Technical University of Denmark

Environmental radioactivity in Denmark in 1969

Aarkrog, Asker; Lippert, Jørgen Emil

Publication date: 1970

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Aarkrog, A., & Lippert, J. E. (1970). Environmental radioactivity in Denmark in 1969. (Denmark. Forskningscenter Risoe. Risoe-R; No. 220).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Danish Atomic Energy Commission

Research Establishment Risö

Environmental Radioactivity in Denmark in 1969

by A. Aarkrog and J. Lippert

' **June**, 1970

ides desellatore: Int. Gjellerup, 67, 56bygede, DE-1107 Copenhagen E. Desmark

ulithis on annings from Library, David Atomic Zarry Commission, Riss, DE-1999 Residie, Denner

Environmental Radioactivity in Denmark in 1969

by

A. Aarkrog and J. Lippert The Danish Atomic Energy Commission Research Establishment Risö Health Physics Department

Abstract

The present report deals with the measurement of fall-out radioactivity in Denmark in 1969. Sr-90 was determined in samples from all over the country of precipitation, soil, ground water, see water, grass, dried milk, fresh milk, grain, bread, potatoes, vegetables, fruit, total diet, drinking water, andhumanbone. FurthermoreSr-90 was determined in local samples of air, rain water, grass, sea plants, fish, meat, and human milk. Cs-137 was determined in milk, grain products, potatoes, vegetables, fruit, total diet, meat, and human milk samples, and Cs-137 was measured by wholebody counting in persons from a control group at Risö. Estimates of the mean contents of radiostrontium and radiocaesium in the human diet in Deamark in 1969 are given. The Y-background was measured regularly at locations around Risö, at ten of the State experimental farms and in an area in Zealand, one in Jutland where future nuclear power plants might be located and along the shores of the Great Belt. Finally the report includes, as previously, regular surveys of environmental samples from the Risö area. 64 /d

-

.

CONTENTS

				rage
Abb	reviat	ions and	Units	4
1.	Intro	duction		7
2.	Orga	nization	and Facilities	8
3.	Risö	Environ	mental Monitoring in 1969	8
	3.1.	Gross (3 Activity	8
		3.1.1.	Sea Water	8
		3.1.2.	Soil	9
		3.1.3.	Air	11
		3.1.4.	Bed Soil from the Fjord	12
		3.1.5.	Fish	12
		3.1.6.	Grass	12
		3.1.7.	Sea Plants	13
		3.1.8.	Fresh Water	13
		3.1.9.	Rain Water	14
	3, 2,	Radioc	nemical β Analysis	16
		3.2.1.	Air	17
		3, 2, 2,	Grass	17.
		3, 2, 3,	Sea Plants	18
			Rain Water	20
		3.2.5.	Milk from Risö Neighbourhood ,	23
	3, 3.	Y Spect	roscopy of Air Samples	24
4.	Radio	strontiu	m in Precipitation, Soil and Ground Water	1 - <u>1</u> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	in De	nmark i	n 1969	25
	4,1.	Precip	tation	25
	4, 2.	Sotil .		29
÷.,	4. 3.	Ground	Water	30
5.	Radio	ostrontiu	m and Radiocaesium in Danish Food in 1969	88
	5.1.	8r-90 a	nd Cs-137 in Dried Milk from the Entire Country .	83
	5, 2,	8r-90 a	nd Ca-137 in Fresh Milk from the Fatire Country.	36
			nd Ca-137 in Grain from the Retire Country	
			ad Ca-137 in Bread from the Paties Confer	
	\$, \$,	Sr-90 .	ad Co-187 in Printers from fre Britty Circuitz	44

Page

	5.6.	Sr-90 and Cs-137 in Vegetables and Fruits from the	
		Entire Country	48
	5.7.	Sr-90 and Cs-137 in Total Diet from the Entire Country	50
	5.8.	Sr-90 and Cs-137 in Miscellaneous Foodstuffs	52
		5.8.1. Sr-90 and Cs-137 in Meat	52
		5.8.2. Sr-90 and Cs-137 in Fish	54
		5.8.3. Sr-90 in Drinking Water	57
		5.8.4. Sr-90 and Cs-137 in Imported Foods and	
		Danish Eggs	57
	5.9.	Estimate of the Mean Contents of Sr-90 and Cs-137 in	
		the Human Diet in Denmark in 1968	58
6.	Stron	tium-90 and Caesium-137 in Man in 1969	63
	6.1.	Sr-90 in Human Bone	63
	6.2.	Cs-137 in the Human Body	68
7.	Stron	tium-90 in Sea Water in 1969	71
8.	Speci	al Surveys	73
	8.1.	Meteorological Mast Experiment	73
	8.2.	Levels of Sr-90 and Cs-137 in Grass and Milk	
		from the Entire Country	73
	8.3.	Sr-90 and Cs-137 in Human Milk	73
	8.4.	Country-wide Measurement of the Y-Background in 1969 .	77
9.	Concl	usion	88
App	endice	<u>8</u> ·····	9 0
Арр	endix .	A. Calculated Fall-out in the Eight Zones in 1969	90
Арр	endix (B. Statistical Information on Population Density, Area	
		of the Zones and Milk, Grain, Vegetable, and Fruit	
		or the zones and mink, Grain, vegetable, and Fruit	

Appendix C.	A Comparison between Observed and Predicted	
	Levels in the Human Food Chain in Denmark in	
	1969	92
Acknowledge	ments	93
References	· · · · · · · · · · · · · · · · · · ·	94

ABBREVIATIONS AND UNITS

.

FP	Fission products	Sam	ples:
pCi	picocurie, 10 ⁻¹² Сі, µµСі	H:	sea water
nCi	nanocurie, 10 ⁻⁹ Ci, mµCi	J:	soil
mCi	millicurie, 10 ⁻³ Ci	L:	air
MPC	maximum permissible concentration		bed soil
c/min	counts per minute	Å:	eel
d/min	disintegrations per minute	PG:	grass
c/h	counts per hour	PH:	sea plants
μR	micro-roentgen, 10 ⁻⁶ roentgen	D:	drain water
S. U.	pCi Sr-90/g Ca.	S:	waste water
O. R.	observed ratio	R:	precipitation
M.U.	pCi Cs-137/g K.	M:	milk
v	vertebrae		
m	male		
f	female		
n Sr	natural (stable) Sr		
eqv, µg	equivalents g uranium: activity as from	ılμ	g U(~90 d/h)
eqv. mg KCl	equivalents mg KCl: activity as from 1	mg F	Cl (~0.88 d/min)
S. D.	standard deviation: $\sqrt{\frac{\Sigma(x-x_1)^2}{(n-1)}}$ standard error: $\sqrt{\frac{\Sigma(x-x_1)^2}{n(n-1)}}$		
S. E,	standard error: $\sqrt{\frac{E(x-x_1)^2}{n(n-1)}}$		
U. C. L.	upper control level		
L. C. L.	lower control level		•
۵.,	one standard deviation due to counting		
S. S. D.	sum of squares of deviation: $\Sigma(x-x_1)^2$		
í,	degrees of freedom		
s ²	the variance		
∀ [₽]	the ratio between the variance in questi-	010 8 1	nd the
	residual variance		
P	probability fractile of the distribution in	r dne	stion
	coefficient of variation		
		•	

1. INTRODUCTION

<u>1.1.</u>

The present report is the thirteenth of a series of periodical reports (cf. ref. 1) dealing with measurements of radioactivity in Denmark.

The programme is nearly unchanged as compared with 1968. Drinking water and sea water were collected only in June. Virungård was in the grain and potato sampling replaced by Ledreborg. In the dried-milk programme Kalundborg was replaced by Ringsted, and instead of dried milk from Nakskov fresh milk was sampled from three dairies on Lolland, Falster and Mön.

1.2.

The methods of radiochemical analysis²⁻⁴) and the statistical treatment of the results⁵) are still based on the principles established in previous reports¹).

1.3.

The report does not include detailed tables of the total β measurements from the environmental control of the Risö site. These tables are available in the form of microcards at the library of the Danish Atomic Energy Commission at Risö.

1.4.

The report contains no information as regards sample collection and analysis except in the cases where these procedures have been altered.

1.5.

In 1969 the personnal of the Environmental Cantrol Section of the Health Physics Disartment consisted of one shemist, ten laboratory technicians, two men for animple pillestication, and the region for wathing -us. As in the previous iters, independent assistance and the particulation from the section for pille tronice Development, not provide the particulation of the constant approximation pile tronice Development, not provide the particulation of the constant approximation ment, but also in the interpretation of the provide section of the constant of the provide section of the provide sect 1.6.

The composition of the Danish average diet used in this report is identical with that proposed in 1962 by the nutritional consultant to the Atomic Energy Commission, Professor E. Hoff-Jørgensen, Ph.D.

2. ORGANIZATION AND FACILITIES

Only minor alterations have taken place in the sample collection, preparation, analysis, and counting^{1, 6-8)} as compared with the previous years.

3. RISÖ ENVIRONMENTAL MONITORING IN 1969

3.1. Gross β activity

3.1.1. Sea Water

Fig. 3.1.1.1 shows the sample locations in Roskilde Fjord. Fig. 3.1.1.2 shows the control chart for H I. The yearly mean for H I in 1969 was 53 eqv. mg KCl/2.5 g (in 1968: 57), for H III-VI: 52 eqv. mg KCl/2.5 g (in 1968: 57) and for H VII-X: 53 eqv. mg KCl/2.5 g (in 1968: 56). Fig. 3.1.1.3 shows the mean levels of radioactivity in sea salt since 1957.

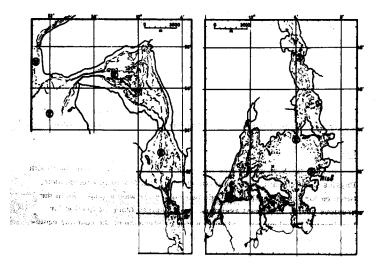
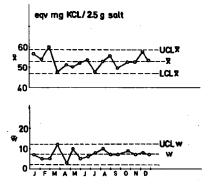
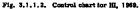
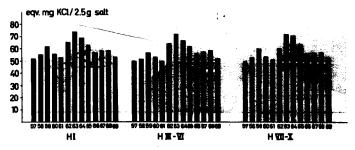
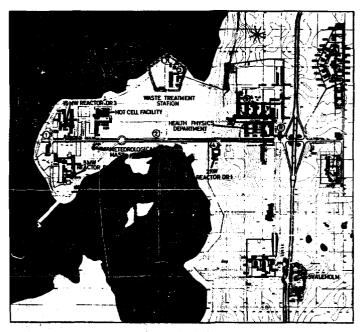
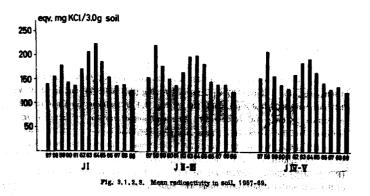





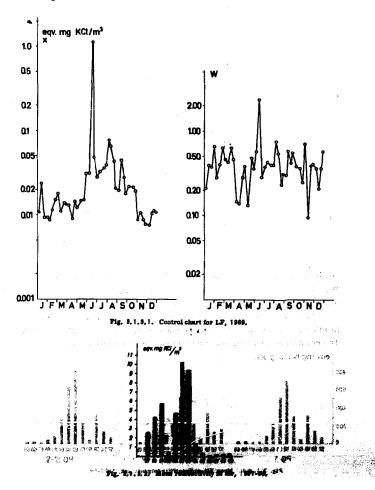
Fig. 3.1.1.1. Rosklide Fjord.

3.1.2. Soil

Figs. 3.1.2.1 and 3.1.2.2 (the coloured map) show the sample locations for land samples in the engineering Russ.

- 085


Fig. 3.1.2.1. The Rist Research Establishment.

3.1.3. Air

Fig. 3.1.3.1 shows the diagram for FP activity in air samples in 1969. The mean value for the year was 0.27 eqv. mg KCl/m³ as compared with 0.20 eqv. mg KCl/m³ in 1968.

Fig. 3.1.3.2 shows the mean FP levels in air since 1957.

3.1.4. Bed Soil from the Fjord

The mean activity in bed soil B I was 136 eqv. mg KCl/3.0 g ash in 1969 as compared with 151 eqv. mg KCl/3.0 g in 1968. Fig. 3.1.4.1 shows the mean levels for B I since 1957.

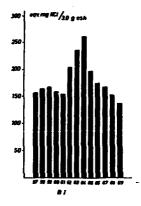
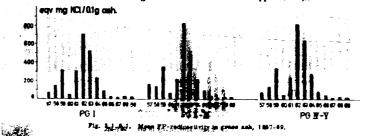
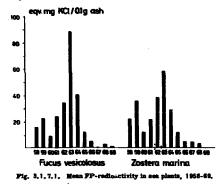


Fig. 3.1.4.1. Mean radioactivity in bed soll, 1957-69.

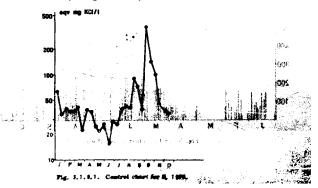

3.1.5. Fish

No fish samples from Roskilde Fjord were measured in 1969.

3.1.6. Grass


The mean values were in 1969 for PG I: 23 eqv. mg KCl/0.1 g grass ash (in 1968: 28), for PG II-III: 22 eqv. mg KCl/0.1 g (in 1968: 20) and for PG IV-V: 21 eqv. mg KCl/0.1 g (in 1968: 22). Fig. 3.1.6.1 shows the mean activities in grass ash since 1957.

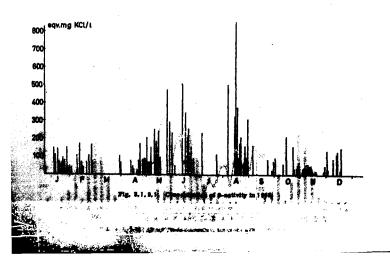
The analysis of variance revealed no significant variations between locations. The variation between days was highly significant (P \rangle 99, 95%). The residual error of the grass determinations was approx. 22%.

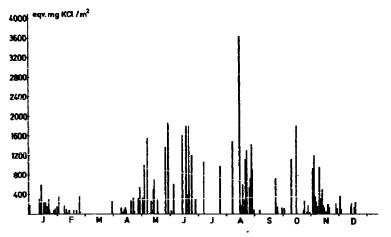

3.1.7. Sea Plants

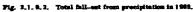
The mean FP level in 1969 in Fucus vesicolosus (PH I) was 1 eqv. mg KCl/0.1 g ash (2.5 in 1968), and in Zostera marina (PH III and PH IX) we found 0 eqv. mg KCl/0.1 g ash (5 in 1968). Fig. 3.1.7.1 shows the mean FP radioactivity levels in sea plants since 1958.

3.1.8. Fresh Water

Fig. 3.1.8.1 contains the control charts for S (cf. fig. 3.1.2.2). The yearly means for D I, D II, D IV, and S in 1969 were 61 eqv. mg KCl/1 (1968: 38), 25 eqv. mg KCl/1 (1968: 33), 33 eqv. mg KCl/1 (1968: 32), and 56 eqv. mg KCl/1 (1968: 35) respectively. Fig. 3.1.8.2 shows the activity in drainage water (D) and sewage water (S). The surplus activity in sewage water was due to minor amounts of S-35 released in Sept. -Oct, from the Waste Traatment Station (cf. fig. 3.1.8.1).






3.1.9. Rain Water

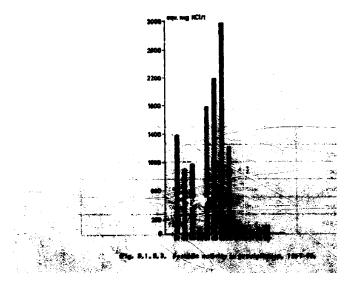
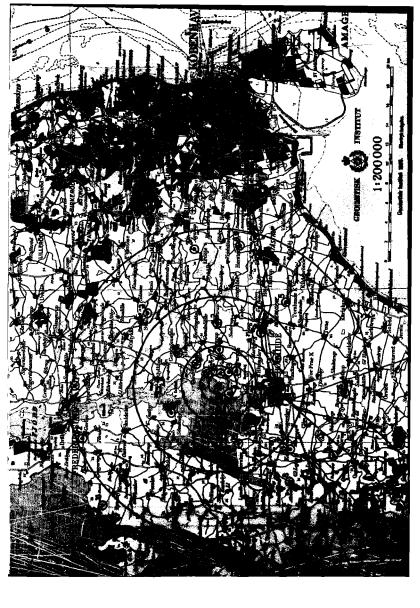

Figs. 3, 1, 9, 1 and 3, 1, 9, 2 show the specific FP level in and the total fall-out from rain water collected daily at Risö in 1969. The total fall-out in 1969 was measured at $0.053 \cdot 10^6$ eqv. mg KCl/m², and the annual mean concentration in rain water at Risö was 134 eqv. mg KCl/1. In 1968 the corresponding figures were 0.048 \cdot 10⁶ and 134 respectively.

Fig. 3.1.9.3 shows the specific activity in rain water since 1957.

3.2. Radiochemical & Analysis

3, 2, 1. Air

Table 3. 2.1 shows the Sr-90 and Sr-89 levels in air collected at Risö in 1969. Two collections were made, one with the daily air sampler furnished with paper filters (cf. 3.1.1) and one with the half-weekly air sampler furnished with glass-fibre filters (cf. 3.3).


The mean activity level for 1969 found from the two collections was 1.4^{+} 0.2 pCi Sr-90/10³m³, i.e. equal to the level in 1968. The mean peak activity of the two collections in 1969 was measured in July-August to be 2.3 pCi Sr-90/10³m³. Sr-89 from the Chinese tests was detectable throughout the year.

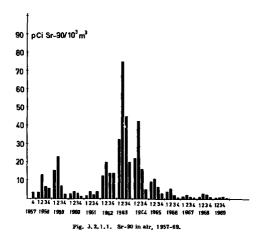

Fig. 3.2.1.1 shows the Sr-90 levels in air since 1957.

Table 3. 2. 1

Month	Daily air filters (paper filters)	Monthly air filters (glass-fibre filters)	Sr-89/Sr-90 meen ratio	
Jan_	0.85	0.81	2.5	
Feb	1.23	1,02	0.3	
Mar.	1.22	1.86	2.0	
Apr.	0,78	1.19	2.6	
Мау	0.91	1.45	5.6	
June	1.55	2,84	6.7	
July	1.39	2,98	3.8	
Ang,	2.72	3.39	2.7	
Sep.	1.27	2.03	3.4	
Oct,	0.88	1.12	2.6	
Nov.	0.37	0.81	0.8	
Dec,	0.58	0.62	1.8	
1969	1.15	1.59		

Sr-90 (and Sr-89) in air collected at Risö in 1969, pCi Sr-90/10³m³

3.2.2. Grass

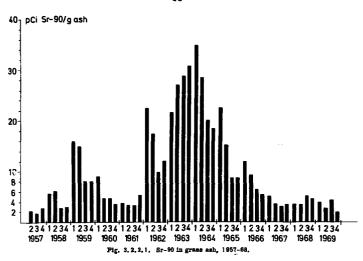

ĺ

Table 3.2.2 shows the Sr-90 content in grass ash from Zealand in 1969. The mean Sr-90 activity was 3.2 pCi Sr-90/g ash or 54 S.U. as compared with 4.1 pCi/g ash or 72 S.U. in 1968, i.e. the 1969 level was three fourths of the 1968 level. Fig. 3.2.2.1 shows the Sr-90 levels in grass since 1957.

