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Abstract

Experiments on shock formation and shock reflectiorn in a Q-device
are described. In connection with these a numerical integration of the ap-
propriate fluid equations is executed, The result of the experimems is
that shock formation is possible when the ion temperature is decreased by
ion-neutral collisions and the density is not too low. The shock reflection
experiment indicates that y; = = cp/cv = 5/2, The numerically analysed
fluid equations inciude the viscosity- and the heat-conduction terms, and
algo momentum and energy transfers between different kinds of particles
are taken into account, Some stability and error-indication problems con-
nected with the equations are considered.
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1, INTRODUCTION

During 1966 and at the beginning of 1967 a @-machine > %) was de-
signed and constructed by the Plasma Group at Risd with a view to basic
research on a stationary alkali plasma. The first experiments performed
with this hine were rated on propagation of shock waves and

ion-acoustic waves through the plasma column generated in the machine,
The main results of these experiments have been publishedz'“. Shock
propagation in Q-machine plasmas has not been investigated earlier, while
propagation of ion-acoustic waves has been examined in refs, 5 and 6, In
the first of these works it is demonstrated that the propagation and damping
of ion-acoustic waves may be explained by means of a theory in which the
ions are treated on the basis of the linearized Vlasov equation and the elec-
trons on the basis of the fluid equations.

The next step in this line of investigation is the study of the propaga-
tion of large density pulses which, under appropriate conditions, might be
expected to develop into sharp fromts or "shocks', Experimental investi-
gations of the properties of such propagation in connection with a numeri-
cal analysis of the problem on the basia of the fluid model are the subject
of this report.

In section 2 we shall describe the experimental arrangement, import-
ance being attached to those parts which are important for the understand-
ing of the experiment, Section 3 presents the experimental results, These
are concerned with the propagation of large density puises through the plas-
ma column, with the formation of shock fronts pertaining to this propaga-
tion, and finally with the reflection of the shock pulses.

In section 4 the fluid equations and the results obtained from the nu-
merical calculations are discussed. These results are evaluated and com-
pared with the experimental results in subsection 4. 3. The method of nu-
merical integration used is described in section 5. Section b preeents the
conclusion.

Many different people have participated in this work. Special thanks
are due to Dr, N, D'Angelo, at whose suggestion the experimentai work
was initiated and under whose direction it was carried out, and to Profes-
sor O, Kofoed-Hangen for suggesting the pumerical analysis,

This work was carried out in fulfilment of the requirements for obtain-
ing the degree of lic, techn, at the Technical University of Denmark, The
fellowship from that institution which made the study possible is gratefully

acknowledged,
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2, THE Q-MACHINE

The experiments were performed in the Q-device at the Research
Establishment Ris8. This device, which has been built at Risd, is quite
similar in design to other alkali-plasma sources described in the litera-
ture. Therefore, only a brief informative description will be given here,
with emphasis on the conditions decisive for the plasma state,

The principle of the Q-machine and the experimental arrangement is
shown in fig, 1. The plasma is produced by surface ionization of alkali
(Cs or K) atoms on a hot tantalum plate, about 2500°K. The neutral caesium
is produced in an oven, from which, via a tube, it is guided against one of
the tantalum plates. The caesium is produced by heating a mixture of CsCl
and granulated Ca to about 400°C,

The plasma {s radially confined by a homogeneous magnetic field of
intensity up to 1 Wb/ mz. with an inhomogeneity of about 5%. The length of
the plasma column may be varied, but normally has its maximum size
1,25 m, At the end opposite to the generating tantalum plate the column is
terminated by a second plate. The temperature of this plate may also be
varied up to about 2500°K, Both plates, which are 3 cm in diameter, are
placed perpendicularly to the direction of the magnetic field. The tantalum
plates are heated by electron bombardment from a filaiuent mounted ingide
a separate vacuum system behind the tantalum plates, This arrangement
makes it possible to allow a high neutral gas pressure in the main vacuum
system, by means of which the percentage ionization may be varied with-
out disturbance of the filament vacuum.

The pressure of the neutral gas in the main vacuum system may be
varied from about 2. 10'6 torr upwards., This requires a few comments,
At very low pressures (~ 2« 10's torr) the composition of the residual gas
i8 unknown, At high pressures (above 10'2 torr) the plasma density will
decrease quickly for two reasons: (1) the amount of neutral caesium strik-
ing the ionizing tantalum surface is reduced when the background pressure
becomes 8o large that the mean free path of the caesium atoms becomes
smaller than the distance from the oven tube to the tantalum plate, that is
about § cm; (2) the neutral background gas will give rise to an enhanced
diffusion of the plasma perpendicularly to the direction of the magnetic
field,

Both the absolute density and its variatior. are measured solely with
Langmuir probes of different sizes and shapes, Most of the data were ob-
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Fig. 1. Schematic outline of tha Q-machine

1: Main vacvum vessel.

2: Cathode vacuum systeme,

3: Generating cathode,

4: Reflecting cathode,

$: Filaments for electron of the
6: To diffusion pumps,

T3 Cooling jacket,

8: Cuesium aven.

