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Summary

This thesis presents an optimal design framework for the structural design of
laminated composite beams. The possibility of improving the static and dynamic
performance of laminated composite beam through the use of optimal design tech-
niques motivates the investigation presented here.

A structural model for the analysis of laminated composite beams is proposed.
The structural analysis is performed in a beam finite element context. The devel-
opment of a finite element based tool for the analysis of the cross section stiffness
properties is described. The resulting beam finite element formulation is able to
account for the effects of material anisotropy and inhomogeneity in the global re-
sponse of the beam. Beam finite element models allow for a significant reduction
in problem size and are therefore an efficient alternative in computationally inten-
sive applications like optimization frameworks. Furthermore, the devised beam
model is able account for the different levels of anisotropic elastic couplings which
depend on the laminate lay-up.

An optimization model based on multi-material topology optimization tech-
niques is described. The design variables represent the volume fractions of the
different candidate materials. Existing material interpolation, penalization, and
filtering techniques have been extended to accommodate any number of anisotropic
materials. The resulting optimization model is suitable for the simultaneous opti-
mization of cross section topology and laminate properties in the optimal design
of laminated composite beams.

The devised framework is applied in the optimal design of laminated composite
beams with different cross section geometries and subjected to different load cases.
Design criteria such as beam stiffness, weight, magnitude of the natural frequencies
of vibration, and the position of the cross section shear and mass center, are
considered. The proposed optimal design framework can be applied to tailor the
static and dynamic properties of laminated composite structures like wind turbine
blades.
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Resumé (in Danish)

Denne afhandling beskriver en metodik til optimalt design for det strukturelle
design af laminerede kompositbjælker. Forskningen der ligger til grund for denne
afhandling, er motiveret af muligheden for at forbedre de statiske og dynamiske
egenskaber af laminerede kompositbjælker, ved benyttelse af designoptimeringsme-
toder.

I afhandlingen præsenteres en strukturel model til analyse af kompositbjælker.
Den strukturelle analyse gør brug af bjælkelementer.Udviklingen af et værktøj til
tværsnitsanalyse ved hjælp af finit element metoden beskrives. Værktøjet tjener
til at bestemme stivhedsegenskaberne af kompositbjælken p̊a grundlag af tværsnit
langs med bjælken. Det resulterende bjælkeelement, og dermed dettes statiske og
dynamiske opførsel, tager materialets anisotropi og inhomogenitet i regning. Bjæl-
keelementer tillader en betydelig reduktion i problemstørrelse i sammenligning
med andre, mere beregningsintensive, tilgange til strukturelle optimeringsproble-
mer. Den udviklede bjælkemodel er ydermere i stand til at beskrive de forskellige
niveauer af elastisk kobling, som afhænger af den konkrete laminerings beskaffen-
hed.

Afhandlingen beskriver en optimeringsmodel baseret p̊a multimateriale topolo-
gioptimering. Designvariablerne repræsenterer volumenandelene af de forskellige
kandidatmaterialer. Kendte teknikker til materialeinterpolation, straf og filtrering
er udvidet til at omfatte et arbitrært antal anisotrope materialer. Den resulterende
optimeringsmodel er egnet til simultan optimering af tværsnitstopologi og lami-
nategenskaber med henblik p̊a det optimale design af laminerede kompositbjælker.

Den udviklede fremgangsmåde anvendes til bestemmelse af optimale designs af
laminerde kompositbjælker med forskellige ydergeometrier under forskellige last-
betingelser. Designkriterier s̊a som stivhed, vægt, egensvingningsfrekvenser og
positionen af forskydningsspændingscenter og massemidtpunkt behandles. Den
fremsatte optimeringsmetodik kan anvendes til at skræddersy de statiske og dy-
namiske egenskaber af laminerede kompositbjælker s̊a som vindmøllevinger.
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Introduction

The objective of this thesis is to devise a framework for the structural optimization
of laminated composite beams.

The optimal design of laminated composite beam structures entails not only
the identification of the optimal cross section topology and shape, but also the
determination of the optimal laminate properties. Controlling the properties of
the laminate it is possible to generate stiffer, stronger, lighter, and therefore more
efficient structural design solutions. This motivated the development of the op-
timal design framework presented in this thesis. The aim is to employ optimal
design techniques to tailor the properties of the laminate and ultimately control
the static and dynamic structural response of the beam to meet our demands
within the physical limitations.

This thesis presents an optimal design framework combining a structural model
specific for the structural analysis of beams, and an optimization model which
addresses the particular issues entailed in the optimization of laminated composite
structures. Results are presented in which the beam cross section topology and
laminate properties are simultaneously optimized. The design criteria include the
beam stiffness, its weight, the magnitude of its natural frequencies of vibration,
and the position of the cross section shear and mass center.

Summary of the thesis

The thesis is organized as follows. Part 1 of this thesis provides a brief presenta-
tion of the theoretical background for much of the work presented in this thesis.
This part is organized as follows:

Chapter 1 describes the structural model. The equations of motion of the beam
are derived first. The development of the beam finite element model and
cross section analysis tool are presented afterwards. Finally, the numerical
implementation and validation are briefly described.

Chapter 2 describes on the optimization model. Two different approaches for
the optimal design of laminated composite structures are described. The
optimal design problem is formulated and the considered objective functions
and constraints are described. The sensitivity expressions are presented and
the numerical implementation is briefly discussed.
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Chapter 3 presents the main conclusions of this work, examines the main con-
tributions, and suggests topics for future research.

Part 2, includes all the publications associated with this thesis. This part consists
of the following chapters, each referring to a different publication:

Paper 1 Maximum stiffness and minimum weight optimization of laminated com-
posite beams using continuous fiber angles.

Paper 2 Multi-material topology optimization of laminated composite beam cross
sections.

Paper 3 Multi-material topology optimization of laminated composite beams
with eigenfrequency constraints.

Paper 4 BECAS - A cross section analysis tool for anisotropic and inhomoge-
neous sections of arbitrary geometry.

Paper 5 Hydro-elastic analysis and optimization of a composite marine propeller.



Part I

Background
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Chapter 1

Structural analysis of beams

A beam is essentially a solid structural element whose geometry presents a certain
degree of slenderness such that its length is relatively larger than the cross section
dimensions. When working with beam models it is assumed that the geometry of
the solid is represented by the geometry of its cross sections and that the beam is
represented by the line that goes through the reference points of this sections. The
deformation of the beam is represented by the rigid body translations and rotations
of the sections. The three-dimensional problem of the analysis of the beam is
separated in two parts. The first part concerns the two-dimensional analysis of
the cross section properties while the second regards the one-dimensional analysis
of the global response of the beam. This separation allows for a reduction in
problem size which makes beam models a suitable alternative for computationally
intensive applications like optimal design frameworks.

Some assumptions must be observed when working with beam models. It is
assumed that the reference line presents a certain degree of continuity. Moreover,
the section geometry, when not constant along the length of the beam is restricted
to moderate variations. The same holds for the structural properties. Namely, the
material properties and applied loads should also vary smoothly along the length
of the beam. As a consequence, the resulting displacements, strains and stresses
will also present a smooth variation. These geometrical and structural restrictions
do not apply in the cross section face along the width and height directions. The
cross section geometry can be arbitrarily defined and the materials with distinct
mechanical properties may be distributed inhomogeneously in the cross section.

This chapter describes the structural beam model used in this thesis. The
beam model is developed in a finite element context. The cross section stiffness
and mass properties are estimated using a finite element cross section analysis
tool which is able to correctly estimate the effects of material anisotropy and
inhomogeneity.

The chapter is organized as follows. Section 1.1 describes the general three
dimensional continuum formulation of the beam and the subsequent derivation of
the static and dynamic beam finite element equations. The different approaches

3



4 Structural analysis of beams

Figure 1.1: General three-dimensional beam.

used in this thesis for the analysis of the cross section stiffness and mass properties
are described in Sections 1.2. Finally, the implementation and validation of the
beam finite element model and cross section analysis tool is discussed in Section
1.3.

1.1 Beam finite element model

The beam finite element static and dynamic equations are derived in this section.
The kinematics of the beam are established first. The static and dynamic equa-
tions are derived next based on the principle of virtual work and using standard
finite element techniques.

Consider the equilibrium of a three-dimensional beam subjected to the external
distributed and concentrated forces fs and fc, respectively (see Figure 1.1). The
strains ε and stresses σ acting at a point in the beam slice are

ε = [εxx εyy 2εxy 2εxz 2εyz εzz]
T and σ = [σxx σyy σxy σxz σyz σzz]

T .

For linear elastic materials, the stresses and strains are related by the linear con-
stitutive relation

σ = Qε (1.1)

where Q is the 6 × 6 material constitutive matrix holding the material stiffness
properties. The forces T = [Tx Ty Tz]

T and moments M = [Mx My Mz]
T are

statically equivalent to the stress components p = [σxz σyz σzz]
T acting on the

cross section face, and are defined as

T =

∫
A
p dA, M =

∫
A
nTp dA

where A is the cross section area and

n =

⎡⎣ 0 −z y
z 0 −x
−y x 0

⎤⎦ (1.2)
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(a) Forces and moments (b) Strains and curvatures

Figure 1.2: Cross section coordinate system, forces and moments (a)
and corresponding strains and curvatures (b).

The components of the force vector T are the transverse forces Tx and Ty and
the tension force Tz. The moment vector M is composed of the bending moment
components Mx and My, and the torsion moment Mz. The coordinates x and y
in the section plane are defined with respect to the cross section reference point
O (cf. Figure 1.2(a)). The vector of generalized cross section forces and moments

θ =
[
TT MT

]T
can be written as

θ =

∫
A
ZTp dA

where the matrix Z =
[
I3 nT

]
, and I3 is an identity matrix of size 3× 3.

In the formulation of structural beam elements, the deformation of the beam
is defined by the translations of the cross section reference point χ = [χx χy χz]

T

and rotations ϕ = [ϕx ϕy ϕz]
T gathered in vector r =

[
χT ϕT

]T
(cf. Figure 1.3).

The cross section strains associated with the displacements r at a slice dz of the

beam are described by the strain-curvature vector ψ =
[
τT κT

]T
(cf. Figure

1.2(b)). The shear component τ = [τx τy τz]
T is composed of the shear strains

τx and τy, and the tension strain τz. The components of the vector of curvatures

κ = [κx κy κz]
T are the bending curvatures κx and κy, and the twist rate κz. The

vector of generalized strains and curvatures ψ is defined in function of the rigid
body motions of the cross section, r, as

ψ = B̂r (1.3)

The strain-displacement operator B̂ is defined as (cf. Giavotto et al. [6])

B̂ =

(
Tr +

∂

∂z

)
where

Tr =

[
03 tr
03 03

]
, tr =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ ,
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and 03 is the 3 × 3 zero matrix. The resulting strain and curvature components
are

τx =
∂χx

∂z
− ϕy, τy =

∂χy

∂z
+ ϕx, τz =

∂χx

∂z

κx =
∂ϕx

∂z
, κy =

∂ϕy

∂z
, κz =

∂ϕz

∂z

This result can be obtained from static considerations following basic beam theory
(see, e.g., Bathe [20]).

For linear elastic beams the cross section generalized strains and curvatures ψ
are related to the vector of generalized forces and moments θ through the following
linear constitutive relation

θ = Ksψ. (1.4)

The matrix Ks is the 6 × 6 cross section stiffness matrix. In its most general
form (considering, e.g., anisotropic and inhomogeneous sections of arbitrary ge-
ometry) Ks may be fully populated and its 21 stiffness parameters will have to
be determined to fully describe the deformation of a slice dz of the beam. The
determination of the entries of Ks is discussed in Section 1.2.

1.1.1 The virtual work equation

The equilibrium equations for a general three dimensional beam can be derived
using the principle of virtual displacements. The principle states that ”the equi-
librium of the body requires that for any compatible, small virtual displacements
(which satisfy the essential boundary conditions) imposed onto the body, the total
internal virtual work is equal to the total external virtual work” (cf. Bathe [20]).
Hence, for a linearly elastic beam the equilibrium can be stated as∫ L

0
δψTθ dz =

∫ L

0
δrT fs dz + δrT fc (1.5)

where δ is the virtual operator and z is the direction along the beam length. The
term on the left-hand side represents the work done by the generalized forces and
moments in θ going through the virtual strains and curvatures in δψ. The terms
on the right-hand side represent the work done by the distributed and concentrated
load fs and fc, respectively, going through the virtual translations and rotations
in δr.

1.1.2 Finite element discretization

Following the typical finite element approach, we assume that the beam refer-
ence line is approximated by an assemblage of discrete beam finite elements in-
terconnected at the end nodes (as schematically described in Figure 1.4). The
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Figure 1.3: Schematic representation of the cross section reference
point and beam reference line. Definition of the cross section rigid
body motions.

translations and rotations in r at element b are approximated as

r(z) ≈ N̂b(z)ûb (1.6)

where N̂b(z) is the matrix of interpolation functions and û is the vector of trans-
lational and rotational nodal degrees of freedom. The strains at element b can be
described in terms of the nodal degrees of freedom in ûb by inserting (1.6) in (1.3)
to obtain

ψb = B̂N̂bûb (1.7)

1.1.3 Static equilibrium

The beam static equilibrium equations are presented in this section. Inserting
the discretized form of the strain-displacement relation in (1.7) into (1.5) and
observing the material constitutive relation in (1.4), yields

δûT

[
nb∑
b=1

∫ Lb

0
N̂

T

b B̂
T
KsB̂N̂b dz

]
û = δûT

[
nb∑
b=1

∫ Lb

0
N̂

T

b f
s dz + fc

]

where Lb is the length of element b and nb is the total number of beam finite
elements. The summation in the expression above refers to the typical assembly
procedure from finite element analysis. The nodal degrees of freedom û are in-
dependent of the element considered and have therefore been moved out of the
summation signs. Furthermore, note that fc is the vector of concentrated loads
whose non-zero components are associated with the corresponding degrees of free-
dom of the displacement vector û. The shape function in N̂ corresponding to
these entries in the displacement vector is defined such that its value is equal to
unity at the node and zero elsewhere. Thus, N̂ can be set to unity in the term
corresponding to the concentrated load. The principle of virtual displacement
is invoked by imposing that δûT = I which corresponds to setting each of the
displacement components to unity in turn. The finite element form of the beam
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Figure 1.4: Schematic description of the generation of the beam finite
element model of a wind turbine blade. The blade reference line is
discretized using beam finite elements.

equilibrium equations is finally obtained and written as

nb∑
b=1

∫ Lb

0
N̂

T

b B̂
T
KsB̂N̂b dz û =

nb∑
b=1

∫ Lb

0
N̂

T

b f
s dz + fc (1.8)

The beam finite element stiffness matrix K̂b is obtained from the expression above
and defined as

K̂b =

∫ Lb

0
N̂

T

b B̂
T
KsB̂N̂b dz

The global stiffness matrix of the beam model, K̂, is obtained following the typical
finite element assembly procedures and given by

K̂ =

nb∑
b=1

K̂b (1.9)

The global load vector f̂ is defined as

f̂ =

nb∑
b=1

∫ Lb

0
N̂

T

b f
s dz + fc

Thus, the beam equilibrium equations in compact form can be written as

K̂û = f̂ (1.10)

The linear system of equations above yields the nodal translations and rotations
in û for a beam subject to the static load f̂.

This concludes the derivation of the beam finite element equilibrium equa-
tions considering static loading. The practical implementation of the beam finite
element model entails a suitable choice of the interpolation functions in N̂ (see
Section 1.3) and the determination of the stiffness parameters in Ks (see Section
1.2).
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1.1.4 Dynamic equations

The equations of motion for an undamped system are derived in this section. The
aim is to establish the equations for the analysis of the natural frequencies of vi-
bration and associated vibration modes of a given beam finite element assemblage.
Hence, the static equilibrium equations in (1.8) are extended to account for inertia
effects. The inertia forces can be subtracted from the term associated with the
distributed forces fs (cf. Bathe [20]). First, assume that the accelerations ¨̂ub are
approximated using the same interpolations functions as for the displacements in
(1.6) yielding

r̈(z) ≈ N̂b(z)¨̂ub

The (̇) notation refers to the time derivative ∂/∂t. Next, (1.8) is re-written to
include the inertia forces as

nb∑
b=1

∫ Lb

0
N̂

T

b B̂
T
KsB̂N̂b dz û =

nb∑
b=1

∫ Lb

0
N̂

T

b

[
fd −MsN̂b

¨̂ub

]
dz + fc

where Ms is the cross section mass matrix, and fd is obtained from the distributed
load vector fs after subtracting the inertia forces. Rearranging the expression
above yields

nb∑
b=1

[
M̂b

¨̂u+ K̂bû
]
=

nb∑
b=1

∫ Lb

0
N̂

T

b f
s dz + fc

where

M̂b =

∫ Lb

0
N̂

T

b MsN̂b dz

is the consistent form of the beam finite element mass matrix. The mass matrix
for the global finite element assemblage is

M̂ =

n̂b∑
b=1

M̂b (1.11)

The equations of motion of the beam neglecting damping are given in matrix form
as

M̂¨̂u+ K̂û = f̂

For the analysis of the natural frequencies of vibration and associated modes
assuming no damping and null static loads (i.e., free vibrations) the following set
of differential equations is obtained

M̂¨̂u+ K̂û = 0 (1.12)
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The set of equations above can be solved assuming solutions of the type

û = v̂eiωt, ¨̂u = −ω2v̂eiωt. (1.13)

Inserting (1.13) in (1.12) and since eiωt cannot be zero, gives(
−ω2M̂+ K̂

)
v̂ = 0 (1.14)

The solution to the structural eigenvalue problem above yields the natural vi-
bration frequencies ω = {ω1, ..., ωnu} and corresponding vibration modes V̂ =
{v̂1, ..., v̂nu} for a given beam finite element assemblage, where nu is the number
of degrees of freedom in û.

This concludes the derivation of the equations leading to the structural eigen-
value problem for a beam finite element assemblage. The determination of the
natural vibration frequencies and corresponding modes reduces to the evaluation
of the cross section mass matrix Ms necessary for the computation of the beam
finite element mass matrix M̂. The determination of the parameters in Ms is
described in Section 1.2.3.

1.2 Cross section analysis

Most of the effort in the construction of sufficiently general beam models involves
the correct assessment of the cross section properties. Hodges [5] has presented a
comprehensive and thorough historical overview of the developments in the beam
modeling field. Furthermore, Jung et al. [1] and Volovoi et al. [2] present an
assessment of the different cross section analysis formulations and include com-
parative results which highlight the advantages and limitations of each. Two
different approaches have been considered in this thesis for the evaluation of the
cross section stiffness matrix Ks:

• The BEam Cross section Analysis Software – BECAS,

• The Variational Asymptotical Beam Sectional analysis tool – VABS.

The theory underlying the development of BECAS is described in Paper 4 and
employed within the optimal design framework in Papers 2 and 3. BECAS is
described next, in Section 1.2.1. VABS has been used in Paper 1 and a brief
description is presented in Section 1.2.2.

1.2.1 BECAS – BEam Cross section Analysis Software

A brief account of the theory underlying the BEam Cross section Analysis Software
– BECAS – is presented in this section (see Paper 4 for further details). BECAS
is a cross section analysis tool for the determination of the cross section stiffness
parameters in Ks. The underlying formulation was originally presented by Gi-
avotto et al. [6]. BECAS is a finite element based tool suitable for the analysis of
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Figure 1.5: Total displacement s of a point in the cross section. The
displacement is composed of a translation χ, a rotation ϕ, and a
warping displacement g.

laminated composite beam cross sections of arbitrary geometry and can correctly
account for the effects stemming from material anisotropy and inhomogeneity.