Table	3,	2,	3	

Moath	pCi Sr-90/g ash	pCi Sr-90/g Ca
Jan Mar.	3.80 = 0.42	77 [±] 8
Apr - June	2.64 2 0.50	57 ± 10
July - Sep.	4.31 ± 0.39	55 ± 4
Oct Dec.	2.07	28
1969	3.20	54

Sr-90 in grass from Zealand, 1969

3.2.3. Sea Plants

Table 3. 2. 3 shows the Sr-90 content in sea plants collected from Roskilde Fjord in 1969.

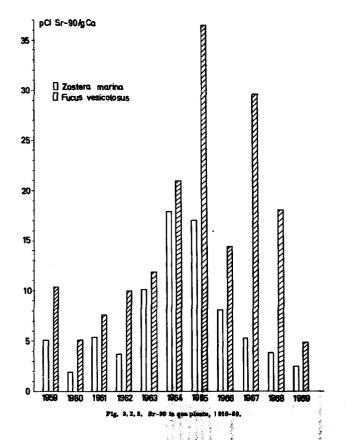

The level in Fucus vesicolosus was 5 S.U. in 1969 as compared with

Table 3. 2. 3

Sampling period	Location	Species	oCi Sr-90/g Ca	pCi Sr-90/g ash
	I	Fucus vesicolosus	7.7 - 1.6	0. 96 ± 0. 05
Jan, -June	щ	Zostera marina	1.7	0.11
	тх	-"-	2, 35 ± 0, 15	0.17 [±] 0.04
	I	Fucus vesicolosus	1.8	0,19
July-Sep.	ш	Zostera marina	2.5 ⁺ 0.6	0.16 ± 0.02
	DX.	<u>د</u> ۳ ـ	3, 5	0, 22
1969	.1	Fucus vesicolosus	4.8	Q. 55
11 T 1	III and IX	Zostera marine	3, 5	0,16

Sr-90 in sea plants from Roskilde Fjord, 1969

The error term is the θ , E_{c} of the mean of two samplings easyied out within two months of each other.

18 S. U. in 1968, and in Zostera marina the 1969 mean content was 2.5 B. U. ... as compared with 4 S. U. in 1968.

Fig. 3. 2. 3 shows the S. U. levels in set te sinc It is that Fucus vesicolosus s n de ded cium ŝ ŝ X ŝ ž ą 8 1604 4 185 ·乔安建台,普里马兹,朱德尔会,齐安安,金德,东京 ACS 1 法包装单 ł ্বিহা 1.30 07.0 70er 9267 7% 238 3.0 8021 A Salar Set का छन्द्रे 58.

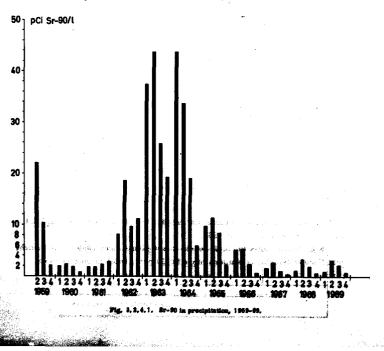

3.2.4. Rain Water

Table 3. 2. 4.1 shows the radiostrontium level in rain water collected at Risō in 1969. The total Sr-90 fall-out in 1969 was 0.82 mCi Sr-90/km² (429 mm precipitation), and the mean concentration in the rain water was 1.9 pCi Sr-90/l. In 1968 we measured 0.99 mCi Sr-90/km² (552 mm precipitation) and 1.8 pCi Sr-90/l, i. e. the 1969 levels were nearly equal to those of 1968.

Fig. 3.2.4.1 shows the Sr-90 levels in rain water since 1959.

At five sampling locations (1-5) in zone I (cf. fig. 3.1.2.1) ion-exchange columns collected monthly samples of precipitation along with the bottle collectors. The columns have been described earlier (Risō Report No. 41¹) and are similar to those used in the U.S.A. by HASL⁴. The purpose of this collection is to compare the efficiency of the ion-exchange columns with that of rain bottles as collectors of fall-out. Table 3.2.4.2 shows the results.

Table 3. 2. 4. 3 shows Sr-90 determined in monthly samples of rain water collected daily in the 1 m² rain collector (R) (cf. fig. 3. 1. 2. 1) at Ris5. The

at Riso in 1969 (Samping area 1232 cm)							
Month	лл	pCi 8r-90/1	mCi Sr-90/km ²				
Jan.	29	1.06	0.031				
Feb.	17	0.93	0.016				
Mar.	6	1.00	0,006				
Apr.	38	1.09	0.041				
May	57	3.31	0,189				
June	44	4.61	0.203				
July	21	3.65	0.077				
Aug.	72	2.15	0.155				
Sep.	25	0.99	0.025				
Oct.	36	0.73	0.026				
Nov.	75	0.55	0-041				
Dec.	9	0.98	0.009				
1969	<u>5</u> 429	I: 1.91	£ 0.82				
	$I = \frac{\Sigma m Ci/km^2}{2mm}$	10 ³ pCi/l					

Sr-90 in monthly samples of rain water collected in rain bottles at Rian in 1969 (sampling area 1222 cm²)

Month	nm	pCi Sr-90/1	mCi 6r-90/km ²
Jan,	26	1.68	0-044
Feb.	22	1.45	0.052
Mar.	4	3.60	0.014
Apr.	47	2.27	0.107
May	69	: 1.33	0.230
June	45	6.13	0.276
July	18	4.02	0,072
Ang.	8.1.5~1 81. * *	1-1947-145 07 57-17-1	R. 1
8ey.	26	1.00	0.000
Oet.	42	0,92	AND THE
11	e (22:07)	0.43	OLOUT ASE
Dat.	. <u>.</u> . C	2. 2. 2. 2. Star	2. A State State
1969	2.475	Ic 2.36	The states

21 <u>Table 3, 2, 4, 1</u>

Table 3.2.4.3

Month	mm	pCi 8r-90/1	mCi Sr-90/km ²
Jan.	32	6.65	0.213
Feb.	21	1.34	0.029
Mar.	2	4.52	0.011
Apr.	34	1.88	0.064
May	50	3.5>	0.180
June	42	1.19	0.049
July	13	0.52	0.007
Aug.	60	3.31	0.199
Sep.	18	1.52	0.027
Oct.	8	0.58	0.005
Nov.	105	0.59	0.062
Dec.	9	1.50	0.013
1969	£ 394	¥: 2.18	Z 0.86

Sr-90 in monthly samples of rain water collected daily in a 1 m² collector at Risö in 1969

Table 5. 2. 4. 4

Analysis of variance of mm precipitation at Risō in 1969

(from tables 3, 2, 4, 1 - 3, 2, 4, 3)

Variation	SSD	1	s ²	v ²	P
Betw. samplers	269.49	2	134.74	2.03	-
Betw. months	22226	• 11	2020.54	30.51	>99.95\$
Remainder	1456.84	22	66.22		
ŋ = 0.23					

Table 3. 3. 4. 5

÷., .

Analysis of variance of in pCi Sr-90/1 precipitation collected at Risö in 1969 (from tables 3, 2, 4, 1 - 3, 2, 4, 3)

Variation	56 0	1	-2	2	P
Betw. samplers	0.5105	2	0.2555	0.30	
Betw, months	12.2369	11	1.1124	3.04	>97.5\$
Remainder	8,0602	22	0.3664		
0.66	·		b		·

Table 3, 2, 4, 6

Analysis of variance of In mCi Sr-90/km² from precipitation at Riso in 1969 (from tables 3, 2, 4, 1 - 3, 2, 4, 3)

Variation	SSD	1	= ²	v ²	P
Betw. samplers	1.0164	2	0.5082	1.13	-
Betw. months	37.6861	11	3.4260	7.60	>99.95 ≸
Remainder	9.9112	22	0.4505	-	-

monthly samples were subjected to ion exchange in the laboratory on a column similar to those used in the field sampling described above, and analysed for Sr-90.

Precipitation was further collected at eight stations located in the meteorological mast at Risö (cf. 8.1). Thus we have four sampling systems for precipitation covering the Risö area: 1: the 1 m^2 collector (table 3, 2, 4, 3); 2: the eight rain bottles at ground level (table 3, 2, 4, 1); 3: the five ion-exchange collectors (table 3, 2, 4, 2), and 4: the eight rain bottles in the meteorological mast (table 8.1.1). Tables 3.2.4.4 - 3.2.4.6 show the analysis of variance of the three first-mentioned systems (a similar analysis was carried out in the previous years).

3.2.5. Milk from a farm near Risö

Table 3, 2, 5 shows the radiostrontium and caesium-137 contents in milk collected in 1969 from a farm near Risö. The mean level was 5.1

Table 3.2.5

Sr-90 and	Ca-137 i	n milk fran	Rist	'in 1969
-----------	----------	-------------	------	----------

Months	pC1 Sr-90/g Ca	pC1 Cu-137/g K	pCi Cs-1 37/1
Jm Mar.	2.96	3,86	6.64
Apr June	6.97	6.46	10.59
July - Sep.	5.45	8.61	13.76
Oct Dec.	5.01	3,10	5.21
1969	9:10		9.06 Dabi

Sec. Beck Street

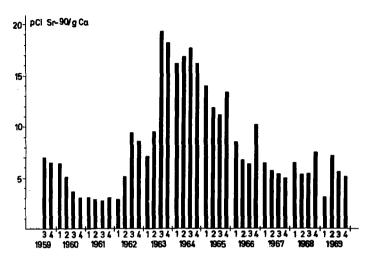


Fig. 3.2.5. Sr-90 in milk from Risö neighbourhood.

S. U. as compared with 5.8 S. U. in 1968. Fig. 3.2.5 shows the Sr-90 levels in "Riso" milk since 1959. The caesium-137 levels were nearly equal to the levels found in 1968 (and 1967).

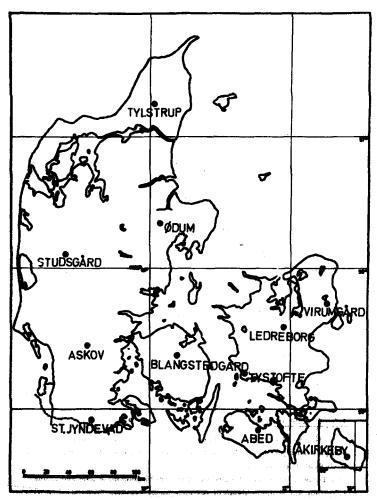
3.3. Y Spectroscopy of Air Samples

As in 1962-68, half-weekly samples of air were collected by means of the air sampler described in Risö Report No. 23¹). Parts of the half-weekly filters were bulked into half-monthly samples and measured on a 30 cm³ Ge(Li) detector⁸. Table 3. 3.1 shows the results. The peak value was observed in the first half of August (cf. also Sr-90 in air, table 3. 2. 1). The mean level in 1969 was nearly equal to the 1966 mean (2. 38 pCi Cs-137/ $10^8 m^3$).

Table 3. 3. 1

Month	pCi/10 ³ m ³
Jan.	1.33-0.05
Feb.	1.51=0.03
Mar.	2.78 [±] 0.16
Apr.	5°08 , 0°08
May	2.22-0.70
June	4.76-0.56
July	3.97 ⁴ 0.59
Aug.	5.56*1.94*
Sep.	1.70 [±] 0.05
Oct.	1.26±0.05
Nov.	1.23-0.10
Dec.	0.97±0,22
1969	2.45
The error term is the 5. E. the first and the second half ⁹ First helf of August: 7.60	

Cs-1 37 in glass-fibre air filters collected twice a week at Ris5 in 1969 pCi Cs-137/10³m³


4. RADIOSTRONTIUM IN PRECIPITATION, SOIL AND GROUND WATER IN DENMARK IN 1969

. . .

4.1. Precipitation

Samples of rain water were collected in 1969 from the ten State experimental farms (cf. fig. 4.1.1) in accordance with the principles laid down in Risö Report No. 63, p. 51^{1} .

Table 4.1.1 shows the results of the Sr-90 determinations and univer-4.1.3 and 4.7.3 the analysis of variance of the results. The sprinters with time was highly significant (P) 39.956). The maximum specific activity occurred in July-August, when the mean content in precification was 0.72 pCi Sr-90/1 (cf. also the air measurements in 3.2.1 and 3.3). The spectrum

" Fin. 4. t. f. Sintu experimental farme in Desmark.

Sall Salle

Period	Unit	Tylstrup	Studs- gård	Ødum	Askov	St. Jyn- devad	Blang- stedgard	Tystofte	N SI S	Abed		Mean
Jan Peb.	pCi/l mCi/km ²	1.59 0.148	1.46 0.120	2.18	1.50 0.121	1.39	1.00 0.067	1.66 0.079	1.22 0.074	0.71 0.044	2.68	1.54 0.092
Mar, - Apr,	pCi/l nCi/km ²	4.14 0.232	2.03 0.124	2.52 0.135	2.30 0.087	3.87 0.132	1.75	1.47 0.070	1.52 0.057	1.42 0.076	4.87 0.217	2.53 0.12
May - June	pC1/1 mC1/2m ²	3.83 0.400	3.46 0.423	2.14 0.216	3.20 0.485	3.54 0.499	2.52 0.298	3.46 0.314	2.87 0.325	2.61 0.210	5.32 0.212	3.30 0.33
July - Aug.	pC1/1 mC1/km ²	6.56 0.413	2.86 0.324	4.43 0.329	4.67 0.336	2.67 0.191	3.30 0.104	4.92 0.273	3.09 0.285	2.35 0.190	2.38 0.312	3.72 9.27
Sep Oci.	pC1/l mC1/ku ²	4.01 0.260	3.91 0.069		2.36 0.109	1.90 0.122	1.26 0.097	4.54 0.062	2.36 0.101	1.93 0.042	2.14 0.118	2.75 0.10
Nov Dec.	pC1/1 mC1/km ²	0.95 0.131	0.65 0.146	0.91 0.107	0.80 9.174	0.74 0.129	0.48 0.060	0.65 0.055	0.66 0.064	0.45 0.072	1.31 0.115	0.76 0.10
1969	pC1/1 x mC1/km ² z	2.97 1.584	1.94 1.206		2.16 1.312	2.11 1.163	1.48 0.701	2.50 0.853	2.66	1.38 0.634	2.71 1.053	2.15
mm precipite	tion Σ	521	621	413	608	551	475	341	443	458	388	482

<u>Table 4.1.1</u> Sr-90 fail-out in Denmark in 1999

Table 4.1.2

Analysis of variance of in pCi Sr-90/1 precipitation in 1969 (from table 4.1.1)

Variation	SSD	f	s ²	₽ ²	P
Betw. locations	3.7018	9	0.4115	5.03	> 99.9%
Betw, months	17.6210	5	3.5242	43.14	> 99.95%
Remainder	3.6746	45	0.0817	·	

Table 4 1.3

Analysis of variance of in m(1 fr j00/gm presipitation in 1 800 (fram this 4:1.1)

	gers seen	معد م ة مارمان مة ال	1			10000	a a standard and a stand	- manager and the constraint	<u>.</u>	
: ج المحمد العليم	ý,	ristin.				- 1	"net Re-	1 'Nai 1		P
5.64	Bette.	locitie	15	5.2494	57	9 5	0.000	6 - 9 190	>99	.95%
af a capito	Seiw.			13.5792	202	1	3.1544	72.01	>99	.99%
15.84	Lante	6. 39 ka	in the	4-3995	:13	s.f.145 .a	a 1.994	Law Ta ba		
	, -	0.31						· · · · · · · · · · · · · · · · · · ·		

المين عليه أنه بلويت المقدار تعديداً إليه المارية -

n 20 Y

fall-out rate was found in May-June, the mean fall-out rate in that period being 0.34 mCi Sr-90/km². Tables 4.1.2 and 4.1.3 show that the variation between locations was highly significant. The specific activity for 1969 was 2.37 pCi Sr-90/l at Tylstrup, while only 1.38 pCi Sr-90/l was measured at Abed. The 1969 mean levels for ten State experimental farms were 1.04 mCi Sr-90/km² and 2.15 pCi Sr-90/l. In Appendix A the country mean level (area weighted) is estimated to be 1.4 mCi Sr-90/km² ior a mean precipitation amount of 600 mm (area weighted), i. e. equal to the fall-out rate in 1968.

As in 1966-68 precipitation samples were collected with an ion-exchange collector at Abed (cf. also 3.2.4). The specific activity was 1.5 pCi Sr-90/l, i.e. higher than in table 4.1.1, and it is further evident, as also observed in 1966-68, that the total deposition in the ion-exchange collector is approx. 1.4 times as large as that in the rain bottles.

The Sr-89/Sr-90 ratios at the ten stations are shown in table 4.1.4. By the end of the year fresh fall-out began to appear, probably from the Chinese test explosion in September 1969.

Period	Tyletrup	Studegård	Ødium	Askov	St. Jyn- devad	Blang- steigird	Tysiafte	Virum- gård	Abed	Åkirke- by	Mean
Jan Feb.							1.7				
MarApr.	6.6	0.7	2.9	3.5	13,0	4,5	3, 6	4.3	3.6	6.1	4.8 [±] 1.
May-June	8, 3	0,1	7.4	7.1	8,3	7.7	7.0	7.6	7.6	4.8	7.4-0.
July-Aug.	4.7	5,4	2.7	5.2	6.2	4,3	4.2	5.3	6,3	5.1	4. 9 [±] 0,
SepOct.	0, 2	0.3	0	1.4	0	1.2	0	0. 1	0	0.1	0. 3 [±] 0.
NovDec.	0.3	0.8	0.9	0.8	0.2	1.0	1.4	0.6	0,3	1,3	0. s±0.

Table 4.1.4

Sr-89/Sr-90 in fall-out collected in 1969

Table 4. 1. 1

	Tylstrup	Stuingled	ginna xx)	Astrov	St. Jyndevad
mCi \$r-99/km ²	53 ± 1	68 [±] 1	40 ± 1	50 ± 1	70 ± 3
pCi Sr-90/kg	229 ± 2	301 ± 5	165 [±] 1	189 [±] 1	220 ± 8

All determinations were triple, except 22 which were double and 2 which was simila. The error term is the 5.2, of the me

A comparison between the amounts of precipitation found in the rain gauges used by the Danish Meteorological Institute and the amounts collected in our rain bottles at the same locations showed that in 1969 our bottles collected only 85 per cent of the amount measured in the rain gauges. The difference between the two systems was most pronounced during the winter months of January and February, where the percentage was only 68.

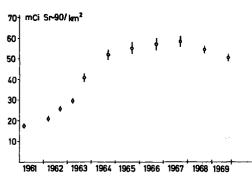
We explain this difference by the fact that our bottles will not collect snow very efficiently as contrary to the rain gauges they have no heating system for melting of the snow deposited in the funnels. During warm and dry periods some evaporation will occur from our bottles as was the case in July-August in 1969. Normally these months are rather wet, but in 1969 they were dry, and we found in our bottles only 80% of the precipitation amounts measured in the rain gauges (which are collected daily, while our bottles are collected monthly). As regard the collection of fall-out we can expect this to be considerably better than the 85% measured for the amounts of precipitation, firstly because we get the fall-out in the precipitation even though the water evaporates, and secondly because the amounts of fall-out are smaller during the winter months than during the remaining part of the year, where the collecting efficiency of the bottles is 100%.

4.2. Soil

As in the previous years, soil was collected with a view to estimating the accumulated fall-out of Sr-90. As previously, the samples were collected in September from uncultivated areas (cf. fig. 4.1.1) all over the country.

Table 4.2.1 shows the results from ten State experimental farms. The mean value in September 1969 was 50 mCi Sr-90/km². This is somewhat lower than the 1968 value.

