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1. Introduction 

The method of integral transport theory as formulated with multi-region 

collision probability is excellently suited for cell calculations in particular 

when complicated geometrical configurations are considered. 

The whole formalism may be expressed by the simple equation 

0.g£.gV. = > (OFlg+ q.g) V.Pg (i. 1) 
l i i L v J JS HJ ' J l j v ' 

j 

where 0P, £° and *-.g are respectively the average (flat) flux, total and 

scattering cross sections in energy group g and spatial region i of volume 

q. is the external source in energy group g and spatial region i, in­

cluding up- and down-scattering from other groups. 

The matrix element PP. gives the probability that a neutron emitted in 

energy group g uniformly and isotropicolly over region j will make its first 

collision in region i. 

When anisotropic scattering and fission occurs, as is usually the case, 
ft rr 

special conventions should be introduced for the construction of £ . , -•. 
^ i ' i s 

and qP. 

This problem will be treated in a later section, but in the immediately 

following sections mainly concerned with finding the P. 's for various ge­

ometries (1.1) will be treated as a cne-group problem, dropping the index 

2. Annular Svmmetrv 
-.—s s _ 

Several methods have been proposed [l ] , [2] and [ 3] to find the col­

lision matrix P.. in systems of annular symmetry. 

We have, however, adopted the so-called Flurig scheme from \'i] in 

our CPM procedure since this solution is exact and at the same time compar­

able in speed with other methods. 

In CPM white boundary conditions arc used, but a greyness parameter 

can modify this through all shades of greyness to complete blackness. 

A speckil version CI'MB uses only black boundary conditions and cal­

culates at the same time the sticking probabilities P. that a neulr<»n omitted 
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from the boundary according to a cosine law will collide in region i. 

3. Clus ters in Annular Symmetry 

A solution of this type of problem, the so-cal led C LUC OP scheme, is 

descr ibed in [ 3 ] . Numerical integration in a network of lines in several 

di rect ions is used inside the c lus te r proper whereas the Flur ig system is 

used in the outside annular regions . The C LUC OP p rog ramme which is very 

general with options for very fine subdivisions of regions is an excellent 

re fe rence , but i s r a the r slow for multigroup application. It should be under­

lined that the reciproci ty relation used on the white or grey boundary in o r ­

der to t ransfe r the black boundary P . ' s to white or grey boundary is not 

exact for c lus te rs as it is for purely annular symmet ry , but gives a very 

good approximation as long as the c lus te r has a reasonable degree of s y m ­

met ry . 

A simplified version of CLUCOP has been adopted in which no annular 

subdivisions appear which may in te rsec t with fuel rods . The subdivision of 

fuel rods is r e s t r i c t ed to one canning zone and one fuel zone. 

This vers ion, called MIC MAC, uses a l inear network defined by only ( 

two di rec t ions . One direction i s passing from the cen t re of the cel l through 

the cen t re of a fuel pin and one is bisecting the angle between two neighbour­

ing fuel pins. The mean value is taken from the resu l t s of the numerical in­

tegra t ions perpendicular to these two di rec t ions . 

Gaussian integration is used defining a new integration interval when­

ever a line sweeping paral lel to the direction considered makes or finishes 

contact with a new region. 

4. The MAMIC Clus ter Approximation 

Several a t tempts have been made by us to construct an approximation 

based on a combination of CPM on homogenized regions with CTM on cer ta in 

cylindricized sec to r s of annuli surrounding the individual fuel pins. In order-

to obtain a good approximation we have found that the following fucjts should 

be taken into consideration. 

F i r s t of all a simple homogenization of an annular region will under-
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es t imate the t ransparency of such a region in the presence of very blaek 

fuel pins s ince it more or less ignores the possibility of neutrons passing 

through the space between the pins. 

A device descr ibed bj' Bollacasa and Bonalumi in [5 j copes very n ice­

ly with this problem. 

" Secondly, we have found it important that suitable weighted sums of the 

matr ix elements pertaining to subregion« of an annular macroregion should 

a s closely as possible add up to the matr ix elements of the macroregion. 