1.2.1.1 Kinematics

Assume that the displacement s = [sx sy sz]
T of a point in the cross section is

given by (cf. Figure 1.5)

s = v+ g

The displacement components v = [vx vy vz]
T are associated with the rigid body

translations and rotations of the cross section. The warping displacements g =
[gx gy gz]

T are associated with the in- and out-of-plane cross section distortion.
Assuming small displacements and rotations,

v = Zr

where the components of r are the translations and rotations of the cross section
as defined in Section 1.1. The expression for the total displacement is then given
as

s = Zr+ g (1.15)

Assuming small strains, the strain components at a point in the cross section are
defined as

εαβ =
1

2

(
∂sα
∂β

+
∂sβ
∂α

)
, (α, β = x, y, z) (1.16)
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Inserting (1.15) into the expression above yields

ε = SZψ +Bg+ S
∂g

∂z

where the terms have been conveniently arranged so that the local strains ε are
expressed in function of the generalized strains and curvatures ψ. The strain-
displacement operators, B and S, are defined as

B =

⎡⎢⎢⎢⎢⎢⎢⎣
∂/∂x 0 0
0 ∂/∂y 0

∂/∂y ∂/∂x 0
0 0 ∂/∂x
0 0 ∂/∂y
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , S =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
The strain-displacement operators B and S are recognizable from typical solid
finite element formulations (see, e.g., Bathe [20]). The difference is in this case
the components yielding the partial derivatives along the length direction, ∂/∂z,
have been left unsolved. The aim is to determine the stiffness properties of the
beam slice first and perform the integration along the length afterwards at the
beam finite element level.

1.2.1.2 Finite element formulation

Following the typical finite element procedure, assume that the cross section is
discretized using two-dimensional finite elements. The three dimensional warping
displacements in g are determined by interpolation of the nodal values and given
by

g(x, y) ≈ Ne(x, y)ue (1.17)

where Ne is the matrix of interpolation functions and ue are the nodal warping
displacements at element e of the cross section mesh. The discretized form of the
total displacement is obtained by inserting (1.17) into (1.15) yielding

s = Zr+Nu (1.18)

Inserting (1.18) into (1.16) yields the finite element form of three dimensional
strain field

ε = SZψ +BNu+ SN
∂u

∂z
(1.19)

1.2.1.3 Virtual displacement equations

The principle of virtual displacements is subsequently invoked in the derivation
of the finite element form of the cross section equilibrium equations. The internal
energy per unit length ∂Wint/∂z is defined as the internal virtual work done by
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the stresses σ going through the virtual strains δε. Hence, observing the material
constitutive relation in (1.1) and the finite element form of the strain-displacement
relation in (1.19), the following is obtained

∂Wint

∂z
=

∫
A
δεTσ dA =

⎡⎣ δu
δψ

δ ∂u
∂z

⎤⎦T ⎡⎣ E R C

RT A L

CT LT M

⎤⎦⎡⎣ u
ψ
∂u
∂z

⎤⎦ (1.20)

The finite element matrices presented above are defined as

A
(6×6)

=

ne∑
e=1

∫
A

ZT
e S

T
e QeSeZe dA R

(nd×6)
=

ne∑
e=1

∫
A

NT
e B

T
e QeSeZe dA

E
(nd×nd)

=

ne∑
e=1

∫
A

NT
e B

T
e QeBeNe dA C

(nd×nd)
=

ne∑
e=1

∫
A

NT
e B

T
e QeSeNe dA (1.21)

L
(6×nd)

=

ne∑
e=1

∫
A

ZT
e S

T
e QeSeNe dA M

(nd×nd)
=

ne∑
e=1

∫
A

NT
e S

T
e QeSeNe dA

where e is the element number and ne is the number of finite elements in the cross
section mesh. The total number of degrees of freedom associated with the cross
section finite element mesh is nd = nn × 3 where the number of nodes nn multi-
plies the number of degrees of freedom at each node – the three dimensional nodal
displacements ux, uy and uz. The sums in (1.21) refer to the typical assembly pro-
cedure used in finite element analysis. The geometry of the cross section is defined
by the finite element discretization. The material properties are defined at each
element by the three-dimensional material constitutive matrix Qe. The material
may be anisotropic and the cross section may be composed of different materi-
als inhomogeneously distributed therein. As will be seen, the design variables of
the optimization models described in Chapter 2 act on the material constitutive
matrix Qe.

The total external virtual work per unit length, ∂Wext/∂z, is associated with
the work done by the stresses in p going through the virtual displacements δs.
Thus, based on the expression in (1.18) for the total displacement of a point, the
external virtual work is

∂Wext

∂z
=

∫
A

∂
(
δsTp

)
∂z

dA =

⎡⎣ δ ∂uT

∂z
δu
δψ

⎤⎦T ⎡⎣ P
∂P
∂z
θ

⎤⎦+ δrT
(
∂θ

∂z
−TT

r θ

)
(1.22)

where

P =

∫
A
NTp dA,

∂P

∂z
=

∫
A
NT ∂p

∂z
dA

The components of vector P are the nodal stresses acting on the cross section
finite element discretization.

At equilibrium the work performed by the internal forces in (1.20) has to
balance the work done by the external forces in (1.22). Furthermore, from the
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principle of virtual work, the result must be valid for any admissible virtual dis-
placements – δψ, δu, δ ∂uT

∂z and δr. Hence, the following set of second order linear
differential equations is obtained⎧⎨⎩ M∂2u

∂z2
+
(
C−CT

)
∂u
∂z + L∂ψ

∂z −Eu−Rψ = 0

LT ∂u
∂z +RTu+Aψ = θ

∂θ
∂z = TT

r θ

(1.23)

1.2.1.4 Cross section equilibrium equations

The set of second order linear differential equations in (1.23) yields a homogeneous
and a particular solution or, extremity and central solutions, respectively, as
originally coined by Giavotto et al. [6]. The homogeneous or extremity solutions
are obtained for θ = 0 which corresponds to the case where the stresses in the
cross section face are null. This solution is associated with the deformation at the
ends or extremities of the beam and will not be the subject of further discussion
in this thesis. The particular or central solution yields the deformation field at
the central part of the beam. This solution serves as the basis for the derivation
of the cross section stiffness matrix Ks.

Before proceeding with the derivation of the cross section equilibrium equa-
tions note that the displacement definition presented in (1.15) is redundant. The
six rigid body motions represented in r can also be replicated by the warping dis-
placements in u. In order to overcome this issue a set of six constraint equations
is introduced to remove the rigid body modes from the warping displacements u.
The six constraints are

nn∑
n=1

ux,n = 0,

nn∑
n=1

uy,n = 0,

nn∑
n=1

uz,n = 0,

nn∑
n=1

−znuy,n + ynuz,n = 0,

nn∑
n=1

znux,n − xnuz,n = 0,

nn∑
n=1

−ynux,n + xnuy,n = 0,

where (xn, yn, zn) and (ux,n, uy,n, uz,n) are the position and displacement of node
n, respectively. The constraints are imposed on both the displacements u and
corresponding derivatives ∂u/∂z and can be written in matrix form as[

DT 0

0 DT

] [
u
∂u
∂z

]
=

[
0
0

]
, where D =

[
I3 ... I3
n1 ... nnn

]T
(1.24)

where I3 is the 3× 3 identity matrix, and nn is obtained from replacing the nodal
coordinates (xn, yn, zn) of node n in (1.2).

The cross section equilibrium equations are obtained from (1.23) after some
manipulation (see Paper 4) and finally given as

Kw = f ⇔
[
K11 K12

0 K11

] [
w1

w2

]
=

[
f1
f2

]
(1.25)
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where

K11 =

⎡⎣ E R D

RT A 0

DT 0 0

⎤⎦ , K12 =

⎡⎣ (CT −C) −L 0

LT 0 0
0 0 0

⎤⎦ (1.26)

and, w1 =
[
uT ψT λT

1

]T
, w2 =

[
∂uT /∂z ∂ψT /∂z λT

2

]T
, f1 =

[
0T θT 0T

]T
,

and f2 =
[
0T (TT

r θ)
T 0T

]T
. The vectors of Lagrange multipliers λ1 and λ2, are

associated with the constraints (1.24) imposed on u and ∂u/∂z, respectively.
The set of linear equations in (1.25) allows for the determination of the gen-

eralized strains ψ and warping displacements u for a cross section subjected to a
given set of generalized forces θ. This concludes the derivation of the cross section
equilibrium equations. The next step consists of the determination of the cross
section stiffness parameters or the entries of matrix Ks.

1.2.1.5 Cross section stiffness matrix

Consider the case where each entry of θ is set to unity in turn and (1.25) is solved
sequentially for each value of θ. This corresponds to replacing θ in (1.25) by the
6× 6 identity matrix I6 thus yielding

KW = F ⇔
[
K11 K12

0 K11

] [
W1

W2

]
=

[
F1

F2

]
(1.27)

whereW1 =
[
UT ΨT ΛT

1

]T
,W2 =

[
∂UT /∂z ∂ΨT /∂z ΛT

2

]T
, F1 =

[
0T I6 0T

]T
,

and F2 =
[
0T Tr 0T

]T
. The resulting solution matricesU, ∂U/∂z, Ψ and ∂Ψ/∂z

have six columns each corresponding to each of the right-hand sides associated
with a different vector θ. The determination of the solutions to (1.25) reduces to
the evaluation of the following matrix-vector products

u = Uθ,
∂u

∂z
=

∂U

∂z
θ, ψ = Ψθ,

∂ψ

∂z
=

∂Ψ

∂z
θ (1.28)

Furthermore, it is assumed that the relation between the generalized strains and
forces acting on the cross section is linear. In this case the internal energy is equal
to the complementary energy. Hence, the following holds

δθTFsθ =

∫
A
δεTσ dA

where the left-hand term is the complementary form of the internal elastic energy
presented in the right-hand term. Inserting the expressions in (1.28) into the in-
ternal elastic energy expression in (1.20) and inserting the result into the equation
above yields

δθFsθ = δθT

[
W1

W2

]T [
G11 G12

GT
12 G22

] [
W1

W2

]
θ = δθTWTGWθ (1.29)
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where

G11 =

⎡⎣ E R 0

RT A 0
0 0 0

⎤⎦ ,G12 =

⎡⎣ C 0 0
L 0 0
0 0 0

⎤⎦ ,G22 =

⎡⎣ M 0 0
0 0 0
0 0 0

⎤⎦
An expression for the cross section compliance matrix Fs is then readily obtained
as

Fs = WTGW (1.30)

In all cases considered in this thesis Fs is symmetric positive definite and thus the
cross section stiffness matrix is determined through Ks = F−1

s .

This concludes the derivation of the cross section stiffness parameters. In
practice, the determination of Ks entails first the assembly of the matrices in
(1.21). The next step concerns the assembly of K and the solution to the linear
system of equations in (1.27). The last step entails the assembly of G and the
determination of Fs in (1.30).

Note that the result in (1.28) is specially convenient for the analysis of the
three-dimensional strains acting on the cross section in cases where the geometry
and structural properties of the section remain constant while the forces and
moments vary (e.g., codes for the aeroelastic analysis of wind turbine blades). The
distribution along the length of the beam of the forces T and moments M in θ can
be determined from the global response of the beam finite element model. The
strains at a given cross section are then determined by inserting the corresponding
θ in (1.28) and inserting the result into (1.19). In this case, the solution vectors
to (1.27) can be determined once and reused each time the strains are evaluated.
The alternative is computationally far more expensive as it consists of solving the
cross section equilibrium equations in (1.25) for each θ.

1.2.1.6 Shear and tension center positions

The cross section shear center sc = (xs, ys) is defined as the point at which the
application of a transverse force will induce no twist. It is obtained through the
evaluation of (cf. Paper 4)

xs = −Fs,62 + Fs,64(L− z)

Fs,66

ys =
Fs,61 + Fs,65(L− z)

Fs,66

(1.31)

where Fs,ij is the entry (i, j) of the compliance matrix Fs, and L is the beam
length. The tension center st = (xt, yt) is defined as the point at which an applied
tension load will not induce a bending moment and is determined as (cf. Paper
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4)

xt = −−Fs,44Fs,53 + Fs,45Fs,43

Fs,44Fs,55 − F 2
s,45

yt = −Fs,43Fs,55 − Fs,45Fs,53

Fs,44Fs,55 − F 2
s,45

The analysis of the position of the shear and tension center can give valuable
insight into the static and dynamic properties of laminated composite beams.
Namely, in the design of wind turbine blades, the relative position of the shear
center affects the limit speed for divergence and flutter instabilities (Hansen [28]).
The formulation presented in this thesis for the determination of Fs allows for the
accurate evaluation of the position of this reference point.

1.2.2 VABS – Variational Asymptotical Beam Sectional analysis

The Variational Asymptotical Beam Sectional (VABS) analysis tool allows for the
determination of the cross section stiffness and mass matrix, Ks and Ms, respec-
tively. The formulation builds on the Variational Asymptotic Method (VAM) and
has been described in detail by Hodges in [5] and validated by Yu and Hodges in
[3] and Yu et al. [4]. The code is developed and maintained by Wenbin Yu and
co-workers at Utah State University. Although VABS and BECAS are based on
a different formulation, the same values of Ks are obtained (see Paper 4). VABS
is distributed as a set of libraries and its source code is not available. As a conse-
quence it is not possible to extend the code to include any modules necessary for
the optimal design framework, like the analytical sensitivities of the cross section
stiffness matrix.

1.2.3 Cross section mass matrix

The analysis of the cross section mass properties is significantly simpler than the
analysis of the cross section stiffness parameters. The 6 × 6 cross section mass
matrix Ms relates the linear and angular velocities in φ to the inertial linear and
angular momentum in γ through φ = Msγ. The cross section mass matrix is
given with respect to the cross section reference point as (cf. Hodges [5])

Ms =

⎡⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 −mym
0 m 0 0 0 mxm
0 0 m mym −mxm 0
0 0 mym Ixx −Ixy 0
0 0 −mxm −Ixy Iyy 0

−mym mxm 0 0 0 Ixx + Iyy

⎤⎥⎥⎥⎥⎥⎥⎦ (1.32)

where m is the mass per unit length of the cross section. The cross section
moments of inertia with respect to x and y are given by Ixx and Iyy, respectively,
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while Ixy is the cross section product of inertia. The term Ixx + Iyy is the polar
moment of inertia associated with the torsion of the cross section. The mass and
moments of inertia are obtained through integration of the mass properties on
the cross section finite element mesh. The off-diagonal terms are associated with
the offset between the mass center position mc = (xc, yc) and the cross section
reference point. The position of the mass center mc is given as

xc =

(
ne∑
e=1

xcevee

)
/

(
ne∑
e=1

vee

)

yc =

(
ne∑
e=1

ycevee

)
/

(
ne∑
e=1

vee

) (1.33)

where (xce , yce), ve and e are the coordinates of the centroid, the volume and the
density of element e, respectively, and ne is the number of elements in the cross
section mesh.

1.3 Implementation and validation

The structural model in Paper 1 is implemented in Fortran using VABS. The
structural model in Papers 2 and 3 was implemented in MATLAB R©. The beam
structural model in Papers 1, 2 and 3 uses three-node quadratic beam finite el-
ements with quadratic interpolation functions. This beam finite element imple-
mentation has been validated in Paper 1. The static and dynamic properties of
laminated composite beams with different cross sections were validated against
equivalent shell and solid finite element models. The results were found to be in
very good agreement for all cases tested.

The cross section analysis code BECAS has been implemented inMATLAB R©.
It is built upon a finite element discretization of the cross sections using two
dimensional four node isoparametric finite elements (see Bathe [20]). BECAS
makes extensive use of the SuiteSparse libraries by Davis [16], and Davis and
Natarajan [15]. Validation results for BECAS have been presented in Paper 4.
The cross section stiffness parameters in Ks estimated by BECAS were validated
against results from VABS. The validation results were obtained for solid, open
and closed multi-cell cross sections made of isotropic and laminated orthotropic
materials. The results were found to be in very good agreement for all cases tested.



Chapter 2

Optimal design of laminated
composite structures

Laminated composite materials consist of a stack of laminae or layers. Each layer
is composed of a stiff and strong fibrous material (e.g., glass or carbon fibers)
binded by a compliant and weak matrix (e.g., Epoxy resin). The mechanical
properties of the resulting composite material outstand the properties of the in-
dividual constituents. A schematic description of a composite laminate and its
constituents is presented in Figure 2.1. The mechanical properties of the laminate
depend on the mechanical properties of the constituent materials, the thickness of
each of the individual layers, and the overall thickness of the laminate. Moreover,
as the fibers are much stiffer along its length than they are in its transverse di-
rection, the stiffness of the laminate depends also on the orientation of the fibers
in each layer and its stacking sequence in the laminate. Thus, the optimal design
of laminated composite structures should involve not only the optimization of the
structural topology and shape but also the optimization of the each of laminate
properties listed before.

This chapter describes two different models developed for the optimal design
of laminated composite structures. Furthermore, the different objective functions
and constraints are presented, and an optimal design problem which illustrates
the type of problems considered throughout this thesis is formulated. Finally, the
expressions for the gradients or sensitivities of each of the objective functions and
constraints are described.

The chapter is organized as follows. Section 2.1 describes the optimization
models developed in this thesis. The objective functions, constraints and problem
formulation are presented next in Section 2.2. Finally, the expressions for the sen-
sitivities of each of the objective functions and constraints is presented in Section
2.3.

19
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Figure 2.1: Schematic description of a laminate, its constituent layers,
and the laminate stacking sequence. A layer is obtained from the
assemblage of stiff fibers and a weak matrix (left). Each of the layers is
then stacked with the fibers pointing in different directions. The order
in which the layers are stacked is called the laminate stacking sequence
(center). Finally, the resulting assemblage is called a laminate (right).

2.1 Optimization models

Two optimization models have been considered throughout this thesis. In the first
optimization model two groups of design variables are defined representing the
fiber orientations at each layer in the laminate and the overall laminate thickness,
respectively. This model has been described and implemented in Paper 1 and is
briefly described in Section 2.1.1. The second model has been employed in Paper
2 and 3 and is briefly described in Section 2.1.2. The model assumes that the
design variables represent the volume fractions or amounts of a predefined set of
candidate materials.

2.1.1 Continuous fiber angles and laminate thickness

The model is based on the assumption that at each element in the cross section
mesh one type of laminated composite material is chosen from the start. The
problem consists then of identifying the optimal orientations of the fibers in the
laminate and the total laminate thickness.

Hence, two groups of design variables are considered. The first group is asso-
ciated with the orientations α = {αp|p ∈ {1, ..., np}} of the fibers at each patch p,
where np is the number of patches in the cross section mesh. A patch is a group of
elements in the cross section finite element mesh. It is assumed that the elements
in a patch all share the same material properties (see Figure 2.2). The design vari-
ables are assumed to vary continuously between their bounds, i.e., α ≤ αp ≤ α,
∀p = 1, ..., np. The upper and lower bound are α = 0◦ and α = 180◦, respectively,
where it is assumed that the fiber orientations in α are defined in degrees. Now,
assume that a given patch p has a material m, defined by its material constitutive
matrix Qm, associated with it. Then, the properties Qp of the laminate at patch
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p are given by

Qp(β) = TT
r (αp)QmTr(αp)

where the expression above is the typical three-dimensional rotation rule for or-
thotropic materials (cf. Bathe [20]), and Tr(αp) is the three-dimensional rotation
matrix. Hence, at patch p, the laminate properties Qp are obtained through a

rotation of the original laminate material constitutive matrix Qm.
Finally, the second group of design variables t = {ts|s ∈ {1, ..., ns}} represents

the total thickness ts of the laminate at face s for each of the ns cross section
faces. The variation of the laminate thickness is achieved by a rearrangement of
the cross section finite element mesh (see Paper 1).

