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1. Introduction

The method of integrai transport theory as formulated with multi-resion
collision probability is cxcellently suited for cell calculations in particular
cd.

r
S x

when complicated geometrical configurations are considercd
The whole formalism may be expressed by ‘he simple equatio

-
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where (»?)ib, Eig and :& are respeciively the averiage (flat) flux, totc
scattering cross sections in energy group g and spatial region i of volumec

in-

V..
i

£ is the external source in cnergy proup g and €panial region i
from other groups.

9
iy that a

cluding up- and down-scatter
neutron emittcd in

24
o
The matrix element Pg gives the probabil]
energy group g uniformly and isotrupically over region j will make its first
the case,
x 8
is

collision in region 1i.
cattering and fission oceurs, as is usuallv

When anisotropic s
special conventions should be introduced for the construction of & & , 2
%

This problem will be treated in a later section, but in the immediately
following scctions mainly concerned with finding the P..'s for various ge
ometries (1. 1) will be treated as a cne-group problem, dropping the index

and

g.

2, Annualar Symmetry
124

[1], [2] and { 3] to find the col-

Several methods have been propose
in systems of annular symmetry
(3] in

adopted the so-called Flurig scheme from

lision matrix Pii
same time compiar-

We have, however,
our CPM procedure since this solution is evact and at the
able in spced with other metﬁods.

In CPM white boundary conditions are uscd, but a gr{-yncss paramcter
can modify this through all shades of greyness to complete blackness,

A special version CPPMB uses only black boundary conditions and cal-
Piq that a neutron emitted

culates at the same time the sticking probabilitie
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from the boundary according to a cosine law will collide in region i,

3. Clusters in Annular Symmetry

A solution of this type of problem, the so-calied CLUCOP scheme, is
described in [3). Numerical integration in a network of lines in several
directions is used inside the cluster proper whereas the Flurig systein is
used in the outside annular regions. The CLUCOP programme which is very
general with options for very fine subdivisions of regions is an excellent
refcrence, but is rather slow for multigroup apnlication, It should be under-
lined that the reciprocity relation used on the white or grey boundary in or-
der to transfer the black boundary Pij's to white or grey boundary is not
exact for clusters as it is for purely annular symmetry, but gives a very
good approximation as long as the cluster has a reasonable degree of sym-
metry.

A simplified version of CLLUCOP has been adopted in which no annular
subdivisions appear which may interscct with fuel rods. The subdivision of
fuel rods is resiricted to one canning zone and one fuel zone.

This version, called MICMAC, uses a linear network defined by only |
two directions. Omne direction is passing from the centre of the cell through
the centre of a fuel pin and one is bisecting the angle between two neighbour-
ing fuel pins. The mean valuce is taken from the results of the numerical in-
tegrations perpendicular to these two directions.

Gaussian integration is used defining a new integration interval when-
ever a line sweeping parallel o the direction considered makes or finishes

contact with a new region,

4, The MAMIC Cluster Approximation

Severai attempis have been made by us to construct an approximation
based on a combination of CPM on homogenized regions with CIPM on certain
cylindricized sectors of annuli surrounding the individual fuel pins, In order
to obtain a good approximation we have found that the following fucks should
be taken into consideration,

First of all a simple homogenization of an aninular region will under-
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estimate the transparency of such a region in the presence of very black
fuel pins since it more or less ignores the possibility of neutrons passiog
through the space between ihe pins.

A device described by Bollacasa and Bonalumi in {3] copes very nice-
ly with this problem. )

- Secondly, we have found it important that suitable weighted sums of the
matrix elements pertaining to subregions of an annular macroregion should
as clesely as possible add up to the matrix ¢lements of the macroregion.
This requirement will to a certain extent be in conflict with the reciprocity
theorem which we believe should be valid for any useful approximation.

Finally we have found less ambiguity in interpreting the approximation
if the scattering matrix is {first derived for black cell boundary condition.

Referring to fig, 1 the procedure is the foliowing:

If an annular macroregion, i, contains fuel pins, it is divided into equal-
ly large sectors each containing one fuel pin. Analogue subregions in all sec-
tors belonging to the same annulus are considered as belonging to one and the
same subregicn.

Conserving its volume the sector is transformed into a subceylinder,
concentric with the fuel pin, which may consist of an arbitrary number of
concentric subregions.