This requi rement will to a certain extent be in conflict with the reciproci ty 

theorem which we believe should be valid for any useful approximation. 

Finally we have found less ambiguity in interpret ing the approximation 

if the scat ter ing matr ix i s first derived for black cell boundary condition. 

Referr ing to fig. 1 the procedure is the following: 

If an annular mncrorcgion, i, contains fuel pins, it i s divided into equal­

ly la rge sec to r s each containing one fuel pin. Analogue subregions in all s e c ­

to r s belonging to the same annulus a r c considered as belonging to one and the 

same subregion. 

Conserving i t s volume the sector is t ransformed into a subcylinder, 

concentric with the fuel pin, which may consis t of an a rb i t r a ry number of 

concentric subregions . 

In this way the centre of the fuel pin will automatically be calculated as 

if situated roughly half way between inner iind outer radius of the macroregion. 

Preferably the d iameter of the fuel pin should be less than the difference be­

tween these two radi i , and imperatively the a rea of the seeiui slu.uld »>«;« l a rge r 

than the c ros s section a rea of the fuel pin. 

The number of regions in the subcylinder will be the number of s u b r e ­

gions in the pin plus one corresponding to the remaining region in the sec to r . 

CPMB is applied to the subcylinder yielding the collision matr ix 1' 

and the st icking probabili t ies P , , and the total sticking probability""" 
p, s 

is calculated. G i ' l < _ . s 
P "" 

According to [4 ] we now choose for the macroregion an effective crot-s 

section £. , which would give the same sticking probability G in a 

homogeneous cylinder with the same radium, r , . as the subcv linder. 
b J . ' sub 

A good approximation of G is given by 

G hom = (12 + 2 1 ) / / (12 + 2 j + 2 . . } = 2 x x > (4> }) 
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leading to the simple expression. 

E = (sqrKfl-KiVO-C1))-1)/! (4-2) 
i 

When a L- value has been assigned to all macroreg ions , i, CPMB 

is applied to the annular symmetr ic sys tem of macroreg ions . 

In order to calculate the collision mat r ix element corresponding 

to two subregions within the same macroregion, we re turn to the CPMR 

resu l t s given for the subcvlinder above. 

Since the segments have boundaries in common and since neu­

t rons leaving a segment through regions inside the corresponding annulus 

may return to another segment in the annulus, it is reasonable to assign 

a degree of greyness g to the boundary of the corresponding subcylinder. 

The magnitude of g should be such that the total probability of c o l l i ­

sion of neutrons emitted uniformly inside the cvlinder should equal P . . , 
M 11 

when the greynes is taken into consideration. 
» 

If P = £ P x V /£ V is the collision probability of the subcvlin-
c p»q p . q n' q q 

der for black boundary condition, this equality may be expressed by 

P i i = P c + ( i " P c ) x g x G V 0 - S x ( 1 - G l ) > <4- 3 ) 

leading to the expression 

g = (Py " P c ) / (1 - P c - (1 - G1) x (1 - P.j)) (4. 4) 

The final express ion for the probability Pf*'^ that a neu'ron emitted F y P. g 
uniformly in subregion q in macroregion i will collide in subregion 'p in Ihe 
same macroregion becomes . 

P 1 ' 1 = P1 + P* x P 1 x g x r 1 , x n / (2 xi:1 x V l x (1 -u x(l-C;1)}) p , q p , q S , p s , p 6 s u b ' • q q - v- s v ' " 

(4.5) 

A consequence of this formulation is that 

i 
L p>>> x V1 - P . • (4.G) 

P , q P . q q 1,1 
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as wanted and that the reciproci ty relation 

. . . P1*1 x V1 x i •= P n x V1 x 2 1 ,. „, 
is valid p, q q q q ,o p * p - (4. 7) 