9: Caesium injection tube,
10: Magnetic fleld coils,

11: Lllfnltr probe,
12: Grid by means of which tho plasma tranamission can be varied,
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tained with a cylindrical probe made of a tungsten wire., The probe was
shielded from the plasma by a quartz tube so that only a tip 0.2 ¢m long
and 0, 02 cm in diameter was in connection with the plasma, By compari-
son with other diagnostic methods (e, g. microwaves), Langmuir probes of
this gize have been shown n to give the right absolute density within a fac-
tor of two when the density iz greater than 10’ 6m3,

The introduction of a neutral nl-:ln the vacuum system may be used
to cool the ions. If a suitable amount of neutral particles is present, the
ions will lose energy by collision and thereby be coaled 8). The effect on
the electron temperature T, is considerably smaller because the cooling
effect depends on the maes ratio of the colliding particles. The absgolute
density can be measured with a Langmuir probe on the assumption that the
random-ion current to a negatively biased probe is given by

1 1 vz'!i
Iez@v=ga = .

where q i8 tﬁe charge, n the ion density, v the ion thermal velocity, x
the Boltzmann conatant, m, the ion mass, and Ti the ion temperature,
This expression would be valid if the presence of the probe cauged no per-
turbation in the surrounding plasma. The probe does perturb the plasma,
however, The ion current to the probe seems to be more a function of the
electron temperature Te than of the ion temperature 9). This effect is
due to the formation of a positive sheath round the probe, the size of which
depends on the electron temperature, The electron temperature is rather
constant and equal to that of the tantalum plates, For these reasons we
may asgume that the ion saturation current is directly proportional to the
plasma density and independent of the ion temperature. This assumption
has been used in measuring the data presented in this report.

Fig., 1 also shows a grid inserted in the plasma column, about 30 cm
from the generating plate, The grid consists of parallel tungsten wires
2,5 10'2 mm in diameter and spaced 0.3 mm, It i8 normally biased at
~20 V with respect to the generating plate, which results in a plasma den-
sity distribution along the axis of the type shown in fig, 2. By a sudden
change of the grid bias to approximately -2 V the grid is "opened”, i.e.,
its transmission to the plasma is greatly enh d, The "opening" of the
grid in this arrangement ie more or less equivalent to the breaking of the
diaphragm in a conventional shock tube.




© Fig. 3. Density distribution alomg the axis when the grid is “closed”.

3. EXPERIMENTAL RESULTS

The experiments consisted in measuring the density as a function of
time after producing a plasma pulse by a sudden "opening” of the grid.
These measurements were made with Langmuir probes at several posi-
tions along the axis, i.e. the density n was measured versus x and t
(position and time after the "opening” of the grid), The other essential
parameters involved in the experiment are the initial plasma density and
the neutral background pressure, which in a large region determines the
ion temperature,

It is found convenient to divide the description of the results into two
parts so that the measurements carried out with low and with high back-
ground pressure are treated separately,

Besides the measurements of the plasma pulse propagation, a con~
nected experiment dealing with shuck reflection is reported, The experi-
mental arrangement for these measurements was quite identical with that
described, but the arrival of the plasma pulse was measured both before
and after its reflection on the hot tantalum plate,

3.1. Pulse Propagation at Low Pressure

The first series of measurements to be described were carried out in

a plasms with a density in the region 1()le - 1018 m 3, while the neutral
pressure in all cases was below 10'5 torr. At such neutral pressure it is
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normally assumed that 'I‘i = 'I‘e - 'I‘p1 where Tpl is the temperature of the
generating plate. From the kind of measurements mentioned, n versus x
and t, the spreading of the pulse can be found. This spreading is shown in
fig. 3 at different densities n, and different density jumps (n2 - no); n, is
the density in front of the grid before the "opening”, and n, is the some-
what higher density between the grid and the generating plate. By the term
"spreading” we mean the increase of the pulse width w with x, where w
in this comnection is defined as
e )
E

3t "max

i, e. the density jump divided by the maximum slope of the density versus
the time curve at a certain position. The result of these measurements is
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Pig. 3. Pulss width w vs, x for low neutral pressure {p { 1072 torr)
#3d at several densitios and pulse strengths | (x) 0, = 2-10'0 em3,
n,/llo "4; (#)n, " 41080 em", n!"'a =8 {om, = 1.2.101! cm",
ny/n, +2; (a1, 310" em™, np/n = 8;]. The dashed line is the
pulse spreading computed from the fluid equations (at B, ° % 10t? en",
n,/no #5), and the solid line has been computed from the Landau damp-
ing modsl. The arrow shows the expected shock width (n_ = 3-10't,
n,/n° =8).
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that the pulse width increases linearly with time, nearly independently of
thesdensity and the puise strength, i.e. "2/“0' At great densities, l()"l
m~”, there is a tendency to shock formation when the pulse has moved
more than about 80 cm. This is seen quantitatively by the deviation of the
pulse width from the linear dependence on x, and qualitatively by the pulse
front getting sharp edges,

3. 2, Pulse Propagation at High Pressure

On an increase of the background pressure of the neutral gas it may be
expected that the first thing to happen is a cooling of the ions because they
lose some of their energy to the neutral particles by collision, The energy
exchange between electrons and neutral particles is considerably smaller
because of the mass ratio, If the background pressure is further increased,
the momentum exchange between ions and neutrals may be expected to be
important. This exchange is observed to damp the pulse considerably, but
the measurements mentioned in the following were carried out in the pres-
sure region where the cooling of the ions is expected to be dominant. The
method of varying Te/Ti with a neutral gas has been investigated in
refs, 4 and 8,

In the present experiment the ion cooling was investigated by measur-
ing the velocity of the pulse propagation as a function of the neutral gas
préssure. This is shown in fig. 4 in two cases, Cs-ions cooled by He-atoms
and by Nz -molecules, The plasma pulse begins to be delayed at some critical
pressure p ~ 1,5 10'4 torr for Nz-cooling and ~ 10'3 torr for He-cooling.
The ratio between the two pressures is seen to be about equal to the mass
ratio mHe/mNz , which indicates that we are observing ion-cooling. Fig. 4
‘shows, however, also another effect, The change of the pulse propagation
velocity is greater than expected from ion cooling aione. As the velocity is
proportional to (u(Ti + Te)/m)llz, the variation should always be less
than Y72, This can be explained if we assume that at low gas pressures the
plasma has a drift velocity from the generating to the reflecting plate, If
this drift is decreased when the neutral pressure becomes sufficiently high,
we obtain the effect mentioned.

