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Abstract. The in-plane resolution of a diffraction apparatus is 

discussed in the Gaussian approximation. This approximation is 

generally adequate to find half-widths of the resolution func

tion, but the detailed resolution line-shape may differ from a 

Gaussian line-shape for instance in using perfect crystals as 

monochromator or analyzer. In combining the contributions from 

different elements in the apparatus to the resolution function 

we find the method of conjugate diameters useful. The resulting 

resolution widths are not given in explicit formulae but by 

means of a few simple subroutines in a computer program, e.g. 

transforming a set of conjugate diameters to another set with a 

prescribed direction of one diameter, the method seems to be 

readily applicable ot a variety of instruments. 

UDC 539.12.172 : 621.384.634 

March 1984 

Risø National Laboratory, DK-4000 Roskilde, Denmark 



ISBN 87-550-0998-0 

ISSN 0418-6435 

Risø Repro 1984 



CONTENTS 

Page 

PREFACE 5 

1. INTRODUCTION 7 

2. GAUSSIAN APPROXIMATION 9 

3. CONJUGATE DIAMETERS 11 

4. MONOCHROMATIZATION BY SINGLE BRAGG REFLECTION IN 

A WHITE BEAM 15 

5. ELASTIC SCATTERING 19 

SUMMARY 21 

FIGURES 22 



- 5 -

PREFACE 

These notes for a lecture on the 1980 Vienna Summer School on 

Synchrotron Radiation deal with the general problem of resolution 

in a diffraction experiment. The approach taken here builds on the 

method of conjugate diameters invented in 1969 by H.B. Nøller and 

Hourits Nielsen (Acta Cryst. A25, 547). The first edition con

tained an error with respect to Darwin width and perfect crystals. 

Additional examples, including the source line-width from an 

X-ray tube, may be found in Finn Christensen's thesis, Risø Report 

R-459. 
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1. INTRODUCTION 

Structures with a length scale of the order of atomic dimen

sions (A) can be studied by diffraction of radiation (neutrons« 

X-rays or electrons) with a wavelength of a similar order of 

magnitude. The principles of diffraction is simple. A volume ele

ment dr at position r in the structure scatters the incident 

plane-wave beam described by its wavevector k\. 

Looking at scattering into the direction of the scattered 

wavevector K- the phase of the beam scattered from the volume 

element is (k,-k2)»r 5 Q T and the amp? ude is p(r)dr, where p(r) 

indicate the scattering length density, so the total scattered 

amplitude is proportional to Jp(r)e dr. To the extent that the 

scattering density reflects the structure, the latter can be de

termined by measuring the scattered intensity versus wavevector 

transfer Q. We assume here that the scattering is very nearly 

elastic, |k2| = |k.|, an approximation which is excellent for 

X-ray diffraction due to the relatively large energy of X-ray 

photons. 

The experimental uncertainty is partly due to the finite 

count rate at a certain wavevector and partly due to the accuracy 

with which the wavevector 6 is determined by the diffraction 

apparatus. These two sources of uncertainty are complementary in 

the sense that one generally has to sacrifice a loss of intensity 

in improving the 5-resolution, but sharp features in the cross 

section are smeared in a diffraction apparatus with broad 

wavevector resolution. For a given experiment there is an opti

mum between the requirements of high intensity and harrow rejol-

utlon and it is therefore of importance to be able to calculate 

the resolution in order to design an experiment properly. 
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The scattering process to be studied is conveniently depicted 

in reciprocal space. Fig. la. The incident beam is given by the 

wavevector k. and the scattered beam by wavevector k~. The elastic 

scattering cross section depends only on the wavevector difference 

Q i k.-k-, not on k. and k~ separately. 

The scattering diagram of Fig. la may be obtained by the set

up shown in Fig. lb. The X-ray source may be synchrotron radiation. 

A monochromatic beam is obtained by Bragg reflection from the 

monochromator crystal M. The degree of monochroraatization depends 

on the apexture A together with the source size as well as the 

mosaic width and/or Darwin-width of the monochromator crystal. 

