75 214.7 CR+L
C207 214.5 1 2.70 214.5 1 2.70 214.5 CR+L
C208 214.5 1 1.85 214.5 1 1.85 214.5 CR+L

RC201 360.2 1 0.25 360.2 1 0.25 360.2 CR+L
RC202 338.0 1 0.58 338.0 1 0.58 338.0 CR+KLM
RC203 326.9 1 0.72 326.9 1 0.72 326.9 IV+C
RC204 299.7 1 1.95 299.7 1 1.95 299.7 C
RC205 338.0 1 0.62 338.0 1 0.62 338.0 L+KLM
RC206 324.0 1 0.87 324.0 1 0.87 324.0 KLM
RC207 298.3 1 0.88 298.3 1 0.88 298.3 KLM
RC208 269.1 1 78.42 269.1 1 78.42 269.1 C

Table A.6: Instances with 25 customers.
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1043.4 3 0.14 1044.0 1 0.09 1044.0 KDMSS
R102 909.0 1 0.27 909.0 1 0.27 909.0 KDMSS
R103 769.3 13 4.98 772.9 1 2.02 772.9 KDMSS
R104 619.1 21 33.29 625.4 1 6.73 625.4 KDMSS
R105 892.2 29 2.78 893.7 5 1.15 899.3 KDMSS
R106 791.4 5 1.41 793.0 1 0.83 793.0 KDMSS
R107 707.3 11 5.56 711.1 1 4.76 711.1 KDMSS
R108 594.7 789 1723.29 607.4 23 1601.68 617.7 CR+KLM
R109 775.4 77 20.11 783.3 7 11.54 786.8 KDMSS
R110 695.1 9 3.38 697.0 1 1.46 697.0 KDMSS
R111 696.3 41 19.21 707.2 1 3.67 707.2 CR+KLM
R112 614.9 165 169.26 630.2 1 35.67 630.2 CR+KLM

C101 362.4 1 0.47 362.4 1 0.47 362.4 KDMSS
C102 361.4 1 1.59 361.4 1 1.59 361.4 KDMSS
C103 361.4 1 6.06 361.4 1 6.06 361.4 KDMSS
C104 358.0 1 1564.88 358.0 1 1564.88 358.0 KDMSS
C105 362.4 1 0.49 362.4 1 0.49 362.4 KDMSS
C106 362.4 1 0.69 362.4 1 0.69 362.4 KDMSS
C107 362.4 1 0.97 362.4 1 0.97 362.4 KDMSS
C108 362.4 1 1.55 362.4 1 1.55 362.4 KDMSS
C109 362.4 1 3.62 362.4 1 3.62 362.4 KDMSS

RC101 850.1 39 5.60 944.0 1 2.12 944.0 KDMSS
RC102 721.9 127 60.41 822.5 1 8.68 822.5 KDMSS
RC103 645.3 9 8.56 710.9 1 40.05 710.9 KDMSS
RC104 545.8 1 5.71 545.8 1 5.71 545.8 KDMSS
RC105 761.6 21 7.22 855.3 1 4.31 855.3 KDMSS
RC106 664.5 11 3.35 723.2 1 3.88 723.2 KDMSS
RC107 603.6 7 4.60 642.7 1 4.49 642.7 KDMSS
RC108 541.2 5 15.88 594.8 5 260.95 598.1 KDMSS

R201 791.9 1 4.97 791.9 1 4.97 791.9 CR+KLM
R202 698.5 1 9.88 698.5 1 9.88 698.5 CR+KLM
R203 598.6 25 355.99 605.3 1 50.80 605.3 IV+C
R204 - - 506.4 IV
R205 682.9 35 118.12 690.1 1 15.45 690.1 IV+C
R206 626.4 47 288.00 632.4 1 190.86 632.4 IV+C
R207 564.1 141 15400.44 575.5 1 34406.96 575.5 JPSP
R208 - - - -
R209 599.9 3 24.45 600.6 1 16.63 600.6 IV+C
R210 636.1 49 332.70 645.3 3 18545.61 645.6 IV+C
R211 528.7 31 44644.89 535.5 1 10543.81 535.5 IV+DLP

C201 360.2 1 42.07 360.2 1 42.07 360.2 CR+L
C202 360.2 1 67.05 360.2 1 67.05 360.2 CR+KLM
C203 359.8 1 214.88 359.8 1 214.88 359.8 CR+KLM
C204 - - 350.1 KLM
C205 359.8 1 64.18 359.8 1 64.18 359.8 CR+KLM
C206 359.8 1 38.91 359.8 1 38.91 359.8 CR+KLM
C207 359.6 1 72.81 359.6 1 72.81 359.6 CR+KLM
C208 350.5 1 55.79 350.5 1 55.79 350.5 CR+KLM

RC201 684.8 1 3.00 684.8 1 3.00 684.8 L+KLM
RC202 613.6 1 10.69 613.6 1 10.69 613.6 IV+C
RC203 555.3 1 190.88 555.3 1 190.88 555.3 IV+C
RC204 - - 442.2 DLP
RC205 630.2 1 5.88 630.2 1 5.88 630.2 IV+C
RC206 610.0 1 8.17 610.0 1 8.17 610.0 IV+C
RC207 558.6 1 21.53 558.6 1 21.53 558.6 C
RC208 - 476.7 1 1639.40 476.7 S

Table A.7: Instances with 50 customers.
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1631.2 57 20.08 1634.0 3 1.87 1637.7 KDMSS
R102 1466.6 1 4.39 1466.6 1 4.39 1466.6 KDMSS
R103 1206.8 19 55.78 1208.7 1 23.85 1208.7 CR+L
R104 - 971.3 3 32343.92 971.5 IV
R105 1346.2 113 126.96 1355.2 5 43.12 1355.3 KDMSS
R106 1227.0 147 511.07 1234.6 1 75.42 1234.6 CR+KLM
R107 - 1064.3 3 1310.30 1064.6 CR+KLM
R108 - 932.1 1 5911.74 932.1 JPSP
R109 - 1144.1 19 1432.41 1146.9 CR+KLM
R110 - 1068.0 3 1068.31 1068.0 CR+KLM
R111 - 1045.9 39 83931.48 1048.7 CR+KLM
R112 - 946.7 9 202803.94 948.6 JPSP

C101 827.3 1 3.02 827.3 1 3.02 827.3 KDMSS
C102 827.3 1 12.92 827.3 1 12.92 827.3 KDMSS
C103 826.3 1 33.89 826.3 1 33.89 826.3 KDMSS
C104 822.9 1 4113.09 822.9 1 4113.09 822.9 KDMSS
C105 827.3 1 5.34 827.3 1 5.34 827.3 KDMSS
C106 827.3 1 7.15 827.3 1 7.15 827.3 KDMSS
C107 827.3 1 6.55 827.3 1 6.55 827.3 KDMSS
C108 827.3 1 14.46 827.3 1 14.46 827.3 KDMSS
C109 827.3 1 20.53 827.3 1 20.53 827.3 KDMSS

RC101 1584.1 59 56.62 1619.8 1 12.39 1619.8 KDMSS
RC102 - 1457.4 1 76.69 1457.4 CR+KLM
RC103 - 1257.7 3 2705.78 1258.0 CR+KLM
RC104 - 1129.9 7 65806.79 1132.3 IV
RC105 1472.0 191 309.83 1513.7 1 26.73 1513.7 KDMSS
RC106 - 1367.3 37 15891.55 1372.7 S
RC107 - 1207.8 1 153.80 1207.8 IV
RC108 - 1114.2 1 3365.00 1114.2 IV

R201 - 1143.2 1 139.03 1143.2 KLM
R202 - 1027.3 13 8282.38 1029.6 JPSP
R203 - 870.8 1 54187.40 870.8 JPSP
R204 - - - -
R205 - - - -
R206 - - - -
R207 - - - -
R208 - - - -
R209 - 854.8 3 78560.47 854.8 JPSP
R210 - - - -
R211 - - - -

C201 589.1 1 203.34 589.1 1 203.34 589.1 CR+KLM
C202 589.1 1 3483.15 589.1 1 3483.15 589.1 CR+KLM
C203 588.7 1 13070.71 588.7 1 13070.71 588.7 KLM
C204 - - 588.1 IV
C205 586.4 1 416.56 586.4 1 416.56 586.4 CR+KLM
C206 586.0 1 594.92 586.0 1 594.92 586.0 CR+KLM
C207 585.8 1 1240.97 585.8 1 1240.97 585.8 CR+KLM
C208 585.8 1 555.27 585.8 1 555.27 585.8 KLM

RC201 - 1261.7 3 229.27 1261.8 KLM
RC202 - 1092.3 1 312.57 1092.3 IV+C
RC203 922.6 11 34063.95 923.7 1 14917.36 923.7 JPSP
RC204 - - - -
RC205 - 1154.0 1 221.24 1154.0 IV+C
RC206 - 1051.1 1 339.69 1051.1 JPSP
RC207 - - - -
RC208 - - - -

Table A.8: Instances with 100 customers.
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A.2 Solutions of Closed Solomon Instances

Cost Route

8.8 53
119.2 70, 30, 20, 66, 65, 71, 35, 34, 78, 77, 28
105.4 92, 98, 91, 44, 14, 38, 86, 16, 61, 85,100, 37
84.1 2, 57, 15, 43, 42, 87, 97, 95, 94, 13, 58

106.5 73, 22, 41, 23, 67, 39, 56, 75, 74, 72, 21, 40
114.6 52, 88, 62, 19, 11, 64, 63, 90, 32, 10, 31
78.4 6, 96, 59, 99, 93, 5, 84, 17, 45, 83, 60, 89

107.3 26, 12, 80, 68, 29, 24, 55, 4, 25, 54
93.2 27, 69, 76, 3, 79, 9, 51, 81, 33, 50, 1

114.6 18, 7, 82, 8, 46, 36, 49, 47, 48

932.1 10

Table A.9: Solution of R108.100. The left
column is the cost of the routes and the to-
tal cost. The right column is a comma sep-
arated list indicating the customers visited
on the routes in the order of visit and the
total number of routes.

Cost Route

78.1 6, 94, 95, 87, 42, 43, 15, 57, 58
115.8 2, 41, 22, 75, 56, 23, 67, 39, 25, 55, 54
117.4 28, 76, 79, 78, 34, 35, 71, 65, 66, 20, 1
128.2 31, 62, 19, 11, 63, 64, 49, 36, 47, 48
62.8 53, 40, 21, 73, 74, 72, 4, 26
98.0 52, 88, 7, 82, 8, 46, 45, 17, 84, 5, 89
76.4 12, 80, 68, 24, 29, 3, 77, 50

100.5 61, 16, 86, 38, 14, 44, 91,100, 37, 59, 96
67.6 18, 83, 60, 99, 93, 85, 98, 92, 97, 13

103.8 27, 69, 33, 81, 9, 51, 30, 32, 90, 10, 70

948.6 10

Table A.10: Solution of R112.100.

Cost Route

8.8 53
93.6 52, 62, 63, 90, 10, 32, 70

177.2 83, 45, 82, 48, 47, 36, 19, 11, 64, 49, 46, 17, 5, 60, 89
223.8 50, 33, 65, 71, 29, 76, 3, 79, 78, 81, 9, 51, 20, 66, 35, 34, 68, 77
140.2 27, 69, 1, 30, 31, 88, 7, 18, 8, 84, 86, 91,100, 37, 98, 93, 59, 94
67.1 40, 73, 41, 22, 74, 2, 58

148.9 28, 26, 21, 72, 75, 39, 67, 23, 56, 4, 54, 55, 25, 24, 80, 12
170.0 95, 92, 42, 15, 14, 38, 44, 16, 61, 85, 99, 96, 6, 87, 57, 43, 97, 13

1029.6 8

Table A.11: Solution of R202.100.
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Cost Route

24.2 53, 40, 58
142.1 27, 69, 1, 76, 3, 79, 78, 81, 9, 66, 71, 35, 34, 29, 68, 77, 28
187.3 89, 18, 45, 46, 36, 47, 48, 19, 11, 62, 88, 7, 82, 8, 83, 60, 5, 84, 17, 61, 91,100, 37, 98, 93, 59, 94
183.3 95, 92, 97, 42, 15, 43, 14, 44, 38, 86, 16, 85, 99, 96, 6, 87, 57, 41, 22, 74, 73, 2, 13
190.3 50, 33, 51, 71, 65, 20, 30, 32, 90, 63, 64, 49, 10, 70, 31, 52
143.6 26, 21, 72, 75, 39, 67, 23, 56, 4, 55, 25, 54, 24, 80, 12

870.8 6

Table A.12: Solution of R203.100.

Cost Route

202.5 27, 31, 7, 48, 47, 36, 46, 45, 8, 18, 6, 37, 44, 14, 38, 16, 17, 5, 13
130.5 2, 42, 43, 15, 23, 39, 22, 41, 21, 40
242.5 28, 12, 3, 33, 50, 1, 30, 11, 49, 19, 10, 32, 20, 9, 35, 34, 29, 24, 25, 4, 26

575.5 3

Table A.13: Solution of R207.50.

Cost Route

146.8 52, 7, 82, 83, 18, 6, 94, 13, 87, 57, 15, 43, 42, 97, 92, 37,100, 91, 93, 96
198.7 95, 99, 59, 98, 85, 5, 84, 61, 16, 44, 14, 38, 86, 17, 45, 8, 46, 36, 49, 48, 60, 89
205.9 27, 69, 31, 88, 62, 47, 19, 11, 64, 63, 90, 30, 51, 71, 9, 81, 33, 79, 3, 77, 68, 80, 24, 54, 26
157.6 28, 12, 76, 29, 78, 34, 35, 65, 66, 20, 32, 10, 70, 1, 50
145.8 40, 2, 73, 21, 72, 75, 23, 67, 39, 25, 55, 4, 56, 74, 22, 41, 58, 53

854.8 5

Table A.14: Solution of R209.100.

Cost Route

139.4 81, 54, 72, 37, 36, 39, 42, 44, 41, 38, 40, 35, 43, 61, 68
172.8 90, 65, 83, 64, 85, 63, 89, 76, 23, 21, 48, 18, 19, 49, 22, 20, 51, 84, 56, 66
241.4 69, 98, 88, 53, 82, 99, 52, 86, 87, 9, 10, 47, 17, 13, 74, 59, 97, 75, 58, 77, 25, 24, 57
211.0 1, 3, 5, 45, 60, 12, 11, 15, 16, 14, 78, 73, 79, 7, 6, 8, 46, 4, 2, 55,100, 70
159.1 91, 92, 95, 62, 33, 32, 30, 27, 26, 28, 29, 31, 34, 50, 67, 94, 93, 71, 96, 80

923.7 5

Table A.15: Solution of RC203.100.
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Cost Route

8.4 90
186.6 81, 94, 67, 84, 85, 51, 76, 89, 48, 25, 77, 58, 74
168.6 92, 71, 72, 42, 39, 38, 36, 40, 44, 43, 41, 37, 35, 54, 93, 96
180.9 65, 83, 64, 95, 62, 63, 33, 30, 31, 29, 27, 28, 26, 32, 34, 50, 56, 91, 80
189.6 61, 2, 45, 5, 8, 7, 79, 73, 78, 53, 88, 6, 46, 4, 3, 1,100, 70, 68
120.9 82, 99, 52, 86, 57, 23, 21, 18, 19, 49, 20, 22, 24, 66
196.1 69, 98, 12, 14, 47, 16, 15, 11, 59, 75, 97, 87, 9, 13, 10, 17, 60, 55

1051.1 7

Table A.16: Solution of RC206.100.

61



Chapter 2

62



Bibliography

[1] COIN— COmputational INfrastructure for Operations Research, 2007.
www.coin-or.org.
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Abstract

This paper presents an exact method for solving the symmetric two-
echelon capacitated vehicle routing problem, a transportation problem con-
cerned with the distribution of goods from a depot to a set of customers
through a set of satellite locations. The presented method is based on an
edge flow model that is a relaxation and provides a valid lower bound. A
specialized branching scheme is employed to obtain feasible solutions. Out
of a test set of 93 instances the algorithm is able to solve 47 to optimality
surpassing previous exact algorithms.

3.1 Introduction

The two-echelon capacitated vehicle routing problem (2E-CVRP) is a dis-
tribution and location problem that can be described as: given a depot, a
set of satellites, and a set of customers each with a demand, the 2E-CVRP
consist in distributing goods from the depot to the customers through the
set of satellites. Two vehicle types are considered, a large capacity vehicle
type (first echelon vehicles) going between the depot and the satellites and a
small capacity vehicle type (second echelon vehicles), based at the satellites,
serve the customers. Each customer must be visited by exactly one small
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duction Sciences (project 274-08-0353)
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vehicle. Additionally it is feasible to leave one or more satellites unused and
each satellite may be visited by several vehicles from the depot in order to
meet the demand. No vehicle may be loaded such that the vehicle capacity
is exceeded. The number of vehicles to be used of each type is bounded
from above and the number of smaller vehicles used at each satellite is also
bounded from above. A satellite-specific handling cost is incurred for each
unit of freight transported through the satellite. The objective is to minimize
the sum of the vehicle travel costs and the handling costs at the satellites.

The 2E-CVRP is relevant in city-logistic applications. Due to legal re-
strictions it may not be feasible to use large trucks within the center of
large cities. Therefore, to distribute goods efficiently it is convenient to use
a two-tier distribution network as in the 2E-CVRP where satellite facilities
are located at the outskirts of the city. Figure 3.1 shows an example of
a solution to a 2E-CVRP instance with three satellites and six customers.
The customers are represented by circles, the satellites by triangles and the
depot by a square. First and second echelon vehicle routes are represented
by bold lines and thin lines, respectively, and the capacity of the first and
second echelon vehicles are 100 and 75, respectively. The demand of cus-
tomers and satellite handling costs are found in tables (a) and (b) of Figure
3.1. The figure illustrates several features of the 2E-CVRP. For example,
the delivery to satellite 3 is split between two vehicles and satellite 2 is left
unused because of its high handling costs even though it has a favorable
position.

The literature on the 2E-CVRP is limited but several contributions have
emerged in recent years. Feliu et al. [16] and Perboli et al. [35] present a
commodity flow formulation for the 2E-CVRP and solve this model through
a branch-and-cut algorithm. The latter paper extend the model presented
in the former paper by introducing a maximum limit on the number of
vehicles available at each satellite. Perboli et al. [33, 34] present several
valid inequalities for the 2E-CVRP. Perboli et al. [35] also present two math-
based heuristics derived from the exact approach. Other heuristic methods
are presented in Crainic et al. [12, 13, 14]. The latter paper presents a
multi-start heuristic which outperforms the previous heuristics.

If the assignment of customers to satellites is given then the 2E-CVRP
decomposes into two separate routing problems. In the first echelon we are
faced with a split delivery capacitated vehicle routing problem (SDCVRP)
while in the second echelon we must solve a capacitated vehicle routing
problem (CVRP) for each satellite that is in use. Both routing problems
have been studied extensively in the literature. The current state of the art
for the CVRP are surveyed by Laporte [22, 23]. In particular, the best ex-
act algorithms for the CVRP are presented by Fukasawa et al. [17], Baldacci
et al. [4, 7], Lysgaard et al. [28]. Except the latter which is a branch-and-cut
algorithm, the solution approaches are based on decomposition algorithms
enhanced with cutting planes. The SDCVRP is surveyed by Archetti and
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Speranza [1] and recent exact and lower bounding algorithms are presented
by Archetti et al. [2], Jin et al. [21], Moreno et al. [30] as well as by De-
saulniers [15] that also includes time window constraints. The 2E-CVRP is
related to a number of other two-level routing problems. These include the
location-routing problem (Laporte et al. [25], Nagy and Salhi [31], Contardo
et al. [11], Belenguer et al. [8], Baldacci et al. [6]), the two-echelon location
routing problem (Nguyen et al. [32]), the truck-and-trailer problem (Chao
[10], Tan et al. [37]) and the capacitated m-ring-star problem (Baldacci et al.
[3]).

The main contribution of this work is a new mathematical model that
is a relaxation for the 2E-CVRP. The model is inspired by the edge flow
formulation of the CVRP introduced by Laporte and Nobert [24] and the
SDCVRP formulation proposed by Belenguer et al. [9]. The relaxation has
fewer variables than the previously proposed formulation but does have sev-
eral constraint sets of exponential size. The new relaxation provides a lower
bound for the 2E-CVRP but does not necessarily provide feasible solutions.
Therefore, we devise a feasibility test and a specialized branching scheme
to obtain optimal feasible integer solutions. A branch-and-cut algorithm is
developed to solve the 2E-CVRP to optimality using the specialized branch
rule. Through computational studies we show that the branch-and-cut algo-
rithm based on the new relaxation outperforms previous exact algorithms.

The paper is organized as follows: Section 3.2 presents a mathematical
formulation of the 2E-CVRP and a relaxation to calculate a lower bound
for the symmetric 2E-CVRP. Section 3.3 presents an exact branch-and-
cut algorithm that utilizes the presented relaxation, feasibility test, and a
specialized branching scheme to obtain optimal solutions to the 2E-CVRP.
Section 3.4 presents the experimental results and Section 3.5 concludes the
paper.

3.2 A mathematical formulation and a relaxation

Perboli et al. [35] propose a commodity flow formulation to solve the 2E-
CVRP. We start by giving a similar directed three index formulation and
will then derive a relaxation from this. The three index formulation differs
from that of Perboli et al. [35] as it appears that the model presented in [35]
may not provide correct upper bounds when there are more than 2 satellites
in the solution. An example of an infeasible integer solution to the model
in [35] can be found in Figure 3.2a.

A graph G = (V0 ∪ VS ∪ VC , A ∪ A′) is given where the set of nodes
V = V0 ∪ VS ∪ VC is split into three subsets: a set containing the depot
(V0 = {0}), a set of satellites nodes (VS) and a set of customers (VC). The
set of arcs is composed of two subsets A = A(V0 ∪VS) and A′ = A(VS ∪VC)
where A(S), S ⊂ V is the set of all arcs with both endpoints in S. The size
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of the two fleets associated with the echelons are given as K and K ′ with
capacity C and C ′, respectively and the set of first echelon vehicles is given
as K̄. K ′

s is the maximum number of second echelon vehicles serviced at
satellite s ∈ VS . Let di be the demand of customer i ∈ VC . For shorthand
notation we use δ−(s) and δ+(s) to denote respectively the entering and
leaving first echelon arcs of satellite s ∈ VS . Similar δ′−(i) and δ′+(i) are
the entering and leaving second echelon arcs of node i ∈ VS ∪ VC . The
constant M is a sufficiently large constant which can be set to |VS | + 1, hs
is the unit handling cost of freight in satellite s ∈ VS , cij and c′ij is the
travel cost of respectively arcs (i, j) ∈ A and arcs (i, j) ∈ A′. We assume,
throughout this paper, that the travel costs are symmetric and that they
satisfy the triangle inequality.

The variables for the first echelon routing problem are defined as follows:
x̄ijk ∈ {0, 1} is equal to 1 iff vehicle k goes from i ∈ VS to j ∈ VS , w̄sk ∈ R+

is the amount of freight delivered to satellite s by vehicle k, ūsk ∈ R+ is the
“position” of satellite s ∈ Vs in route k. For the second echelon the variables
are defined as follows: f̄ijs ∈ R+ is the load on a vehicle from satellite s when
leaving node i, z̄ijs ∈ {0, 1} is 1 iff second echelon vehicle from satellite s
goes from i to j. Finally the variables t̄s ∈ R+ is the total demand delivered
from satellite s. A three-index formulation for the directed 2E-CVRP is

min
∑

k∈K̄

∑

(i,j)∈A
cij x̄ijk +

∑

s∈VS

∑

(i,j)∈A′
c′ij z̄ijs +

∑

s∈VS

hst̄s (3.1)

s.t.
∑

(i,j)∈δ+(s)

x̄ijk =
∑

(i,j)∈δ−(s)

x̄ijk ∀s ∈ Vs, k ∈ K̄ (3.2)

∑

(i,j)∈δ+(s)

x̄ijk ≤ 1 ∀s ∈ V0 ∪ Vs, k ∈ K̄ (3.3)

ūik + 1 ≤ ūjk +M(1− x̄ijk) ∀(i, j) ∈ A(VS), k ∈ K̄ (3.4)

w̄sk ≤ C
∑

(i,j)∈δ+(s)

x̄ijk ∀s ∈ Vs, k ∈ K̄ (3.5)

∑

s∈VS

w̄sk ≤ C ∀k ∈ K̄ (3.6)

∑

k∈K
w̄sk = t̄s ∀s ∈ Vs (3.7)

∑

s∈VS

∑

(a,b)∈δ′+(i)

z̄abs = 1 ∀i ∈ VC (3.8)

∑

(a,b)∈δ′−(i)

z̄abs =
∑

(a,b)∈δ′+(i)

z̄abs ∀i ∈ VC , s ∈ VS (3.9)
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∑

s′∈VS\{s}
(

∑

(a,b)∈δ′+(s)

z̄abs′ +
∑

(a,b)∈δ′−(s)

z̄abs′) = 0 ∀s ∈ VS (3.10)

∑

(a,b)∈δ′+(s)

z̄abs ≤ K ′
s ∀s ∈ VS (3.11)

∑

s∈VS

∑

(a,b)∈δ′+(s)

z̄abs ≤ K ′ (3.12)

∑

s∈VS

∑

(a,b)∈δ′+(i)

f̄abs =
∑

s∈VS

∑

(a,b)∈δ′−(i)

f̄abs + di ∀i ∈ VC (3.13)

f̄abs ≤ C ′z̄abs ∀s ∈ VS , (a, b) ∈ A′

(3.14)

t̄s =
∑

(a,b)∈δ′−(s)

f̄abs ∀s ∈ VS (3.15)

x̄ijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K̄
(3.16)

w̄sk ≥ 0 ∀s ∈ VS , k ∈ K̄ (3.17)

ūsk ≥ 0 ∀s ∈ VS , k ∈ K̄ (3.18)

f̄abs ≥ 0 ∀s ∈ VS , (a, b) ∈ A′

(3.19)

z̄abs ∈ {0, 1} ∀s ∈ VS , (a, b) ∈ A′

(3.20)

t̄s ≥ 0 ∀s ∈ VS . (3.21)

The objective minimizes the travel cost for the first and second echelon as
well as the handling fee in the satellites. Constraints (3.2)-(3.6) are con-
cerned with the routing of the first echelon and corresponds to a compact
formulation for the SDCVRP suggested by Jin et al. [20]. Constraints (3.2)
ensure flow conservation for each vehicle at each satellite, constraints (3.3)
ensure that a vehicle visit a satellite at most once, constraints (3.4) eliminate
sub-tours and constraints (3.5) and (3.6) ensure that the capacity of the ve-
hicle is not exceeded. Constraints (3.7) link the delivery from all the vehicles
with the delivery variable for each satellite. Constraints (3.8)-(3.15) are con-
cerned with the routing of the second echelon, which is based on the Gavish
and Graves [18] one-commodity flow formulation for the multi-depot vehi-
cle routing problem (see [26] for a modern treatment of the one-commodity
flow formulation of the CVRP). Constraints (3.8) ensure that a customer
is visited, constraints (3.9) ensure conservation of the vehicle origin at each
customer, constraints (3.10) eliminate traffic between the satellites, (3.11)
and (3.12) limit the number of vehicles out of each satellite and the total
amount of vehicles used and constraints (3.13) and (3.14) ensure that the ca-
pacity of a second echelon vehicle is not exceeded. Finally constraints (3.15)
connect the freight delivered from a satellite to the second echelon with the
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freight delivered from the depot to that satellite. Constraints (3.16)-(3.21)
specify the domain of the variables.

Since model (3.1)–(3.21) is highly symmetric (see e.g. [29]) because of
the k index on the first echelon decision variables and since the LP relaxation
of the model tends to provide poor lower bounds we propose an alternative
model that is a relaxation of (3.1)–(3.21) but eliminates the symmetry and
whose LP relaxation in general provides better lower bounds. In the first
echelon we use the relaxation for the SDCVRP suggested by Belenguer et al.
[9] and incorporate the freight variables. In the second echelon a modified
version of the mathematical model for the capacitated location routing prob-
lem introduced by Contardo et al. [11] is used. The two models are linked by
ensuring that the load delivered to each satellite matches the load delivered
to the customers served from that satellite.

To describe the model we use the same notation as previously defined
unless otherwise noted. Let E and E′ denote the edge sets for respec-
tively the first and second echelon, and let ce (respectively c′e) be the cost
of traversing an edge e ∈ E (respectively e ∈ E′). We use δ(S) ⊂ E (re-
spectively, δ′(S) ⊂ E′ ) to denote the edges with exactly one endpoint in
S ⊂ V0 ∪ VS (respectively, S ⊂ VS ∪ VC) and we let E(S1 : S2) ⊂ E (respec-
tively, E′(S1 : S2) ⊂ E′) denote the set of edges between the two disjoint
sets of nodes S1, S2 ⊂ V0 ∪ VS (respectively, S1, S2 ⊂ VS ∪ VC).

In the following we describe the decision variables used in the model. The
variables connected to the first echelon are the integer variables αs for all
s ∈ VS which equal the number of visit to the satellite and integer variables
xe for all e ∈ E which equal the number of times the edge is traversed.
The variables ls equals the amount of freight delivered to satellite s ∈ VS .
In the second echelon the binary variables βs for all s ∈ VS indicate if the
satellite is visited, the binary variables ye for all e ∈ E′ indicate if the edge is
traversed and finally the binary variables ze for all e ∈ E(VS : VC) indicate
if an edge between a satellite and a customer is used twice (in case of routes
containing only one customer). We note that for an edge e ∈ E(VS : VC) the
two variables ye and ze cannot both be one simultaneously. For S ⊆ VC we
define r(S) =

⌈∑
i∈S di/C

′⌉, that is, r(S) is a lower bound on the number
of vehicles needed to service the customers in S. With these definitions we
propose the following relaxation R for the 2E-CVRP:
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min
∑

e∈E
cexe +

∑

e∈E′
c′eye +

∑

e∈δ′(VS)

2c′eze +
∑

s∈VS

hsls (3.22)

s.t.
∑

e∈δ(s)
xe = 2αs ∀s ∈ VS (3.23)

∑

e∈δ(V0)

xe ≤ 2K (3.24)

∑

s∈VS

ls =
∑

i∈VC

di (3.25)

βs ≤ αs ∀s ∈ VS (3.26)
∑

e∈δ(S)
xe ≥

2

C

∑

i∈S
li ∀S ⊆ VS (3.27)

∑

e∈δ′(i)
ye +

∑

e∈E′(i:VS)

2ze = 2 ∀i ∈ VC (3.28)

∑

e∈δ′(VS)

(ye + 2ze) ≤ 2K ′ (3.29)

∑

e∈δ′(i)
(ye + 2ze) ≤ 2K ′

sβs ∀s ∈ VS (3.30)

ye + ze ≤ 1 ∀e ∈ δ(VS) (3.31)
∑

e∈δ′(S)
ye +

∑

e∈E′(S:VS)

2ze ≥ 2r(S) ∀S ⊆ VC , |S| ≥ 2 (3.32)

∑

e∈δ′(S)
ye ≥

∑

e∈E({i}:I)
2ye +

∑

e∈E({j}:Vs\I)
2ye ∀S ⊆ VC , |S| ≥ 2,

∀i, j ∈ S, ∀I ⊂ VS , (3.33)
∑

e∈E(Vs:{i})
ye ≤ 1 ∀i ∈ Vc (3.34)

∑

e∈
{
E′(S:(VC\S)
∪(VS\{j}))

}
ye +

∑

e∈E′(S:VS\{j})
2ze ≥

2

C ′

(∑

i∈S
di − lj

)
∀S ⊆ VC , ∀j ∈ VS

(3.35)

xe ∈ Z+ ∀e ∈ E (3.36)

ye ∈ {0, 1} ∀e ∈ E′ (3.37)

ze ∈ {0, 1} ∀e ∈ δ′(VS) (3.38)

αi ∈ Z+ ∀i ∈ VS (3.39)

βi ∈ {0, 1} ∀i ∈ VS (3.40)

ls ≥ 0 ∀s ∈ VS . (3.41)
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The objective function (3.22) minimizes travel cost of both the first and the
second echelon vehicles as well as the handling costs in the satellites.

The routing in the first echelon is described by constraints (3.23)-(3.27)
and the variable domains (3.36) and (3.39)-(3.41). The formulation of the
first echelon is inspired by the edge flow formulation for the SDCVRP by
Belenguer et al. [9] where the satellites in the 2E-CVRP correspond to the
customers in the SDCVRP and the freight delivered are variables instead of
constant demand. Constraints (3.23) connects the satellite usage variable
αs to the edge variables xe corresponding to edges adjacent to satellite s,
constraint (3.24) ensures that at most K vehicles leaves the depot thereby
enforcing that the number of first echelon vehicles is not exceeded and con-
straint (3.25) ensures that the quantity delivered for distribution is equal to
customer demands. Constraints (3.26) ensure that a satellite cannot be used
as a distribution point for the second echelon vehicles unless it is visited by
at least on vehicle in the first echelon. A visit to a satellite implies (due to
the minimization of travel cost) that a positive amount of freight has been
delivered to that satellite. Constraints (3.27) are adapted from the one-
vehicle generalized large multi-star (GLM) inequalities for the CVRP, see
e.g. Letchford and Salazar-González [26]. The constraints impose that the
number of vehicles and their capacity visiting a set of satellites is sufficient
compared to the amount of freight delivered.

The routing in the second echelon is defined by the constraints (3.28)-
(3.35) and the variable domains (3.37)-(3.38). Constraints (3.28) ensure that
all customers are visited exactly once, constraints (3.29) and (3.30) ensure
that at most K ′ vehicles are used to service the customers and at most K ′

s

vehicles are used from each satellite s, and constraints (3.31) ensure that an
edge can only be used twice if it is a one-customer route. Constraints (3.32)
are adapted from the capacity inequalities for the CVRP to ensure that the
capacity of the vehicles is not exceeded and that no sub-tours exists between
the customers. However, the constraints are not enough to enforce that each
second echelon vehicle returns to the satellite it started from. Constraints
(3.33)-(3.34) ensure that there cannot exist a solution where there is a path
between two satellites, see Figure 3.3 for and example. Constraints (3.33)
correspond to the path elimination constraints of Belenguer et al. [8] and
were introduced in a symmetric version by Contardo et al. [11] for the lo-
cation routing problem. Since constraints (3.33) are only valid for a subset
of two or more customers, constraints (3.34) are added to ensure that a sin-
gle customer is not connected to more than one satellite. It remains to be
ensured that enough freight has been delivered to each satellite such that
the demand of the customers serviced by the satellite can be met. This is
done by constraints (3.35) that are also adapted from the one-vehicle GLM
inequalities. If there is not sufficient freight in the satellite to meet the de-
mand of a set of customers then additional vehicle visits to the customer set
is enforced (the right-hand side becomes positive).
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The constraints of the first echelon only provides a relaxation of the
first echelon routing problem. In an integer solution to (3.22)–(3.41) it can
happen that the selected first echelon edges cannot be mapped to a set of
feasible vehicle routes. Figure 3.2b depicts an integer solution to constraints
(3.23)-(3.27) which is not a feasible routing of the first echelon vehicles.
One see, that the four satellites with demand 6 and 7 have to be served
by separate vehicles due to the capacity constraint and the fact that split
deliveries are not possible for these satellites (only two edges are adjacent
to each of the nodes). It is therefore impossible to construct a three-vehicle
SDCVRP solution that corresponds to the solution shown on the figure.

For the SDCVRP Belenguer et al. [9] suggest to check the feasibility
of an integer solution using a three-index formulation. We adapt a similar
approach, see Section 3.3.2 for details.

To summarize, a feasible, optimal solution to R is not necessarily a
feasible solution to 2E-CVRP because of the modeling of the first echelon
routing decisions. In the following we will show how the model R can be
used to obtain a feasible and optimal solution to 2E-CVRP by using special
branching rules when infeasible 2E-CVRP solutions are encountered.

3.3 A branch-and-cut algorithm

We devise a branch-and-cut algorithm based on R to solve the symmetric
2E-CVRP to optimality. First, R is relaxed by removing the exponential
number of constraints (3.27), (3.32), (3.33), and (3.35). The constraints are
added dynamically when violated. Since R only provides a lower bound to
the 2E-CVRP all integer solutions encountered during the branch-and-cut
algorithm must be tested for feasibility. If such an integer solution is in fact
infeasible a specialized branching scheme is invoked. Next, we will in detail
describe the separation procedures and their complexity, how to verify if an
integer solution to R is feasible for the 2E-CVRP, and how to branch on an
infeasible integer solution to R.

3.3.1 Separation results

In the following, let (x∗, y∗, z∗, α∗, β∗, l∗) be an optimal LP solution to the
relaxed problem R. The constraints (3.27) are derived from the one-vehicle
GLM inequalities for the CVRP. The one-vehicle GLM inequalities can be
separated in polynomial time (see Letchford and Salazar-González [26]) and
not surprisingly we obtain a similar result for (3.27).

Theorem 1. Separating the most violated constraint (3.27) corresponds to
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finding S ⊆ VS such that

∑

e∈δ(S)
x∗e −

2

C

∑

i∈S
l∗i

is minimized. The separation problem is polynomially solvable.

Proof. Let M = min{∑i∈VC
di, CK} be the upper bound on the amount of

freight that can be delivered at a satellite. Multiply by C and add 2
∑

i∈VS
M

on both sides of the inequality (3.27)? to obtain

C
∑

e∈δ(S)
x∗e + 2

∑

i∈VS

M < 2
∑

i∈S
l∗i + 2

∑

i∈VS

M ⇔

C
∑

e∈δ(S)
x∗e + 2

∑

i∈S
(M − l∗i ) + 2

∑

i∈VS\S
M < 2

∑

i∈VS

M.