In this way the centre of the fuel pin will automatically be calculated as
if situated roughly half way between inner and outer radius of the macroregion,
Preferably the diameter of the fuel pin should be less than the difference be-
tween these two radii, and imperatively the arca of the sccivr shculd he lnreer
than the cross section area of the fuel pin,

- The number of regions in the subeylinder wiil be the number of subre-

gions in the pin plus onec corresponding to the remaining region in the sector,

CPMB is applied to the subcylinder yielding the collision matrix I‘;) q

and the sticking probabilities P; g7 and the total sticking probability ™

’

I3 —“‘ -
Gl = Z P1 is calculated.
p,S &
p

According to [4 ] we now choose for the macroregion an effective eross
hom

scction i;i , wWhich would give the same sticking probability G in &
homogeneous cylinder with the same radiuc, Toub 8 the subeylinder.
. . Jhom '
A good approximation of G R given by
2 2 T s
GO o w2/l s 21423 122 x| x3 (4. 1)

sub i
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leading to the simple expression.

5, - (sqric+ch) a-chy-nn (4.2)

When a i, value has been assigned to all macroregions, i, CPMR
is applied to the annular symmetric system of macroregions.

In order to calculate the collision matrix element corresponding
to two subregions within the same macroregion, we return to the CPMB
results given for the subevlinder above.

Since the segments have boundaries in common and since neu-
trons leaving a segment through regions inside the corresponding annulus
may return to another segment in the annulus, it is reasonable to assign
a degree of greyness g to the houndary of the corresponding subcylinder,

The magnitude of g should be such that the total prohability of collis-
sion of neutrons emitted uniformly inside the cylinder should equal pii‘
when the greynes is taken into consideration.

’

P =5 P
C

x V /%L V is the collision probability of the subeyvlin-
P-q P, q 79 q X

der for black boundary condition, this cquality may be expressed by
= 1 v “i / - - - i
Pii PC+(1-PC) »gx G /(l-g x (1-G")) (4. 3)

leading to the expression

y = - P - - - i —~ &

g= (P - P/l =P - (1 -G)x(1 - D) (4.4)

The final '(‘expression for the prohability Pf;p’ ]g that a neutron emitted
uniformly in subregion q in Macroregion i will coilide in subregion p in ihe

same macroregion becomes,

i,i | pl ol pl i S TS S N SR TLI T
PP,,q P gt Ps pXPs pX8xrgxm /(2 xk x Vo xll-ex(l-G)
(4.5)
A consequence of this formulation is that
r pPhlxv o=p (4.6
P.9 P.q q 1,1



as wanted and that the reciprocity relation

i 0 o Jd oLl i
is valid Pp’qxvq X l‘q Pq,p'\\'p X Z:p - (4.7)

The probabillity, P 3 that a neutron emitted uniformly in subre-
gion q in macroregion j will collide in subregion p in macroregion i is

tentatively proposed as. o
i:j - 1 - j < j ’ ’j
P = norm. x P x I x V. x V 4.8)
- q J ps qs J/( t q (l) (
} Jeed o E i )
norm; Pi,j’ (G x q (P‘qS /Vq)
with the wanted property

r ophd yviiv -p 4.9
p.a p.q ©'a Vi Ti,j (4.9)

. ), 1
The analogue expression for P 3 1s

q, P
1 4o i i )
_'ﬁq,p = norm; ’“P‘:;s PpS le. /(LJ. Vp) (4.10)
- jow ol i
norm; Pj,i/(G X 115 (PPS/VP))

The reciprocity relation

Pl xzd xvl =pbl x5 x V! (4.11)
P.q q q q,p p p

used on (4,10) leads to a new expression

Pi'j = Normy X PJ, Pi xV-/(Zij XVj)
P-4 Qs  ps 1 g q

Since both conditions (4. 9) and (4.11) cannot generally be fullfiiled at

the same time the following compromise is chosen,

= 1 . 51 >) / J 1,'j A4 19
x(nmmj X Vj+ norm, X Vi ) x lpr-': X qu ,(Lq .q) (412
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When macroregions i and j each consists of one single subregxcm 50
that p and q can only assume the value ! we have

-

inj = Js =P
Pooa TP Pap TR

In this way a collision matrix Pf1 . 80 far with black cell boundary
conditwns, can be calculated, wherej, and j, now runs over all individual
- subregwns.
The transition to grey boundary conditions follows in the usual way,

¥~ First the prohability Pf_ ; of a neutron from subregion i to cell sur-

“face is obtained by the summation,

-E
R BT

of neutrons emitted from the cell boundary

. Then the prohability, Pf; i s
“%according to cosine law colliding in subregion i is calculated from the re-

‘%"’%pracity relation with a white boundary condition
TPl = Pl x B x V[ Ar % %)) (4.13)

5 This procedure is only strictly correct in case of complete annular
m;ymmetn since otherwise Pf, will vary along the cell boundary. (4.13)
k :UIH however be a good appronmatmn if the degree of symmetri of the

eluster is high and/or the distance from the cluster to the cell boundary
"‘*“.ls large.