The monochromatic beam is scattered by the sample S and 

in Fig. lb is shown a set-up where only scattered radiation in a 

certain direction defined by the multislit collimator C (a so-

called Soller collimator) is detected. It should be emphasized 

that there is a great variety of ways to obtain a certain scat

tering diagram. Let us just mention a few examples. Synchrotron 

radiation is very well col lima ted, typical to 0.1 mrad and the 

incident direction of kj is therefore typically defined within 

0.1 mrad corresponding to 2 slits 1 meter apart and each 1/10 of 

a millimeter wide: If the direction of the scattered beam should 

be defined to a similar degree of accuracy a Soller collimator is 

not practical (in practice the lower limit for a Soller colli

mator is 1 mrad). Instead one can insert an analyzer crystal in 

front of the detector. In that case we have a triple axis spec

trometer (1 axis * monochromator, "2 axis « sample, 3rd axis « 

analyzer). The analyzer crystal analyzes the direction of the 

scattered beam, not its wavelength or frequency, since we have 
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presumed that the scattering is practically elastic. The angular 

resolution of the analyzer device depends in this case on the 

incident wavelength band-width. Another possibility is to detect 

the entire angular distribution of scattered radiation using a 

position sensitive detector. The spatial resolution is typically 

0.1 mm and if the apparent width of scattering volume is of the 

same order of magnitude an angular resolution of 0.1 mrad is ob

tained by a detector distance of 1 meter which is quite practical. 

In general, the monochromatic beam is neither perfectly mono

chromatic nor perfectly well collimated. Similarly, the sc?ttered 

beam reaching the detector has a small but finite angular spread. 

As a consequence, for a given setting of a spectrometer one 

samples the scattering cross section over a finite region of Q-

space. It is the purpose of this lecture to discuss a rather 

general method to calculate the size of the region in Q-space 

over which the scattering cross section is sampled, o'r to be 

more specific: the resolution function is approximated by a two-

dimensional Gaussian and we discuss how to obtain the corresponding 

widths. Whether the actual resolution function is more or less 

Gaussian-like depends on the individual components of the diffrac-

tometer. The advantage of assuming Gaussian resolution is of 

course the great simplification in carrying out folding integrals. 

2. GAUSSIAN APPROXIMATION 

All individual components of the instrument deteming the 

final resolution will be approximated by Gaussian functions of 

the same width as the true distribution function. For example, 

although the angular resolution of two slits of width w, and w, 

(w2 > Wj) at distance L apart (Pig, 2) is of trapezoidal shape 
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with a full width at half height (FWHM) of w2/L it will be ap

proximated by a Gaussian having the same FWHM and the same area 

(not the same maximum height!). 

The advantage of assuming individual Gaussian distributions 

is that any combination of two distributions is also Gaussian: 

P(xQ) = c
,/exp[-(x/o1)

2 - ((x-xo)/a2)
2]dx 

2 

« c exp[-(xQ/o) ] 

with 

2 2 ^ 2 
O = O. + a2 

so the combined distribution is also Gaussian with a width a 

simply to be found by the rule of sum-of-squares as given in 

Eq. (2). In equation (1) C and c are normalization constants 

which we shall not always write out explicitly. 

Equation 1 describing the folding of two Gaussians holds 

only in one dimension, whereas the resolution function we are 

seeking is two-dimensional. As a matter of fact it is three-dimen

sional, the third dimension being- perpendicular to the scattering 

plane, but this third component is usually uncorrelated with the 

components in the scattering plane. The general question for cal

culating a two-dimensional distribution function is the following: 

Suppose a certain two-dimensional, Gaussian distribution 

function is given by its half-contour ellipse E, in the x-y 

plane, Fig. 3. In the Cartesian x-y coordinates the half-contour 

is given by equating a second order polynomium in x and y, in

cluding cross terms, with unity. Suppose now that this distri

bution has to be folded with a one-dimensional distribution along 

(1) 

(2) 
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a certain line D,. How do we find the folded distribution? One 

convenient way, which utilizes the rule of sum-of-squares, is to 

abandon a description in the Cartesian coordinate system with its 

cross terms, and instead express the distribution function as the 

product of two independent distributions along the diameter D, 

and along its conjugate diameter D2: 

PQ(r) % exp(-u
2/o2) exp(-v2/a2) (3) 

with r = u/a. D. + v/o. D2 (4) 

D, and D. denoting unit vectors along the diameters D^ and D2» 

The distribution PQ(r) folded with a Gaussian along the D. unit 

vector with a width o_ is simply 

P(r) ^ exp(-u2/c2) exp(-v2/o2) (5) 

with r = (u/o) Dx + (v/a2) D2 (6) 

2 2 2 
and az = aj + a* (7) 

The resulting ellipse is shown as E in Fig. 3. 