2.1.1.1 Projection method

The approach described in the previous section where the continuous design vari-
ables represent the fiber orientations is prone to generate problems with a large
number of local minima. A strategy is suggested to improve the chances of obtain-
ing a good design albeit the problems with local minima. The devised projection
method is schematically described in Figure 2.2. The first step consists of defin-
ing a computationally inexpensive optimal design problem with very few design
variables. This is achieved by defining large patches, each enclosing a large part
of the cross section mesh. This problem is solved for a relatively large number of
random starting points. The design presenting the lowest objective function value
is then chosen as the starting point for the next step. A projection method is then
used where a sequence of optimization problems is solved with increasing number
of design variables. At each step the number of patches is increased as its individ-
uals sizes are decreased. The optimal fiber orientations and thickness obtained in
the previous problem are projected into the new design domain with a finer patch
discretization. The optimization process is then restarted and a new optimized
design is generated. The projection iterations are repeated until the variation in
performance between consecutive designs is below a predefined tolerance.

The optimization model described in this section has been applied in the op-
timal design of laminated composite beams with stiffness and weight constraints
in Paper 1. Solutions are presented for the maximum stiffness and minimum
weight design of Carbon Fiber Reinforced Plastic beams with a hollow square,
solid rectangular, and hollow elliptical cross section.

2.1.2 Multi-material topology optimization

The optimization model described in this section is based on multi-material topol-
ogy optimization techniques. Similar approaches have been described by Lund and
Stegmann [13] and Stegmann and Lund [12] for the optimal design of laminated
composite structures using shell finite elements. The aim is to determine the opti-
mal distribution of a predefined set of candidate materials within the cross section
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Figure 2.2: Schematic description of the projection method devised
for the continuous fiber angles optimization approach. A sequence of
problems is solved with increasing number of design variables. The
optimal fiber orientations and thickness obtained in the previous prob-
lem are projected to generate a new starting point for the next optimal
design problem. The optimization process is then restarted and a new
optimized design is generated.

(see Figure 2.3). The result is a methodology which can simultaneously determine
the optimal cross section topology and distribution of material therein. The op-
timization model comprises a material interpolation, penalization, and density
filtering technique, each of which are described in the next sections. The opti-
mization model described in this section has been used in Papers 2 and 3 for
the optimal design of laminated composite beam cross sections with stiffness and
eigenfrequency constraints.

2.1.2.1 Material interpolation

Hence, assume that a list of nc candidate materials has been initially defined.
The candidate materials must be linear elastic and no restrictions are imposed
regarding anisotropy. Each of the candidates can correspond to a layer of the
same composite material oriented in different directions. A possible extension
of the Solid Isotropic Material with Penalization (SIMP) material interpolation
model by Bendsøe and Kikuchi [10], and Rozvany and Zhou [8] is presented here
to include multiple anisotropic materials. Hence, the material constitutive matrix
Qe at element e of the cross section mesh is given by the following material
interpolation rule

Qe(ρ) =

nc∑
m=1

ρpemQm ∀e = 1, ..., ne (2.1)

where ne is the number of elements in the cross section finite element mesh andQm

is the material constitutive matrix of candidate material m. The design variables
ρ = {ρem ∈ R | e ∈ {1, ..., ne} , m ∈ {1, ..., nc}} represent the volume fractions
of each of the candidate materials at each element of the cross section finite ele-
ment mesh. The design variables are assumed to vary continuously between their
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Figure 2.3: Schematic description of the multi-material topology opti-
mization problem. The first step consists of defining a set of candidate
materials (left). This set may include a material to represent void.
The aim is then to determine the optimal distribution of each of the
candidate materials in the cross section finite element mesh (center).
The result is a methodology which allows for the simultaneous opti-
mization of the cross section topology and material properties (right).

bounds, i.e., 0 ≤ ρem ≤ 1, ∀e = 1, ..., ne, ∀m = 1, ..., nc. Finally, the role of the
penalty parameter p ≥ 1 is discussed later in Section 2.1.2.2.

The interpolation of the material density is slightly different as it does not
include the penalization term p. Thus, the density e at element e is given by

e(ρ) =

nc∑
m=1

ρemm ∀e = 1, ..., ne (2.2)

where m is the density of material m.

The commonly used SIMP material interpolation expression for two phase
problems (see Bendsøe and Sigmund [7]) implicitly controls the total amount of
material or the sum of the design variables at each element. Here, the following
linear equality constraints are included in the problem formulation in order to
obtain the same relation between the design variables

nc∑
m=1

ρem = 1 ∀e = 1, ..., ne (2.3)

The ne linear constraints above ensure that the amount of material at each element
remains constant.

The design variables ρ enter the structural model through the material con-
stitutive matrix Qe = Qe(ρ) and densities e = e(ρ). The material constitutive
matrix Qe(ρ) is required for the determination of the coefficient matrices in (1.21)
such that K = K(ρ) and G = G(ρ) in (1.26) and (1.29), respectively. Conse-
quently, the cross section stiffness matrix is defined such that Ks = Ks(ρ). The
material densities e(ρ) are required in the evaluation of the cross section mass
matrix in (1.32) such that Ms = Ms(ρ). Finally at the beam finite element level,

K̂ = K̂(ρ) and M̂ = M̂(ρ).
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2.1.2.2 Penalization

Generally, designs obtained using the parameterization presented in the previous
section (assuming p = 1) are not discrete, i.e., more than one material exists in the
same element. The SIMP penalization works at the material interpolation level
and has been extensively used in topology optimization problems. The penaliza-
tion is realized by controling the value of the penalty parameter p ≥ 1. Increasing
the value of p corresponds to increasing the contrast between the different candi-
dates and consequently in the penalization of intermediate values of the volume
fractions. As a result the design variables are pushed into their bounds as p in-
creases. The penalized problem, however, is in general non-convex and may have
a large number of local minima. A continuation method is employed in order
to increase the possibility of obtaining a good feasible design (see Sigmund and
Petersson [23], Borrval and Petersson [25], and Hvejsel et al. [11]). The first step
consists of solving the problem without penalization, i.e., p = 1. The resulting
design is subsequently used as the starting point for the new optimal design prob-
lem. The penalty pi+1 for the new optimization problem is increased such that
pi+1 = pi +Δp where pi is the penalty value at the former iteration, and Δp > 0
is the penalty increase between iterations. The procedure is repeated until the
design converges to a discrete solution.

2.1.2.3 Density based filtering

Two common issues in density based topology optimization concern the appear-
ance of checkerboard patterns and the dependency of the results on the size of
the elements in the finite element discretization (Sigmund [21]). A density filter-
ing technique has been used in these thesis to address both of these issues. The
technique has been originally introduced by Bruns and Tortorelli [22] and Bour-
din [24] for two-phase topology optimization problems and it has been extended
in this thesis (see Paper 2) to account for multiple material problems. Hence,
the volume fraction of a given material at each element is a weighted average of
the volume fractions of the same material in the neighboring elements and the
element itself. This corresponds to imposing a length scale simultaneously for all
candidate materials. The technique is briefly described next.

Let us define the set Se of all elements at a distance fr from element e as

Se = {ẽ ∈ {1, ..., ne} | ‖xẽ − xe‖2 ≤ fr}
where fr is the so-called filter radius, and xẽ and xe are the position vectors
of element ẽ and e, respectively. The filtered volume fraction of material m at
element e is ρ̃em = ρ̃em(ρẽm), ∀ẽ ∈ Se and defined as

ρ̃em =

∑
ẽ∈Se

w(xẽ)vẽρẽm∑
ẽ∈Se

w(xẽ)vẽ
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A linearly decaying weighting function w(xe) as suggested by Bruns and Tortorelli
[22] and Bourdin [24] is used here and given by

w(xẽ) = fr − ‖xẽ − xe‖2
The material interpolation expression presented before in (2.1) is rewritten here
in terms of the filtered variables. Hence, the interpolated material constitutive
matrix Qe at element e is defined as

Qe(ρ) =

nc∑
m=1

ρ̃pem(ρ)Qm , ∀e = 1, ..., ne

The same is done for the element density previously defined in (2.2) and now
redefined as

e(ρ) =

nc∑
m=1

ρ̃em(ρ)m , ∀e = 1, ..., ne

Finally, the linear constraints in (2.3) are also restated in function of the filtered
design variables as

nc∑
m=1

ρ̃em = 1 , ∀e = 1, ..., ne

Results have been presented in Paper 2 which specifically illustrate the behavior
of the filtering technique presented above.

2.2 Problem formulation

Throughout this research the following functions have been used as either an
objective function or constraint in the different optimal design formulations

• Compliance (Papers 1, 2, and 3);

• Eigenfrequencies (Paper 3);

• Shear center position (Papers 2 and 3);

• Mass center position (Paper 2);

• Weight (Papers 1, 2, and 3).

The shear and mass center positions have been defined in Sections 1.2.1.6 and
1.2.3, respectively. The remaining functions are defined in the next sections.
Finally, an illustrative optimal design problem formulation is presented in the last
section. Note that the functions and optimal design problem formulation presented
are defined with respect to the design variables associated with the multi-material
topology optimization model described in Section 2.1.2.
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2.2.1 Compliance

The stiffness of the beam is evaluated in terms of the structural compliance. The
structural compliance cl for load case l is defined as the work done by the external
forces f̂l and written as

cl(ρ) = f̂
T

l ûl(ρ)

for load case l. The displacements ûl are obtained from the solution to the static
equilibrium equation (1.10). Since K̂(ρ) is positive definite for all ρ within the
specified bounds 0 ≤ ρem ≤ 1, ∀e = 1, ..., ne, ∀m = 1, ..., nc, the displacement can

determined from ûl(ρ) = K̂
−1

(ρ)̂fl, and the expression above can be re-written as

cl(ρ) = f̂
T

l K̂
−1

(ρ)̂fl

The weighted average compliance C is then defined as

C(ρ) =

nl∑
l=1

αlcl(ρ) =

nl∑
l=1

αl̂f
T

l K̂
−1

(ρ)̂fl

where αl ≥ 0 is the weight attributed to load case l.

2.2.2 Eigenfrequencies

The optimal design of structures with eigenfrequency constraints typically con-
siders the maximization of the minimum eigenfrequency or the maximization of
the distance between two specific eigenfrequencies. In both cases the order of
the eigenfrequency may change throughout the optimization procedure leading
to non-differentiability and consequently to a non-robust convergence of the op-
timization procedure. The Kreisselmeier-Steinhauser function (cf. Kreisselmeier
and Steinhauser in [26]) is introduced in Paper 3 in order to address this issues
and try to improve the convergence behavior of the optimization procedure. The
KS function is a differentiable envelope function (Raspanti et al. in [19]) which
gives a conservative representation of the maximum or minimum among a set of
functions. It has been employed by Martins et al. in [17] and Maute et al. in [18]
as a constraint aggregation function in structural optimization problems. The aim
here is to use the KS function to approximate the maximum and minimum values
of groups of eigenfrequencies.

The derivation presented next is for the form of the KS function approximating
the minimum of a function – hereby denoted KS(ρ). Hence, assume that a group

ω =
{
ω1, ..., ωng

}
of ng frequencies has been defined. Furthermore, assume that

ω is a subset of the eigenfrequencies ω = {ω1, ..., ωnu} obtained from (1.14), and
that the frequencies are ordered such that ω1 ≤ ... ≤ ωng

. The KS(ρ) is then
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defined as

KS(ρ) = ωng
(ρ)− 1

βs
ln

⎡⎣ ng∑
g=1

e
−βs(ωg(ρ)−ωng

(ρ))

⎤⎦ (2.4)

The penalty parameter βs is such that the function KS(ρ) will tend to the mini-
mum of ω as βs increases. The function KS(ρ) approximating the maximum of a
group of frequencies ω is easily obtained from the expression above.

2.2.3 Weight

The total weight w(ρ) of the beam finite element assemblage is defined as

w(ρ) =

nb∑
b=1

ne∑
e=1

vee(ρ)Lb

2.2.4 Optimal design problem formulation

The problem formulation presented here is an illustrative example of the type
of problems addressed throughout this thesis. The formulation for the minimum
compliance problem with constraints on frequency, mass, and shear and mass
center positions, is

minimize
ρ∈Rne×nc

C(ρ)

subject to KS(ω(ρ)) ≥ ω

w(ρ) ≤ w

sc(ρ) ≤ s

mc(ρ) ≤ m
nc∑

m=1

ρ̃em(ρ) = 1 , ∀e = 1, ..., ne

ρ ≤ ρem ≤ ρ, ∀e = 1, ..., ne , ∀m = 1, ..., nc

where the parameters ω, w, s, and m are the constraint values for the eigenfre-
quency, weight, and shear and mass center positions, respectively. Different prob-
lem formulations can be obtained by rearranging the objective and constraints
functions above.

2.3 Sensitivity analysis

The expressions for the gradients or sensitivities of the objective function and
constraints are presented in this section. The sensitivities are defined with respect
to the design variables used in the multi-material topology optimization method
described in Section 2.1.2.
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2.3.1 Compliance

The structural compliance of the beam has been defined in Section 2.2.1. The
gradients of the average compliance C(ρ) with respect to ρem are

∂C(ρ)

∂ρem
=

nl∑
l=1

αl
∂cl(ρ)

∂ρem

The sensitivities of the compliance cl(ρ) for load case l is then given as

∂cl(ρ)

∂ρem
= f̂

T

l

∂ûl(ρ)

∂ρem
= f̂

T

l

∂K̂(ρ)−1

∂ρem
f̂l

where it is assumed that the loads f̂l are design independent. It can be shown (see,
e.g., Bendsøe and Sigmund [7]) that the expression above can be further derived
to yield

∂cl(ρ)

∂ρem
= −ûl(ρ)

T ∂K̂(ρ)

∂ρem
ûl(ρ)

Thus the gradient of the beam compliance reduces to the evaluation of the gradient
of the beam stiffness matrix K̂. According to the definition of the beam stiffness
matrix in (1.9), the gradient of K̂ is

∂K̂(ρ)

∂ρem
=

nb∑
b=1

∫ Lb

0
N̂

T

b B̂
T ∂Ks(ρ)

∂ρem
B̂N̂b dz (2.5)

The sensitivities of the cross section stiffness matrixKs(ρ) are presented in Section
2.3.4.

2.3.2 Eigenfrequencies

The eigenfrequency constraints are incorporated into the problem formulation
through the KS function (see Section 2.2.2). The sensitivities are presented here
for KS(ρ) the form of the KS function approximating the minimum of a group ω of
ng eigenfrequencies.The sensitivities of KS(ρ) with respect to the design variable
ρem are obtained from the differentiation of (2.4) and defined as

∂KS(ρ)

∂ρem
=

∂ωng
(ρ)

∂ρem
+

ng∑
g=1

(
∂ωg(ρ)

∂ρem
− ∂ωng

(ρ)

∂ρem

)
e
−βs(ωg(ρ)−ωng

(ρ))

ng∑
g=1

e
−βs(ωg(ρ)−ωng

(ρ))

(2.6)

The gradients of the eigenfrequencies are presented next.
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The eigenfrequencies ω and associated eigenvectors v̂ are obtained from the
solution to the structural eigenvalue problem in (1.14). It is assumed that the
eigenvectors are mass-normalized and thus

v̂T
p M̂(ρ)v̂q = δpq, ∀p, q = 1, ..., nd.

where nd is the number of degrees of freedom in û, and δpq is the Kronecker delta
such that δpq = 1 if p = q and δpq = 0 otherwise. For single eigenfrequencies
the sensitivity of the eigenfrequency ωp with respect to the design variable ρem is
given by (cf. Seyranian et al. in [27])

∂ω2
p(ρ)

ρem
= v̂T

p

(
∂K̂(ρ)

∂ρem
− ω2

p(ρ)
∂M̂(ρ)

∂ρem

)
v̂p (2.7)

In the case of multiple eigenfrequencies we follow the technique outlined by Seyra-
nian et al. [27]. Hence, assume that ωM is an eigenfrequency with multiplicity nω

such that ωM = ω1 = ... = ωnω , where the eigenfrequencies are numbered from 1
to nω for convenience. The first step consists of assembling the auxiliary matrix
Λ defined as

Λrs = v̂T
r

(
∂K̂(ρ)

∂ρem
− ω2

M

∂M̂(ρ)

∂ρem

)
v̂s, r, s = 1, ..., nω. (2.8)

where v̂r and v̂s, r, s = 1, ..., nω, are the eigenvectors associated with the multiple
eigenfrequency ωM . Next, the following eigenvalue subproblem is subsequently
solved (

Λ− λ̃I
)
ṽ = 0

yielding the eigenvalues λ̃ =
{
λ̃1, ..., λ̃nω

}
and corresponding eigenvectors Ṽ =

{ṽ1, ..., ṽnω}. The gradients of the multiple eigenfrequency ωM are finally obtained
as

∂ω2
M (ρ)

ρem
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ̃1 with eigenvector v1 =

nω∑
q=1

v̂q ṽ1,q

...

λ̃nω with eigenvector vnω =

nω∑
q=1

v̂qṽnω ,q

(2.9)

where ṽnω ,q is the entry (nω, q) of the eigenvector ṽ. The approach presented for
multiple eigenfrequencies can be applied to single eigenfrequencies as well. In that
case, Λ consists of only one eigenfrequency and the expression in (2.8) reduces to
that derived for single eigenfrequencies in (2.7).
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Finally, the gradients of the global beam finite element mass matrix M̂(ρ) in
(2.7) and (2.8) are obtained through differentiation of (1.11) which yields

∂M̂(ρ)

∂ρem
=

nb∑
b=1

∫ Lb

0
N̂

T

b

∂Ms(ρ)

∂ρem
N̂b dz

The sensitivities of the cross section mass matrix Ms are presented in Section
2.3.5. Inserting the results from either (2.7) or (2.9) into (2.6) for each of the
eigenfrequencies in ω yields the gradients of KS(ρ). The gradients of the global
beam finite element stiffness matrix K̂(ρ) are given in (2.5).

2.3.3 Shear and mass center

The sensitivities of the shear center position with respect to the design variable
ρem are obtained through differentiation of (1.31) to yield

∂xs
∂ρem

=−
(
∂Fs,62

∂ρem
+

∂Fs,64

∂ρem
(L− z)

)
1

Fs,66

+ (Fs,62 + Fs,64(L− z))
1

F 2
s,66

∂Fs,66

∂ρem

∂ys
∂ρem

=

(
∂Fs,61

∂ρem
+

∂Fs,65

∂ρem
(L− z)

)
1

Fs,66

− (Fs,61 + Fs,65(L− z))
1

F 2
s,66

∂Fs,66

∂ρem

where the gradients ∂Fs,ij/∂ρem refer to the entries of ∂F/∂ρem derived in Section
2.3.4. Finally, the sensitivities of the mass center position are obtained through
differentiation of (1.33) which gives

∂xc
∂ρem

=
xceve
ne∑
e=1

vee

∂e
∂ρem

−

ne∑
e=1

xcevee(
ne∑
e=1

vee

)2

(
ve

∂e
∂ρem

)

∂yc
∂ρem

=
yceve
ne∑
e=1

vee

∂e
∂ρem

−

ne∑
e=1

ycevee(
ne∑
e=1

vee

)2

(
ve

∂e
∂ρem

)

2.3.4 Cross section stiffness matrix

Two approaches were presented in Section 1.2 for the determination of the cross
section stiffness matrix Ks. The sensitivities of Ks when using VABS in Paper 1,
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have been determined using finite differences. The reason is VABS is distributed as
a ”black-box” and hence it is not possible to implement the analytical sensitivities.
The sensitivities presented here refer to the cross section analysis formulation
presented in Section 1.2.1 using BECAS. This formulation was described and
used first in Paper 2, and later employed in Paper 3.