When the pressure of the neutral gas is increased, the shape of the
pulse front is changed into a sharp edge followed by a smooth rise up to
the stationary level, This sharp leading edge must be interpreted as a
shock front, In accordance with normal shock theory we define the shock
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where n; and n, are the densities behind and in front of the shock respec-
tively, and (%%)max is the maximum slope of the n versus x curve, In fig, §
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the variation of we with x is sh The thick is seen to reach a
stahle value when x becomes sufficiently large,

The shock thickness as a function of the neutral pressure for different
plasma densities and at a fixed pogition is shown in fig. 6. The thickness
is in units of )‘o‘ the ion-ion mean free path at 'l'i = Te’ i, e. at the ion
temperature at a low neutral pressure. The measuring points in fig. 6 re-
prese.t cases where the pulse shape looks like a shock front, but they do

not necessarily represent stabie shock fronts, If we separate the pressure
region into two parts, a low-pressure and a high-pressure region, we no-
tice the following: At low pressures ws,’xo becomes constant in such a

way that w, see to be independent of the density. This is in agreement

with the curves in fig, 3 if we assume that the shock front has not reached
its stable shape at the position x = 60 cm. At high pressures the curves at
different densities coincide, which means that ws/ko is only a function of
p, the neutral pressure, and not of n, the plagsma density. If we assume
that the shock thickness is proportional to kﬁ, the mean free path of the

] A "

0 [ w? plwom)

Fig. 8, Shock thickness divided by the jon-ion mean free path (1" = ‘r')
'./\° vs, the neutral pressure (He), for x » 60 cm. (o) n, v 108! cm",
Ao =0.8em, (in = 1.810M em 2 st sem, (110, - 210%em3,

A = TSem],
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ions at the actual temperature, it is seen that the cooling of the ions de-
pends only on p. We shall later return to the meaning of this point.

The experimental results mentioned show that at low neutral pressures
the pulse width increases linearly with time, On the other hand, at suffic-
iently high pressures the pulse takes on a certain shape, and its thickness
remains constant., The latter effect is interpreted as the formation of a
shock wave,

3. 3. Shock Reflection

An important methed of studying shock propagation is to examine the
shock velocity versus the shock strength, Because of the previously men-
tioned unknown drift of the plasma column we cainnot measure the shock
velocity directly. I, however, we let the shock pulse be reflected on the
hot plate opposite to the generating plate and assume that we have an ideal
reflection, it is possible to eliminate the drift velocity. Further, such a
shock reflection gives interesting information about the heating taking place
when the shock pulse Fﬁsses. We have investigated the dependence of the
velocities of the generated and the reflected shock on the shock strength
S‘ =ny /no » where n, and n are the densities behind and in front of the
shock respectively, The results are shown in fig, 7. The times of arrival
of the incident and of the reflected shock have been plotted as functions of
the probe position x along the column, for different shock strengths, From
that kind of curves the velocities have been measured and plotted as func-
tions of the shock strength S,. As expected, we see that the propagation
velocity increases with incréning shock strength. These results will be
discussed in the next section.
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4, THEORY AND DISCUSSION

To analyse the results presented in section 3 one may consider the be-
haviour of the plasma pulse on the basis of (a) the fluid equations, or (b)
the Vlasov equation, The propagation of the plasma pulses may be expected
to be closely connected with the propag. i .nof ion-acoustic waves as investi-
gated in refs, 4 and 5, The damping and the propagation velocity of these
have been found in accordance with calculations on the basis of (b), The ex-
periment described in ref, 6 shows that the Vlasov treatment fits satisfac-
torily when v il ) 1, where o is the frequency of the ion-acoustic waves
and 1., is the fon-ion colligion time, When wt;, (1, it is found that a
fluid description gives a good representation of the experiment, which means
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that the propagation velocity is decreased and that the damping mechanism
is changed from Landau damping to viscous damping, From this we may
conclude that the pulse propagation can be treated on the basis of (b) if
w. S 1, while the fluid equations will give a suitable description if
's’kii ) 1. A discussion on the basis of the Vlasov equation will neces-
sarily have to be of a qualitative nature as it is not possible to give a suf-
ficient quantitative treatment of the non-linear phenomena we have exam-
ined, Nevertheless it might be expected that the propagation would be de-
scribed suitably from the linearized Vlasov equation because the experi-
ments show that the propagation is rather independent of the pulse strength
within a large region (1,2 ( nllno { 5). A result of this theory is that both
the phase velocity and the ratio /A between the damping length and the
wave-length A are constant, If we now Fourier-analyse our plasma pulse at
the time of "opening” the grid and consider the propagation of each com-
ponent, we find that the high-frequency components of the pulse die cut over
shorter distances than the low-frequency components, The net effect is, of
course, a spreading of the puise. If we define the pulse width as

- = 2%

max

we find, on the basis of the analysis mel;ltioned, that this quantity grows
linearly with time, in accordance with the experimental results in the case
'l‘i = Te' The propagation will of course also be independent of the density
as the analysis is linear,

In the case of a rea bly great pl density we would expect the
fluid equations to describe the phenomena. At a density of n = 5'1017 m's,
for instance, the ion-ion mean free path xﬁ > 5 10'3 m, to be compared
with the length of the machine L =1 m, If the ions are cooled, the condi-
tions for using the fluid equations are even better fulfilled because kil is
proportional to Tiz.