In the following section we shall consider the rules of 

conjugate diameters in ellipses. 

3, CONJUGATE DIAMETERS 

The ellipse E is considered as the projection of a circle C 

as shown in Fig. 4. Explicitly, the coordinate along axis 1 in 

the circle is left unchanged during the projection, but the co

ordinate along the orthogonal axis is multiplied by a certain 
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number b/a < l. Two arbitrary orthogonal diameters in the circle, 

say O'A'-O'B', are projected as two conjugate diameters in the 

ellipse, OA-OB. From this definition it follows immediately that 

diameter conjugate to OA is colinear with the tangent to the 

ellipse in point A. An arbitrary point C on the circle is given 

by two numbers c, and c_: 

O'C - CjO'A' + c^'B' (8) 

with c* + c* = 1 (9) 

The point C in the ellipse corresponding to C on the circle 

is given by 

OC = CjOA + c2OB (10) 

As the point C* on the circle is given by the coordinates (c^c-) 

the orthogonal diameter point D' must have the coordinates 

(-c2/+c,) and the corresponding point D on the ellipse is given 

by 

0D « -c2OA + CjOB (11) 
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The vector product OC x OD becomes 

OC * OD = lCjj3k+c2OB) * (-OJOA+CJOB) 

- Cĵ OA x OB - c2OB x OA 

- (c2+c2)OA x oS i.e. 

0$ x oB - OA x OB* (12) 

y§S£2^_BI2^H£t§• 

Suppose that we instead of Eq. (10) giving the ellipse in 

terms of the basis OA, OB want another basis-set OC, OD where 

for instance the direction of OC is given. This transformation 

is carried out as follows: Let the projections of OA and OB on 

a line (x-axis) perpendicular to the given direction OC be A 

and B , respectively. It follows from Eq. (10) that 

2 2 
O = c,A + c2Bx a n d u s i n9 1 = c, + c- we find 

c2 - B 2 / ^ and c2 = A2/W2 (13) 

with 

"x ' Ax + Bx (14» 

Furthermore 

OC'OC = (c.OA+c-OB)•(CjOA+C-OB) 

2 2 2 2 •*• -+ 
= C p A +C2OB +2c1C20A«OB 

and using Eq. (13) we find 

W2OC2 - Bjtø+A2,) • Ajtø+Bj) - 2AxBx(AxBx+AyBy) (15) 

- <AxBy-AyBx)
2 " |OAxOB|2 or 

OC - |53JX0B|/WX (16) 
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Let us finally consider the ratio between the vector product and 

the scalar product of OC and OD in order to determine the angle 
^ • _ 

a between the given direction OC and the conjugate diameter OD: 

OC*OD 
tga = '_» .»' 

OC-OD 

The scalar product is easily seen to fulfil 

W^(55-OD) = -|OAxOB|(AXA +BxBy) 

and utilizing (12) we find 

wx 
tga = " A A ? B B (17) 

x_y _x y_ 

The length of OD is finally given by 

,;£, [ocxobl x .... 

I°DI " OCslnV- " iiHS (18) 

Formulae (14), (16)-(18) constitute the wanted transformation 

(OA,OB) •* (OC,OD). 

Note that OD sina is the projection on the x-axis of the 

diameter OD and we conclude from Eq. (18): 

i2_£!}£_§2y2£§_£22£_2f_£J}t-5Hm_2£-§2!22£S2,_E£22£££A2D5_2l-22Y^SS£ 
2 2 2 of conjugate diameters, W = A +B . •* * x x x 

From a set of conjugate diameters, OA and OB/ one readily finds 

the major and minor axis. Without less of generality we define 
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IOA| = A to be larger than IOB I = B and their orientation so that 

the angle from OA to OB/ v, is less than K/2. Let the major axis 

be OMj and minor axis ON2 along an x-axis and a y-axis, respectively. 

The major axis (x-axis) must be in between OA and OB with say angle 

m from OA to OMj. It follows from eq. (17) that AxAu+BxBy = 0 or 

-A2cosmsinm + B2cos(v-m)sin(v-m) = 0, i.e. 

sin2v 
tan2m = — - — (17a) 

A2/B2+cos2v 

and OM1 = [(Acosm)
2 + (Bcos(v-m))2 ] ̂ 2 (18a) 

and OM2 = [(Asinm)2 + (Bsin(v-m))2 ]1/2 (16a) 

4. MONOCHROMATIZATION BY SINGLE BRAGG REFLECTION IN A WHITE BEAM 

As an example of using the basis of conjugate diameters to 

describe distribution functions in reciprocal space we consider 

in Fig. 5 a monochromator crystal in a collimated white beam. 