The probabiilitv, P ' J that a neutron emitted uniformly in sub re -
1 p ,q 

gion q in macroregion j will collide in subregion p in macroregion i is 

tentatively proposed a s . ^ 

P 1 ' ^ = norm. x P 1 x 1^ x V./( L ^ x V^ ) (4.8} 
p . q J ps qs j ' v q q 

norm- = P. ./(G1 x E (P* / V j ) 
J l, j ' v q qs ' q' 

with the wanted property 

E p i , j x v - / V . = P . . (4.9) 
p . q p . q q' j i.3 

The analogue express ion for P •"'1 is 
b * q, p 

•jj'\ - n o r m , x P-> P 1 x V. /(£* V1 ) (4.10) 
- q, P i qs ps i M j p ' 

norm. = P . ./(G^ x £ (P1 /V1 )) 1 J . 1 P PS7 P 

The reciproci ty relation 

i 
P 1 ' 3 x £ J x V3 - P 3 ' 1 xE x V1 (4.11) 

p . q q q q.p p p 

used on (4.10) leads to a new expression 

P1'-* = norm, x P 3 P 1 x V . / p J x V j ) p , q i qs ps i ' g q 

Since both conditions (4. 9) and (4.11) cannot generally be fullfiiled at 

ihe harne t ime the following compromise is chosen. 

p, q 2 [(norm, x V . + norm, x V. ) x P1 x H /( r} V j) (4.12) 
J j -T 1 pK qs ***q q . 



q*p ip.jg q « ' p P 

When macroregions i and j each consists of one single subregion, so 

that p and q can only assume the value 1 we have 

P1* ̂  * P Jr p 3* * s p 
P.q i , r Q»P j»i 

In this way a collision matrix Pfj . so far with black cell boundary 

conditions, can be calculated, where i, and j , now runs over all individual 

'.- subregions. 

* The transition to grey boundary conditions follows in the usual way. 

s F i rs t the probability Pf . of a neutron from subregion i to cell sur-

face is obtained by the summation. 

J Pf. . * 1 - S Pf. , 
s»i j 3,1 

" * Then the probability, Pf. of neutrons emitted from the cell boundary 
life * 

^jfpitecording to cosine law colliding in subregion i is calculated from the re« 

f l ^ p r o e i t y relation with a white boundary condition 

f ' » I , . ' " . . i " *l * V < r c e l l * «/l» <413> 

^ This procedure is only strictly correct in case of complete annular 

^ s y m m e t r i since otherwise Pf. will vary along the cell boundary. <4*13) 

£ will however be a good approximation if the degree of symmetri of the 

JMus te r is high and/or the distance from the cluster to the cell boundary 

* l s large. 

I The collision matrix, P f f . corresponding to a greynes parameter 

gr is the calculated as 

f P f ^ J = PfåJ +Pfgi % grfil - gr x (1 - Gf)) (4,14) 

Several comparisons have been made on the IBM 7094 of NEUCL be­

tween results obtained with the MAMIC written in Illinoyse Algol and the 

original CLUCOP program, written in FORTIIAM IV, which we have r e ­

ceived from the ENEA in Ispra, 

Pig. 2 shows a relatively simple example with only 4 regions of which 

two a re strongly absorbing and weakly moderating fuel regions and the two 

remaining regions are strongly moderating and weakly absorbing (heavy 

water). 



: In the scattering matrix deviations up to 10% from the exact matrix 
CLUOP) appears. §; 

•f The distribution of the resulting flux between the two fuel regions is 

Cfprrect within \% However, since only 2 o/oo of the absorption takes place 

in the moderator regions, small e r rors in the fuel flux has to be compen­

sated by larger e r ror f in the moderator regions, in the present case 5.5f© 

and 4%, in order to maintain neutron balance. 

1 In fig. 3 i s shows flux results from a calculation of a 31 -rod Marviken 

fuel element, the details of which are given in [4 ] . The MAMIC results a re 

compared with two sets of results calculated with CLUCOP. One set is eal-

CSlated for the same subdivision as used in MAMIC and one set taken from 

fgjQ with a further subdivision of the three annular fuel regions. 

iff It i s seen from fig« 3 that the agreement between results from CLUCOP 

and MAMIC is remarkably good when the subdivision is identical. Tht max-

imum flux deviation, which appears in the central fuel pin, is 1.8%. 