In certain special cages it is possible to find a stationary solution to
the fluid equations and in this way get some information about the shape of
the shock front, In order to obtain some results about the propagation, the
shape of the pulse before it becomes stable, and the time it takes the shock
to build up, we carried out a numerical integration of the fluid equations,
The actual numerical methods used are discussed in section 5, In 4,1 the
equations used are discussed, in 4.2 the results of the numerical calcula-
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tions are given, and in 4,3 they are compared with the experimental re-
sults. The reflected shocks are discussed in 4. 4.

4.1. The Fluid Equations

Before we discuss the equations we have integrated, we shall consider
a simpler case which can tell us a little about the shock front. We take a
case where the pulse propagation is determined by the continuity and the
momentum equation

an 3 =
KT A @
an s%u
nml(“ +1|-—)+:TT--ua—xz-an=Pie+ P (3)
an - P :
Teﬁ +nqE=P, =-P,_ . 4)

As the plasma is quasi-neutral, the density n and the velocity u are the

same for the ions and the clectrons. We are ned with propagation
parallel to the direction of the B-field and may therefore ignore the pres-
ence of this field. In the momentum equation for the ions (3) we have in-
troduced the following new quantities: m, is the ion mass, q is the charge,
wn is the Boltzmann constant, » is the constant of viscosity of the ions, E
is the electric field strength, P
unit time and unit length from electrons to ions because of collisions, and
Pin is a similar quantity for the momentum transferred from the neutral
particles, In the momentum equation for the electrons we have neglected
the inertia terms and the electron vis~osity which is allowed because the
mass ratio me/n.i ({ 1. By substituting (4) in (3) we obtain the following
equation for the momentum balance:

is the total momentum transferred per

2
nm( +—)+u(T+T)—-u—‘2'-=Pin- (5)
ox

Here we have made the assumption that both plasma components may be
considered isothermal, This is very often done in calculations pertaining
to Q-machine plasmas, As far as the electron gas is concerned, the argu-
ment for the assumption is that the heat conduction is sufficiently great to
keep the electron temperature constant, For the ions the assumption can
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sometimes be justified by the fact that the energy transfer between elec-
trons and ions is sufficiently great to keep the temperatures equal. This
does not seem to be the case here, as a simple calculation will show, A
characterigtic length in the experiment is the length of the plasma column:
L1 :n. It we divide this by the phase velocity of an ion-acoustic wave,

¢ 7 10" m/sec, we get an estimate of the total time a pulse needs to prop-
agate through the whole machine:

‘p > 1 rosec,
This is to be compared with the time at which equipartition of energy is
established between ions and electrons (see e, g. ref, 1J). At a density of
n= 10” m~2 and a temperature T = 2500°K the equipartition time is about

'eq ~ 4 msec

and is inversely proportional to the density, Thus we see that 1 eqz ‘tp in
the experiment. On the other hand, the isothermal approximation makes
the equations simpler, and most of the qualitative results will not be
changed,

Let us for a moment make some additional simplifications of eqs, (2)
and (5) by neglecting the viscosity term and the term for mome: fum trans-
fer to the neutrals (p » Pin = 0), In this case the equations reduce to the
type normally considered for the description of a simple fluid, One may
therefore use-all the considerations normally found in treatments of non-
linear behaviour of large-amplitude pulses in electrically neutral single
fluids and obtain the conditions for shock formation, It is easy to deduce
from such consideratiomu) that were these simplified equations a com-
plete representation of the plasma, shock production should occur, To get
an idea of the width of the shock front we have to take the viscosity term
into account, In this case it is possible to find a stationary solution to the
equations of the form

mmn c
) = - = - %) ©

where
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1 n 1 2

1 n n
tn) = Lo 10 () + mE o m -2
v Al S v S waoag T M ow)

and 1z
gl(’l‘\\-T)
c=[ J

is the phase velocity of an ion ic wave, L is the density in front of
the shock and M (Mach number) is the corresponding velocity divided by c.
‘The expression (6) shows that the width of the shock front is inversely pro-
portional to the density n, or, in other words, directly proportional to the
mean {free path, From the definition of the shock width (1), and by using
(6) and (7), we find

8 V¥
"s"W;:' @

where S » == Mz is the shock strength. In accordance with ref, 10 we
have for the rauo between the coefficient and the ion-ion mean free path

£ -1 76mp, J':"&l . ®

Using this in (8), we obtain the shock width in proportion to the mean free
path:

:-'.-u" T, V5
Ay TitTe s2.1

In the experiment, S < 1.5 80 in the case Ti s Te we have
>
w,2 10 Ay - (10)

