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 Abstract—We have developed ultrabroadband THz 
spectroscopy in reflection mode for  character ization of 
conductivity dynamics in conductive polymer  samples used in 
organic solar  cells. The spectrometer  is designed to have a time 
resolution limited only by the duration of the optical pump pulse, 
thus enabling the investigation of charge generation processes on 
the sub-100-fs time scale. 
 
I. INTRODUCTION 

 
 Time-resolved THz spectroscopy is a very powerful tool 
for the investigation of ultrafast processes in condensed-
matter systems [1]. It has been used for studies of carrier 
dynamics in a wide range of semiconducting materials, 
including bulk GaAs [2-3], thin films of crystalline, 
nanocrystalline, amorphous silicon [4], and TiO2 [5] just to 
mention a few. Most studies to date have been focused on the 
region below 2 THz due to instrumentation limitations 
(electro-optic generation and detection in ZnTe crystals), and 
thus the nature of conductivity processes have partly been 
discussed on the basis of measurements of a small section of 
the full conductivity spectrum. Larger bandwidth 
measurements have proven their value in several 
investigations, as exemplified by references [6-8].  
Here we demonstrate a time-resolved THz spectroscopy 
(TRTS) system which employs air plasma generation of 
ultrashort THz pulses [9-10] in combination with air biased 
coherent detection (ABCD) of the THz transients [11].  
Figure 1 shows a schematic diagram of the experimental 
setup. 
The generation and detection processes are both based on 
four-wave mixing in air. As in any other frequency conversion 
processes, the bandwidth of the process is always limited by 
the bandwidth of the laser source and the bandwidth of the 
phase matching. With air as the nonlinear medium the phase 
matching conditions are perfect over an extremely broad 
bandwidth range, and therefore the bandwidth of the 
generation and detection processes is in practice limited only 
by the laser bandwidth.   
We use a transform-limited 35-fs laser pulse from a standard 
regenerative amplifier system (SpectraPhysics Spitfire), 

resulting in THz transients with a spectral coverage from 1 to 
35 THz and a THz pulse duration of less than 50 fs.  
 

  
Figure 1: Schematic diagram of ultrabroadband time-resolved THz 
spectroscopy setup operating in normal-incidence reflection mode.   
 
With this system we perform optical pump – THz probe 
spectroscopy of the evolution of the photoinduced 
conductivity in a roll-to-roll processed, device-ready bulk 
heterojunction film consisting of a blend of the conductive 
polymer P3HT (electron donor) and PCBM (electron 
acceptor) [12]. Figure 2 shows the chemical structure of 
P3HT and PCBM. 
 

 
Figure 2: Chemical structure of P3HT and PCBM 
 
The pump-probe spectroscopy is carried out with a 400-nm 
pump pulse (< 40 fs duration) exciting the sample at a time 
τ∆ before reflection of the THz pulse. The photoinduced 

changes of the conductivity leads to modifications of the 
reflection amplitude and phase of the THz signal, 
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where n  is the index of refraction of the substrate, 0Z  is the 
free-space impedance, d  is the sample thickness, and 

( , )σ ω τ∆  is the frequency-dependent, complex-valued 
photoconductivity at the pump-probe delay time.  
Figure 3 shows an example of the evolution of the 
conductivity of the P3HT/PCBM device-ready thin film 
subsequent to photoexcitation [13]. 

 
Figure 3: Short time evolution of the real (black circles) and imaginary (red 
circles) part of the conductivity of the P3HT/PCBM BHJ film after 400-nm 
photoexcitation. 
 
Initially the conductivity spectrum displays a Drude-like 
response, indicating mobile charges. Later, the suppression of 
the DC conductivity and the negative sign of the imaginary 
part of the conductivity show a more localized response.  
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