Since the depot can never be part of S the problem can be solved as a
series of minimum st-cut problems on a weighted graph G(V ∗, E∗), where
V ∗ = V0 ∪ V ∗

S , V ∗
S = {i ∈ VS | l∗i > 0}, E∗ = {e ∈ E(V ∗) | x∗e > 0}, s ∈ VS

and t ∈ V0. The edge weights are given as

we =





Cx∗e e ∈ E∗(V ∗ \ {s, t})
Cx∗e + 2(M) e ∈ E(s : V ∗

S \ {s})
Cx∗e + 2(M − l∗i ) e ∈ E(t : V ∗

S )
.

A minimization over all satellites results in at most |VS | minimum st-cut
problems.

An example of the graph used for separation of constraints (3.27) is show in
Figure 3.4b.

The constraints (3.32) are derived directly from the capacity inequalities
known from the CVRP and we obtain our separation results from there.

Theorem 2. Separating the most violated constraint (3.32) corresponds to
finding S ⊆ VC , |S| ≥ 2 such that

∑

e∈δ′(S)
y∗e +

∑

e∈E′(S:VS)

2z∗e − 2r(S)

is minimized. The separation problem isNP-hard when r(S) =
⌈∑

i∈S di/C
′⌉.

Proof. By shrinking all satellites and the depot into a single super-node
an equivalent graph can be constructed that consists of one super-node (a
depot) and the customer nodes. The edge weights on edges connected to
the super-node is also aggregated such that it equals the combined weight
of from edges from a node to the satellites (for each node). Separating a
violated capacity inequalities for the CVRP on the constructed graph is
identical to solving the separation problem above. This is known to be
NP-hard (see e.g. Lysgaard et al. [28]).
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Theorem 3. Separating the most violated constraint (3.33) corresponds to
finding S ⊆ VC , |S| ≥ 2,i, j ∈ VC , I ⊂ VS , i 6= j, such that

∑

e∈δ′(S)
ye −

∑

e∈E({i}:I)
2ye +

∑

e∈E({j}:Vs\I)
2ye

is minimized. The separation problem is polynomially solvable.

Proof. The separation is done by considering all pairs of nodes i, j ∈ VC .
Once i, j ∈ VC is fixed the set I ⊂ VS can be determined in linear time and
the set S ⊆ VC is determined by solving a minimum st-cut (see Contardo
et al. [11] for details).

As mentioned earlier, the constraints (3.35) are also similar to the one-
vehicle GLM inequalities for the CVRP, so we adapt the results of Letchford
and Salazar-González [26].

Theorem 4. Separating the most violated constraint (3.35) corresponds to
finding S ⊆ VC , j ∈ VS such that

∑

e∈E′(S:(VC\S)∪(VS\{j}))
y∗e +

∑

e∈E′(S:VS\{j})
2z∗e −

2

C ′

(∑

i∈S
di − l∗j

)

is minimized. The separation problem is polynomially solvable.

Proof. For a given satellite j ∈ VS , multiply by C ′ and add 2
∑

i∈VC
di on

both side of the inequality (3.35) to obtain

C′ ∑

e∈
{
E′(S:(VC\S)
∪(VS\{j}))

}
y∗
e + C′ ∑

e∈E′(S:VS\{j})
2z∗e + 2

∑

i∈VC

di < 2

(∑

i∈S

di − l∗j

)
+ 2

∑

i∈VC

di ⇔

C′ ∑

e∈
{
E′(S:(VC\S)
∪(VS\{j}))

}
y∗
e + C′ ∑

e∈E′(S:VS\{j})
2z∗e + 2

∑

i∈VC\S
di < −2l∗j + 2

∑

i∈VC

di

Let t be a super node consisting of the merged satellite nodes in the set
V ∗
S \ {j} where V ∗

S = {i ∈ VS \ {j} | α∗
i > 0} and let there exist an edge

between t and i ∈ VC if {e ∈ E′(V ∗
S : i) | y∗e > 0} 6= ∅. Denote this edge

set by E′∗(t : VC). Set the source node s = j. Construct a weighted graph
G(V ∗, E′∗) where V ∗ = {s, t}∪VC , and E′∗ = E′∗(VC)∪E′∗(s : VC)∪E′∗(t :
VC) with E′∗(VC) = {e ∈ E′(VC) | y∗e > 0} and E′∗(s : VC) = E′(s : VC).
The edge weights are given as

we =





C ′y∗e e ∈ E′∗(VC)
C ′∑

e∈E′(V ∗
S \{s}:i) (y

∗
e + 2z∗e ) i ∈ VC ∧ e ∈ E′∗(t : VC)

di i ∈ VC ∧ e ∈ E′∗(s : VC)

For a given source node, a satellite, the right-hand side is a constant which
leads to at most |VS | minimum st-cut problems that needs to be solved.

An example of the graph used for separation of constraints (3.35) can be
seen in Figure 3.4c.

78



A Branch-and-Cut Algorithm for the Symmetric Two-echelon Capacitated Vehicle Routing Problem

3.3.2 Testing feasibility of integer solutions

As discussed earlier, an integer solution to model R is not necessarily a
feasible solution to the symmetric 2E-CVRP. Recall the example given in
Figure 3.2b. For the SDCVRP Belenguer et al. [9] suggest to check the
feasibility of a solution to an edge flow model by mapping it into a three-
index formulation. In a similar fashion we test the feasibility of an integer
solution (x∗, y∗, z∗, α∗, β∗, l∗) for R by mapping the first echelon part (x∗, l∗)
of the solution into the first echelon part of the three-index formulation from
Section 3.2. Let Si for all i ∈ VS denote the set of customers serviced by
satellite i (implying l∗i =

∑
j∈Si

dj for the freight solution variable l∗i ) and
let x∗e be the solution values of the first echelon edges from R. Recall x̄ijk is
equal to 1 iff vehicle k ∈ K uses the arc from i ∈ VS ∪V0 to j ∈ VS ∪V0, the
continuous variable w̄ik equals the amount of freight delivered at satellite
i ∈ VS by vehicle k ∈ K, and finally the continuous variables ūik for all
i ∈ VS ∪ V0 for each k ∈ K are used to eliminate sub-tours. The feasibility
problem FP is

∑

(i,j)∈δ+(s)

x̄ijk =
∑

(i,j)∈δ−(s)

x̄ijk ∀s ∈ Vs, k ∈ K̄ (3.42)

∑

(i,j)∈δ+(s)

x̄ijk ≤ 1 ∀s ∈ V0 ∪ Vs, k ∈ K̄ (3.43)

ūik + 1 ≤ ūjk +M(1− x̄ijk) ∀(i, j) ∈ A(VS), k ∈ K̄ (3.44)

w̄ik ≤ min




∑

j∈Ss

dj , C





∑

(i,j)∈δ+(s)

x̄ijk ∀s ∈ VS , ∀k ∈ K (3.45)

∑

i∈VS

w̄ik ≤ C ∀k ∈ K (3.46)

∑

k∈K
w̄ik =

∑

j∈Si

dj ∀i ∈ VS (3.47)

∑

k∈K
(x̄jik + x̄ijk) = x∗e ∀e(i, j) ∈ E (3.48)

x̄ijk ∈ {0, 1} i,j∈VS∪V0,
i 6=j,∀k∈K (3.49)

ūik ∈ R+ ∀i ∈ VS , ∀k ∈ K. (3.50)

Constraints (3.42)-(3.46) are identical to constraints (3.2)-(3.6) with the
slight difference in constraints (3.45) where the delivery to a node is bounded
by the vehicle capacity and the actual delivery to the second echelon cus-
tomers given in the solution tested. Constraints (3.47) ensure that the de-
mand allocated to the satellite is picked up and constraints (3.48) fixes the
arcs to the solution of R. The domains of the variables are defined in (3.49)
and (3.50).
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A feasible solution to FP provides the routes of the first echelon and the
solution to R is feasible. If on the other hand FP is infeasible, additional
branch decisions must be imposed. The equivalent problem to FP for the
SDCVRP is in general NP-hard, see Belenguer et al. [9]. This is also the
case for FP but when the number of satellites is small it is easy to solve.

3.3.3 Branching on infeasible integer solutions

Let (x∗, y∗, z∗, α∗, β∗, l∗) be a feasible solution to R but infeasible for the
2E-CVRP. In this case we split the sub-problem in the current branch-and-
bound node into two new sub-problems based on the solution to the second
echelon

(y = y∗ ∧ z = z∗) ∨ (y 6= y∗ ∨ z 6= z∗) .

In the first branch the second echelon is fixed. This implies that the demand
delivered to the satellites is fixed as well (l = l∗). Therefore we can find the
optimal solution to the 2E-CVRP for the first branch by solving FP without
the arc fixing constraints (3.48) and with an appropriate objective function,
i.e., the travel cost of the first echelon edges plus the handling cost and the
cost of the second echelon edges. The two latter are constants since the
solution of the second echelon is fixed.

Let E′
y∗ = {e ∈ E′ | y∗e = 1} and E′

z∗ = {e ∈ E′ | z∗e = 1}. To

evaluate the second branch we note that if
∑

e∈E′
y∗

ye+
∑

e∈E′
z∗

2ze =
∣∣E′

y∗
∣∣+

2 |E′
z∗ | then (y = y∗ ∧ z = z∗). As the degree constraints (3.28) in the second

echelon solution are saturated no additional edges can be used. This implies
that we can enforce (y 6= y∗ ∨ z 6= z∗) by adding the branching constraint

∑

e∈E′
y∗

ye +
∑

e∈E′
z∗

2ze ≤
∣∣E′

y∗
∣∣+ 2

∣∣E′
z∗
∣∣− 1

to the sub-problem.

3.3.4 Valid inequalities based on connections between eche-
lons

The model R can be strengthened by two simple sets of valid inequalities of
polynomial size. The inequalities force lower and upper bounds on the num-
ber of second echelon vehicles depending on the amount of freight delivered
to a satellite. The first set of inequalities imposes an upper bound on the
number of vehicles leaving satellite j depending on the freight lj available.

Theorem 5. Inequalities
∑

e(i,j)∈δ′(j)
di(ye + ze) ≤ lj ∀j ∈ VS (3.51)

are valid for R.

80



A Branch-and-Cut Algorithm for the Symmetric Two-echelon Capacitated Vehicle Routing Problem

Proof. Let S ⊆ VC be the customers serviced by satellite j. Then
∑

e(i,j)∈δ′(j) di(ye+
ze) ≤ ∑

i∈S di. Since the freight delivered in j is an upper bound on the
freight deliverable to customers serviced by j the result follows.

The second set of inequalities imposes a lower bound on the number
vehicles leaving satellite j again depending on the freight lj delivered.

Theorem 6. Inequalities

∑

e∈δ′(j)
(ye + 2ze) ≥

2

C ′ lj ∀j ∈ VS (3.52)

are valid for R.

Proof. The right-hand side calculates a fractional amount of second echelon
vehicles needed to deliver the freight lj at satellite j to the customers. The
left-hand side calculates the number of second echelon vehicles leaving and
entering satellite j which we can then bound from below.

3.3.5 Obtaining an initial solution

To obtain an initial feasible solution we have implemented a simple heuris-
tic for the 2E-CVRP. The heuristic first solves a multi-depot vehicle routing
problem (MDVRP), using the 2E-CVRP customers as the MDVRP cus-
tomers and the 2E-CVRP satellites as the MDVRP depots. The MDVRP
solution will define the second echelon solution, and the solution to the first
echelon is found by solving an SDCVRP with customers corresponding to
satellites in the 2E-CVRP and customer demands defined by the assignment
of customers to satellites in the second echelon solution.

The MDVRP is solved using the adaptive large neighborhood search
(ALNS) heuristic by Pisinger and Ropke [36]. The ALNS heuristic only
handles constraints on the number of vehicles per depot and therefore the
MDVRP solution may be infeasible as a solution to the second echelon of
the 2E-CVRP. In this case the MDVRP instance is modified such that the
sum of vehicles available on all depots equals the global number of vehicles
K. We do this by finding the K routes with most customers in the MDVRP
solution and assign vehicles to the satellites based on where these routes
originate. The modified MDVRP solution is resolved and provides a feasible
second echelon routing. The SDCVRP instance is solved to optimality using
CPLEX and the mathematical formulation from Jin et al. [20].

3.4 Computational experiments

The computational experiments have been carried out on a Intel(R) Xeon
X5550 2.67GHz with 24 GB of memory and 8 cores. Our algorithm does not
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take advantage of the multiple cores but runs in a single thread. The time
limit has been set to 10000 seconds including the time to obtain an initial
heuristic solution. The branch-and-cut algorithm is implemented using the
callback functions in CPLEX 12.1. We separate the capacity cuts for the
customers, i.e., constraints (3.32), using the capacity cuts separation proce-
dure for the CVRP provided in the CVRPSEP package by Lysgaard [27].
We also use this package to separate the framed capacity cuts, GLM in-
equalities, hypo-tours, and strengthened comb inequalities as was also done
by Perboli et al. [34]. Constraints (3.32), constraints (3.33), and the CVRP
cuts are added when violated by at least 0.1. Constraints (3.27) are added
when violated by at least 1/C, and constraints (3.35) are added when vio-
lated by at least 1/C ′. All cuts are added locally in the branch tree. That
is, only to the current branch node and its descendants. This is done to
reduce the size of the LPs solved in each branch node. Valid inequalities
(3.51) and (3.52) are added a priori.

We let CPLEX handle the branching but force the use of strong branch-
ing. In case we meet an integer solution to model (3.22)–(3.41) for which
the feasibility problem (3.42)–(3.50) is infeasible we store the search tree
node with the solution value and wait until the algorithm has finished to
determine if the branch node must be evaluated. During the experiments
we never encountered any infeasible nodes with a better lower bounds than
the best feasible solution.

3.4.1 The test instances

The experiments have been run on the instances in data set 2 and 3 intro-
duced by Feliu et al. [16] and the data set 4 by Crainic et al. [13]. The
instances have 21, 32 and 50 customers. Set 2 and 3 are generated from
the E instances for the CVRP. The first level vehicles have a factor of 2.5
larger capacity than the second level vehicles which have capacity equal to
the capacity in the corresponding CVRP instance. The distance matrix is
calculated as the Euclidean distance and distances are neither rounded nor
truncated. The handling costs are set to zero in all instances. The satel-
lites in set 2 have been chosen randomly while the satellites in set 3 have
been chosen on the border of the bounding box for the customers. Set 4
consists of 54 instances which all have 50 customers. Instances 1-18 have 2
satellites, 19-36 have 3 satellites and 37-54 have 5 satellites. The satellites
are distributed after a random, sliced or forbidden location principle. In the
sliced location principle the customers are divided into |Vs| slices and a ran-
dom position for a satellite is chosen in each slice. In the forbidden location
principle some zones have been forbidden and satellites are placed outside
these. Customers are placed randomly, randomly in centroids or randomly
in quadrants. In the centroid distribution a fixed number of customers are
placed in a number of different squares and in the quadrants distribution
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Instance set Class Sats No. Perboli et al. [35] This paper

Set 2

E-n22-k4 2 6 6 6
E-n33-k4 2 6 1 6
E-n51-k5 2 6 0 3
E-n51-k5 4 3 0 3

All 21 7 18

Set 3

E-n22-k4 2 6 6 6
E-n33-k4 2 6 0 5
E-n51-k5 2 6 0 3

All 18 6 14

Set 4

1-18 2 18 - 7
19-36 3 18 - 6
37-54 5 18 0∗ 2

All 54 0 15

All sets 93 13 47

Table 3.1: Summary of instances solved to optimality. ∗Perboli et al. [35]
considered K ′

s = K ′, s ∈ VS instead of the values given in the instance files.

customers are clustered in small zones.

3.4.2 Solving instances to optimality

Table 3.1 summarizes the number of solved instances in each set compared to
the number of instances solved by Perboli et al. [35] and Perboli et al. [34].
In both papers they used an Intel 3GHz Pentium with 1 GB of memory
and the XPress 2008 optimization software. Their time limit was 10000
seconds. The table is split in sections for each set (column “Instance set”)
and divided further for each instance class (column “Class”) and the number
of satellites in that class (column “Sats”). The last four columns provide
the total number (column “No.”) of instances considered in each class,
the number solved by Perboli et al. [35] and in this paper (column “This
paper”). A “-” indicates that the authors did not consider the instance
set. Out of 93 instances we are able to solve 47 to optimality within the
time limit. 34 of the solved instances are solved to optimality for the first
time. Table 3.2 presents a more detailed analysis of which type of instances
in set 4 we were able to solve. The table is divided into a grid based on
the distribution of the satellites (rows “DSat”) and the customers (columns
“DCust”). The results indicate that the centroid distribution of customers
provide the easiest instances compared to the other two. This is followed
by the random and quadrants distribution which seems equally hard to
solve. Regarding the distribution of the satellites, the forbidden distribution
results in the most solved instances followed by the random and the sliced
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DSat / DCust Random Centroids Quadrants

Random 1 3 0
Sliced 1 2 1
Forbidden 2 3 2

Table 3.2: Distribution of instances in set 4 solved to optimality

Instance Satellites Root LB Best LB Gap HUB UB HTime BACTime

E-n22-k4

6,17 403.16 417.07 0.00% 417.07 417.07 4.73 0.21
8,14 377.27 384.96 0.00% 384.96 384.96 4.66 1.01
9,19 425.52 470.60 0.00% 532.42 470.60 4.80 12.39

10,14 359.53 371.50 0.00% 371.50 371.50 2.48 1.16
11,12 404.59 427.22 0.00% 444.66 427.22 4.68 3.19
12,16 376.78 392.78 0.00% 392.78 392.78 4.84 1.98

E-n33-k4

1,9 637.75 730.16 0.00% 730.16 730.16 8.50 49.42
2,13 638.60 714.63 0.00% 714.63 714.63 8.35 34.17
3,17 644.10 707.48 0.00% 801.17 707.48 8.96 1126.84
4,5 682.38 778.74 0.00% 778.74 778.74 8.36 54.89

7,25 650.56 756.85 0.00% 756.85 756.85 8.41 87.46
14,22 685.55 779.05 0.00% 825.05 779.05 8.35 2.40

E-n51-k5

2,17 553.33 570.45 4.74% 597.49 597.49 15.69 -
4,46 514.61 530.76 0.00% 543.25 530.76 15.63 13.25
6,12 523.74 545.76 1.66% 554.81 554.81 15.94 -

11,19 548.13 581.64 0.00% 606.30 581.64 15.69 213.61
27,47 513.88 534.18 0.76% 538.22 538.22 15.46 -
32,37 528.88 552.28 0.00% 552.28 552.28 15.55 2113.98

E-n51-k5
2,4,17,46 500.92 530.76 0.00% 548.41 530.76 18.11 84.03

6,12,32,37 503.09 531.92 0.00% 546.33 531.92 18.11 3642.79
11,19,27,47 504.13 527.63 0.00% 577.25 527.63 18.35 798.71

Table 3.3: Detailed lower and upper bound results for data set 2. A “-” in
time indicates the instance was not solved within 10000 CPU seconds.

distributions. Set 4 shows that when the number of satellites grows to five
the instances become much harder to solve. Only two instances with five
satellites are solved while we are able to solve seven instances with two
satellites and eight with three satellites

The detailed results for all the instances can be found in Tables 3.3, 3.4,
and 3.5. The tables list the instance name (column “Instance”), and the
satellite index (column “Satellites”) for set 2 and 3, and for set 4 it lists
the number of satellites (column “Sats”) and their the distribution patterns
for satellites (column “DSat”) and customers (column “DCust”). The next
columns in the tables are the root lower bound (column “Root LB”), the
best lower bound obtained (column “Best LB”), the gap between the lower
and upper bound at the end of the optimization (column “Gap”), the initial
upper bound found by the heuristic (column “HUB”), and the best upper
bound obtained (column “UB”). The two last columns show the running
time of the heuristic (column “HTime”) and the running time of the branch-
and-cut algorithm (column “BACTime”). We solve all instances with 21
customers in less than 65 seconds, for the 32 customers instances the time
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Instance Satellites Root LB Best LB Gap HUB UB HTime BACTime

E-n22-k4

13,14 516.55 526.15 0.00% 537.57 526.15 4.70 3.20
13,16 511.93 521.09 0.00% 526.11 521.09 4.81 2.32
13,17 463.65 496.38 0.00% 496.38 496.38 4.73 1.07
14,19 454.58 498.80 0.00% 523.59 498.80 4.70 61.19
17,19 481.09 512.80 0.00% 537.27 512.80 4.79 8.00
19,21 496.49 520.42 0.00% 527.58 520.42 4.71 5.50

E-n33-k4

16,22 624.89 657.93 2.78% 760.81 676.19 4.66 -
16,24 641.75 666.02 0.00% 666.02 666.02 8.77 747.38
19,26 608.49 680.37 0.00% 743.22 680.37 8.58 26.44
22,26 619.05 680.37 0.00% 690.63 680.37 8.72 6.29
24,28 635.48 670.43 0.00% 670.43 670.43 9.16 17.56
25,28 602.32 650.58 0.00% 650.58 650.58 8.74 158.19

E-n51-k5

12,18 535.36 560.73 0.00% 560.73 560.73 15.68 1007.87
12,41 545.03 564.45 0.00% 598.88 564.45 15.60 208.31
12,43 546.34 564.45 0.00% 607.27 564.45 16.13 288.51
39,41 663.72 690.12 9.17% 753.40 753.40 15.74 -
40,41 733.96 767.01 1.10% 775.47 775.47 15.76 -
40,43 719.81 746.89 7.50% 802.91 802.91 15.87 -

Table 3.4: Detailed lower and upper bound results for data set 3. A “-” in
time indicates the instance was not solved within 10000 CPU seconds, and
a “-” in gap and solution means no solution was found.

varies with the fastest instance solved in less than 10 seconds and 11 out
of the 12 instances solved within an hour. On the final instance the gap is
2.78%. For the 50 customer instances the solution time varies a lot, ranging
from 15 seconds to no solution within the time limit. The time spent in the
heuristic is typically below 50 second and never more than 150 seconds. The
heuristic is able to find 19 solutions that are proved optimal by the exact
method and on 60 instances the heuristic solution is not improved by the
branch-and-cut algorithm.

3.4.3 Results for cut separation

In Tables 3.6, 3.7, and 3.8 the detailed results of cut separation is shown. The
tables list the instance name (column “Instance”), the number of satellites
(column “Sats”), and the number of branch tree nodes (column “Nodes”).
For each type of constraints (3.27), (3.33), (3.35), and the capacity in-
equalities (3.32) and other cuts based on the CVRPSEP package (column
“CVRP cuts”) we list the number of cuts separated (sub-column “Num”)
and the separation time (column “Time”). The last column (column “To-
tal”) presents the total number of cuts separated and the total running time
of the branch-and-cut algorithm.

In general we separate more of the CVRP cuts than the three remaining
cut types. The separation time for the CVRP cuts varies from about 5%
to about 25% of the total running time, with a single high spike of about
50% on the unsolved 32 customer instance. Of the remaining three types of
constraints it is clearly the separation of (3.33) that is most time consuming
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Instance Sats DSat DCust Root LB Best LB Gap HUB UB HTime BACTime

1 2 Random Random 1432.03 1542.88 14.83% 1771.74 1771.74 7.10 -
2 2 Random Random 1315.86 1438.33 0.00% 1438.33 1438.33 8.53 1146.74
3 2 Sliced Random 1393.27 1545.54 14.49% 1769.47 1769.47 7.05 -
4 2 Sliced Random 1283.63 1411.55 0.89% 1424.04 1424.04 8.42 -
5 2 Forbidden Random 1878.35 2185.26 0.72% 2201.03 2201.03 7.11 -
6 2 Forbidden Random 1244.60 1279.87 0.00% 1279.87 1279.87 8.19 4463.43
7 2 Random Centroids 1311.82 1436.59 15.93% 1665.49 1665.49 6.94 -
8 2 Random Centroids 1251.32 1363.74 0.00% 1364.20 1363.74 8.46 1164.53
9 2 Sliced Centroids 1302.61 1431.49 15.43% 1652.36 1652.36 6.96 -
10 2 Sliced Centroids 1385.47 1407.64 0.00% 1422.42 1407.64 8.36 3933.09
11 2 Forbidden Centroids 1836.80 2035.77 1.46% 2065.45 2065.45 6.93 -
12 2 Forbidden Centroids 1157.00 1209.42 0.00% 1209.42 1209.42 8.33 22.25
13 2 Random Quadrants 1358.63 1464.14 13.20% 1657.47 1657.47 6.94 -
14 2 Random Quadrants 1270.52 1392.62 1.70% 1416.28 1416.28 8.46 -
15 2 Sliced Quadrants 1366.91 1473.70 13.06% 1666.10 1666.10 7.18 -
16 2 Sliced Quadrants 1263.78 1389.17 0.00% 1389.17 1389.17 8.47 1045.12
17 2 Forbidden Quadrants 1789.96 2086.66 0.46% 2096.15 2096.15 7.00 -
18 2 Forbidden Quadrants 1184.69 1227.61 0.00% 1227.61 1227.61 8.35 8130.09
19 3 Random Random 1285.92 1557.13 10.29% 1717.35 1717.35 7.53 -
20 3 Random Random 1186.54 1265.70 17.28% 1484.45 1484.45 8.38 -
21 3 Sliced Random 1396.89 1570.84 7.24% 1684.51 1684.51 14.16 -
22 3 Sliced Random 1104.34 1281.83 0.00% 1346.99 1281.83 8.80 8636.73
23 3 Forbidden Random 1502.90 1626.18 11.14% 1807.35 1807.35 7.44 -
24 3 Forbidden Random 1204.16 1282.68 0.00% 1305.64 1282.68 8.56 6559.87
25 3 Random Centroids 1274.89 1503.88 2.02% 1534.21 1534.21 7.24 -
26 3 Random Centroids 1109.76 1167.46 0.00% 1324.17 1167.46 8.58 66.39
27 3 Sliced Centroids 1280.74 1467.45 8.00% 1584.84 1584.84 14.03 -
28 3 Sliced Centroids 1049.89 1210.44 0.00% 1259.63 1210.44 8.81 2045.96
29 3 Forbidden Centroids 1386.70 1708.58 1.68% 1737.27 1737.27 7.32 -
30 3 Forbidden Centroids 1116.33 1211.59 0.00% 1232.90 1211.59 8.75 17.35
31 3 Random Quadrants 1345.72 1468.40 11.37% 1635.36 1635.36 7.22 -
32 3 Random Quadrants 1042.18 1192.81 3.59% 1256.05 1235.58 8.56 -
33 3 Sliced Quadrants 1247.14 1488.99 6.62% 1587.57 1587.57 7.27 -
34 3 Sliced Quadrants 1056.51 1233.23 0.06% 1264.27 1233.92 8.67 -
35 3 Forbidden Quadrants 1362.81 1696.98 1.56% 1723.54 1723.54 7.39 -
36 3 Forbidden Quadrants 1054.39 1228.89 0.00% 1229.61 1228.89 8.42 2038.24
37 5 Random Random 1262.60 1484.41 11.91% 1661.16 1661.16 35.05 -
38 5 Random Random 965.66 1167.33 8.41% 1265.49 1265.49 14.98 -
39 5 Sliced Random 1286.12 1515.12 0.38% 1618.25 1520.92 37.67 -
40 5 Sliced Random 977.40 1168.67 3.65% 1211.36 1211.36 12.29 -
41 5 Forbidden Random 1445.21 1644.80 9.58% 1802.39 1802.39 142.96 -
42 5 Forbidden Random 995.26 1179.89 14.24% 1347.93 1347.93 14.88 -
43 5 Random Centroids 1258.73 1414.83 15.32% 1631.52 1631.52 46.86 -
44 5 Random Centroids 840.00 1045.13 0.00% 1144.15 1045.13 14.07 144.01
45 5 Sliced Centroids 1190.54 1435.96 9.63% 1574.22 1574.22 24.45 -
46 5 Sliced Centroids 843.07 1077.78 2.72% 1107.04 1107.04 11.11 -
47 5 Forbidden Centroids 1324.93 1571.51 10.76% 1740.64 1740.64 122.29 -
48 5 Forbidden Centroids 931.71 1082.20 0.00% 1252.82 1082.20 19.27 133.42
49 5 Random Quadrants 1209.41 1404.52 10.76% 1555.72 1555.72 33.87 -
50 5 Random Quadrants 843.81 1064.26 7.29% 1141.79 1141.79 21.18 -
51 5 Sliced Quadrants 1150.05 1333.37 11.82% 1490.99 1490.99 37.05 -
52 5 Sliced Quadrants 911.73 1113.49 1.33% 1128.33 1128.33 10.76 -
53 5 Forbidden Quadrants 1313.88 1547.35 10.87% 1715.60 1715.61 125.38 -
54 5 Forbidden Quadrants 994.67 1117.24 11.60% 1246.86 1246.86 16.47 -

Table 3.5: Detailed lower and upper bound results for data set 4 (50 customers in all instances). A “-” in time indicates the
instance was not solved within 10000 CPU seconds.
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with a maximum time of almost 1250 seconds (11% of the total running
time) spent on separating the constraint in instance 40 in data set 4. The
number of branch tree nodes for the three data sets range from 4 to about
60000 and there is a correlation between the computation time, the number
of cuts separated and the number of nodes in the search tree.

3.5 Conclusion

We have presented a new exact algorithm for the symmetric 2E-CVRP.
The proposed method is a branch-and-cut algorithm based on a non-trivial
mathematical model that provides a tight lower bound for the symmetric 2E-
CVRP, a feasibility problem to test if integer solutions of the proposed model
are valid for the symmetric 2E-CVRP, and a specialized branching scheme
to branch on infeasible integer solutions. We have shown that three of the
four sets of constraints of exponential size in the proposed model can be
separated optimally in polynomial time, and that the last set of constraints
are NP-hard to separate. Computational results indicate that our algorithm
is superior to the algorithms previously proposed in the literature and we are
able to solve 47 out of 93 test instances to optimality where 34 of these are
solved to optimality for the first time. The integrality gaps for the branch-
and-cut algorithm presented are in some cases still very large so it may well
be, that future research in exact algorithms for the 2E-CVRP would be a
column generation approach. Column generation based algorithms have in
recent years performed very good on routing problems, see e.g., Jepsen et al.
[19], Desaulniers [15], Baldacci et al. [5, 7], however the coupling between
the echelons in the 2E-CVRP does pose a challenge to incorporate.
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Figure 3.1: An example of a solution to a 2E-CVRP instance. Table (a) and
(b) are the customer demands and satellite handling costs.
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Figure 3.2: Example of a feasible solution to the first echelon of a) [35]
and b) model R that cannot be mapped to a feasible 2E-CVRP solution.
The capacity of the vehicles are 10 and number of vehicles to use is 3,
freight delivered to each satellite is given in the triangles and the variables
corresponding to the shown edges all have value 1.

f f f

Figure 3.3: Illustration of customer connection to satellites. Triangles are
satellites and circles are customers, dashed lines are edges included in con-
straints (3.33) together with the white customers. Blue edges have weight 1
and red edges have weight 0.
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Figure 3.4: In a) the box is the depot, the triangles are the satellites and
the circles are the customers. The freight delivered in the satellites and the
demand of the customers are given within the triangles and circles. The
dashed edges are first echelon and the solid edges are second echelon edges.
The capacity for respectively the first and second echelon vehicles are 18
and 12 and the fleet size is 2 and 3, respectively. Unless otherwise shown
edge weights are 1. In b) the separation graph for inequalities (3.27) with
the bold triangle (satellite) as source is shown (M = 24). The set included
with the source node s is shown in the ellipse and the value of the cut is
150. c) shows the separation graph for the inequalities (3.35). The triangle
represents the selected satellite, the bold circle is the target and the circles
are the customers. The violated cut of value 12 is shown as the set S.
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Instance Sats Nodes (3.27) (3.33) (3.35) CVRP Cuts Total
Num Time Num Time Num Time Num Time Num Time

E-n22-k4

6,17 4 1 0.00 8 0.01 0 0.00 93 0.06 102 0.21
8,14 14 1 0.00 9 0.04 1 0.01 171 0.06 182 1.01
9,19 387 1 0.00 234 0.99 25 0.05 2576 2.09 2836 12.39

10,14 23 1 0.00 27 0.09 1 0.02 171 0.12 200 1.16
11,12 59 1 0.00 38 0.33 5 0.01 279 0.22 323 3.19
12,16 48 1 0.01 35 0.20 2 0.03 446 0.16 484 1.98

E-n33-k4

1,9 1321 1 0.04 795 3.54 147 0.26 6051 8.98 6994 49.42
2,13 868 1 0.01 671 2.55 88 0.17 4689 3.28 5449 34.17
3,17 13360 1 0.44 8054 37.45 1278 3.36 45593 286.21 54926 1126.84
4,5 748 1 0.03 648 0.99 90 0.21 4618 4.39 5357 54.89

7,25 1846 1 0.04 978 6.92 136 0.49 10050 12.71 11165 87.46
14,22 13 1 0.00 10 0.03 1 0.00 377 0.19 389 2.40

E-n51-k5

2,17 24478 1 1.83 8819 281.47 776 14.08 279736 2277.34 289332 -
4,46 19 1 0.00 0 0.03 0 0.03 1019 1.33 1020 13.25
6,12 27228 1 2.94 7721 340.04 553 17.66 267320 1983.33 275595 -

11,19 299 1 0.01 0 0.01 1 0.22 6282 8.65 6284 213.61
27,47 30829 1 2.78 6881 300.80 1281 19.96 232064 2057.26 240227 -
32,37 8688 1 0.46 2100 66.08 571 4.18 70128 276.81 72800 2113.98

E-n51-k5
2,4,17,46 117 4 0.01 30 0.93 1 0.16 3178 4.52 3213 84.03

6,12,32,37 6956 39 0.40 1850 78.33 264 11.31 78166 229.74 80319 3642.79
11,19,27,47 1715 4 0.15 403 19.79 87 2.91 19666 34.08 20160 798.71

Table 3.6: Detailed cut separation results for set 2. A “-” in time indicates the instance was not solved within 10000 CPU
seconds.
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Instance Sats Nodes (3.27) (3.33) (3.35) CVRP Cuts Total
Num Time Num Time Num Time Num Time Num Time

E-n22-k4

13,14 99 1 0.01 73 0.30 10 0.01 309 0.20 393 3.20
13,16 74 1 0.00 69 0.16 8 0.00 247 0.18 325 2.32
13,17 10 1 0.00 3 0.02 0 0.00 87 0.12 91 1.07
14,19 2449 1 0.07 1421 4.56 206 0.34 5498 9.20 7126 61.19
17,19 246 1 0.01 168 0.65 16 0.00 525 0.69 710 8.00
19,21 95 1 0.01 73 0.28 9 0.01 338 0.31 421 5.50

E-n33-k4

16,22 47021 1 2.71 23057 144.62 3489 14.67 106427 5780.84 132974 -
16,24 6242 1 0.20 2067 14.42 235 1.59 22682 268.47 24985 747.38
19,26 291 1 0.01 150 1.54 26 0.11 1158 2.01 1335 26.44
22,26 59 1 0.00 15 0.20 4 0.03 319 0.57 339 6.29
24,28 218 1 0.02 93 0.66 2 0.03 744 1.80 840 17.56
25,28 2915 1 0.11 1412 8.78 107 0.52 9762 34.50 11282 158.19

E-n51-k5

12,18 2860 1 0.05 153 17.47 23 1.43 10285 91.18 10462 1007.87
12,41 300 1 0.01 0 0.00 0 0.25 1411 8.18 1412 208.31
12,43 411 1 0.00 0 0.01 0 0.20 2454 14.69 2455 288.51
39,41 16937 1 0.94 940 169.47 4 11.34 55803 1788.57 56748 -
40,41 17679 1 0.93 9 0.82 9 12.73 70609 1827.88 70628 -
40,43 18676 1 0.96 2745 181.42 25 11.31 59865 1567.44 62636 -

Table 3.7: Detailed cut separation results for set 3. A “-” in time indicates the instance was not solved within 10000 CPU
seconds.
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Instance Sats Nodes (3.27) (3.33) (3.35) CVRP Cuts Total
Num Time Num Time Num Time Num Time Num Time

1 2 25511 1 1.97 5627 477.74 2358 20.72 38145 419.68 46131 -
2 2 1778 1 0.15 106 23.09 217 2.26 8001 64.22 8325 1146.74
3 2 26326 1 2.20 5142 426.01 2569 19.62 42419 481.41 50131 -
4 2 35751 1 2.41 10474 331.07 1493 22.46 38821 301.17 50789 -
5 2 20501 1 1.42 1134 376.96 358 20.02 43831 601.29 45324 -
6 2 9830 1 0.96 2971 125.84 567 8.10 24370 348.58 27909 4463.43
7 2 39821 1 2.72 7543 547.42 2692 25.72 48519 495.34 58755 -
8 2 4613 1 0.18 659 25.25 144 2.48 20764 166.42 21568 1164.53
9 2 29112 1 1.67 9605 593.16 1151 18.21 35022 290.14 45779 -

10 2 11325 1 0.73 1959 109.76 906 9.31 21748 318.88 24614 3933.09
11 2 20510 1 1.55 2946 349.03 411 16.78 54166 448.76 57524 -
12 2 190 1 0.01 92 1.91 23 0.13 737 1.82 853 22.25
13 2 18579 1 1.80 3082 393.41 1931 19.39 35042 402.42 40056 -
14 2 21380 1 2.04 1265 246.77 6373 28.10 49104 566.79 56743 -
15 2 29399 1 2.14 11768 502.16 5133 21.16 61331 592.96 78233 -
16 2 1852 1 0.10 93 18.53 275 2.06 8155 76.06 8524 1045.12
17 2 14589 1 1.25 1845 355.11 473 16.42 29512 340.78 31831 -
18 2 22552 1 2.06 5026 234.49 3981 21.05 42780 473.20 51788 8130.09
19 3 31886 3 3.21 9094 693.75 4806 42.34 37687 502.19 51590 -
20 3 30061 2 3.47 10802 433.03 5215 38.51 41218 549.75 57237 -
21 3 36771 2 3.95 17652 842.59 4585 43.95 48191 774.08 70430 -
22 3 25752 6 2.76 9822 271.65 2096 29.63 41565 405.20 53489 8636.73
23 3 31423 3039 2.99 8566 704.65 3094 41.18 46440 511.91 61139 -
24 3 18540 1 1.82 7427 202.32 1949 22.38 31200 306.06 40577 6559.87
25 3 37998 2 2.85 9156 771.85 2427 42.05 45137 523.79 56722 -
26 3 348 1 0.03 127 2.70 25 0.30 1865 4.65 2018 66.39
27 3 27602 1 2.13 7174 574.52 1021 29.44 40672 375.56 48868 -
28 3 7382 4 0.51 3599 59.14 397 8.13 22091 115.25 26091 2045.96
29 3 24134 2 1.88 8809 724.79 892 29.26 32435 273.26 42138 -
30 3 88 1 0.00 45 0.76 18 0.09 550 1.08 614 17.35
31 3 31371 2 3.36 13697 524.29 7540 38.69 57876 837.99 79115 -
32 3 31759 2 3.24 12162 326.44 5796 37.61 50220 723.20 68180 -
33 3 25601 1 2.91 8456 575.06 5053 34.20 43479 673.90 56989 -
34 3 33409 6 2.66 9787 297.43 5421 41.28 55604 503.67 70818 -
35 3 32828 6 3.69 13442 761.97 6210 46.28 56377 612.85 76035 -
36 3 8459 10 0.50 1886 69.15 1614 10.40 22892 167.87 26402 2038.24
37 5 19925 19 2.32 6063 572.16 1590 51.74 28865 953.76 36537 -
38 5 30449 13 4.27 7933 524.13 10561 87.30 49778 519.68 68285 -
39 5 30438 28 3.87 11135 743.32 5504 73.18 46662 582.89 63329 -
40 5 42902 41 9.66 21713 1222.42 26209 145.39 51632 1146.44 99595 -
41 5 24673 13 3.63 4635 654.63 2406 61.76 39095 411.45 46149 -
42 5 38924 70 5.35 17813 802.11 13092 106.59 56173 715.74 87148 -
43 5 25052 21 2.73 8215 562.04 716 51.67 41492 387.39 50444 -
44 5 469 12 0.01 112 11.48 221 1.56 1594 9.71 1939 144.01
45 5 35598 44 3.16 7739 576.05 1980 73.34 59879 723.66 69642 -
46 5 59943 9 6.83 23421 941.94 7081 119.33 26907 622.15 57418 -
47 5 24414 66 3.07 9837 663.53 2207 58.27 31847 332.18 43957 -
48 5 598 20 0.05 211 18.36 356 2.20 1439 10.70 2026 133.42
49 5 16810 12 2.79 8895 818.65 3177 48.27 17468 218.55 29552 -
50 5 24534 108 4.76 5947 526.31 22330 110.33 41079 673.61 69464 -
51 5 27501 38 3.33 12831 680.13 4388 66.82 40037 564.73 57294 -
52 5 52982 40 7.20 16588 1064.43 22863 150.38 55437 1201.23 94928 -
53 5 19113 41 3.03 7849 545.34 2165 49.50 27148 305.86 37203 -
54 5 20673 7 2.02 8019 349.76 4022 55.25 42636 406.95 54684 -

Table 3.8: Detailed cut separation results for set 4 (50 customers in all instances). A “-” in time indicates the instance was
not solved within 10000 CPU seconds.
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Abstract

This paper considers the capacitated profitable tour problem (CPTP).
The CPTP belongs to the group of problems known as travelling salesman
problems with profits. In CPTP each customer is associated with a profit
and a demand and the objective is to find a capacitated tour (rooted in
a depot node) that minimizes the total travel distance minus the profit of
the visited customers. The CPTP can be recognized as the sub-problem in
many column generation applications. We present a branch-and-cut algo-
rithm based on a formulation for the undirected CPTP. Valid inequalities
are presented among which we introduce a new family denoted rounded mul-
tistar inequalities and we prove their validity for the CPTP. Computational
experiments are performed on a set instances known from the literature and
some newly generated instances. The results indicate that the presented
algorithm is highly competitive with the dynamic programming algorithms.
In particular, we are able to solve instances with 800 nodes to optimality
where the dynamic programming algorithms cannot solve instances with
more than 200 nodes. Moreover the two algorithms compliment each other
well.