The sensitivities of Ks with respect to ρem are defined as

∂Ks(ρ)

∂ρem
=

∂F−1
s (ρ)

∂ρem
= −Ks(ρ)

∂Fs(ρ)

∂ρem
Ks(ρ) (2.10)

where Ks = F−1
s and Fs is the cross section compliance matrix. The sensitivities

of Fs are obtained from the differentiation of (1.30) to yield

∂Fs(ρ)

∂ρem
=
∂WT (ρ)

∂ρem
G(ρ)W(ρ) +WT (ρ)

∂G(ρ)

∂ρem
W(ρ)

+WT (ρ)G(ρ)
∂W(ρ)

∂ρem

(2.11)

The evaluation of the second term in the expression above entails the evaluation
of ∂G(ρ)/∂ρem. This can be obtained by evaluating the gradients of the sub-
matrices in (1.21) and inserting the result into (1.29). The remaining terms can
be efficiently evaluated as follows. The matrix W(ρ) is the solution to the linear
system of equations in (1.27) such that W(ρ) = K(ρ)−1F. Consequently, the
sensitivities of W(ρ) are defined as

∂W(ρ)

∂ρem
=

∂K−1(ρ)

∂ρem
F = −K−1(ρ)

∂K(ρ)

∂ρem
W(ρ)

The gradients ∂K(ρ)/∂ρem are determined by differentiation of (1.26) and corre-
sponding sub-matrices in (1.21). Inserting the expression above into (2.11) yields

∂Fs(ρ)

∂ρem
=−WT (ρ)

∂KT (ρ)

∂ρem
K−T (ρ)G(ρ)W(ρ)

+WT (ρ)
∂G(ρ)

∂ρem
W(ρ)

−WT (ρ)G(ρ)K−1(ρ)
∂K(ρ)

∂ρem
W(ρ)

(2.12)

The first and last term can be dealt with efficiently by first solving the following
sub-problem

V = K−T (ρ)G(ρ)W(ρ)

The solution V to the set of linear equations above is the same for all design
variables ρem. Hence, it can be evaluated once and stored to be reused in the
calculation of the sensitivities for each of the design variables. The final expression



32 Optimal design of laminated composite structures

for the sensitivities of the compliance matrix is then obtained by inserting V into
(2.12) to yield

∂Fs(ρ)

∂ρem
=−WT (ρ)

∂KT (ρ)

∂ρem
V(ρ) +WT (ρ)

∂G(ρ)

∂ρem
W(ρ)

−VT (ρ)
∂K(ρ)

∂ρem
W(ρ)

(2.13)

The gradient of the cross section stiffness matrix Ks are obtained by inserting
(2.13) into (2.10). Inserting the result in (2.5) yields the sensitivities of the beam
finite element stiffness matrix used for the evaluation of the sensitivities of the
compliance and frequencies in Section 2.3.1 and 2.3.2, respectively. The gradients
of the compliance matrix are required for the evaluation of the sensitivities of the
shear center in Section 2.3.3.

2.3.5 Cross section mass matrix

The mass matrix Ms has been defined in (1.32). The gradient of Ms with respect
to the design variable ρem is

∂Ms

∂ρem
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂m
∂ρem

0 0 ∂Ixx
∂ρem

− ∂Ixy

∂ρem
0

0 ∂m
∂ρem

0 − ∂Ixy

∂ρem

∂Iyy

∂ρem
0

0 0 ∂m
∂ρem

0 0 ∂Ixx
∂ρem

+
∂Iyy

∂ρem

∂Ixx
∂ρem

− ∂Ixy

∂ρem
0 0 0

− ∂m
∂ρem

ym−
m ∂ym

∂ρem

− ∂Ixy

∂ρem

∂Iyy

∂ρem
0 0 0

∂m
∂ρem

xm+

m ∂xm
∂ρem

0 0
∂Ixx
∂ρem

+ ∂m
∂ρem

ym+ − ∂m
∂ρem

xm−
0∂Iyy

∂ρem
m ∂ym

∂ρem
m ∂xm

∂ρem

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, the gradient of the cross section mass matrix reduces to the gradients of the
mass per unit length, ∂m/∂ρem, moments of inertia, ∂Ixx/∂ρem and ∂Iyy/∂ρem,
the product of inertia, ∂Ixy/∂ρem, and the mass center ∂xm/∂ρem and ∂ym/∂ρem.

2.4 Implementation and validation

The optimal design problem is solved using the sequential quadratic programming
algorithm SNOPT (Gill et al. [14]). The gradients of each of the functions have
been implemented both in Fortran (Paper 1) and MATLAB R© (Papers 2 and
3). The MATLAB R© implementation makes extensive used of the SuiteSparse
libraries by Davis [16], and Davis and Natarajan [15]. Furthermore, the mod-
ule for the evaluation of the sensitivities makes use of the parallel capabilities of
the parfor command in the MATLAB R© Parallel Computing Toolbox. The sen-
sitivities have been consistently validated against values determined using finite
differences.
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An example is presented in Paper 2 which illustrates the amount of time in-
volved in the computations. Consider a cross section finite element mesh with
6627 degrees of freedom, a beam finite element model with 390 degrees of free-
dom, and an optimal design problem with 18900 design variables. The current
MATLAB R© implementation takes approximately five seconds for each objective
function evaluation including assembly of the finite element matrices and the so-
lution of the linear system of equations. The sensitivity analysis takes about 20
seconds in total.





Chapter 3

Conclusions

The most important conclusions and contributions of this thesis are presented
in this chapter along with suggestions for future research directions. This thesis
describes work done in the field of structural analysis of beams and optimal de-
sign of laminated composite structures. The resulting optimal design framework
combining a structural and optimization model has been applied to the optimal
structural design of laminated composite beams.

This chapter is organized as follows. A summary of the results obtained in each
individual publication is presented next in Section 3.1. The main contributions
and impact of the research presented in this thesis is subsequently outlined in
Section 3.2. Finally, in Section 3.3, several directions for future research are
suggested.

3.1 Summary of the results

The most important results and conclusions from each of the publications are
summarized here. At the date of submission of this thesis Paper 1 and 5 have been
published in peer-reviewed international journals. Paper 2 has been submitted to
a peer-reviewed international journal and Paper 3 is intended for submission in
the near future. Finally, Paper 4 will be published as a technical report. The
chronological order in which the research was produced is first Paper 5, then
Paper 1, Paper 4, Paper 2, and finally Paper 3.

Paper 1: Maximum stiffness and minimum weight optimization of
laminated composite beams using continuous fiber angles

This paper focuses on the optimal design of laminated composite beams for max-
imum stiffness and minimum weight. The structural analysis is performed using
a beam finite element model. A three-node quadratic beam finite element is for-
mulated which is able to correctly account for the effects of material anisotropy
and inhomogeneity in the analysis of beams with arbitrary cross section geometry.

35
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The static and dynamic response of the beam finite element model is validated
against equivalent shell and solid finite element models and the results are in very
good agreement. The main advantage of the beam model is the significant reduc-
tion in the size of the global finite element matrices when compared to equivalent
shell and solid finite element models. This modeling approach is therefore an
attractive alternative in computationally intensive applications like optimal de-
sign frameworks. A projection technique is proposed which aims at enabling the
use of fiber angles as continuous design variables albeit the problems may have
many local minima. The technique consists of solving a sequence problems with
increasing number of design variables. At each step the results from the previous
problem are projected to generate the starting point for the new optimal design
problem. Results are presented for the minimum compliance and minimum weight
design of laminated composite beams with different cross section geometries and
load cases. The results suggest that the optimal design framework is suitable for
the identification of optimal fiber orientations and laminate thickness in optimal
design of laminated composite beams.

Remarks This paper presents the first iteration of the structural and optimiza-
tion models. A short-coming of the structural model using VABS as a ”black-box”
concerned the evaluation of the sensitivities. The computational effort involved in
the forward difference approach used here is significantly larger when compared
to the analytical approach presented in Paper 2. Finally, the optimization model
considers that the geometry and material properties are practically fixed and is
therefore less versatile than the optmization approach presented in Paper 2.

Paper 2: Multi-material topology optimization of laminated com-
posite beam cross sections

This paper presents an optimal design framework for the simultaneous identi-
fication of optimal cross section topology and material properties in structural
design of laminated composite beams. The structural response of the beam is
analyzed using a beam finite elements. A finite element based tool is described
for the analysis of the cross section stiffness properties. The resulting beam finite
element model is able to correctly account for the effects stemming from mate-
rial anisotropy and inhomogeneity in the analysis of beams with arbitrary section
geometry. An optimization framework based on multi-material topology optimiza-
tion techniques is described. The design variables represent the volume fractions of
each of a predefined set of candidate materials. Extensions of an existing material
interpolation model, penalization method, and filtering technique are presented
which can accommodate any number of anisotropic materials. The methodology
is applied in the optimal design of laminated composite beams with different cross
section shapes and load cases. Results are presented for the minimum compliance
problem with constraints on weight, and the shear and mass center positions.
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The methodology is also applied in the optimal design of an idealized wind tur-
bine blade cross section subjected to static loading of aerodynamic nature. The
results from the numerical experiments suggest that the devised optimal design
framework is suitable for the simultaneous optimization of cross section topology
and material properties in the structural design of laminated composite beams.

Remarks This paper described the incorporation of BECAS, the cross section
analysis tool developed in Paper 4, into an optimal design framework. An im-
portant development in this thesis concerns the derivation of the sensitivities of
the cross section stiffness matrix presented in this paper. This allowed for a
significant decrease in the computation time involved in the evaluation of the sen-
sitivities when compared to the approach described in Paper 1. Furthermore, the
multi-material topology optimization model presented here addresses most of the
short-comings of the model presented in Paper 1. Mostly, the fact that the cross
section topology is not fixed together with the possibility of considering a wide
range of different isotropic and anisotropic materials throughout the optimizaton
process, makes this approach very versatile.

Paper 3: Multi-material topology optimization of laminated com-
posite beams with frequency constraints

This paper presents a framework for the optimal structural design of laminated
composite beam cross sections with stiffness and frequency constraints. The beam
static and dynamic response is analyzed using a beam finite element model. The
cross section stiffness and mass properties are estimated using a high-fidelity cross
section analysis tool which is able to correctly estimate the effects of material
anisotropy and inhomogeneity. The optimization is performed using the multi-
material topology optimization framework presented in Paper 2. The design vari-
ables are the volume fractions of each of a predefined set of candidate materials
at each point of the cross section. The frequency constraints are included in
the optimal design problem formulation through the Kreisselmeyer-Steinhauser
(KS) function. The KS function is a differentiable envelope function and is used
here to approximate the maximum and the minimum of a group of eigenfrequen-
cies. Results are initially presented for problems dealing with the maximization of
the minimum eigenfrequency, and maximization of the gap between consecutive
eigenfrequencies with constraints on weight and shear center position. Finally,
solutions are presented for the minimum compliance problem with constraints on
mass, frequency, and shear center position. The results indicate that the approach
is suitable for the simultaneous optimization of the cross section topology and ma-
terial properties in structural design of laminated composite beams with stiffness
and frequency constraints.



38 Conclusions

Remarks This paper extends the work presented in Paper 2 to include frequency
constraints. The beam finite element model is based on the cross section analysis
tool presented in Paper 4.

Paper 4: BECAS - A cross section analysis tool for anisotropic
and inhomogeneous sections of arbitrary geometry

The development, implementation and validation of the BEam Cross section Anal-
ysis Software – BECAS – is described. BECAS is a finite element based tool for
the determination of the stiffness properties of beam cross sections with arbi-
trary geometry. Moreover, BECAS can account for the effects stemming from
material anisotropy and the inhomogeneous distribution of material in the cross
section. A thorough account of the underlying theory is presented first. Details
on the practical implementation of the current version of BECAS are described
next. Finally, validation results are presented for solid, hollow, open and multi-
celled cross sections made of isotropic and anisotropic materials. The estimated
stiffness parameters were found to be in very agreement when compared to the re-
sults obtained using an existing and extensively validated commercial cross section
analysis tool.

Remarks BECAS is used in the beam finite element model of both Paper 2 and
3. The gradients of the cross section stiffness parameters are presented in Paper
2. BECAS is extended in Paper 3 to include the calculation of the mass matrix.
The latter will be included in future versions of BECAS.

This report is intended to be a developers manual for future users of BE-
CAS. The report will accompany the current open-source version of BECAS freely
available for academic use. We hope that making the code publicly available will
stimulate further research into the development of advanced beam finite element
models.

Paper 5: Hydro-elastic analysis and optimization of a composite
marine propeller

This paper describes the development of a framework for the hydro-elastic analysis
and optimization of laminated composite marine propellers. A structural model
of the marine composite propeller is developed using layered shell finite elements
with varying thickness. The hydrodynamic model used for the evaluation of the
hydrodynamic pressure acting on the face of the propeller is based on the panel
method. The structural and hydrodynamic model are coupled in the hydro-elastic
model in order to analyze the interaction between the elastic deformation of the
blade and the hydrodynamic pressure distribution. An optimization model is pre-
sented where the design variables are the fiber orientations at different layers, and
the blade pitch angle. The presented hydro-elastic and optimization models are
employed in the design of a high-skew composite marine propeller. The laminate
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properties are optimized to reduce the fuel consumption considering two operation
conditions – cruising and maximum speed. The strength of the resulting optimized
design is analyzed in terms of the Tsai-Wu strength index and the laminate in the
most critical regions is rearranged. The numerical results show that the opti-
mized composite marine propeller design allows for a reduction of the combined
fuel consumption with respect to its metal counterpart, and is simultaneously able
to resist the imposed hydrodynamic loads.

3.2 Contributions and impact

The main contribution of this thesis is the optimal design framework presented
for the structural design of laminated composite beams. Although several design
constraints are not yet accounted for in order to fully address problems like the
aeroelastic tailoring of laminated composite wind turbine blades, we believe the
work presented in this thesis represents a step towards this goal.

The contributions according to each individual paper are as follows. The
main contribution of Paper 1 concerns the proposed projection technique. It can
be employed in laminate optimization problems where the fiber angles are rep-
resented by continuous design variables. The first main contribution of Paper
2 concerns the integration of the cross section analysis tool, BECAS, into the
optimal design framework. This is mostly achieved through the derivation and
implementation of the analytical expressions for the sensitivities of the cross sec-
tion stiffness matrix. The result is a significant reduction in computation time in
the evaluation of the sensitivities which allows for the solution of problems with a
larger number of design variables. This increase in computational efficiency paved
the way for the development of the multi-material topology optimization model
– the second contribution from this paper. Namely, the main contributions in
this field are the proposed extensions of the material interpolation, penalization
and filtering techniques to multiple anisotropic materials. Paper 3 extends the
work of Paper 2 to include eigenfrequency constraints. The main contribution is
the alternative approach for handling the eigenfrequency constraints based on the
Kreisselmeier-Steinhauser function. The main contribution of Paper 4 concerns
the the development, implementation, and validation of the cross section analysis
tool BECAS. The development of BECAS allowed for a much deeper insight into
the formulation of the beam model and a closer integration between the structural
and optimization models. Paper 2 and Paper 4 represent perhaps the most impor-
tant contributions from this thesis. The most important contribution of Paper 5 is
the suggested hydro-elastic model for the analysis of composite marine propellers.
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3.3 Future work

This section presents several topics for future research which are a continuation of
the work or for which the work presented in this thesis can be used as a starting
point.

Validation Further validation of the beam and cross section analysis models
is required. The cross section stiffness parameters and warping displacements
should be validated against numerical and experimental data, if possible. The
efforts should focus on the validation of the effects stemming from material inho-
mogeneity and anisotropy as we feel there is a lack of physical insight concerning
this phenomena.

Beam finite element model Future research should focus on the development
of a beam finite element model which can account for the effects of tapering, pre-
twist and curvature. This is relevant for the analysis of wind turbine blades as
it is possible, using fewer beam finite elements, to accurately estimate the global
response of the blade.

Cross section analysis tool Amodule for the analysis of the three-dimensional
stresses in the cross section should be developed. It is possible based on these
stresses to determine the magnitude of different failure index specific for the anal-
ysis of laminated composite structures (e.g., Tsai-Wu strength index). The results
may give a valuable insight into the strength properties of the blade at the early
stages of the design process.

The effects of tapering, pre-twist and curvature should also be included at the
cross section analysis level. This is important for the correct estimation of the
stiffness properties and cross section stresses.

Different types of finite elements should be developed for the cross section
analysis. It should be possible to develop two-dimensional layered elements which
would then be used in the estimation of the cross section properties. This would be
an important step towards the exchange of information between the beam model
and other existing shell or solid finite element models.

Optimization model The number of objective function evaluations and the
overall computational effort could be reduced. One possibility is to improve the
penalization approach used together with the continuation method. The informa-
tion from the gradients of the objective function and constraints with respect to
the penalty parameter p can perhaps be used to determine the correct step length
between iterations in the continuation method.

Different shapes of the density filter, other than circular, should be considered.
Layered structures can be realized using laminated composites and its appearance
is being hindered when using a circular filter. Possibly, an elliptical filter whose
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orientation is dependent on the orientation of the fiber plane could be an inter-
esting alternative.

Optimal design problem formulations In order to address relevant physical
problems like the optimal design of laminated composite wind turbine blades,
further constraints should be included in the optimal design problem formulation.
A possible first step concerns the incorporation of lift and drag in order to have a
measure of aerodynamic performance.

Another important aspect is to account for the strength of the blade in the
optimal design problem formulation. This can be done in two levels. The first
is at the beam level where constraints can be imposed on the magnitude of the
generalized transverse forces and moments at each node of the beam finite ele-
ment model. This constraints would be computationally cheap as the analysis is
done at the beam finite element level where the matrices are relatively small. The
second approach concerns the analysis of the stresses at the cross section level. In
this case, the use of failure criteria specifically developed for laminated composite
materials (e.g., Tsai-Wu failure criteria) should be considered. This approach is
more computationally expensive as in this case the determination of the sensitiv-
ities will entail the solution to the cross section equilibrium equations for each
design variable.

Structural analysis of laminated composite beams Work is under way
to couple the beam finite element model developed in this thesis with a micro-
mechanics model for the analysis of debond damage growth in wind turbine blades.
The aim is to investigate the effect of the debond damage on the global response
of the blade and, furthermore, to analyze how the debond grows while the blade
is under operation. The approach should be used for the fatigue analysis of wind
turbine blades.
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Abstract This paper deals with identification of optimal
fiber orientations and laminate thicknesses in maximum
stiffness and minimum weight design of laminated compos-
ite beams. The structural response is evaluated using beam
finite elements which correctly account for the influence
of the fiber orientation and cross section geometry. The
resulting finite element matrices are significantly smaller
than those obtained using equivalent finite element models.
This modeling approach is therefore an attractive alternative
in computationally intensive applications at the conceptual
design stage where the focus is on the global structural
response. An optimization strategy is presented which aims
at enabling the use of fiber angles as continuous design
variables albeit the problems may have many local minima.
A sequence of closely related problems with an increasing
number of design variables is treated. The design found for
a problem in the sequence is projected to generate the start-
ing point for the next problem in the sequence. Numeri-
cal results are presented for cantilever beams with different
geometries and load cases. The results indicate that the de-
vised strategy is well suited for finding optimal fiber orien-
tations and laminate thicknesses in the design of slender
laminated composite structures.
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1 Introduction

Composite laminates present different levels of elastic cou-
plings which depend on the laminate lay-up. Using optimal
design to tailor the orientation of the fibers in the lami-
nate it is possible, to a certain extent, to improve the static
and dynamic response of composite structures. This idea
has been applied in the design of airplane wings and pro-
peller blades. Shirk et al. (1985) present a review on this
topic. The possibility of increasing the lift to drag ratio,
improve maneuverability, and prevent wing divergence and
flutter are among the possible issues aeroelastic tailoring
may address. Maute et al. (2003) have recently presented
a framework for the aeroelastic tailoring of composite air-
plane wings using a gradient-based technique. The benefits
of aeroelastic tailoring have also been studied in the context
of helicopter rotor blade design. Ganguli and Chopra (1995)
and Murugan and Ganguli (2005) use laminate tailoring to
reduce blade vibrations, improve aeroelastic stability and
decrease stresses. In the field of wind turbine blade design,
Jeronimidis et al. (1991) and Veers et al. (1998), argue for
the use of laminate tailoring to design blades with passive
pitch regulation. Incorporation of this design feature may
lead to an increase in the energy production and more impor-
tantly to the mitigation of the effects of extreme gust loads.
Hansen (2003) indicates that aeroelastic tailoring may also
improve the dynamic properties of these type of blades.
The idea was investigated and experimentally validated in
the DAMPBLADE project (Chaviaropoulos et al. 2006)
which used laminate tailoring among other, to improve the
structural damping properties of a wind turbine blade.
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In most of the references cited above, the analysis of the
structural response is performed using either shell or beam
finite element models. Shell elements are typically used
when a relatively high level of detail is required, namely
an accurate prediction of the stress field. Beam finite ele-
ments are specifically suited and thus often preferred for the
global analysis of slender structures like helicopter and wind
turbine rotor blades. Reviews of different beam modeling
techniques are presented in Jung et al. (1999) and Volovoi
et al. (2001). The correct prediction of the effect of the fiber
orientations in the structural response of the beam is consid-
ered paramount and is specifically addressed in Jung et al.
(1999) and Volovoi et al. (2001).