Let us now drop the isothermal approximation and take the temperature
variations into account, It is a well-known fact that in the classic shock
theory for neutral gases the heat conduction contributes to the width of the
shock front an amount approximatively equal to that contributed by the
viscosity effect, We may therefore expect the number in (10) to be in-



available at the Risd Computer Library, was used as the main part of the
integration programme. This procedure is based on the Runga-Kutta method
and has been improved by Mernonls). The improvement makes it possible
to calculate the expansion error, which is essential because it enables us to
find the most convenient step length and thus to minimize the computation
time. In order to increase the stability of the solutions, the smoothing op-~
erators mentioned in ref, 16 were used. They serve, essentially, as filters
removing unwanted high-frequency oscillations caused by numerical insta-
bilities,

The whole integration procedure is based on a mesh resulting from a
divigion of the x- and t-axes into constant intervals of the lengths sx and
4t respectively, The numerical differentiations were carried out by using
"9-point operators" of the "central difference’ typels). Different methods
were uged to obtain a svrvey of the accuracy of the calculations, It wae at-
tempted to keep the accumulated rounding-off errors and their propagation
in order by including error equations. These rounding-off errors may be
used for determining the step length 4t in the direction of the t-axis,

In the following we shall discuss the whole procedure in some detail,

The three equations to be integrated have been mentioned in the preced-
ing section, but in a form that is not convenient for numerical calculation,
By normalizing the quantities with respect to the density n., the velocity
Yo and the temperature To' introducing the mean free path A o* and rear-
ranging the terms, we give the equations the form

_f’.:l--n'.:“-x-uﬁ (14)
w o T (T +T) 28 4 YT (v, -u AT
2 'x T3 Wet W i in " *oto'i
2 T
T, &8 4 2.5 -1 2y {15)
e 77 s

aT oT . 2
'5?‘ . .uTx_‘ +(y-1) (-Ty 35 + (’1*13/2 Ao (BT G.;) +

2 2
o T aT
i : i
* g (T—f + 2.5 57 YN/ - v gy (T-T) - (T-Todv/n.

(16)
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The only quantities not yet defined are 'rn, the temperature of the
neutrals, and v e’ the electron-ion collision frequency,

In writing the dependence on n, u and 'l'i explicitly, we may consider
the quantities Vei® Yin® ¥os and ", a8 constants.

The system of equations (14) - (16) now has the form

2
dv, dV. d Vv,
i, 3 a
Tt i Ve S Ry an

where the v's represent the density, velocity and temperature. In principle
we may now find the solution by using a Taylor expansion. Assuming that v
is known at the time 'o' in all the positions x, {0 { r « N), we see that
v(to + 4t, x ) is given by

. . tan™ 3%
v(t°+M,xr)-néh—ﬂ—“n(o,x)i-n, {18)

where R is the remainder term, which gives the expansion error if we
igno?e it. The derivatives in (18) can be found from (17), for instance:

2

[ v, A 2 A AN
i = Lf'. ! ] _o- iy ) J 19
at! ot \ 3t C X \3t )’ 0x2 v/ ) 9

The higher-order derivatives can always be expressed in a form simi-
lar to (19), where the right-hand side only conmtains the first derivative of v
with respect to t; it may be inserted from (17), and the derivatives with re-
spect to x may be found by numerical differentiation. However, the higher-
-order derivatives found from (19) become rather complicated and make the
Taylor method troublesome. The principle of other integration procedures
is not essentially different, but instead of the derivatives being calculated
as in (19) only the first derivative is used, and the new values of v are
found by an iteration method or by calculating v in some intermediate
points between to and to + At

The Runga-Kutta method is a fourth-order process, i.e, it is identical
with a tr ted Taylor expansion up to and including the fourth derivative,
Instead of calculating the four derivatives one calculates the first derivative
in four points, the extreme points (to and t,+ at) and two intermediate




points. In the Runga-Kutta method improved by Merson, which we have
used, the first derivative is calculated in five points instead of four. This
makes it possible to find an approximate expression for the expansion er-
ror, which may be used for determining the step length at in the direction
of the t-axis. This step length may then be chosen s0 that the expansion
term becomes smaller than a fixed limit,

The equations (14) - (16) are of the parabolic type, and therefore, in
order to determine v if t ) t , itis not sufficient to know v{t ) in a cer-
tain x-interval, To get a complete fixing of the particular aclutions we
must assume that v is known on the border x =X and x = X, forall t » to
The derivatives of v with respect to x have to be calculated by means of
some numerical approximation method, We have used the differential op-
erators as introduced in ref. 16, For our purpose we just replace the nth
derivative by

on L h cipn)

v N r

—(t, X)) — V{t, X_+ SaX) , (20)
= T )t —n cip.n) r

where s is an integer summation index and CIEP'“) and C(p' n) are in-
teger coefficients and denominators given in the above -mentioned refer-
ence. p»2h + 1 is an odd integer deﬁin'.ng the number of points around x.
used for calculating the derivative. The expr ion (20) corresponds to the
derivative to be found in the point x_ by fitting 2 polynomium of maximum
degree 2h to the values of v in the points x = x_ + s4x, The value of v at
the time t + At is found from the equations

vy ey, t 1/3at1(t, vy

Vo vy + L[6 AL, v )+ It + At/3, vl)]
vy eV, + 1/8 atf(t, v+ 3/8 atf(t + at/3, v,)
Ve ot) 2 v, «v + 12 st 1, vp) - 3/2 8t 104813, vy)

+ 2 at f{t+ 5tf2, va)

vithat) = vg = v, + 1/6 at f{t, Vo) ¥ 2/3 at f(t+ at/2, vy)

+ 1/6 atf(t+ B, vy i
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Yo is the value of v at the time t; Vie Vs eon Vg and vl are some aux-
iliary variables, and the function f{t,v) is the derivative as indicated in
(17). If the interval At is sufficiently small, f(t,v) may be represented by
the linear approximation

fit,v) *At+ Bv+ C,

In this case it can be shown that the error of vy is -1/120(at) ..\'\/ ot
and that of vg is -1/120(M) v/d t We may u-en assume that a good
estimate of the error of v is 1/5 (v4 - "5)' If a maximum permissible
error is chosen in advance, the step length can easily be found when it is
taken into account that the error varies as the step length to the fifth power.