Hangstedgård	Tystofte	Virungärd	Abed xx)	Åkirkeby ^x	L	80	8 E	
41 ± 2	34 [±] 1	47 ± 1	50 ± 5	44	50	12	4	「「「「」「「」」の目的である。 「「「」」のことに、「「「」」の目的である。
176 2 6	110 ² 4	186 \$ 5	524 = 29	164	206	64	21	n a siya Marina wa sawa


Sr-90 in soil collected at the state experimental farms in September 1969

in a second second second second state with an effort with an effort and second s

Source and a second second

Sec. States (

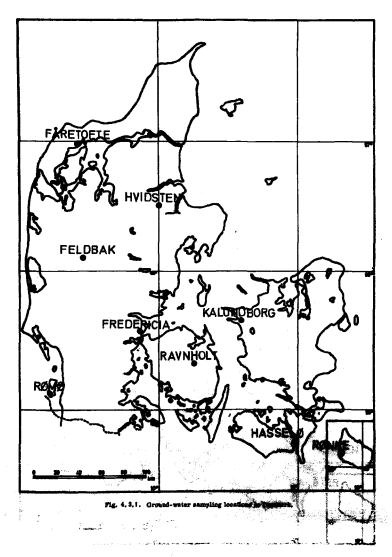
in wet first a sur

Table 4.2.2

	Rieð	Roskilde Fælled	Ledre- borg	Eremi- tagen	Mean	S, D,	8. E.
mCi Sr-90/km ²	44 <u>+</u> 1	50 <u>+</u> 2	79 <u>4</u> 2	52 <u>+</u> 2	46	5	3
pCi Sr-80/kg	235 <u>+</u> 6	186±6	128 <u>4</u> 6	210 <u>±</u> 6	190	45	27

Sr-90 in soil collected in Zealand in September 1969

Cf. remarks to table 4.2.1


Table 4.2.2 shows the Sr-90 levels at five soil locations in Zealand, mainly in the neighbourhood of Risö. The levels were also in this case lower than the 1966 values.

4.3. Ground Water

As in previous years, ground water was collected in March from the nine locations selected by L.J. Andersen, M.Sc., Geological Survey of Denmark, in 1961.

Fig. 4.3 shows the sample locations and table 4.3.1 the results of the 8r-90 analyses (cf. also 5.8.4).

The median level of Sr-90 in 1969 was a little higher than in 1967 and 1968, but hardly significantly different from these levels. The highest level is still found at Feldbak. Fig. 4.3.2 shows the median levels in Danish ground water since 1961. It is evident that a maximum occurred in 1964-66, undoubtedly as a result of the 1961-62 test series.

	Table	4.	3.	1
--	-------	----	----	---

Location	pCi Sr-90/1	pCi Sr-90/g Ca	g Ca/l
Hvidsten	0.0049	0.066	0.075
Feldbak	0.38	17.2	0.022
Røms Rønne	0.011 0.039	0.52	^.035 ∂.017
Hasselø	0.0076	0.049	0.156
Fåretofte	0.0043	0.034	0.125
Kalundborg	0.017	0.171	0.100
Ravnholt	0.022	0.172	0.128
Fredericia	0.042	0.50	0.084
Меал	0.059	-	0.082
Median	0.017	0.17	0.084

Sr-90 in ground water collected in March 1969

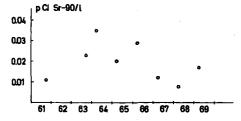


Fig. 4.3.2. Median levels in Danish ground water, 1961-59.

5. RADIOSTRONTIUM AND RADIOCAESIUM IN DANISH FOOD IN 1969

5.1. Sr-90 and Cs-137 in Dried Milk from the Entire Country

As in the previous years, monthly samples of dried milk were collected from seven locations in Denmark (cf. fig. 5.1.1) and analysed for Sr-90 and Cs-137.

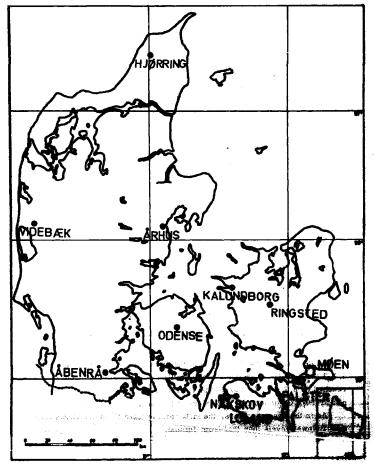


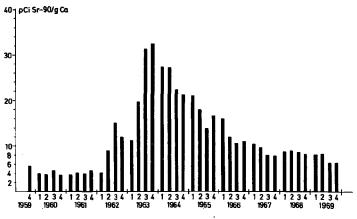
Fig. 5,1.1. Dried-milk factories in Denmark.

Table 5.1.1

Month	Hjørring	Århus	Videbak	Åbenri	Odense	Ringsted	Lolland-Paister Møn	Mean
Jen.	9.9±1.1	9.8-2.4	9.9 [±] 0.6	10.3-1.1	6.6-0.5	5.1±0.1	4.0-0.1	7.9
Feb.	8.6	7.0	11.8	10.0	6.2	5.2	5.0	7.7
Mar.	10.2	9.8	14.1	11.1	6.1	5.1	4.3	8.7
Apr.	9.7	8.9	11.8	9.8	7,2	6.3	4.7	0.3
Мау	8.4	9.6	11.4	10.8	7.9	5.2	6.0	8.5
June	7.2	8.4	11.2	9.0	7.6	3.4	6.9	7.7
July	6.7	6.7	9.4	8.5	5.6	4.1	4.3	6.5
Aug.	9.7	7.4	6.6	(8.5)	4.6	4.4	4.1	6.8
Sep.	5.0	5.4	9.2	(7.4)	5.4	3.7	3.7	5.8
Oct.	6.9	5.6	8.2	(6.9)	3.7	3.0	4.1	5.5
Nov.	8.6	i.5	10.6	(8.4)	3.7	4.9	4.5	6.7
Dec.	8.1	6.7	9.6	(8.6)	4.4	5.6	4.2	6.7
Mean	8.3	7.7	10.5	(9.1)	5.8	4.7	4.6	7.2

pCi Sr-90;	g Ca in	Danish	dried	196 ما علائه	9
------------	---------	--------	-------	--------------	---

Figures in brackets were calculated by VAR 3^[2]. The error term is the S. E. of the mean. As 1 litre of milk contains 1.2 g Ca, the mean Sr-90 content in Danish milk produced in 1969 was 8.6 pCi/l.


Table 5.1.2

Analysis of variance of in pCi Sr-90/g Ca in dried milk in 1969 (from table 5.1.1)

Variation	SSD	f	s ²	v ²	Р
Betw. locations	8.1451	6	1.3575	60.87	>99.95%
Betw. months	1.5711	11	0.1428	6.40	>99.95%
Locations x months	1.3588	61	0.0223	0.78	-
Remainder	0.1990	7	0.0284		
3 = 0.17					

Table 5.1.1 shows the results of the Sr-90 determinations and table 5.1.2 the analysis of variance of the results. The maximum of the year was reached by 8.7 S.U. in March-April. The S.U. mean level in 1969 was 7.2 pCi Sr-90/g Ca or approx. 55% of the 1968 mean.

As in the previous years, the milk from eastern Denmark shows significantly lower levels than that from Jutland,

ţ

ι

Fig.	5, 1	. 2.	Sr-90	in	dried	milk,	1959-69.
------	------	------	-------	----	-------	-------	----------

Table 5.1.3

pCi Ca-137/g K in Danish dried milk in 1969

Month	Hjørring	Årtus	Videbæk	Åbenri	Odense	Ringsted	Lolland-Falster M#	Menn
Jan.	19.8	16.4	27.6	9.6	5.9	4.6	5.3	12.7
Feb.	8.7	9.5	9.5	14.0	5.7	3.3	7.4	8.3
Mar,	6.3	8,3	9.4	10,6	10,3	4.3	4.5	7.9
Apr.	9.3	7.0	10.8	10.0	7.0	5.9	4.1	7.7
Мау	10.1	7.5	12.0	12.9	11.6	7.0	4.5	9.4
June	16.0	10.7	16.7	13.8	10.2	8.0	5.1	11.5
July	17.9	12.3	19.3	23.0	14.0	6.4	12.6	15.2
Aug.	18.6	17.8	21.4	(15.2)	8.2	4.6	4.7	12,9
Bep.	12.4	13.6	18.2	(13:4)	7.8	5.5	5.0	10.8
Oct.	11.4	6.8	7.9	(7.8)	3.7	2.6	3.9	6.3
Nov.	6.4	5.4	5.6	(7.9)	. 5 . 5	3.9	4.5	5.9.
Dee.	11.9	6,7	9.7	(0,9)		4.1	8.15	14
Mean	18.7	10.2	1. 14.0	(24.3)			enten Anta bis	9.7

Table 5.1.4

	(from	a table	5.1.3)		
Variation	SSD	ſ	# ²	v ²	P
Betw. locations	120.1764	6	20.0294	28.29	>99.95≸
Betw. mouths	58.2076	11	5.2916	7.47	>99.95%
Remainder	43.1874	61	0.7080		

Analysis of variance of In M. U. in Danish dried milk in 1969 (from table 5, 1, 3)

Table 5.1.3 shows the results of the Cs-137 determinations and table 5.1.4 the analysis of variance of the results. As in the previous years, the maximum level of Cs-137 (15.2 M.U., approx. two thirds of the maximum of 1968) was found in milk from the summer (July). The M.U. mean level in 1969 was 9.7 pCi Cs-137/g K or 85% of the Cs-137 mean content found in 1968.

Figs. 5.1.2 and 5.1.3 show the quarterly S.U. and M.U. values since October-December 1959 (cf. also Appendix C).

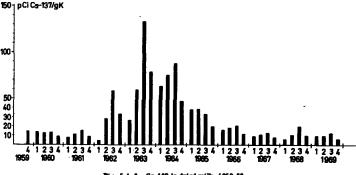
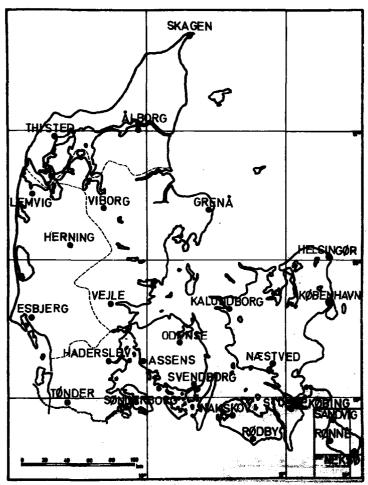



Fig. 5.1.3, Cs-137 in dried milk, 1959-82.

5.2. Sr-90 and Cs-137 in Fresh Milk from the Entire Country

and an and the second second

The samples of fresh milk were collected in the eight zones and in Copenhagen as in previous years (cf. figs. 5. 2.1 and 5. 2.2) in connection with the bread and total-dist collection (cf. 5.7).

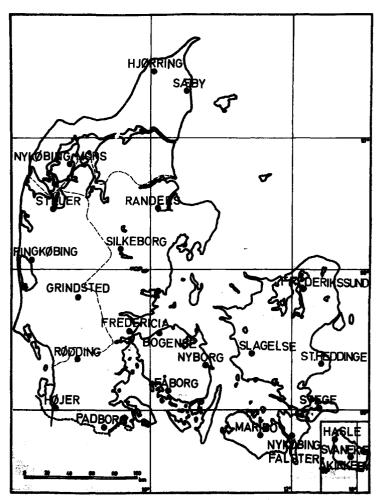


Fig. 5. J. 2. Sample locations for fresh milk, bread and total dist (B-towns).

the concerned constraints and a second second

Harrison

		June		December			
Zane	pCi Sr-90/g Ca	pCi Ce-137/g K	pCi Cs-137/1	pCi Sr-90/g Ca	pCi Cs-137/g K	pCi Cs-137/1	
I: N. Jutland	7.6 ± 0.1	12.6	20.6	6.0	5.4	8,7	
II: E. Jutland	8.3 ± 0.1	15.2	24.3	6.3	5.1	7.9	
III: W. Juliand	8.2	7.5	12.6	7.4	7.1	11.9	
IV: S. Jutland	9.1 ± 0.5	6.0	13.7	8.7	5.6	9.2	
V:: Funen	5.2	9.5	14.0	4.3	5.7	9.1	
VI: Zeeland	4.6 = 0.5	9.6	15.4	3.7	4.2	6.9	
VII: Lolland-Falster	5.4 ± 0.1	8_4	14-1	3.4	4.0	6.3	
VIII: Bornholm	4.9 = 0.5	5.0	9.3	4.6	4.7	7.5	
Meen	6.7	9.7	15.6	5.6	5.2	8.4	
Copenhagen	6.1 ± 0.5	11.7	18.2	5.5	4.9	. 7.6	
Population-weighted mean	6.7	11.1	17.7	5.7	5.2	8.4	
Production-weighted mean	7.4	11.2	18.0	6.3	6.0	8.9	

<u>Table 5. 2, 1</u> Sr-90 and Cs-137 in fresh milk in 1969

Table 5. 2.1 shows the results of the determinations of radiostrontium and Cs-137 in consumer milk.

The production-weighted means for Sr-90 and Cs-137 in Danish consumer milk in 1969 were 6.9 S.U. (~8.2 pCi Sr-90/1) and 8.6 M.U. or 13.5 pCi Cs-137/1 respectively.

As previously it seems reasonable to regard the mean of the levels found in June and December as representative of the annual productionweighted mean, as the mean for these two months calculated from the driedmilk data (cf. tables 5.1.1 and 5.1.2) yielded a reasonable estimate of the annual mean for dried milk.

If the figures in table 5.2.1 are weighted with respect to the population, the country means become 6.0 S.U. and 13 pCi Cs-137/1, i.e. approx. 90% of the production-weighted means.

5.3. Sr-90 and Cs-137 in Grain from the Entire Country

As in the previous years, grain samples were obtained from ten State experimental farms (cf. fig. 4.1.1) Virumgård has been replaced by Ledreborg. Sr-90 was determined as providually (Risp Report No. 53), hat but Cs-137 was measured on sched samples by Y-spectrometry on a Genderter.

المتحذ لأتقت تجالبين الجيرو فتقرا والمرار

	Rye		Barl	Barley		Wheat		×
	pCi Sr-90 pr kg	S. U.	pCi Sr-90 per by	S. U.	pCi Sr-90 per kg	\$.U.	pCi Sr-90 per kg	S. V.
Tylstrup	29 * 4	74 [±] 1	32-7	62 [±] 4	-	-	43-8	46-8
Studegård	8151 [±] 12 5:43 [±] 2	¥:139 [±] 28 S: 90 [±] 0	50 ² 0	120-5	74 * 5	200 * 2	55\$3	7442
Ødum,	19 ± 0	61 [±] 2	19*2	40 [±] 3	₩:19±0 S:20±0	¥:54±2 8:62±4	37±1	38 * 1
Askov	8:35±2 8:55±2	¥:81 [±] 5 3:123 [±] 4	29 [±] 1	69 [±] 2	¥:52 [±] 0 S:72 [±] 2	¥:155 ⁺ 2 5:151 ⁺ 1	38 ⁺ 2	46 [±] 3
St. Jyndevad	- 1	-	89 [±] 1	212 [±] 1	-	-	106*4	153±11
Mangstedgåre	-	-	11\$2	19-0	-	-	17-3	19 * 1
Tysicite	-	-	¥:14 [±] 0 8:13 [±] 1	¥:30±0 S:32±0	¥:18 [±] 3 8:21 [±] 0	¥:40 [±] 6 \$:42 [±] 0	39 ⁺ 13	41 - 14
Ledreborg	-	-	27±0	57±1	¥123 [±] 7 8121 [±] 6	¥:62 ¹ 9 8:63 ¹ 7	21±1	22-1
Abed	-	-	12-2	28 [±] 4	W:10 [±] 1 S: 7 [±] 1	¥:28 [±] 2 8:19 [±] 1	12+2	14 ± 2
kirkeby	20 ± 0	57*5	13*1	35±2	¥:28 [±] 2 8:38 [±] 1	¥176 [±] 4 S187 [±] 1	21 ± 0	26 [±] 0
Leen	36	89	28	64	31	80	39	48

Sr-90 in Danish grain in 1981

Table 5.3.2

Analysis of variance of In S. U. in grain in 1969

5134 8390	3	1.8378		>99 .95 \$
8390	9	3,0932		
		,,.	21.41	>99₊95≸
7463	19	0.1445	5.99	>99.95%
2068	50	0.0241		

(from table 5. 3. 1)

Table 5.3.1 shows the measurements of strontium-90 in grain in 1969. According to Appendix B, approx. 2/3 of all rye in Dehmark is grown in Jutland and 1/3 in the eastern part of the country. As regards wheat, 3/4 is produced in eastern Denmark and 1/4 in Jutland. In the calculation of the means in tables 5.3.1 and 5.3.4 Jutland is represented by six rye figures and five wheat figures, while eastern Denmark contributes eight wheat figures and one rye figure. Thus the means for rye and wheat in tables 5.3.1 and 5.3.4 are probably a little higher than the production-weighted means for the country. Table 5.3.2 gives the analysis of variance of the S.U. figures and table 5.3.3 that of the pCi Sr-90/kg grain figures.

Table 5. 3. 3

Analysis of variance of ln pCi Sr-90/kg grain in 1959 (from table 5, 3, 1)

Variation	SSD	t	.2	v ²	Р	
Botw. species	1.5398	3	0.5132	2.74	>90#	
Betw. locations	26.4391	,	2.9376	15.66	>99 . 95%	
Loc. x species	3.5647	19	0.1876	4.61	>99.95≸	
Remainder	2.0363	50	0.0407	<u> </u>		

Table 5.3.1 shows that the variation in S.U. between species was significant. Wheat showed the highest S.U. levels and oats the lowest. The pCi Sr-90/kg figures did not show any significant difference between species.

As in previous years, the variation with location was highly significant; the mean pCi Sr-90/kg level for grain from Jutland was approx. 2.4 times that in eastern Denmark.

Table	۶.	з.,	

Co-137 in Dunish grain in 1	869
-----------------------------	-----

	Ryt		Barley		Wheat		Outs	
	pCiCs-137/kg	M. V.	pCtCs-137/kg	ML V.	pCSCs-137/kg	M. U.	pCiCs-197/kg	ML D.
Tylstrup	55	18,1	19	8,7	-	-	53	8,1
Studegfird	w; 61 s; 93	w: 13, 7 a; 18, 2	29	6.2	48	12, 8	*	8,0
Ødam	47	13.2	Π	8.0	w: 29 4; 34	w: 7.1 a: 8.0	27	7.8
Askov	W: 81 8; 68	w: 10,4 s: 13,8		9.1	7: 71 & 64	w: 16, 2 6: 16, 2	40	8,7
St, Jyndeved	-	-	57	10.2	•		40	14,1
Blangstadgård	•	•	22	4,3		9.75 A		8,7
Tystofte	-		1.17	211	T: 33 6: 38	工材		, , , 4, 9
Ledreborg	-	-	41	8,8	T: 38	21 A.4	(10 1474)	j: 5.5
Abed		(0) $($	a c ar a sel	41	26.7 8 1 .7649		a State	4.8
	(Allenia) – in Kana	194 1	1.249		** **		1 	104.5
Mena	dist.	1.1.1	F 📽		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	S		7.6

Table 5. 3. 5

Analysis of variance of In pCi Cs-137/g K in grain in 1969 (from table 5.3.4)

Variation	SSD	f	•2	v ⁸	Р
Betw. species	1.6944	3	0.5648	9.93	>99.5≸
Betw. locations	2.5194	9	0.2799	4.92	> 97 .5≸
Spec. x locations	2.0267	19	0,1067	1.87	-
Remainder	0.5124	9	0.0569		
ų = 0.24					

Table 5. 3. 6

Analysis of variance of ln pCi Cs-137/kg grain in 1969 (from table 5.3.4)

Variation	SSD	f	8 ²	v ²	P
Betw. species	1.2234	3	0.4078	12.63	>99.5%
Betw. locations	2,5215	9	0.2802	8.67	>99.5%
Spec. x locations	1.8920	19	0.0995	3.08	>95≸
Remainder	0.2911	9	0.0323		
η = 0.18					I

Table 5. 3.4 shows the measurements of Cs-137 in grain in 1969, table 5. 3.5 the analysis of variance of the M. U. figures and table 5. 3.6 the analysis of variance of the pCi Cs-137/kg grain figures. The variation between locations was significant. The Cs-137 content in grain from Jutland was on the average approx. 1.5 (pCi/kg figures) times as high as the grain level in eastern Denmark. The variation between species was highly significant. Rye contained as previously approx. twice as much Cs-137 as the other grain species.