For simplicity let us first assume that the monochromator 

crystal is perfect/ no mosaic width/ no Darwin width. An angular 

deviation of u in the exit collimator necessitates an angular 

deviation of -u. Fig. 5a, in the incident collimator, so the 

probability for this ray is 

P(u) = c exp(-[(-u/oQ)
2+(u/o1)

2]) 

or P(u) = c exp(-(u/a)2) with a"2 = o\+*"^ (19) 
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This ray has a smaller Bragg angle than the central ray and 

consequently a larger wavevector by an amount Ak following from 

the Bragg equation: 

k Ak = . a • u tg8M 

With u = o we find the 1/e width 

X, = - ~ - (20) 
1 smv. 

and 

^ v l - AkTu^T = tg8M *•«• vl = 9M (21) 

and we conclude v. = 8„, so the k-distribution is in this case 

degenerated to be along a straight line parallel to the mono-

chromator planes with a 1/e width of ka/sinQ^. 

Next we consider the general case, Fig. 5b, allowing for a 

finite mosaic width of the monochromator crystal. 

Consider a ray with an exit angular deviation of u, scattered 

from a mosaic block with deviation angle m. The incident ray must 

therefore have had an angular deviation of (-u+2m) and the pro

bability P(u,m) for this ray is given by 

- AnP(u,m) = (u/a,)2 + (m/n)2 + (2m-u)2/a2 
(22) 

This quadratic form in (u,m) leads of course to a distri

bution of E-vectors with an ellipse half-contour. 



- 17 -

We want to find this ellipse in terms of two conjugate dia

meters, and since the ellipse degenerates to the line X. for a 

perfect crystal, it is natural to let X, be the first of the two 

conjugate diameters. Since m = 0 for the X1 axis it coincides 

with the u-axis in the (u,m) plane. We shall now find its conjugate 

X . In the (u,m) plane the direction of X- must be given by u = ym 

where y is some dimensionless combination of o , o. and probably n. 

We shall therefore rewrite Eq. (22) in the form 

- JtnP = a2m2 + B2(u-vm)2 (23) 

and by comparison with Eq. (22) we find 

2 a 4-2 + 1/n2, B2 = o~2 + O~ 2,Y = 2o2/(a2 + o2) 
0 + 0 , 
o 1 

The length of X_ is found in the same way as X, in Eq. (20) and 

Eq. (21). We consider a deviation in the exit angle of u = ym, 

and since we want the 1/e contour the value of m must be aT 

according to Eq. (23) . The situation is depicted in Fig. 6. The 

direction of X_ is given by the angle v2 and the length of X2 is 

ku/sinv2, that is k(ya~ )/sinv2 or explicitly: 

k 2o, . . -!j 

*2 sinv, 2 2 l
rt2._2 2J u*' 2 a +o, a +o, n o i o l 

The angle v2 is determined by the corresponding change in wave-

vector, Ak, as tgv,, = k(Ym)/Ak. The quantity Ak is given by dif

ferentiation of the Bragg law as Ak = (k/tg9M)(A0„) and in the 

present case A9M is the difference between deviations in exit 
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angle u = ym and mosaic angle m, i.e. A8„ = (T-l)m, so the for-

mula for tgv2 becomes 

2o2 

t g V2 = (k/tg^HY-Dm = ̂ 1 tg6M = ̂ 2 t g 6M (25> 
1 o 

(0 < v2 < TT) 

Equations (20), (21), (24) and (25) determine the conjugate 

diameters X., X_ in terms of the collimations o ,o, and the i z o 1 

mosaic width n. 