For parabolic differential equations of the non-linear type the problems
about convergence and stability are rather complicated, The first of these
is actually unsolved, while the concept of stability has to be replaced by
local stability, assuming that the function varies slowly across small re-
gions. As the stability depends on the solution, which of course is un-
known in advance, it {s difficult to say anything in general about it, The
problems in connection with equations similar to ours have been investi-
gated analytically in ref. 17, but we have chosen to use the numerical
method mentioned in ref. 16,

Supposing that v hag been encumbered with a small error e{e {\ v),
we can introduce it into {17), which yields

Oe
_-F(v+e)-F(v)+S, (21)

at
where S is a source term arising for instance from rounding-off errors.
Equation {21} is similar to {(17) and the calculations of the errors can be
carried out side by gide with these equations. As we have assumed e to be
small, we may linearize (21). The stability may be examined by finding
the effect of introducing a small e (and S = 0). If we obtain an exponential
growth, the method of solution is unstable, which wiil be the case when
th(Ax)n becomes too large; n means the hig-hest order occurring of the
space derivatives. Again, this maximum allowable ratio at/ (Ax)rl depends
on the solution and cannot be found generally. On the other hand one wants
to use a 4t as large as possible in order to save computation time, In the
integration method used, &t has been determined on the basis of knowledge
of the expansion error, which implies security against instability. If the
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ratio M/(u)n becomes larger than a certain value, the solutions will be
unstable, and the estimated expansion error will grow very quickly, ex-
ceeding the allowable size. This causes the calculation to start again from
the previous integration step, with the new value of at:

s 1/5

ot At (?) *K , {22)
where b is the allowable value of the expansion error, ¢ is the actual
value, and K is a constant a little smaller than one,

The method of error estimation by means of eq. (21) has the advantage
that it can be used to minimize the total error, Assume that the source
term S can be found as a good representation of the rounding-off errors
which will be introduced in each integration step. Then the error equation
(21) will give the total accumulated rounding-off error at a certain time,
and it will be possible to choose a step length such that the expansion error
can be neglected in comparison, The source term S may be found from a
knowledge of the rounding-off method used in the actual computer or by the
method discussed in ref. 16, The calculations we performed, including ’
equation (21), all showed linear error growth, the total accumulated errors
never exceeding the permissible limit, This observation was algso made in
another way. If two calculations are performed with different step lengths,
for instance differing by a factor of two, we may expect the expansion errors
to differ by a factor of 2° and the rounding-off errors by a factor of 2. Hf
the step length is decreased, the expansion error will also decrease, while
the rounding-off error will increase, and vice versa, The difference between
two such calculations indicates the size of the errors involved. In an actual
case the relative difference was found to be below 10'5. In the above con-
siderations it has been assumed that the step length was in all cases below
the necessary limit for stability,

Until now we have only concentrated on the step length in the t-direction,
st, Also the finite step length in the x-direction will cause errors, corre-
sponding to the difference approximation introduced in expression (20).

An estimate of thig finite x-step error can be obtained by a method
similar to that mentioned above, by changing the value of the x-step length,
Results from such calculations show that if we do not have a large change
in v {(equation 17)over legs than five steps in the x-direction, the error will
not exceed 1%. Here we must remark that we have approximated the deriva-
tives by S-point differentiation operators, corresponding to p = 9 in expres.
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sion {20).

In connection with numerical calculations that may give rise to discon-
tinuities, as for instance shock fronts, there will always be problems with
the itep length in the x-direction. If the dissipative terms are neglected in
problems of our kind, the exact solution containsg a discontinuity. In ref. 17
this problem is solved by imroducing a "pseudo-viscosity”, which smoothes
out the shock front. The conditions on both sides of the shock are shown to
be unchanged, as is the shock velocity, while the shape of the shock front
is of course changed. In our calculations we have dissipative terms in the
equations, so the width of the shock front will always have a finite value.
The shock width is unknown in advance, but in order to optimate the calcu-
lation (that is to find the best compromise between accuracy and computi=n
time), it is suitable to fix the step length from a knowledge of the maximum
slope contained in the golution, This can be done just by an estimate of the
slope or by carrying out a Fourier analysie of the solution at suitable in-
tervals,

The stability of the equations is improved by using the smoothing op-
erators imtroduced in ref. (16), This prevents the most unstable oscilla-
tion (wave length A =2 4x) from growing and at the same time damps the
other high frequencies. Thus it is possible to increase the t-step length st
without making the solutions unstable.

6. CONCLUSION

The result of section 3 demonstrates that it is possible to make shock
propagation parallel to the B-lines in a Q-machine when the density is high
and the ion temperature sufficiently low, It seems that these shocks may be
appropriately described by the flujd equations when they have been formed.
Because of our uncertain knowledge of many of the parameters involved in
the problem it is difficult to obtain much more than qualitative agreement
with theory, and only a few quantitative comparisons between experiment
and calculations have been carried out.