If the S. U. levels in grain from the harvest of 1969 are compared with the levels from 1968^{1} , we find the 1969 figures to be smaller by a factor of approx. 1.5.

The Cs-137 content in grain from the 1969 harvest was on the average lower by a factor of 1.7 than that in 1968. The fall-out rate in May-August 1968 was 1.4 times that in May-August 1969. (The period May-August was

elekasi tara

selected because experiments have shown¹⁰ that the contamination of grain with Cs-137 originates in the period from before the emergence of the ears until harvest). This observation is in reasonable agreement with that of the previous years and fits the hypothesis that the Cs-137 level in grain depends mainly upon the fall-out rate.

In Appendix C is shown a comparison between observed and predicted Sr-90 and Cs-137 levels in 1969. It is evident that the predicted levels for grain were higher than those observed. The observed values were for Sr-90 three fourths of those predicted and for Cs-137 two thirds.

The 1969 summer was relatively dry. The total amount of precipitation in July-August was 96 mm, i.e. two thirds of the normal amount, which is 146 mm. For the prediction of Sr-90 in grain we use the total Sr-90 fall-out in July-August, and for Cs-137 we use the fall-out in the four-month period May-August. In 1969 the harvest was earlier than usual, and 45 mm precipitation fell after the harvest date, which was a considerable fraction of the total fall-out in that summer. If this had been taken into account in our prediction equations, the agreement between observed and predicted levels in grain would have been markedly improved.

The mean ratio between pCi Cs-137/kg rye and pCi Sr-90/kg rye was 1.6, while the Cs-137/Sr-90 ratio for barley, wheat and oats was 1.2. This is in agreement with earlier observations and with the theory that rye depends more on direct contamination than the other cereals, for which the soil uptake of Sr-90 now plays a dominant role.

	Ry	/e	Bar	Barley		ent	Outs
	Winter variety	Spring variety	Winter variety	Spring variety	Winter variety	Spring variety	Spring variety
Tylstrup	0.8		•	1.2			2.6
Studsgård	3.1	4.0		2.0	7.6		1.4
Øttum	3.0			5.0	4.1	4.2	3.1
Askov	2.9	3.0		2.3	3.9	3.5	2.0
St. Jyndevad				5.8			3.4
Blangstødgård				.4.1			3.9
Tystofte			2.0	0.6	1.6	3.0	0,8
Ledreborg				2.8	2.3	3.5	2.0
Abed				6.7	5.0	5.0	2.1
Åkirkeby	1.9			2.4	2.4	2.1	0.4

Table 5. 3. 7

43

and the second

Table 5.3.8

Analysis of variance of ln mg Sr/g Ca in grain in 1969 (from table 5.3.7)

Variation	SSD	f	* ²	v ²	P
Betw. species	2.9347	3	0.3742	8.01	>99.5%
Betw. locations	7.6886	9	0.8543	7.00	>99.5%
Spec. x locations	4.0204	19	0.2116	1.73	
Remainder	1,0994	9	0.1221		

Table 5.3.7 shows the stable-strontium content in grain in relation to the calcium content, and table 5.3.8 is an analysis of variance of the figures. As previously¹, wheat contained significantly more stable strontium per g Ca than the other species, and Studsgård showed higher figures than the eastern locations.

5.4. Sr-90 and Cs-137 in Bread from the Entire-Country

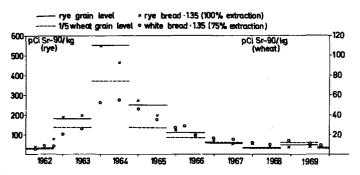
In 1969, samples of white bread (75% extraction) and dark rye bread (100% extraction) were collected as previously all over the country in June and December (in both A and B towns, cf. figs. 5. 2, 1 and 5. 2. 2). The samples were combined into eight zone samples and a sample from Copenhagen, and Sr-90 and Cs-137 were determined. The Cs-137 determinations were carried out on dried samples of rye bread and on the ash of white bread by Y-spectroscopy.

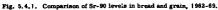
Tables 5.4.1 and 5.4.2 show the results. In figs. 5.4.1 and 5.4.2 a comparison with grain levels is made for the years 1962-1969. It is assumed that the bread consumed in the first nine months of the i^{th} year has been made of grain from the harvest in the $(i-1)^{th}$ year, while the bread consumed in the last three months has come from the harvest in the i^{th} year. Further it is assumed that 1 kg flour yields approx, 1.35 kg bread¹¹ and that wheat flour of 75% extraction contains 20% of the Sr-90 and 50% of the Cs-137 found in wheat grain¹⁾.

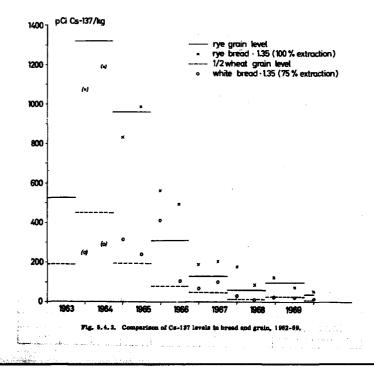
Figs. 5.4.1 and 5.4.2 show that the Sr-90 and Cs-137 levels in bread were in reasonable agreement with those in grain according to the abovementioned model.

On comparison of the bread levels in Jutland with those in eastern Denmark it appeared that the Sr-90 and Cs-137 levels in rye bread in Jutland

were approx. 1.5 times those in eastern Denmark, whereas Sr-90 and Cs-137 in white bread were nearly equal all over the country. This shows as also observed the other years that it is not necessarily local-grown grain that is used for the bread production (cf. 5.3).


Sr-90	in Denish	brend in	1969
-------	-----------	----------	------


_			Ju	ne		December			
Zone		White bread		Rye b	Rye bread		White bread		read
		pCi/kg	S. U.	pCi/kg	S. U.	pCi/kg	S. U.	pCi/kg	S. V.
Ŀ	N. Jutland	8.5±2.5	4.7 ± 1.4	28 * 2	8.7-0.5	9.6±0.7	4.7 [±] 0.4	33	10.4
п:	E. Jutient	10.1±2.7	4.4±1.2	33±2	10.1±0.6	7.6±0.0	3.8±0.0	"	6.Z
m ;	W. Jutland	7.8 [±] 1.6	4.0*0.8	38 * 1	12.4±0.7	7.2 ± 1.0	4.2 [±] 0.7	29	9.6
IV:	S. Jutland	6.7±1.5	3.1±0.7	36±2	11.6±0.в	9.8*1.2	5.8±0.8	33	11.6
v.	Funen	7.2 [±] 0.4	3.2±0.1	26 [±] 2	7.8±0.6	6.9 [±] 1.2	3.2±0.4	19	6.9
VI:	Zeeland	5.4±0.4	2.3±0.2	21 - 1	7.1±0.4	6.8±0.5	3.8±0.3	16	4.7
VII:	Lolland-Falster	9.4±1.1	4.5±0.7	28 [±] 3	8.1±1.0	6.5±0.3	3.9-0.2	17	5.3
VIII;	Bornholm	9.3±2.0	4.1 [±] 0.9	2022	6.5±1.2	7.5±0.7	3.1±0.2	15	5.3
Mean		8.0	3.0	29	9.0	7.7	4.1	25	7.8
Cope	nhagen	7.6-1.5	3.3±0.7	1921	7.3±0.5	6.0 [±] 0.1	2.3 [±] 0.1	23	7.7
Рорц	lation-weighted mean	7.8	3.6	27	8.8	7.2	3.6	25	7.9
Rela	tive analytical error	0.31	0.32	0.09	0.12	0.14	0.16	-	- 1


Table 5.4.2

Cs-137 in Danish bread in 1969

	June				December			
Zone	White	White brend		Rye bread		White brend		Deer
	pC1/kg	M. U.	pC1/kg	M. U.	pCi/kg	м. v.	pC1/kg	M. V.
I: N. Jutland	20.4	13.6	94	31	10.6	6.6	64	18,4
II: E. Jutland	19.7	14.1	54 .	17	11.6	7.6	52	8.8
III: W. Jutland	17.0	12.5	64	23	10.5	8.0	50	6,2
IV: 8, Jutland	14.7	11.3	49	17	9.3	6.7	64	20.5
V: Funan	17.1	12.7	57	19	10.3	7.8	37	10.0
VI: Zealand	14.0	12.9	57	19	10.5	7.9	42	11.2
VII: Lolland-Faister	27.9	13.3		14	10.9	8.0	>>	10.0
VIII: Bornholm	18.7	23.8	54	10	10.9	7.9	19	5.9
Mean Constant	1728	13.0	56 .:	19	30.6	1,4	- 4	6.21
Copenhagen	11.5	8,6	35	н.	11,0	7.9	36	10.4
Population-weighted mean	15.7	11.9	54	1.0	11.0	7.7	40	21.8

5.5. Sr-90 and Cs-137 in Potatoes from the Entire Country

The samples of potatoes were collected in September from nine of the State experimental farms (cf. fig. 4.1.1) and analysed for Sr-90 and Cs-137 (Y-spectroscopy of bulked samples of the ash).

Table 5.5.1 shows the Sr-90 and Cs-137 contents in potatoes. The mean contents for the country were 3.9 pCi Sr-90/kg or 80 S.U. and 7.1 pCi Cs-137/kg or 1.5 M.U. The Sr-90 levels were approx. 1.2 times as high for Jutland as for eastern Denmark, and the Cs-137 levels were 1.8 times as high.

The mean of the Cs-137/Sr-90 ratios (pCi/kg figures) was 1.8 (in 1968: 2.6, in 1967: 2.1, in 1966: 2.6, in 1965: 6, and in 1964: 9).

	pCi Sr-90/kg	S. U.	pCi Ca-137/kg	M. U.
Tylstrup	2.8 - 0.1	94±3	<u>N</u>	
Studøgård	3.3 ± 0.3	69 [±] 20		
Ødum	1.9 ± 0.1	46±1	9.2	1.9
Askov	5.3 ± 0.1	108 [±] 6	l la companya di seconda di second	1
St. Jyndevad	6.4 ± 0.5	140 [±] 13		1
		ļ	K ·	·
Tystofte	4.6 ± 0.4	47=4		1
Ledreborg	3.3 ± 0.2	64±4	5.0	1.0
Abed	3.5 ± 0.1	39 [±] 1		
Åkirkeby	3.6 ± 0.1	113±5	V	
Mean	3.9	80	7.1	1.5

		Ĩ	a b1	le 5. 5. 1				
Sr-90 a	nd (Cs-137	in	Danish	potatoes	in	1969	

5.6. Sr-90 and Cs-137 in Vegetables and Fruits from the Entire Country

In 1969 as in previous years, vegetables and fruits were collected in September and December from eight greater provincial towns, one in each of the eight zones, and from Copenhagen.

Carrots and onions were collected in September, cabbages and apples in December, and a few samples of peas and gooseberries were collected in June.

The Y-measurements were performed on bulked ash samples :-presenting the entire country (cf. table 5.6.4). Tables 5.6.1 - 5.6.3 show the results and the analysis of variance of the Sr-90 determinations.

The variations between species were highly significant. The highest Sr-90 levels (pCi/kg) were found in onion, the lowest in apple.

		Cabb	age	Ca	rot	Ond	ion	Аррі	le
	Zone	pC1/kg	S. U.	pCi/kg	S. U.	pCi/kg	S. U.	pCi/kg	S. U.
Ŀ	N-Jutland	11-2	21-4	29 [±] 0	111-22	40 [±] 3	108 [±] 9	0.57	12
II:	E-Jutland	10-4	18 [±] 7	19 [±] 3	69 [±] 21	42 [±] 1	109 [±] 9	0,86	11
m.	₩~Jutland	114	18±4	14:1	41 [±] 3	10-2	20*2	2.24	29
IV:	9-Jutland	7±1	11 * 1	11*2	38 ² 6	15-1	42-3	1.68	30
V:	Futen	13-2	22 [±] 2	14-4	55±14	16-1	48-3	0,62	15
VI:	Zealand	94	15 [±] 7	28-2	90 * 6	1622	36-5	0.69	18
VII:	Lolland-Feister	B [±] 3	11±4	10 [±] 2	32 [±] 10	16*2	35*5	1.38	19
VIII:	Bornholm	7±1	13±4	1240	36±1	20-3	55 1 7	1.12	46
Menn		10	16	17	59	22	57	1.17	23
Copen	hagen	16	15	124	40 [±] 10	20-1	55±1	1,54	38
Popula menu	ation-weighted	12	17	18	61	23	61	1.22	24
Relati	ve spalytical error	40%	40%	185	315	13%	15%	-	_

Table 5.6.1

Sr-90 in vegetables and fruits in 1969

Table 5. 6. 2

Analysis of variance of in pCi Sr-80/kg in vegetables and fruits in 1969 (from table 5, 6, 1)

Variation	88D	f	s ²	v ²	Р
Betw. species	49.7376	3	16.5792	59.35	>99.95%
Betw. locations	2.2874	7	0.3267	1.17	-
Spec. xlocations	5.8653	21	0.2793	2.96	>99%
Remainder	2.2618	24	0.0942		t
ŋ = 0.31			.		L

-20

Table 5.6.3

Analysis of variance of ln S. U. in ve	getables and fruits in 1959
(from table 5.6.1)	

Variation	SSD	f	8 ²	v ²	Р
Betw. species	17.4156	,	5.BG52	17.26	>99.95#
Betw. locations	3.4061	7	0.4865	1.45	-
Spec. zlocations	7.0632	21	0.3363	3.48	>99.5
Remainder	2.3199	24	0.0967		
ή = 0.32	•	•	·		i

<u>Table 5. 6. 4</u> Cs-137 in vegetables and fruits in 1969

[Cabbage	Carrot	Onion	Apple	Реа	Goose- berry
pCi/kg	5.3 2 1.0	4.5	5.2	12	7.4	6.7
pCi/g K	2.1 [±] 0.4	2.1	4.7	, 10 ,	2.2	3.2

|--|

Calculated Sr-90 and Cz-137 mean levels in vegetables in 1969

Daily intake in g	Species	pCiSr-90 per kg	s. u.	pCiCs-137 per kg	M. V.
50	Leafy vegetables (cabbage)	12	17	5, 3	2.1
30	Root vegetables (carrot, onion)	20	61	6.8	3, 4
40	Pea (and bean)	9	33	7.4	2. 2
120	Vegetable total	13	33	6.4	2, 5

Table 5. 6. 5 shows a calculation of the mean contents of Sr-90 and Cs-137 in Danish vegetables collected in 1969. The levels were the populationweighted means calculated in tables 5. 6. 1 - 5. 6. 4.

The 1969 levels in Danish fruit were calculated from apple and from gooseberry (10.8 pCi Sr-90/kg, 34 S. U., 6.7 pCi Ce-137, 3.2 M. U.). Apples got a weight factor of 85 and gooseberries one of 15, and the mean levels in fruit were thus 2.6 pCi Br-90/kg and 11.2 Cs-137/kg.

The 1969 Sr-90 and Cs-137 levels in vegetables and fruits were not different from the 1966 levels, (cf. also Appendix C).

5. 7. Sr-90 and Cs-137 in Total Diet from the Entire Country

In 1969 total-food samples representing an average Danish diet according to Hoff-Jørgensen (cf. Appendix B in Risö Report No. 63^{1}) were collected according to the principles followed in 1961-1968. As previously, two groups of towns (A and B, cf. figs. 5, 2, 1 and 5, 2, 2) supplied the samples.

Tables 5.7.1 and 5.7.2 show the results. The population-weighted mean levels were 9.9 S.U. and 21 pCi Cs-137/day in June and 7.2 S.U.

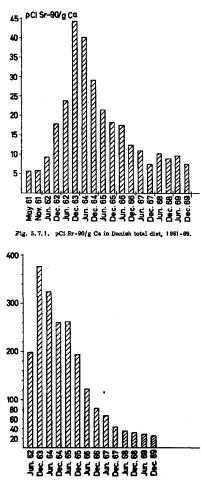

Zone	pCi Sr-90/g Ca	pCi Sr-90/day	g Ca/day	pCi Ca-137/g K	pCi Ca-137/day
I: N-Jutland	10.7 ± 2.1	18.1 [±] 3.4	1.71 ± 0.02	8.4 ± 0.1	29 [±] 1
II: E-Jutland	11.5 ± 0.5	21.8 [±] 1.5	1.89 ± 0.06	8.6 ± 0.2	39 ± 1
III: W-Jutland	11.6 ± 0.5	20.1 ± 1.7	1.73 ± 0.07	9.8 ± 0.3	32 ± 2
IV: S-Jutland	10.2 ± 1.0	17.5 2 1.6	1.71 ± 0.01	10.1 ± 1.0	35 ± 2
V: Punen	9.5 ± 0.1	20.8 ± 2.8	2.17 ± 0.26	9.3 = 0.5	36 [±] 1
VI; Zealand	8.8 - 0.1	17.0 ± 0.1	1.95 ± 0.03	6.5 ± 0.5	19 ± 1
VII: Lolland-Fals	er 7.1 ± 0.1	12.8 ± 0.8	1.80 2 0.10	8.7 ± 0.4	27 ± 3
VIII: Bornholm	8.4 ± 0.4	14.9 ± 0.9	1.78 ± 0.04	4.6 ± 0.2	16 [±] 1
Mein	9.7	17.9	1.84	6.3	28
Copenhagen	6.8 ± 0.1	16,4 ± 0.2	1.87 ± 0.01	7.6	25
Population-weights mean	9.9	18.3	1.87	7.3	21
Relative error due sampling and analy		15\$	876	6#	8%

Table 5. 7.1

Sr-90 and Cs-137 in total Danish diet collected in June 1969

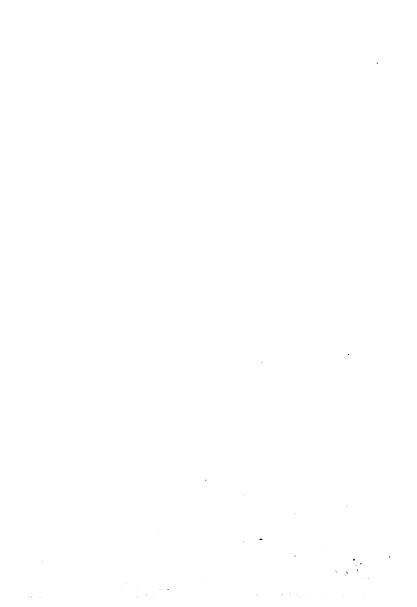
Sr-90 and Cs-137 in Danish total diet collected in December 1969

Zone	pCi Sr-90/g Ca	pCi Sr-90/day	g Ca/day	pCi Cs-137/g K	pCiCs-137/day
I: N-Jutland	9.6 2 0.8	16.0 - 0.6	1.68 ± 0.08	6.5 ± 1.5	26 ± 6
II: E-Jutland	8.5 ± 0.4	14.7 ± 0.9	1.73 ± 0.02	7.4 [±] 0.1	29 ± 1
III: W-Jutland	9.4 ± 0.4	15.2 ± 0.2	1.64 ± 0.07	7.3 ± 0.8	28 ± 3
IV: S-Jutland	9.2 ± 1.5	14.3 ± 1.3	1.56 ± 0.09	6.9 ± 0.5	27 2 2
V: Funen	6.2 - 1.0	10.4 = 1.4	1.70 ± 0.06	5.8 ± 0.6	22 ± 2
VI: Zealand	5.7 ± 0.6	9.2 \$ 0.8	1.62 2 0.01	6.0 ± 0.4	22 ± 2
VII: Lolland-Falster	5.6 ± 0.7	9.2 * 1.4	1.69 \$ 0.00	5.4 ± 1.0	20 ± 3
VIII: Bornholm	5.6 ± 0.7	9.7 ± 1,2	1.73 ± 0.00	5.6 ± 0.9	22 ± 4
Menn	7.5	12.3	1,67	6.3	25
Copenhagen	5.4 ± 0.8	11.4 ± 1.8	2.10 - 0.01	7.4	29
Population-weighted	7.2	12.6	1.79	6.9	26.5
Relative error due to sampling and analysis	16#	125	5%	195	18\$

and 27 pCi Cs-137/day in December. As in the previous years, the variation between locations was significant. The S. U. levels in the total diet were approx. 40% higher in Jutland than in eastern Denmark.