*—* The collision matrix, Pfgr’ corresponding to a greynes parameter

:f‘gz: is the calculated as

o

. Pfig;' = Pty +Pf; xgi(1- grx (1-GN) (4.14)

Several comparisons have been made on the IBM 7094 of NEUCL be-

" tween results obtained with the MAMIC written in Minoyse Algol and the
original CLUCOP program, written in FORTRAM IV, which we have re-
ceived from the ENEA in Ispra.

Fig. 2 shows a relatively simple example with only 4 regions of which
two are 'strongly absorbing and weakly moderating fuel regions and the two
remaining regions are strongly moderatmg and weakly absorbing (heavy
water).
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In the ncaitei‘iﬁgm deviations up to 10% from the exact matrix

C1.UOP) appears. -,

Iy g
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» . The distribution of the resulting flux between the two fue! regions is
egrrect within 1%. Hmver, since only 2 o/oa of the absorption takes place
i&ﬂxe moderator reg.;oas, small errors in the fuel flux has to be compen-
sgted by larger errors in the moderator regions, in the present case 5,5%
&%ﬂ 4%, in order to maintain neutron balance.

: Infig. 3is shown flux results from a calculation of a 31-rod Marviken

fﬁel element, the details of which are given in [4]. The MAMIC resulis are

gaapared with two sets of results calculated with CLUCOP. One set is cal-

%ted for the same subdivision as used in MAMIC and one set taken from

@3 with a further subdivision of the three annular fuecl regions.

. Itis seen from fig. 3 that the agreement between results from CLUCOP

@ MAMIC is remarkably good when the subdivision is identical. The max-

i;%anm flux deviation, which appears in the central fuel pin, is 1, 8%.

j However, one wealmess with the MAMIC approximation and also with

%& present version of MICMAC is that the fuel-bearing anmli considered
*";nacraregons cannot be further divided. This in contrast to CLUCOP

%@re further subdivision by circles concentric with the cell is possible,

% -A consequence of the more coarse annular subdivision is too high flux

%:!he inner region and too low in the outer region.

If the subdivision used in the calculations from [4], shown as dotted

E;nes is considered fine enough, so that no significant change would resuit

m further subdivision, the total error caused by the MAMIC approxima-

t;@ can be estimated to be 4% in the central fuel pins.

= Calculation times are 4.5 minutes for CLUCOP and 4. 2 seconds with

g‘iﬁ AMIC for the two identical 31-rod problems,

ifi‘
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" 5. Cross sections

L4

As mentioned in the introduction some conventions for calculating the
quaniities z~ xg and qg taking into account fission and amsotrop) of
seattering.

The data available for 'rhx 3 calculation are mic roscopic group-cross
gectlons produced by the SIGMA processing program.

I'he simplest standard output from JIGMA could for each nuclide and
group g be 0% total cross section, Gga absorbtion cross section, p? fission
cross section, vg number of neutrons per flssmn g & transfer cross sec-
tion from group g to group g' and ag £ the first legendre moment of the
transfer cross scction from group g to group g'.

« 3"} and og g copld in principle include n, 2n-, n, 3n- and fission-
processes. In t]ns way it would be possible ‘o make tranbport correction
for the anisotropy of these processes. However, this would complicate the
introduction of a suitable eigenvalue k,, into the complete system (I.1)
taken for all g's,

»

1n the output of the present version of SIGT\IA fission-, n, 2n- and
a,Bnu processes are represented by a fission matrix og g giving the num-
aer of neutrons appearmg in group ' from fission-, n, 2n- and n, 3n-
arm esses-in group g per unit flux in this group.

Several ways have been proposed to make tranSport correction for
misotropy. A

' The §imple transport correction consists as proposed in [ 6] ‘of the

.raggformation

1)‘ * _ gg
St T % T % ‘
. (5.1)
1
. og g .g oglg- b ogg
tr o g'g 1

, This gives the right transport correction for the distribution of the neu-
rons inside group g but fails in correcting the anisotropy of the neutrons
scaticred to other groups.

An improved transport correction is obtained by

c’(; Tz Og -

8'e
tr t 1

ga [

Ay .
-+
t

28 gy oB'E
o2 " - 6;,'52.10]

ot
is
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Both (5. 1) and (5. 2) fulfil the necessary condition that the use of o%
axid u%_g instead of a g and ogg leads 1o the correct fluxes and reaction
rafes in an infinite homogeneous medium for a given volume source qg as
seen from

2:tg‘ 2§ & I:tgr ig

.. The reaction rate, e. g. for nbsorohon in group g, R g or for scattering
f!‘ém group g to g, Rg £ in both of the cases (5. 1) and (5. 2) becomes

Egé@f " l:”ég‘

Rg an RE'E - 0 agg ﬂg atig gfe (5. 4)

r’i\i‘gé%i*

!