Let us now consider a perfect crystal (no mosaic width) but take 

into account the so-called Darwin-width. The finite Darwin width 

expresses the fact that a perfectly monochromatic ray may be Bragg 

scattered from the perfect crystal, even if the incident angle 

deviates slightly from the Bragg angle by an amount m. In the 

Gaussian approximation the probability for reflection from the 

crystal is exp[-(m/øD)
2], oD denoting the Darwiji width. In 

this case also the reflected ray deviates by m from the central 

ray. In addition we now consider a slightly different wavevector, 

k+Ak, which then have the maximum chance of being reflected if it 

also has an angular deviation u from the central ray related to 

Ak by Ak = ku/tge,.. The general (u,m) ray has the probability 

P(u,m) of being transmitted by collimotors 0 and 1 as well as 

being Bragg reflected from the perfect crystal and the analogue 

of eq. (22) becomes: 

-«n P(u,.) - C^)2 * (^)* • (=-)2 «»•' 
0o oi OD 
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By identifying t h i s with the form 

-*nP(u,m) = <x2n,2 + p2(u_Ym)2 (23a) 

we find simply 

T - -1, P2 = o"2 + o^2, a2 - 052 

The length of X2 becomes 

IX2 I * kan/tgeM ( 24 a) 

and its direction coincides with the reflected ray. 

5. ELASTIC SCATTERING 

We shall in this section see how the distribution of incident 

wavevectors, given by the conjugate diameters X. and X2, is trans

formed to a resolution function in wavevector transfer fc.-k2 
- * • - * • 

assuming the scattering process k, •+ k 2 to be elastic. Consider 

Fig. 7. It turns out to be convenient first to transform the set 

(X,,X2) into a set Yi'
V
2
 w h e r e Yi is perpendicular to the scat

tering vector AB. The transformation was explicitly derived in 

section 3. 

Let us first assume that the collimation o» is infinitesimal, 

in the elastic scattering process, the endpoint of Y^ is trans

ferred to the point C on a line at angle 8 with respect to AB 

so B C = Y.sine. The endpoint of Y2 is transferred to the point 

Z2. Consider the triangle BB'D in Fig. 7. The piece Z2D = Y2sin(a-9) 

The angle y is determined by 
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tgy = Z2D/DB = ZjD/(BB'sin8) 

That the scattering is elastic implies 

BB' = 2M'M = 2Y2cos(«-90) so 

tgy = Js(cotd-cota) (26) 

The length BZ_ = DZ_/sinY or 

Z2 = Y2sin(a-8)/sinY (27) 

For infinitesimal o- the resolution ellipse is given by (Z,,Z2) 

where Z, is perpendicular to k_. It is therefore straight torvard 

to include a finite o~ as that implies a smearing perpendicular 

to k2, that is "along one of the conjugate diameters. Applying 

the rule of sum-of-squares we simply find 

Zx = I(Y1sin0)
2 + (ko2)

2]'5 (28) 

whereas the formulae for y and Z2 are unaltered by including 

finite o_, cf. Figure 3. 

Finally, we shall consider the vertical resolution. Let the 

vertical collimation before and after the monochromator be 8. 

and $2' Consider rays incident with a divergence angle of v. 

being Bragg reflected from a mosaic block with vertical divergence 

angle m. They will leave the monochroinator with a vertical diver

gence angle v2 = v,+2msin9... This expression is just the vertical 

component part of the vectorial Bragg condition Ji2 = k, + x to-
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gether with the ralation |x| = 2ksin8M. It is then straightforward 

to find the 1/e-vertical width X«: 

X3 = kB2l(Bj + 4n^sin
2eM)/(eJ + B

2, + 4n2sin26M) ]** (29) 

The final vertical resolution X is 

Xv = [X
2 + (k$3)

2]!s (30) 

where 6, is the vertical colliroation after the sample. 

SUMMARY 

The in-plane resolution of a diffraction apparatus has been 

discussed in the Gaussian approximation. This approximation is 

generally adequate to find half-widths of the resolution function, 

but the detailed resolution line-shape may differ from a Gaussian 

line-shape for instance in using perfect crystals as monochro-

mator or analyzer. In combining the contributions from different 

elements in the apparatus to the resolution function we find the 

method of conjugate diameters useful. The resulting resolution 

widths are not given in explicit formulae but by means of a few 

simple subroutines in a computer program, e.g. transforming a 

set of conjugate diameters to another set with a prescribed direc

tion of one diameter, the method seems to be readily applicable 

to a variety of instruments. 
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W 2 >Wj 

® 0 
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i y /D; 

D, 
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(b) 

ku 
InP = (-u/oj,)2* (ufoj)2 = (u/<r)2 

Ak = k/tgeM- u (Bragg! 

cr^soo"2*^"2 

m*0 . /m . #«•' 

r-u*2m 

InP r (u/<r, )2* (m/T|)2» (2m - u)2/(r0
2 

= {u-2ma2<r1"2|V2 

* m 2 ! v ^ 7 * ^ 
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