The objective is herein to establish a methodology for
the identification of optimal fiber orientations in maximum
stiffness and minimum weight design of laminated compos-
ite beams. The static structural response of the composite
beam is evaluated using a beam finite element model capa-
ble of correctly predicting the effect of the fiber orientations.
The aim is to set the foundations for future research which
will extend the application to structural design of wind
turbine blades with aeroelastic constraints.

Several approaches for optimization of laminate lay-ups
have been reported in the literature. Some of these are based
on the assumption that the design variables should only take
discrete values. Algorithms used for these type of prob-
lems include genetic algorithms (Le Riche and Haftka 1993;
Gürdal et al. 1999), particle swarm methods (Kathiravan
and Ganguli 2007) and branch-and-bound methods (Stolpe
and Stegmann 2007). Other approaches consider continuous
design variables. In this case, it is often possible to compute
the gradients (sensitivities) of the objective function and
constraints. It is then possible to state nonlinear optimiza-
tion problems which can be solved using robust and efficient
numerical gradient-based optimization methods. The main
advantage of these type of methods is that in general a rel-
atively small number of objective and constraint function
evaluations is required. This is a critical aspect when deal-
ing with large, computationally expensive analysis models
like nonlinear aeroelastic models of wind turbine blades.
Different parameterizations have been put forward in this
context. Pedersen (1991) presented an approach based on
the minimization of the elastic strain energy in the opti-
mal thickness and fiber orientations design of structures
subjected to in-plane loads. Tsai and Pagano (1968) intro-
duced the concept of lamination parameters or laminate
invariants which allow for the definition of a convex design
space in maximum stiffness design problems. Later, Miki
and Sugiyama (1993) and Hammer et al. (1997) employed
lamination parameters in the design optimization of lami-
nated composite structures. Another approach inspired by
the ideas of multi-phase topology optimization has been pre-

sented by Lund and Stegmann (2005) and Stegmann and
Lund (2005). The so-called discrete material optimization
approach uses a material interpolation model to force the
continuous variables to approach discrete values.

In this paper, fiber orientations and layer thicknesses are
used directly as design variables. This modeling approach
is prone to generate optimal design problems with a large
number of local minima. A strategy is presented which
aims at enabling the use of fiber angles as design vari-
ables albeit the problem with local minima. A sequence
of closely related problems with an increasing number of
design variables is treated. The design found for a prob-
lem in the sequence is projected and used as the starting
point for the next problem in the sequence. The strategy is
applied in the optimal design of laminated composite beam-
like structures subject to multiple load cases. Considering
the overall aim of this research, gradient-based algorithms
have been preferred for solving the optimization problems
presented in this paper. Hence, each of the optimization
problems is solved using a modern numerical optimiza-
tion method for continuous constrained optimization—the
robust and efficient sequential quadratic programming
software SNOPT (Gill et al. 2002). Figure 1 shows an
example of the results obtained when the devised method-
ology is applied to the design of a composite cantilever
box beam.

Mx
Fz

Cross section 
finite element 
mesh

Beam finite 
element

Layers
Patch

Cross 
section

Fig. 1 An illustration of the developed methodology applied to the
optimal design of a laminated composite box beam subject to a trans-
verse load (Fz) and torsional moment (Mx ). The structural analysis
is performed using a beam finite element model. The geometry of
each cross section is defined using plane finite elements. These ele-
ments are grouped to define the layers in the laminate of each face.
The design variables are associated with fiber orientations in each
layer. The devised optimization strategy is employed and the resulting
optimal fiber orientations are finally identified
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The structural analysis is performed in a beam finite
element context. The cross section properties are evalu-
ated using the Variational Asymptotic Beam Cross Sectional
Analysis software, VABS (Yu and Hodges 2005; Yu et al.
2002). A three node quadratic beam finite element is conse-
quently constructed and implemented. The presented beam
finite element model is able to handle arbitrary cross section
geometries and correctly predict the effect of the fiber
orientations in the global static and dynamic response. In
the beam element formulation the 2D analysis of the cross
section properties is decoupled from the 1D integration of
the cross section properties along the beam length. Conse-
quently, the resulting system matrices are (much) smaller
than those obtained using equivalent shell or solid finite
element models. As a result, beam elements are very attrac-
tive in computationally intensive applications at stages of
the design process focusing mostly on the the analysis of
the global response of the beams. The possibility intro-
duced by VABS of correctly predicting the effect of the
fiber orientations, makes this whole approach attractive for
the optimal design of slender laminated composite struc-
tures. Neto et al. (2008) presented the analytical sensitivities
of the beam stiffness with respect to the fiber orientations
using VABS. The fiber orientations of a cantilever lami-
nated composite box beam were subsequently optimized to
improve the buckling associated with the twist-bend insta-
bility. The largest problem in Neto et al. (2008) has four
design variables and is solved using a gradient-based tech-
nique. Li et al. (2008) suggest a hybrid approach combining
a gradient-based method and a genetic algorithm to design
the cross section of a helicopter blade. The aim is to identify
the optimal fiber orientations and internal spar shape which
minimize the blade weight, reduce the distance between
shear, mass and aerodynamic center, and respect a set of
stiffness, stress and manufacturing constraints. The largest
problem considers a total of 17 design variables. To the
author’s best knowledge, Neto et al. (2008) and Li et al.
(2008) are the only publications to date combining fiber ori-
entation optimization and a beam finite element formulation
based on VABS.

The paper is organized as follows. The structural model
and the validation thereof are described in Section 2. The
formulation of the minimum weight problem with stiffness
constraints is presented in Section 3. The sensitivity analysis
of the constraint functions (compliance) and the objec-
tive function (weight) with respect to the design variables
are described in Section 4. The setup of the numerical
experiments and the employed optimization strategies are
described in Section 5. In Section 6 numerical results for
eight different combinations of cross section geometries,
load cases and problem formulations are presented. Finally,
a summary and an outline of future research are presented.

2 Structural model

A linear elastic three-node quadratic beam finite element
is implemented. The construction of the beam finite ele-
ment model is divided into two parts—the analysis of the
cross section properties and the integration of these prop-
erties along the beam length. The cross section analysis is
performed using the Variational Asymptotic Beam Cross
Section Analysis (VABS) software (Yu and Hodges 2005).
The cross section geometry is defined and meshed using
plane finite elements. The material properties, plane of the
laminate, and the orientation of the fibers are specified
at each element of the cross section mesh. The software
VABS returns, among other things, a generalized form of
the Timoshenko beam stiffness and mass matrix, A and
E, respectively (see e.g. Bathe 1982). The beam stiffness
matrix includes and accounts for the anisotropic composite
laminate couplings.

The cross section stiffness and mass matrices, A and E,
are subsequently integrated along the beam length to gener-
ate a three node quadratic beam element. The element has
three translational and three rotational degrees of freedom
(dof) at each node. The beam element stiffness and mass
matrices, Ke and Me, of element e are given by

Ke(θ , t) =
∫ Lb

0
BT A(θ, t)Bdl

Me(t) =
∫ Lb

0
NT E(t)Ndl

The matrix B expresses the strain-displacement relation and
incorporates the quadratic shape functions in matrix N, l
is the direction along the length of the beam and Lb is
the length of the beam. The design variable vectors θ =(
θ1 . . . θnθ

)T
and t = (

t1 . . . tnt

)T
are associated

with the fiber orientations and cross section face thickness
design variables, respectively. Finally, the global stiffness
and mass matrices are defined as

K(θ , t) =
ne∑

e=1

Ke(θ , t) (1)

M(t) =
ne∑

e=1

Me(t) (2)

where ne is the number of beam elements. The displacement
field, uk , of the beam when subjected to the load, fk , is
obtained by solving the linear system of equations

K(θ , t)uk = fk (3)

where k = 1, . . . , m, indicates the load number.
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2.1 Validation of the beam model

The static and dynamic response of the beam finite element
model is validated by reproducing and extending some of
the results presented by Yu (2007). The compliance and first
six eigenfrequencies are compared against shell and solid
finite element models. A cantilever beam with two different
cross section geometries and laminate lay-ups is consid-
ered. The shell and solid finite element models are generated
in ANSYS using SHELL99 and SOLID191 layered shell
and solid finite elements, respectively. The compliance is
evaluated for two load cases—a transverse load, F , and a
torsional moment, M , applied at the free end of the beam.
Results are first obtained for a solid rectangular cross
section. The dimensions of the beam, fiber orientations,
material mechanical properties, and magnitude of the loads
are presented in Fig. 2. The finite element models are con-
structed using 20 elements along the length and width. In the
thickness direction five elements are used in both the beam
and solid finite element model. In the shell model five layers
are defined through the thickness. The fibers are oriented at
30◦ with respect to the length (cf. Fig. 2). The results for
each of the different models are presented in Table 1.

The beam finite element model is also validated using
one of the optimal designs obtained later in this paper. The
optimal design from example B2 (cf. Table 7) is repro-
duced using shell and solid finite elements. The geometrical
properties, fiber orientations, material mechanical proper-
ties, and details concerning the imposed loads are presented
in Fig. 3. The finite element discretization is the same for
all three models. There are 32 elements along the length,
32 elements along the perimeter and six elements in the
thickness direction. Only in the shell element model the six
layers are defined across the thickness.

As reported in Tables 1 and 2 the results indicate that
there is a good agreement between the values of the three
models irrespective of the cross section geometry or lami-

Table 1 Validation results obtained for the solid rectangular cross
section. Comparison between the compliance and first six eigenfre-
quencies using equivalent beam, shell and solid finite element models.
The relative difference is with respect to the beam model results

Beam Shell Error (%) Solid Error (%)

Load

F 221.9 217.3 2.05 215.5 2.87

M 0.666 0.664 0.26 0.653 2.03

Eigenfrequency

# 1 52.6 54.439 3.55 54.5 3.58

# 2 209.8 214.34 2.16 214.4 2.18

# 3 326.3 339.87 4.14 339.8 4.13

# 4 900.3 948.34 5.34 947.6 5.26

# 5 1,285.2 1,317.9 2.55 1,318.0 2.56

# 6 1,661.6 1,732.8 4.29 1,686.4 1.49

nate lay-up. Note that the unconstrained warping boundary
condition present in the beam model is difficult to reproduce
using the shell and solid model. Hence it has been disre-
garded. This fact may explain the discrepancy in the results.
The validation results serve to show that the modeling
approach is suited for the analysis of the global response of
slender laminated composite structures. The optimal results
obtained using the beam finite element model can be trans-
ferred to an equivalent shell or solid model if a more detailed
analysis is required. The main advantage of the beam ele-
ment model in comparison to its shell and solid counterparts
is the reduced problem size. For example, in the first case
(solid rectangular cross section) the beam, shell and solid
finite element models have 1,293, 2,200 and 29,673 dof,
respectively. Moreover, note that the 1D beam finite element
model has only 390 dof. The remaining 903 correspond to
the cross section mesh.

Fig. 2 Solid rectangular beam
used for validation of the beam
finite element. Geometrical
lay-out, fiber orientations and
direction of transverse load (F)
and torsional moment (M) (left).
Material mechanical properties,
geometrical dimensions, and
magnitude of the loads (right)

L 30o

H

W

M
F
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Fig. 3 Box beam used for
validation which is a
reproduction of example B2 (cf.
Table 7) presented later in this
paper. Geometrical lay-out,
fiber orientations, and direction
of transverse load (F) and
torsional moment (M) (left).
Material mechanical properties,
dimensions and magnitude of
the loads (right)

M F

L

H

W

3 Problem formulation

The minimum weight problem with a constraint on the
weighted average of the compliances for each load case is
formulated next. The total weight of the structure, w(t),
is only a function of the thickness variables, t, of the
cross section faces whereas the compliance of load case k,
ck(θ , t), is function of the thickness and also the fiber orien-
tations θ . The structural compliance is a measure of stiffness
defined as the work performed by the external loads

ck(θ , t) = fT
k uk(θ , t)

The design variable values are bounded within given values,
i.e., θ ≤ θi ≤ θ , ∀i = 1, . . . , nθ and t ≤ t j ≤ t, ∀ j =
1, . . . , nt . We assume herein that t > 0 and K(θ , t) is pos-
itive definite for all (θ , t) within the specified bounds. It is

Table 2 Validation results obtained for the box beam. Comparison
between the compliance and first six eigenfrequencies using equivalent
beam, shell, and solid finite element models. The relative difference is
with respect to the beam model results

Beam Shell Error (%) Solid Error (%)

Load

F 17.8 17.6 0.92 17.7 0.42

M 1.523 1.490 2.17 1.537 0.91

Eigenmode

# 1 15.0 14.6 2.55 15.0 0.18

# 2 15.0 14.8 1.65 15.2 0.93

# 3 93.9 91.5 2.57 93.8 0.13

# 4 93.9 92.4 1.65 94.9 0.99

# 5 261.5 254.9 2.55 261.5 0.01

# 6 261.6 257.4 1.61 264.5 1.11

then possible to define the function uk(θ , t) = K−1(θ , t)fk

and rewrite the compliance as

ck(θ , t) = fT
k K−1(θ , t)fk (4)

The nested problem formulation of the minimum weight
problem with compliance constraints (P1) is

minimize
θ∈Rnθ ,t∈Rnt

w(t)

(P1) subject to
m∑

k=1

αkfT
k K−1(θ , t)fk ≤ c

θ ≤ θi ≤ θ , ∀i = 1, . . . , nθ

t ≤ t j ≤ t , ∀ j = 1, . . . , nt

(5)

The value c is the maximum allowed value of the average
of the compliances weighted by the factors αk ≥ 0, ∀k =
1, . . . , m.

In formulation (P1) the objective function is the total
weight of the structure while the constraint function is the
weighted average of the compliances for each load case.
Interchanging the objective and constraint functions yields
the minimum compliance optimization problem with a con-
straint on the total weight of the structure. The latter prob-
lem shall be herein referred to as (P2). Note that only the
thickness design variables affect the weight of the struc-
ture. Thus, if the vector t is fixed, the weight will remain
unchanged and (P2) is simply the minimum compliance
optimization problem. Furthermore, instead of using the
averaged compliance as in formulation (P1), the compli-
ance constraints may be imposed independently for each
load case. The minimum weight problem with a compliance
constraint for each load case shall be referred to as prob-
lem formulation (P3). Finally, it is also possible to minimize
the maximum compliance value while constraining the total
weight of the structure. This will be referred to as formula-
tion (P4). Since this formulation has a non-smooth objective
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function we reformulate it as a smooth problem, using the
so-called bound formulation.

4 Sensitivity analysis

The gradients (sensitivities) of the objective and constraint
functions are presented in this section. In our implemen-
tation the sensitivities are computed semi-analytically. The
reason is that sensitivity analysis is currently not imple-
mented in VABS and furthermore, the VABS source code
is not available to the authors.

4.1 Compliance

The sensitivity of the compliance with respect to the design
variables is presented first. Consider the vector h =(
θT , tT

)T
which gathers both types of design variables. If

C(h) =
m∑

k=1

αkck(h)

then the corresponding gradient with respect to the design
variables is

∂C(h)

∂hi
=

m∑
k=1

αk
∂ck(h)

∂hi
(6)

Assuming that the loads are design independent and accord-
ing to the definition of compliance in (4), the sensitivity of
ck(h) with respect to the design variable, hi , can then be
defined as

∂ck(h)

∂hi
= fT

k
∂uk(h)

∂hi
= fT

k
∂K(h)−1

∂hi
fk

Furthermore, it is possible to show (see Bendsøe and
Sigmund 2003) that in this case

∂ck(h)

∂hi
= −uk(h)T ∂K(h)

∂hi
uk(h)

If the design variable hi affects only the element stiffness
matrix of element e then the derivative of the compliance
with respect to the design variable hi becomes

∂ck(h)

∂hi
= −uk(h)T ∂Ke(h)

∂hi
uk(h)

= −de(h)T ∂Ke(h)

∂hi
de(h) (7)

where de are the components of the displacement vector uk

associated with the degrees of freedom of the element e. It
is possible to further simplify (7) by noting the manner in

which the element stiffness matrix was defined in (1). Thus
in this case,

∂Ke(h)

∂hi
=

∫ L

0
BT ∂A(h)

∂hi
Bdl

which consists in differentiating the generalized
Timoshenko beam stiffness matrix directly. Consequently,
it is possible to avoid integrating and building the ele-
ment stiffness matrix twice. In the current implementation
the sensitivities ∂A(h)/∂hi are determined by numerical
differentiation, namely using forward differences. This is
due to the fact that VABS is given as a “black-box” and con-
sequently it is not possible to establish a complete analyti-
cal version. The numerical differentiation using a forward
difference scheme is implemented as follows

∂A(h)

∂hi
≈ A(h + s · ei ) − A(h)

s

where s is the step size and ei is the i-th unit vector. The
step size s has been set to 1 × 10−6 in our implementation.
The sensitivity of the weighted average of the compliance is
obtained by replacing (7) in (6).

4.2 Mass

The weight of the structure is only function of the thickness
design variables. The sensitivity of the weight with respect
to the thickness of the cross section face is hence

∂w(t)
∂t j

=
ne∑

e=1

nc∑
ec=1

ρ
∂ Aec(t)

∂t j
· Le

where nc is number of elements in the cross section mesh,
Le is the length of beam element e or distance between
cross sections. The material density is given by ρ while the
area of the element ec in the cross section mesh is defined
as Aec . The sensitivity of the weight with respect to the
thickness of the cross section faces is obtained by numer-
ical differentiation in a procedure similar to that described
before for the compliance sensitivity analysis.

5 Numerical experiments

The setup for the numerical experiments and the optimiza-
tion strategy is described next. The beam geometry and the
loads are generally kept simple to facilitate the interpre-
tation of the results and give an insight into the behavior
of the proposed strategy. Hence, a cantilever beam with
three different cross section geometries is considered. These
are representative of the type of load carrying structural
elements found in wing-like structures. Moreover, optimal
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Fig. 4 Geometry of the three
cross sections considered: Box
(a), Rectangle (b) and Ellipse
(c). The cross section
dimensions are presented in
Table 3 H
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t y
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designs are initially presented for beams subjected to either
transverse loads, torsional moments, or to a combination
of both. These initial results give an insight into how the
optimal fiber orientations are affected by the imposed load
conditions. The procedure is repeated considering the thick-
ness of the cross section faces as a design variable as well.
It is then possible to compare the effect of the thickness
variation on the optimal fiber orientations. Finally a load
case is considered which mimics the general properties of
aerodynamic loading.