Keywords: Branch-and-cut algorithm, valid inequalities, profitable tour
problem, capacitated shortest path problem, travelling salesman problem

4.1 Introduction

The capacitated profitable tour problem (CPTP) can be defined on a com-
plete undirected graph G(V,E) with nodes V = N ∪{0} where N is a set of
customers and 0 is the depot node, and E is the set of edges connecting the

∗Supported by the Danish Council for Independent Research | Technology and Pro-
duction Sciences (project 274-08-0353)
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nodes in V . A cost ce is associated with each edge e ∈ E. Also, a demand
di and a profit pi is associated with each customer i ∈ N and a capacity
Q is given for the maximum load of tour. The objective is to find a tour
rooted in the depot where the demand accumulated at the customers does
not exceed the capacity, and the total travel distance subtracting the profits
gained by visiting customers is minimized.

The CPTP is a side-constrained version of the profitable tour problem
named by Dell’Amico et al. [12], a problem that falls within the category of
traveling salesman problems with profits as classified by Feillet et al. [15].
Other problems in this category are the orienteering problem (OP) (also
known as the selective travelling salesman problem) and the prize-collecting
travelling salesman problem (PCTSP). In the OP the total tour length is
bounded from above, and the objective is to maximize the profit gained by
visiting customers. In the PCTSP the objective is similar to the CPTP but a
minimum amount of profits must be collected on the tour. In the context of
the capacitated vehicle routing problem (CVRP) the CPTP appears as the
sub-problem in column generation methods, see e.g. Baldacci et al. [3, 2].
In this context, the CPTP is often transformed to a path problem (a path
is obtained from the tour by splitting the depot into two nodes) and is de-
noted the elementary shortest path problem with resource constraints. The
resource is given as an accumulation of demand of the visited customers and
is constrained by the capacity. However, in recent routing applications the
sub-problem is complicated considerably by the introduction of additional
cuts in the column generating master problem, such as the strong capacity
inequalities [2], the subset-row inequalities [20], the Chvátal-Gomory rank-1
cuts [28], and the clique inequalities [33]. The sub-problem can no longer
be considered a CPTP. Moreover, the sub-problems are often solved as fea-
sibility problems instead of optimization problems which may favour other
types of combinatorial algorithms than branch-and-cut algorithms.

Laporte and Martello [21] showed that the OP is NP-hard by reduc-
tion from the Hamilton circuit problem. Using a similar reduction it can
be shown that the CPTP also belongs to the class of NP-hard problems.
If there are no cycles with negative cost in the graph G, then the CPTP
is solvable in pseudo-polynomial time using a dynamic programming algo-
rithm. In this particular case the CPTP relates to the constrained shortest
path problem (again by transformation to a path problem). Several al-
gorithms based on dynamic programming exist for this problem, see e.g.,
Beasley and Christofides [6],Carlyle et al. [9], Dumitrescu and Boland [13],
and Muhandiramge and Boland [25].

Bixby [7] considers the CPTP in her PhD thesis on the CVRP and
present a mathematical model and a branch-and-cut (BAC) algorithm. Letch-
ford and Salazar-Gonzalez [24] discuss projection results for the CVRP and
present two families of multistar inequalities that are valid for the CPTP.
Other work on the CPTP in a CVRP context is mainly concerned with
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dynamic programming algorithms. Feillet et al. [14] present a dynamic pro-
gramming algorithm where the elementarity of the path is ensured by use
of an additional resource per node. Chabrier [10] improved on the labeling
algorithm by applying various bounding and dominance procedures to avoid
the extension of unpromising paths. Christofides et al. [11] proposed a bi-
directional labeling algorithm where paths are extended from both ends of
the path until half of the capacity is reached. The partial paths are then
combined to construct a full path. Righini and Salani [29] generalized this
approach to other types of resources. Independently, Boland et al. [8] and
Righini and Salani [30] proposed to initially relax the node resources and
add them iteratively until the path is elementary. In the former paper this
is referred to as a state space augmentation algorithm and in the latter it is
denoted a decremental state space relaxation algorithm. Furthermore, Righ-
ini and Salani [30] propose to use the result of the relaxed problem in a
branch-and-bound algorithm. Fischetti et al. [16] and Gendreau et al. [18]
present BAC algorithms for the OP. They present several valid inequalities,
many of which are also valid for the CPTP. Indeed, we prove that the poly-
tope of the CPTP can be transformed to an instance of the polytope for
the OP. However, Gendreau et al. [18] also present some inequalities related
to the objective function of the OP that are not valid for the CPTP. Bauer
et al. [5] consider the cardinality constrained circuit problem (CCCP) where
a minimum cost circuit of maximal cardinality in a graph is sought. The
CCCP is equivalent to the CPTP with unit demands if one node is fixed in
the CCCP (the depot node of the CPTP). Two mathematical models are
presented and several valid inequalities are investigated. Bauer et al. [5]
suggest to solve the CPTP by a BAC algorithm, but to our knowledge this
has not been pursued.

The contribution of this paper is the introduction of an IP model for the
CPTP and a BAC algorithm for solving it. This includes the adaption of
several valid inequalities from e.g. the OP and the CCCP, the introduction
of the rounded multistar inequalities, and a proof of validity for all inequal-
ities with regard to the CPTP. Also, we have successfully implemented a
separation heuristic for finding knapsack large multistar inequalities that
prove their usefulness for the CPTP. The computational experiments show
that the BAC algorithm is competitive with the state-of-the-art dynamic
programming algorithms. In particular, the BAC algorithm is able to solve
instances with 800 nodes to optimality where the dynamic programming
algorithms cannot solve instances with more than 200 nodes. In general
the two algorithms appear to complement each other well. The BAC algo-
rithm performs best on those instances that are difficult to solve by dynamic
programming.

The paper is organized as follows: Section 4.2 contains an integer pro-
gramming model for the CPTP, Section 4.3 describes the cutting planes
used in the BAC algorithm, Section 4.4 presents the separation results for
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these cutting planes, the computational results are found in Section 4.5, and
Section 4.6 concludes the work.

4.2 Mathematical Model

Recall the definition of CPTP on a graph G(V,E). The traversal of an
edge e is indicated by the binary variables xe for all e ∈ E and a visit to
node i is indicated by the binary variable yi for all i ∈ V . Some short-hand
notation: for node set S we use δ(S) to indicate the edge set consisting of
the edges between S and its compliment S, E(S) to indicate the edge set
of the complete sub-graph spanned by S, and E(S : T ) for T ∩ S = ∅ to
indicate the edges connecting S and T . For singleton sets we simply write i
instead of {i}, e.g., δ(i) is the set of edges connected to node i.

Without loss of generality it is assumed that there exists no one-customer
tours. Such tours can be calculated a priori in O(N) time and provided
as valid upper bounds. Let the CPTP be stated as the following integer
program

min
∑

e∈E
cexe −

∑

i∈N
piyi (4.1)

∑

e∈δ(i)
xe = 2yi ∀i ∈ V (4.2)

y0 = 1 (4.3)
∑

e∈δ(S)
xe ≥ 2yi ∀i ∈ S, ∀S ⊆ N, |S| ≥ 2 (4.4)

∑

i∈N
diyi ≤ Q (4.5)

xe ∈ {0, 1} ∀e ∈ E (4.6)

yi ∈ {0, 1} ∀i ∈ V. (4.7)

The objective function (4.1) minimizes the overall cost, i.e., the travel cost
of traversing the edges on the tour subtracted by profit gained by visiting
the customers. Constraints (4.2) are the degree constraints of the nodes
and constraint (4.3) ensure that there is exactly one tour going through the
depot. Constraints (4.4) known as the generalized subtour elimination con-
straints (GSEC) eliminates sub-tours by ensuring connectivity of the edges
and constraint (4.5) imposes that the capacity on the tour is not exceeded.
Note that the sub-tour elimination constraints (4.4) can be equivalently ex-
pressed as

∑

e∈E(S)

xe ≤
∑

i∈S\j
yi ∀i ∈ S, ∀S ⊆ N, |S| ≥ 2 (4.8)
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Depending on the size of the set S, the constraint (4.4) may contain less
variables than (4.8). The sparser formulation is often preferred since it
typically leads to a faster solution of the LP relaxation.

The mathematical model contains O(|E|) variables and an exponential
amount of constraints due to the sub-tour elimination constraints (4.4).

Let PC = conv{(x, y) ∈ R|E|×|V | | (x, y)satisfies (4.2)− (4.4) and (4.6)−
(4.7)} be the circuit polytope. The capacity constraint (4.5) where d,Q ≥ 0
gives rise to the 0-1 knapsack polytope PK = conv{x ∈ R|E| | xsatisfies (4.5)−
(4.6)}. We examine the intersection of these polytopes namely the node-
capacitated circuit polytope PN = conv{(x, y) ∈ R|E|×|V | | (x, y)satisfies (4.2)−
(4.7)}. As a result all inequalities valid for PC or PK are valid for PN .

We will briefly discuss the variant of the CPTP where the demand is
associated to the edges instead of the nodes. The capacity constraint (4.5)
is then substituted by the constraint

∑

e∈E
dexe ≤ Q (4.9)

The polytope of this problem is the edge-capacitated circuit polytope PE =
conv{(x, y) ∈ R|E|×|V | | (x, y)satisfies (4.2) − (4.4), (4.6) − (4.7) and (4.9)}.
The polytopes PN and PE are very similar and in fact it is possible to
transform any PN instance to an instance of PE by setting de = 1/2(di+dj).
The constraint set of the OP is an edge-capacitated circuit polytope and due
to the transformation it is natural to adapt valid inequalities for PN from
this problem.

4.3 Valid Inequalities

Next we present previously studied valid inequalities for the circuit polytope
PC , the knapsack polytope PK , the node-capacitated circuit polytope PN
and the edge-capacitated circuit polytope PE . Furthermore, we present
new families of valid inequalities for PN that approximate the non-linear
inequalities that stems from a rounding of various multistar inequalities.
The proof of validity with regard to the CPTP is given for all inequalities.

4.3.1 The Circuit Polytope

The logical constraints are given for each edge e ∈ E and one of its
endpoints i ∈ V as

xe ≤ yi ∀e ∈ δ(i), ∀i ∈ N. (4.10)

There are 2|E| such constraints. The constraints are due to Leifer and
Rosenwein [22]. We present a formal proof for their validity for the polytope
PC .
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Theorem 1. The logical constraints (4.10) are valid for PC .

Proof. The constraints are a special case of the sub-tour elimination con-
straints on the form (4.8) with S = {i, j} being the endpoints of e. This
results in the edge set E(S) = {e} and by subtracting node j from S we
obtain (4.10).

Cut Inequalities

Seymour [31] introduced the cut inequalities

∑

e∈δ(S)\f
xe − xf ≥ 0 ∀S ⊆ N, |S| ≥ 2,∀f ∈ δ(S) (4.11)

when studying the circuit polytope. Bixby [7] denote the inequalities the
co-circuit inequalities in her study of the node-capacitated circuit polytope.

Theorem 2. The cut inequalities (4.11) are valid for PC .

Proof. Consider a sub-tour elimination constraint (4.4) with node set S and
node i ∈ S on the right-hand side. Subtract the logical constraint (4.10)
for edge f with one endpoint being node i to obtain the cut inequalities
(4.11).

For our definition of PC using constraints (4.2)-(4.7) we obtain the fol-
lowing result:

Theorem 3. The cut inequalities (4.11) are dominated by the sub-tour
elimination constraints (4.4) for the polytope PC when the logical constraints
(4.10) hold for all edges.

Proof. Consider a constraint of type (4.11). Let f have end-points i ∈ V \S
and j ∈ S then add the corresponding degree constraint (4.2) to inequality
(4.11) getting:

∑

e∈δ(S)
xe +

∑

e∈δ(j)\f
xe − xf ≥ 2yj . (4.12)

When xf ≤ yj (the logical constraint) then
∑

e∈δ(j)\f xe−xf ≥ 0. It follows
that the left-hand side of (4.12) is always greater than or equal to the left-
hand side of the sub-tour elimination constraints (4.4) expressed for node j,
hence (4.11) are dominated by (4.4).
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2-Matching Inequalities

Fischetti et al. [16], Gendreau et al. [18], and Bauer [4] presented the 2-
matching inequalities adapted from the TSP polytope as

∑

e∈H
xe +

∑

e∈Ti
xe ≤

∑

i∈H
yi +

1

2
(|T | − 1) (4.13)

for all H ⊂ V and all T ⊂ E satisfying

(i) e ∈ δ(H)

(ii) All pair of edges e, f ∈ T have disjoint endpoints

(iii) |T | ≥ 3 and odd

A proof of validity for the circuit polytope is

Theorem 4 (Gendreau et al. [18]). The 2-matching inequalities (4.13) are
valid for PC .

Proof. Sum up the degree constraints (4.2) for all i ∈ H to obtain

2
∑

e∈H
xe +

∑

e∈δ(H)

xe = 2
∑

i∈H
yi. (4.14)

Since xe ≤ 1 for all e ∈ T adding these constraints to (4.14) and divide by
2 yields

∑

e∈H
xe +

∑

e∈T
xe ≤

∑

i∈H
yi +

1

2
|T |. (4.15)

As the variable terms of (4.15) is integer and |T | ≥ 3 and is odd, rounding
down on the right hand side yields (4.13).

Comb Inequalities

Bauer [4] adapts the comb inequalities from the TSP polytope to obtain

∑

e∈E(H)

xe +
t∑

i=1

∑

e∈E(Ti)

xe ≤
∑

j∈H
yj +

t∑

i=1

∑

j∈Ti
yj −

∑

i∈U
yi −

∑

i∈R
yi +

1

2
(t− 1)

(4.16)

for all H ⊂ V and all Ti ⊂ E, for i = 1, . . . , t satisfying

(i) |Ti ∩H| ≥ 1, i = 1, . . . , t

(ii) |Ti \H| ≥ 1, i = 1, . . . , t
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(iii) Ti ∩ Tj = ∅, 1 ≤ i < j ≤ t

(iv) |E| ≥ 3 and odd

The set H is called the handle and sets Ti are called the teeth of the comb.
For each tooth choose a node that is not belonging to any handle and let
that set be denoted the set of root nodes R. For 1i ≤ t and H ∩ Ti 6= ∅
choose a node ui ∈ H ∩ Ti. We denote U = ∩ti=1ui as the links. If (i) is
satisfied with equality the comb inequality is called simple. Furthermore, if
(ii) is also satisfied by equality it implies |Ti| = 2 for i = 1, . . . , t and the
resulting inequality is a 2-matching inequality (4.13).

Bauer [4] shows the validity of the comb inequalities by showing the va-
lidity of the super-set of clique trees inequalities. We provide an alternative
(and simpler) proof of validity only for the comb inequalities.

Theorem 5. The comb inequalities (4.16) are valid for PC .

Proof. Sum up the degree constraints (4.2) for all i ∈ H to obtain

2
∑

e∈E(H)

xe +
∑

e∈δ(H)

xe =
∑

j∈H
yj .

Add the sub-tour elimination constraints (4.8) for each tooth Ti, i = 1, . . . t
and let the subtracted node on the right-hand side be node yu for u ∈ H∩Ti.
Denote the set of all these nodes U . We obtain

2
∑

e∈E(H)

xe +
∑

e∈δ(H)

xe +
t∑

i=1

∑

e∈E(Ti)

xe ≤ 2
∑

j∈H
yj +

t∑

i=1

∑

j∈Ti
yj −

∑

j∈U
yj .

Add (4.8) for each intersection between the handle and a tooth H ∩ Ti with
the subtracted node yu already in U , and add up for each set Ti \H with the
subtracted node yr. The set of the latter nodes are denoted R. We obtain

2
∑

e∈E(H)

xe +
t∑

i=1

∑

e∈δ(H)\δ(Ti)

xe + 2
t∑

i=1

∑

e∈E(Ti)

xe ≤ 2
∑

j∈H
yj + 2

t∑

i=1

∑

j∈Ti

yj − 2
∑

u∈U
yj −

∑

j∈R
yj .

For each tooth add the constraint yr ≤ 1 for the node r ∈ R ∩ Ti which sums up to∑
i∈R yi ≤ t.

2
∑

e∈E(H)

xe +
t∑

i=1

∑

e∈δ(H)\δ(Ti)

xe + 2
t∑

i=1

∑

e∈E(Ti)

xe ≤ 2
∑

j∈H
yj + 2

t∑

i=1

∑

j∈Ti

yj − 2
∑

u∈U
yj − 2

∑

j∈R
yj + t.

Dividing by two and rounding down all coefficients leads to

∑

e∈E(H)

xe +
t∑

i=1

∑

e∈E(Ti)

xe ≤
∑

j∈H
yj +

t∑

i=1

∑

j∈Ti

yj −
∑

u∈U
yj −

∑

j∈R
yj +

1

2
t. (4.17)

As the variable terms of (4.17) is integer and t ≥ 3 is odd, rounding down
on the right hand side yields (4.16).
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Clique Tree Inequalities

Bauer [4] adapts the clique tree inequalities from the TSP polytope. Let a
clique tree be a connected sub-graph of G composed of cliques which satisfy
the following properties

(i) The cliques are partitioned into two sets, teeth Ti, . . . , Tt and handles
H1, . . . ,Hh.

(ii) No two teeth intersect, i.e., Ti ∩ Tj = ∅, 1 ≤ i < j ≤ t

(iii) No two handles intersect, i.e., Hi ∩Hj = ∅, 1 ≤ i < j ≤ h

(iv) Each tooth contains at least two nodes and at most |V | − 2 nodes
and at least one node not belonging to any handle, i.e., 2 ≤ |Ti| ≤
|V | − 2, Ti \

⋃h
j=1Hj 6= ∅, 1 ≤ i ≤ t.

(v) For each handle, the number of teeth intersecting it is odd and at least
three.

(vi) If a tooth and a handle intersect, then their intersection is an articu-
lation set of the clique tree.

For each tooth choose a node that is not belonging to any handle, and let
that set be denoted the set of root nodesR. For every non-empty intersection
Hi ∩ Tj , 1 ≤ i ≤ h, 1 ≤ i ≤ t choose a node, and denote it the set of links U .

h∑

i=1

∑

e∈E(Hi)

xe +

t∑

i=1

∑

e∈E(Ti)

xe ≤
h∑

i=1

∑

j∈Hi
yj +

t∑

i=1

∑

j∈Ti
yj −

∑

i∈U
yi −

∑

i∈R
yi +

1

2
(t− 1)

(4.18)

for all Hi ⊂ V, i = 1, . . . , h and all Ti ⊂ V, i = 1, . . . , t. When h = 1 the
inequality is a comb inequality.

Bauer [4] prove the validity of (4.18) for PC . Here we provide an alter-
native proof similar to Grötschel and Pulleyblank [19]. The proof is adapted
from the proof of the corresponding clique tree inequalities for the TSP. We
start with a few remarks resulting from the effect of gluing and splitting
clique trees into other clique trees. Those are operation that allow merging
(gluing) two existing clique tree into a new clique tree and dividing (split-
ting) an existing clique tree into two smaller clique trees, see Grötschel and
Pulleyblank [19] for details on the gluing and splitting operations. Let s(C)
denote the size of a clique tree C where s(C) is equal to the right-hand side
of (4.18). Remark 3.6 (c) in [19] for PC is equivalent to

Remark 1. Let C be a clique tree and H a handle of C intersecting k teeth.
Let Ci, . . . , Ck be the clique trees obtained from C by splitting into at the
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handle H. Then

k∑

i=1

s(Ci) = s(C)−
∑

i∈H
yi +

∑

i∈H∩U
yi +

1

2
(k − 1)

Theorem 6. The clique tree inequalities (4.18) are valid for PC .

Proof. Consider a clique tree with handles H1, . . . ,Hh and teeth T1, . . . , Tt.
As in [19] the proof is by induction on the number of handles. If the clique
tree has no handle then the clique tree inequality is a sub-tour elimination
constraint (4.8) and the proof is done.

Suppose the theorem holds for all clique trees with h handles, and assume
that C is a clique tree with h+ 1 handles. Choose a handle of C and denote
the other handles H1, . . . ,Hh. Let T1, . . . , Tk be the teeth intersecting H
and let Ci, . . . , Ck be the clique trees obtained from C by splitting at a
handle H. All of these clique trees have at most h handles. Assume that Ci
contains Ti, i = 1, . . . , k, and let aᵀi x ≤ s(Ci) be shorthand for these clique
tree inequalities. For every Ci, i = 1, . . . , k, let Ci be the clique tree obtained
by replacing Ti with Ti \H, and let aᵀi x ≤ s(Ci) be the corresponding clique
tree inequality. By Remark 1 we have

k∑

i=1

s(Ci) = s(C)−
∑

i∈H
yi +

∑

i∈H∩U
yi +

1

2
(k − 1)

which implies

k∑

i=1

s(Ci) = s(C)−
∑

i∈H
yi +

∑

i∈H∩U
yi −

k∑

i=1

(H ∩ Ti) +
1

2
(k − 1).

From this we obtain (setting Hh+1 = H)

2




h∑

i=1

∑

e∈E(Hi)

xe +
t∑

i=1

∑

e∈E(Ti)

xe


 ≤

k∑

i=1


aᵀi x+ aᵀi x+

∑

e∈E(H∩Ti)
xe


+

∑

i∈H

∑

e∈E(i:V \{i})
xe ≤

k∑

i=1


s(Ci) + s(Ci) +

∑

i∈H∩Ti
yi −

∑

i∈U∩H∩Ti
yi


+ 2

∑

i∈H
yi =

k∑

i=1

s(Ci) +
k∑

i=1

s(Ci) +
k∑

i=1

∑

i∈H∩Ti
yi −

∑

i∈U∩H
yi + 2

∑

i∈H
yi =

2s(C) +
∑

i∈U∩H
yi − k + 1.
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Since
∑

i∈U∩H yi ≤ k we obtain

2




h∑

i=1

∑

e∈E(Hi)

xe +

t∑

i=1

∑

e∈E(Ti)

xe


 ≤ 2s(C) + 1,

and after division by two and rounding down we obtain the desired result.

4.3.2 The Knapsack Polytope

Related to the capacity constraint (4.5) we have the well known knapsack
cover inequalities

∑

i∈S
yi ≤ |S| − 1 ∀S ⊆ N,

∑

i∈S
di > Q. (4.19)

We state the validity of (4.19) without proof.

Theorem 7 (Wolsey [35]). The cover inequalities (4.19) are valid for PK .

4.3.3 The Node-Capacitated Polytope

Fischetti et al. [16] present the path inequalities for the orienteering prob-
lem, i.e., the PE polytope. We will adapt the inequalities to PN . Let P be the
set of edges traversed on a partial path. Let the node set V (P ) = {l, . . . , k}
be the sequence of nodes visited on the path represented by edge set P
with end nodes l and k. Let S = {j ∈ N \ V (P ) | ∑i∈V (P ) di + dj ≤ Q}
be the set of nodes to which the path can feasibly be extended. Hence,
if
∑

i∈V (P ) di > Q the path is in itself infeasible and S = ∅. The path
inequalities are

∑

e∈P
xe ≤

∑

i∈V (P )\{l,k}
yi +

∑

e∈E(k:S)

xe ∀V (P ) ⊆ N. (4.20)

The edge set in the last term depends on which end of the path is extended
to S, i.e., it could have been E(l : S) instead. The validity of (4.20) for
PE is proved by Fischetti et al. [16]. We adapt the proof in the following
theorem.

Theorem 8. The path inequalities (4.20) are valid for PN .

Proof. The proof is given by contradiction. Assume that there exist a fea-
sible solution (x∗, y∗) to CPTP violating (4.20). Then

x∗l,l+1 + (x∗l+1,l+2 − y∗l+1) + · · ·+ (x∗k−1,k − y∗k−1)−
∑

j∈S
x∗k,j ≥ 1,
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where x∗i,i+1 − yi ≤ 0 for all i ∈ V (P ) \ {l, k}. It then follows that x∗l,l+1 =
1 (hence yl+1 = 1), x∗l+1,l+2 − yl+1 = 0 (hence x∗l+2,l+3 = 1 and yl+3 =
1), . . . , x∗k−1,k−y∗k−1 = 0, (hence x∗k−1,k = 1), and x∗k,j = 0 for all j ∈ S. But
then the solution (x∗, y∗) cannot be feasible since it contains all the edges
on the path plus an edge not in E(k : S).

Bauer et al. [5] present similar inequalities for the cardinality constrained
circuit problem for which the path P must be infeasible.

Multistar Inequalities

Multistar inequalities covers a family of inequalities that are related to in-
tersection of the PK and PN polytopes. Consider the capacity inequalities
given as

∑

e∈δ(S)
xe ≥

2

Q

∑

i∈S
diyi ∀S ⊆ N, |S| ≥ 2. (4.21)

the inequalities ensure that any set S of nodes are visited according to the
resource consumption within the set S. The inequalities (4.21) are very
similar to the fractional capacity inequalities of the CVRP (see e.g., Toth
and Vigo [34]) except for the important fact that the right-hand side of
(4.21) consists of variables and not constants. The capacity inequalities
(4.21) can be improved by observing that nodes connected to S are also
visited when the connecting edge is used. Hence, the demand of those nodes
can be counted on the right-hand-side. This results in what Letchford and
Salazar-Gonzalez [24] denotes the one-vehicle generalized large multistar
(GLM) inequalities

∑

e∈δ(S)
xe ≥

2

Q


∑

i∈S
diyi +

∑

j∈N\S

∑

e∈E(j:S)

djxe


 ∀S ⊆ N, |S| ≥ 2. (4.22)

The GLM inequalities are generalized further by Letchford and Salazar-
Gonzalez [24]. Let a, b ≥ 0 and let the inequality

∑
i∈N aiyi ≤ b be valid for

PK . Then the one-vehicle knapsack large multistar (KLM) inequalities

∑

e∈δ(S)
xe ≥

2

b


∑

i∈S
aiyi +

∑

j∈N\S

∑

e∈E(j:S)

ajxe


 ∀S ⊆ N, |S| ≥ 2 (4.23)

can be constructed. Note, that (4.21) and (4.22) correspond to (4.23) by
setting ai = di for all i ∈ S and ai = 0 for all i ∈ N \S for (4.21) and setting
ai = di for all i ∈ C for (4.22) and setting b = Q in both cases.

Letchford and Salazar-Gonzalez [24] state that the KLM inequalities
(4.23) (and therefore (4.21) and (4.22)) can easily be proved to be valid for
the CPTP (and thereby PN ). For completeness we bring a formal proof
here:
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Theorem 9. The KLM inequalities (4.23) are valid for PN .

Proof. We consider three cases:

(i) Assume that
∑

i∈S yi = 0. This implies that
∑

e∈E(j:S) xe = 0 for all
j ∈ N \ S and that

∑
e∈δ(S) xe = 0. Therefore both the left-hand side

and the right-hand side evaluates to 0.

(ii) The case where nodes in N \ S are connected to S by at most one
edge. Assume

∑
e∈E(j:S) xe ≤ 1 for all j ∈ N \ S. This means that∑

e∈E(j:S) ajxe ≤ ajyj and the sum on the right-hand side of (4.23)
has the following relation with the corresponding knapsack inequality∑

i∈S aiyi +
∑

j∈N\S
∑

e∈E(j:S) ajxe ≤
∑

i∈N aiyi ≤ b. This implies
that the right-hand side can at most evaluate to 2, and since some
nodes in S are visited the left-hand side evaluates to at least 2.

(iii) The case where some nodes in N \S are connected to S by more than
one edge. Divide N \ S into two disjoint sets N ′ and N ′′. Assume∑

e∈E(k:S) xe > 1 for all k ∈ N ′ and
∑

e∈E(j:S) xe ≤ 1 for all j ∈
N ′′. Since

∑
e∈E(k:S) akxe > ak, k ∈ N ′ it may be that the sum on

the right-hand side evaluates to a value more than b. However, since
ak ≤ b, k ∈ N ′ and

∑
e∈E(k:S) xe ≤ 2, k ∈ N ′ we have

∑
i∈N ′′ aiyi +∑

k∈N ′
∑

e∈E(k:S) akxe ≤ |N ′|b and it follows that the right-hand side

of (4.23) can evaluate to at most 2 + 2|N ′|. In an integer it follows
from the assumptions that

∑
e∈E(k:S) xe = 2, k ∈ N ′. This implies

that no other edges are used from each node k ∈ N ′ and it is solely
connected to S. This in turn implies that

∑
e∈δ(S)\∪k∈N′E(k:S) xe ≥ 2

and therefore
∑

e∈δ(S xe ≥ 2 + 2|N ′| which concludes the proof.

Rounded Multistar Inequalities

In the following we will present some families of valid inequalities for PN
that stems from dividing by 2 and rounding up the fractional right-hand side
of the capacity inequalities (4.21) and the multistar inequalities (4.22) and
(4.23). The rounding results in non-linear inequalities since we ceil a term
containing variables. The non-linear inequalities are valid for PN since the
left-hand side of (4.21), (4.22) and (4.23) is

∑
e∈δ(S) xe ∈ Z+ for any feasible

solution which makes rounding up the right-hand side to the nearest integer
okay. To obtain linear inequalities we make use of a result presented by
Baldacci et al. [1] for the capacitated m-ring-star problem.

Lemma 1 (Baldacci et al. [1]). Let α, b and γ be three non-negative integer
values with α > γ and mod(α, γ) 6= 0. Then,

⌈
α− β
γ

⌉
≥
⌈
α

γ

⌉
− β

mod(α, γ)
. (4.24)
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It can be shown that (4.24) in Lemma 1 also holds even if the condition
α > γ is not true. Lemma 1 is used to deduce linear inequalities that ap-
proximate the non-linear inequalities obtained from the rounding operation.
Even though the GLM inequalities (4.22) dominate the capacity inequali-
ties (4.21) this is not always true when rounding has occurred. Consider the
non-linear rounded capacity inequalities stemming from (4.21)

∑

e∈δ(S)
xe ≥ 2

⌈∑
i∈S diyi
Q

⌉
∀S ⊆ N. (4.25)

With the use of Lemma 1 we obtain the rounded capacity inequalities

∑

e∈δ(S)
xe ≥ 2

⌈∑
i∈S di
Q

⌉
− 2

∑
i∈S di(1− yi)

mod(
∑

i∈S di, Q)
∀S ⊆ N. (4.26)

Theorem 10. The rounded capacity inequalities (4.26) are valid for PN .

Proof. We show that the right-hand side of (4.26) is less than or equal to the
right-hand side of (4.25). We have

∑
i∈S diyi =

∑
i∈S di −

∑
i∈S di(1 − yi).

Substitute the numerator of the fraction in the ceil expression on the right-
hand side of (4.25) and apply Lemma 1 with non-negative values: α =∑

i∈S di, β =
∑

i∈S di(1− yi), and γ = Q to conclude the proof.

For briefness we consider only the KLM inequalities (4.23) next. The
deduction of the non-linear rounded GLM inequalities (4.22) and their ap-
proximation is similar when we set ai = di for all i ∈ N , and b = Q. The
non-linear rounded KLM inequalities are

∑

e∈δ(S)
xe ≥ 2

⌈∑
i∈S aiyi +

∑
j∈N\S

∑
e∈E(j:S) ajxe

b

⌉
∀S ⊆ N (4.27)

and the rounded KLM (RKLM) inequalities are

∑

e∈δ(S)
xe ≥2

⌈∑
i∈S ai + 2

∑
j∈N\S aj

b

⌉

−
2
∑

i∈S ai(1− yi) + 2
∑

j∈N\S aj
(

2−∑e∈E(j:S) xe

)

mod(
∑

i∈S ai + 2
∑

j∈N\S aj , b)
∀S ⊆ N.

(4.28)

Theorem 11. The rounded KLM inequalities (4.28) are valid for PN .

Proof. We show that the right-hand side of (4.28) is less than or equal to the
right-hand side of (4.27). We have

∑
i∈S aiyi =

∑
i∈S ai −

∑
i∈S ai(1 − yi)

and
∑

j∈N\S
∑

e∈E(j:S) ajxe = 2
∑

j∈N\S aj−
∑

j∈N\S aj
(

2−∑e∈E(j:S) xe

)
.
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Substitute the two terms in the numerator of the fraction in the ceil expres-
sion on the right-hand side of (4.27) and apply Lemma 1 with non-negative
values:

α =
∑

i∈S
ai+2

∑

j∈N\S
aj , β =

∑

i∈S
ai(1−yi)+

∑

j∈N\S
aj


2−

∑

e∈E(j:S)

xe


 , γ = b

to conclude the proof.

The non-linear rounded capacity inequalities are dominated by the non-
linear rounded GLM inequalities as was also the case for the original versions.
However, this relation does not hold for the rounded inequalities. This is
due to different values of α and β in Lemma 1 used to calculate the approx-
imation on the right-hand sides. This observation can also be transferred
to the KLM inequalities. Let

∑
i∈N aiyi ≤ b be the valid inequality for PK

on which to construct a rounded KLM inequality then for the relaxed in-
equality

∑
i∈S aiyi ≤ b we can construct a corresponding rounded capacity

inequality that is not necessarily dominated.

4.4 Separation Results

This section discusses the separation of the inequalities used in the branch-
and-cut algorithm. Particularly we discuss the running time complexity of
the separation algorithms and provide heuristic procedures where appropri-
ate.