Fig. 5.7.1 shows the zone mean levels (not population weighted) of S.U. in total diet since May 1961. Fig. 5.7.2 shows the daily Cs-137 intake since June 1963.

The 1969 Sr-90 levels in June and December in total diet were approx. 90% of the 1968 levels, while the Cs-137 levels were approx. 70% of the 1968 ones.


From the total-diet sampling it is possible to estimate the mean levels of Sr-90 and Cs-137 in the Danish diet in 1969. For the period January-April 1969 the Sr-90 level in the total diet is assumed to have been equal to that measured in December 1968, Riső Report No. 201¹). For the period May-September we assume the level to have corresponded to that measured in June 1969. The December 1969 figure is taken to represent the last three months of the year. The population-weighted mean of Sr-90 in total-diet samples was 9.1 pCi Sr-90/g Ca in December 1968. Hence the mean content in the total diet in 1969 was 9.0 pCi Sr-90/g Ca or 15.8 pCi Sr-90/day.

In a similar way the Cs-137 content in the Danish diet in 1969 was estimated to be 28 pCi Cs-137/day or 7.9 pCi Cs-137/g K (cf. also Appendix C).

5.8. Sr-90 and Cs-137 in Miscellaneous Foodstuffs

5.8.1. Sr-90 and Cs-137 in Meat

Pork and beef samples were collected in Copenhagen (cf. figs. 5. 2. 1 and 5. 2. 2) in three big shops in March, June, September, and December. Table 5. 8. 1 shows the results. The levels were nearly the same as in 1967 and 1968. Figs. 5. 8. 1.1 and 5. 8. 1.2 show a comparison between milk and meat levels. The ratio PCi Sr-90/kg meat/pCi Sr-90/I milk was 0. 21 (S. E. 0. 02), and the corresponding ratio for Cs-137 was 5. 2 (S. E. 0. 4) for the period 1962-69, (in these calculations meat consisted of 2/3 pork and 1/3 heet) (cf. also Appendix C).

Species	Unit	Mar.	June	Sep.	Dec.	Mean
	pCi Sr-90/kg	1.1	7.0	2.2	1.1	2.8
Porte	pCi Sr-90/g Ca	12	7	14	8	10
POPE	pCi Cs-137/kg	75	68	90	72	76
	pCi Cs-137/g K	20	21	53	55	22
	pCi Sr-90/kg	1.2	1.4	1.5	0.7	1.2
Beef	pCi Sr-90/g Ca	18	11	6	9	11
Deel	pCi Cu-137/kg	60	59	147	34	75
	pCi Cs-1 37/g K	14	15	35	10	19
	pCi Sr-90/kg	1.3	1.4	1.5	i.8	1.5
	pCi Sr-90/g Ca	17	14	20	13	16
Veal	pCi Ce-137/kg	33	67	68	47	54

15

18 15

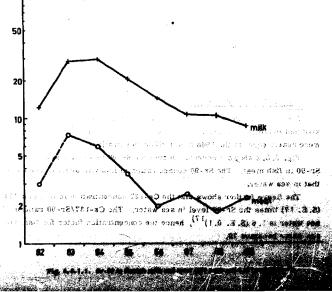

14

Table 5.8.1

Sr-90 and Cz-137 in park, beef and weal from Copenhages in 1869

100 [pCi Sr-90/kg

pCi Ca-137/g K

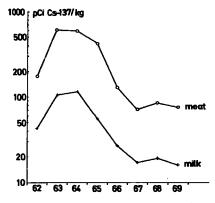


Fig. 5, 8, 1, 2. Co-137 in Danish milk and ment (3/3 pork and 1/8 beef) 1962-69.

5.8.2. Sr-90 and Cs-137 in Fish

Fish samples were collected at three coastal locations, Rødvig, Hundested and Helsingør, in Zealand. Table 5.8.2 shows the results. The levels were nearly equal to the 1968 (and 1967) concentrations.

Fig. 5.8.2 shows a correlation between Sr-90 in surface sea water and Sr-90 in fish meat. The Sr-90 concentration in fish was approx. two times that in sea water.

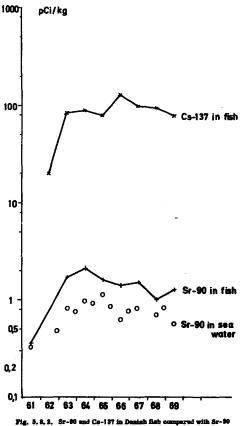
The figure further shows that the Cs-137 concentration in fish was 111 (S.E. 17) times the Sr-90 level in sea water. The Cs-137/Sr-90 ratio in sea water is 1.6 (S.E. 0.1)¹⁷⁾, hence the concentration factor for fish from sea water becomes 70.

62 63 54 55 51 67 66 53

Table	5.	8.	2

Specie	8	Month	pCi Sr-90 per kg	pCi Sr-90 per g Ca	pCi Cs-1 37 per kg	pCiCs-137 pergK
Garfish	meat	June	1.28	1.49	125	31
CHILDER	bone	June	-	0.53	-	-
Plaice	ment	,	0.71	1.41	25	6
Platee	bone	Dec.		0.66	-	-
Mackarel	meat	Dec.	0.03	0.05	12	4
Mockeret	bone	Dec.	-	0.34	-	-
Cod	ment	Dec.	1.56	1.68	126	32
COS	bane	Dec.	-	1.61	-	-
Herring	ment	Dec.	0.95	0.72	28	8
nerring	bone	Dec.	-	0.13	-	-
Salmon	meat	Dec.	2.59	3.57	161	48
SAUBOR	bone	Dec.	-	1.33	-	-
Trout	ment	Dec.	1.22	1.00	44	13
Irodt	bone	Jec.	-	0.61	-	-
Eel	meat	Dec.	1.59	1.17	83	42
20	home	Dec.	-	1.42	-	-
	ment		1.24	1.39	74	23
Mean	bone		-	0.85	-	-

5G-


28 50 H

يسمعة والمبغوب

1. E. S. S. S. S.

n an ann de rende brain a sa An air air ailteacha 196 An An aiste airteacha 196 An

Sr-90 and Cs-137 in fish collected in 1969 in inner Danish waters

in sea water 1961-69.

5.8.3. Sr-90 in Drinking Water

Along with the total-diet samples, 10 l of drinking water was collected in June in each of the 48 towns (cf. figs. 5.2.1 and 5.2.2). The 10 l samples were bulked into eight zone samples, each comprising 60 l of water. Furthermore, 3 - 20 l of water were collected from three different parts of Copenhagen and combined to a 60 l sample. The samples were analysed, by the method used for ground water, for Sr-90, stable strontium and calcium.

Table 5.8.4 shows the results.

Table 5.8.3

	June	
Zone	pCi Sr-90/1	g Ca/l
I: N-Jutland	0.017	ú. <u>0</u> 76
II: E-Jutland	0.019	0.075
ill: W-Jutland	0.002	0.066
IV: S-Jutland	0.001	0.085
V: Funen	0.004	0.126
VI: Zeeland	0.005	0.106
VII: Lolland-Falster	0.003	0.097
VIII: Bornholm	0.042	0.077
Mean	0,012	0.089
Copenhagen	0.015	0.138
Population-weighted mean	0.0112	0.102
Median	0.005	0.085

Sr-90 in Danish drinking water in 1969

Table 5.8.4

87-90 and Ce	-137 in	coffee,	ten and	l egg in	1969
--------------	---------	---------	---------	----------	------

Sample	Month	pCi Sr-90/kg	8. U.	pCi Cs-137/kg	M. V.
Coffee	Dec.	28,5 - 0,3	20 ± 1	56	
Tes	Dec.	25	- 100	591	
Ect	Sep.	2.2	4.4	al 14	36.6°
Let	Dec.	1,3	2.7	10	9.3
· · · · · · · · · · · · · · · · · · ·	~	evels in celler and	ten were (100 7 100
		1 kg boons and 1 kg ate the levels in the			15") of Ball
	<u></u>	a de la companya de l		F.64	1.00

The variation between locations was in all cases highly significant (cf. Risö Report No. 154, p. 72¹⁾. The highest Sr-90 levels were found in drinking water from Bornholm, East Jutland and Copenhagen. As compared with 1967 and 1968 the 1968-Sr-90 levels were mostly lower.

The calcium (and stable strontium) levels were in close agreement with the observations made earlier.

5.9. Estimate of the Mean Contents of Sr-90 and Cs-137 in the Human Diet in Denmark in 1969

5.9.1. The Annual Quantities

The annual quantities are calculated by multiplication of the daily quantities (as stated by E. Hoff-Jørgensen, cf. Risö Report No. 63, table $B^{(1)}$) by 365.

5.9.2. Milk and Cream

The Sr-90 and Cs-137 contents per kg milk were calculated from the annual mean values for dried milk (cf. tables 5.1.1 and 5.1.3). 1 kg \sim 1 1 milk, containing approx, 1.2 g Ca and 1.66 g K. Hence the mean contents in milk were 8.6 pCi Sr-90/kg and 16 pCi Cs-137/kg.

5, 9, 3. Cheese

1 kg of cheese contains approx. 8.5 g Ca and 1.2 g K. The Sr-90 and Cs-137 contents in cheese were calculated from these figures and from the S.U. and M.U. levels in dried milk (cf. tables 5.1.1 and 5.1.3). 1 kg of cheese appeared to contain 61.1 pCi Sr-90 and 12 pCi Cs-137.

5.9.4. Grain Products

Tables 5.9.1 and 5.9.2 show the estimates of Sr-90 and Cs-137 respectively in grain products consumed in 1969. From these tables the activity levels in grain products were estimated at 23.2 pCi Sr-90/kg and 48 pCi Cs-137/kg.

per capita in 1969								
Туре	Fraction from harvest 1968			Fraction from barvest 1969			Total	
	kg flour	pCi/kg	FC1	kg flour	pCt/kg	pCi	pCi	
Rys flour (100% extraction)	21.9	46.0	1007	7.3	56.0	263	1270	
Wheat flour (75% extraction)	32.9	11.8	388	10.9	6.1	66	454	
Grits	5.5	≈ .20√0 ⇔:	ns. 110/s	ryć Jab ats:	23 15 -4 - 2		asa 156	
Total	60.3	25.0	1509	20.0	17.9	557	1862	

T	ub le	5.	9.	1

Estimate of the Sr-90 content in grain products consumed per capita in 1969

Estimate of the Cs-137 content in grain products consumed

Туре	Fraction from barvest 1968			Fraction from harvest 1969			Total
	kg flour	pCi/kg	pCi	kg flour	pCi/kg	pCi	PC1
Rye flour (100% extraction)	21.9	96	2102	7.3	59	431	2533
Wheat flour (75% extraction)	52.9	26	855	10.9	19	207	1062
Grits	5.5	46	253	1.8	23	41	294
Total	60,3	53	3210	20.0	34	679	3889

per capita in 1969

5.9.5. Potatoes

The figures in table 5.5.1 were used, i.e. 3.9 pCi Sr-90/kg and 7.1 pCi Cs-137/kg.

5.9.6. Vegetables

Table 5.6.5 shows the calculation of Sr-90 and Cs-137 in Danish vegetables consumed in 1969. The mean contents were 13 pCi Sr-90/kg and 6.4 pCi Cs-137/kg.

5.9.7. Fruit

The levels in imported fruit in 1969 are assumed to be equal to the mean levels found in oranges and bananas collected in Copenhagen in December 1968, i. e. 5. 6 pCi Sr-90/kg and 15 pCi Cs-137/kg. The mean levels in Danish fruit in 1969 were 2. 6 pCi Sr-90/kg and 11. 2 pCi Cs-137/kg (cf. 5. 6). The daily mean consumption of fruit consisted of 100 g of Danish and 40 g of foreign origin. Hence the mean contents in fruit were 3.5 pCi Sr-90/kg and 12.3 pCi Cs-137/kg.

5.9.8. Meat

From table 5.8.1 the annual mean values of Sr-90 and Cs+137 in meat were calculated; 2.3 pCi Sr-90/kg and 76 pCi Cs-137/kg. (Datash meat consists of 2/3 pork and 1/8 beef).

4	(X.		1.1	Contra aprila D
5.9.9. Fish	1.4	16.0	((<i>i</i> / <i>i</i> /)	away salahave
	- 12 <u>-</u>			

The Sr-90 and Col-137 contents in fish are shown in table 276. . means of these figures encount an analysis of the state o

The South Strange and the states

The second state of the second state of the

5.9.10. Eggs

The activity contents in eggs were estimated from the measurements in table 5.8.4. The levels were 1.8 pCi Sr-90/kg and 12 pCi Cs-137/kg.

5.9.11. Coffee and Tea

The levels, indicated in table 5.8.4, were used. 1/3 of the total consumption consists of tea and 2/3 of coffee. The mean contents were consequently 27 pCi Sr-90/kg and 168 pCi Cs-137/kg.

5.9.12. Drinking Water

The Sr-90 level found in drinking water collected in June (cf. table 5.6.3) was used as the country mean for drinking water, i.e. 0.01 pCi Sr-90/1. The Cs-137 content in drinking water is assumed to be negligible.

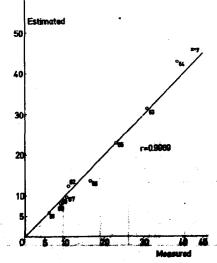
5, 9, 13. Discussion

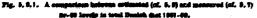
Tables 5.9.3 and 5.9.4 show the estimates of Sr-90 and Cs-137 in the Danish diet in 1969. The figures should be compared with the levels cal-

Table 5.9.3

Annual quantity in kg	pCi Sr-90 per kg	Totzi pCi Sr~90	Percentage of total pCi Sr-90 in food
164.0	B.6	1410	27.2
9.1	61.1	556	10.7
80.5	23.2	1862	36.0
73.0	3.9	285	5.5
43.8	13.0	569	11.0
51.1	3.5	179	3.5
54.7	2.3	126	2.4
10,9	1,8	20	0.4
10.9	1.4	15	0.3
5.5	27	149	2.9
548.0	0.01	5	0.1
an an an a	S. Surger Sec.	5176	konselle her
	quantity in kg 164.0 9.1 80.5 73.0 43.8 51.1 54.7 10.9 10.9 10.9 545.5 548.0	quantity in kg plCl RN-M0 per kg 164.0 8.6 9.1 61.1 80.5 25.2 73.0 3.9 43.8 13.0 51.1 3.5 54.7 2.5 10.9 1.6 10.9 1.4 5.5 27	quantity in kg per kg pcl 8r-90 164.0 8.6 1410 9.1 61.1 556 80.7 25.2 1862 73.0 3.9 285 43.8 13.0 569 51.1 3.5 179 54.7 2.3 126 10.9 1.8 20 10.9 1.4 15 548.0 0.01 5

Estimate of the mean context of Sr-90 in the human diet in Denmark in 1969


The same billing and a set of the set of the


ble	۶.,	8,4	

Type of food	Annual quantity in kg	pCi Cs-137 per kg	Total pCi Co-117	Percentage of total pCi Cu-137 in food
Milk and cream	164.0	16	2624	18.7
Chette	9.1	12	109	0.7
Grain products	80.3	48	3854	27.5
Potates	73.0	7.1	518	3.7
Vegetables	43.8	6.4	280	2.0
Frait	51.1	12.3	623	4.5
Maat	54.7	76	4157	29.6
Eggs	10.9	12	131	0.9
Fish	10.9	74	807	5.8
Coffee and tea	5.5	168	924	6.6
Drinking water	548	Q	0	0
Total			14033	
As the approxima	te intake of p	dassium was 1	365 g, the pCi	Ca-1 37/g K ratio

Estimate of the mean content of Co-137 in the human diet in Denmark is 1969

As the approximate intake of potassium was 1365 g, the pCi Cs-137/g K ratio was approx. 10, 3. The daily mean intake in 1869 was 38 pCi Cs-137 per capita.

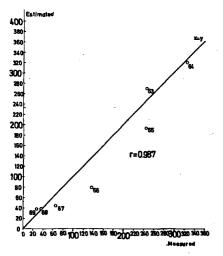


Fig. 5.9.2. A comparison between estimated (cf. 5.9) and measured (cf. 5.7) Cs-137 levels in total Danish dist 1963-69.

culated from the total-diet samples (cf. 5.7). The Sr-90 estimates obtained by the two methods were 8.3 S. U. and 9.0 S. U. respectively, and the Cs-137 estimates were 38 pCi Cs-137/day and 28 pCi Cs-137/day. Figs. 5.9.1 and 5.9.2 show a comparison between the measured and calculated levels in total Danish diet since 1961. The agreement between the two methods was satisfactory.

The relative contribution of Sr-90 from milk products decreased from approx. 46% in 1968 to 38% in 1969, whereas that from grain products increased from 30 to 36%. The contribution from potatoes, other vegetables and fruit was 20%, i.e. the same as in 1968. The relative contribution of Cs-137 in the total diet changed as follows from 1968 to 1969: Milk products showed a decrease from 23 to 19%, grain products an increase from 21 to 28%, and meat a decrease from 32 to 30%.

the sheet is a strain of

6. STRONTIUM-90 AND CAESIUM-137 IN MAN IN 1969

6.1. Sr-90 in Human Bone

The collection of human vertebrae from the institutes of forensic medicine in Copenhagen and Århus was continued in 1969. As in the total-food survey (cf. 5.7), the country was divided into eight zones. The samples were divided into five age groups: new-born ($\langle 1 \mod h \rangle$, infants (1 month -4 years), children and teen-agers (5 - 19 years), adults (<29 years) and adults (\rangle 29 years).