I However, one weakness with the MAMIC approximation and also with 

f ie present version of 1UCMAC is that the fuel-bearing annuli considered 

4rPOcroregioB8 cannot t * further divided. This in contrast to CLUCOP 

vpere further subdivision by circles concentric with the cell i s possible. 

S : A consequence of the more coarse annular subdivision is too high flux 

Igphe inner region and too low in the outer region. 

m- If the subdivision used in the calculations from [4] , shown as dotted 

lines, is considered fine enough, so that no significant change would result 

from further subdivision, the total er ror caused by the MAMIC approxima-

tion can be estimated to be 4% in the central fuel pins. 

Calculation times are 4.5 minutes for CLUCOP and 4.2 seconds with 

MAMIC for the two identical 31 -rod problems. 

% 
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5. C r o s s sect ions 

As mentioned in the introduction some conventions for calculating the 

quantities E- £. ,- and q? taking into account fissiofa and anisotropy of 

scat tering. 

The data available for this calculation a r e rak roscopic g roup-c ros s 

sections produced by the SIGMA processing p rog ram. 

The s imples t standard output from SIGMA could for each nuclide and 

group g be of total c ros s section, o^ absorbtion c ross section, p?. fission 

cross section, v number of neutrons pe r fission; o g g t ransfer c r o s s s e c -
S i o 

lion from group g to group g* and of *» the f i rs t legendre moment of the 
i- i 

transfer c r o s s section from group g to group g ' . 

(,S & a n c j 0 e & cojfid i n pr inciple include n. 2n-, n, 3n- and fission-

processes , in this way it would be possible *o matte t ranspor t cor rec t ion 

for the anisotropy of these p roces se s . However, this would complicate the 

introduction of a suitable eigenvalue k^ into the complete sys tem ( I . J ) 

taken for a l l g ' s . 

In the output of the present vers ion of SIGMA fission-, n, 2 n - a n d 

^ 3 n - p rocesses a r e represented by a fission ma t r i x of " giving the num­

ber of neutrons appearing in group g' from fission- , n, 2n- and n, 3n-

proc esses-in group g per unit flux in this group. 

Several ways have been proposed to make t r anspor t correct ion for 

mis o t ropy. -

The simple t ranspor t correct ion consis ts a s proposed in [6] sof the 

transformation 

ft 
»o rt oo 0tVf - °l - ° i 

o. *» o ^ ^ - 6 , of** tr o g'g t 

(5.1) 

\ 

\ 1 his gives the right t ranspor t correct ion for the distribution of the neu­

rons inside group g but fails in correct ing the anisoiropy of the neutrons 

scattered to other groups. 

An improved t ranspor t correct ion is obtained by 

tr t L I 

tr o • b U 1 

(5.2) 
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Both (5. t) and (5, 2) fulfil the necessary condition that the use of a g 

anil t r g g instead of o * and o g g leads to the correct fluxes and reaction 

rafes in an infinite homogeneous medium for a given volume source qg as 

seen from 

0g „ 3 L „ , , V (5.3) 
t o V hr 

The reaction rate , e. g. for absorption in group g, R g or for scattering 

frem group g to g', Rg g in both of the cases {5.1) and (5, 2) becomes 

* Ra* = 0 g ° a • R g , g * 0 g ° o ^ = 0 g ° t r ' g * * * <5' 4> 

T The reaction rate R g g will of course be quite wrong, in the case of 

(Pf§) even negative for light nuclides. 

i # As pointed out in [6 ] the consequence of this will be that the flux distri« 

by|ton in the groups for a calculation where the transport correction i s made 

a|jjprding to (5.2) will be distorted, whereas the flux distribution in the 

løfcr groups, which is most important in thermal reactors , will be more 

eijppeet compared with results obtained by (5.1) or no correction at all. 