The shock width and velocity are found to be in good accordance with
theory, and also the variation of the shock width with the ion temperature
can be explained from the fluid equations, The experiment with shock re-
flections indicates that the best agreement between experiment and fluid

del 19 obtained if we equal to 5/3, The propagation of plas-

Yion
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creased by a factor of 2, Together with the two equations (2) and (5) we
shall now consider the equation for conservation of energy

2 aT;
n_‘lr(—i-uT-)«I-n:Tl-r- 3 - ) (.g% ont?

(11)

where y is the ratio of the specific heat at constant pressure to that at
constant volume, and 3 is the constant of heat conduct.ionn). Che physi-
cal meaning of each term in (11) from left to right is as follows: the rate
of change of thermal energy of an element of the fluid per unit volume, the
work done in changing the size of the element, the work done because of
viscous forces, the heat flowing into the element because of thermal con-
duction, and {the term on the right-hand side of the equation) the rate of
change of the thermal energy of the element due to collisions with particles
of other kinds (electrons and neutrals), The last-mentioned term may be
written as

T-T

3E i
(.__, =qn .

at )call " 'eq

where T is the temperature of the other particles and < eq the correspond-
ing equipartition time. t__ for electrons is given in ref, 10, while for
neutrals we have

eq

1 M
g Tvm w5 ) My
where v, is the ion-neutral collision frequency, and mi/mn is the mass
ratio between ions and neutrals, If in eqs, (5) and {11) we neglect the dis-
sipative terms and the terms that account for the momentum and energy
transfer to other kinds of particles, we may again use the normal shock
theory, According to the latter, a function specifying the density, which is
a step function at t = 0, will at t ) 0 be split into three characteristic
regions connected by constant levels as shown in fig. 8. Foremost is the
shock front propagating with the shock velocity. Then comes a comtact sur-
face, which is a discontinuity in density and temperature moving with the
surrounding fluid, At the back we see the rarefaction wave moving back-
ward with the acoustic velocity and spreading out linearly with time, The
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different density levels and the corresponding velocities and temperatures
.. may be found from the shock conditions, which are determined by the con-
servation equations integrated over a discontinuity. If we do not neglect
any terms in the equations, we cannot calculate analytically how the densi-
ty pulse will propagate, It will of course be split up into the same three
regions, and the levels will be equal after some time. The shock front may
be expected to reach a stable shape, while the rarefaction wave and the
contact surface will gradually spread out,

Fig. 8. Ehock pr tion when the d terms are neglected.

4,2, Numerical Results

The results of the numerical calculations may be divided into three
parts, (1) the propagation of the density pulse as a function of the shock
strength when Yin * 0; (2) the effect of the neutral gas on the pulse propa-
gation, and (3) the importance of the initial values of the drift velocities.
Typical results for the pulse propagation are shown in the appendix, From
such curves the shock width wg may be obtained, The reciprocal of this
quantity times the mean free path .\o/ws versus the shock strength S is
ghown in fig. 9, For small values of S the curve is identical with other
results given in the literature (e. g, ref. 14), which are calculated for
cases where the dissipative terms have a different temperature depend-
ence, The curve shows that ).o/ws has a maximum for S ¥ 2, which is
due to the marked temperature dependence of the viscosity - and the heat
conduction term, When the shock strength increases, the temperature vari-



ation across the shock front also increases, which means that the mean
free path and with that the shock thickness will be larger. In this connec-
tion we have to remember that the equations can only be expected to be
valid if the shock strength is not too great.

aw

[
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Fig. 0, Calculsted curves of the ion-100 mean free path divided by the

shock thickness vs, the square rout of the shock strength, 1: the iso-

thermal case; 2: the dissipstive terms independemt of temperature (s *
 conatant); 3: he dissipative terme proportional to T/2 (4 @ T°/%).

A quantity of interest for a comparison with the experiment is the time
it takes the shock to become stable. It is questionahle, however, whether
the fluid equations can give a good answer because the propagation starts
with a density distribution that varies much over a distance comparable to
the mean free path, We must, however, expect the pulse to spread out at
the beginning with a velocity near the ion-acoustic velocity, whichis in
agreement with the result we obtain from the fluid equations. This result
is shown together with the experimental points in fig, 3. Under thereason-~
able assumption that the plasma drift velocity is about half the lon-acoustic
velocity, it fits satisfactorily.
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The calculations also show the formation and propagation of the con-
tact surface and the rarefaction wave. These will not be further discussed
because they cannot be compared with the experimental work,

The next series of calculations were =xecuted with different values of
the ion-neutral collision freq y and hanged initial conditions. One
difficulty here is to determine a relation between the background pressure
and the ion temperature. The calculations were made on the assumption
that the ion temperature would be determined by the balance resulting from
the fact that the energy the ions lose by collisions with the neutral particles
is equal to the energy they receive by collisions with the electrons. The
characteristic time ‘eq necessary for this balance to be established is
> l/vin mi/mn. the equipartition time for ions in a neutral gas, If the life-
time of the ions T is short compared with ‘eq‘ which is the case if the
drift of the column is large, the ion temperature only depends on the pres-
sure of the neutral gas p and not on the density n, but varies through the
column. In the opposite case the temperature also depends on the plasma
density. Infigs., A3-AS5 in the appendix the propagation of the plasma pulse
is shown as it changes when the ion-neutral collision frequency is in-
creased, When Ti is decreased, we see as expected that the shock width
is decreased until the amount of neutral particles is 8o large that the plas-
ma pulse starts losing momentum, When this happens, the pulse is spread
out quiekly. According to the calculations the minimum shock thickness is
obtained when the ratio of the ion-ion mean free path to the ion-neutral
mean free path is