Tables 6.1.1 - 6.1.5 show the results for the five groups.

The levels were lower in 1969 than in 1968 for all age groups. The highest levels in vertebrae were found in the infant and children groups, the

Zone	Age in days	Month of death	Sex	pCi Sr-90/g Ca	Semple no.
I	2	4	7	1.74	MK 29
г	27	4	P	2.35	NG 47
I	4	10	у . У	1.11	MK 122
I	1	9 .	R	0.64	NE 92
11	19	2	к	1.10	NL 14
II	4	2	. .	2.27	ЖХ 19
11	15	3	,	0.55	NK 39
11	22	3	7	0.53	MX 48
II	7	8	P	1.21	NT 63
11	5	7	7	1.00	NK 72
11	5	7	7	1.05	NK 74
п	4	1 .	E N	1,12	NX 75
11	1	9 '	x	1.07	NX 95
п	11	9	×.	1,19	NZ 1.01
п	2	10	R	1,18	MX . 98
II	6	11	X.	1,35	NX 1,25
; 11 , 6	6	9 1	N	1,11	RE .99
· ۳۳۱	an a	- + ⁻ -	1-	0.74	H 65
IV	21	2		0.66	WT 82

Table 6.1.1

Sr-90 in bone from new-born children ((1 month old) in 1969

Zone	Age in years and months	Month of death	Sex	pCi Sr-90/g Ca	Sample no.
T	1.0	4		0.99	EE 36
Î	2	4	R R	1.94	NK 37
1 i	1	3	7	2.52	HE 44
I I	3 1/2 =	6	T	0.91	HE 54
I	6 1/2 m	7	K	5.60	NI 69
II	11/2 =	10	7	2.19	NX 118
г	2 =	10	H	1.13	NX 119
11	1.	1	7	0.36	ЯК 7
11	4 =	2	R	0.99	XXX 6
11	1 1/2 🖬	2	X	0.75	MX 9
11	9 m	1	7	2.24	ME 10
п	5 m	2	7	2.90	MK 11
п	. 7=	2	N	2.24	NE 12
п.	1 .	2	н	0.94	NK 13
III	3 y 10 m	2	7	2.07	HX 15
11	9 =	3	×	0.80	RK 16
11	1 y 2 m	1	7	1,24	HX 18
11	4 =	3	2	1.48	NK 42
п	1 m	3	7	3.44	XX 43
11	5 =	6	X	1.96	NEK 52
11	1 8	6	3	1.60	NX 51
11	3 =	7	P	1.61	RX 55
п	11 =	7	1	2.02	RK 60
ш	4 1	7	X	1.21	NE 65
п	3 m.	в	E	1.27	ИК 66
11	5 =	8	7	1.42	XX 70
II	1 1/2 =	8	M	1.28	NK 71
11 11	2 .	11 11	7	1.27	NK 144
11	2 m 4 m		P X	1.58	NK 142
п п	4 1/2 .	10	R R	1.10	ME 107
п п	4 1/2 m 1 y	10	n X	3.82	MK 107 MK 106
11	1 y 4 y	10		2.01	MK 121
111	- , 3 m	5	,	3.02	
111	2 m	7	R	1.21	NX 56
111	4 y 1 m	7	.7	1.63	XXX 67
ш	4 y 8 m	8	ж	1.73	NE 68
111	3 m	7		1.55	NK 74
V 1	1 7	12	7	2.04	KX 153
VI.	3 a	12	:7	1.97	MX 140
· vi	4 =	11) g	1,29	WE 192
	8 - 1 8 - 1				

Sr-90 in hone from infants (#4 years old) in 1969

Sr-90 in bone from children and teen-agers (£19 years) in 1969						
Zone	Age in years	Month of	Sex	pCi Sr-90/g Ca	Sample no.	
		death 10				
I	13	10	-	1.70	NE 115	
	5		I	2.95	NE 143	
I	11	3	7	1.48	XX 45	
11	7	4	7	2.26	NE 30	
11	5	9	7	3.89	MX 148	
11	16	9	X	3.92	NK 89	
11	15	6	1	1.60	XX 64	
п	19	11] I	2.36	HEC 5	
11	15	3	7	1.36	KK 20	
11	6	1	7	2.27	KK 21	
11	5	9	1	1.85	MK 100	
11	6	8	1	5.10	NE 61	
11	9	9	x	1.47	MK 97	
111	8	9	I	1.86	NX 88	
III	12	9		0.98	MK 90	
III	18	10	1	1.55	ME 105	
III	10	10	-	2.09	MK 120	
111	6	5	x	2.56	NIK 62	
III	16	9	7	0.90	RX 94	
IV	17	10	1	1.78	KK 116	
IV	12	4	7	2.02	XX 28	
¥I	19	11	H	1.92	NE 128	
VI	15	11	1	2.67	NE 126	
VI	17	12	7.	1.55	MK 136	
VI	15	9	1	1.40	ЖК 67	
٧I	17	9	z	1.24	MX 86	
٧I	11	5	1	1.14	BUE 25	
VI	17	10	1	1.58	NE 113	
¥1	17	12	1	1.48	NE 135	
VI	19	4	7	2.38	NE 31	
VI	19	5.5	1 1	1.35	NK 27	
VI	11	10		0.97	NK 114	
VÌ	16	12	7	1.77	912 137	
VI	16	12		3.06	902 141	
71	8			1.04	NX 24	
VI	12	5	,	1.04	ML 26	
VI .	12	7	14	2.25	10 20	
		8	1;	1.02	· · · · · · · · · · · · · · · · · · ·	
71	15		;	3.40	NL 80 NL 82	
VI .	17	. .'	1	2.40	NK DZ	
ينصبح	<u>↓ </u>	1.1	3			
43.5		3474	han -		19	

<u>Table 6.1.3</u> Sr-90 in bone from children and icen-agers (a19 years) in 196

10000-00

8.7

al Ia Kaada

Table	6.	1.	4

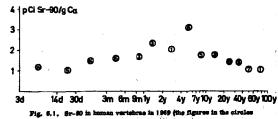
Zone	Age in years	Month of death	Sex	pCi Sr-90/g Ca Ca	Sample no.
11	20	11	K	1.59	EE 117
IV	- 25	7	н	1.55	NK 76
IV	20	9	x	1.75	NX 91
VI.	22	11	X	1.46	MX 129
VI	29	10	r	0.90	NK 127
¥I	25	11	*	2.05	BE 125
VI	29	11	7	1.54	EE 124
V1	28	7	π	0.93	EX 49
VI .	28	1	ж	1.80	EE 4
VI	24	9	х	1.54	<u>FK</u> 65
¥1	24	10	E	1.22	RE 111
VI IV	23	12	7	1.00	HX 13 8
¥I.	22	2	π	1.64	EX 3 2
٧I	29	7	E	1.21	NK 50
VI I	28	9	7	1.78	NE 79
VI IV	27	9	7	1.31	NI 83

Sr-90 in vertebras from adults (£29 years) in 1969

Table 6,1.5

Sr-90 in vertebrae from adults ()29 years) in 1969

Zone	Age in years	Month of death	Sex	pCi Sr-90/g Ca	Sample No.
11	34	3	H	1.49	MK 34
VI	33	1	n	1.01	MX 1
٧I	55	9	R	0.60	NK 78
VI.	46	9	x	0.48	HK 81
VI	34	9	,	1.01	NK 84
VI.	69	1	X	1.05	NK 5
VI.	38	10		1.39	ME 110
VI	46	10		1.40	NX 112
171	49	4	н	1.09	EX 33
VI I	34	12	K K	2.00	NEK 139
VI I	40	12	R.	1.37	NK 134
¥1	54	1	ж	0.99	EE 2
71	35	4	7	1.62	NK 35
T I	55	1 7	ж	1.69	NK 55
71	32	8	,	1.24	NK 56
VI	. 49	9		1.56	NK 77
VI.	. 36	5		1.27	E 25


lowest among new-born (cf. fig. 6.1). Adults between 20 and 29 years showed higher levels than adults of more than 29 years. The adult levels were lower than expected (cf. Appendix C) probably because most of the samples came from the eastern part of the country with the lower diet levels (cf. 5.7).

As in the previous years¹⁾, the mean OR: S. U. (new born's bone)/S. U. (mother's diet) was calculated from tables 6.1.1, 5.7.1 and 5.7.2 and Risö Report No. 201, tables 5.7.1 and 5.7.2¹⁾. Table 6.1.7 shows the result compared with the OR values from previous years.

Table 6, 1, 6	Table	6.1.6	ŧ.
---------------	-------	-------	----

Sr-90 (pCi/g C4) in human vertehrae collected in Denmark in 1969

Age group	Number of samples	Min,	Мах.	Wedlan	Menn
New-born ((1 month)	19	0.53	2.35	1.12	1.16
Infants (44 years)	41	0.36	5.60	1,60	1.78
Children (≝19 years)	39	0.90	5.18	1.78	1.94
Adults (g1\$ years)	16	0.90	2.05	1.54	1.36
Adults (a 30 years)	17	0.48	2.00	1.27	1.25

indicate the member of samples).

		a 2.1
THE	4.1.7	

į

43 1

		i, pay both	1' bone/\$. ¥.	Sector of	Statistics and	panny 1961.	📍 – p< s.	
Tear	1985-1	2964	1965	1°1965 S	1 1987	1958	1967	Jean
+R	0.11	0.09	0.08	0,02	0.13	0.13	0,11	0.106
60	0,64	0,02	0,05	0.05	0.00	0.05	0.05	0.020
51	Sec.	0,43	0,01	6.01	0.01	9.01	0,05	0.008

 $\vec{Y}_{1} \in \{1, \dots, n\}$

6.2. CB-137 in the Human Body

In July 1963, whole-body measurements were initiated at Risö in the low-level counting room in the Health Physics Department (cf. 2, 3 in Risö Report No. 85¹). A control group from the Health Physics Department was selected and has since then been measured three times a year.

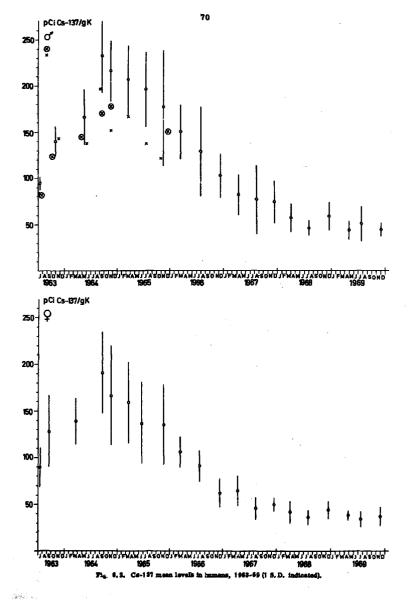
Table 6, 2 shows the results. The control group is indicated by small letters in the table.

The annual mean value of the control group was 40.3 pCi Cs-137/g K. As earlier, we shall consider this figure representative of the mean of the Danish population in 1969. The total-body content of Cs-137 in 1969 for a standard man containing 140 g of potassium equals $140 \cdot 40.3 \cdot 10^{-3}$ nCi = 5.6 nCi Cs-137, i.e. approx. 85% of the 1968 level.

Fig. 6.2 shows the mean M. U. values (with one S. D.) for men and women measured in 1963-1969.

Table 6.2

	W 110	ae-oouy m	casur.	émerice e		m-191 minu ;	pomentar	41 1 909	
No.	Sex	Counting date	Age	Height in cm		concump- tion	M.U. in body	Body burden in nCi Cs-137	g K/kg body weight
# 22	3	18/4	32	164	59	1/4 1	47.5	3,78	1,36
Ъ 28	1	30/4	38	176	62	1/4 1	38,9	5.03	2,15
e 20		21/4	44	174	66	01	36.5	5.21	1.03
4 25	1	17/4	41	171	64	1/2 1	44.2	6,50	2,3
• 21		19/4	31	174	73	1/4 1	38,1	6,46	2,5
8 27	1	28/4	22	164	- 48	1/2 1	33.9	4.71	3.29
i 18		22/4	40	170	66	01	34.2	2,58	1,16
k 26	1	28/4	37	161	55	1/4 1	47.2	5,86	2,22
1 15		23/4	37	172	66	3/4 1	44.0	5.70	2.06
= 13		25/4	37	195	79	1/4 1	41,2	5,15	1,55
n 12		25/4	58	170	71	01	51,5	5,90	2,27
0 17		24/4	44	170	64	1/2 1	44.8	6.87	2.4
p 6	1	6/5	37	178	65	01	55.1	4,18	1,92
q 16		23/4	39	192	83	1/2 1	48.4	4.94	1,25
u 25	1	25/4	30	162	49	1/4 1	39.2	4.55	2.5
v 11		24/4	27	174	74	1/2 1	49.0	4,29	1,42
8 24		30/4	(30	178	79	1/4 1	35.8	4,61	1,75
	1	5/5	34	160	54	1/4 1	32.2	3.72	2,1
. 9	1 5	5/5	30	160	58	3/4 1	35.1	3,60	1,85
1.7		6/5	46	185	73	1/4 1	69,2	11,25	2,25
a 45	1 2	4/7	52	164	60	1/4 1	47.6	5.20	1,12
b 44	1 2	4/7	38	176	62	1/4 1	47.1	4.45	1,5
a 36		10/7	44	174	65	0 1	41,1	5.95	1,46
4 29	1 2	17/7	41	171	63.5	1/2 1	27,5	4,98	2,8
+ 54		16/7	51	174	71	1/4 1	78,1	4,60	1.7


Whole-body measurements of cnestum-1 37 and potassium in 1969

No.	Sex	Counting date	Age	Height in cm	Weight in kg	Daily milk concump- tion	M.U. in body	Body burden in nCi Cs-137	g K/kg body weight
£ 43	£	4/7	22	164	48	1/4 1	36.6	4.53	2.6
1 50	•	16/7	40	170	66	01	97.2	10,27	1,6
E 37	1	22/7	37	161	56	1/4 1	32,2	4.77	2.6
1 39	•	9/7	57	172	"	3/4 1	32,0	5.91	2.0
a 50		1/8	37	195	72.5	1/4 1	62,0	9.49	2,1
m 40	•	8/7	58	170	71	01	37,2	5.41	2,01
o 37	•	10/7	44	170	63	1/2 1	55.5	7.46	2.15
p 47	1	8/7	37	178	65	1/4 1	29,2	2.73	1,44
4 35		19/7	39	192	85	1/2 1	53.6	7.26	1.6
t 31	1	18/7	39	168	56	1/2 1	23.3	2.99	2.3
n 36	1	9/7	30	162	50	1/4 1	24,1	2,66	2.2
v 41	•	7/7	27	174	74.5	1/2 1	47,8	5,18	1.46
x 3 2	1	7/71	45	161	63	01	58.5	3,33	1.57
E 42	•	7/7	30	178	79	1/4 1	34,1	4,78	1.74
= 49	1	31/7	34	160	53	2/4.2	28,7	3,20	2.17
a 51	1	4/8	30	160	58	1/2 1	38,5	3,90	2.70
4 4 4		5/7	46	185	71	1/4 1	43,1	7.42	2.4
a 52	2	12/12	32	164	60	1/4 1	14,8	1.54	1,16
b 71	1	25/11	58	176	62	1/4 1	35.1	5.24	2.55
c 66		28/11	44	174	89	01	36.7	5.72	1,75
4.64	1	1/12	41	171	63	1/2 1	46.1	7.60	2.62
• 53		11/12	31	174	70	1/4.1	49,6	9.14	2.65
£ 57	T.	4/12	22	164	47.5	1/4 1	33.9	5.28	3.29
1 61	-	2/12	40	170	64	01	53.2	8,60	2.53
k 55	£	8/12	57	161	55	1/4 1	34.0	5.53	2.96
1 70	-	26/11	37	172	66	3/4 1	47.1	7.53	2,42
m 66	=	27/11	57	195	78	1/4 1	53.9	10,25	2.44
n 69		26/11	38	170	75	01	40.6	6,95	2,28
p 65	1	38/11	57	178	64	01	37.8	5.44	2.25
q 59	-	3/12	39	192	85	1/2 1	48.0	7.68	1,88
t 54	1	9/12	59	168	57	1/2 1	32.9	4.65	2.48
u 63	1	25/11	30	162	52	1/4 1	\$5.7	5,85	3.4
v 60	•	3/12	27.	174	73	1/2 1	43.4	7.65	2,47
y 62	1	2/12	21	165	52.5	1/4 1	52.9	8,60	7.09
z 67	-	27/11	30	178	80	1/4 1	34.6	5.62	2,03
# 58	1	4/12	34	160	54	1/4 1	45,2	6.99	2,65
£ 56	- 1	3/12	46	187	74	1/4 1	57,8	8,98	3.21

The maximum was reached in .: gust 1964. The figure also shows that the mean level in the male group was approx, 1.3-1.5 times as high as that in the female group. The levels were nearly constant throughout 1969 (cf. also Appendix C).

2013 Mar 2010 202 - 202

િંગ્ કંદનેવાગ **છે. છે** છે

7. STRONTIUM-90 IN SEA WATER IN 1969

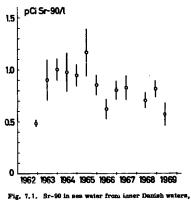
The collection of sea-water samples initiated in 1961-62 was continued in 1969. The samples, all of them surface samples, were collected only in June around Zealand at the locations used in November-December 1962 (cf. Risö Report No. 63¹).

The one-litre samples from the Sound were bulked into three-monthly samples. The 40 locations in the Sound were those used in 1961 (cf. Risö Report No. 41, fig. 7.1.1.2¹⁾).

Tables 7.1 and 7.2 show the results.

Fig. 7.1 shows the mean content of Sr-90 in sea water collected since November-December 1962 at the locations in table 7.1 (cf. also fig. 5.8, 2).

Table 7.1


Latitude N	Longitude E	Water	pCi Sr-90/1	pCi Sr-90/g Ca	Salinity in o/or
56°11' 56°06'	11°45' 11°08'	The Cattegat (Hessel#, Sjællands Odde)	0.47	1.76	50.0
55°46'	11°28'	The Cattegat (Samss)	0.47	1.68	\$0.8
55°27' 55°17'	10°42' 10°49'	The Great Belt (Kerteminde Bey, Nyborg Fjord)	0.51	1.97	19.5
55°01' 54°57'	10°31' 10°42'	The Grant Belt (Svendborg Sound, Rackfolding 16b)	0.66	3.12	15.0
55°10' 54°55'	11°37' 11°28'	The Great Belt (Karrebaksminde, Ask5)	0.56	3.33	14.8
54°12' 54°36'	10°40' 11°09!	The Femera Helt (Kjalds Nor, Fehm orn Belt)	0.66	7.6 1	17.6
54 ^{°°} 33' 54 ^{°°} 46'	11°56' 11°52'	The Baitic Sea (Gedser rev, Nykating Falster)	r 0.70	4.31	12.2
54°53'	12°09'	Griftmand	0.42	3.50	8,9
54°58' 55°08'	12°35' 12°17'	Fakse Bay (Mins Klint, Fakse Bay)	0,62	5.23	¥.2
		Mean	0.57	3.07	15.4
		SD	0.11	1.17	4.5
		SE	0.04	0.59	1.5

Sr-90 in sea water collected around Zealand in June 1988

proved a strange of the second

- California Regional La 199

71

1962-69 (1 S.D. indicated).