4.4.1 The Circuit Polytope

The sub-tour elimination constraints (4.4) are separable in polynomial
time by solving a series of minimum (s, t)-cut problems. An effective algo-
rithm can be implemented using a Gomory-Hu cut tree. Using Goldberg-
Tarjan’s preflow push-relabel algorithm for solving maxflow problems, the
cut tree can be calculated in O(|V |3

√
|E|) time.

Logical Constraints

There are |E||N | logical constraints (4.10) and separation by enumeration
can be done in O(|N ||E|) time.

Cut Inequalities

The separation of the cut inequalities (4.11) is similar to the separation of
the sub-tour elimination constraints (4.4) although on a slightly different
cut graph. Again the running time is O(|V |3

√
|E|) using a Gomory-Hu cut

tree.
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2-Matching Inequalities

Exact separation of the 2-matching inequalities (4.13) can be done in poly-
nomial time by solving an odd minimum cut problem, see Padberg and Rao
[26]. Following in the lines of Bauer et al. [5] we have adapted a heuristic
procedure presented by Padberg and Rinaldi [27]. The heuristic is Proce-
dure 4.10 in [27] having a worst cast running time O(|V |4). As noted in [5]
the running times are in practice much faster.

Comb Inequalities

The complexity of an exact separation algorithm for the comb inequalities
(4.16) is unknown. Again we follow in line of Bauer et al. [5] and adapt a
heuristic procedure for the separation of simple comb inequalities presented
as Procedure 5.3 in [27].

Clique Tree Inequalities

As is the case for the comb inequalities, it is also unknown if there exists
a polynomial time algorithm to separate the more general clique tree in-
equalities (4.18). Padberg and Rinaldi [27] provide a number of heuristic
procedures to separate the equivalent inequalities for the TSP. However,
based on our computational experience, the support graph was rarely large
and dense enough to contain a violated clique tree inequality. Based on this
observation we have disregarded the separation of (4.18) in this study.

4.4.2 The Knapsack Polytope

Cover Inequalities

The cover inequalities (4.19) can be separated exactly by solving a 0-1
knapsack problem which is weakly NP-hard [35]. Separation algorithms for
cover inequalities are standard in most modern mixed-integer programming
solvers, so we simply use the build-in procedure for separation.

4.4.3 The Node-Capacitated Polytope

Path Inequalities

The separation problem for the path inequalities (4.20) is expected to be
NP-hard. We use an enumeration procedure as described by Fischetti et al.
[16].

Multistar Inequalities

Letchford and Salazar-Gonzalez [24] show that the GLM inequalities (4.22)
(and therefore also the capacity inequalities (4.21)) are separable in polyno-
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mial time. This is done by solving a minimum (s, t)-cut for each node s ∈ N
and t = 0 on a capacitated graph where capacities depend on node s. The
overall running time is O(|V |3

√
|E|).

The exact separation of the KLM inequalities (4.23) is expected to be
NP-hard. For the CVRP, Letchford et al. [23] suggest to first find a violated
cover inequality and then, using the same polynomial time algorithm as for
the GLM inequalities, separate the most violated KLM inequality based on
that cover. However, their results were unpromising and they resorted to
only consider GLM inequalities. We have devised a new heuristic procedure
to separate the KLM inequalities. The procedure is based on the following
three observations:

• If we are to minimize the violation of a KLM inequality, i.e.,

min
∑

e∈δ(S)
xe −

2

b


∑

i∈S
aiyi +

∑

j∈N\S

∑

e∈E(j:S)

ajxe


 ,

then to minimize the positive term
∑

e∈δ(S) xe the set S ⊆ N must be
connected.

• For any set S′ that is a cover for PK there must exist some subset
S ⊆ S′ that it is a minimal cover.

• Once a minimal cover S has been determined it is possible to strengthen
the inequality by lifting the inequality in PK .

The first two observations leads us to a relaxed version of the separation
problem for the KLM inequality. In this version we no longer seek the full
KLM inequality but rather seek an inequality where S is a connected cover.
The heuristic used to determine such a set or more precisely a number of
sets with such a property, does not take the violation into account. The
heuristic is greatly inspired by the labeling algorithms for the ESPPRC but
it also has a greedy aspect. The algorithm uses the concept of a label and
to each label L we associate the following functions:

v(L) is the node the label was last extended to

d(L) returns the accumulated demand

S(L) returns the set of nodes the label consist of

Algorithm 1 gives the pseudo code for the first part of the heuristic, which
construct the initial sets. The input for the algorithm is the original graph
G, the capacity Q, an array with demands d, the current LP solutions (x̄, ȳ),
and a parameter τ that determines the minimum size of the co-boundary
of the candidate sets. The value of τ influences the number of candidate
sets found, and therefore also the computation time of the heuristic. The
heuristic returns a candidate set SOL of labels that represents connected
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Algorithm 1 The heuristic procedure to construct initial sets

1: CONSTRUCTSETS(G,Q, d, x̄, ȳ, τ)
2: L← {0, 0, ∅}
3: SOL← ∅
4: for v ∈ V do
5: if v 6= 0 ∧ yv 6= 0 then
6: PQ.ENQUEUE(EXTENDLABEL(L, v, d))
7: end if
8: end for
9: while PQ.TOP () 6= ∅ do

10: L← PQ.DEQUEUE()
11: for e(v(L), v) ∈ δ(v(L)) do
12: if v 6=∈ S(L) ∧ x̄e 6= 0 ∧ v 6= 0 then
13: NewL← EXTENDLABEL(L, v, d)
14: if d(NewL) > Q then
15: SOL← {SOL ∪NewL}
16: end if
17: if x̄(δ(S(NewL)) < τ) then
18: PQ.ENQUEUE(NewL)
19: end if
20: end if
21: end for
22: end while
23: return SOL
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covers. The auxiliary method EXTENDLABEL(L, v, d) is used to update
the data of a label that is v(L) = v, d(L) = d(L)+dv and S(L) = S(L)∪{v}.

Line 1 to 9 initializes the priority queue PQ with a label from each node
that is used in the current LP solution. In line 10-11 a new label is dequeued
if any exists. The for-loop in line 12 considers each node adjacent to the
labels current node. In line 13 to 16 a new label is constructed if the node
has not been included previously. Line 17 to 19 stores the label if it exceeds
the capacity, line 20 to 24 either removes the label based on τ or enqueues
it. The running time of the algorithm is in the worst case exponential, but
on a sparse graph and with a high value τ it is expected to be fast.

After the first phase of the separation heuristic each label L in SOL
represents the following valid inequality for Pk:∑

i∈S(L)
yi ≤ |S(L)| − 1.

It should be noted that labels with identical node sets S(L) may exist in
which case we only consider one the node set once. Rather than converting to
a KLM inequality based on the above inequality a second phase is performed
where we perform sequential lifting of the variables for the nodes in v ∈
V \ S(L). The procedure is as follows

• For each node j ∈ V \S(L) determine coefficient aj using the standard
lifting procedure for a cover inequality (see [35]).

• Select the node j where aj x̄(S(L) : j) is maximal and add it to S(L).

• Repeat the procedure until aj = 0, ∀j ∈ V \ S(L).

Based on the final set S(L) and the coefficients found we convert the valid
cover inequality to a KLM inequality.

Rounded Inequalities

The rounded capacity inequalities and the rounded GLM are not separated
directly. Instead we construct these cuts based on sets identified by other
separation algorithms. This include sets found in the multistar separation
procedures and includes the separation of the capacity inequalities and the
GLM inequalities. Both violating and non-violating cuts from the original
separation algorithm is used.

The rounded KLM inequalities (and their capacity equivalent) are cal-
culated in a similar way based on a candidate set of KLM inequalities.

4.5 Computational Results

The computational experiments are divided in two parts: (i) a running
time comparison with dynamic programming algorithms and (ii) a detailed
description of the cut separation.
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All experiments are performed on a dual 2.66 GHz Intel R© Xeon R© X5355
machine with 16 GB of memory, no multi-threading utilized. The BAC
algorithm is implemented within CPLEX 12 using the callback functions
for the cut generation from the callable library. The tests are performed
using the default CPLEX parameters. This includes the generation of cuts
for general mixed-integer programs such as Chvátal-Gomory cuts, mixed-
integer rounding cuts, disjunctive cuts, and cover inequalities.

Branching is performed by CPLEX but we enforce strong branching
to reduce the search tree size. Cut separation is performed aggressively
throughout the entire algorithm. Most of the cuts are separated in each
iteration and one of each cut type is added if the violation is above 0.1.
For the 2-matching inequalities and the comb inequalities we also enforce
that the LP-induced graph is connected since the separation heuristics as-
sume this. The KLM inequalities are only separated when no other violated
inequality of another type can be found.

A time limit of 3 hours is used of for all experiments.

4.5.1 Benchmark Instances

We consider three sets of instances, one known from the literature and two
newly generated sets.

The first set (Set 1) is used by Feillet et al. [14], Righini and Salani
[29, 30] and is derived from the benchmarks by Solomon [32] for the vehicle
routing problem with time windows by discarding the time constraints. All
the benchmarks have 100 nodes and a depot. From the instances c101,
r101, and rc101 with three different node distributions (c for clustered, r
for random, and rc for random-clustered) ten instances of the CPTP have
been created for each distribution, where the capacity range from 10 to 100
in steps of 10. The instances are named according to the series and a tenth
of the capacity, e.g., c 101 09 is based on the c101 instance with capacity
90. The instances with capacity from 10 to 50 are easily solved [30] so we
will only consider the instances with larger capacity ranging from 60 to 100.

The second set (Set 2) of test instances is based on the VRPTW instances
proposed by Gehring and Homberger [17]. We use the edge weights and
demands but disregard the time windows from these instances which yields
a total of 30 different instances. That is, 6 instances each with 200, 400,
600, 800 and 1000 nodes. The distribution of the nodes of the instances are
identical to the benchmark instances derived from the Solomon instances.
The difference between the type 1 and type 2 is that the latter has larger
vehicles. The profits pi,∀ i ∈ N, were randomly generated as an integer
between 0 and 1000.

The third set (Set 3) was kindly generated by Roberto Roberti using the
column generation algorithm for the CVRP presented by [3], i.e., the duals
of the master problems was used to generate instances of the CPTP. The

118



A Branch-and-Cut Algorithm for the Capacitated Profitable Tour Problem

Set Generated by Derived from # instances # nodes

1 Feillet et al. [14] Solomon [32] 30 100
2 Jepsen et al. Gehring and Homberger [17] 30 200-1000
3 Roberti E, F, M, and P series for the CVRP 31 45-200

Table 4.1: Benchmark summary.

column generation algorithm ran without adding any additional cuts in the
column generation master problem thereby ensuring that the generated sub-
problems are indeed instances of the CPTP. The set contains two series of
benchmarks (a and b) based on the well-known benchmarks for the CVRP
(the E, F, M, and P series available at http://www.branchandcut.org)).
The a series are sub-problems generated in the ”middle” of the column gen-
eration algorithm and therefore have quite negative upper bounds, and the
b series are sub-problems generated near the end of the column generation
algorithm where the upper bound is closer to 0. For all benchmarks a valid
upper bound is 0 due to the nature of the column generation algorithm
(except for F-n72-k4 a where it is 0.006 due to rounding of the duals). In
the hope of generating instances with a high degree of difficulty only sub-
problems of a set of the more difficult instances of the CVRP have been
considered. There are 17 instances in the a series and 14 in the b series.
The problem instances differ slightly from the formulation of CPTP since a
lower bound on the load is imposed based on the original CVRP instance,
i.e., the minimum load is

dmin = max

{
min
i∈V
{di},

∑

i∈V
di − (K − 1)Q

}

where K is the number of vehicles in the CVRP instance. This is easily
modelled in the MIP model by setting a lower bound on the capacity in-
equality (4.5). However, a lower bound on the capacity demands special
attention in the dominance rules for the dynamic programming algorithms
[3].

Table 4.1 summarizes the instance sets used in the experiments.

4.5.2 Comparison with Dynamic Programming Algorithms

Matteo Salani has kindly provided his code for the exact dynamic program-
ming and the decremental state space relaxation algorithms used in [29, 30].
We have implemented an updated version of the algorithms using a bound-
ing function as suggested by Baldacci et al. [3]. Appendix A.1.1 shows an
extensive computational comparison with the algorithms provided by Mat-
teo Salani and our updated version. The experiments show that our updated
implementations of the dynamic programming algorithms are superior to the
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Instance BB Nodes Root LB Best LB UB BAC Time DP Time

c 100 06 6 -33 -32 -32 4.75 0.02
c 100 07 0 -41 -41 -41 2.68 0.05
c 100 08 0 -49 -48 -48 2.18 0.06
c 100 09 0 -57 -57 -57 2.42 0.11
c 100 10 0 -64 -64 -64 1.71 0.55
r 100 06 6 -62 -61 -61 2.90 2.74
r 100 07 15 -70 -67 -67 2.67 9.12
r 100 08 6 -78 -77 -77 2.65 14.77
r 100 09 0 -86 -86 -86 2.39 29.82
r 100 10 0 -93 -93 -93 2.13 395.64
rc 100 06 4 -37 -33 -33 4.21 0.01
rc 100 07 20 -42 -34 -34 3.87 0.02
rc 100 08 8 -46 -42 -42 2.43 0.03
rc 100 09 10 -52 -51 -51 4.58 0.04
rc 100 10 32 -57 -53 -53 4.58 0.11

Table 4.2: Comparison of the BAC algorithm with the fastest dynamic
programming algorithm (see Table A.8 in Appendix A.1.1) for Set 1.

algorithms provided by Matteo Salani, so for the remainder of this paper we
will only compare with our own implementations.

The results of the comparison between the BAC algorithm and the fastest
dynamic programming algorithm are shown in Tables 4.2, 4.3 and 4.4. The
tables contain the following columns: Instance is the name of the instance,
BB is the number of branch nodes, Root LB is the bound in the root node,
Best LB is the best lower bound obtained, UB is the best solution obtained
by the BAC algorithm, BAC Time is the time of the BAC algorithm, and DP
Time is the time of the best performing dynamic programming algorithm
(appendix A.1.1). A dash (-) in any of the time fields indicate that the
algorithm was terminated after 10000 CPU seconds and an asterisk (* )
indicates that the algorithm ran out of memory.

The results for Set 1 and Set 2 in Tables 4.2 and 4.3 are very encour-
aging. Although the fastest dynamic programming algorithm is faster on
most of the 100 node instances in Set 1, it is seen that where the dynamic
programming algorithm have trouble, e.g., instances r 100 09, r 100 10, the
BAC algorithm is by far superior. This trend continues for the much larger
instances in Set 2 where the BAC algorithm is able to solve to optimality
18 instances, the largest of these contains 800 nodes, and the dynamic pro-
gramming algorithm is not able to prove optimality on any of the instances.
Several instances are solved in the root node for both the instances in Set 1
and Set 2 and for the instances which are solved to optimality no more than
130 branching nodes are used.

Table 4.4 presents the results for Set 3 which is less encouraging than
the previous results. The dynamic programming algorithms outperforms
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Instance BB Nodes Root LB Best LB UB BAC Time DP Time

c1 2 a 0 -12.988 -12.983 -12.983 10.28 -
c1 4 a 34 -14.128 -13.984 -13.984 77.22 -
c1 6 a 21 -12.973 -12.906 -12.906 724.94 -
c1 8 a 23 -13.770 -13.555 -13.555 5104.55 -
c1 10 a 0 -13.656 -13.656 -12.856 * -
c2 2 a 0 -37.261 -37.261 -37.261 36.68 -
c2 4 a 0 -44.375 -44.375 -44.375 1282.32 -
c2 6 a 0 -47.829 -47.829 0.000 * -
c2 8 a 0 -45.253 -45.253 -37.932 * -
c2 10 a 0 -46.573 -46.573 0.000 - -
r1 2 a 53 -15.112 -15.005 -15.005 18.59 -
r1 4 a 64 -18.266 -18.207 -18.207 110.70 -
r1 6 a 130 -20.081 -19.993 -19.993 723.13 -
r1 8 a 0 -18.313 -18.313 -14.838 * -
r1 10 a 0 -14.791 -14.791 -12.282 * -
r2 2 a 46 -48.568 -48.509 -48.509 214.63 -
r2 4 a 63 -59.501 -59.482 -59.482 566.72 -
r2 6 a 104 -69.603 -69.562 -69.562 9762.00 -
r2 8 a 0 -71.001 -71.001 0.000 * -
r2 10 a 0 -63.697 -63.697 0.000 * -
rc1 2 a 1 -13.885 -13.872 -13.872 6.67 -
rc1 4 a 17 -15.324 -15.239 -15.239 77.31 -
rc1 6 a 59 -15.521 -15.389 -15.389 333.30 -
rc1 8 a 2 -14.979 -14.962 -14.962 3030.01 -
rc1 10 a 0 -14.524 -14.524 -2.457 * -
rc2 2 a 65 -48.295 -48.246 -48.246 198.83 -
rc2 4 a 5 -57.952 -57.947 -57.947 3035.06 -
rc2 6 a 0 -63.691 -63.691 -49.937 * -
rc2 8 a 0 -63.603 -63.603 0.000 - -
rc2 10 a 0 -69.129 -69.129 0.000 * -

Table 4.3: Comparison of the BAC algorithm with the fastest dynamic
programming algorithm (see Table A.9 in Appendix A.1.1) for Set 2
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Instance BB Nodes Root LB Best LB UB BAC Time DP Time

E-n76-k7 a 93 -28.645 -6.032 -6.032 43.08 0.10
E-n76-k7 b 269 -23.801 -0.846 -0.846 83.17 0.05
E-n76-k8 a 107 -30.685 -6.635 -6.635 52.01 0.24
E-n76-k8 b 616 -27.997 -0.001 -0.001 185.19 0.28
E-n76-k10 a 325 -34.486 -3.810 -3.810 162.50 0.15
E-n76-k10 b 795 -32.380 0.000 0.000 258.27 0.29
E-n76-k14 a 417 -37.667 -3.788 -3.788 136.41 0.12
E-n76-k14 b 1028 -36.150 -0.002 -0.002 308.18 0.12
E-n101-k8 a 12 -29.846 -23.977 -23.977 20.65 5.06
E-n101-k8 b 974 -22.491 -0.006 -0.006 498.92 0.14
E-n101-k14 a 136 -37.179 -6.667 -6.667 258.31 0.04
E-n101-k14 b 959 -33.830 -0.002 -0.002 406.73 0.03
F-n45-k4 a 57 -17.272 -1.001 -1.001 2.27 1.27
F-n72-k4 a 22 -2.563 0.006 0.006 5.38 102.06
F-n135-k7 a 62 -92.869 -9.051 -9.051 653.87 -
M-n121-k7 a 69 -81.097 -15.260 -15.260 939.83 -
M-n121-k7 b 204 -81.733 -2.179 -2.179 1843.44 -
M-n151-k12 a 186 -34.198 -5.799 -5.799 1345.53 0.77
M-n151-k12 b 1818 -32.153 -0.002 -0.002 5841.19 0.32
M-n200-k16 a 175 -43.288 -11.136 0.000 - 36.05
M-n200-k16 b 157 -42.113 -10.527 0.000 - 20.84
M-n200-k17 a 383 -44.149 -7.328 -5.102 - 0.09
M-n200-k17 b 475 -36.907 -2.752 0.000 - 2.25
P-n70-k10 a 425 -29.562 -2.852 -2.852 103.22 0.11
P-n70-k10 b 731 -26.953 -0.001 -0.001 150.00 0.10
P-n76-k4 a 93 -12.588 -2.903 -2.903 35.35 1.67
P-n76-k4 b 436 -11.480 0.000 0.000 84.94 1.39
P-n76-k5 a 198 -18.549 -3.959 -3.959 92.04 0.58
P-n101-k4 a 72 -13.181 -7.219 -7.219 27.93 3455.28
P-n101-k4 b 239 -11.974 -0.001 -0.001 106.39 -

Table 4.4: Comparison of the BAC algorithm with the fastest dynamic
programming algorithm (see Table A.10 in Appendix A.1.1) for Set 3

the BAC algorithm on most of the instances solved by both algorithms and
is able to solve 4 instances not solved by the BAC algorithm. Especially
the b instances in this set are difficult for the BAC algorithm and it is not
able to solve the four large instances with 200 nodes that are solved in less
than 40 seconds by the dynamic programming algorithms. One reason why
the dynamic programming algorithms perform so well on these instances is
that the path relaxations gives fairly good bounds resulting in large num-
ber of labels being fathomed and few states being explored. This thesis is
supported by the results in Table A.10 in Appendix A.1.1. On the positive
side, the BAC algorithm is able to solve 3 instances that are not solved by
the dynamic programming algorithms and it is on two instances faster. The
root lower bound is significantly weaker compared to the instances in Set 1
and Set 2 and the number of branching nodes is much higher than in the
other two sets.
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4.5.3 Cut Separation

Details about cut separation are presented in Tables 4.5, 4.6 and 4.7. Each
table contains the following columns: Instance is the name of the instance,
and for each type of cut we report the number of cuts separated N of the in-
equalities and the time T used in the separation algorithm. The columns are
named for each cut as: GSEC for the GSEC constraints (4.4), GLM for the
GLM inequalities (4.22), RGLM for the rounded GLM inequalities (4.28)
with ai = di,∀i ∈ V and b = Q, CAP for the capacity inequalities (4.21),
RCAP for the rounded capacity inequalities (4.26), KLM for the KLM in-
equalities (4.23), RKLM for the rounded KLM inequalities (4.28), PATH for
the path inequalities (4.20), TWOM for the 2-matching inequalities (4.13),
and COMB for the comb inequalities (4.16). The last two columns are: TT
reports the total running time of the BAC algorithm and column TC re-
ports the total time spent in all the separation algorithms. For the rounded
inequalities no separation time is reported because it is negligible. This is
due to the fact that the candidate set for the rounded inequalities are found
when separating the non-rounded version.

From the detailed cut statistics in Tables 4.5, 4.6, and 4.7 we can see
that the GSEC inequalities are the most frequently separated cut. The
GLM inequalities are the second most separated cut with a few exceptions
in Set 3. The rounded GLM inequalities and the rounded CAP inequalities
seems to be the third and fourth most generated cuts. They are in some
cases separated almost as often as the GLM inequalities, but in other cases
the GLM inequalities are separated more than six times as often. The
KLM inequalities appear to be fifth most generated cut, especially on the b
instances in Set 2 it is frequently generated and in two cases it is the second
most separated cut.

There are several instances where we find no path inequalities. This
indicates, that for the BAC algorithm the path structure is seldom kept
intact enough in fractional solutions for path inequalities to be violated.
The same seem to be the case for the 2-matching and the comb inequalities,
which both are found quite seldom.

We are unable to separate any violated capacity or rounded KLM in-
equalities. For the capacity inequalities this is probably due to the fact that
the GLM inequalities are separated earlier in the process and therefore none
of the CAP inequalities are found in later iterations. For the rounded KLM
inequalities we believe that the issue is that few KLM inequalities are found
and that the constants that are used to ensure that the rounded inequalities
are valid are too large, thereby not leading to any violation.

In Set 2 the GSEC inequalities are the most time consuming to separate.
However, as the instances grow in size the GLM inequalities become more
time consuming to separate and especially on the larger c2, r2 and rc2
instances a significant amount of time is spent on separation. However, the
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overall separation time used is seldom above 6 % of the total CPU time and
only in a single case the separation time exceeds 10 %, which is due to a
very high separation time in the separation algorithm for the 2-matching
inequalities.

4.6 Conclusion

This paper presented a BAC algorithm for the undirected CPTP. We have
reviewed the existing literature in the area of tour problems and have pointed
out that many of the known problems are related (or is in fact identical)
to the CPTP. We have adapted a number of valid inequalities for related
problems to the CPTP and proved the validity of these inequalities. More-
over, we have presented a new family of inequalities, the rounded multistar
inequalities, for the CPTP.

Separation algorithms have been implemented for all cuts and the useful-
ness of the valid inequalities has been shown through a computational study.
Especially the GLM, the rounded GLM inequalities, and the rounded ca-
pacity inequalities proved to be frequently separated. Furthermore, a com-
parison with state-of-the-art dynamic programming algorithms has shown
that the BAC algorithm is competitive, and acts as a good compliment to
the dynamic programming algorithms. That is, in some case the dynamic
programming algorithms are much faster and able to solve instances that
cannot be solved by the BAC algorithm. On the other hand the BAC algo-
rithm appear to superior on very large instances, e.g., the BAC algorithm
solved instances with up to 800 nodes compared to a maximum of 200 nodes
for the dynamic programming algorithms. There is a tendency towards, that
the BAC algorithm is faster than the dynamic programming algorithms on
instances with highly negative weights and is slower on instances with solu-
tion values close to 0. This is not too surprising since the bounding functions
used in the dynamic programming algorithms is expected to cut off large
parts state-space in the latter case. This may render the BAC algorithms
less efficient in a column generation scheme for current state-of-the-art algo-
rithms, since instances with much negativity are usually solved heuristically
and only the instances with cost near zero are solved to optimality. How-
ever, our experiments indicate that the BAC algorithm may prove to be
worthwhile when the number of nodes increases (to more than the current
maximum of 151 nodes for the CVRP). To sum up, the BAC algorithm
solved 58 out of a total 76 instances which is 18 more than the dynamic pro-
gramming algorithms, and the BAC algorithm appear to have its strength
when the number of nodes is large.
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A.1 Detailed Results

A.1.1 Dynamic Programming Algorithm

This sections holds the detailed results for running the dynamic program-
ming algorithms that we use for comparison with the BAC algorithm. The
purpose of this section is to justify that our implementation is a state-of-the-
art algorithm in this area. Our implementation is similar to the dynamic
programming algorithms presented by Righini and Salani [30], but make
use of the bounding function based on the relaxation of 2-cycle elimination
dynamic programming algorithms and the fact that the instances are sym-
metric which makes it sufficient to only investigate half of the state space
before starting to merge labels, see e.g., Baldacci et al. [2].

Tables A.8, A.10 and A.9 contains detailed information on the dynamic
programming algorithms used for solving the instances in Sets 1, 2 and 3,
respectively. The tables report the instance name Instance, and for the exact
dynamic programming (Exact DP) and the decremental state-space (DSSR
DP) dynamic programming algorithms we report the upper bound (UB),
the lower bound (LB), the total number of states explored in thousands
(States), the percentage of states fathomed by bounding using the lower
bounds calculated by a 2-cycle elimination dynamic programming algorithm
(%Fat1 ), by capacity infeasibility (%Fat2 ), and by dominance (%Dom1 ),
and the total time to solve the problem (Time). For the decremental state-
space dynamic programming we also report the number of iterations (It).
If the instance could not be solved within the time limit of 3 hours a dash
(’-’ ) entry is found in the Time column. Furthermore, in Table A.8 we
supply the running time of the algorithms used by Righini and Salani [30]
in columns (Righini and Salani [30] Time). These algorithms are run on
the same machine as our implementation. We did not run the algorithms on
the Set 2 and 3 instances since the results on the instances in Set 1 suggest
that our implementation is superior. Furhtermore, for Set 3 the instances
require a minimum of delivered demand on the path which is not supported
by that implementation.

From A.8 we can see that our implementation of the dynamic program-
ming algorithms is faster than that of Righini and Salani [30] and we are able
to solve one more instances with the exact dynamic programming. Also we
note that the percentage of states fathom by the bounding function (%Fat1 )
is quite small on the hard instances. This suggests that even without this
feature our implementation may be faster. The comparison with the al-
gorithms of Righini and Salani [30] suggests that our implementation may
indeed be considered a state-of-the-art algorithm and that the comparison
with the BAC algorithm is a fair one. From Table A.9 it is seen that we
were not able to solve any of the Set 2 instances. Also, the number of labels
fathomed is very low which suggest that the bounding function is not so
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good. Improvements may be gained by trying stronger relaxations such as
the ng-paths, see Baldacci et al. [3]. however, this is out of the scope of
this paper. From Table A.10 we see that the percentage of states fathomed
by bounding has increased dramatically compared to the Set 1 instances.
This is suggests that the capacity of the vehicle is less binding on the Set 3
instances that on the Set 1 instances.
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Abstract
This paper presents a column generation algorithm for the Capacitated Vehicle

Routing Problem (CVRP) and the Vehicle Routing Problem with Time Windows
(VRPTW). Traditionally, column generation models of the CVRP and VRPTW
have consisted of a Set Partitioning master problem with each column represent-
ing a route. The use of Elementary routes, where no customer is visited more
than once, have shown superior results for both CVRP and VRPTW. However, al-
gorithms for solving the pricing problems do not scale well when the number of
feasible routes increases. We suggest to relax the constraint that ‘each column is a
route’ into ‘each column is a part of the giant tour’; a so-called partial path, i.e., not
necessarily starting and ending in the depot. This way, the length of the partial path
can be bounded and a better control of the size of the solution space for the pricing
problem can be obtained. It is shown that the LP-relaxed partial path formulation
gives a tighter bound than the LP-relaxation of a 2-index formulation, and insome
cases it is even tighter than the bound found by classical decomposition into routes.

5.1 Introduction

The Capacitated Vehicle Routing Problem(CVRP) can be described as follows:
A set of customersC having a demanddi, needs to be serviced by a number of
vehicles all starting and ending at a central depot. Each customer must be visited
exactly once and the capacityQ of the vehicles may not be exceeded. The objective
is to service all customers traveling the least possible distance. In this paperwe
consider a homogeneous fleet, i.e., all vehicles are identical. TheVehicle Routing
Problem with Time Windows(VRPTW) extends the CVRP by imposing that each
customer must be visited within a given time window. We will use the term VRP
to denote Vehicle Routing Problems with time and/or capacity constraints.
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The standard Dantzig-Wolfe decomposition of the arc flow formulation of the
VRP is to split the problem into a master problem formulated as a Set Partition-
ing Problem, and a pricing problem formulated as an Elementary Shortest Path
Problem with Resource Constraints (ESPPRC), where capacity (and time) are the
constrained resources. A restricted master problem can be solved with delayed
column generation and embedded in a branch-and-bound framework to ensure in-
tegrality. Applying cutting planes either in the master or the pricing problem leads
to a Branch-and-Cut-and-Price algorithm (BCP). Kohl et al. [25] implemented a
successful BCP algorithm for the VRPTW by applyingsub-tour eliminationcon-
straints andtwo-pathcuts, Cook and Rich [10] generalized thetwo-pathcuts to
k-pathcuts, and Fukasawa et al. [19] applied a range of valid inequalities for the
CVRP based on the branch and cut algorithm of Lysgaard et al. [28]. Common for
these BCP algorithms is that all applied cuts are valid inequalities for the VRPTW
respectively the CVRP with regard to theoriginal arc flow formulation, and have
a structure which makes it possible to handle values of the dual variables in the
pricing problem without increasing the complexity of the problem. Fukasawa et al.
[19] refer to this as arobustapproach in their paper. The topic of column gener-
ation and BCP algorithms has been surveyed by Barnhart et al. [4] and Lubbecke
and Desrosiers [26]. Recently the BCP framework was extended to include valid
inequalities for the master problem, more specifically by applying the subset row
(SR) inequalities to the Set Partitioning master problem in Jepsen et al. [23] and
later by applying Chv́atal-Gomory Rank-1 (CG1) inequalities in Petersen et al.
[29]. Desaulniers et al. [13] solved several unsolved instances by adding gener-
alized k-Path inequlities and generated columns heuristically using a tabu search
and finally introduced a new algorithm to solve the pricing problem where par-
tial elementarity is used. Baldacci et al. [2] improved the lower bound by adding
strengthened capacity inequalities and clique inequalities to an algorithm where
columns with potentially negative reduced cost are enumerated (after goodupper
and lower bounds are found). Dror [16] showed that the ESPPRC, withtime and

capacity constraints, is stronglyNP-hard. Hence, a relaxation of the ESPPRC
was used as the pricing problem in earlier BCP approaches for the VRPTW. The
relaxed pricing problem where non-elementary paths are allowed is denoted the
Shortest Path Problem with Resource Constraints (SPPRC) and can be solved in
pseudo-polynomial time by dynamic programming using for instance a labeling al-
gorithm, see Desrochers [14]. Considering a single capacity resourceChristofides
et al. [9] suggested to remove 2-cycles from the paths. This was later generalized
to the variant with time windows by Desrochers et al. [15]. Irnich and Villeneuve
[22] extended the framework further tok-cycle elimination (k-cyc-SPPRC), where
cycles containingk or less nodes are forbidden.

Beasley and Christofides [5] proposed to solve the ESPPRC using Lagrangian
relaxation. However, labeling algorithms have recently become the most popular
approach to solve the ESPPRC, see e.g. Dumitrescu [17] and Feillet et al. [18].
When solving the ESPPRC with a labeling algorithm, a binary resource for each
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node is added, increasing the complexity of the algorithm compared to the solution
of the SPPRC or thek-cyc-SPPRC. Righini and Salani [30] developed a labeling
algorithm using the idea of Dijkstra’s bi-directional shortest path algorithm that ex-
pands both forward and backward from the depot and connects routes in the mid-
dle, thereby potentially reducing the running time of the algorithm. Furthermore,
Righini and Salani [31] and Boland et al. [6] proposed a decremental state space
algorithm that iteratively solves a SPPRC, by iteratively applying binary resources
to force nodes to be visited at most once. Recently Chabrier [7], Danna and Pape
[11], and Salani [32] successfully solved several previously unsolved instances of
the VRPTW from the benchmarks of Solomon [33] using a labeling algorithm
for the ESPPRC. However, these algorithms have some weaknesses whendealing
with very long (measured in the number of visited nodes) paths, when resource
constraints are not tight. Christofides and Eilon [8] introduced the giant-tour rep-
resentation in which all the routes are represented by one singlegiant tour, i.e., all
the routes are concatenated into a single tour.

In this paper we propose a decomposition approach based on the generation of
partial paths and the concatenation of these. The main idea is to limit the solution
space of the pricing problem by bounding a resource, e.g., the number ofnodes
on a path or the capacity on it. The master problem combines a known number
of these bounded partial paths such that all customers are visited. In this way we
get a better controle of the pricing problem. If the original pricing problem istoo
difficult to solve for each vehicle, we may imposing a limit on the nodes in a partial
path. If the original pricing problem for each vehicle is easy, we can choose looser
bounds such that the partial paths get longer and lead to tighter bounds.

The paper is organized as follows: In Section 5.2 we describe how to use the
giant tour formulation of VRP to obtain the partial path formulation. Section 5.3
introduces a mathematical model based on partial paths. Section 5.4 shows howthe
model is decomposed through Dantzig-Wolfe decomposition, and describeshow to
calculate the reduced cost of columns in a delayed column generation framework.
Section 5.5 describes how to use the load resource to divide the solution space.
Section 5.8 concludes the paper discussing future work.

5.2 Bounded Partial Paths

Given a graphG(V,A) with nodesV = C ∪ {0} and arcsA, whereC is the set
of customers, and0 is the depot. Moreover, we have a setR of resources which
e.g. can be load and/or time. Each resourcer ∈ R has a resource window[ari , b

r
i ]

that must be met upon arrival to nodei ∈ V , and a consumptionτ rij ≥ 0 for using
arc(i, j) ∈ A. A resource consumption at a nodei ∈ C is modeled by a resource
consumption at edge(i, j), and hence usuallyτ r0j = 0 for all j ∈ C. A global
capacity limitQ can be modeled by imposing a resource window[0, Q] for the
depot node 0.

The VRP can now be stated as: Find a set of routes starting and ending at the
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Figure 5.1: Giant-tour (upper) and corresponding giant-tour split into partial paths
(lower), each bounded by the capacityQ = 10.

depot node0 satisfying all resource windows, such that the cost is minimized and
all customersC are visited.

A solution to the VRP will consist of a number of routes

0 → i11 → . . . → i1k1 → 0,

0 → i21 → . . . → i2k2 → 0,
...
0 → in1 → . . . → inkn → 0

wheren is the number of vehicles, andkj is the length of thej’th route. A natural
decomposition of the VRP is to split the problem into these separate routes, where
a master problem ensures that all customers are visited once. We will call thisthe
classicaldecomposition. However, using the classical decomposition, the number
of nodes in each individual route may vary a lot, making it difficult to solve some
of the subproblems.

Instead we consider the giant-tour representation by Christofides and Eilon [8]

0 → i11 → . . . → i1k1 → 0 → i21 → . . . → i2k2 → 0 → . . . → 0 → in1 → . . . → inkn → 0

A giant-tour (see Figure 5.1) is one long path visiting all customers once and the
depot several times. The consumption of resourcesr ∈ R is reset each time the
depot node is encountered. If we decompose the VRP into smaller segments of the
giant-tour, we may to a larger extent controle that the number of nodes visitedin
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each partial path is of similar length. In this way we can balance the hardnessof
the subproblems (see Figure 5.1 for an illustration).

The decompostion is done by imposing an upper limit on a resourcer′ ∈ R,
e.g., bounding the path length in the number of nodes for each partial path, or
bounding the load. The giant tour introduced in Figure 5.1 can be decomposed
into a number of partial paths by bounding a resource. In the following the number
of visited customers inC is considered to be the bounding resource. Bounding the
load resource is a bit more complicated and will be addressed in Section 5.5.

Each segment represents a partial path of the giant-tour. With a fixed number
of customersL on each partial path,K partial paths are needed to ensure that all
customers are visited i.e.,L ·K ≥ |C|. The partial paths can start and end in any
node inV and it can visit the depot several times. A partial path could for example
be:

i1 → i2 → 0 → i3 → 0 → i4

In the following we will make a graph representation for the problem of finding
theK partial path of lengthL. This is done by replicating the graphK times and
connecting the replications by special arcs. Each of the replications is connected
with arcs directed from one replication to a following replication. This leads to a
layered graph withK layers1, ..,K where there are no outgoing arcs of the final
layer. Each layerk 6= K is connected to the subsequent layerk + 1. Each pair of
subsequent layers are connected with the set of arcs leaving nodei in layerk 6= K
and entering layerk + 1.