5.1 Geometries and material properties

The three different types of cross section geometries con-
sidered are presented in Fig. 4. The cross sections shall
henceforth be referred to as Box (Fig. 4a), Rectangle
(Fig. 4b) and Ellipse (Fig. 4c). The cross section dimen-
sions are presented in Table 3. All beams are laminated
using a type of uni-directional carbon fiber reinforced epoxy
whose mechanical properties are stated in Table 4.

When using VABS, attributes like material properties and
fiber orientations are specified for each element in the cross
section mesh. The design variables, however, may be asso-
ciated with more than one finite element. As such, there is

Table 3 Geometrical dimensions of the beams (cf. Fig. 4)

Geometry Dimensions (m)

Box Width 1

Height 1

Length 40

Thickness 0.1

Rectangle Width 0.5

Height 0.125

Length 40

Ellipse Width 2

Height 0.5

Length 40

Thickness 0.04

a finite element discretization and a discretization associ-
ated with the optimization problem. In this sense, a layer is
hereby defined as a group of elements in the cross section
mesh. All elements in a layer share the same attributes and
design variables. Layers are stacked through the thickness
of the cross section faces. A patch is defined as a group
of layers along the perimeter of the cross section. There
may be several patches along the cross section perime-
ter. Furthermore, patches and layers are grouped in cross
sections distributed along the length. In sum, each design
variable is associated with a layer belonging to a patch
which in its turn belongs to a cross section. Henceforth,
the number of layers, patches and cross sections for a given
problem are respectively identified by the letters L, P and
S each preceded by a number. This nomenclature is intro-
duced to facilitate the reference to the results. For example,
Box 16S 4P 3L corresponds to the case where there are
16 cross sections with a Box geometry along the length, and
four patches along the perimeter each composed of three
layers (cf. Fig. 5). Each layer has an angle design variable,
θi , associated with it. Thus, in this case there would be
4(patches) × 3(layers) = 12 fiber angle design variables
in the cross section and a total of 12×16(cross sections) =
800 fiber angle design variables in the whole model. The
thickness design variables, on the other hand, are associated
with the cross sections. There are two thickness design vari-
ables per cross section. In the example before there would
be 16(cross sections)×2 = 32 thickness design variables.

A schematic representation of the variation of the cross
section thickness is presented for each cross section type
in Fig. 6. In the Rectangle case (Fig. 6b) the dimensions

Table 4 General material
properties of a type of
uni-directional carbon
reinforced epoxy

E11 126 GPa

E22 = E33 11 GPa

G12 7 GPa

G13 5.5 GPa

G23 2.9 GPa

ν12 0.3

ν13 = ν23 0.02

ρ 1,800 kg/m3
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Layers

Cross section

Cross section plane 
finite elementPatch

Beam finite 
element

Fig. 5 A layer, patch, and a cross section superimposed on the finite
element mesh. The fiber angle design variables are associated with
the layers and patches whereas the thickness design variables are
associated with the cross sections

of the cross section can vary both in the thickness and
width direction. In the case of the Box and Ellipse cross
section geometries (Fig. 6a and c, respectively), the thick-
ness design variables control the shape of the inner face of
the cross section. One design variable is associated with
variations of thickness in the vertical direction (top and bot-
tom faces) while the other is associated with variations in
the horizontal direction (side faces). It is assumed in all
cases that the outer faces remain unchanged. Note that a
change in the thickness of the cross section faces requires a
rearrangement of the cross section mesh.

The beam finite element model is composed of 32 beam
elements and the 1D problem consists therefore of 390 dof.
All cross sections are meshed using eight node plane finite
elements. The total number of elements and its disposition
throughout each of the cross sections is presented in Table 5.
The beam is a cantilever beam for all cases. The transla-
tion and rotation degrees of freedom are constrained at the
clamped end of the beam. Note, however, that the cross
section is free to warp at the clamped end. The considered
load cases are presented in Table 6. The loads are iden-
tified by the letters F, M, P and T followed by a subscript
indicating the direction. The letters F and M correspond to
transverse loads and moments, respectively, applied at the

Table 5 Number of elements and corresponding arrangement for each
cross section geometry

Geometry Number of elements

Thickness Perimeter Total

Box 6 32 192

Rectangle 20 20 400

Ellipse 12 88 1,056

free end of the beam. The letters P and T indicate distributed
loads and moments applied along the length of the beam,
respectively.

5.2 Optimization strategies

Using fiber angles as design variables may lead to opti-
mal design problems with a large number of (bad) local
minima. In our computational experience, problems with
a large number of design variables will typically converge
to a design which is very close to the starting point and far
from optimal. A strategy is hereby put forward which aims
at increasing the possibility of converging to a good design
using fiber angles as design variables. The strategy consists
of solving a sequence of problems with an increasing num-
ber of design variables. The starting point of each problem
is the final point of the former. The approach is illustrated in
Fig. 7. In the initial problem, 1 CS, all beam finite elements
share the same cross section properties. The initial problem
has a very small number of design variables (≤ 15) and is
therefore inexpensive to solve. Thus, 100 random starting
points are generated and a design is found for each. The
design with the lowest objective function value is then cho-
sen as the starting point for the subsequent problem. The
number of cross sections along the length is then doubled.
The optimal angle orientation found in the initial problem
is used as the initial fiber orientations at both halves of the
beam. The problem is solved once more. In the 2 CS case
the resulting optimal fiber orientations for both halves of the
beam are different although the starting point is the same.
The number of cross sections is once again doubled and

Fig. 6 Representation of the
thickness design variables for
the Box (a), Rectangle (b) and
Ellipse (c) geometries

t1

t2

(a)

t1t2

(b)

t1 t2

(c)
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Table 6 Direction and magnitude of the load cases and its association
with each cross section geometry

Geometry Ref. Load cases

Direction Magnitude

Box BLC1 Fz 1,000 N

BLC2 Mx 9,300 Nm

BLC3 Fz 1,000 N

Mx 9,300 Nm

Rectangle RLC1 Fz 50 N

Fz −50 N

Mx 900 N

Mx −900 N

Ellipse ELC1 Pz 25 N/m

Py 10 N/m

Tx 100 Nm/m

the same procedure is repeated. The strategy is described
here for an increasing number of cross sections. It is also
applicable for an increasing number of layers and patches.

All random starting points used for the initial problems
were generated so that θi ∈ [0◦, 180◦], ∀i = 1, . . . , nθ .
Throughout the optimization process, however θi ∈
[−90◦, 270◦], ∀i = 1, . . . , nθ . Initial tests conducted for
θi ∈ [0◦, 180◦], ∀i = 1, . . . , nθ , show that a large num-
ber of design variables converge to their bounds. A broader
interval between lower and upper bound results in better

1 CS 2 CS 4 CS 8 CS 16 CS 32 CS

Fig. 7 Example illustrating the optimization strategy. Fiber orienta-
tions are propagated through a succession of solutions to problems with
increasing number of cross sections along the length

designs. The thickness design variables are allowed to vary
around the initial values reported in Table 3. Thus, if t is
the initial thickness value then for all cases t − 0.05 ≤ ti ≤
t + 0.05, ∀i = 1, . . . , nt where ti is a thickness design vari-
able. The range of variation is chosen so that the quality of
the cross section mesh is not significantly affected.

Finally, the fibers are said to be oriented at 0◦ when
aligned along the length of the beam and at 90◦ when
transverse to the beam length. All problems are solved by
SNOPT (Gill et al. 2002) with the optimality and feasibility
tolerance set to 1 × 10−5.

6 Results

Results are initially presented for eight different combina-
tions of cross section, load cases, and problem formulations
(see Table 7). The resulting fiber orientations and cross
section thickness are presented in Figs. 8, 9, 10, 11 and 12.
Details concerning the number of design variables, num-
ber of objective function evaluations (corresponding to the
number of global stiffness matrix assemblies) and the result-
ing values of compliance and weight are summarized in
Table 8. The remaining numerical experiments—B7, R2
and E2—are discussed in Section 6.4.

Table 7 Catalogue of numerical experiments as combinations of cross
section type (see Fig. 4), problem formulations and load cases (see
Table 6)

Reference Geometry Problem formulation Load cases

B1 Box Minimum compliance (P2) BLC1

B2 Box Minimum compliance (P2) BLC2

B3 Box Minimum compliance (P2) BLC3

B4 Box Minimum weight with constraint BLC1

on average compliance (P1)

B5 Box Minimum weight with constraint BLC2

on average compliance (P1)

B6 Box Minimum weight with constraint BLC3

on average compliance (P1)

B7 Box Minimum maximum compliance BLC3

with weight constraint (P4)

R1 Rectangle Minimum weight with constraint RLC1

on average compliance (P1)

R2 Rectangle Minimum weight with multiple RLC1

compliance constraints (P3)

E1 Ellipse Minimum weight with constraint ELC1

on average compliance (P1)

E2 Ellipse Minimum weight with multiple ELC1

compliance constraints (P3)
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Fig. 8 Optimal fiber
orientations, laminate thickness
and load cases for each of the
examples using the Box
geometry. a–c Results for the
minimum compliance problem
with fixed thickness (Examples
B1–B3). d–f Results for the
minimum weight optimal design
problem with compliance
constraints (Examples B4–B6).
The dimensions are not to scale

Box

Fz

Mx Mx
Fz

(a) (b) (c)

Outer face

Inner face
Fiber orientation

(d) (e) (f )

Fz
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M     
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6.1 Box

The first six problems (B1 to B6) are solved using the Box
geometry. The thickness is fixed in the first three problems,
B1–B3 (Fig. 8a–c). The problem consists of identifying the
optimal fiber orientations which maximize the stiffness (or
minimize the compliance) of the beam. In the subsequent
examples, B4 to B6 (see Fig. 8d–f), the thickness design
variables are allowed to vary and results are presented for
the minimum weight problem with a compliance constraint.

In Fig. 8a and d, the transverse force induces a bend-
ing moment which has the largest value at the root of the
beam and varies linearly along the length vanishing at the
tip. Consequently, the top and bottom faces are subjected to
normal stress while the side faces are subjected to a com-
bination of normal and shear stress. In Fig. 8a the fibers at
all faces orient along the length direction to resist the nor-
mal stresses. In Fig. 8d, the thickness of the faces adjusts
to compensate for the bending moment. The top and bottom
faces are consequently thicker at the root and progressively

Fig. 9 Optimal thickness
distribution for a cantilever
beam with the Rectangle cross
section geometry. The beam is
subject to a combination of
transverse forces and torsional
moments (Example R1). Results
obtained for the minimum
weight problem with
compliance constraints.
Dimensions are not to scale

Fz

Mx

Initial

Optimal
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Fig. 10 Optimal fiber
orientations for a cantilever
beam with the Rectangle cross
section geometry. The beam is
subject to a combination of
transverse forces and torsional
moments (Example R1). Results
obtained for the minimum
weight problem with
compliance constraints.
Dimensions are not to scale

Layer 1 2 3 4 5 6 7 8 9 10

Rectangle

thinner towards the free end. The side faces are as thin as
possible along the whole length excepting the cross section
at the root where the thickness increases slightly. In this
case, shear stress dominates in the thin side faces. As a
result, the optimal fiber directions tend to 45◦ and −45◦
orientations corresponding to the orientation of the principal
stresses.

In the cases B2 and B5, the torsional moment applied
at the free end induces a constant torsional moment distri-
bution along the length of the beam. The resulting designs
can been seen in Fig. 8b and e. All faces are subjected
to shear stress and the laminate on the faces arranges
accordingly. The solution consists of [45◦, −45◦, 45◦] or
[−45◦, 45◦, −45◦] laminates. Once again, this is in accor-
dance with the orientation of the principal stresses for a

structure subject to shear stress. The thickness remains con-
stant throughout the length of the beam due to the constant
torsional moment distribution along the length.

Finally, in the cases B3 and B6 the beam is subjected
to a combination of transverse force and torsional moment.
The results are presented in Fig. 8c and f. In this case,
shear stress induced by both the transverse force and the
torsional moment dominates on the side faces. As such, and
as discussed before for the torsion case, the resulting opti-
mal laminates are composed of −45◦ and 45◦ all throughout
the length. The fibers in top and bottom face align in the
length direction close to the root where the bending moment
is larger. Closer to the free end the magnitude of the bending
moment is decreased and the fibers align at −45◦ and 45◦
to compensate for the shear stress induced by the torsional

x

y

z

x

Outer face

Inner face

Fig. 11 Optimal thickness distribution for a cantilever beam with the
Ellipse cross section geometry. The beam is subject to distributed loads
in two directions and a distributed torsional moment (Example E1).

Results obtained for the minimum weight problem with compliance
constraints. Dimensions are not to scale
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Fig. 12 Optimal fiber
orientations for a cantilever
beam with the Ellipse cross
section geometry. The beam is
subject to distributed loads in
two directions and a distributed
torsional moment (Example
E1). Results obtained for the
minimum weight problem with
compliance constraints.
Dimensions are not to scale

Layer 1 to 4 Layer 5 to 8

Layer 9 to 10 Layer 11 to 12

Ellipse

moment. As before, the thickness variation is dictated by
the bending moment distribution. The top and bottom faces
become thicker towards the free end whereas the side faces
have a constant thickness equal to the allowable minimum.
Once again it is observable the influence of the thickness
variation on the resulting fiber orientations.

In the next examples much of the features observed
before will be repeated. The variation of thickness is dic-
tated mostly by the bending moment distribution. Laminates
in regions away from the neutral axis and close to the root
will tend to be thicker. In general, the fibers will tend to
align in the direction of the principle stresses. In the regions
where normal stress dominates the fibers will typically align
in the direction of the beam length. Regions of the beam
subjected to shear stresses will have lower thickness and
the laminate will tend to align close to the −45◦ and 45◦
directions.

6.2 Rectangle

The next problem concerns the design optimization of a
laminated composite beam with the Rectangle cross section
geometry—example R1. The beam is subjected to a sym-
metric loading comprising transverse forces and torsional
moments. In this example, the results are propagated along
the thickness, width, and length of the beam. The problem is
initially solved using one cross section with one patch and
5 layers (1S 1P 5L case). The number of layers along the
thickness is increased first (1S 1P 10L) and then the patches

along the width (1S 10P 10L). Finally, the optimal fiber ori-
entations are identified for problems with a growing number
of cross sections along the length. The optimal thickness
distribution is presented in Fig. 9 while the optimal fiber
orientations can be seen in Fig. 10 for each of the ten layers.
The result is a symmetric laminate across the thickness. The
shear stress is larger in the outer layers which consequently
align away from the 0◦ direction. Note the difference on
the fiber orientation across the width where the fibers at the
edges of all layers tend to align in the length direction (the
reason for this is not clear).

6.3 Ellipse

Finally, the beam with the Ellipse cross section geometry is
optimized—example E1. The resulting thickness distribu-
tion and fiber orientations are presented in Figs. 11 and 12.
The beam is subject to distributed loads in two directions
and a distributed torsional moment. This loading condition
mimics the general properties of the wind loading typically
acting on a wind turbine blade. The number of layers is
increased progressively from three to 12. Results obtained
with 24 layers showed a negligible reduction in weight.
The number of cross sections along the length is gradu-
ally increased from one to 32. The thickness distribution
is presented in Fig. 11. The thicker section is at the root.
Moving towards the free end, the thickness first decreases
in the y direction and then in the z direction. The resulting
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Table 8 Summary of results for all numerical experiments obtained
for the minimum weight problem with a constraint on the average
compliance (P1), and the minimum compliance problem (P2). The dis-
cretization column describes the number of cross sections (S), patches
(P), and layers (L) considered in each problem. The number of design

variables associated with fiber orientations and thickness are given as
nθ and nt , respectively. The number of objective function and con-
straint evaluations (# O.F.E.), the final compliance and weight values,
are given next

Ref. Discretization nθ nt # O.F.E. Compliance Weight

B1 1S 4P 3L 12 Fixed ≈ 10 3.477 –

B2 1S 4P 3L 12 Fixed ≈ 10 1.523 –

B3 1S 4P 3L 12 Fixed ≈ 10 7.266 –

2S 4P 3L 24 Fixed 22 (22) 7.010 –

4S 4P 3L 48 Fixed 19 (41) 6.919 –

8S 4P 3L 96 Fixed 24 (65) 6.896 –

16S 4P 3L 192 Fixed 14 (79) 6.889 –

32S 4P 3L 384 Fixed 11 (90) 6.888 –

B4 1S 4P 3L 12 2 ≈ 10 3.069 25.919

2S 4P 3L 24 4 111 (111) 3.069 23.976

4S 4P 3L 48 8 50 (161) 3.069 22.740

8S 4P 3L 96 16 60 (221) 3.069 22.573

16S 4P 3L 192 32 16 (237) 3.069 22.533

32S 4P 3L 384 64 17 (254) 3.069 22.521

B5 1S 4P 3L 12 2 ≈ 10 1.523 25.919

B6 1S 4P 3L 12 2 ≈ 10 6.523 25.919

2S 4P 3L 24 4 153 (153) 6.523 23.666

4S 4P 3L 48 8 182 (335) 6.523 22.927

8S 4P 3L 96 16 228 (563) 6.523 22.689

16S 4P 3L 192 32 310 (873) 6.523 22.631

32S 4P 3L 384 64 387 (1,260) 6.523 22.617

R1 1S 1P 5L 5 2 ≈ 10 26.786 4.500

1S 10P 10L 100 2 37 (37) 26.786 4.321

2S 10P 10L 200 4 20 (57) 26.786 4.205

4S 10P 10L 400 8 18 (75) 26.786 4.182

8S 10P 10L 800 16 18 (93) 26.786 4.181

16S 10P 10L 1,600 32 9 (102) 26.786 4.180

E1 1S 4P 3L 12 2 ≈ 10 6.266 10.944

1S 4P 6L 24 2 126 (126) 6.266 10.935

1S 4P 12L 48 2 38 (164) 6.266 10.934

2S 4P 12L 96 4 46 (210) 6.266 9.573

4S 4P 12L 192 8 93 (303) 6.266 9.271

8S 4P 12L 384 16 77 (380) 6.266 9.214

16S 4P 12L 768 32 93 (473) 6.266 9.200

32S 4P 12L 1,536 64 16 (489) 6.266 9.197

layer groups suggest that the results are not simply repeated
between the increasingly larger problems. Instead, the fiber
orientations are sufficiently free to vary between iterations.

6.4 Other problem formulations

All results presented before have been obtained for the min-
imum weight problem with a constraint on the average

compliance (P1), and the minimum compliance problem
(P2). Some of the examples have also been solved for the
minimum weight problem with a constraint on the compli-
ance for each load case (P3), and the minimum maximum
compliance with a constraint on the total weight (P4). The
results are presented in Table 9 where the stated compli-
ance values are the weighted average of each load case as
calculated in (P1).
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Table 9 Summary of results obtained for the minimum weight prob-
lem with a constraint on the compliance for each load case (P3), and
minimum maximum compliance with a constraint on the total weight
(P4). The discretization column describes the number of cross sections
(S), patches (P), and layers (L) considered in each problem. The

number of design variables associated with fiber orientations and
thickness are given as nθ and nt , respectively. The number of objec-
tive function and constraint evaluations (# O.F.E.), the final weighted
average compliance and weight values, are given next

Ref. Discretization nθ nt # O.F.E. Compliance Weight

B7 1S 4P 3L 12 2 ≈ 10 6.731 25.919

2S 4P 3L 24 4 138 (138) 6.492 25.919

4S 4P 3L 48 8 200 (338) 6.350 25.919

8S 4P 3L 96 16 178 (516) 6.302 25.919

16S 4P 3L 192 32 171 (687) 6.292 25.919

32S 4P 3L 384 64 126 (813) 6.290 25.919

R2 1S 1P 5L 5 2 ≈ 10 26.814 4.500

1S 10P 10L 100 2 69 (69) 26.814 4.341

2S 10P 10L 200 4 34 (103) 26.814 4.213

4S 10P 10L 400 8 17 (120) 26.814 4.189

8S 10P 10L 800 16 31 (151) 26.814 4.185

16S 10P 10L 1,600 32 11 (162) 26.814 4.184

E2 1S 4P 3L 12 2 ≈ 10 6.266 10.944

1S 4P 6L 24 2 49 (49) 6.266 10.935

1S 4P 12L 48 2 32 (81) 6.266 10.934

2S 4P 12L 96 4 30 (111) 6.266 9.573

4S 4P 12L 192 8 73 (184) 6.266 9.272

8S 4P 12L 384 16 38 (222) 6.266 9.216

16S 4P 12L 768 32 65 (287) 6.265 9.204

32S 4P 12L 1,536 64 26 (313) 6.264 9.201

The compliance values are very similar for all load cases.
Thus, there are no significant differences in the optimal fiber
orientations for the results obtained using the different prob-
lem formulations. A comparison between the optimal width
and height distribution for case B6 and B7 are presented
in Fig. 13. The optimal thickness distribution for case R2
and E2, do not present significant variations when com-
pared to the corresponding case, R1 and E1, respectively.
These results serve to illustrate that the proposed approach
can also be used with different problem formulations.