Table 7.2

Sampling period	pCi Sr-90/1	pCi Sr-90/g Ca	Selinity in o/oo
July-September	0.76 ± 0.04	4.80 ± 0.20	11.8
October-December	0.41	2.42	12.7

Sr-90 in the Sound in 1969, mean of 40 stations (cf. Risö Report No. 411))

The error term is the S.E. or a double determination.

-

8. SPECIAL SURVEYS

8.1. Meteorological Mast Experiment

As in the previous years, samples of precipitation were collected from the muteorological mast at Risö at eight different heights (cf. fig. 3.1.2.2).

Table 8.1.1 shows the Sr-90 levels in the eight bottles throughout the year and tables 8.1.2 and 8.1.3 the analysis of variance of the natural logarithm of the pCi Sr-90/1 and the mCi Sr-90/km² figures respectively. As previously, the variations between months were highly significant (P) 99.95%).

The variation between locations was probably significant, undoubtedly owing to the great analytical error.

The mean amount of precipitation in the eight bottles on the mast was 321 mm in 1969, i.e. 75% of the level measured in rain bottles at ground level at Risč (cf. table 3, 2, 4, 1). The total deposition was 0, 87 mCi Sr-90/ km^2 , i.e. equal to the level measured at the ground stations at Risč (cf. 3, 2, 4).

8.2. Levels of Sr-90 and Cs-137 in Grass and Milk from the Entire Country

In September grass and milk samples were as previously collected from the State experimental farms (cf. fig. 4.1.1). (As no milk was obtainable from Virungård, this farm was omitted from the sampling,)

Table 8, 2, 1 shows the Sr-90 and Cs-137 contents in grass and milk from the sample collection. The mean Sr-90 level in grass was in September 63 S. U. (in 1968 the September level was 77 S. U.), and the mean level at Risö (cf. table 3, 2, 2) in July-September 1969 was 55 S. U.

The mean milk levels were 5.6 S. U. and 9.8 M. U. In dried milk we found in September 5.8 S. U. and 10.8 M. U.

The OR between mean S.U. in milk and grass was 0.10 in 1969 i.e. nearly the same as in 1965-68.

8, 3, Sr-90 and Cs-1 37 in Human Milk

Donor A was identical to donor A in 1965 (cf. Ris5 Report No. 130, p. $92^{(1)}$) and donor D was identical to donor D in 1964 (cf. Ris5 Report No. 197, p. $88^{(1)}$).

Between a more a m E more a mo

Table	8.	1.	1	

Sr-90 in the meteorological mast 1969

	0	m	7	7 m.		23 m) m	
	pCi/l	mCi/km ⁸	pCi/l	mCi/km ³	pCi/l	mCi/km ²	pCi/l	mCi/km ²	
Jan.	1,15	0,041	1,19	0,048	1,65	0,057	1,50	0,048	
Feb.	3.04	0,017	2,54	0.005	4.17	0,012	10,66	0.016	
Mar.	21,50	0.073	23.30	0.065	22.10	0,062	10.61	0,030	
Apr.	1.72	0.071	2,29	0_086	1,98	0,061	3.21	0,098	
May	3.22	0,173	4,22	0,254	4,25	0,220	5.51	0,286	
June	3.47	0,159	3.26	0,144	3.54	0,153	3.95	0,163	
July	5,19	0,058	6,19	0,059	7.37	0,062	5.73	0.048	
Aug,	1,86	0,101	2,37	0,123	2,38	0,120	2.57	0,125	
Sep.	1,87	0,058	2,16	0,038	1,29	0.022	1,48	0.024	
Oct.	0,56	0,026	0,66	0.032	0_86	0,040	0.54	0,023	
Nov.	0,46	0.025	0,90	0.043	0.60	0.028	0,48	0,022	
Dec.	1.74	0,006	2,48	0,009	1,400	0.009	4.24	0,020	
1969	¥ 2,11	8 9,786	¥ 2,46	2 0,908	₹ 2_47	Z 0,846	2.77	E 0,903	
	37	2 88	365		34	2 22	52	526 m	

74

Table 8.1.2

Analysis of variance of in pCi Sr-90/1 in precipitation in 1969 (from table 8.1.1)

Variation	SSD	f	a ²	v ²	P
Between locations	2.3528	7	0,3361	2.86	>97.5%
Between months	86.6239	11	7.8749	67.02	>99.95%
Remainder	8.6120	75	0.1175		
q = 0.35		•	•	-	•

Table 8.1.3

Analysis of variance of ln mCi Sr-90/km² in precipitation in 1969 (from table 8.1.1)

Variation	56D	1	s ²	v ²	P
Between locations	1.7157	7	0.2451	2.85	>97.5%
Between months	84.8339	11	7.7121	89.78	>99.95%
Remainder	6.4415	75	0.0859		

30	m	13	m	96	m	1.23	m	Me	w)
pC1/1	mCi/km ²	pCi/1	.mCi/km ²	pCi/1	mCi/km ²	pCi/1	mCi/km ²	pCI/1	mCi/km ²
1.44	0,043	1.47	0,048	(1,79)	(0,072)	(1.94)	{0.072}	1,51	(0,048)
9.91	0,008	8,65	0,012	7.79	0.014	19,78	0.010	8,19	0.015
20,80	0,064	14.40	0,045	20.60	0,052	23,60	0,048	19,86	0_075
1,97	0,054	2.70	0,083	8.41	u,062	3.15	0,059	2,42	9,072
5.02	0,256	5,91	0.337	5,55	0,290	4.83	9,190	4.86	0_251
3.57	0,147	4,15	0,180	3.59	0,147	3,80	0,138	3,66	0_154
5.64	0,045	6,46	0,045	8,01	a.056	12.10	0_059	7.09	0,054
2,44	0,110	3.50	0,178	4.05	0,205	2,85	0,108	2,85	0.134
1,48	0,026	1,61	0,026	1,42	6,019	0,92	0_009	1,52	0,025
0.71	0,035	0,58	0.029	0.82	0,034	0,52	0_017	0,66	0_030
0.56	0,026	0.58	0.026	0.63	0.025	0.65	0.017	0,61	0_026
3.14	0,014	2,25	0.008	5.65	0,022	9,92	0_008	3,85	0,012
¥ 2,54	2 0,826	¥ 2,97	1,017	¥ 3.67	(0,975)		(0.679)	2,72	(0,873)
32	5 m	342	-	266	31	222	=	321	-

Table 8. 2. 1

Sr-90 and Cs-137 in grass and milk in Sept. 1969 collected on the State emerimental far

	Milk pCi Sr-99/gCa	<u>Milk</u> pCiCa-137/gK	Milk pCi Cs-137/1	Graas pCi Sr-90/g Ca	Grass pCiCs-137/gK	Grass pCiCs-137/kg	<u>S. U. milk</u> S. U. grass	Milk M. U. /S. U.
Tylstrup	6.0	10.6	18.6	48	9.4	109	0.13	1.6 1.1
Studegård	6.3	6.3	10.6	104	6,4	95	0.06	1.0 2.0
Ødam.	5.0	7.5	12.4	41	3.2	30	0.12	1,5 2.3
Askov	5.2	6.9	11.0	87	3.8	27	0.06	1.3 1.8
St. Jyndsvad	8.7	8.2	13.7	123	5.0	41	0.07	0.9 1.6
Blangstedgård	5.5	11.3	18.6	44	4.2	55	0.12	2.1 2.7
Tystofte	5.8	17.0	27.8	27	0.5	,	0,21	2.9 (34.0)
Virungird	1940 - A.							
Abed	4.2	12.6	19.5	54	12.3	96	0.06 00	2.8 0.9
Åkirkeby	4.0	7,2	11.9	5 8 143 10 1 1		(****) (****)	(0,0 9)	TIP 1.4
Mean	3.6	9.6	36.0	19.5 9 1.15	5.6		16.10 v.9	340 H(1.6)
S. D.	1.4	3.4	5.6	33	3.9	2. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2.68 162	9.3 (0.6)
۱.	0.25	0.35	0.35	0.52	0,65	\$79 x	2 Lad	9.49 (0.40)
	•			संस्थित -	w y (18	<u>。 道:值 48</u>	thun at the here:	M. U. M. U.

M. U. The purchain Mills M. U. The purchain Mills M. U. The Purchain Mills (cf. table 8: 3. 3).

Section Sheet

Section Section Section

al an

The Cs-137 determinations were performed by Y-spectroscopy of the dried milk, and Sr-90 was determined in the ash by the usual method³⁾. Table 8. 3.1 shows the results.

Table 8.3.1

Donor	Location	Period of col- lection		рСі Св-137/g К	g K/I	pCi Sr-90/l	pCi Sr-90/g Ca	gCs/1	Cs-137 Sr-90 (pCi/1)
D	Holbesk	Jan.	4.8	7.9	0.61	0.45	1.15±0.13	0.39	11
A	Copenhagen	Jan.	8.1 [±] 1.2	11.7 [±] 1.8	0.69	0.86	1.87-0.22	0.46	9.4
A	"	Feb.	7.3±0.1	12.3 [±] 0.2	0.59	0.69	1.84 [±] 0.20	0.38	10.6
A	"	Mar.	7 .0 ±0.7	11.8 [±] 1.2	0.59	0.97	2.36 [±] 0.18	0.41	7.2
A		Apr.	8.8 [±] 3.4	12.7 ± 3.5	0.69	1.12	2 .48[±]0. 24	0.44	7.9
A		May	4.9 [±] 0.1	6.8 [±] 0.2	0.72	0.82	1.72 [±] 0.08	0.48	6.0
A	"	June	12.9	17.5	0.74	0.67	1.50 [±] 0.01	0.45	19.2
A		July	8.0 [±] 1.5	13.2 [±] 2.4	0.61	0.45	1.30 [±] 0.03	0.35	17.8
A	"	Aug.	7.6±1.0	12.8 ± 1.6	0.59 [.]	0.46	1.30	0.36	16.5
•	"	Sept.	10.6	15.4	0.69	0.53	1.29	0.41	20.0
A		Oct,	8.4 [±] 2.3	11.5±3.1	0.73				
	The error to	rm is i	he S.E. of	the mean of	(doubl	e or tri	ple determin	ations	

Sr-90 and Ca-137 in human milk collected in Jan. -Oct, 1969

The Sr-90 mean levels in the donor milk in 1969 were 0. 70 pCi Sr-90/1 (S. D.: 0. 24 pCi/l) and 1. 74 pCi Sr-90/g Ca (S. D.: 0.45), and the mean levels of Cs-137 were 8.4 pCi Cs-137/1 (S. D.: 2.1) and 12.6 pCi Cs-137/g K (S. D.: 2.8). If the mean level of the food collected in zone VI and Copenhagen in December 1968 and in June 1969 is considered to be representative of the donors' diet (cf. the observations in 1964 and 1965¹⁾, we can estimate the diet level at 8.4 pCi Sr-90/g Ca or 15.2 pCi Sr-90/day and 7.9 pCi Cs-137/g K or 28 pCi Cs-137/day. The percentage of the daily Cs-137 intake with food that is excreted per litre of milk has been calculated at 30%, the ratio <u>M. U. in human milk</u> was 1.6, and the OR <u>S. U. in human milk</u> was 0.21 (cf. table 8.3.2).

In A die Simon

Table 8. 3. 2

A comparison between Cs-137 and Sr-90 levels in human milk

and diet collected in 1961-69

Period	Percentage of the daily Cz-137 intake excreted per litre of milk	(pCi Cs-137/gK) human milk (pCi Cs-137/gK) diet	OR: <u>S. U. human mill</u> S. U. diet
Nov, 61 - Mar. 62	-	-	0.16
Mar. 62	32 *	1.9*	0.18*
July-Sept. 62	-	•	0,14
Sept. 62	28 *	1.1*	0,08*
Dec. 63-May 64	14	0.9	0.15
May-Nov. 64	21	1.7	0.10
Oct. 64	21 *	2, 3*	0. 09*
Feb Mar. 65	20	1.3	0. 24
JunSept. 65	22	1.6	0.13
Oct, 65	51 [#]	1.7*	0.13*
OctDec. 65	23	1.7	0.11
AprMay 66	17	1.2	0.15
May-Sep. 66	27	1.8	0.10
Oct Nov. 66	41	2.5	0.14
AprMay 67	8	0.5	0,13
June 67	15	0.7	0, 09
Oct,-Dec,68	18	i.1	0, 24
Jan Apr. 69	21	1.3	0, 24
May-Oct. 69	40	2. 2	0, 16
Mean	25	1,5	0.14
S. D.	11	0.5	0, 05
S. E.	3	0.1	0, 01

except for * where the milk donor's diet was collected for one week and analysed. In some of the periods milk was obtained from more than one donor.

8.4. Country-wide Measurement of the Y-Background in 1969

30.0

8.4.1. State Experimental Farms

100

6. A.K.

As in the previous years¹), the Y-background was measured in March, June, September, and December at ten State experimental farms. Table 8, 4, 1, 1 shows the results, and table 8, 4, 1, 2 gives the analysis of variance.

and the second provide stars and the stars with the second stars and the

332°

:201

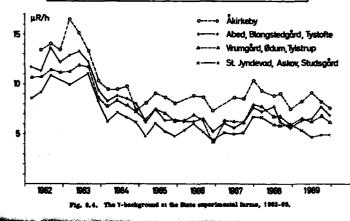
230

Sec.

A STATE OF THE OWNER OF THE OWNER OF THE

"

Table	8.	4.	1	1


	Mar.	June	Sep.	Dec.	Mean
			6.2	5.4	5.4
Tylstrup	4.8	5.1			
Studsgård	4.9	5.2	4.7	4.3	4.8
Ødam	7.2	6.8	7.0	6.1	6.8
Askov	6.5	4.4	6.2	6.1	5.8
St. Jyndevad	4.5	4.4	3.8	4.4	4.3
Biangstedgård	6.8	6.8	7.6	6.4	7.2
Tystofte	8.0	8.0	7.6	7.7	7.8
Virungård	7.5	6.8	7.3	7.0	7.0
Abed	4.1	4.6	7.9	6.5	5.8
Åkirkeby	(8.2)	9.1	8,2	7.6	(8.3)
Mean	6.3	6.1	6.7	6.2	6.3

Y-background	at the State	experimental :	farms in l	I969 (µ]	<i>!/</i> Ю
--------------	--------------	----------------	------------	----------	-------------

Table 8.4.1.2

Analysis of variance of the Y-background at the State experimental farms in 1969 (from table 8. 4. 7. 1)

Variation	\$8D	1	• ²	v ²	Р
Between locations	56.6841	9	6.2982	10.54	>99.95%
Between months	1.6422	3	0.5474	0.92	-
Remainder	15.5353	26	0.5974		

The variation between locations was highly significant (P) 99.95%). As in the previous years, it was evidently not the fall-out that determined the variation between locations.

Fig. 8.4 shows the Y-background in four groups of sampling stations since 1962. The fact that stations with a low fall-out rate and a high clay content in the soil (Abed, Blangstedgård and Tystofte) show higher Y-levels than stations with a high fall-out rate and a low clay content (but a high sand content) (Studsgård, St. Jyndevad and Askov) was discussed in Risö Report No. 1541).

8.4.2. The Risö Environment

Y-background measurements were performed in the five zones round Riso in February, May, August, and November. The measurements were carried out at the locations where grass and soil are collected (cf. figs. 3, 1, 2, 1 and 3, 1, 2, 2 (the coloured map)).

Table 8.4.2.1 shows the results and tables 8.4.2.2 - 8.4.2.6 the analysis of variance.

Y-bacl	eground (_p R	(b) in the :	live sones	around Ris	10 in 1969	
Risö zone (cf. coloured map)	Location	Feb.	May	Aug.	Nov,	Mean
I	1	9.3	6.4	9.2	8.2	8,3
	2	7.5	6.4	8.3	7.8	7.5
-	3	15.2	19.3	12.7	18.9	16.5
-	4	9.0	8.6	10.0	9.1	9.2
-	5	(8.9)	8.3	9.2	9.4	9.0
Rean		10,0	9.8	9.9	10.7	10,2
II	1	6.0	6.1	8.0	6.7	6.7
-	z	7.8	6.4	9.2	6.4	7.5
-	. 3	6.6	5.0	7.1	5.4	6.5
-	4	7.2	7.6	8.3	7.6	7.7
Kean		6.9	6.5	8,2	2 6,0 1.34	7.1
111	1	6.9	6.7	8.9	6.7	2.8
	. 2	6.0	1.4	7.4	6.4	6.6
-	,	6.3	6.4	8.9	6. 4	7.0
-	4	6.6	6.1	7.4	6.4	6.5
Teas		6.5	6.4	8.2	6.5	6.9

Table 8, 4, 2, 1

Y-bac	Ryround (RyR	/h) in the i	live zones	around Ris	sö in 1969	
Risö zone (cf. coloured map)	Location	Feb.	May	Aug.	Nov.	Mean
IV	1 .	6.0	6.1	7.7	6.1	6.5
-	2	6.3	6.4	8.3	7.0	7.0
-	,	6.6	6.4	7.4	7.0	6.9
-	4	6.0	5.4	7.7	6.1	6,3
-	5	6.6	6.1	7.7	6.4	6.7
-	6	6.3	5.8	6.5	6.4	6.3
-	7	7.2	6.1	7.4	6.1	6.7
-	8	7.8	6.4	7.7	6.1	7.0
Nean		6.6	6.1	7.6	6.4	6.7
γ	1	6.6	6.4	6.8	6.1	6.5
-	2	6.3	6.4	7.4	6.7	6.7
-	3	7.2	6.4	5.9	6.4	6.5
-	4	6.6	6.1	7.4	5.8	6.5
-	5	7.5	7.3 -	8.9	7.0	7.7
-	6	6.6	6.4	7.7	6.7	6.9
-	7	6.9	6.4	8.3	7.0	7.1
-	8	8.4	6.7	8.0	7.3	7.6
-	9	7.5	6.4	8.3	7.0	7.3
-	10	6.6	6.1	7.1	6.7	6.6
-	n	7.5	6.7	7.7	7.0	7.2
-	12	7.8	6.4	8.0	6.7	7.2
Kean		7.1	6.5	7.6	6.7	7.0

Table 8.4.2.1

Table 8.4.2.2

Variation	58D	1	• ²	v ²	P
Betw. locations	212.9720	4	53.2430	16.03	>99.95%
Betw. months	2.3313	3	0.7771	0.25	-
Remainder	36.5387	11	3.3217		

Table		٠	•

Analysis of variance of the results from table 3.4.2.1, some II Risö

Variation	550	t	* ²	v ²	P
Betw. locations	3.7262	,	1.2421	3.42	- 1
Betw. menths	7.0357	3	2.3452	6.45	>97.5%
Remainder	3.2713	9	0.3635		

Table 8.4.2.4

Analysis of variance of the results from table 8, 4, 2, 1, zone III Risö

Variation	SSD	t	s ²	v ²	P
Betw. locations	1.7286	3	0.5762	3.11	-
Betw. months	9.0691	3	3.0230	16.30	>99.9%
Remainder	1.6689	9	0.1854		
¶ ≃ 0.06					

Table 8, 4, 2, 5

Analysis of variance of the results from table 8.4.2.1, zone IV Risö

Variation	SED	1	* ² ·	v ²	Р				
Betw. locations	2.3466	7	0.3352	1.72	-				
Betw. months	10.6458	3	3.5486	18.17	>99.95≸				
Remainder	4.1022	21	0.1953		[
a = 0.07									

Table 8.4.2.6

Analysis of variance of the results from table 0.4.2.1, some V Risö

Variation	intion 880 f		• ²	v ²	Р
Bets. locations	8.5051	11	0.7732	4.51	>99.9%
Bels, neutin	* 5,3265	,	3,1094	27,39	799.95#
Retterador	5.9122	- 35	0.1792		
a = 0.06					

A MARINE AND AND AND A

In all locations in zone I and in location 2 in zone II the Y-background was increased because of the various radiation sources at the research establishment. The weighted annual mean for zones III-V was 6.9 µR/h, i.e. a little higher than found for the State experimental farms in table 8, 4, 1, 1. In zone 1 the surplus activity from the research establishment was 10.2 - 6.9 = 3.3 gR/h (in 1967: 4.0 and in 1968: 3.9). A man working in the open in the Risö area 40 hours a week for 45 weeks a year would thus get a surplus dose of 6 mR/year from the research establishment.