Consider the graphG′(V ′, A′) consisting of a set of layersK = {1, . . . ,K},
each layer representingG for a partial path. LetGk be the sub graph ofG′ rep-
resenting layerk with node setV k = {(i, k) : i ∈ V } for all k ∈ K and arc
setAk = {(i, j, k) : (i, j) ∈ A} for all k ∈ K. Let A∗ = {(i, i, k) : (i, k) ∈
V k ∧ (i, k + 1) ∈ V k+1 ∧ k ∈ K} be the set of interconnecting arcs, i.e., the arcs
connecting a layerk with the layer abovek namely layerk+1 for all k ∈ K and all
nodesi ∈ V (layerK + 1 is defined to be layer1 ∈ K and layer 0 is defined to be
layerK ∈ K). LetV ′ =

⋃
k∈K V k and letA′ =

⋃
k∈K Ak ∪A∗. An illustration of

G′ can be seen in Figure 5.2. Note, that arcs(i, i, k) are not present inAk and that
arcs(i, j, k) with i 6= j are present inA∗, so all arcs(i, j, k) ∈ A′ can be uniquely
indexed.

The resource consumptionτ rij of arcs(i, j) ∈ Ak is the same as in the original
graphA, hence we omit the indexk. The resource consumption of interconnecting
arcs(i, j) ∈ A∗ is τ rij = 0.

Let L be the upper bound on the length of each partial path, and let|C| be
the length of the combined path (the giant-tour). Now, exactlyK = ⌈|C|/L⌉
partial paths are needed to form the combined path, sinceL ⌈|C|/L⌉ ≥ |C| >
L (⌈|C|/L⌉ − 1). OnceK has been calculated, we can further reduce the path
length toL = ⌈|C|/K⌉.

With the length of a path defined as the number of customers on it, the problem
is now to find partial paths of length at mostL in K layers withL · K ≥ |C| >
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L · (K − 1), so that each partial pathp ending in nodei ∈ V is met by another
partial pathp′ starting ini. All partial paths are combined while not visiting any
customers more than once and satisfying all resource windows. A customeri ∈ C
is considered to be on a partial pathp if i is visited onp and is not the end node of
p.

Layer: 1

0

i1 i2

i3

2

0

i1 i2

i3

. . .

. . .

K

0

i1 i2

i3

Figure 5.2: Illustration ofG′ with |C| = 3, K = 3, andL = 1. Full-drawn lines
represent two arcs; one in each direction. Dashed lines are the interconnecting arcs
A∗.

5.3 The Vehicle Routing Problem

We present two models for the VRP problem defined in previous section. The
2-index model is most compact, while the 3-index model is better suited for de-
composition.

2-index formulation of the VRP In the following let cij be the cost of arc
(i, j) ∈ A, xij be the binary variable indicating the use of arc(i, j) ∈ A, and
T r
ij (the resource stamp) be the consumption of resourcer ∈ R at the beginning

of arc(i, j) ∈ A. Let δ+(i) andδ−(i) be the set of outgoing respectively ingoing
arcs of nodei ∈ V . Combining the two index model from Bard et al. [3] with
the constraints ensuring the time windows for the ATSP by Ascheuer et al. [1] a
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mathematical model can be formulated as follows:

min
∑

(i,j)∈A
cijxij (5.1)

s.t.
∑

(i,j)∈δ+(i)

xij = 1 ∀i ∈ C (5.2)

∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V (5.3)

∑

(j,i)∈δ−(i)

(T r
ji + τ rjixji) ≤

∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (5.4)

arixij ≤ T r
ij ≤ brixij ∀r ∈ R, ∀(i, j) ∈ A (5.5)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (5.6)

xij ∈ {0, 1} ∀(i, j) ∈ A (5.7)

The objective (5.1) sums up the cost of the used arcs. Constraints (5.2) ensure
that each customer is visited exactly once, and (5.3) are the flow conservation con-
straints. Constraints (5.4) and (5.5) ensure the resource windows are satisfied. It is
assumed that the bounds on the depot are always satisfied. Note, that nosub-tours
can be present since only one resource stamp per arc exists and the arcweights are
positive for all(i, j) ∈ A : i ∈ C.

For a one dimensional resource such as load the capacity constraints a stronger
lower bound of the LP relaxation can be obtained by replacing (5.4) to (5.6)with
x(δ+(S)) ≥ r(S), wherer(S) is a the minimum number of vehicles needed to
service the setS. All though this model can not be directly solved it is possible
to overcome this problem by only including the constraints that are violated. For
more details on how to separate the constraint and calculate the value ofr(S) the
reader is refered to Toth and Vigo [34].
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3-index formulation of the VRP Letxkij be the variable indicating the use of arc
(i, j, k) ∈ A′. Problem (5.1)–(5.7) is rewritten to:

min
∑

k∈K

∑

(i,j)∈A
cijx

k
ij (5.8)

s.t.
∑

k∈K

∑

(i,j)∈δ+(i)

xkij = 1 ∀i ∈ C

(5.9)
∑

(i,j)∈δ+(i)

xkij ≤ 1 ∀k ∈ K, ∀i ∈ C

(5.10)

∑

k∈K


xk−1

ii +
∑

(j,i)∈δ−(i)

xkji


 =

∑

k∈K


xkii +

∑

(i,j)∈δ+(i)

xkij


 ∀i ∈ V

(5.11)

xk−1
ii +

∑

(j,i)∈δ−(i)

xkji = xkii +
∑

(i,j)∈δ+(i)

xkij ∀k ∈ K, ∀i ∈ V

(5.12)
∑

k∈K

∑

i∈V
xkii = K (5.13)

∑

i∈C

∑

(i,j)∈A
xkij ≤ L ∀k ∈ K

(5.14)
∑

k∈K

∑

(j,i)∈δ−(i)

(
T rk
ji + τ rjix

k
ji

)
≤

∑

k∈K

∑

(i,j)∈δ+(i)

T rk
ij ∀r ∈ R, ∀i ∈ C

(5.15)
∑

(j,i)∈δ−(i)

(
T rk
ji + τ rjix

k
ji

)
≤

∑

(i,j)∈δ+(i)

T rk
ij ∀r ∈ R, ∀k ∈ K, ∀i ∈ C

(5.16)

ari
∑

k∈K
xkij ≤

∑

k∈K
T rk
ij ≤ bri

∑

k∈K
xkij ∀r ∈ R, ∀(i, j) ∈ A

(5.17)

arix
k
ij ≤ T rk

ij ≤ brix
k
ij ∀r ∈ R, ∀k ∈ K, ∀(i, j) ∈ A

(5.18)

T rk
ij ≥ 0 ∀r ∈ R, ∀k ∈ K, ∀(i, j) ∈ A

(5.19)

xkij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A

(5.20)
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The objective (5.8) sums up the cost of the used arcs. Constraints (5.9) ensure
that all customers are visited exactly once, while the redundant constraints(5.10)
ensure that no customer is visited more than once. Constraints (5.11) maintain flow
conservation between the original nodesV , and can be rewritten as

∑

k∈K

∑

(j,i)∈δ−(i)

xkji =
∑

k∈K

∑

(i,j)∈δ+(i)

xkij ∀i ∈ V

since
∑

k∈K xk−1
ii =

∑
k∈K xkii. Constraints (5.12) maintain flow conservation

within a layer. Constraint (5.13) ensures thatK partial paths are selected and
constraints (5.14) that the length of the partial path in each layer is at mostL.
Constraints (5.15) connect the resource variables on a global level and constraints
(5.16) connect the resource variables within each single layer. Note, that since
constraints (5.15) and (5.16) are omitted for the depot, it is not constrainedby
resources. Constraints (5.17) globally enforce the resource windowsand the re-
dundant constraints (5.18) enforce the resource windows within each layer.

5.4 Dantzig-Wolfe Decomposition

We use Dantzig-Wolfe decompostion of the 3-index formulation of the VRP, de-
fined in (5.8)–(5.20) to reach the following master and a pricing problem. In the
process of the decomposition theK identical pricing problems are combined into
a single pricing problem.

5.4.1 Master Problem

Let λp a binary variable indicating whether partial pathp is used. We use Dantzig-
Wolfe decomposition where the constraints (5.9), (5.11), (5.13), (5.15),and (5.17)
are kept in the master problem. Since the vehicles are identical, we can aggregate
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over the setsAk getting the following master problem (PP):

min
∑

p∈P
cpλp (5.21)

s.t.
∑

p∈P

∑

(i,j)∈δ+(i)

αp
ijλp = 1 ∀i ∈ C

(5.22)
∑

p∈P :ep=i

λp =
∑

p∈P :sp=i

λp ∀i ∈ V

(5.23)
∑

p∈P
λp = K (5.24)

∑

(j,i)∈δ−(i)


T r

ji +
∑

p∈P
τ rjiα

p
jiλp


 ≤

∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C

(5.25)

ari
∑

p∈P
αp
ijλp ≤ T r

ij ≤ bri
∑

p∈P
αp
ijλp ∀r ∈ R, ∀(i, j) ∈ A

(5.26)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A

(5.27)

λp ∈ {0, 1} ∀p ∈ P
(5.28)

In this formulation,αp
ij is the number of times arc(i, j) ∈ A is used on pathp ∈ P

andsp andep indicate the start respectively the end node of partial pathp ∈ P .
Constraints (5.22) ensure that each customer is visited exactly once. Constraints
(5.23) link the partial paths together by flow conservation. Constraint (5.24) is the
convexity constraint ensuring thatK partial paths are selected. Constraints (5.25)
and (5.26) enforce the resource windows.

Tightness of bounds: Before we turn our attention to the pricing problem we
prove the following theorems about the quality of the bounds obtained by the de-
composition.

Theorem 1. Let zLP be an LP-solution to(5.1)–(5.7) and let zPP be an LP-
solution to(5.21)–(5.28)thenzLP ≤ zPP for all instances of VRP.

Proof. zLP ≤ zPP since all solutions to (5.21)–(5.28) map to solutions to (5.1)–
(5.7).

Theorem 2. Let zPP as before be an LP-solution to(5.21)–(5.28), and zEP be
the LP-solution to the classical decomposition of VRP into an elementary routefor
each vehicle. Then instances exist wherezPP > zEP .
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Figure 5.3: Three customers with demand of 1 and vehicle capacityQ = 2. Dis-
tances are indicated on the edges. There are six feasible routes({0, 1, 0}, {0, 2, 0},
{0, 3, 0}, {0, 1, 2, 0}, {0, 1, 3, 0}, {0, 2, 3, 0}) having the costs(4, 2, 4, 3, 4, 3).
The LP solution is(0, 0, 0, 12 ,

1
2 ,

1
2) with objectivezEP = 5. Using the partial

path formulation with max path lengthL = 3 andK = 1 we find the optimal
solution({0, 1, 3, 0, 2, 0}) with objectivezPP = 6.

Proof. An instance withzPP > zEP can be constructed with three customers each
with a demand of 1 and vehicle capacityQ = 2. Using a max path length ofL = 3,
we findzPP = 6 while zEP = 5. (See Figure 5.3).

5.4.2 Pricing Problem

TheK pricing problems corresponding to the master problem (5.21)–(5.28) are de-
fined by constraints (5.10), (5.12), (5.14), (5.16), and (5.18) and can be formulated
as a single ESPPRC where the depot is allowed to be visited more than once. Let
s ande be a super source respectively a super target node. Arcs(s, i) and(i, e) for
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all i ∈ V are added toG with cost and resource consumption 0.

min
∑

(i,j)∈A
cijxij (5.29)

s.t.
∑

(s,i)∈δ+(s)

xsi = 1 (5.30)

∑

(i,e)∈δ−(e)

xie = 1 (5.31)

∑

(i,j)∈A
xij ≤ 1 ∀i ∈ C (5.32)

∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V (5.33)

∑

(i,j)∈A
τ r

′
ij xij ≤ L (5.34)

∑

(j,i)∈δ−(i)

(T r
ji + τ rjixji) ≤

∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (5.35)

arixij ≤ T r
ij ≤ brixij ∀r ∈ R, ∀(i, j) ∈ A (5.36)

xij ∈ {0, 1} ∀(i, j) ∈ A (5.37)

The objective (5.29) minimizes the reduced cost of a column in (PP). Constraints
(5.30) and (5.31) ensure that the path starts ins respectively ends ine. Constraints
(5.32) dictates that no node is visited more than once, thereby ensuring elementar-
ity. Constraints (5.33) conserve the flow. Constraint (5.34) ensures that the partial
path does not use more than the allowed amountL of the restricted resourcer′.
Constraints (5.35) and (5.36) ensure the resource windows are satisfied for all cus-
tomers. Note, since constraints (5.35) hold fori ∈ U (excluding the depot), a
resource is only restricted by its lower limitar0 for all r ∈ R each time a path
leaves the depot.

Let π (πi ≥ 0 : ∀i ∈ C) be the duals of (5.22) andπ0 = 0, let µ be the
duals of (5.23), letβ ≤ 0 be the dual of (5.24), letν (ν ≤ 0 : ∀i ∈ C) be the
duals of (5.25) andν0 = 0, and letω ≤ 0 andω ≥ 0 be the dual of (5.26). Let
AC = A \ (δ+(s)∪ δ−(e)), the cost of the arcs in this ESPPRC are then given as:

cij = cij − β +





cij − πi − τijνj −
∑

r∈R ariω
r
i +

∑
r∈R briω

r
i ∀(i, j) ∈ AC

µj ∀(s, j) ∈ δ+(s)
−µi ∀(i, e) ∈ δ−(e)

The pricing problem is now an to find an elementary shortest path froms to e.

Solving the pricing problem: ESPPRCs can be solved by various labeling al-
gorithms, see e.g. Desaulniers et al. [12], Irnich [20], Irnich and Desaulniers [21],
and Righini and Salani [30].
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Branching: Integrality can be obtained by branching on the original variables,
which can be accomplished by cuts in the master problem (see Vanderbeck [35]),
e.g., letXij be the set of partial paths that utilize arc(i, j) then the branch rule
xij = 0 ∨ xij = 1 can be expressed by the dichotomy:

∑

p∈Xij

λp = 0 ∨
∑

p∈Xij

λp = 1.

5.5 Bounding the Load Resource

The giant tour introduced in Section 5.1 can be decomposed into a number of
partial paths by bounding a resourcer′, e.g. the number of nodes, the time, or the
load. In this section we consider the latter. The load constraint is present inCVRP
and VRPTW and is a special type of resource constraints. IfQ is the maximal load
of a vehicle anddi : i ∈ C is the demand of the costumers, then the accumulated
demand on a route may not exceedQ. The goal is that equation (5.34) is expressed
on the form: ∑

(i,j)∈A
dixij ≤ L

whereL is a given threshold value for the load resource. This will potentially
lead to an easier pricing problem. For dynamic programming based algorithms the
complexity is dependent on the size ofL. In the length case we rounded up the
expression|C|/K to ensure feasibility. In the following we will discuss a similar
approach for bounding on the load resource.

Let the total demand of the customers beD =
∑

i∈C di. A lower bound on
the number of partial paths needed is:K = ⌈D/L⌉. However, we cannot just split
the giant tour intoK partial paths of capacityL since there is no guaranty that the
optimal giant tour can be split into partial paths of equal capacity.

Let the largest demand be defined asdmax = maxi∈C di, and assume that
L ≥ dmax. Then, we need to allow up todmax − 1 extra capacity in each partial
path, to compensate for possibly uneven splitting. This means that for a givenK we
findLub = ⌈D/K⌉+(dmax−1) as the upper bound on the resource consumption.

An alternative approach to increasingL to Lub is to allow an additional edge
exceedingL to be selected in the pricing problem. This may complicate the pricing
problem, though.

The remainder of this section addresses alternative strategies to avoid compli-
cating the pricing problem. One such alternative is to introduce the concept of
connector arcs. A connector arc is a single arc between two nodes whichcom-
bines two partial paths. For each layerk ∈ K and original arc(i, j) ∈ A there is
connector arc to the subsequent layer.

Figure 5.4 illustrates the idea of the connector arcs. The dashed lines fromnode
0 in layer1 orientated towards layer2 to nodei1, i2 andi3, illustrates the connec-
tors out of node0 in layer1. Similar nodesi1 in layer one will have connectors to
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Layer: 1

0

i1 i2

i3

2

0

i1 i2

i3

. . .

. . .

K

0

i1 i2

i3

Figure 5.4: Small subset of the connector arcs. Connector arcs from node 0 in
layer 1 to nodes in layer 2, and connector arcs from node 2 in layer 2 areshown as
dashed lines. Not all connector arcs are shown due to readability of the graph.

nodes0,i2,i3 in layer2, and likewise for nodesi2 andi3 in layer1 has connectors
to layer2. In layer 2 the dashed lines from nodei2 illustrates its connectors to
layer 3. Similare all other nodes in layer2 has connectors to layer3. In layer3
the dashed lines illustrates the final set of connectors, which are the last edges that
can be used in the system and they therefor point to the depot from all nodes. The
connector arcs plays the same role as the additional arc in the pricing problem sug-
gested above. They make it possible to obtain a path which exceedsL − 1 by the
demand of a single customer. By allowingK connector arcs it is therefore possible
to obtain a solution to the problem where all theK layers include one additional
node.

To model the connector arcs we introduce new variablesykij for all (i, j) ∈ A

and for allk ∈ K. These variables substitute the variablesxkii by connecting every
node(i, k) ∈ V k in each layerk ∈ K with the nodes(j, k+1) ∈ V k+1 : (i, j) ∈ A
in the subsequent layer. Furthermore, constraints (5.11) are modified to:

∑

k∈K

∑

(j,i)∈δ−(i)

(
xkji + ykji

)
=

∑

(i,j)∈δ+(i)

(
xkij + ykij

)
, ∀i ∈ V

This ensures the global flow by taking the flow of the connector arcs into account.
A similar substitution is made in constraint (5.12) and (5.13). The connector arcs
are also present in the resource constraints where they are added to any sum bound-
ing the resource variables. Constraint (5.15) is therefore changed to:

∑

k∈K

∑

(j,i)∈δ−(i)

(
T rk
ji + τ rji

(
xkji + ykji

))
≤

∑

k∈K

∑

(i,j)∈δ+(i)

T rk
ij , ∀r ∈ R, ∀i ∈ C

A similar addition is made for constraints (5.16), (5.17), and (5.18).
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When the model is decomposed into theK pricing problems each set of up
to K connector arcsyij : ykij , (i, j) ∈ A, k ∈ K becomes a single connector arc
connecting the paths ending in nodei with the path starting in nodej. Using the
aggregated connector arcs constraints (5.23) are substituted with:

∑

p∈P :ep=i

λp +
∑

j∈δ−(i)

yji =
∑

j∈δ+(i)

yij +
∑

p∈P :sp=i

λp ∀i ∈ V

5.6 Resource Limit Cuts

One of the key issues with the new partial path formulation is that in a fractional
solution a several routes may be exceeding the resources. The issue arises from the
combination of partial paths and connectors where each connector can contribute
(Make example) to an increase in the resource accumulation. The simplest form
of resource limit cuts are the infeasible path inequalities (IPEC). The cuts are for-
mulated in the original space as follows. Wlog. given a pathp = {0, 1, 2, ..., j, 0},
which violates some resourcer ∈ R the inequality:

x01 + xj0 +

j−1∑

i=1

xi,i+1 ≤ |p| − 2

is valid. A key issue with IPECs is that the longer a path becomes the closer to one
each edge on the path can be, while not violating the inequality. Kallehauge etal.
[24] propose several ways to lift IPECs, but the issue with the cut still remains.

5.7 Computational Results

In this section we present the computational results for the proposed partial path
model. We mainly focus on the theoretical strength of the model, and hence only
report bounds at the root node. The test is divided into a comparison withalgo-
rithms for the CVRP and for the VRPTW, respectively. We have run our model on
the the well-studied CVRP instances by Augerat et al. and Christofides andEilon
available at www.branchandcut.org. For the VRPTW we use the Solomon Type 1
and 2 instances with 100 customers.

For the CVRP instances we show how our bound compares to the Branch-and-
Cut bound obtained by adding the capacity cuts and the Branch-and-Cut-and-Price
bound obtained using the2-cyc-SPPRC as the pricing problem. Both bounds have
been reported by Fukasawa et al. [19]. For the VRPTW instances we compare our
bound to the Branch-and-Cut bound computed by Kallehauge et al. [24]and the
elementary bounds computed by Petersen et al. [29].

For the partial path model we add the capacity constraints using the separation
algorithm by Lysgaard [27] and do not include the time variables in the model.
For the CVRP instances the size of the partial pathsL are set to half the vehicle
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Instance BAC PAR 2-cyc OPT Instance BAC PAR 2-cyc OPT

A-n53-k7 996.6 996.3 1002.2 1010 B-n50-k7 740.0 741.0 741.0741
A-n54-k7 1130.7 1133.8 1150.3 1167 B-n50-k8 1279.2 1279.8 1291.8 1312
A-n55-k9 1055.9 1056.1 1066.4 1073 B-n51-k7 1024.6 1024.6 1025.9 1032
A-n60-k9 1316.5 1316.7 1341.6 1354 B-n52-k7 745.0 745.3 746.4 747
A-n61-k9 1004.8 1006.7 1018.8 1034 B-n56-k7 703.4 703.6 704.5 707
A-n62-k8 1244.1 1249.1 1273.2 1288 B-n57-k7 1148.6 1148.6 1150.9 1153
A-n63-k9 1572.2 1578.4 1603.5 1616 B-n57-k9 1586.7 1588.8 1589.2 1598
A-n63-k10 1262.2 1264.4 1294.2 1314 B-n63-k10 1478.9 1479.5 1484.2 1496
A-n64-k9 1340.1 1345.3 1378.8 1401 B-n64-k9 858.5 859.1 860.2 861
A-n65-k9 1151.1 1152.0 1166.6 1174 B-n66-k9 1295.2 1295.8 1303.6 1316
A-n69-k9 1108.9 1110.9 1138.7 1159 B-n67-k10 1023.8 1024.01026.4 1032
P-n50-k8 596.9 600.8 615.7 631 B-n68-k9 1256.8 1257.0 1261.6 1272
P-n55-k10 646.7 660.3 680.0 604 B-n78-k10 1202.3 1202.4 1212.6 1221
P-n55-k15 895.1 904.6 967.5 989 E-n51-k5 514.5 514.6 519.0 521
P-n60-k10 708.3 715.5 737.2 744 E-n76-k7 661.4 663.1 669.9 682
P-n60-k15 903.3 926.9 961.2 968 E-n76-k8 711.2 714.3 726.0 735
P-n65-k10 756.5 763.7 785.2 792 E-n76-k10 789.5 796.4 816.8830
P-n70-k10 786.9 791.8 813.4 827 E-n76-k14 948.1 964.2 1004.8 1021

Table 5.1: Lower bounds Results for CVRP

capacity. If there exist customers wheredi ≥ L− dmin they are removed from the
total sum beforeK is calculated. After calculation ofK, L is recalculated based
on the modified total sumQ′

t andK such thatK = ⌈Q′
t/L⌉. For the VRPTW

instances the capacity is varied between1
2 and 1

15 of the vehicle capacity.
—————————————————————————

5.7.1 Results for CVRP

In table 5.1 we compare the lower bound obtained by the partial path to the bounds
of Branch-and-Cut with capacity inequalities (BAC) and the Branch-and-Cut-and-
Price algorithm using two cycle elimination (2-cyc). On the A, B, and E instances
the bound of the partial path algorithm (PAR) is not much better than the boundof
the BAC algorithm and is far from the bound of the 2-cyc algorithm. For one single
instance A-n53-k7 the bound is worse. For the P instances the bound is a bit better
than the BAC bound but still much worse than the 2-cyc bound. In generalwe can
conclude that it does not appear as a good idea to pursue a Branch-and-Cut-and-
Price algorithm for CVRP based on the Partial Path relaxation idea.

—————————————————————————

5.7.2 Results for VRPTW

The results for the VRPTW are divided into two tables. For the Type 1 Solomon
instances we have not been able to find a Branch-and-Cut bound in the literature
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and therefore we only report the lower bound obtained by Branch-and-Cut-and-
Price with the ESPPRC as the pricing problem (ESPPRC). Furthermore, the value
of L can be chosen higher than for the Type 2 Solomon instances since the Type1
Solomon instances have much smaller vehicle capacity. For the Type 2 Solomon
instances the computed bounds for the partial path algorithm with a Branch-and-
Cut (BAC) bound are also compare.

Results for the Type 1 Solomon instances are reported in Table 5.2. We report
the lower bound found by the proposed algorithm for various capacity bounds,
f = Q/L. As can be seen the bound does not increase much whenf is changed
from 4 to 3. However, for most of the R and RC instances the bound changes a
bit when moving fromf = 3 to f = 2. In general, the best bound for the partial
path algorithm is far from the bound of the ESPPRC algorithm on the R and RC
instances.

In Table 5.3 we compare the obtained bounds for the Solomon Type 2 instances.
For the C instances the bound found by the PAR algorithm is almost the same as
the bound by BAC and ESPPRC. For both R and RC the bound found by the PAR
algorithm is often far from the bound found by the BAC algorithm’s, and even
further from the bound found by the ESPPRC algorithm’s. However, in thecase
of RC208, the best bound obtained by the PAR algorithm is better than the bound
obtained by the BAC algorithm. For the Type 2 Solomon instances a small increase
in the bound of the partial path algorithm is seen asL increases.
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ESPPRC PAR

Instance Opt. s = 2 s = 3 s = 4

R101 1637.7 1631.2 1624.0 1611.9 1611.9
R102 1466.6 1466.6 1094.4 1071.8 1071.8
R103 1208.7 1206.8 880.1 874.3 874.4
R104 971.5 956.9 812.3 812.0 812.1
R105 1355.3 1346.2 1204.0 1160.1 1159.0
R106 1234.6 1227.0 943.2 937.5 937.7
R107 1064.6 1053.3 829.9 830.0 829.8
R108 932.1 913.6 809.1 808.8 809.0
R109 1146.9 1134.3 884.5 864.1 864.0
R110 1068.0 1055.6 812.9 812.4 812.4
R111 1048.7 1034.8 822.2 822.1 821.9
R112 948.6 926.8 804.3 804.3 804.3

C101 827.3 827.3 827.3 827.3 827.3
C102 827.3 827.3 819.9 819.9 820.0
C103 826.3 826.3 819.9 819.9 820.0
C104 822.9 822.9 818.0 818.0 818.0
C105 827.3 827.3 827.3 827.3 827.3
C106 827.3 827.3 827.3 827.3 827.3
C107 827.3 827.3 827.3 827.3 827.3
C108 827.3 827.3 818.9 818.8 818.9
C109 827.3 827.3 817.8 817.8 817.8

RC101 1619.8 1584.1 1324.4 1286.4 1286.4
RC102 1457.8 1406.3 1030.2 1030.1 1030.1
RC103 1258.0 1225.6 979 978.8 978.9
RC104 1132.3 1101.9 968.8 968.5 968.7
RC105 1513.7 1472.0 1097.9 1092.1 1092.1
RC106 1401.2 1318.8 1036,2 1035.0 1034.7
RC107 1207.8 1183.4 973.8 973.6 973.8
RC108 1114.2 1073.5 964.1 964.0 963.6

Table 5.2: Lower bound results for the VRPTW for the Solomon type 1 instances.
s is the fraction of the original capacity of the vehicle, that isL = Q

s .
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ESPPRC BAC PAR

Instance Opt. s = 8 s = 10 s = 15

R201 1143.2 1140.3 1123.6 1055.0 1040.1 1028.2
R202 1029.6 1022.3 888.6 772.3 761.0 758.5
R203 870.8 867.0 748.1 666.3 665.6 665.6
R204 - - 661.9 645.0 645.0 645.0
R205 949.8 939.0 899.7 795.5 785.4 779.3
R206 875.9 866.9 783.6 690.1 685.1 684.7
R207 794.0 790.7 714.8 657.5 657.5 657.5
R208 - - 651.6 644.3 644.3 644.3
R209 854.8 841.5 785.2 693.1 686.3 684.9
R210 900.5 889.4 798.2 693.3 687.5 686.1
R211 - - 645.1 644.3 644.3 644.3

C201 589.1 589.1 589.1 589.1 589.1 589.1
C202 589.1 589.1 589.1 587.9 587.9 587.9
C203 588.7 588.7 584.4 581.7 581.7 581.7
C204 588.1 588.1 583.5 578.6 578.6 578.6
C205 586.4 586.4 586.4 582.7 582.2 582.2
C206 586.0 586.0 586.0 582.2 582.2 582.2
C207 585.8 585.8 585.6 584.5 584.5 584.5
C208 585.8 585.8 585.8 582.2 582.2 582.2

RC201 1261.8 1256.0 1249.2 1121.0 1104.8 1099.4
RC202 1092.3 1088.1 940.1 726.2 721.6 721.6
RC203 923.7 922.6 781.6 664.6 664.1 664.1
RC204 - - 692.7 653.1 653.1 653.1
RC205 1154.0 1147.7 1081.7 827.7 817.1 816.6
RC206 1051.1 1038.6 974.8 816.7 811.0 811.0
RC207 962.9 947.4 832.4 686.4 686.4 686.4
RC208 - - 647.7 651.7 651.7 651.7

Table 5.3: Lower bound results for the VRPTW for the Solomon type 2 instances.
s is the fraction of the original capacity of the vehicle, that isL = Q

s .
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5.8 Conclusion and Future Work

A new decomposition model of the VRP has been presented with the ESPPRC as
the pricing problem. The model makes it possible to balance the running time of the
pricing problem against the tightness of the lower bound. Due to the aggregation
of the model, LP relaxed bounds of (5.21)–(5.28) are better than the direct model
(5.1)–(5.7). Since (5.21)–(5.28) is a generalization of the traditional Dantzig-Wolfe
decomposition model with elementary routes as columns, the LP relaxed bounds
may be both weaker and stronger. It has been shown that the bound of the presented
LP relaxation is sometimes better than that of the classical decomposition of VRP
into an elementary route for each vehicle.

Future work: The quality of the bounds can be further improved by using special
purpose cutting planes, which this paper has not focused on. Furthermore, effective
cuts such as Subset Row-inequalities by Jepsen et al. [23] and Chvátal-Gomory
Rank-1 cuts (see Petersen et al. [29]) can be applied to the Set Partition master
problem to strengthen the bound.

More and better cuts have been added to the VRPTW Branch-and-Cut algo-
rithm used in this paper for comparison, but all of these cuts could also be added
to this model obtaining at least as good a bound.

Considering the approach of Baldacci et al. [2] where columns are enumerated
dependent on strong upper and lower bounds, it should be clear that the partial path
approach should contain fewer enumerated columns due to the smaller solution
space of the pricing problem. Combining the relatively strong bound with the
small solution space a powerful strategy should be obtained.
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Chapter 6 Partial Path Column Generation for the
Elementary Shortest Path Problem with a Capacity
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Abstract
This paper introduces a decomposition of the Elementary Shortest Path Prob-

lem with a Capacity Constraints(ESPPCC), where the path is combined by smaller
sub paths. We show computationals result by comparing different approaches for
the decomposition and compare the best of these with existing algorithms. We
show that the algorithm for many instances outperforms a bidirectional labeling
algorithm.

6.1 Introduction

A formal definition of the ESPPCC problem solved in this paper is as follows: We
are given a directedG(Vd ,A) with node setV = {o,v1, ..,d}, an arc setA and a
resource with a global upper boundW . The nodeso andd are refered to as the
origin and destination. For each arc(i, j) ∈ A,ci j is the cost of the arc and for each
nodei ∈ V , wi is the resource consumption of the node. A pathp is an ordered
vertex set which is given asV (p) and an ordered arc set given asA(p). A path is
feasible if∑(i)∈V (p) wi ≤W and it starts ino and ends ind. The objective is to find
the feasible pathp which minimizes the cost∑(i, j)∈A(P) ci j.

ESPPCC is a special case of the more general problem called ESPPRC which
may contain more than one resource and where resource can also be locally con-
strained. When negative cycles are allowed, the ESPPRC can be shown tobe NP-
complete by reduction from the longest path problem. Beasley and Christofides
[2] gave a mathematical formulation of the problem where each node is consid-
ered a resource. When the graph may contain negative cost cycles Feillet et al. [9]
introduced a labeling, Righini and Salani [14] proposed a bi-directionallabeling
algorithm and a Branch and Bound algorithm, using a relaxation where cycles are
allowed1 , Boland et al. [3] gave a label correcting algorithm and Baldacci et al.

1see Irnich and Villeneuve [11] for details on the relaxation
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[1] computed lower bounds on paths from a node in the graph to the destination
and used these to speed up a bi-directional labeling algorithm. The ESPPCC has a
structure similar to the profitable tour problem named by Dell’Amico et al. [7], a
problem that falls within the category of traveling salesman problems with profits
as classified by Feillet et al. [10].

For ESPPRC where the graph is assumed to contain no negative cost cycles,
known as the resource constraint shortest path problem (SPPRC), Beasley and
Christofides [2] gave a Branch and Bound algorithm based on Lagrangian dual
bounds, Dumitrescu and Boland [8] suggest improved prepossessing as well as
several algorithms and Carlyle et al. [5] propose a Lagrangian approach, where
paths with cost between the Lagrangian bounds and the current upper bound are
found using the k shortest path algorithm by Carlyle and Wood [4]

The main application of ESPPRC is as the pricing problem, when solving the
Vehicle Routing Problem through Branch and Cut and Price. Chabrier [6] and
Jepsen et al. [13] has done this successfully for VRPTW and Baldacciet al. [1] has
done it for CVRP.

Labeling algorithms has so far been used very successfully for ESPPRCprob-
lems especially when time windows are included as resources. However forin-
stances where the time windows are very large the state space becomes hugeand
labeling algorithms are no longer a good practical solution approach.

Motivated by the bi-directional labeling algorithm by Righini and Salani [14]
and the fact that branch and cut has been used quite successfully to solve the
ESPPRC when time window like resources are not included(see Jepsen etal. [12]),
we propose a Danzig-Wolfe decomposition approach based on a model where
small sub paths called partial paths are concatenated together to form the solution.
Since each of the sub paths are elementary the SR-inequalities for VRPTW intro-
duced by Jepsen et al. [13] can be used to improve the lower bound. Furthermore
any valid inequality to the ESPPRC can be used.

6.2 Bounded partial paths

The idea behind the following mathematical model and decomposition is that any
feasible pathp can be seen as a sequence ofK = {1, .., |K|} partial pathspov1, pv1v2, ...., pvkd .
Wherepi j is a partial path from nodei to nodej.

Each of the|K| partial paths can be seen as a path through the original graph.
This leads to a formulation of the ESPPRC where the graph is replicated|K| times
and arcs are added between the adjacent replications. We shall refer tothese repli-
cations as layers. To ensure a correct division of any feasible path, let wmax be
the maximal resource consumption. For a fixed number of partial paths|K|, the
maximal partial path lengthL is given as:

L =

⌈
W
|K|

⌉
+wmax−1
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The idea is to useL to bound the length of the partial paths, the ideal value would
be as close as possible toW

|K| . But since we need a fixed value it is necessary to add
the maximal resource consumption to ensure the feasibility.

Let δ+(S) = {(i, j)∈ A|i ∈ S} denote arcs out of the setS andδ−(S) = {(i, j)∈
A| j ∈ S} denote the in going arcs ofS. We shall useδ(i) instead ofδ({i}) for i ∈V .
The binary variablexi jk is 1 if arc(i, j)∈ A is used in thek’th layer and 0 otherwise.
The binary variablessik indicates if a partial path starts in nodei ∈V in layerk ∈ K
and the binary variablestik indicates if a partial path ends in nodei ∈V in layerk.
For ease of modelling we assume thatti|K|+1 = si0 = 0, ∀i ∈V . The mathematical
model for ESPPCC based on partial paths can be formulated as:

min ∑
k∈K

∑
(i, j)∈A

ci jxi jk (6.1)

s.t. ∑
(o, j)∈δ+(o)

xo j1 = 1 (6.2)

∑
(i,d)∈δ−(S)

xid|K| = 1 (6.3)

∑
k∈K

∑
(i, j)∈A

xi jk ≤ 1 ∀ v ∈V \{o,d} (6.4)

∑
k∈K

∑
(i, j)∈A

wixki j ≤W (6.5)

∑
k∈K

∑
(i, j)∈δ+(S)

xi jk ≥ ∑
k∈K

∑
(i, j)∈δ+(s)

xi jk S ⊆V,∀s ∈ S (6.6)

∑
i∈V

sik = 1 ∀k ∈ K (6.7)

tik−1 = sik ∀i ∈V,∀k ∈ K (6.8)

sok = ∑
(i, j)∈δ+(i)

xi j1 ∀k ∈ K (6.9)

∑
( j,i)∈δ−(i)

x jik = tdk ∀k ∈ K (6.10)

sik + ∑
( j,i)∈δ−(i)

x jik = tik + ∑
(i, j)∈δ+(i)

xi jk ∀i ∈V \{o,d},k ∈ K (6.11)

∑
(i, j)∈δ+(S)

xi jk ≥ ∑
(i, j)∈δ+(s)

xi jk ∀k ∈ K,S ⊆V,∀s ∈ S (6.12)

∑
(i, j)∈A

wixi jk ≤ L ∀k ∈ K (6.13)

xi jk ∈ {0,1} ∀(i, j) ∈ A,k ∈ K (6.14)

tik,sik ∈ {0,1} ∀ i ∈V,k ∈ K (6.15)

The objective (6.1) is to minimize the total cost of the path. Constraints (6.2), (6.3)
and (6.4) ensure that no node is visited more than once and that the path starts in
the source node in the first layer and finises in the target node in the final layer.
Constraint (6.5) is the resource bound and constraints (6.6) are the generalized
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subtour inequalities(GSEC) which prevents cycles in a solution. Constraints(6.7)
ensure that a partial path starts in each layer and constraints 6.8 ensure that if a
partial path ends in a node in the previous layer it starts in that node in the current
layer. Constraints (6.9) and (6.9) ensure that a partial path can only start in origin
and end in the destination. Constraints (6.11) are flow conservation constraints
for each of the layers, constraints (6.12) eliminate subtours within each layer and
constraints (6.13) are bounds on each of the partial paths. Finally the domains of
the variables are defined in constraints (6.14). It is worth noting that eventhough
it is enforced that|K| partial paths are used, it is possible to make an empty partial
path in a layer by settingtik = sik.