‘
r %ﬁﬁ‘ir;‘srw o

“ The reaction rate Rgg will of course be quite wrong, in the case of

(5*&3) even negative for light nuclides,

;é As pointcd out in |6 ] the consequence of this will be that the flux distri-
@s}n in the groups for a calculation where the transport correction is made
@rdmg to (5. 2) will be distorted, whereas the flux distribution in the
lﬁftr groups, which is most important in thermal reactors, will be more
c:g'rect compared with results obtained by (5. 1) or no correction at all.

AR

iy

; This will, however, be theo case if the major part of the neutrons in the
la?er groups has been scattered through several groups. In case of very
Ii@z’t nuclides or inelastic scattering, where neutrons are scattered directly
f?@m high-energy groups to low-energy groups, the use of (5, 2) will lead to
ag&-correction.

< A way to get round this problem would in case of inelastic scattering be
toput a suitable weight factor on the transport correction of the inelastic

part of the scattering in the following way:

8 .,8, oFf (B8, €8 g'g
%tr % * s * Z (el * %oinel” “tei ~ “g"!inel)
g'
(5. 5)
L
g'e _ Eg g'g g'
%r = %el T %oinel " (zlel % %finel’

a g could be an empirical constant, 0 < a g ¢ 1, dependent on the ratio



bé#tween the lower energy boundary of group g and the upper energy boundary
of the first group, into which neutrons from group g is carried by inelastic
scattering. In actual practice a g = 0 is commonly used and is adopted in the
present version of SIGMA.

For light nucleai a linear combination between (5. 1) and (5. 2)

g . & ge \ _g'g
Gp = 0p - (l-ug) oy - ng Z' oy
gl

(5. 6)

cEE. 88, _ ge .\ .g'¢
Cur o, bg'g {1 ug) o5 og Z.' 9,
3

o
at B R 4 .
m{é“? ¥ Bt '

z@ht be a better approximation than either (5. 1) and (5. 2), However, the
pﬁg;}er choice of a g can hardly be made from simple physical considerations,
bﬁ will have to be made empirical by comparison with more exact calcula-
tians.

?%ﬂ From the microscopic cross sections and cross section matrices equiv-
a%'xt macroscopic quantities for each regicn are build up according to the
%sxty of the different nuclides,

% For a given region i we get the following cross sections and source

S o . ypE
E = Li ALtr

x|
[ -]
]

ge
£l (5.7)

V' A pEe Z gy gg'
Z. Qi Etr + 91 L £
g'fg g'

.Pm
N

6. Future Developments

As pointed out in the introduction the method of integral transport
theory is excellently suited for calulating flux distribution and spectrum
in complicated geometry, however, provided suitable transport-corrected
cross sections can be introduced,
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One line of future development will therefore consist in a search for
better'tranSport corrections, maybe in the direction indicated by {5.35) and
{5.6). At present an investigaticn is carried out comparing results obtained
by use of (5. 1) and (5. 2) with more exact calculations (Sn. method).

A seccend line of development regards the extension of the method to
gystems of rectangular symmetry, in order to be able to use it on typical
light-water systems,

Some development has been done in calculating the collision matrix of
a system consisting of rectangular subcells, One further development
could be to introduce circular fuel rods into the rectangular subcells and
uge ihe MAMIC principle to obtain the resulting matrix.
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TEST COMPARISON BETWEEN MAMIC AND CLUCOP

Region Itr La  Source
079065 (33500 000105
079065 039500 000105
039524 0000033 U.U5B7H
039524 0000033 005671

S N -

Scattering Matrix

—m from region

1 2 3

1 05265 00304 00490 0.0022
" - {0.5276) {0.0325) {0.0474) (0,0020)

2 01826 05872 02769 00323
to region {0.1952) (0.6066) (0.2667) {0.0297)

3 02203 02076 03923 0.0389
(0.2132) {0.2000) (0.3872) (0.0414)

L 00706 01748 02819 0.9266
{0.0640) {0.1608) (0.2988) (0.9270)

Region Volume Flux Volume x absorption
1 31416 1214 { 1.225) 15066 { 1.5197)
2 18.850 15682 (15663) 11676 (11.662 )
3 28274 21322 (22638 0002 (0002)
& 20420 33789 {35162 0023 (002¢4)

Quantities in paranthesis are CLUCOP - results

Fig. 2
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