j | This will, however, be tha case if the major part of the neutrons in the 

låfper groups has been scattered through several groups. In case of very 
"sål 

lifpit nuclides or inelastic scattering, where neutrons a re scattered directly 

f^#«a high-energy groups to low-energy groups, the use of (5, 2) will lead to 

o^r-correc t ion . 

i A way to get round this problem would in case of inelastic scattering be 

totfrut a suitable weight factor on the transport correction of the inelastic 

part of the scattering in the following way: 

° t r = ° a g + ° f ! s + l <°oéf + °otager ° f é ! " V l t o r t > 
g' 

(5.5) 

g'g a 0 g ' g + 0
g . ' g

t - 6 , { £ , g ' g - a a g . , g , ) w t r oel oinel g'g lei g Unel ' 

o could be an empirical constant, 0 & a * 1, dependent on the ratio 
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between the lower energy boundary of group g and the upper energy boundary 

of the first group, into which neutrons from group g is carried by inelastic 

scattering. In actual practice a = 0 is commonly used and is adopted in the 

present version of SIGMA. 

For light nucleai a linear combination between {5. 1} and (5. 2) 

g« 

(5.6) 

0 fS . 0 g'g . 6 (I-o ) o f* - a ) o , g ' g 

5 t r o g'g * g' 1 g £ 1 

ft be a better approximation than either (5.1) and (5,2), However, the 

pifpper choice of a can hardly be made from simple physical considerations, 

bijt will have to be made empirical by comparison with more exact calcula­

tions. 

'%_ From the microscopic cross sections and cross section matrices equiv-

allnt macroscopic quantities for each region a re build up according to the 

dpisity of the different nuclides* 

IP p o r a given region i we get the following cross sections and source 

T £ . g = £ g g (5.7) 
M is t r v ' 

g ' /g g' 

6, Future Developments 

As pointed out in the introduction the method of integral transport 

theory i s excellently suited for calulating flux distribution and spectrum 

In complicated geometry, however, provided suitable transport-corrected 

cross sections can be introduced. 
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One line of future development will therefore consist in a search for 

better transport corrections, maybe in the direction indicated by (5. 5} and 

(5.6). At present an investigation is carried out comparing results obtained 

by use of (5.1) and (5.2) with more exact calculations (Sn. method). 

A second line of development regards the extension of the method to 

grystems of rectangular symmetry, in order to be able to use it on typical 

light-water systems. 

Some development has been done in calculating the collision matrix of 

a system consisting of rectangular subcells. One further development 

could be to introduce circular fuel rods into the rectangular subcells and 

wge the MAMIC principle to obtain the resulting matrix. 
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TEST COMPARISON BETWEEN MAMIC AND CLUCOP 

Region 
1 
2 
3 
4 

I t r 
Q79069 
079069 
039524 
039524 

Ea Source 
Q3S5G0 O0Q105 
039500 O00105 
QO0O033 0.05571 
0000033 005671 

Scattering Matrix 

* 

to region 

t 
1 

0,5265 
(0.5276) 

- • from 
2 

O0304 
(00325} 

region 
3 

O0490 
(0.0474) 

0.0022 
(0,0020) 

2 0.1826 05872 0.2769 00323 
(0.1952) (0.6066) (0.2667) (00297) 

3 02 2 03 02 076 03929 O0389 
(02132) (0.2000) (0.3872) (00414) 

4 O0706 01748 0.2819 0.9266 
(O0640) (0.1608) (0.2988) (0.9270) 

Region Volume 

1 
2 
3 
4 

3.1416 
18.850 
28274 

20420 

Flux 

U14 ( 1.225) 
15.682(15.663) 
21322(22.63« 
33.789(35.162) 

Volume x absorption 

15066 ( 1.5197) 
11676 (11.662) 
0.002 (0.002) 
CJ323 ( 0.024) 

Quantities in paranthesis are CLUCOP-results 

Fig. 2 



MARVIKEN 31-ROD CELL 

V MAMtC results 
— CLUCOP results with identical subdivision 
— CLUCOP results with further subdivision 

10 1! 12 13 cm 

Fig. 3 