6.5 Discussion

All numerical results and the procedure adopted in each
of the numerical experiments are summarized in Table 8.
The discretization column specifies the way in which the
number of layers, patches and cross sections is increased
at each step. The following two columns indicate the num-
ber of design variables associated with fiber orientation and
laminate thickness, nθ and nt , respectively. The number of
objective function evaluations (# O.F.E.) is given next. This
corresponds also to the number of times the global stiffness
matrix is assembled and factorized. Finally, the resulting
compliance and weight values are presented.

Note that problems B1, B2, and B5 do not benefit from
an increase in the number of design variables. The design
presented is that obtained using one cross section only along
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0.8
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Outer top face

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1
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Outer side face

Fig. 13 Optimal variation of top and side face thickness along the
beam length for B6 and B7 cases
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the length. The number of objective function evaluations, in
most of the smaller problems, is less than 10. Problem B6,
on the other hand, requires a total of 1,260 objective func-
tion evaluations and is the most difficult problem to solve.
Problems with a larger number of design variables, like R1
and E1, require around two and ten times less objective
function evaluations, respectively. Finally, note in example
E1 how an increase in the number of layers from six to 12
results in a very small increase in stiffness and consequent
decrease in the total weight.

The number of objective function evaluations may be
reduced by increasing the optimality and feasibility toler-
ances. Example B6 is solved again using an optimality toler-
ance of 1×10−4 (instead of 1×10−5). In this case only 589
objective function evaluations are required to reach the final
design. The objective function value or the final weight,
however, is slightly higher reaching 22.627. Another possi-
bility consists of interchanging the objective and constraint
functions. That is, to solve the minimum compliance prob-
lem with weight constraints instead. The example B6 is
used again. A total of 957 objective function evaluations are
required in this case corresponding to a decrease of about
20% in the number of objective function evaluations. The
objective function values are not comparable in this case.

The use of optimization techniques may lead to designs
which are sensitive to perturbations of the design vari-
ables. The robustness of the optimal designs with respect
to the fiber orientations is therefore evaluated. Two types
of perturbations are considered. In a first case the design
variables are randomly perturbed by a given amount. In the
random perturbation case two different perturbation mag-
nitudes are considered — ±4.5◦ and ±9◦ corresponding

to 2.5 and 5% of the design variable range, respectively.
The optimal design of problem E1 and R1 are used as the
baseline designs. The compliance of 100 randomly per-
turbed designs is evaluated for each baseline design and the
maximum value is recorded. In the E1 case the maximum
compliance value is 6.304 and 6.423 for ±4.5◦ and ±9◦
perturbations, respectively. This corresponds to a relative
difference of 0.72 and 2.61%, respectively, when compared
to the values presented in Table 8. In the R1 case the maxi-
mum compliance values were 27.212 and 28.140 for ±4.5◦
and ±9◦ perturbations, respectively. This corresponds to a
relative difference of 1.6 and 5%, respectively, when com-
pared to the baseline values. Finally, in the second case all
design variables are offset by the same amount and the cor-
responding compliance is evaluated. Using the E1 case as
the baseline design and adding ±4.5◦ and ±9◦ to all fiber
angle design variables, the resulting compliance values are
6.572 and 7.326. This corresponds to a relative difference of
5 and 17%. In the R1 case, the resulting compliance values
are 29.275 and 29.060 which corresponds to an increase of
9.29 and 8.49%, respectively.

Finally, from a manufacturing standpoint, the incorpo-
ration of varying fiber orientations along the length of the
beams, and the small tolerances in the fiber orientations may
prove impractical. Concerning the latter, an approach is sug-
gested where the fiber angles are rounded to a predefined
set of angles, say, 0◦, 45◦, −45◦ and 90◦. This approach has
been applied to the optimal result of case R1. The resulting
fiber orientations are presented in Fig. 14. The compliance
of the obtained design is 9.3% larger than the original. In
summary, the devised approach intends to be a valuable
tool at the conceptual design phase where manufacturing

Fig. 14 Optimal fiber
orientations obtained by
rounding up the optimal angles
of R1 (see Fig. 10) to
0◦, 45◦,−45◦ and 90◦

Layer 1 2 3 4 5 6 7 8 9 10

Rectangle
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constraints are not necessarily accounted for. The result-
ing optimal designs highlight important structural design
features which should be considered at later stages of the
design process.

7 Summary and future work

A beam finite element model has been implemented and
validated. The formulation of the minimum weight optimal
design problem with a constraint on the weighted average
of the compliances for multiple load cases is described.
The design variables are the fiber orientations and the total
laminate thickness of the cross sections. Three different can-
tilever beam geometries have been considered—box, solid
rectangular, and elliptic. An optimization strategy is devised
which consists of solving a succession of problems with an
increasing number of design variables. The optimal design
of the former is the initial point for the next problem in the
sequence. The numerical results indicate that the devised
strategy succeeds in overcoming the problem with local
minima inherent to the use of fiber angles as design vari-
ables. Furthermore, this work highlights the possibility and
advantages of incorporating a beam finite element model in
an optimal design framework to solve large-scale structural
optimization problems.

In future work, the design variables will represent vol-
ume fractions of different materials. This approach will
allow for the simultaneous optimization of laminate stack-
ing sequence and material distribution. Design dependent
aerodynamic loads will moreover be included. The benefits
of the beam finite element model will be apparent in this
case as the reduced size of the resulting structural matrices
will allow for a significant decrease in computation time.
The framework will be applied to simultaneously optimize
the structural lay-out and the aerodynamic loading of wind
turbine blades.
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a b s t r a c t

The present paper addresses the design and optimization of
a flexible composite marine propeller. The aim is to tailor the
laminate to control the deformed shape of the blade and conse-
quently the developed thrust. The development of a hydro-elastic
model is presented, and the laminate lay-up which minimizes the
fuel consumption for the cruising and maximum speed conditions
is simultaneously determined. Results show a reduction of 1.25% in
fuel consumption for the combined case corresponding to
a decrease of 4.7% in the cruising speed condition. Finally, the
strength of the optimal blade is analyzed using the Tsai-Wu
strength index. After local tailoring of the laminate configuration
throughout the propeller a maximum value of 0.7 is determined
indicating no failure will occur under normal operation conditions.
The results suggest that it is possible to design a medium-sized
flexible composite marine propeller that will enable a reduction of
the fuel consumption while withstanding the imposed loads

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Anisotropic composite materials present different levels of elastic couplings which depend on the
laminate lay-up. Among these, bending- and extension-twist couplings have been identified as
a possible mean for the passive control of composite structures. The aim here is to investigate the
possibility of tailoring these elastic couplings to control the performance of a flexible composite
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marine propeller. The shape of the propeller blade will morph under load and thus, if optimized, it will
passively adjust itself to the hydrodynamic loads of the different operational conditions. The optimal
composite propeller is the one which minimizes the fuel consumption.

The use of elastic couplings to control the passive properties of different structures like wind
turbine blades [1,2,3], aircraft wings [4] and helicopter rotor blades [5] has been extensively reported in
the literature. The literature concerning the application of laminated composite materials in the design
of marine propellers is however limited. Lee et al. [6] have optimized the laminate lay-up of a fixed
pitch 0.305 m diameter composite marine propeller using genetic algorithms. The final composite
design presents lower values of torque at one of the operation conditions thus outperforming its metal
counterpart. An evaluation of the strength properties of a composite propeller blade with 1.4 m
diameter has been presented by Lin et al. [7]. The strength is analysed using the Hashin failure criterion
and the results illustrate the influence of the laminate type on the stress field and failure modes. Marsh
[8] has presented an overview of the developments in the composite propeller industry. A few
companies have realized the potential and claim to have designed composite marine propellers with
passive properties. Nonetheless, no details of these developments have yet been published.

The work described in this paper extends the available knowledge in the field of design and opti-
mization of composite marine propellers, with special focus on medium size marine propellers. The
propeller blade considered throughout this paper is approximately four times larger than those
described earlier in the literature. The results presented in this paper will indicate if the possibility and
potential of using composite propeller blades in large merchant or naval vessels exists. The hydro-
dynamic model is based on the boundary element method instead of the lifting line method applied in
earlier papers. Moreover, the optimization of the fiber orientations is combined with the strength
analysis in one design process. The two analyses have earlier been treated separately.

2. Blade geometry and material properties

The original propeller blade is part of a controllable pitch propeller installed in a naval vessel. The
propeller has 4 blades, a diameter, D, of 4.4 m and an expanded area ratio of 0.56. Themain geometrical
properties of the blade are presented in Table 1 where R is the propeller radius, r is the section radius,
qskew is the sectional skewangle, Rake is the sectional rake, P is the sectional pitch, c is the section cord, t
is the maximum section thickness and f is the section camber.

Naval vessels typically operate at two very distinct forward speed conditions – herein named
cruising and maximum speed conditions – as presented in Table 2. The non-dimensional thrust and
torque coefficients KT and KQ are defined as

KT ¼ T
rn2D4; KQ ¼ Q

rn2D5 (1)

where T, Q, r and n are the thrust, torque, sea water density and rotational speed, respectively. The
service speed, advance ratio, non-dimensional pitch at r/R¼ 0.7, the openwater efficiency and the fuel
consumption are identified as Vs, J, P/D07, h0 and FC, respectively.

Table 1
Geometrical properties of the propeller blade.

r/R qskew [o] Rake/R P/D c/D t/c f/c

0.300 0.000 0.0000 0.90665 0.200 0.195 0.000
0.350 �6.033 0.0006 1.02277 0.230 0.159 0.032
0.400 �10.156 �0.0018 1.13893 0.260 0.131 0.040
0.500 �16.663 �0.0250 1.30864 0.320 0.091 0.036
0.600 �16.663 �0.0309 1.42662 0.360 0.067 0.027
0.700 �6.033 �0.0787 1.46216 0.385 0.050 0.020
0.800 6.542 �0.0910 1.38514 0.380 0.037 0.015
0.900 20.141 �0.0807 1.1867 0.320 0.029 0.009
1.000 36.932 �0.0299 0.8685 0.050 0.086 0.000
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The composite marine propeller was designed using carbon/epoxy uni-directional reinforcements
with mechanical properties presented in Table 3 (from [9]).

The laminate lay-up will be described using the notation [(qi)j]s where the subscript i indicates the
design variable numbering and j refers to the number of layers oriented with the angle q. The layers are
assumed to be stacked from pressure side to suction side. Finally, the subscript s indicates symmetry
with respect to the mid-thickness plane.

3. Methodology

The initial step in the analysis of the composite propeller consists of the development of the
structural and hydrodynamic models. The two models are then combined into a hydro-elastic model
which, for a steady incoming flow, determines the equilibrium between the structural and hydrody-
namic forces. An optimization algorithm is used next to determine the laminate lay-up which will
minimize the fuel consumption. Finally, the strength of the optimal blade is analyzed.

3.1. Structural model

The structural model is able to determine the deformation and stress fields induced by a given
hydrodynamic pressure load on the blade. The model is generated and analyzed in the commercial
finite element package ANSYS 11 [10]. The blade geometry is approximated by a surface defined by the
mid-thickness lines of each section. The surface is subsequently meshed with 8 node isoparametric
parabolic layered shell elements (SHELL99). The element thickness or the total laminate thickness at
a given node is obtained by linear interpolation of the thickness of the blade at the corresponding
position (see Fig. 1(a)). The layer fiber angles are controlled at each element independently.

The displacement degrees of freedom of all nodes at the blade root are constrained to simulate the
attachment to the propeller hub. The centrifugal forces are applied as accelerations which are function
of the rotational speed. The number of layers is assumed constant and fixed throughout the whole

Table 2
Characterization of the cruising and maximum speed operation conditions. Thrust and torque coefficients are for one blade only.

Power [kW] n [rps] Vs [m/s] J [�] P/D07 [�] KT [�] KQ [�] h0 [�] FC [kg/h]

Cruising Speed 1410 1.8 7 0.742 0.925 0.056 0.0091 0.59 26.83
Max. Speed 8380 2.33 11 0.901 1.465 0.176 0.0363 0.65 662.1

Table 3
Mechanical properties of the High Tension Carbon/Epoxy uni-directional reinforcement. Subscripts x, y and z refer to the fiber,
matrix and out-of-plane directions, respectively. The subscript t and c indicate tension and compression failure, respectively.

Symbol Units

Stiffness Modulus Ex GPa 135
Ey GPa 15
Ez GPa 15

Shear Modulus Gxy GPa 5
Gxz GPa 5.3
Gyz GPa 2.9

Poisson’s Ratio nxy – 0.3
nxz – 0.02
nyz – 0.02

Ult. Tensile Strength sfxt
MPa 1500

sfyt
MPa 50

Ult. Comp. Strength
sfxc

MPa 1200

sfyc

MPa 250

Ult. Shear Strength
sfxy

MPa 70

Density r kg/m3 1600
Thickness t mm 0.3
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blade. Furthermore, all layers are assumed to have the same thickness which is a fixed portion of the
total blade thickness at the corresponding point of the blade. A mesh convergence analysis aimed at
displacements and stresses is conducted. The static analyses showed that a total of 1440 and 5760 shell
elements are required for the convergence of the displacement and stress fields, respectively (see
Fig. 2(a) and (b)). This model is henceforth named shell element model.

Since experimental data are not available to validate the results from the shell element model,
a second numerical model is developed as well. In this second model – addressed as solid element
model – the shape of the blade is defined by its volume. The center part of the blade excluding the
leading and trailing edges are meshed using 20 node isoparametric parabolic layered solid elements
(SOLID191), whereas the leading and trailing edges (covering approximately 1/16 of the chord length)
are meshed with shell elements (SHELL99) (see Fig. 1(b)). An additional layer of shell elements with
low stiffness is applied on the solid elements adjacent to the leading and trailing edge. By adopting this
approach it is possible to ensure that the deformations contained in the rotational degrees of freedom
of the shell elements are partially transferred to the solid elements containing only translational
degrees of freedom. The boundary conditions are the same as used before for the shell element model.

Fig. 1. (a) Aspect of the shell element model seen from the hub towards the tip. The thickness of the elements has been made visible
through a graphical artifice in ANSYS. It is possible to observe the thickness variation throughout the elements and thus the shape of
the blade. (b) Detail of the solid element model in the trailing edge region seen from the hub towards the tip. The layered solid
elements with a total of 8 layers (2 rows of solid elements through the thickness with 8 layers each) are visible together with the
shell elements with varying thickness used to mesh the trailing edge.

J.P. Blasques et al. / Marine Structures 23 (2010) 22–38 25



The static analyses in this case have shown that a total of 4400 elements are required for both
displacement and stress convergence.

The two models are subsequently compared in terms of their ability to predict the influence of the
laminate lay-up on the thrust and torque forces. The results are presented in Fig. 3 where it is assumed
that the entire blade consists of the same lay-up, [(q)32], and hence all layers have the same orientation
angle q. The thrust and torque coefficients are then analyzed as a function of the angle variation, q. By
comparing the two models, it can be seen that the results are in good agreement with a maximum
relative difference of 1.4%, implying that the displacement fields predicted by the two models are
identical.

All results presented hereafter are obtained using the shell element model. This model is chosen
because it requires a shorter computational timewhich is a critical aspect for theoptimizationprocedure.

3.2. Hydrodynamic model

The hydrodynamic model is used to determine the pressure field induced by a given blade shape. It
is based on the boundary element method and assumes that the inflow to the propeller is uniform and
steady. Viscous forces have been neglected. A total of 480 section points define the 450 elements which
are arranged in a 15�15 three-dimensional structured mesh on both faces of the blade (see Fig. 4).

The pressure is then determined at 450 nodes placed at the center of each element whose corners
are defined by the section points (which define the section lines). The pressure distribution is illus-
trated in Fig. 5. The pressure is furthermore integrated over the hydrodynamic model mesh to
determine the values of thrust and torque.

3.3. Hydro-elastic model

The displacement field, {d}, is determined using the finite element method in the structural model,
and the hydrodynamic pressure field, {f}, is determined using the boundary element method in the

Fig. 2. Shell model mesh: (a) Mesh applied in displacement analysis. (b) Mesh applied in stress analysis. Special care has been
devoted to the mesh at the tip region where the elements can suffer large distortions.
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hydrodynamic model. The equilibrium between the hydrodynamic and structural forces is obtained by
the hydro-elastic model. That is, the hydro-elastic model determines the displacement vector {d}
which satisfies [K]{d}¼ {f}, where K is the structural stiffness matrix which can be tailored by opti-
mizing the laminate lay-up sequence. Since {f} is a function of {d} the problem is nonlinear. However,
{f} is only dependent on {d} which makes the problem suited for an iterative solution. The direct
substitution method has been chosen.

A schematic description of the algorithm is presented in Fig. 6 where the subscript i indicates the
iteration number. Each of the numbered steps is described below:

1) The displacement field is determined by the structural model for a given pressure distribution. At
the first iteration the pressure distribution is that of the original blade.

Fig. 3. Thrust (a) and torque (b) coefficients – KT and KQ, respectively – and relative difference as a function of the laminate angle q

for the shell and solid element models. The entire blade consists of the same uni-angle laminate lay-up. Results are for one blade
only.
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2) The hydrodynamic model mesh is updated based on the displacement field determined in the
previous step. The updated position of the section points in the hydrodynamic model is that of the
closest node in the structural model.

3) A new pressure field is determined by the hydrodynamic model based on the new shape.
4) The new pressure field given in the hydrodynamic model mesh is mapped onto the structural

model. The new pressure value at each node of the structural model is determined by three-
dimensional linear interpolation of the pressure calculated at the control points of the hydrody-
namic model.

The process is repeated until convergence is achieved and equilibrium is found. The thrust and
torque forces are calculated at each iteration. The iteration procedure has converged when the

Fig. 4. Mesh of hydrodynamic sub-model (seen from the pressure side). The centroids of the elements are the control points where
the pressure is evaluated. The corner points of the elements are the section points which define the geometry of the blade and are
updated at each iteration step.

Fig. 5. Distribution of pressure difference (in Pa) over the blade surface looking in the upstream direction.
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relative difference between the iterations of both thrust and torque is less than 1%. A typical
convergence behaviour of the iteration procedure is presented in Fig. 7. According to the conver-
gence criterion stated above, convergence is attained at the third iteration since the relative
difference is below 1%. For illustrative purposes, the first 7 iterations are presented for the case
where the convergence criterion has been switched off. In general the iterative procedure will
converge after 3 or 4 iterations.