2
Mn

~ 1078 ,

which will give a cooling of the ions by about a factor of 4, If the ratio
"n/"m becomes larger, the damping caused by momentum loss begins to
be of importance,

A very large part of the ions in the experiment recombine on the grid
before "opening”. This means that the plasma will have different drift
velocities on the two sides of the grid, Such a situation ie shown in fig, AS,
where the initial drift velocity is ~ 0.3 c towards the centre, that is, the
difference between the drift velocities on the two sides is ~ 0,6 c, where
¢ is the ion-acoustic velocity, The result is, as shown, that the shock
strength is increased while the size of the rarefaction wave is decreased.
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4.3, Comparison with Experimental Results

The experiments carried out at a low background pressure show that
the pulse width increases linearly with time, and only at very high plasma
densities is there a tendency to shock formation, As shown in fig, 3, the
time needed to establish a stable shock front, as calculated {from the fluid
equations, is comparable to the time it takes the pulse to move through the
full column, especially if we assume the plasma drift velocity to be about
equal to the ion thermal velocity, In section 4 it is mentioned that a veloci-
ty of pulse spreading may be found from a Fourier analysis on the basis of
Landau damping, This ie also shown in fig. 3. The result is seen to be
close to that calculated on the basis of the fluid equations,

According to fig. 8 the shock width itself cannot be less than about
15 Xo and, in a certain region, is (1.3 { S ¢ 2) rather independently of
the shock strength, In this region most of the experiments were carried
out,

At high pressures we find experimentally a clear shock formation, as
appears for instance from fig. 5, The fact that the front length first in-
creases and then decreases is not expressed by the fluid equations, but may
be due to the fact that the ions are cooled more and more as they move
down through the column, This must be the case if the ion-neutral collision
frequency is high compared with the ion lifetime; then the ion temperature
is simply determined by the number of collisions with neutral cold parti-
cles suffered by the ion, This is in agreement with fig, 6, which shows
that w s/)‘ ° does not depend on the plasma density when the shock has
reached its stable width, The curve in fig, 6 is in qualitative agreement
with the fluid consideration concerning the decrease of ws/ho- with decreas-
ing ion temperature, On the basis of the previously mentioned difficulty of
finding the connection between T; and v in it is not possible to draw quali-
tative parallels to the numerical calculations.

4.4. Reflected Shocks

The results of the experiments with reflected shocks mentioned in
section 3 are illustrated in fig. 7. The figure shows the v'elocities of the
incident shock U+ and the reflected shock U_ versus the shock strength f.l )
To describe these propagation phenomena we may use the shock equations™ "/,

and for the velocities we easily find
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where ¢ is the jon-acoustic velocity and

KERC

These equations are valid for a normal gas -dynamic shock in a polytropic
gas, but in the fluid approximation they also describe the shock propaga-
tion for the plasma with y = Yion® 28 the electrons only influence c¢. Fig. 7
shows theoretical curves calculated on the basis of the above equations (12)
and (13) with different values of y. The experimental points are plotted on
the assumption that the drift velocity was

i =0.2¢
and
3
c =1,2-10" m/sec,

From these results we get the best {it to the theoretical curves if we

chooge y; = 5/3. Especially U_ shows good agreement with the theoret-
ical curve, The nts are encumbered with a rather large uncer-

tainty, as also appears from their variance,

5. INTEGRATION OF THE FLUID EQUATIONS

The equations discussed in subsection 4,1 were solved by numerical
integration on the IBM 7094 computer at NEUCC.

This computation work was carried a little further than was necessary
just to make comparisons with the experiments, The purpose of this was to
study the interesting stability problems arising in connection with the solu-
tion of this kind of problems, and to work out a general integration proce-
dure that might be used for similar problems.

A standard procedure for solving n simultaneous differential equations,
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ma pulses narrower than or about equal to the ion-ion mean free path is
also examined, The width of these is found to increase linearly with time,
independently of density and pulse strength.

We may expect the Vlusov equation to be appropriate in this case,

In section 5 we have discussed a method of numerical integration of
the fluid equations. Especiaily, we have mentioned some stability prob-
lems and possibilities of error indication.
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APPENDIX

The following calculated curves show the propagation of a sharp pulse,
The density vs. x has been drawn at different values of t. The unit in the
x-direction is the ion-ion mean free path ko (at 'ri = Te) in front of the
shock. The unit in the t-direction is \ o/“o' where u, is a characteristic
velocity u_ = (xT o/m). Figures A3-A5 have been calculated with different
amounts of neutral gas present, characterized by the ratio A o/xin' where
kin is the ion-neutral mean free path. The curves at t = 0 show the initial
value of the density. For the velocity we have u = 0 at t = 0 except in
fig. A6, where u(x ( 0) = %uo and u(x ) 0) = -%uo. In figs. Al, A2 and
A8 there are no neutral particles and the initial value of the temperature
i8 T; = T, = constant, In the remaining figures the ratio Te/Ti at t = 0 is
given below the curve.
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Fig. AS. WIth neutral ges pressure, A /a, = L1107
T /Tix () =305, T/T{x ) 0) =117,

Fig Ab Al e 102 TJTyfx (02 1.5, T /T ix ) 0} =4.9.
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