In the following we will make a Danzig-Wolfe reformulation of the mathemat-
ical model, where constraints 6.11 to 6.13 formK identical sub problems. This can
be rewritten to a single sub-problem where the goal is to find a resource constrained
shortest pathp between two arbitrary nodes in the graph. Letαp

i j = 1 if path p use
arc(i, j) and zero otherwise,βp

i = 1 if p starts in nodei andγp
i indicate if p ends in

nodei . The binary variableλp indicate if partial pathp is used andcp be the cost
of using the path. The master problem then becomes:

min ∑
p∈P

cpλp (6.16)

s.t. ∑
p∈P

∑
(o, j)∈δ+(o)

αp
o jλp = 1 (6.17)

∑
p∈P

∑
(i,d)∈δ−(S)

αp
idλp = 1 (6.18)

∑
p∈P

∑
(i, j)∈A

αp
i jλp ≤ 1 ∀ v ∈V \{o,d} (6.19)

∑
p∈P

∑
(i, j)∈δ+(S)

αp
i jλp ≥ ∑

p∈P
∑

(i, j)∈δ+(s)
αp

i jλp S ⊆V,∀s ∈ S (6.20)

∑
p∈P

∑
(i, j)∈A

wi jαp
i jλp ≤W (6.21)

∑
p∈P

λp ≤ |K| (6.22)

∑
p∈P

γp
i λp = ∑

p∈P

βp
i λp ∀i ∈V \{o,d} (6.23)

λp ∈ {0,1} ∀ p ∈ P (6.24)

With the exception of constraint 6.22 the constraints follow directly from a stan-
dard Danzig-Wolfe reformulation. The objective (6.16) minimizes the cost ofthe
selected partial paths. Constraints (6.17) and (6.18) ensure that the origin is left and
the destination is entered by a partial path. Constraints (6.19) ensure that the nodes
in the graph are visited at most once. Constraints (6.20) are the generalized sub-
tour elimination constraints and constraint (6.21) ensure that the global resource is
not exceeded. Constraints (6.22) are the convexity constraints which ensure that at
most|K| partial paths are selected. It is a less than or equal constraint to avoid the
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need of empty partial paths. Constraints (6.23) ensure that if a partial pathends in
a node different from the destination, an other partial path will start in thatnode.
Finally the domains of the variables are defined in (6.24). To use Branch-and-Cut-
and-Price the domains are relaxed to 0≤ λp ≤ 1∀p ∈ P and columns are generated
by solving a pricing problem.

Let πi be the|V | dual of constraints (6.17), (6.18) and (6.19),σ be the dual
of constraints (6.21) andρi be the|V | duals of constraints (6.23). To calculate the
reduced cost of a column in the master problem, we set the edge cost to:

ĉi j =
{

cid −πi − pid∀i ∈V \{o,d}ci j −πi −wiσ ∀i ∈V \{d}

Let xi j be the binary variable which defines if arc(i, j) ∈ A is used, the binary vari-
ablelsi indicate if the path starts in nodei ∈V and the binary variablelti indicate if
the path ends in nodei ∈V . The mathematical model for the pricing problem then
becomes:

min ∑
(i, j)∈A

ĉi jxi j + ∑
i∈V\{o,d}

(ρilsi −ρilti) (6.25)

∑
i∈V

lsi ≤ 1 (6.26)

∑
i∈V

lti ≤ 1 (6.27)

lso = ∑
(i, j)∈δ+(i)

xi j (6.28)

∑
( j,i)∈δ−(i)

x ji = td (6.29)

lsi + ∑
( j,i)∈δ−(i)

x ji = lti + ∑
(i, j)∈δ+(i)

xi j ∀i ∈V \{o,d} (6.30)

∑
(i, j)∈δ+(S)

xi j ≥ ∑
(i, j)∈δ+(s)

xi j S ⊆V,∀s ∈ S (6.31)

∑
(i, j)∈A

wixi j ≤ L (6.32)

xi j ∈ {0,1} ∀(i, j) ∈ A (6.33)

lsi, lti ∈ {0,1} ∀ i ∈V (6.34)

The objective of the pricing problem minimizes the cost of the selected partial
path. Constraints (6.26) to (6.29) ensure that only one starting and endingvariable
is used and that the a path may only start in the origin and end in the destination.
Constraints (6.30) to (6.31) ensure that the partial path is simple and connected.
Constraint (6.32) ensures that the consumption of the resource is no higher thanL.
Finally the domains are defined by constraints (6.33) .

A column has negative reduced cost if it is less than the dual variable of con-
straint 6.22.
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To solve the pricing problem we reformulate it to an ESPPRC. This is done by
substituting the variableslsi andlti with arcs from a fake source node and arcs to a
fake target node.

More formally we define a fake source node ¯s and a fake target nodēt. The fake
arc setĀ = {(s̄,v) : v ∈ V}∪{(v, s̄) : v ∈ V}. The pricing problem then becomes
solving an ESPPRC with a single resource in the graphḠ(V ∪V̄ ,A∪ Ā) where the
cost is ¯ci j = ĉi j(i, j) ∈ A andc̄i j = 0,(i, j) ∈ Ā

The lower bound can be improved using valid inequalities for the ESPPRC
polytope see Chapter 4 for details. Valid inequalities for the master model such
as the SR-inequalities by Jepsen et al. [13] and Strong Capacity Constraintsby
Baldacci et al. [1] can also be adapted.

6.2.1 Using Length as a Resource

Since it is possible to determine an upper bound on the length on a path, we canuse
this to make an alternative division of a path. LetWL denote the maximal length of
any feasible path. Then any feasible path can be divided into|K| segments with at

mostL =
⌈

WL
|K|

⌉
nodes in each segment.

The lower bound can be improved by imposing a minimum length on each of
the partial paths. LetLmin be the minimum length of a partial path. If 2Lmin−1= L
any feasible solution with length greater thanLmin can be constructed. Solution
with a length less thanLmin can be found using standard solution techniques for
solving the ESPPRC.

6.3 Implementation

We have implemented the bidirectional labeling algorithm by Righini and Salani
[14]. When we impose a lower bound on the length of the partial path we only
use dominance when the labels have equal length. In the case where the capacity
resource is used, there may exist nodesi ∈ V \ {o,d}, wherewi + w j ≥ L∀ j ∈
V \{o,d, i} in this case we add the element as a partial path a priory.

The Branch-Cut-And-Price algorithm is implemented in the BCP project from
coin-or.org. We use CLP as our LP solver and we separate the GSECs solving a
minimum cut problem(see Wolsey [15]) for details. The SR inequalities are sepa-
rated using the algorithm proposed by Jepsen et al. [13], either the firstor the last
node on a partial path is not considered part of the SR-cut. Branching isdone on a
single arc or all arcs out of a node and is added as a cut in the master model.The
constraints in the original space are:

∑
k∈K

∑
(i, j)∈δ+(i)

xi jk = 0 ∑
k∈K

∑
(i, j)∈δ+(i)

xi jk = 1 i ∈V (6.35)

∑
k∈K

xi jk = 0 ∑
k∈K

xi jk = 1 (i, j) ∈ A (6.36)
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The decomposed version of the branches are:

∑
p∈P

∑
(i, j)∈δ+(i)

αp
i jλp = 0 ∑

p∈P
∑

(i, j)∈δ+(i)
αp

i jλp i ∈V (6.37)

∑
p∈P

αp
i jλp = 0 ∑

p∈P

αp
i jλp = 1 (i, j) ∈ A (6.38)

6.4 Computational studies

Based on a column generation algorithm for CVRP, some instances for the ESPPRC
were generated based on CVRP instances from www.branchandcut.org. For the
general model we have tested several settings on several instances with20-30 nodes
and have based on these chosen some settings to use on larger instances.

For the instances generated we have bounded the partial path using both length
and capacity. When using length we have chosen to restrict the maximal lowerlimit
to 3 and the maximal upper limit to 5. For the capacity we split the path in pieces
of at most a tenth of the total capacity, finally we included the SR inequalities for
the different settings.

We have chosen to show the result for a single instance which was quit repre-
sentative for the instances we benchmarked on. Furthermore the instancehave the
characteristics we are targeting to solve. The instance has 30 nodes, the maximal
feasible path length is 23 and the capacity resource is 4500.

In table 6.1 we have compared some different settings for capacity and length.
Lmin is the minimal value of the partial path,Lmax is the maximal value of the partial
path. RB is the root bound andT is the time without SR inequalities.RBSR andTSR

is the root bound and time when SR inequalities is included.

Instance Bounded on Lmin Lmax RB T RBSR TSR

E-n30-k3-20 Capacity 0 2125 -192.350 311.895 -192.350 386.072
E-n30-k3-20 Capacity 0 1700 -192.350 228.958 -192.350 203.585
E-n30-k3-20 Capacity 0 1300 -192.320 49.579 -192.320 143.685
E-n30-k3-20 Capacity 0 1193 -192.350 31.810 -192.350 128.412
E-n30-k3-20 Capacity 0 1113 -192.350 23.653 -192.350 120.776
E-n30-k3-20 Capacity 0 1000 -192.350 39.098 -192.350 171.571
E-n30-k3-20 Capacity 0 900 -192.350 20.173 -192.350 118.271
E-n30-k3-20 Length 0 3 -192.350 20.361 -192.350 19.893
E-n30-k3-20 Length 0 4 -192.350 44.407 -192.350 50.455
E-n30-k3-20 Length 0 5 -192.350 134.080 -192.350 99.106
E-n30-k3-20 Length 0 6 -192.350 255.236 -192.350 269.989
E-n30-k3-20 Length 2 3 -192.350 75.873 -192.350 109.283
E-n30-k3-20 Length 2 4 -192.350 102.402 -192.350 113.751
E-n30-k3-20 Length 3 5 -192.350 163.822 -192.320 431.763

Table 6.1: Comparing different schemes
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From the result in table 6.1 it is clear that the longer the path the poorer the
algorithms perform. The main reason for this is that no matter how long the path
becomes there is simply no gain in the quality of the relaxation. The value of the
root bound is almost the same as the one for branch and cut, which is−192352.787.
When including the SR inequalities only a few of the setting results in a improve-
ment of the running time. When a lower bound on the path length is included the
running time increases in all cases and the root bound is still the same.

In table 6.2 we have shown the solution times for the two best general partial
paths algorithms.Tlen is the running time of the best length algorithm andTcap

is the running time of the best with capacity. The values are compared to the bi-
directional labeling algorithm(Tlabel) and the Branch and Cut algorithm(TBAC) by
Jepsen et al. [12].

Instance TBAC Tlabel Tlen Tcap

E-n30-k3-20 0.44 > 1800 19.893 20.173
B-n31-k5-17 2.07 0.22 124.492 24.178
A-n32-k5-120 0.51 0.28 32.714 7.892
A-n33-k5-31 0.45 0.01 121.440 14.477
B-n34-k5-17 2.21 72.79 290.022 32.554
B-n45-k6-54 4.63 90.3 286.978 109.011
P-n45-k5-150 0.58 0.71 19.753 15.457
P-n50-k8-19 0.94 > 1800 188.008 25.350
E-n51-k5-29 2.46 > 1800 277.645 287.746

Table 6.2: Characteristics of the benchmark instances

The main conclusion when comparing the results in table 6.2 is that the branch
and cut algorithm outperforms the other algorithms. The second observation is
that the partial path algorithms is able to solve all instances within 30 minutes
which labeling is not. It is also worth noting that the algorithm which bounds
using capacity in almost all cases is considerable better than the one that bounds
using length. Finally we conclude that the general partial path algorithms cannot
compete with the Branch And Cut algorithm.

6.5 Conclusion and future research

In this conference paper we have introduced an alternative formulation of ESPPRC
and shown how it can be solved using the Danzig-Wolfe decomposition principle.
We have shown that a early prototype is better than a standard labeling algorithm,
but we have not been able to show that the bound obtained is better than a standard
Branch and Cut algorithm.
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Chapter 7

Conclusion

The thesis has studied two exact methods Branch-and-Cut and Branch-and-
Cut-and-Price in the context of the vehicle routing problem. The study has
to this date led to one accepted journal paper, one conditionally accepted
journal paper and three accepted conference papers. Two of the three con-
ference papers have been extended and further work will be conducted on
one of these. Furthermore the work carried out during the thesis has led
to two full papers that are submitted for publication. Finally the thesis
contains a technical report.

7.1 Summary

The main contributions of the thesis are:

• Using known solutions approaches on new problems

– The adaption of the two index formulation from the Capacitated
Location Routing Problem to the Two Echelon Vehicle Routing
Problem.

– The adaption of the Multistar inequalities to both the Two Eche-
lon Vehicle Routing Problem and the Capacitated Profitable Tour
Problem.

– The adaption and proof of validity of cuts from many polytopes
to the Capacitated Profitable Tour Problem

• Improvement of existing methods:

– The development of sr-inequalities for the Branch-and-Cut-and-
Price method for the Vehicle Routing Problem with Time Win-
dows.

– The adaption and further development of the Branch-and-Cut
algorithms for the Capacitated Profitable Tour Problem. In par-
ticular the introduction of the rounded multistar inequalities.
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• Development of new solution methods:

– The development of the heuristic separation routine for the Knap-
sack Large Multistar inequalities in the context of the Capaci-
tated Profitable Tour Problem.

– The development of the Partial Path Solution framework for
the Capacitated Vehicle Routing Problem, The Vehicle Routing
Problem with Time Windows and the Elementary Resource Con-
strained Shortest Path Problem.

The results of each of the chapters in Part can be summarized as: I

Chapter 2: Subset-Row Inequalities Applied to the Vehicle Rout-
ing Problem with Time Windows The paper presented a bcp algo-
rithm for the Vehicle Routing Problem with Time Windows which was able
to solve 8 previously unsolved instances from the Solomon benchmarks for
this problem. The two core features of the new bcp algorithm was the
addition of the sr inequalities in the master problem and the handling of
these in the pricing problem. the SR-inequalities have later been used by
Desaulniers et al. [22] for the vrptwand [2] for cvrp and vrptw.

Chapter 3: A Branch-and-Cut Algorithm for the Symmetric Two-
echelon Capacitated Vehicle Routing Problem The paper presented
a bac algorithm for the Two-Echelon Capacitated Vehicle Routing Problem,
the paper introduces a two index model that is used to compute lower bounds
and the computational results show that the method outperforms previous
solution methods.

Chapter 4: A Branch-and-Cut Algorithm for the Capacitated
Profitable Tour Problem The paper presented a bac algorithm for
the Capacitated Profitable Tour Problem. The paper introduces several
new valid inequalities and include proof of the validity for all the adapted
inequalities. The computational results show that the method can solve in-
stances with up to 800 nodes to optimality and that the method outperform
existing algorithms for large instances.

Chapter 5: Partial Path Column Generation for the Vehicle Rout-
ing Problem An new bcp based solution approach for the cvrp and
vrptw Problem and . In theory the new bcp algorithm seemed promising,
but unfortunately the computational results indicate that this approach has
some serious issues.
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Chapter 6 Partial Path Column Generation for the Elementary
Shortest Path Problem with a Capacity Constraints The paper
used the Partial Path Column Generation approach to solve the Elementary
Shortest Path Problem with a Capacity Constraint( This problem is very
similar to Capacitated Profitable Tour Problem). The computational results
indicated that a small improvement in the lower bounds could be obtained,
but that the running times could not compete with the running times of the
bac algorithm developed in Chapter 4.

7.2 Future Research

In this section some future research ideas for each of the chapters in this
thesis will be presented.

Chapter 2 Subset-Row Inequalities Applied to the Vehicle Routing
Problem with Time Windows The sr-inequalities are already widely
used in many routing problems and some extensions of these have been
presented in the literature. One area where future research could be directed
is within the solution of the pricing problem. As mentioned in section 1.1.3
modern espprc algorithm use bounding functions. One drawback of the
current bounding methods is that they do not incorporate the penalty from
the sr inequalities. The perspective of a better integration of the dual
penalties associated with the sr inequalities are that the solution of the
pricing problem would be faster which could lead to the solution of bigger
vrp instances.

Chapter 3 A Branch-and-Cut Algorithm for the Symmetric Two-
echelon Capacitated Vehicle Routing Problem In the context of the
Capacitated Location Routing Problem there has been suggested many new
cutting planes. Many of these has the potential to be adapted to the 2ecvrp.
Furthermore it would be interesting to integrate the model with a column
generation approach in a bcp algorithm.

Chapter 4 A Branch-and-Cut Algorithm for the Capacitated Prof-
itable Tour Problem The algorithm used to solve the Capacitated Prof-
itable Tour Problem could be used to solve the pricing problem of cvrp. To
do this it is necessary to handle the constraints inferred by the sr-inequalities
and the strong capacity constraints. It would furthermore be necessary to
develop valid inequality based on the lower bound on the capacity, since
these are naturally imposed when solving the problem in a column genera-
tion context.
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Chapter 5 Partial Path Column Generation for the Vehicle Rout-
ing Problem The huge issue with the partial path solution approach for
cvrp is that for each partial path an additional edge was allowed to ensure
feasibility. An idea could therefore be to transfer the solution method to
a problem where this issue can be avoided. Such a problem could be the
Vehicle Routing Problem with Backhauls, where the edge connecting the
Linehaul and Backhaul does not have any capacity.

Chapter 6 Partial Path Column Generation for the Elementary
Shortest Path Problem with a Capacity Constraints For the new
bcp algorithm for solving the esppcc an issues is that branching was difficult
and the solution of the LPs are slow. An idea could be to solve the mas-
ter problem using an subgradient algorithm and to enumerate the columns
needed when the root node is solved. Furthermore it is natural to use all
the cuts developed in Chapter 4.

7.3 Final Remarks

Some of the work of this thesis has already been used by other authors.
This is mainly the work of the sr-inequalities which has been integrated
into the bcp algorithms of Desaulniers et al. [22] and Baldacci et al. [2].
In both cases the results are better than the ones presented in chapter 2.
Common for both of the solution methods the sr-inequalities were included
and contributed to the success of the algorithms. Whether or not more of
the ideas in this thesis will be used only time will tell.

As a researcher within the field of cvrp and vrptw I started almost
a decade ago as an undergraduate student, back then one of the Solomon-
instances with the 25 customers for vrptw was still unsolved and many
variants of the Vehicle Routing Problem were too complex to solve to op-
timality. Today there only exist one unsolved Solomon instance with 100
customers, optimal solution approaches for many variants of the Vehicle
Routing Problem exist and it is not impossible that within the next decade
only one 1000 customer instance of the Gehring & Homberger instances for
vrptw will remain unsolved. To achieve this goal I believe we will need to
invent new cutting planes based on the master formulation that possesses
some properties that make it suitable to incorporate in the bounding meth-
ods of the pricing problem. I also strongly believe that the idea of cutting on
a given transaction in the full capacity state space of the cvrp(This could
also be done for vrptw) which has been presented at various conference by
Marcus Poggi de Aragão and Eduardo Uchoa will find its way into the new
algorithms. Finally someone will get a new brilliant idea that none of us
had thought about and it will push the algorithms to the next level.
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Abstract

We consider an important generalization of the vehicle routing problem with time windows
in which a fixed cost must be paid for accessing a set of edges. This fixed cost could reflect
payment for toll roads, investment in new facilities, the need for certifications and other costly
investments. The certifications and contributions impose a cost for the company while they
also give unlimited usage of a set of roads to all vehicles belonging to the company. Different
versions for defining the edge sets are discussed and formulated. A MIP-formulation of the
problem is presented, and a solution method based on branch-and-price-and-cut is applied to
the problem. The computational results show that instances with up to 50 customers can be
solved in reasonable time, and that the branch-cut-and-price algorithm generally outperforms
CPLEX. It also seems that instances get more difficult when the penalized edge sets form a
spanning tree, compared to when they are randomly scattered.

Figure A.1: Main road net in Switzerland. To access all the red edges, a vignette needs to be
paid. A transportation company may choose to avoid the toll roads and only use the ordinary
highways
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A.1 Introduction

In certain real-life situations the cost of a connection does not entirely depend on the cost of
the individual links (edges). Frequently, in real life, a fee must be paid by the company for
allowing its vehicle to access roads, areas, bridges or other. Such a fee may in some cases only
be required to be paid once by the company and is in such cases independent of the number
of vehicles accessing any edge in the set. Companies routing in an area with many ferry
connections may pay to access a set of ferries owned by a company at a monthly rate or at a
reduced price. Here, it is important to determine which ferry companies it is most profitable
to use. The same applies to Toll roads and bridges, where some countries charge a company
based tax for accessing all freeways in the country (see Figure A.1). In war zones or areas
of unrest a company may need to get a certification allowing its vehicles to travel on certain
protected roads or to enter certain protected zones. Even though in some cases the access is
to be paid only for the vehicle accessing the edge set the company will often wish to sign up
all its vehicles for robustness and easy administration purposes. Yet another situation where
a set of edges can be accessed at a fixed cost is in cases where there is an option of investing
in a facility. In such problems, referred to as location-routing problems, there is often a fixed
charge connected to a facility and location. Nagy and Salhi [19] give an extensive survey of
location-routing problems covering many different routing problems combined with facility
location problems. Belenguer et al. [2] recently presented a branch-and-cut method for the
location routing problem. In all of the mentioned cases there is a fixed charge for accessing
a set of edges. Apart from considering multiple depots, the problem in [2] can be seen as a
special case of the model presented in this paper.

The problem of minimizing the overall cost when planning routes that have a cost asso-
ciated with sets of edges is in this paper investigated as a generalization of the well known
problem of routing vehicles with capacity and service time window restrictions (VRPTW).

In the version of the VRPTW considered here the edges of the graph belong to different
sets. Once the cost of accessing the set is paid all vehicles can access the edges in the set.
However, there might still be a price associated with each of the edges used. Note that the
price for accessing the set is paid at most once. This cost has an influence on all the routes
since once the access price is paid the edges can be accessed by another vehicle without paying
the access price again. This makes the cost of the different vehicle routes interdependent.
We will denote the considered problem an edge set vehicle routing problem with time windows
(ESVRPTW). In Figure A.2 an example of a network with the edges partitioned into different
sets is shown. Figure A.2 a) shows the entire set of edges, and b) and c) show accessible edges
when paying for different combinations of two edge set. Clearly the ESVRPTW is NP-hard
as it is a generalization of the VRPTW problem. We will in this paper present a model for
the problem and a Danzig-Wolfe decomposition similar to the classical decomposition of the
VRPTW.

The paper is organized as follows. In the following section we give a rough overview of lit-
erature for the vehicle routing problem with time windows and describe relevant results that
can be used for solving the ESVRPTW. Section A.3 presents a MIP model for the ESVRPTW
and in Section A.4 the decomposition of the problem into a Master and subproblem is de-
scribed. Moreover the solution method and valid inequalities are described. In Section A.5
various extensions of the ESVRPTW model are discussed. In Section A.6 the test instances
are described. Section A.7 reports computational results, and finally the paper is concluded
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Figure A.2: The graph of a) all three edge sets b) two edge sets and c) another two edge sets

in Section A.8.

A.2 Literature review

To the best of our knowledge, the problem of routing vehicles with an edge set cost has
not yet been investigated in the published literature. However, the underlying problem, the
vehicle routing problem with time windows (VRPTW), has been extensively studied. The
vehicle routing problem was introduced in 1959 by Danzig and Ramser in [6] as the truck
dispatching problem. Many different exact and heuristic methods have been applied to the
problem. The basis of the research in this paper is in the exact methods. In 1981 Christofides
et al. [4] presented a decomposition generating q-routes for the capacitated VRP. One of the
first exact methods for the VRPTW was by Kolen et al. [15] using the ideas presented in [4]
and applying them to the VRPTW. This was later included in a branch-and-price method by
Desrochers et al [9].

In 1987 a benchmark suite was presented for the VRPTW [21] making it easy to compare
solution methods and the research society has been enticed by the problem of solving these
tests. Recently there has been a strong development in solution times and problem sizes
solved to optimality. In 1999 Kohl et al. [14] and Cook and Rich [5] both applied branch-
cut-and-price to the VRPTW.

Some of the most recent developments in solving the VRPTW are described in [1], [8],[11],
and [13]. Both Jepsen et al. [11] and Baldacci et al. [1] use the valid cuts suggested by
Lysgaard et al. [18] to separate candidate sets for branching. Even though the cuts in [18]
are implemented for the capacitated vehicle routing problem (CVRP) they may be used for
the VRPTW, as the solutions to the VRPTW problem are a subset of the solution to the
corresponding CVRP. Jepsen et al. [11] implemented a branch cut and price algorithm with
a label-setting bi-directional algorithm for elementary shortest paths developed by Righini
and Salani [20]. Jepsen et al. added the subset-row (SR) inequalities on the master problem
variables and modified the subproblem to include the reduced cost from these inequalities.
These SR inequalities are included by both Desaulniers et al. [8] and Baldacci et al. [1] in
their algorithms.

Desaulniers et al. in 2008 [8] further improved the results by using Tabu search for
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finding improving routes in the subproblem and generalized the k-path inequalities originally
formulated by Kohl et al. [14].

Baldacci et al. [1] introduce an enumuration framework. The master problem is solved
using a subgradient optimization algorithm and enumaration is done by solving an ESPPRC
where standard dominance is limited. To improve the dominance a lower bound for the
completion of each label is found using the ng-routes.

In this paper we formulate the ESVRPTW and solve it using the solution method used
by Jepsen et al. [11] on the VRPTW as this method can be easily adapted to solve the
ESVRPTW.

A.3 The Model

The mathematical model is based on the model presented in [11]. Given the following sets:

C The set of customers

R The set of edge groups

V The set vertices representing the customers in C and the depot defined as 0

A The set of arcs (i, j) in V and Ar is the set of arcs (i, j) belonging to the group r ∈ R

K The set of vehicles

The variables are defined as:

xvij Indicator variable indicating if the arc (i, j) is used by vehicle v ∈ K

yr Indicator variable which is one if an edge from group r ∈ R is used and zero otherwise

tvi The time vehicle v visits i ∈ V .

The parameters are defined as:

D The capacity of the vehicles

di The demand which must be delivered to vertex i ∈ V . The demand at the depot is zero

ai The availability time for customer i ∈ C

bi The required completion time for customer i ∈ C

cij The cost of using an arc (i, j) ∈ A

cr The cost of accessing the arcs in group r ∈ R

Since the problem is a generalization of the VRPTW the model presented here for the
ESVRPTW is the standard VRPTW model presented by Kallehauge in the survey [12], with
an additional set of constraints used to formulate the edge set costs. The cost of the edge
sets are inserted into the objective. In the presented model the assumption is that each
edge belongs to exactly one set, however, alternatives to this assumption are discussed in
Section A.5.

Min:
∑

v∈K

∑

(i,j)∈A
cijx

v
ij +

∑

r∈R
cryr (A.1)
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s.t. yr −
∑

v∈K
xvij ≥ 0 ∀r ∈ R, (i, j) ∈ Ar (A.2)

∑

v∈K

∑

(i,j)∈A
xvij = 1 ∀i ∈ C (A.3)

∑

i,∈C
xvi0 =

∑

i∈C
xv0i ∀v ∈ K (A.4)

∑

(ji)∈A
xvji −

∑

(ij)∈A
xvij = 0 ∀i ∈ C, ∀v ∈ K (A.5)

∑

(ij)∈A
dix

v
ij ≤ D ∀v ∈ K (A.6)

ai ≤ tvi ≤ bi ∀ i ∈ V, v ∈ K (A.7)

(tvi + θij)x
v
ij − tvj ≤ 0 ∀ v ∈ K, (i, j) ∈ A (A.8)

xvij ∈ {0, 1} ∀ (i, j) ∈ A, v ∈ K (A.9)

yr ∈ {0, 1} ∀ r ∈ R (A.10)

tvi ∈ Z+
0 ∀ i ∈ V, v ∈ K (A.11)

The objective (A.1) is the sum of the cost on the edges accessed and the sum of the cost
of accessing the sets of the edges accessed. The constraints (A.2) ensure that if an edge
in a set is used then the cost of accessing the set is paid. Note that the integrality of the
xvij variables implies integral yr variables. Constraints (A.3) ensure that every customer is
visited. Constraints (A.4) ensure that all vehicles start and end their journey at the depot.
Constraints (A.5) ensure that vehicles arriving at a customer also leaves the same customer.
Constraints (A.6) ensure that the capacity of a vehicle is not exceeded. Constraints (A.7)
ensure that customers are visited in their respective time window. Finally, constraints (A.8)
ensure that the vehicles travel a connected path. The variables xvij and yr are in (A.9) and
(A.10) defined to be binary and the variable tvi is in (A.11) defined to be a positive integer.

A.3.1 Tightening of the edge set constraints

In the ESVRPTW each costumer must be visited exactly once. This requirement is ensured by
constraints (A.3) and can be used to tighten the constraints in (A.2). Since each costumer is
visited once, we know that if several edges belonging to the same set leave the same costumer
then at most one of them can be used, and if one of them is used then the cost of the set
must be accounted for.

f

g

i h

j

Figure A.3: Bound on outgoing edges
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From this observation we can construct the constraints:

∑

v∈K

∑

(i,j)∈Ar

xvij ≤ yr ∀i ∈ C, ∀r ∈ R (A.12)

In this case the integrality of the x variables again imposes the integrality of the y variables
and the number of constraints in (A.12) is |C|. Note that constraints (A.12) do not apply
to the depot as more than one edge belonging to a group may leave the depot. Therefore
the constraints of type (A.12) cannot entirely replace the constraints (A.2). However, by
formulating a new set of constraints (see (A.13)) similar to the constraints (A.12) for edges
entering every costumer then the constraints (A.2) can be replaced by 2|C| constraints.

This means that the constraints (A.2) in the model can be replaced by the constraints:

∑

v∈K

∑

(j,i)∈Ar

xvji ≤ yr ∀i ∈ C, ∀r ∈ R (A.13)

∑

v∈K

∑

(i,j)∈Ar

xvij ≤ yr ∀i ∈ C, ∀r ∈ R (A.14)

These tighter constraints will in the following replace constraints (A.2) in the model.

A.4 Solution method

The branch-cut-and-price method has with success been applied to the VRPTW problem
and the best results for finding exact solutions to the problem have been produced using
this method (see Jepsen et al. [11], Desaulniers et al. [8] and Baldacci et al. [1]). Since the
problem ESVRPTW is a generalization of the VRPTW the solution methods for the VRPTW
may successfully be applied to the ESVRPTW. Therefore we will apply the BCP algorithm
to the VRPTW using cuts for the original formulation of the VRPTW presented by Fukasawa
et al. in [10] and by Lysgaard et al. [18] for the CVRP. This corresponds to the algorithm
developed by Jepsen et al. [11] for the VRPTW problem. Jepsen et al. also introduced the
Subset Row valid inequalities into the master problem formulation. We will later argue that
these cuts can with the same benefits be applied to the ESVRPTW.

The ESVRPTW can be decomposed into a master and pricing problem using the standard
VRPTW Dantzig-Wolfe decomposition where, the pricing problem is to find a elementary
shortest path problem with resource constraints.

A.4.1 Master Problem

The master problem is similar to the standard VRPTW decomposition master problem pre-
sented by Desrochers et al. [9]. However, the cost of the edge sets are kept in the master
problem and these costs will be reflected in the dual variables from the solution of the linearly
relaxed master problem.

Min:
∑

p∈P

∑

(i,j)∈A
cijαijpλp +

∑

r∈R
cryr (A.15)
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s.t.
∑

p∈P

∑

(j,i)∈Ar

αjipλp ≤ yr ∀i ∈ C, ∀r ∈ R (A.16)

∑

p∈P

∑

(i,j)∈Ar

αijpλp ≤ yr ∀i ∈ C, ∀r ∈ R (A.17)

∑

p∈P

∑

(j,i)∈A
αjipλp = 1 ∀i ∈ C (A.18)

λp ∈ {0, 1} ∀ p ∈ P (A.19)

yr ∈ {0, 1} ∀ r ∈ R (A.20)

The set P contains routes satisfying the time window constraints and the capacity con-
straints. When λp is one then route p ∈ P is used and λp is zero otherwise. The constant
αijp is one if the edge (i, j) ∈ A is used by the route p and zero otherwise. Constraints (A.16)
and (A.17) corresponds to the constraints (A.13) and (A.14) which ensure that access to the
edges used is paid once if an edge is used in one of the selected routes. Constraints (A.18)
ensure that every customer is visited exactly once by the set of routes selected. The master
problem can be recognized as a set partitioning problem with side constraints. It is important
to note that the constraints (A.16) and (A.17) do not change the domain of valid solutions
but only affect the value of the solutions.

A.4.2 Sub problem

The linear relaxation of the master problem can be solved through delayed column generation.
The pricing problem is the elementary shortest path problem with resource constraints. Let
φ′
ir ∈ R be the dual variables of constraints (A.16) and let φir ∈ R be the dual variables of

constraints (A.17). Let πj ∈ R be the dual variables of constraint (A.18) and let π0 = 0,
φ′
0r = 0 and φ0r = 0. Then, the reduced cost for a route in the pricing problem becomes:

c̄p =
∑

(i,j)∈A
cijαijp −

∑

(i,j)∈A
πjαijp −

∑

r∈R

∑

(j,i)∈Ar

φ′
irαjip −

∑

r∈R

∑

(i,j)∈Ar

φirαijp (A.21)

=
∑

(i,j)∈A
(cij − πj)αijp −

∑

r∈R

∑

(i,j)∈Ar

(φir + φ′
jr)αijp (A.22)

This can be transformed to the elementary shortest path problem with resource constraints
(ESPPRC) where each edge (i, j) has the cost c̄ij = cij − πj −

∑
{r|(i,j)∈Ar}(φir + φ′

jr). The
resource constraints included in the elementary shortest path problem are the demand picked
up along the route and the time accumulated along the route. The demand of the customers
visited by the route must be less than the capacity and the customers must be visited within
their time window. The ESPPRC pricing problem can be solved by a label-setting bidirec-
tional shortest path algorithm developed by Righini and Salani [20]. The domination criteria
presented by Desaulniers et al. [7] for removing all labels which are not efficient Pareto opti-
mal, given that the resources are additive or the function on them is strictly de-/in-creasing,
can be used here. However, when introducing the SR cuts which will be described later the
objective is no longer additive and the function used is not strictly de-/in-creasing. In [3]
Blander Reinhardt and Pisinger cover several different ESPPRC problems with objectives
containing functions which are not strictly de-/in-creasing.
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A.4.3 Cuts

After adding route variables to the master problem it is investigated if cuts can be added
to the master problem. If the added cuts are valid inequalities derived from the original
formulation (A.2) to (A.10) then the dual can be transferred directly to the cost of the arcs.
Such cuts could be capacity inequalities, strengthened capacity inequalities, framed capacity
inequalities, strengthened comb inequalities, multi star inequalities and generalized large multi
star inequalities. However, if the cuts added are in the form of the paths variables the dual
cost can be more complicating to transfer as the dual of the constraints may be activated not
only by a single edge but a combination of edges. However, the subset row cuts have with
success been introduced into the master problem variables by Jepsen et al. [11]. Jepsen et
al. [11] developed a method of handling the reduced cost of a route for the ESPPRC where
the objective contains a function which is not strictly in- or de- creasing as a result of the
reduced cost achieved from the Subset Row cuts.

Valid Inequalities in the original form

Many valid inequalities have been developed for the VRPTW problem. These valid inequal-
ities will also be applicable for ESVRPTW problem as the ESVRPTW problem does not
change the set of feasible solutions but only changes the objective function. Valid inequalities
for the VRPTW are described in [10], [16] and [18]. The valid inequalities in the original
form applied are, as mentioned previously, the capacity inequality, the strengthened capacity
inequality, the framed capacity inequality, the strengthened comb inequality, the multi star
inequality and the generalized large multi star inequality. These have all been developed for
the capacitated vehicle routing problem CVRP but also apply to the VRPTW. However, since
they are developed for the CVRP problem they do not include the time window restrictions
to possibly tighten inequalities. The separation algorithm used is that described by Lysgaard
et al. [18] and accessible in the framework developed by Lysgaard [17].

Valid Inequalities in the master problem form

In [11], Jepsen et al. developed the Subset-Row (SR) inequalities to generate cuts in the
set partitioning formulation of the master problem. The SR inequalities are inspired by the
clique and odd hole inequalities for the set-packing problem.

The inequalities are not based on the edges directly but on the route variables and for-
mulated as follows:

(Subset-Row:)
∑

p∈P

⌊
1

k

∑

i∈S
αip

⌋
λp ≤

⌊ |S|
k

⌋
(A.23)

Where S is a subset of the constraints (A.18) and 0 < k ≤ |S| and
⌊
1

k

∑

i∈S
αip

⌋
=

1

k

∑

i∈S

∑

(i,j)∈δ+(i)

αijp



Clearly, if λp has a binary value satisfying the customer constraint (A.18) then the SR in-
equalities (A.23) will also be satisfied. However, when solving the linearly relaxed master
problem λp are relaxed to linear variables between zero and one then there might be solutions
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where the inequalities (A.23) are not satisfied. These inequalities are limited to the set of
(A.18) constraints and can therefore easily be introduced in the ESVRPTW problem. More-
over the effect from introducing the SR cuts into the ESVRPTW should be the same as in
the VRPTW as the set of feasible solutions do not differ between the ESVRPTW and the
VRPTW.