3.4. Optimization model

The maximum and cruising speed requirements for the ship and hence the thrust the propeller
must generate are typically defined in the initial stage of the design process. Thus, the optimal
propeller is the one which produces the desired thrust, the least torque, withstands the pressure
forces, reduces the risk of cavitation and satisfies noise and vibration constraints. In this investi-
gation the cavitation, noise and vibration constraints have been neglected. The strength constraints
have not been included in the optimization model, but have instead been studied separately in
parallel. The optimization problem is therefore posed as a torque minimization problem and
formally stated as:

Fig. 7. Convergence behavior of the hydro-elastic model.

Fig. 6. Algorithm for the computation of the hydro-elastic steady state.
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min
qn˛R; 4C˛R; 4M˛R

CFOCðQcðq;4CÞ;QMðq;4MÞÞ (2)

subject to : T
o
C ðq;4CÞ

TCðq;4CÞ � 1 � 0
To
Mðq;4MÞ
TMðq;4CÞ � 1 � 0

0 � qn < 180
4C;min � 4C < 4C;max

where the combined fuel oil consumption, CFOC, is function of the torque at both conditions and is
given by

CFOCðQcðq;4CÞ;QMðq;4MÞÞ ¼ DtC$SFOCC$2$p$nC$QCðq;4CÞ þ DtM$SFOCM$2$p$nM$QMðq;4MÞ (3)

In the expressions above, the subscript C, M and O indicate cruising, maximum and original (or
required), respectively. The CFOC is the weighted average of the fuel consumptions at the two oper-
ational conditions where the torque correspond to QC and QM, Dt is the percentage of time the ship
operates at each of the forward speed conditions, SFOC is the specific fuel oil consumption and n is the
propeller rotational speed. In this case it is assumed that the ship operates 90% of the time at cruising
speed and 10% at maximum speed, i.e., DtC¼ 0.9 and DtM¼ 0.1. The specific fuel consumptions for each
of the operation conditions are estimated to be SFOCC¼ 0.190 kg/kWh and SFOCM¼ 0.540 kg/kWh.

The design variables are the ply angles, q, and the blade pitch angles 4C and 4M, all of which are
assumed to vary continuously. The ply angles have been defined using two different approaches. In
a first approach – straight fiber path approach – the ply angles are used directly as the design variables.
A second approach – curved fiber path approach – uses a parameterization of q inspired by the results of
Parnas et al. [11]. The curved fiber paths represent a simple way to vary the properties of the laminate
throughout the structure without increasing the number of design variables significantly. Thus the ply
angles are defined as a function of a curved fiber path and the design variables become the parameters
defining this path. The determination of the angle is as illustrated in Fig. 8. The ply angle at an element
in position A or at any position with the same z coordinate is equal to the angle qe. This angle is
determined by the tangent to the curve of a second degree polynomial defined by the points c0(y0,z0),
c1(y1,z1) and c2(y2,z2). The design variables then become the parameters y1 and y2. The point c0 and the
coordinates z1 and z2 are assumed fixed.

The blade pitch angles, 4C and 4M, of the controllable pitch propeller are also included as design
variables and can be adjusted independently for each operational condition. A change in the blade
pitch angle corresponds to a rotation of the blade around the hub and consequently to a variation in the

Fig. 8. Definition of the second degree curved fiber path.
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angle of attack of all sections of the blade. In general, an increase in the blade pitch angle will corre-
spond to an increase in the angle of attack of all sections and therefore to a variation in the lift and drag
forces, and finally to an increase in the thrust and torque.

The constraints on the thrust, TC and TM, are included to assure that the optimal composite propeller
will produce the same thrust as the original propeller. Note that the thrust is constrained from below
indicating that the thrust may not be lower than the target thrust values. The inequality constraints are
used (instead of equality constraints) due to the fact that the torque and thrust are coupled in their
variations. That is, a decrease (or increase) in the torquewill be accompaniedbyadecrease (or increase) in
the thrust. Thus, the optimizationmodel is limited by the thrust values as it tries to minimize the torque.

The choice of the optimization method depends heavily on the characteristics of the problem at
hand. In this case the decision to opt for a gradient free method (as opposed to a gradient based
method) is motivated by the low accuracy of the iterative method implemented for the determination
of the hydro-elastic response. The gradient of the objective function and constraints cannot be defined
analytically and therefore the alternative would be to resort to finite differences. The effect of the
perturbations in the design variables is however not possible to measure as it cannot be distinguished
from the oscillations resulting from the equilibrium iterations. The determination of the gradients is
consequently compromised. The optimization model NOMADm [12] is therefore chosen. This is a type
of derivative free, pattern-search algorithm specially suited for the analysis of nonlinear optimization
problems where the gradients of the objective function and constraints are not available. Furthermore,
NOMADm is combined with DACE [13] to form a surrogate model using spline interpolation which
approximates the objective function and constraints. This procedure allows for a considerable
reduction in the solution time of the optimization model.

4. Failure criteria

The strength of the blade is analyzed using a two dimensional version of the Tsai-Wu strength index
(TWSI) [14] as given in Eq. (4),

TWSI ¼ Aþ B (4)

A ¼ � s2x

sfxts
f
xc

� s2y

sfyts
f
yc

� sfxy�
sfxy

�2 Cxysxsyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sfxts

f
xcs

f
yt

q
sfyc

B ¼
�

1

sfxt

þ 1

sfxc

!
sx þ

 
1

sfyt

þ 1

sfyc

!
sy

where Cxy is an empirical parameter typically assumed as 0.5. The remaining terms are described
together with Table 3. The TWSI is a quadratic multiaxial failure criterion specially developed for
orthotropic materials where an index above one indicates material failure.

fiber tension : sx

sf
xt

if sx > 0

Matrix tension : sy

sf
yt

if sy > 0

Matrix tension : sy

sf
yt

if sy > 0

Fiber compression : sx

sf
xc

if sx > 0

Matrix compression : sy

sf
yc

if sy > 0

In-plane shear : sxy

sf
xy

(5)

The main disadvantage of the TWSI is that it is not possible to distinguish between the contributions
of the different failure modes. In order to overcome this limitation, the Maximum Stress Failure
Criterion (MSFC) is used in parallel with the TWSI. The stress ratios in Eq. (5) have been determined at
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each layer of all elements. The critical failure mode will then be the mode with largest associated ratio
over all layers. It is possible in this way to determine the dominating failure mode at each element in
the blade.

5. Results

In the following, notice that the optimization and strength analysis steps are performed in parallel.
The laminate properties are optimized first. The strength of the blade is subsequently analyzed and the
necessary reinforcements are included on a trial and error basis. The laminate properties are then once
again optimized but this time the properties of the laminate in the critically stressed regions are kept
fixed. All results are obtained using the shell element model. The ply angle reference axes as well as the
blade coordinate system are presented in Fig. 9. The x axis points in the upstream direction (direction of
forward motion of the ship). The propeller rotates in the clockwise direction when looking upstream.

5.1. Effect of fiber orientation on blade properties

Before proceeding with the optimization of the laminate lay-up, several simple tests were con-
ducted to investigate the influence of the fiber orientation on the propulsive and geometrical prop-
erties of the blade. Initially the analysis is conducted assuming that the blade consists of one laminate
with one single lamina angle, i.e., [(q)32] over the entire blade. The variations in the fuel consumption,
thrust and torque are then calculated as functions of the ply angle, q, for both cruising and maximum
speed operation conditions. The results are presented in Fig. 10 and are defined as ratios between the
calculated values from the composite blade and those of the original blade. The case where the thrust

Fig. 9. (a) Ply angle orientation reference axis. (b) Blade coordinate system: x-direction corresponds to the forward speed direction,
y-direction points in the starboard direction of the ship and the z-direction is the vertical direction of the blade. The yz-plane
coincides with the plane of rotation of the propeller.
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or torque ratio is above one indicates fiber angles for which the composite propeller generates more
thrust or torque than the original one. The same holds for the fuel consumption. Furthermore, if the
thrust ratio is larger than the torque ratio then the efficiency of the composite propeller is higher than
the original. Thus, in the cruising speed condition the efficiency of the composite blade is higher than
the original for any fiber orientation since the thrust ratio is always higher than the torque ratio. The
thrust generated by the composite propeller only matches that of the original blade when the fiber
angle is around 50� and 90�. In the maximum speed condition the efficiency of the composite propeller
is lower than the original for ply angles between 80� and 150�, and higher otherwise. Concerning the
generated thrust, in this case it only matches the target values for fiber angles close to 80� and 130�.

As mentioned before, the optimal composite propeller minimizes the fuel consumption or torque
while generating the same thrust force as the original. Hence, the aim is to find one fiber orientation for
which the thrust ratio is equal to one (i.e., equal to the required) and the torque ratio is lower than unity
(or lower than the original) for both operating conditions simultaneously. This case is not verified for
any of the fiber angles presented in Fig. 10. The inclusion of the blade pitch angles as design variables in
the optimization model is consequently justified. By varying the blade pitch angles for each operation
condition independently it is possible to compensate for any necessary variations of the thrust and
torque.

All the parameters describing the blade geometry presented in Table 1 were analyzed for the two
ply angles where thrust and torque reach their maximum and minimum values. From Fig. 10 it is
possible to see that the respective ply angles are 80� (minimum value) and 160� (maximum value) for
the cruising speed condition and 40� (minimum value) and 100� (maximum value) for the maximum
speed condition. The largest variations were observed in the radial distributions of pitch, camber and
mid-chord positions (see Fig. 11). The radial distribution of pitch tends to be equal or lower than the
original rigid blade (see Fig. 11(a,b)), whereas the camber tends to be larger in sections close to the hub
and lower close to the tip (see Fig. 11(c,d)). The only exception being the maximum speed case for
[(100�)32] where the camber of most sections is larger than for the original blade. As expected for both
cases the blade has deformed in the upstream direction (see Fig. 11(e,h)). At maximum speed the effect
of the fiber direction on the local stiffness of the tip region is visible (see Fig. 11(f)). A laminate lay-up of
[(100�)32] will reinforce the tip whereas a laminate [(40�)32] will result in more local flexibility.

Generally an increase in pitch and camber will correspond to an increase in the lift force (assuming
there is no flow separation) and consequently also in the thrust and torque. Based on the results from
Fig. 11 it is however difficult to establish the relation between the variation of the propulsive forces and
the geometrical characteristics of the composite blade.

Fig. 10. Combined fuel consumption (CFOC), thrust (T) and torque (Q) ratios between the composite and original blade for varying
lamina angle, given for both the cruising and maximum speed conditions.
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Fig. 11. Radial distributions of pitch (a,b), camber (c,d), displacement in x-direction (cf. Fig. 9(b)) of mid-chord point (e,f) and
displacement in y-direction (cf. Fig. 9(b)) of mid-chord point (g,h). Results for the cruising speed condition are for laminate lay-ups
[(80�

32)] and [(160�)32], and [(40�)32] and [(100�)32] for the maximum speed condition.
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5.2. Optimization of laminate lay-up

The first optimization results are obtained using the straight fiber path approach where the
following three laminate configurations are tested: [(q1)32], [(q1)8, (q2)8, (q3)8, (q4)8] and [(q1)8, (q2)8]s.
The optimal fiber angles, resulting fuel consumption reduction and optimal blade pitch angles for all
three laminate configurations are presented in Table 4. All laminate configurations converge to
approximately the same lay-up – [(40�)32] – and the one layer case is that which holds the largest
reduction in fuel consumption. The fiber angles for this case are presented in Fig. 12 (a).

At maximum speed the thrust and torque are exactly equal to that of the original blade. None-
theless, a reduction of 4.2% in the fuel consumption was found at the cruising speed condition
corresponding to 1.12% in the combined case. The latter results suggest that the variation of the ply
angles through the thickness has little influence on the blade response. This is in agreement with the
presumption that the coupling effects are maximized for a laminate whose layers are mostly oriented
in the same direction. This is also a direct consequence of the fact that the optimizationmodel searches
only for the optimal stiffness distribution and neglects other effects like stress constraints.

In the next step, the laminate angles are defined using the curved fiber path approach described
earlier. The following laminate configurations are used in the analysis: [(q1(y1,y2))32], [(q1(y1

1,y2
1))16,

(q2(y1
2,y2

2))16] and [(q1(y1
1,y2

1))8, (q2(y1
2,y2

2))8, (q3(y1
3,y2

3))8, (q4(y1
4,y2

4))8]. The results of the optimization
analysis showed once again that the blade performance is not sensitive to the variations of the angles
through the thickness. The optimal laminate lay-up [(q1(0.756,0.677))32] is therefore chosen as illus-
trated in Fig. 12(b). The resulting decrease in the fuel consumption amounted to 4.7% at cruising speed
corresponding to a reduction of 1.25% in the combined case (see Table 4). This corresponds to a further
decrease of 0.13% in the combined fuel consumption when compared to the straight fiber path
approach.

Finally, it should be noted that all optimal laminate configurations promote a flexible tip
(cf. Fig. 11(f)). In the curved fiber path case, the maximum displacement occurs at the tip and is
approximately 50 mm. Furthermore, the weight of the composite blade is approximately 230 kg,
or around1/4of theweightof theoriginalmetal bladewhich is 1087 kg (assuming rmetalz 7800 kg/m3).

5.3. Strength analysis

All results presented hereafter are obtained for the maximum speed condition since this was
identified as the most critical load condition of the two considered in this investigation. However, the
backing and crash-stop conditions have been neglected in this investigation. The maximum TWSI over
all layers at each element is plotted in Fig. 13(a). The maximum TWSI targeted during the design
process is 0.7 since this is considered to be a reasonable level of safety in a practical design situation.
The strength analysis is performed in parallel with the optimization of the fiber angles. The optimal

Table 4
Optimal laminate configurations and blade pitch angles (P/D07). The thrust ration for the cruising and maximum speed
conditions are given by (TC/TC0) and (TM/TM0), respectively. The percentage reduction in fuel consumption is given by (%FCS).

Laminate Cruising Speed Maximum Speed Combined

P/D07 TC/TC0 %FCS P/D07 TM/TM0 %FCS %FCS

[(q1)32] [(40�)32] 0.544 1.00 4.2 2.412 1.00 0.0 1.12
[(q1)8, (q2)8, (q3)8, (q4)8] [(40.2�)8, (40.2�)8,

(30.7�)8, (39.3�)8]
0.611 1.00 3.5 2.391 1.00 0.0 0.94

[(q1)8, (q2)8]s [(41.8�)8, (42.4�)8]s 0.635 1.00 3.3 2.372 1.00 0.0 0.89
[(q1(y1

1,y2
1))32] [(q1(0.756,0.677))32] 0.512 1.00 4.7 2.550 1.00 0.0 1.25

[(q1(y1
1,y2

1))16,
(q2(y1

2,y2
2))16]

[(q1(0.767,0.694))16,
(q2(0.764,0.689))16]

0.514 1.00 4.7 2.467 1.00 0.0 1.25

[(q1(y1
1,y2

1))8,
(q2(y1

2,y2
2))8,

(q3(y1
3,y2

3))8,
(q4(y1

4,y2
4))8]

[(q1(0.765,0.694))8,
(q2(0.757,0.678))8,
(q3(0.759,0.680))8,
(q4(0.767,0.693))8]

0.514 1.00 4.7 2.464 1.00 0.0 1.25
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fiber angles are defined first and the strength of the resulting lay-up is examined next. The critical
regionswhere the TWSI reaches thehighest value are identified as the trailing edge andhub regions. The
lay-up at these regions is thenmodified on a trial and error basis in order to reduce themaximumTWSI.
The following lay-up sequences were consequently found: regions 1, 2, 3 and 4 (cf. Fig. 13(a)) are
respectively changed to [(�45�)32], [(0�)32], [(0�) 32] and [(90�)32].Finally, the lay-up of the critical
regions isfixedwhile theoptimal fiberangles in the remainingparts of theblade is optimizedonce again.
Notice that the results from Table 4 refer to this final case where the laminate of the critical regions has
been fixed and the remaining laminate over the entire blade has been optimized a second time.

Finally, the failure modes which according to the MSFC (Eq. (5)) show the largest ratios at each
element are presented in Fig. 13(b). The results indicate that the laminates in the leading and trailing
edge regions close to the hub, and in the central part of the blade close to the tip, may fail due to in-
plane shear and matrix compression. The effect of the reinforcements is particularly visible in the
trailing edge region. Before the re-orientation of the fibers in those regions was adopted, matrix failure
was the failure mode with the largest ration whereas after the re-orientation of the fibers, in-plane
shear is the failure mode holding the largest ration.

6. Discussion

Overall the results indicate that it is possible to tailor the orthotropic properties of laminated
composite materials to design a flexible composite propeller whose shape passively adapts to the
different working conditions while resisting the imposed loads. Optimal fiber orientations have been
identified which result in a decrease of the fuel consumption. It is important to note though that the
hydrodynamic model does not account for flow separation or cavitation. Consequently the resulting

Fig. 13. (a) Maximum TWSI over all layers for the optimal propeller blade with curved fiber path. The regions 1, 2, 3 and 4 indicate
regions with the lay-up configurations: [(�45�)32], [(0�)32], [(0�) 32] and [(90�)32]. (b) Failure modes for layer with highest stress
ratios (see Eq. (5)) for each element. Legend: (1) – Fiber tension; (2) – Matrix tension; (3) – Fiber compression; (4) – Matrix
compression; (5) – In-plane shear stress.

Fig. 12. (a) Resulting fiber angles obtained using straight fiber paths. (b) Resulting fiber angles obtained using curved fiber paths.
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optimal blade pitch angles may be too large. Furthermore, the results indicate a possibility for reducing
the fuel consumption further by varying the laminate orientation across the length and width of the
blade, e.g., using curved fiber paths. However, these variations in the fiber alignment may be difficult to
achieve in practice in which case the straight fiber path results should be used as reference.

From a strength point of view, the TWSI has been used to identify overly stressed blade areas while
the MSFC provided information as to the failure modes with the highest possibility of failure. The
laminate in the critical regions was consequently redesigned and the TWSI was decreased. The
proposed laminate orientations however disregard once again production constraints and would need
to be revised in a subsequent iteration of the design process. In this sense, the analysis model used in
this investigation assumes that all layers have the same thickness. An analysis model incorporating ply
drop-off to account for changes in thickness should also be considered at a later stage for a more
accurate evaluation of the strength properties. Besides, the full reverse and crash-stop conditions
should be considered as well since these are usually critical load cases. Finally, propeller blades are
subjected to cyclic loads and the analysis of the effects due to fatigue is therefore strongly
recommended.

7. Conclusions

A framework for the design and optimization of composite marine propellers has been presented.
The laminate lay-up configuration and blade pitch angles of a large naval type controllable pitch
composite propeller blade with high skew was optimized for two different load conditions – cruising
and maximum speed. Two parameterizations of the fiber angles have been considered in the opti-
mization model. Namely, the straight fiber path approach which assumes constant fiber angles
throughout the blade and the curved fiber path approach which assumes that the orientation of the
fibers throughout the blade follows a polynomial curve. The largest reduction in fuel consumptionwas
obtained using the curved fiber path approach. The optimal fiber and blade pitch angles have been
determined and a reduction of the combined fuel consumption of 1.25%, corresponding to a decrease of
4.7% for the cruising speed and no reduction for the maximum speed condition, was observed.

Concerning the geometrical properties of the blade, the largest variations were observed in the
radial distributions of pitch, camber and mid-chord positions. The optimal configurations promoted
a flexible tip and a stiff body closer to the hub.

The strength of the blade was analysed in terms of the Tsai-Wu strength index and performed in
parallel with the optimization of the fiber and blade pitch angles. The leading edge and hub regions
were identified as the critical areas. The blade was therefore reinforced and the lay-up configuration in
these regions was modified. It was shown that after reinforcement of the critical areas, the maximum
Tsai-Wu failure index was lowered from 1.6 to around 0.7 suggesting that no failure occurs. The most
significant failure modes were identified as matrix failure in tension and in-plane shear.

The results are encouraging and suggest that it should be possible to build a large flexible composite
marine propeller which outperforms its metal counterpart.
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