The problem with these inequalities is that the dual of each inequality can not be mapped
directly to the cost of the individual edges. Using the notation from Jepsen et al. [11] we let
the dual variable of a SR inequality be σ we can then formulate the dual cost of a route p as

ĉp = c̄p+σ
⌊(∑

i∈S
∑

(i,j)∈δ+(i) αijp

)
/k

⌋
. Note that the reduced cost σ is not activated before

at least k vertices in the set S has been visited. Therefore to introduce the reduced cost of
these constraints into the pricing problem the ESPPRC needs to be modified. As mentioned
in Section A.4.2, the ESPPRC is solved with a label-setting algorithm using domination for
the time, load and cost criteria. Let L be a label at a node v so that each label L at v
represents a path from the depot to v. The usual dominance criteria which holds for additive
costs is that a label is dominated if there exists another label at the same vertex where all
criteria are less than or equal to the dominated labels criteria values. However, this does not
hold for the reduced cost introduced by the SR inequalities. One label may be better than
the other even if the labels have the same or worse cost. We work with the cuts not allowing
two or more routes to visit two vertices from a set of three customers, k = 2 and |S| = 3.

To solve this problem Jepsen et al. [11] modified the domination rule for the cost criteria
in the ESPPRC. The modification consists of subtracting the reduced cost σq from a label
Li. Where the cost of cut q is included in label i and not included in dominated label Lj so
that the domination rule for the cost of two labels at the same vertex becomes:

ĉ(Li)−
∑

q∈Q
σq ≤ ĉ(Lj)

Where Q is the set of SR cuts with sets of three customers where Li has visited two vertices
in the set S and Lj has not and σq < 0 . The domination rules for the remaining constraints
are kept the same. For further details see Jepsen et al. [11].

A.4.4 Branch-and-cut-and-price

The branch-cut-and-price algorithm is commonly used for solving integer problems to opti-
mality. Below we describe the algorithm with some of the conditions selected in the method
used here included.

The branch-cut-and-price algorithm:

Step 1: Choose an unprocessed node. The node with the lowest lower bound. If the lower
bound of a node is above the upper bound then the node will be removed from the
unprocessed node list.

Step 2: Solve the LP relaxed master problem.

Step 3: search for routes with negative reduced cost using heuristic methods. If any found
add up to 400 to the master problem and go to step 2. The heuristic used is a simplified
version of the ESPPRC algorithm.
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Step 4: Solve the pricing problem to optimality. If routes with negative reduced cost are
found then add them to the master problem and go to step 2. If no routes with negative
reduced cost are found then update the lower bound if the lower bound above the upper
bound then remove the node from the unprocessed node list and goto step 1.

Step 5: If any violated cuts are found then add them to the master problem and go to step
2

Step 6: Mark the node as processed. If the solution to the LP relaxed master problem is
integer then update the upper bound. If the solution is fractional then branch and add
the children to the list of unprocessed nodes. Go to step 1.

The branching used is described in more detail in the next subsection.

A.4.5 Branching

For VRPTW the branching is most commonly done on edge variables. We have chosen to
do branching on the group variables as well. Branching on the group variables can reduce
the depth of the search tree as the edges to branch on are restricted. Moreover the number
of group variables is comparably small. The node with the lowest lower bound is chosen for
branching. The branching candidates are selected as the groups first and otherwise the edges
where they are separated by using the branching strategy presented by Fukasawa et al. [10]
where branching occurs on a set of customers S ⊂ C by having one branch with one vehicle
covering the set S. This is represented by constraint

∑
v∈K

∑
(i,j)∈δ+(S)(x

v
ij + xvji) = 2 where

δ+(S) is the edges leaving the set S. The other branch has at least two vehicles covering
the customers in the set S represented by constraint

∑
v∈K

∑
(i,j)∈δ+(S)(x

v
ij + xvji) ≥ 4. To

separate candidate sets the Lysgaard cut library [17] is used. From preliminary tests it was
clear that branching on the group variables tended to improve the solution time for the
problem significantly.

A.5 Closely related formulation and problems

Clearly, there are different versions of the problem where the edges are part of a set. It has
been assumed that the edges only belong to one set, however there could be cases where the
edges belong to more than one set. If an edge can belong to one set there can be different
ways to add the charge. The simple choice would be that the cost must be paid for all the
sets an edge belongs to. This problem can be formulated with the constraints (A.13) and
(A.14) with the only difference that an edge may be included in more than one constraint for
each node. Other alternatives are discussed in this section.

A.5.1 Edges belonging to multiple sets

Another variant could be that for an edge belonging to several sets, the access cost only needs
to be paid for one of the sets to which the edge belongs. This can be formulated as:

xij −
∑

(i,j)∈r∈R
yr ≤ 0 ∀(i, j) ∈ A (A.24)
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This constraint is very similar to constraints (A.2); however, in this case the integrality of
the xij variables does not necessarily imply integrality of the yr variables. Note, that when
replacing constraints (A.16) and (A.17) with (A.24) each edge (i, j) in the ESPPRC sub
problem will have cost cij − πj − θij where θ is the dual variable for the constraints (A.24).
This will not add any complications to the ESPPRC algorithm as the cost of a path remains
additive and the non additive cost introduced by the SR cuts are handled as in the VRPTW.

A.5.2 Accessing a set of reduced prices

In some cases one may access edges belonging to a set without paying for accessing the set
but by paying a more expensive price for using each edge. For instance, instead of buying
company access to all freeways in a country, one may be allowed to pay with cash at the
barrier to each road. These cash prices are expensive but may be attractive if there is a
very limited usage of the edges in the set. This extension is easily handled in our model by
duplicating each edge, where one edge belongs to an edge set, and the other edge correspond
to cash payment.

xzrij −
∑

r∈(i,j)
yr ≤ 0 ∀(i, j) ∈ A (A.25)

where xzrij is the edge between i and j which becomes accessible when paying the price for
accessing the set r.

In this case each edge xzrij in the ESPPRC will have the cost czrij −πj − ζij where ζij is the
dual variable of the respective constraint of type (A.25) and the cost of the edges not in sets
will simply have the cost cij − πj .

A.6 Test data

Following the tradition in VRP problems, the test data are based on the Solomon instances
[21] making it possible to relate our results to the existing literature. We have generated test
instances based on the RC201 to RC204 and C101 to C109 instances by assigning subsets
of edges to disjoint groups, and associating a fixed cost with each group. For the RC201 to
RC204 Solomon instances different categories of test instances have been constructed. The
instances can be grouped into two categories:

1. random sets: In these instances, the edges in each set are randomly selected. These
instances should reflect a toll on accessing bridges, tunnels or ferries. These facilities
are randomly scattered in the plane, but frequently a set of facilities is run by the same
operator.

2. spanning tree sets: In these instances the selected edges form cheap spanning graphs
of a randomly selected subset of vertices. Each subset of vertices consists of half of
the total number of vertices. This case should reflect payment of toll on motorways.
Motorways usually form a spanning network covering the main cities in a country.

In all test cases, each edge is assigned to at most one edge set.
For each Solomon instance, test instances containing 3, 5 and 8 edge sets were generated,

each having an associated cost for accessing the set.
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For the random edge sets instances, 50% of the edges are assigned to groups with an
additional cost. For each combination of Solomon instance and number of groups, two test
instances were generated: one case with the costs of an edge set group calculated as β = 5%
of the average cost of the edges in the group multiplied by the number of vertices in the set,
and another case using the same calculations with β = 10%.

In the case of spanning tree sets, the cost of a given set is chosen as the most expensive
edge in the graph minus the average value of the edges in the given set. This implies that
sets containing cheaper spanning trees (i.e. fast transportation times) are more costly than
the sets containing more expensive spanning trees.

For the Solomon instances RC201 to RC204, test cases were generated with 15, 20, 30
and 40 customers. For the instances C101 to C109, test cases were generated containing 50
customers using random edge sets. We only consider test cases up to 40 customers for the
RC201 to RC204 instances, since many instances with 40 customers were not solveable within
the given time limit. Instead we have run larger instances with 50 customers for the C101 to
C109 instances, as these are know to be easier from the VRPTW literature.

A.7 Results

The program has been implemented in C++ using the COIN bcp library and CLP as the
linear programming solver. The test have been run on a Linux machine with a 64 bit Intel
Xeon 2.67 GHz CPU. The edge set constraints have been implemented in the framework
by Jepsen et al. [11] provided to us by the authors. On the RC202 - RC204 tests with 20
customers we have tested the effect of running branch-cut-and-price with Lysgaard [17] cuts
only, the SR cuts [11] only, both the Lysgaard and SR cuts, and without any cuts. In Table
A.1 the solution times for the four algorithms and for CPLEX are shown. In about half of
the instances, CPLEX is not able to solve the routing problem within the time limit. For all
four branch-and-price and branch-cut-and-price algorithms the solution was found within 500
seconds. We have ranked the results of the four branch-cut-and-price algorithms by solution
times. In Table A.1 the rank of a solution is stated in paranthesis after the solution time.
The average of the ranks is calculated for each solution algorithm and shown in the last line
of Table A.1.

It is seen that CPLEX is the fastest for 7 instances, while the branch-cut-and-price algo-
rithm using both Lysgaard cuts and SR cuts is the fastest for 11 instances. The branch-cut-
and-price algorithms using only one of the cut families are only fastest for 3 instances. The
ranking average clearly shows that the branch-cut-and-price algorithm using both Lysgaard
and SR cuts has the best average rank. Therefore the branch-cut-and-price algorithm used
for the tests in Tables A.2, A.3, A.4 and A.5 includes the Lysgaard and SR cuts.

Tables A.2, A.3 and A.4 consider test instances with random sets. In Table A.2 and
Table A.3 it is seen that the branch-cut-and-price with both Lysgaard and SR cuts often has a
significantly reduced running time. However, for all of the instances based on RC201 CPLEX
finds the solutions within seconds and always much faster than the branch-cut-and-price
algorithm. In Table A.2 there are two instances with 30 customers which cannot be solved
within 7500 seconds using the branch-cut-and-price algorithm. However, more than half of
the instances cannot be solved by CPLEX within the time limit of 7500 seconds. For the
RC201 to RC204 instances with 40 customers shown in Table A.3 only the RC201 instances
were solved by the branch and bound algorithm within the time limit, and 9 instances were
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instance opt solution solution times
test groups cost β objective groups CPLEX bcp L+SR Bp bcp SR bcp L
rc201 3 05 4239 3 *0.06 1.22 (3) 1.16(1) 1.22(3) 1.20(2)
rc201 3 10 4912 2 *0.06 0.97(1) 0.99(2) 1.01(3) 1.05(4)
rc201 5 05 4539 4 *0.06 1.09(1) 1.23(4) 1.18(3) 1.16(2)
rc201 5 10 5787 4 *0.1 10.43(3) 7.36(1) 10.83(4) 7.86(2)
rc201 8 05 4878 5 *0.09 1.62(2) 1.52(1) 1.66(3) 1.71(4)
rc201 8 10 5847 3 *0.05 4.880(2) 4.030(1) 5.04(4) 4.14(2)
rc202 3 05 3723 2 473.82 *13.55(1) 14.86(2) 16.85(3) 21.76(4)
rc202 3 10 4371 2 200.65 11.22(3) *10.17(1) 14.49(4) 10.85(2)
rc202 5 05 4120 3 200.19 10.26(2) *9.40(1) 11.71(4) 11.51(3)
rc202 5 10 4969 2 96.86 32.47(3) 13.83(2) 56.17(4) *13.44(1)
rc202 8 05 4166 3 25.54 *9.96(1) 10.13(2) 17.06(4) 11.75(3)
rc202 8 10 5115 4 *8.07 37.30(3) 24.54(1) 45.20(4) 25.13(2)
rc203 3 05 3371 1 - *29.07(1) 29.19(2) 30.30(3) 54.01(4)
rc203 3 10 3694 1 - *25.08(1) 28.43(3) 29.38(4) 27.85(2)
rc203 5 05 3635 2 - *44.34(1) 44.66(2) 47.71(3) 58.24(4)
rc203 5 10 3968 1 3571.92 *24.33(1) 27.76(3) 32.11(4) 26.28(2)
rc203 8 05 3545 2 - *75.54(1) 81.25(2) 88.53(3) 100.63(4)
rc203 8 10 3954 1 6294.51 *42.05(1) 44.43(3) 48.35(4) 43.32(2)
rc204 3 05 3148 1 - *130.83(1) 147.04(3) 183.59(4) 136.88(2)
rc204 3 10 3471 1 - 452.81(4) 112.62(2) 303.24 (3) *89.45(1)
rc204 5 05 3414 2 - *123.00(1) 205.80(3) 153.72(2) 308.24(4)
rc204 5 10 3797 1 - 315.28(3) 121.67(2) 397.13(4) *106.00(1)
rc204 8 05 3215 1 - 100.40(3) *43.06(1) 119.16(4) 54.43(2)
rc204 8 10 3507 1 - *46.61(1) 61.35(4) 54.26(2) 60.78(3)

Average Rank 1.88 2.04 3.46 2,58

Table A.1: RC201-RC204 instances with 20 customers, random sets. If the algorithm has not
terminated within 7500 seconds it is indicated with ”-”. The best running time for each instance is
marked with a ”*”. L indicates that the cuts implemented in Lysgaard are used, SR indicates that
SR-cuts are used, while SR+L indicates that both families of cuts are used.

instance opt solution solution times
test groups cost β objective groups CPLEX Bcp L+SR
rc201 3 05 7100 3 *1.08 9.30
rc201 3 10 8396 1 *0.7 20.78
rc201 5 05 7173 2 *0.14 13.75
rc201 5 10 8512 1 *0.23 21.60
rc201 8 05 7685 4 *0.41 28.31
rc201 8 10 9031 2 *0.64 65.73
rc202 3 05 5660 2 - *52.90
rc202 3 10 6430 1 283.68 *167.84
rc202 5 05 5886 2 - *206.10
rc202 5 10 6831 1 919.49 *253.07
rc202 8 05 5915 3 2897.36 *128.22
rc202 8 10 7398 2 *328.52 3407.25
rc203 3 05 5144 1 - *104.29
rc203 3 10 5914 1 - *119.07
rc203 5 05 5429 1 - *509.70
rc203 5 10 6215 1 - *1533.37
rc203 8 05 5821 2 - *870.11
rc203 8 10 6494 0 - *1491.57
rc204 3 05 4847 1 - *262.21
rc204 3 10 5587 1 - *545.37
rc204 5 05 - - - -
rc204 5 10 5743 1 - *1621.71
rc204 8 05 - - - -
rc204 8 10 6118 0 - *3307.06

Table A.2: RC201-RC204 instances with 30 customers, random sets. If the algorithm has not
terminated within 7500 seconds it is indicated with ”-”. The best running time is marked with a ”*”.
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instance opt solution solution times
test groups cost β objective groups CPLEX Bcp L+SR
rc201 3 05 8660 2 *0.47 7.73
rc201 3 10 10730 2 *0.95 28.95
rc201 5 05 9431 3 *1.14 62.16
rc201 5 10 11982 2 *6.63 127.22
rc201 8 05 10064 3 *4.85 152.61
rc201 8 10 11922 2 *2.45 348.53
rc202 3 05 7805 1 - *226.13
rc202 3 10 8841 1 - *503.73
rc202 5 05 8518 2 - *737.95
rc202 5 10 10072 1 - *3671.59
rc202 8 05 8755 2 - *4316.18
rc202 8 10 - - - -
rc203 3 05 7098 1 - *430.43
rc203 3 10 - - - -
rc203 5 05 7120 1 - *1647.74
rc203 5 10 - - - -
rc203 8 05 - - - -
rc203 8 10 - - - -
rc204 3 05 - - - -
rc204 3 10 5838 0 - *882.34
rc204 5 05 - - - -
rc204 5 10 5838 0 - *1848.44
rc204 8 05 - - - -
rc204 8 10 - - - -

Table A.3: RC201-RC204 instances with 40 customers, random sets. If the algorithm has not
terminated within 7500 seconds it is indicated with ”-”. The best running time is marked with a ”*”.

not solved by the branch-cut-and-price algorithm within the time limit.

Table A.2 and Table A.3 show the running time for instances generated from RC201 to
RC204 with respectively 30 customers and 40 customers. The running times in Table A.2
show that the branch-cut-and-price for most of the instances runs much faster than CPLEX.
The same is true for the running times in Table A.3 when only considering instances where
at least one of the algorithms terminated within the time limit.

Notice, that most of the instances not solved by CPLEX within the time limit were
solved by branch-cut-and-price. Half of the instances were solved in less than 600 seconds (10
minutes).

For the C101-C109 instances with 50 customers shown in Table A.4 the results are more
mixed. CPLEX is the fastest for easy instances, while the branch-cut-and-price algorithm has
some computational overhead which only pays off for the difficult instances. The branch-cut-
and-price algorithm solves significantly more instances within the time limit, although there
are two instances solved by CPLEX which cannot be solved by branch-cut-and-price within
the time limit.

Table A.5 contains the test results for instances RC201 to RC204 with spanning tree
sets. For the RC201 instances, CPLEX solves the instances within a second and consider-
ably faster than the branch-cut-and-price algorithm. For the RC202 to RC204 instances the
branch-cut-and-price algorithm solves the problem faster than CPLEX. The last instance has
not been solved within the time limit by any of the algorithms. In general the branch-cut-
and-price algorithm solves considerably more problems to optimality than CPLEX within the
given time limit.
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Instance opt solution Solution Times
test groups cost β objective groups CPLEX Bcp L+SR
c101 3 05 5683 3 *0.99 37.61
c101 3 10 7052 3 *0.66 162.79
c101 5 05 6749 2 *1.04 574.34
c101 5 10 7725 3 *1.08 135.60
c101 8 05 7125 3 *2.27 1037.11
c101 8 10 8138 2 *1.4 570.75
c102 3 05 5304 2 - *322.95
c102 3 10 - - - -
c102 5 05 5741 2 - *1210.31
c102 5 10 - - - -
c102 8 05 6201 1 - *6932.81
c102 8 10 - - - -
c103 3 05 4801 1 - *2158.50
c103 3 10 5081 0 - *535.76
c103 5 05 4979 1 - *5999.15
c103 5 10 5081 0 - *252.92
c103 8 05 5081 0 - *854.73
c103 8 10 5081 0 - *923.91
c104 3 05 - - - -
c104 3 10 - - - -
c104 5 05 - - - -
c104 5 10 - - - -
c104 8 05 - - - -
c104 8 10 - - - -
c105 3 05 5421 2 *36.90 394.63
c105 3 10 6228 0 *121.33 -
c105 5 05 5838 2 *705.29 1686.57
c105 5 10 6228 0 *124.26 1932.97
c105 8 05 6083 1 *852.82 5477.76
c105 8 10 6228 0 *31.51 2906.03
c106 3 05 5600 2 *2.05 147.36
c106 3 10 6870 1 *3.05 458.43
c106 5 05 6428 2 *5.82 2652.120
c106 5 10 7317 1 *2.65 6803.880
c106 8 05 6896 2 *4.53 1340.30
c106 8 10 7378 0 *1.66 1453.82
c107 3 05 5204 2 *364.35 439.94
c107 3 10 6032 0 *1506.13 -
c107 5 05 5618 1 *2250.54 2945.98
c107 5 10 6032 0 *3385.01 7312.24
c107 8 05 5700 1 *220.37 1164.84
c107 8 10 6032 0 5519.13 *1692.73
c108 3 05 5076 1 - *1260.62
c108 3 10 - - - -
c108 5 05 5325 - - *1124.48
c108 5 10 5747 0 - *3845.29
c108 8 05 5628 1 - *2362.47
c108 8 10 5747 0 - *5474.220
c109 3 05 - - - -
c109 3 10 - - - -
c109 5 05 - - - -
c109 5 10 5022 0 - *428.11
c109 8 05 5022 0 - *2730.11
c109 8 10 5022 0 - *804.76

Table A.4: C101-C107 instances with 50 customers, random sets. If the algorithm has not termi-
nated within 7500 seconds it is indicated with ”-”. The best running time is marked with a ”*”.

A.8 Conclusion

The vehicle routing problem with time windows and fixed costs for accessing an edge set
(ESVRPTW) has been presented in this paper. To the best of our knowledge, it is the first
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instance opt solution solution times
test customers groups objective groups CPLEX Bcp SR+L
rc201 15 3 2618 1 *0.05 0.75
rc201 15 5 3153 3 *0.04 1.98
rc201 15 8 3474 4 *0.06 1.92
rc202 15 3 2478 2 176.17 *5.03
rc202 15 5 2773 2 33.74 *9.13
rc202 15 8 3154 4 93.06 *40.43
rc203 15 3 2400 0 556.14 *5.37
rc203 15 5 2665 1 268.44 *16.88
rc203 15 8 2982 2 4342.91 *151.65
rc204 15 3 2240 0 - *6.21
rc204 15 5 2526 1 6698.49 *36.80
rc204 15 8 2859 2 2438.21 *402.83
rc201 20 3 3733 2 *0.02 0.26
rc201 20 5 4302 3 *0.03 1.34
rc201 20 8 4931 3 *0.05 2.42
rc202 20 3 3464 1 107.58 *3.88
rc202 20 5 3862 2 56.45 *1.25
rc202 20 8 4635 4 1276.84 *163.60
rc203 20 3 3042 0 - *7.09
rc203 20 5 3366 1 - *136.39
rc203 20 8 4120 3 - *2986.15
rc204 20 3 2845 0 - *6.82
rc204 20 5 3301 1 - *1160.77
rc204 20 8 3790 2 - *6469.83
rc201 30 3 5599 1 *0.11 4.44
rc201 30 5 6204 2 *0.34 12.57
rc201 30 8 6998 4 *0.24 37.11
rc202 30 3 4832 1 - *21.95
rc202 30 5 5478 2 - *99.57
rc202 30 8 6431 5 - *1482.03
rc203 30 3 4418 1 - *14.01
rc203 30 5 5191 2 - *374.77
rc203 30 8 5877 4 - *4458.23
rc204 30 3 4292 0 - *24.82
rc204 30 5 4953 2 - *5606.51
rc204 30 8 - - - -

Table A.5: RC201-RC204 instances, spanning tree sets. If the algorithm has not terminated within
7500 seconds it is indicated with ”-”. The best running time is marked with a ”*”.

time this type of problem has been investigated. A mathematical model has been presented
for the ESVRPTW. We have applied the branch-cut-and-price method to the problem and
shown that including the SR cuts and the cuts implemented in Lysgaard [17] for the VRPTW
and CVRP improves the solution times for this problem. Many related routing problems may
with advantage be implemented this way using the extensive research available for the CVRP
and VRPTW problems.

Acknowledgments

The authors wish to thank Richard Martin Lusby for valuable comments.

194



Bibliography

[1] R. Baldacci, A. Mingozzi, and R. Roberti. Solving the vehicle routing problem with time
windows using new state space relaxation and pricing strategies. Submitted.

[2] J.-M. Belenguer, E. Benavent, C. Prins, C. Prdhon, and R. W. Calvo. A branch-and-cut
method for the capacitated location-routing problem. Computers & Operations Reserach,
38:931–941, 2011.

[3] L. Blander Reinhardt and D. Pisinger. Multi-objective and multi-constraint non-additive
shortest path problems. Computers and Operations Research, 38:605–616, 2011.

[4] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures for the
computation of bounds to routing problems. Networks, 11:145–164, 1981.

[5] W. Cook and J. L. Rich. A parallel cutting-plane algorithm for the vehicle routing
problem with time windows. Technical report, Rice University, 1999.

[6] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science,
6:80–91, 1959.

[7] G. Desaulniers, J. Desrosriers, J. Ioachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
unified framework for deterministic time constrained vehicle routing and crew scheduling
problems, 1998.

[8] G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search, partial elementarity, and gen-
eralized k -path inequalities for the vehicle reouting problem with time windows. Trans-
portation Science, 42:387–404, 2008.

[9] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40:342–354, 1992.

[10] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragao, M. Reis, E. Uchoa, and R. F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Math. Programming, 106:491–511, 2006.

[11] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56:497–511,
2008.

[12] B. Kallehauge. Formulations and exact algorithms for the vehicle routing problem with
time windows. Computers & Operations Research, 35:2307–2330, 2008.

195



Appendix A

[13] B. Kallehauge, J. Larsen, and O. B. G. Madsen. Lagrangian duality applied to the vehicle
routing problem with time windows. Computers & Operations Research, 33:1464–1487,
2006.

[14] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts
for the vehicle routing problem with time windows. Transportation Science, 33:101–116,
1999.

[15] A. W. J. Kolen, A. H. G. Rinnooy Kan, and H. W. J. M. Trienekens. Vehicle routing
with time windows. Operations Research, 35:266–273, 1987.

[16] A. N. Letchford, R. W. Eglese, and J. Lysgaard. Multistarts, partial multistars and the
capacitated vehicle routing problem. Math. Programming, 94:21–40, 2002.

[17] J. Lysgaard. Cvrpsep: A package of separation routines for the capacitated vehicle
routing problem, 2003.

[18] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm for the
capacitated vehicle routing problem. Mathematical Programming Serie A, 100:423–445,
2004.

[19] G. Nagy and S. Salhi. Location-routing: Issues, models and methods. European Journal
of Operational Research, 177:649–672, 2007.

[20] G. Righini and M. Salani. Symmetry helps: Bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-
timization, 3:255–273, 2006.

[21] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35:254–265, 1987.

196



A Path Based Model for a Green Liner Shipping Network Design Problem

Appendix B A Path Based Model for a Green Liner

Shipping Network Design Problem

Mads K. Jepsen, Berit Løfstedt, Christian E. M. Plum ,
David Pisinger 1 and Mikkel M. Sigurd 23

July 8, 2011

Abstract

Liner shipping networks are the backbone of international trade provid-
ing low transportation cost, which is a major driver of globalization. These
networks are under constant pressure to deliver capacity, cost effectiveness
and environmentally conscious transport solutions. This article proposes a
new path based MIP model for the Liner shipping Network Design Prob-
lem minimizing the cost of vessels and their fuel consumption facilitating
a green network. The proposed model reduces problem size using a novel
aggregation of demands. A decomposition method enabling delayed column
generation is presented. The subproblems have similar structure to Vehicle
Routing Problems, which can be solved using dynamic programming.
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B.1 Introduction

Global liner shipping companies provide port to port transport of contain-
ers, on a network which represents a billion dollar investment in assets and
operational costs.
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750 FFE Mediterranean – Halifax
150 FFE Europe- Halifax
       150 FFE Asia- Halifax

Bremerhaven

Rotterdam

Le Havre
Montreal

Halifax

75 FFE Canada East- Rotterdam
25 FFE Canada East – Le Havre

50 FFE Asia – Canada East

750 FFE Mediterranean- Canada East
50 FFE Europe- Canada East
150 FFE Asia- Canada East 

150 FFE Canada East – Mediterranean
225 FFE Canada East - Europe
200 FFE Canada East - Asia

Figure B.1: A Canada-Northern Europe service. FFE is Forty Foot Equiv-
alent unit container used to express the volume of containers in each cargo
category.

The liner shipping network can be viewed as a transportation system
for general cargo not unlike an urban mass transit system for commuters,
where each route (service) provides transportation links between ports and
the ports allow for transhipment in between routes (services). The liner
shipping industry is distinct from other maritime transportation modes pri-
marily due to a fixed public schedule with weekly frequency of port calls
as an industry standard (Stopford [1998]). The network consists of a set of
services. A service connects a sequence of ports in a cycle at a given fre-
quency, usually weekly. In Figure B.1 a service connecting Montreal-Halifax
and Europe is illustrated. The weekly frequency means that several vessels
are committed to the service as illustrated by Figure B.1, where four vessels
cover a round trip of 28 days placed with one week in between vessels. This
round trip for the vessel is referred to as a rotation. Note that the Montreal
service carries cargo to North Europe, the Mediterranean and Asia, with
the two latter transhipping in Bremerhaven. Vice versa for cargo headed for
Canada has multiple origins. This illustrates that transhipments to other
connecting services is at the core of liner shipping. Therefore, the design of
a service is complex, as the set of rotations and their interaction through
transhipment is a transportation system extending the supply chains of a
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750 FFE Mediterranean – Halifax
150 FFE Europe- Halifax
       150 FFE Asia- Halifax

Bremerhaven

Rotterdam

Le Havre
Montreal

Halifax

75 FFE Canada East- Rotterdam
25 FFE Canada East – Le Havre

50 FFE Asia – Canada East

750 FFE Mediterranean- Canada East
50 FFE Europe- Canada East
150 FFE Asia- Canada East 

150 FFE Canada East – Mediterranean
225 FFE Canada East - Europe
200 FFE Canada East - Asia

Port Said

Haifa

200 FFE Mediterranean- Europe
750 FFE Mediterranean- Canada East

150 FFE Canada East- Mediterranean
150 FFE Europe- Mediterranean

150 FFE Canada East- Asia
500 FFE Europe- Asia

Figure B.2: Two connecting services. The Montreal service from Figure
B.1 and a Europe-Mediterranean service with a round trip time of 2 weeks
illustrated by two white vessels. The cargo composition on board vessels
illustrate transhipments at the core of the liner shipping network design.
The light blue incomplete service illustrates a larger service transporting
cargo between Europe and Asia.

multiplum of businesses. Figure B.2 illustrates two services interacting in
transporting goods between Montreal-Halifax and the Mediterranean, while
individually securing transport between Montreal-Halifax and Northern Eu-
rope, and Northern Europe and the Mediterranean respectively. The Mon-
treal service additionally interacts with a service between Europe and Asia,
which is partly illustrated.

B.1.1 Modelling the Liner Shipping Network Design Prob-
lem (LSNDP)

The Liner Shipping Network Design Problem (LSNDP) aims to optimize the
design of the networks to minimize cost, while satisfying customer service
requirements and operational constraints. The mathematical formulation
of the LSNDP may be very rich as seen in (Løfstedt et al. [2010]), where
a compact formulation along with an extensive set of service requirements
and network restrictions is presented. A rich formulation like (Løfstedt et al.
[2010]) serves as a description of the LSNDP domain, but is not computa-
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tionally tractable as the number of feasible services is exponential in the
number of ports. Therefore, a formulation of the LSNDP is typically re-
stricted to an interpretation of the domain along with the core costs and
constraint structures of the problem. The LSNDP has been modelled as a
rich Vehicle Routing Problem (VRP) (Baldacci et al. [2010]) for instance,
where transhipments are not allowed and vessels can be assumed to return
empty to a single main port of a voyage in (Fagerholt [2004]), (Karlaftis
et al. [2009]). The structure is applicable for regional liner shippers re-
ferred to as feeder services as opposed to global liner shipping in focus in
the present paper. Models where the LSNDP is considered as a specialized
capacitated network design problem with multiple commodities are found in
(Reinhardt and Kallehauge [2007]), (Agarwal and Ergun [2008]), (Alvarez
[2009]), (Plum [2010]). The network design problem is complicated by the
network consisting of disjoint cycles representing container vessel routes as
opposed to individual links. The models handle transhipments although
transhipment cost is not included in (Agarwal and Ergun [2008]). The ves-
sels are not required to be empty at any time. The works of (Agarwal
and Ergun [2008], Alvarez [2009]) identify a two tier structure of constraint
blocks: the first deciding the rotations of a single or a collection of ves-
sels resulting in a capacitated network and the second regarding a standard
multicommodity flow problem with a dense commodity matrix. The cost
structure of LSNDP places vessel related costs in the first tier and cargo
handling cost and revenue in the second tier. The work of (Plum [2010]) has
identified two main issues with solving the LSNDP as a specialized capaci-
tated network design problem:

1. Economy of scale on vessels and the division of cost and revenue on
the two tiers results in highly fractional LP solutions.

2. The degeneracy of the multicommodity flow problem results in weak
LP bounds.

Furthermore, it is well known that the linear multicommodity flow problem
and hence capacitated network design problems do not scale well with the
number of distinct commodities. Computational results for existing models
confirm the hardness of this problem and the scalability issues, struggling
to solve instances with 10-15 ports and 50-100 commodities.

The model presented in this paper has a single tier and combines rev-
enue with total cost in the service generation problem. The motivation is
to ensure efficient capacity utilization of vessels and avoid highly fractional
LP solutions. Service generation is based on pick-up-and-delivery of cargoes
transported entirely or partly on the service. The cost of a service reflects
asset, operational and port call costs of the vessels on the service, along
with the cargo handling cost and revenue of collected cargo on the service.
The cargo handling cost includes load, unload and transhipment costs. The
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model is inspired by the Pick-up-and-Delivery VRP problem, but is consid-
erably more complex as we allow transhipments on non-simple cyclic routes,
where the vessel is not required to be empty at any point in time.

The degeneracy of the multicommodity flow problem is mitigated both
by modelling the flow as assignments to services as opposed to the traditional
multicommodity flow formulation, but also by exploiting the liner shipping
concept of trade lanes to aggregate the number of distinct commodities to
a minimum. Trade lanes are based on the geographic distances within a set
of ports and their potential to import/export to another region.

Maritime shipping produces an estimated 2.7% of the worlds CO2 emis-
sion, whereof 25% is accounted to container vessels according to the (World-
ShippingCouncil [2010]). The value proposition of liner shipping companies
has focus on the environmental impact of their operation and the concept
of slow steaming has become a standard for some liner shipping companies
(List [2010]). (Cariou [2011]) estimate that the emissions have decreased
by 11 % since 2008 by slow steaming alone. Breaking down the cost of a
service to each vessel (Stopford [1998]) state that 35-50% of the cost is for
fuel (bunker) whereas capital cost accounts for 30-45%, OPEX (crew, main-
tenance and insurance) accounts for 6-17% and port cost for 9-14%. Slow
steaming minimizes the fuel cost, but comes at an asset cost of additional
vessels deployed to maintain weekly frequency (Notteboom and Vernimmen
[2009]). Slow steaming is not always an option as some cargo may have
crucial transit times. Current models of LSNDP assumes fixed speed on
a service. The model of (Alvarez [2009]) explicitly aims at minimizing the
fuel cost and consumption in the network by varying the speed of services
in the model. (Løfstedt et al. [2010]), (Notteboom and Vernimmen [2009])
and (Fagerholt et al. [2010]) state that the speed on a service is variable on
each individual voyage between two ports and as the fuel consumption is a
cubic function of speed (Stopford [1998]) the cost calculated on an average
fixed speed on a roundtrip is an approximation. As a result the actual fuel
consumption of a service cannot be estimated until the schedule is fixed.
Tramp shipping often model their routing and scheduling as rich Pick-up-
and-Delivery VRP problems with Time Windows (Fagerholt and Lindstad
[2007], J. E. Korsvik and Laporte [2010]). (Fagerholt et al. [2010]) is the
first article within tramp shipping with variable speed between each port
pair in the routing. The optimization of speed and hence minimizing the
fuel consumption and environmental impact is driven by the time windows
and the optional revenue of spot cargoes. (Fagerholt et al. [2010], I. Norstad
and Laporte [2010]) report significant improvements in solutions using vari-
able speed. Minimizing the fuel consumption of the network can be a post
optimization regarding speed of the liner shipping network, when deciding
on the schedule in terms of berthing windows or the transit time of individ-
ual cargo routings. The path based model presented in this paper assumes a
fixed speed for each vessel class and in the dynamic programming algorithm
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the number of vessels deployed to a service is ceiled in order to ensure that
a weekly frequency can be maintained on each service.

The path based model is inspired by operations research techniques
within the airline industry, where the optimization is divided into faces.
Therefore, a solution to the path based model is a generic capacitated net-
work of cyclic services based on a weekly frequency of port calls. The generic
network is transformed into an actual network by making an actual sched-
ule, deploying vessels and deciding on the speed of the individual voyages
and actual flow of all distinct commodities. The slow steaming speed of a
vessel is 12 knots and depending on size and age a vessel has a maximal
speed of 18 to 25 knots. If the fixed speed is chosen 30-40% above slow
steaming speed for each vessel the ceiling of the number of vessels will allow
post optimization of the schedule to achieve an energy efficient network with
focus on slow steaming, while ensuring the transit time of products. The
generic network allows for a green liner shipping network, while at the same
time enabling scalability due to a more general description of the network.

B.1.2 Demand Aggregation

In models of the LSNDP using a specialized capacitated network design
formulation the second tier is a standard multicommodity flow problem.
The work of (Alvarez [2009]) identifies solving the multicommodity flow
problem as prohibitive for larger problem instances due to the large number
of commodities considered. The model of (Alvarez [2009]) is aggregating
the flow combining it by destination, giving a smaller model to solve. This
could result in worse LP bounds as identified in (Croxton et al. [2007]), as
the LSNDP will have a concave cost function, due to the economies of scales
of deploying larger vessels, and high start up costs, as at least one vessel
must be deployed.

A contribution of this paper is to formulate a model that considers ag-
gregated aspects of the demand instead of specific origin-destination (o-d)
pairs. This is motivated by the trade-centric view of liner-shipping present
in the liner shipping industry instead of the o-d -centric view considered in
the literature. As seen in Figure B.1, the o-d demand from Halifax to Rot-
terdam could be considered, but in practice it will be hard to estimate such
a specific demand. More realistically one could estimate the volume of ex-
ports from Halifax to Northern Europe and reversely the volume of imports
from East Coast Canada to Rotterdam (or exports from Mediterranean to
Halifax as in Figure B.2). Each commodity k ∈ K will then be characterized
by a volume dXY from a region X to a region Y i.e. East Coast Canada or
Northern Europe as seen in Figure B.1 on the vessels in deep sea. Each set
of X,Y will symbolize a trade. Each port p ∈ X will also have an export and
import in the trade: dpY , dXp, where

∑
p∈X d

pY =
∑
p∈Y d

Xp as seen in Fig-
ure B.1 on the vessels in a region. In effect a port as Halifax will be ensured
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a volume of export to Mediterranean ports and each of these will be insured
a volume of imports from East Coast Canadian ports, without specifying
the concrete origin-destination pairs. Note the difference in aggregation ap-
proach, compared with the models of (Croxton et al. [2007]), as we are now
aggregating by trade origin-region to destination-region, instead of aggrega-
tion by destination port. This should give the benefit of fewer variables due
to the aggregation, while we still have quite tight LP-relaxations.

The aggregation of demand may be more or less fine grained giving the
ability to “zoom” according to the definition of ports, regions and trade
lanes, enabling both detailed networks for a smaller region and coarse net-
work designs for a larger set of ports that may be refined by subsequent
optimization methods. We foresee a computational tractability trade-off
between the number of ports and the number of distinct commodities when
defining regions for ports.

In the following we will present a path-based formulation of the LNSDP
and a column generation approach generating capacitated cyclic rotations
with assigned flow. We will outline a dynamic programming algorithm to
solve the pricing problem.

B.2 Service Based Model

In the following we introduce a model based on a combination of feasible
services for each vessel class, into a generic liner shipping network solution.
The service based model is based on a Dantzig-Wolfe decomposition of the
model in (Løfstedt et al. [2010]). Let Sv denote the set of feasible services for
a vessel class v ∈ V and let S = ∪v∈V Sv. Let αXYkps and βXYkps be the amount
of respectively load and unload of containers from region X to region Y on
the k’th visit to port p on service s ∈ S. We assume that αXYkps = βXYkps =

0, ∀p /∈ X ∪ Y ∪ GXY , where GXY is the set of ports where transhipments
is allowed for trade XY . Let Mp be the maximal number of port visits to
port p for each service. Furthermore, let γpq equal the number of times the
service sails between ports p ∈ P and q ∈ P . The move cost in a port p
for a trade XY ∈ K consist of the unload cost uXYp and load cost lXYp . For
ports p ∈ X the transhipment cost is included in the unload cost and the
revenue is rXYp . For ports p ∈ P \ X the transhipment cost is included in
the load cost. Each vessel of vessel type v ∈ V has costs cv for fuel-, crew-
and depreciation of vessel value or time-charter-costs per week. The cost of
vessel type v calling a port q is cvq . The number of vessels used by the service
is the round trip distance of the service divided by W v

d , the weekly distance
covered by vessel type v at the predefined speed. This value is ceiled to
ensure the vessels can complete the round trip at the predefined speed. The

number of vessels used by the service is given as ns =
⌈∑

p∈P
∑
q∈P

dpqγpqs
W v

d

⌉
.

The cost of a service s ∈ S is given as:
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cs =
∑

XY ∈K

∑

p∈X

∑

k∈Mp

rXYp (αXYkps − βXYkps )

−
∑

XY ∈K

∑

p∈P

∑

k∈Mp

(lXYp αXYkps + uXYp βXYkps )

− cvns −
∑

p∈P

∑

q∈P
cvqγpqs

The model based on services is as follows:

max
∑

s∈S
csλs (B.1)

s.t 0 ≤
∑

s∈S

∑

k∈Mp

(αXYpks − βXYpks )λs ≤ dpY

∀XY ∈ K,∀p ∈ X (B.2)

0 ≥
∑

s∈S

∑

k∈Mp

(αXYpks − βXYpks )λs ≥ −dXp

∀XY ∈ K,∀p ∈ Y (B.3)
∑

s∈S

∑

k∈Mp

(αXYpks − βXYpks )λs = 0

∀p ∈ GXY ,∀XY ∈ K (B.4)
∑

s∈S

∑

p∈X∪Y

∑

k∈Mp

(αXYpks − βXYpks )λs = 0

∀XY ∈ K (B.5)
∑

s∈Sv

nsλs ≤ |v| ∀v ∈ V (B.6)

λs ∈ {0, 1} ∀s ∈ S (B.7)

The objective (B.1) maximizes the profit, constraints (B.2) and (B.3) en-
sure that the difference between what is loaded and unloaded (unloaded
and loaded) by all services in a port is positive and less than the export
capacity (import capacity) of the port for the given trade. Constraints (B.4)
ensure that the amount of containers loaded equals the amount of containers
unloaded in a transhipment port and constraints (B.5) ensure that all con-
tainers loaded are unloaded for each trade. Constraints (B.6) ensure that
the number of available vessels for each vessel class is not exceeded and the
binary domain on the variables is defined by (B.7).

The key issue with the service based model is that the set of feasible
services S can be exponential in the number of ports. Therefore it cannot
be expected to solve instances of significant size. To overcome this issue we
propose to write up the model gradually using delayed column generation
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and then solve the problem through Branch-and-Cut-and-Price. Branching
is done by imposing a limit on the number of times an arc can be used by
a given vessel class. When possible an enumeration technique similar to
the one used within CVRP (Baldacci et al. [2008]) will be used. The upper
bound needed will be obtained using heuristics adapted from (Løfstedt et al.
[2010]).

B.2.1 Pricing Problem

The pricing problem returns a column to the master problem which rep-
resents a service. Each column consists of a load and an unload pattern,
which implicitly defines a non-simple cycle starting and ending at the same
port p ∈ P v deploying ns vessels to maintain weekly frequency at the fixed
speed enforced on the service pattern. The pricing problem is to find a
non-simple cycle σ centered around any starting node ps with associated
loads and unloads such that the capacity of the vessel class (Cv) is not ex-
ceeded at any port p, the distance of the schedule with a weekly frequency
is feasible for the vessel class v and no port p is visited more than Mp times
∀p ∈ P . The above problem has a similar structure to the pricing problems
that arise in the context of Vehicle Routing (Resource Constrained Shortest
Path problems (see Irnich and Desaulniers [2005]) usually solved by label
setting algorithms.

Reduced cost

To use delayed column generation we start by considering the reduced cost of
a column (service). For each XY ∈ K a port p ∈ P is present in at most one
of the constraints (B.2) to (B.4). Let ωXYp ,∀XY ∈ K,∀p ∈ X ∪ Y ∪ GXY
denote the duals from (B.2) to (B.4). Let δXY be the dual variables of
constraints (B.5) and πv are the duals of constraints (B.6).
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For each vessel class v ∈ V the reduced cost of a service(column) s ∈ Sv

ĉs =cs −
∑

XY ∈K

∑

p∈X∪Y ∪GXY

∑

k∈Mp

ωXYp (αXYkps − βXYkps )

−
∑

XY ∈K

∑

p∈X∪Y

∑

k∈Mp

δXY (αXYkps − βXYkps )− πvns

=
∑

XY ∈K

∑

p∈X

∑

k∈Mp

rXYp (αXYkps − βXYkps )

−
∑

XY ∈K

∑

p∈P

∑

k∈Mp

lXYp αXYkps

−
∑

XY ∈K

∑

p∈X∪Y ∪GXY

∑

k∈Mp

ωXYp αXYkps

−
∑

XY ∈K

∑

p∈X∪Y

∑

k∈Mp

δXY αXYkps

−
∑

XY ∈K

∑

p∈P

∑

k∈Mp

uXYp βXYkps

+
∑

XY ∈K

∑

p∈X∪Y ∪GXY

∑

k∈Mp

ωXYp βXYkps

+
∑

XY ∈K

∑

p∈X∪Y

∑

k∈Mp

δXY βXYkps

− cvns −
∑

p∈P

∑

q∈P
cvqγpqs − πvns

=
∑

XY ∈K

∑

p∈X

∑

k∈Mp

(rXYp − lXYp − ωXYp − δXY )αXYkps+

∑

XY ∈K

∑

p∈X

∑

k∈Mp

(−rXYp − uXYp + ωXYp + δXY )βXYkps +

∑

XY ∈K

∑

p∈Y

∑

k∈Mp

(−lXYp − ωXYp − δXY )αXYkps+

∑

XY ∈K

∑

p∈Y

∑

k∈Mp

(−uXYp + ωXYp + δXY )βXYkps +

∑

XY ∈K

∑

p∈GXY

∑

k∈Mp

(−lXYp − ωXYp )αXYkps+

∑

XY ∈K

∑

p∈GXY

∑

k∈Mp

(−uXYp + ωXYp )βXYkps

− (πv + cv)ns −
∑

p∈P

∑

q∈P
cvqγpqs

The reduced cost can be rewritten as a cost connected to loading, unloading,
and sailing in terms of the number of vessels deployed and the cumulative

206



A Path Based Model for a Green Liner Shipping Network Design Problem

port call cost:

l̂XYp =





rXYp − lXYp − ωXYp − δXY ∀p ∈ X
−lXYp − ωXYp − δXY ∀p ∈ Y
−lXYp − ωXYp ∀p ∈ GXY

ûXYp =





−rXYp − uXYp + ωXYp + δXY ∀p ∈ X
−uXYp + ωXYp + δXY ∀p ∈ Y
−uXYp + ωXYp ∀p ∈ GXY

Finally, the port call cost cvq is paid upon each sailing/extension onto a
new port p ∈ P and the cost ĉv = πv + cv is inferred each time the distance
of W v

d is traveled.

Graph topology and label setting algorithm for LSNDP

The |V | pricing problems can be formulated as the following graph problem.
Given a directed graph Gv = (Nv, Av) where the node set Nv = P v∪Lv∪Uv.
P v is the set of ports ∈ P compatible with vesselclass v, Lv =

⋃
w∈P v Lw the

set of load nodes, where the sets Lw = {ρXYw |∀XY ∈ K,w ∈ X ∨ Y ∨GXY }
represents all possible loads at port w, Uv =

⋃
w∈P v Uw is the set of unload

nodes, where the sets Uw = {µXYw |∀XY ∈ K,w ∈ X ∨ Y ∨GXY } represents
all possible unloads at port w. In order to correctly identify transhipments
and unloads of a trade each demand XY ∈ K is associated with a set
of load nodes LXY ⊆ Lv and a set of unload nodes UXY ⊆ Uv, where
LXY = {ρXYw |w ∈ X ∪ Y ∪GXY } and UXY = {µXYw |w ∈ X ∪ Y ∪GXY }.

The arc set Av = As ∪ Au ∪ Al. Define the function h : Uv ∪ Lv →
P v, Lq 7→ q, Uq 7→ q for mapping between the load and unload nodes and
the actual port q ∈ pv of the (un)load. The set of sail arcs is defined as
follows As = {(i, j)|i ∈ Lv ∪ Uv, j ∈ P v \ {h(i)}} , the set of unload arcs
Au = {(i, j)|i ∈ P v, j ∈ Ui} ∪ {(i, j)|i ∈ Uv, j ∈ Uh(i)} and the set of load

arcs Al = {(i, j)|i ∈ P v, j ∈ Li} ∪ {(i, j)|i ∈ Uv = µXYh(i), j ∈ Lh(i) \ {ρXYh(i)}} ∪
{(i, j)|i ∈ Lv, j ∈ Lh(i)}. The graph topology is illustrated in figure B.3. The

distance of an arc depends on the arc type: dij =

{
dh(i)j (i, j) ∈ As
0 (i, j) ∈ Al ∪Au

In a label setting algorithm a label Ei is associated with a node i and
represents a (partial) path with a (reduced) cost C of the service and a
number of resources θ accumulated along the path. A resource may be asso-
ciated with lower and upper bounds often referred to as a resource window.
The proposed algorithm differs significantly from the Elementary Shortest
Path Problem with Resource Constraints (ESPPRC) known from VRP:

• The path is not elementary as Mp ≥ 1.
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P v

Uw:

Lw:

UXY

LXY

w ∈ X q ∈ X r ∈ Z s ∈ Y

µXY
w µXY

q µXY
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µYX
w µYX

q µYX
r µYX
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q µXZ
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q ρXY
r ρXY

s

ρYX
w ρYX

q ρYX
r ρYX

s

ρXZ
w ρXZ

q

Figure B.3: A network representation of a graph associated with the label
setting algorithm. The set of port call nodes P v is a clique. For port w ∈ P v
the sets Uw, Lw are illustrated. They represent possible loads and unloads
at port w. The sets Uw, Lw are cliques. A path in the network will follow
sequences of n ∈ Pv → Un → Ln → m ∈ Pv. It is possible to only unload or
load. The load set of a port w is not connected to the unload set of w. Each
trade XY ∈ K is associated with a loadset LXY and an unloadset UXY as
illustrated.
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• The path represents a cycle, σ.

• It is a longest cycle problem as the reduced ĉs ≥ 0.

• We do not have a designated starting node and hence will have to start
the algorithm ∀p ∈ P v.

• The ability to perform a load on the partial path, which can be un-
loaded at a previous node of the cycle σ. A second pass of all ports
in the cycle σ must be performed only allowing the unload extension
function to check for load balance.

• The route is combined with a loading/unloading pattern not unlike
the labelling algorithm for the SDVRPTW in Desaulniers [2010].

In the label setting algorithm for LSNDP a label E contains the following
information:

• Current port, pc

• Start port, ps

• (reduced) cost, t

• Accumulated distance, ds

• The load of each trade, FXY ∀XY ∈ K

• Current load, Fc =
∑
XY ∈K F

XY

• Visit number, kp ∀p ∈ P v

The resources are ds, (F
XY )XY ∈K , Fc, (kp)p∈P v i.e. we have 2+ |K|+ |pv|

ressources. The extension function of the distance is defined as ed(ij)(Ei) =

d(Ei) +dij . The feasibility and ressource consumption of extending label Ei
along an arc depends on the arc type:

• Case 1: extending along a sail arc (i, j) ∈ As
A feasible extension of label Ei to node j along a sail arc (i, j) ∈ As
must satisfy the following conditions:

⌈
ed(ij)(Ei)

W v
d

⌉
≤ |v| (B.8)

kij + 1 ≤Mj (B.9)

(B.8) ensures the feasibility of the number of vessels deployed to the
service and (B.9) ensures the number of port calls to port j does not
exceed Mj . If the extension is feasible a new label Ej is created. Define
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$ =

⌈
ed
(ij)

(Ei)

W v
d

⌉
−
⌈
d(Ei)
W v

d

⌉
. $ expresses whether the label extension

will require an additional vessel on the service to maintain weekly
frequency. The following extension functions are applied to create
label Ej : pjc = j, pjs = pis, t

j = ti − cvj − ĉv · $, d = ed(ij)(Ei), F
j
C =

F iC , F
XY
j = FXYi , kjj = kij + 1, kjp = kip ∀p ∈ P v \ {j})

• Case 2: extending along an unload arc (i, j) ∈ Au|j = µXYp
A feasible extension of label Ei to node j along unload arc (i, j) ∈ Au
must satisfy the following conditions:

FXY > 0 (B.10)

where (B.10) ensures that the commodity XY is currently loaded on
the vessel i.e. that a previous visit to a node in LXY has been per-
formed. If the extension is feasible a new label Ej is created using the
extension functions:
pjc = h(j), pjs = pis, t

j = ti+ ûXYp ·max{dXY , FXYi }, d = ed(ij)(Ei), F
j
C =

F iC−max{dXY , FXYi }, FXYj = FXYi −max{dXY , FXYi }, FZWj = FZWi ∀ZW ∈
K \ {XY }, kjp = kip ∀p ∈ P v)

• Case 3: extending along a load arc (i, j) ∈ Al|j = ρXYp
A feasible extension of label Ei to node j along a load arc (i, j) ∈ Al
must satisfy the following conditions:

F ic < Cv (B.11)

(B.11) ensures that the vessel has excess capacity for loading.

If the extension is feasible a new label Ej is created with the following

extension function: pjc = h(j), pjs = pis, t
j = ti + l̂ · max{dXY , Cv −

F iC}, d = ed(ij)(Ei), F
j
C = F iC + max{dXY , Cv − F iC}, FXYj = FXYi +

max{dXY , Cv −F iC)}, FZWj = FZWi ∀ZW ∈ K \ {XY }, kjp = kip ∀p ∈
P v)

A state is feasible when the start node is reached (pc = ps) and the
containers are balanced for all trades( FXY = 0 ∀XY ∈ K) by applying
unload extensions to the cycle starting from ps ending in ps. To obtain the
solution to a service the auxiliary data of what has actually been loaded
and unloaded has to be stored and a mapping from L to α and from U to β
creates the column entries for (un)load in the master problem. For an exact
solution to the pricing problem the service with the best reduced cost (max
ĉs) is added to the master problem. However, the label setting algorithm
may find several services where the cost t is greater than 0 and add several
columns in an iteration to accelerate convergence of the column generation
algorithm.
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B.2.2 Complexity

Let T denote an upper bound on the distance. The running time of the algo-
rithm can be shown to be O((T |P |C |K|∏

p∈X d
pY ∏

p∈GXY C)2). Increasing
the number of trades and the number of transhipment ports will increase the
number of states in the Dynamic Programming algorithm. To solve practi-
cal problem instances it is therefore important to make a careful choice of
the trades and the ports, where transhipment is allowed.

In CVRP a pseudo polynomial relaxation is used when solving the strongly
NP-hard pricing problem (Baldacci et al. [2008]) to reduce the practical run-
ning time of the algorithm. The method has proven to be very powerful and
we therefore suggest a pseudo polynomial relaxation of our pricing problem.
This relaxation can be obtained as follows: Each port is assigned the min-
imal load and unload cost and the bounds on the load is removed. In each
port the number of different states will then be limited to T |P ||C| and a
running time of O((T |P |2|C|)) can be obtained.

As in other column generation algorithms we will not solve the pricing
problem to optimality in each iteration but will stop once a sufficient amount
of columns with positive reduced cost is found. An easy way to do this is
to run the dynamic programming algorithm using a greedy variant adding
any reduced cost column instead of the best reduced cost column.

B.3 Conclusion

We have presented a new model for LSNDP and presented a solution ap-
proach using column generation. Among the benefits of the proposed model
is a novel view of demands in liner-shipping, which are considered on a
trade basis. This has the advantage of both being intrinsic to the liner ship-
ping business, giving a natural understanding, and requiring fewer variables.
Additionally the proposed subproblem is related to the pricing problems in
VRP where Branch-and-Cut-and-Price has been used with great success. We
have shown that a pseudo polynomial relaxation can be used as bounding
to solve the pricing problem in combination with heuristics and other tech-
niques that have been effective in solving VRP problems. This encourages
us to believe that the method scales well to larger instances. In the VRP
context resource limitations have proven to be effective for the dynamic pro-
gramming algorithms in reducing the state space. Therefore, further work
with richer formulations of LSNDP, considering aspects as transit time lim-
its on paths, draught limits in ports and other operational constraints from
liner shipping might tighten the pricing problems. This will help us scale
to larger instances while adding real life complexity to the model. At the
time of the conference we aim to present preliminary computational results
for the dynamic programming algorithm based on data from the benchmark
paper of (Løfstedt et al. [2010]).
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Abstract

This paper presents a column generation algorithm for the Vehicle Routing Problem with Time
Windows (VRPTW). Traditionally, column generation models of the VRPTW have consisted of a
Set Partitioning master problem with each column representing a route, i.e., a resource feasible path
starting and ending at the depot. Elementary routes (no customer visited more than once) have shown
superior results on difficult instances (less restrictive capacity and time windows). However, the pric-
ing problems do not scale well when the number of feasible routes increases, i.e., when a route may
contain a large number of customers. We suggest to relax that ‘each columnis a route’ into ‘each
column is a part of the giant tour’; a so-called partial path, i.e., not necessarily starting and ending in
the depot. This way, the length of the partial path can be bounded and a better control of the size of
the solution space for the pricing problem can be obtained.

C.1 Introduction

The VRPTW can be described as follows: A set of customers, each with a demand, needs to be
serviced by a number of vehicles all starting and ending at a central depot. Each customer must be
visited exactly once within a given time window and the capacity of the vehicles maynot be exceeded.
The objective is to service all customers traveling the least possible distance. In this paper we consider
a homogeneous fleet, i.e., all vehicles are identical.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRPTW is to split
the problem into a master problem (a Set Partitioning Problem) and a pricing problem (an Elemen-
tary Shortest Path Problem with Resource Constraints (ESPPRC), wherecapacity and time are the
constrained resources). A restricted master problem can be solved with delayed column generation
and embedded in a branch-and-bound framework to ensure integrality. Applying cutting planes either
in the master or the pricing problem leads to a Branch-and-Cut-and-Price algorithm (BCP). Dror [5]
showed that the ESPPRC (with time and capacity) is stronglyNP -hard.

We propose a decomposition approach based on the generation of partialpaths and the concatena-
tion of these. In the bounded partial path decomposition approach the main idea is to limit the solution
space of the pricing problem by bounding some resource, e.g., the numberof nodes on a path. The
master problem combines a known number of these bounded partial paths to ensure all customers are
visited.
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The paper is organized as follows: In Section C.2 an overview of the Dantzig-Wolfe decomposi-
tion of the VRPTW is given and it is described how to calculate the reduced cost of columns when
column generation is used. Section C.5 concludes on the model.

C.2 The Vehicle Routing Problem with Time Windows

The VRPTW can formally be stated as: Given a graphG(V,A) with nodesV and arcsA, a setR of
resources (R= {load, time}) where each resourcer ∈ R has a lower boundar

i and an upper boundbr
i

for all i ∈V and a positive consumptionτr
i j when using arc(i, j) ∈ A, find a set of routes starting and

ending at the depot node 0∈V satisfying all resource limits, such that the cost is minimized and all
customersC=V \{0} are visited.

2-index formulation of the VRPTW In the following letci j be the cost of arc(i, j) ∈ A, xi j be the
binary variable indicating the use of arc(i, j) ∈ A, andTr

i j be the consumption of resourcer ∈ R at
the beginning of arc(i, j) ∈ A. Let δ+(i) andδ−(i) be the set of outgoing respectively ingoing arcs of
nodei ∈V. The mathematical model of VRPTW adapted from Bard et al. [2] and Ascheuer et al. [1]:

min ∑
(i, j)∈A

ci j xi j (C.1)

s.t. ∑
(i, j)∈δ+(i)

xi j = 1 ∀i ∈C (C.2)

∑
( j,i)∈δ−(i)

x ji = ∑
(i, j)∈δ+(i)

xi j ∀i ∈V (C.3)

∑
( j,i)∈δ−(i)

(Tr
ji + τr

ji x ji )≤ ∑
(i, j)∈δ+(i)

Tr
i j ∀r ∈ R, ∀i ∈C (C.4)

aixi j ≤ Tr
i j ≤ bixi j ∀r ∈ R, ∀(i, j) ∈ A (C.5)

Tr
i j ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (C.6)

xi j ∈ {0,1} ∀(i, j) ∈ A (C.7)

The objective (C.1) sums up the cost of the used arcs. Constraints (C.2) ensure that each customer
is visited exactly once, and (C.3) are the flow conservation constraints. Constraints (C.4) and (C.5)
ensure the resource windows are satisfied. It is assumed that the bounds on the depot are always
satisfied. Note, no sub-tours can be present since only one time stamp per arc exists and the travel
times are positive.

C.3 Bounded partial paths

A solution to the VRPTW:v0 → c1
1 → . . .→ c1

k1
→ v0,v0 → c2

1 → . . .→ c2
k2
→ v0, . . . ,v0 → cn

1 → . . .→
cn

kn
→ v0 can be represented by the giant-tour representation of Christofides andEilon [3]:

v0 → c1
1 → . . .→ c1

k1
→ v0 → c2

1 → . . .→ c2
k2
→ v0 . . .→ v0 → cn

1 → . . .→ cn
kn
→ v0

which is one long path visiting all customers. The consumption of resources isreset each time the
depot node is encountered.

The idea is to partition the problem so that the solution space of each part is smaller than the
original problem. This is done by splitting the giant-tour into smaller segments by imposing an upper

216



Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

limit on some resource, e.g., bounding the path length in the number of nodes. In the following the
number of visited customers is considered the bounding resource, i.e., the number of visits to the
non-depot node setC. Each segment represents a partial path of the giant-tour. With a fixed number
of customers on each partial path, sayL, a fixed number of partial paths, sayK, is needed to ensure
that all customers are visited, i.e.,L ·K ≥ |C|. The partial paths can start and end in any node inV and
can visit the depot several times. Example of a partial path:

c1 → c2 → v0 → c3 → v0 → c4

Consider the graphG′(V ′,A′) consisting of a set of layersK = {1, . . . , |K|}, each one representing
G for a partial path. LetGk be the sub graph ofG′ representing layerk with node setVk = {(i,k) :
i ∈ V} for all k ∈ K and arc setAk = {(i, j,k) : (i, j) ∈ A} for all k ∈ K. Let A∗ = {(i, i,k) : (i,k) ∈
Vk ∧ (i,k+1) ∈ Vk+1∧ k ∈ K} be the set of interconnecting arcs, i.e., the arcs connecting a layerk
with the layer abovek namely layerk+1 for all k∈ K and all nodesi ∈V (layer|K|+1 is defined to
be layer 1∈ K and layer 0 is defined to be layer|K| ∈ K). LetV ′ =

⋃
k∈K Vk and letA′ =

⋃
k∈K Ak∪A∗.

An illustration ofG′ can be seen on Figure C.1. Note, that arc(i, i,k) does not exist inAk and that arc
(i, j,k) with i 6= j does exist inA∗, so all arcs(i, j,k) ∈ A′ can be uniquely indexed. With the length of
a path defined as the number of customers on it, the problem is now to find partial paths of length at
mostL in |K| layers withL · |K| ≥ |C|> L · (|K|−1), so that each partial pathp ending in nodei ∈V
is met by another partial pathp′ starting ini. All partial paths are combined while not visiting any
customers more than once and satisfying all resource windows. A customerc∈C is considered to be
on a partial pathp if c is visited onp and is not the end node ofp.

Layer: 1

v0

c1 c2

c3

2

v0

c1 c2

c3

. . .

. . .

|K|

v0

c1 c2

c3

Figure C.1: Illustration ofG′ with |C| = 3, |K| = 3, and|L| = 1. Edges (full-drawn) represent two
arcs; one in each direction. Dashed lines are the interconnecting arcsA∗.

Let L be the upper bound on the length of each partial path, and let|C| be the length of the
combined path (the giant-tour). Now, exactly|K| = ⌈|C|/L⌉ partial paths are needed to make the
combined path, sinceL⌈|C|/L⌉ ≥ |C| > L(⌈|C|/L⌉−1). Note that given a|K|, L can be reduced to
L = ⌈|C|/|K|⌉.
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3-index formulation of the VRPTW Let xk
i j be the variable indicating the use of arc(i, j,k) ∈ A′.

Problem (C.1)–(C.7) is rewritten:

min ∑
k∈K

∑
(i, j)∈A

ci j x
k
i j (C.8)

s.t. ∑
k∈K

∑
(i, j)∈δ+(i)

xk
i j = 1 ∀i ∈C (C.9)

∑
(i, j)∈δ+(i)

xk
i j ≤ 1 ∀k∈ K, ∀i ∈C (C.10)

∑
k∈K

(
xk−1

ii + ∑
( j,i)∈δ−(i)

xk
ji

)
= ∑

k∈K

(
xk

ii + ∑
(i, j)∈δ+(i)

xk
i j

)
∀i ∈V (C.11)

xk−1
ii + ∑

( j,i)∈δ−(i)
xk

ji = xk
ii + ∑

(i, j)∈δ+(i)
xk

i j ∀k∈ K, ∀i ∈V (C.12)

∑
k∈K

∑
i∈V

xk
ii = K (C.13)

∑
i∈C

∑
(i, j)∈A

xk
i j ≤ L ∀k∈ K (C.14)

∑
k∈K

∑
( j,i)∈δ−(i)

(
Trk

ji + τr
ji x

k
ji

)
≤ ∑

k∈K
∑

(i, j)∈δ+(i)
Trk

i j ∀r ∈ R, ∀i ∈C (C.15)

∑
( j,i)∈δ−(i)

(
Trk

ji + τr
ji x

k
ji

)
≤ ∑

(i, j)∈δ+(i)
Trk

i j ∀r ∈ R, ∀k∈ K, ∀i ∈C (C.16)

ai ∑
k∈K

xk
i j ≤ ∑

k∈K

Trk
i j ≤ bi ∑

k∈K

xk
i j ∀r ∈ R, ∀(i, j) ∈ A (C.17)

aix
k
i j ≤ Trk

i j ≤ bix
k
i j ∀r ∈ R, ∀k∈ K, ∀(i, j) ∈ A (C.18)

xk
i j ∈ {0,1} ∀k∈ K, ∀(i, j) ∈ A (C.19)

Trk
i j ≥ 0 ∀r ∈ R, ∀k∈ K, ∀(i, j) ∈ A (C.20)

The objective (C.8) sums up the cost of the used edges. Constraints (C.9)ensure that all customers
are visited exactly once, while the redundant constraints (C.10) ensure that no customer is visited more
than once. Constraints (C.11) maintain flow conservation between the original nodesV, and can be
rewritten as

∑
k∈K

∑
( j,i)∈δ−(i)

xk
ji = ∑

k∈K
∑

(i, j)∈δ+(i)
xk

i j ∀i ∈V

since∑k∈K xk−1
ii = ∑k∈K xk

ii . Constraints (C.12) maintain flow conservation within a layer. Constraint
(C.13) ensures thatK partial paths are selected and constraints (C.14) that the length of the partial
path in each layer is at mostL. Constraints (C.15) connect the resource variables on a global level and
constraints (C.16) connect the resource variables within each single layer, note that since there is no
(C.15) and (C.16) for the depot it is not constrained by resources. Constraints (C.17) globally enforce
the resource windows and the redundant constraints (C.18) enforce the resource windows within each
layer.
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C.4 Dantzig-Wolfe decomposition

The 3-index formulation of the VRPTW (C.8)–(C.20) is Dantzig-Wolfe decomposed whereby a mas-
ter and a pricing problem is obtained.

Master problem: Let λp be the variable indicating the use of partial pathp. Using Dantzig-Wolfe
decomposition where the constraints (C.9), (C.11), (C.13), (C.15), and (C.17) are kept in the master
problem the following master problem is obtained:

min ∑
p∈P

cpλp (C.21)

s.t. ∑
p∈P

∑
(i, j)∈δ+(i)

αp
i j λp = 1 ∀i ∈C (C.22)

∑
p∈P:ep=i

λp = ∑
p∈P:sp=i

λp ∀i ∈V (C.23)

∑
p∈P

λp = K (C.24)

∑
( j,i)∈δ−(i)

(
Tr

ji + ∑
p∈P

τr
ji α

p
ji λp

)
≤ ∑

(i, j)∈δ+(i)
Tr

i j ∀r ∈ R, ∀i ∈C (C.25)

ai ∑
p∈P

αp
i j λp ≤ Tr

i j ≤ bi ∑
p∈P

αp
i j λp ∀r ∈ R, ∀(i, j) ∈ A (C.26)

Tr
i j ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (C.27)

λp ∈ {0,1} ∀p∈ P (C.28)

Whereαp
i j is the number of times arc(i, j) ∈ A is used on pathp∈ P andsp andep indicates the start

respectively the end node of partial pathp∈P. Constraints (C.22) ensure that each customer is visited
exactly once. Constraints (C.23) link the partial paths together by flow conservation. Constraint (C.24)
is the convexity constraint ensuring thatK partial paths are selected. Constraints (C.25) and (C.26)
enforce the resource windows.

Pricing problem: The |K| pricing problems corresponding to the master problem (C.21)–(C.28)
contains constraints (C.10), (C.12), (C.14), (C.16), and (C.18) and can be formulated as a single
ESPPRC where the depot is allowed to be visited more than once. Lets ande be a super source
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respectively a super target node. Arcs(s, i) and(i,e) for all i ∈V are added toG.

min ∑
(i, j)∈A

ci j xi j (C.29)

s.t. ∑
(s,i)∈δ+(s)

xsi = 1 (C.30)

∑
(i,e)∈δ−(e)

xie = 1 (C.31)

∑
(i, j)∈A

xi j ≤ 1 ∀i ∈C (C.32)

∑
( j,i)∈δ−(i)

x ji = ∑
(i, j)∈δ+(i)

xi j ∀i ∈V (C.33)

∑
i∈C

∑
(i, j)∈A

xi j ≤ L (C.34)

∑
( j,i)∈δ−(i)

(Tr
ji + τr

ji x ji )≤ ∑
(i, j)∈δ+(i)

Tr
i j ∀r ∈ R, ∀i ∈C (C.35)

aixi j ≤ Tr
i j ≤ bixi j ∀r ∈ R, ∀(i, j) ∈ A (C.36)

xi j ∈ {0,1} ∀(i, j) ∈ A (C.37)

The objective (C.29) minimizes the reduced cost of a column. Constraints (C.30) and (C.31) ensure
that the path starts ins respectively ends ine. Constraints (C.32) dictates that no node is visited
more than once, thereby ensuring elementarity, and constraints (C.33) conserve the flow. Constraints
(C.35) and (C.36) ensure the resource windows are satisfied for all customers. Note, since the depot
is missing in (C.35) each time a path leaves the depot a resource is only restricted by its lower limit
ar

0 for all r ∈ R.

Let π (πi ≥ 0 : ∀i ∈C) be the duals of (C.22), letπ0 = 0, letµ be the duals of (C.23), letβ ≤ 0 be
the dual of (C.24), letν (ν ≤ 0 :∀i ∈C) be the duals of (C.25), letν0 = 0, and letω ≤ 0 andω ≥ 0 be
the dual of (C.26). The cost of the arcs in this ESPPRC are then given as:

ci j =−β+





ci j −πi − τi j ν j −aiωi +biωi ∀(i, j) ∈ A\ (δ+(s)∪δ−(e))
µj ∀(s, j) ∈ δ+(s)
µi ∀(i,e) ∈ δ−(e)

and the pricing problem becomes finding the shortest path froms to e.

Solving the pricing problem: ESPPRCs can be solved by a labeling algorithm. For details regard-
ing labeling algorithms we refer to Desaulniers et al. [4], Irnich [6], Irnich and Desaulniers [7], and
Righini and Salani [10].

Branching: Integrality can be obtained by branching on the original variables, which can be accom-
plished by cuts in the master problem (see Vanderbeck [11]), e.g., letXi j be the set of partial paths
that utilize arc(i, j) then the branch rulexi j = 0 ∨ xi j = 1 can be expressed by:

∑
p∈Xi j

λp = 0 ∨ ∑
p∈Xi j

λp = 1.
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Bounds: The following theorem justifies the approach presented in this paper.

Theorem 1. Let zl p be an LP-relaxed solution to(C.1)–(C.7) and let zpp be an LP-relaxed solution
to (C.21)–(C.28) then Zl p ≤ Zpp for all instances of VRPTW and Zl p < Zpp for some instances of
VRPTW.

Proof. Zl p ≤ Zpp since all solutions to (C.21)–(C.28) map to solutions to (C.1)–(C.7). An instance
with Zl p < Zpp is obtained with four customers each with a demand of resourcer of half the global
maximumbr of r, the distance from the customers to the depot larger than the distance between
the customers, andL = 4. The solution to (C.21)–(C.28) would use the expensive edges four times,
whereas the solution to (C.1)–(C.7) only would use them twice.

C.5 Conclusion

A new decomposition model of the VRPTW has been presented with ESPPRCs as the pricing prob-
lems. The model facilitates control of the running time of the pricing problems. Due to the aggregation
of the model, LP relaxed bounds of (C.21)–(C.28) are better than the direct model (C.1)–(C.7). Since
(C.21)–(C.28) is a relaxation of the traditional Dantzig-Wolfe decomposition model with elementary
routes as columns, the LP relaxed bounds may be weaker yielding a larger branch-and-bound tree.
The difference in bound quality can be decreased with the use of specialpurpose cutting planes,
which this paper does not leave room for. Furthermore, effective cutssuch as Subset Row-inequalities
by Jepsen et al. [8] and Chvátal-Gomory Rank-1 cuts (see Petersen et al. [9]) can be applied to the Set
Partition master problem to strengthen the bound. Future experimental resultswill conclude on the
effectiveness of this approach.
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Bilag D

Danish Summary

Dette Ph.D projekt giver et overblik over, hvordan de to matematiske løs-

ningsmetoder Branch-and-Cut og Branch-and-Cut-and-Price kan benyttes i for-

bindelse med løsning af ruteplanlægningsproblemer. Ph.D projektet behandler

dels to klassiske ruteplanlægningsproblemer, det relaterede ressource begrænsede

korteste vej-problem og et nyt storby ruteplanlægnings problem. I det klassiske

rute planlægnings problem skal et sæt af kunder have leveret varer fra et cen-

tralt depot. Kundernes varebehov måles i kilo og køretøjet har en grænse for

hvor mange kilo det kan køre med. Målet for optimeringsalgoritmerne er at �nde

det sæt af ruter der har den mindste totale længde. En klassisk udvidelse er at

kunder har et tidsvindue dvs. køretøjet skal ankomme mellem for eksempel 8 og

16 for at kunne a�æse varene. For at håndtere de problemer der er i mange stor-

byer, hvor det ofte enten ikke er tilladt eller er meget besværligt at køre med de

helt store lastvogne er et nyt ruteplanlægnings problem kaldet 2ECVRP blevet

analyseret. I 2ECVRP er der foruden kunderne og det centralt depot også satel-

litdepoter som er beliggende i udkanten af byerne. De store køretøjer kører så

mellem depotet og satellitdepoter og mindre køretøjer sørger så for at varene

kommer fra satellitdepoter til kunderne. Målet for optimerings algoritmerne er

igen at �nde det sæt af ruter der har den mindste totale længde. Alle algoritmer

er implementeret og testet på en moderne computer og i �ere tilfælde er der

fundet optimale løsninger til problemer som ikke har kunnet løses tidligere.
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