The background activity was highest in August (cf. 3, 2, 1 and 3, 3).

Tuble 8.4.3.1

Zone and sector	Jan.	Apr.	July.	Oct,	Mean
Å 2	-	7.4	-	7.3	7.4
▲ 3	6.6	-	6.5	-	6.6
A 4	-	9.4		8.2	8.8
≜ 5	5.4	-	7.1	-	6.3
¥ 6	-	7.8	-	7.8	7.8
A 7	7.2		7.4	-	7.3
≜ B	-	7.4	-	7.0	7.2
4 9	7.2	-	7.7		7.5
Кевд	6.6	8.0	7.2	7.6	7.4
B 1	-	7.2	-	7.0	7.1
B 2	7.5	-	7.4	-	7.5
B 3	~	8.1	-	7.6	7.9
в 4	6.9	-	7.1	-	7.0
B 5	-	9.0	-	7.0	8.0
36	7.5	- '	7.1	-	7.3
97 .	-	7.4	-	7.0	7.2
3 8	8.7	-	.8.0	-	. 8,4
B 9 ·	7.5	7.4	•	7.8	7.6
\$ 10			7.1	-	7.1
Kena	7.6	7.8	7.3	7.3	7.5

ground ("R/h) around a location in Zealand in 1969

Y-background (µR/h) around a location in Zealand in 1969									
Zone and sector	Jan,	Apr.	July	Oct,	Mean				
C 1	6.0	-	5.9	-	6.0				
C 2	-	7.4	-	6.7	7.1				
C 3	6.0	-	6.5	-	6.3				
64	-	7.4	-	7.8	7.6				
0 5	7.5	-	6.5	-	7.0				
C 6	-	8.1	-	6.7	7.4				
C 7	7.6	-	?.7	-	7.8				
¢в	-	7.2	-	7.6	7.4				
C 9	6.9	-	7.1	-	7.0				
C 10	-	7.4	-	7.8	7.6				
C 11	8.7	-	7.1	- 1	7.9				
C 12	-	7.2	-	6.1	6.7				
Rean	7.2	7.5	6.8	7.1	7,2				
D 1	-	8.7	-	5.8	7.3				
D 2	6.9	-	7.1	-	7.0				
D 3	-	8.7	- 1	7.8	8,3				
D 4	6.9	-	6.8	-	6.9				
D 5	-	7.8	{ -	7.B	7.8				
- D 6	7.5	- 1	7.1	- 1	7.3				
D 7	-	7.2	- 1	7.0	7.1				
D 8	7.2	-	7.7	-	7.5				
D 9	-	6.8	-	7.3	7.1				
D 10	.8.7	- 1	8.3	- 1	8.5				
D 11	-	7.2	-	7.0	7.1				
D 12	5.4	- 1	5.4	-	5.4				
Kean	7.1	7.7	7.1	7.1	7.3				

background (uR/h) around a location in Zealand in 1969

8.4.3. A Location in Zealand

As it is important to have knowledge of the preoperational radiationlevels of a nuclear power plant, it was in 1967 decided to initiate such measurements at a location in Zealandiand one in Jutland) which might be used for nuclear power plants in the future.

The area around the location was divided into four zones: A, B, C, and D, with radii of 5, 10, 15, and 20 km respectively. The zones were each

83 Table 8. 4. 3. 1 divided into 12 30[°] sectors, sector 1 being from straight north and 30[°] clockwise, sector 2 from 30 to 60[°] and so on. A measuring location was thus determined by a zone letter and a sector number. Locations in the sea were omitted.

Table 8.4.3 shows the results. The annual mean for all locations was 7.4 μ R/h. An analysis of variance (table 8.4.3.2) showed no significant difference between zones, but probably between sectors (P) 97.5%). Sectors 1 and 12 showed lower levels than the other sectors. April showed higher levels than the other months.

Analysis of variance of the results in table 5.4.3.1										
Effect	Source	SSD	t	8 ²	2 *	Р				
_	Months	5.6829	5	2.8415	6.20	>99.5%				
Main	Zones	1.1680	, ,	0.3893	0.85	-				
	Sectors	11.4634	11	1.0421	2.28	>97.5%				
2-fector	Mon. x Zos.	1.3162	6	0,2194	0.50					
inter-	Zon. zSec.	8.4351	27	r.3124	0.71					
action	Sec. x Mon.	4.3083	20	0.2154	0.49	·				
3-factor interaction	Mon. x Zon. x Sec.	6.1456	14	0.4390						
4	= 0.09									
	ts tested againt									

		Table 8.4.	3. 2				
			-		 	_	

8.4.4. A Location in Juliand

Table 8, 4. 4 shows a similar investigation as in 8, 4. 3 for a location in Jutland. The annual mean for all locations was 7.2 μ R/h, i, e. nearly the same as in 1967 and 1968. An analysis of variance showed higher levels in April than in the other months. Sector 9 showed levels probably lower than the other sectors.

Zone and sector	April	July	OrL	Mesta
A 1	-	7.1	-	7.1
A 2	8.7	-	7.8	8.7
4.3	-	7.8	•	7_8
4.4	5.5	-	6.1	5.8
15	-	7.5	•	7.5
16	5.8	-	6.4	6.1
▲ 7	-	7.1	-	7.1
4 0	6.8	-	6.4	6.6
A 9	-	6.9		6.8
A 10	7.8	- 1	6.7	7.5
A 11	-	7.8	-	7.8
A 12	8.7	-	7.3	8.0
Rean	7.2	7.4	6.8	7.2
91	8.4	-	7.3	7.9
32	-	7.5	- 1	7.5
3 3	7.4	-	7.6	7.5
B 4	-	. 6.5	-	6.5
3 5	8.4	i -	7.3	7.9
36	-	7.8	-	7.6
87	7.8	-	7.3	7.6
38	-	7.1	-	7.1
89	6.8	-	7.0	6.9
3 10	-	6.8	- 1	6.8
811	7.8	-	7.3	7.5
B 12	-	7.5	-	7.5
Kean	7.8	7.2	7.3	7.4

Table 8.4.4.1

Table 8, 4, 4, 1

Y-background (gR/h) are	und a location	in Jutland in 1969
-------------------------	----------------	--------------------

Zone and sector	April	July	Oct.	Mean
C 1	-	6.8	-	6.8
C 2	8.4	-	7.5	7.9
C 3	-	5.8	-	5.8
C 4	8.4	-	7.8	8.1
C 5	-	6.5	-	6.5
C 6	7.4	-	6.4	6.9
C 7	-	7.8	-	7.8
Ce	7.8	-	6.7	7.3
C 9	-	5.8		5.8
C 10	6.8	-	7.0	6.9
C 11	-	6.2	· -	6.2
C 12	8.1	-	7.3	7.7
Réan	7.8	6.5	7.1	7.0
Dl	8,1	-	- 7.0	7.6
D 2	-	6,8	- '	6.8
D 3	7.4	-	7.3	7.4
D.4	-	7.1	-	7.1
D 5	6.5	-	6.7	6.6
D 6	-	6.8	-	6.8
D 7	7.8	-	7.3	7.6
D 8	-	6.2	-	6.2
29	7.4	-	6.4	6.9
D 10	-	6.5	-	6.5
9 11 1	7.4	-	7.0	7.2
D 12	-	6.5	-	6.5
lean	7.4	6.7	7.0	7.0

Table 8.4.4.3

oths nes	5.4514	1	5.4514	14.75	>99.95%
Des					
	1.6121	3	0.5374	1.45	-
ctor#	8.0460	11	0.7315	1.98	95%
n, z Zon	0.3493	3	0.1164	0.49	-
n. z Sec.	13.6284	33	0.4130	1.75	-
. x Mon.	1.6404	10	0.1640	0.69	-
	2.3657	10	0.2366		
	n, x Zon n. x Sec. c. x Mon, n. x Zon, ec.	m. x Zon 0.3493 n. x Sec. 13.6284 x Mon. 1.6404 n. x Zon. 2.3657	n, x Zon 0.3493 3 n, x Sec. 13.6284 33 . x Mon. 1.6404 10 n. x Zon. 2.3657 10	m. x Zon 0.3493 3 0.1164 n. x Sec. 13.6284 33 0.4130 : x Mon. 1.6404 10 0.1640 n. x Zon. 2.3657 10 0.2366	n. x Zon 0.3493 3 0.1164 0.49 n. x Sec. 13.6284 33 0.4130 1.75 x Mion. 1.6404 10 0.1640 0.69 n. x Zon. 2.3657 10 0.2366

Analysis of variance of the results in table 8, 4, 4, 1

8, 4, 5. The Coasts of the Great Belt

The Great Belt is a main shipping route for international traffic through the inner Danish waters. Occasionally this waterway will be passed by nuclear ships. An environmental Y-survey of the coastline along the Great Belt has therefore been initiated. Table 8.4.5.1 shows the results and table 8.4.5.2 the analysis of variance. The levels were a little lower than those found in other parts of the country. The annual mean was 6.0 μ R/h.

It is remarkable that the lowest Y-background levels are found near the sea. This was also the fact in the case of sectors 1 and 12 in 8.4.3 and of sector 9 in 8.4.4.

Table	8.	4.	5.	1

Location	Feb.	May	Aug.	Nov.	Maan
Agersø	6.0	4.5	5.9	6.4	5.7
Om#	5.7	4.5	5.9	6.1	5.5
Rønnes	5.7	4.5	6.7	5.5	5,6
Reerse	6.9	5.8	6.5	6.7	6.5
Helskov	7.5	6.1	8.9	1. 4.2	Sec. 696 - 13
Sprogs	5.4	5.8	6.2	6:4	6.0
Knudshoved	5.7	4.5	6.2	6.1	1 (2066)) 5.4 11-90 36 X
Mainge	6.3	5.1 aleyo	. xo q 6.7	6 2£ 7 6.7 brie 08 -	6.2
Pyns Hoved	6.6	- 2+4	1. 1.A. e	the second	
Timp Stread	6.6	5.4	6.5	7.0	6.4
Hoy, Langeland	5.1	4.5	5.9	\$.5	3,5
Mers.	6.1	5.2	6.6	1.11	

The Y-background $(\mu R/h)$ along the coasts of the Great Belt in 1969

Table 8.4.5.2

Variation	SSD	Í	• ²	v ²	P
Betw. locations	8.9147	7	1.2735	6.28	>99.95%
Betw. mon.hr	11.7800	3	3.9267	19.37	>99.95%
Remainder	6.0805	30	0.2027		

Analysis of variance of the results in table 8.4.5.1

9. CONCLUSION

9.1. Risö Environmental Monitoring

No radioactive contamination of the environment originating from the operation of the research establishment was ascertained outside Risö in 1969. As in the previous years, the variations in contamination levels were quite independent of the distance of the sampling locations from Risö.

9.2. Nuclear-Weapon Debris in Air, Precipitation, Soil, and Ground Water

The mean content of Sr-90 in air collected in 1969 was 0.0014 pCi $Sr-90/m^3$, i.e. equal to the 1968 level. The average fall-out for the State experimental farms in 1969 was 1.0 mCi Sr-90/km² or 40% lower than the 1968 figure, and the mean concentration of Sr-90 in rain water was 2.2 pCi Sr-90/l, i.e. nearly equal to the 1968 level.

The accumulated fall-out by the end of 1969 was approx. 50 mCi Sr-90/ km^2 .

The median level of Sr-90 in Danish ground water was 0.017 pCi Sr-90/1.

The fall-out levels in Jutland, in conformity with the greater amounts of precipitation in that part of the country, were 15-25% higher than the levels found in eastern Denmark.

9.3. Sr-90 and Cs-137 in the Human Diet

The mean level of Sr-90 in Danish milk was 7.2 S. U., and the mean content of Cs-137 was approx. 16 pCi Cs-137/1.

The 1969 Sr-90 and Cs-137 levels were 85% of the levels found in milk produced in 1968.

The Sr-90 mean content in grain from the 1969 harvest was 44 pCi Sr-90/kg. The Cs-137 mean content in grain was 40 pCi Cs-137/kg. The Sr-90 level in grain from the 1969 harvest was approx. 10% lower than the level found in the 1968 harvest, and Cs-137 was approx. two thirds of the 1968 level.

The mean contents of Sr-90 and Cs-137 in Danish vegetables collected in 1969 were 13 pCi Sr-90/kg (33 S.U.) and 6.4 pCi Cs-137/kg respectively, and in fruits 2.6 pCi Sr-90/kg and 11 pCi Cs-137/kg; potatoes contained 3.9 pCi Sr-90/kg and 7 pCi Cs-137/kg.

The mean levels of Sr-90 and Cs-137 in total-diet samples collected in 1969 were 9.0 S. U. or 15.8 pCi Sr-90/day and 28 pCi Cs-137/day respectively. From analyses of the individual diet components the Sr-90 level in the Danish average diet was estimated to be 8.3 S. U. and the Cs-137 intake to be 38 pCi Cs-137/day. The Sr-90 and Cs-137 levels in the Danish total diet consumed in 1969 were nearly equal to the 1968 levels.

Grain products contributed 36% and milk products 38% to the total Sr-90 intake, and 30% of the Cs-137 in the diet came from meat, 28% from grain products and 19% from milk products.

The Sr-90 as well as the Cs-137 diet levels were on the average significantly higher in Jutland than in eastern Denmark.

9.4. Sr-90 and Cs-137 in Humans

The Sr-90 mean content in human bone (vertebrae) collected in 1969 was 1.2 S. U. in new-born children, 1.8 S. U. in infanta, 1.9 S. U. in children and teen-agers, 1.4 S. U. in adults (20 - 29 years old) and 1.3 S. U. in adults of more than 29 years. The 1969 bone levels for all age groups were lower than the 1968 levels.

The mean content c_i Cs-137 in the human body in 1969 was estimated from whole-body countings to be 5.6 nCi (40 pCi Cs-137/g K), i. e. approx. 85% of the 1968 level.

9.5. Sr-90 in Sea Water

The mean content of Sr-90 in the inner Danish waters was approx. 0.8 pCi Sr-90/1 in 1969, i. e. nearly the same as the 1968 and 1967 levels.

and the state of the state of the state of

The Contract of the

9.6. The Y-Background

The Y-background measured at the State experimental farms in 1969 was 6.3 gB/h.

~~

9.7. Summary

The Chinese thermo-nuclear test explosions in 1967-68 have stopped the rapid decrease of the environmental Sr-90 and Cs-137 levels observed in the first years after the test moratorium.

The concentrations of long-lived fall-out nucleides in ground-level air and precipitation collected in 1969 were nearly equal to the levels found in 1968.

In milk produced in 1969 the Sr-90 and Cs-137 levels were a little lower than the 1968 levels. In grain from 1969 the levels were somewhat lower than the 1968 concentrations, but nearly equal to the 1967 concentrations.

The Sr-90 and Cs-137 levels in the total diet consumed in 1968 were nearly equal to the 1968 concentrations.

The Sr-90 concentrations in human bone were lower in 1969 than in 1968.

_						
	Zone	mm precipitation in 1969	mCi Sr-90/km ² in 1989	Accumulated mCi Sr-90/km ² by the end of 1969		
I:	N. Jutland	61 2	1,8	53		
Π:	E. Jutland	600	1.4	40		
ш:	W. Jutland	713	1.5	59		
IV:	S. Jutland	620	1.8	50		
v:	Funen	555	0.8	41		
VI:	Zealand	469	1.2	40		
VII:	Lolland-Faister	516	0.7	- 50		
VIII;	Bornholm	494	1.8	44		
Area-	weighted mean	600	1.4	49		
The amounts of prescriptization were obtained from ref. 6. The full-out rate in 1969 was calculated from table 4, 1, 1 (Askov was included in both some III and some IV) and from the amounts of prescriptization in the somes. The accumulated full-out in the some was calculated from tables 4, 5, 1 and 4, 1, 1, on the assumption that the fir-to bould leaves not the twinn waves for						

minitive of the sones in which the farms were located,

APPENDIX A

Calculated Fall-out in the Eight Zones in 1969

Statistical Info	ormetion

24 - D				AP	PENDEK B				
2 5 -				Statistic	al Information				
ы У. 9 № 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Zone	Area in km ² 14)	Population in thousands 14) 1965	Annual milk production in mega-kg 15} 1967	Annual wheat production in mega-kg 14) 1966	Annual rys production in mega-kg 14) 1986	Annual potato production in mega-kg 14) 1968	Vegetable ^{+#} area in jum ² 16) 1961	Fruit are in km ² 15) 196
e crantation	1. In Juiland R: B. Juiland III: W. Juiland IV: S. Juiland	7, 544 7, 338 10, 764 3, 964	515 784 579 230	1, 117 1, 380 976 515	94	80	853	24	18
÷.	V: Funen	3, 482	425	494				25	38
26 4V	VI: Zeeland VII: Lolland-Felster VIII: Bornholm	7, 542 1, 798 588	2, 055 * 1 2 9 4 9	604 95 62	306	56	119	39	45
	Total	43, 020	4, 766	5, 244	400	1 36	972	88	101

i, 318, 000 peop 000 in the remain

Quy Borticultural holdings were included,

the second se

2 10.00

1990 - E. 1

स्टब्स् <mark>हिन्ही</mark> १८ प्रहूब-जन्द्रताकः मध्य <u>हितन्त्व</u>े १४ अ त्राप्त होस्र होस्ट्रान् १८७० - १४ २४८३ होप्तन्त्वे

(1-1) the year bein 10 wase carenitating mer an butan

Sector a subsection of the

224 . t_{2} 30

> 1960 0.41 z

> > P 3 2.2 27.47 24.36 24.36 2

るな

· w . .

APPENDIX C

The agreement between observed and predicted levels is acceptable for most samples. Grain is an exception; the explanation has been given in 5.3. The predicted Sr-90 levels in milk, total diet and human bone are all higher than the observed levels, perhaps owing to a more rapid decrease in the availability of old Sr-90 from soil than in more recently deposited Sr-90. Allowance for this decreasing soil uptake could possibly be made by the introduction of an exponential correction term to the soil factors in the equations; however, more data are needed for the calculation of such a correction.

Appendix C

in the suman food chain in Denmark 10 1909						
Nuclide and sample	Ob- served	Pre- dicted	Equation used for the prediction			
S. U. in milk	7.2	8.8	S. U. =0. 92 d(i) + 0. 61 d(i-1) + 0.13 A by(i-1)			
M.U. in milk	9.7	9.1	M. ¹⁷ . =3, 65 d(i) + 1, 59 d(i-1) + 0, 057 A by(i-1)			
S. U. in rye	89	102	S. U. = 192 d(j-a) + 0.91 A by(i-1)			
S. U. in barley	64	94	S. U. = 134 d(j-a) + 1.05 A by(i-1)			
S.U. in wheat	80	184	S. U. = 157 d(j-a) + 1.30 A by(i-1)			
S. U. in cats	48	57	S. U. = 87 d(j-a) + 0. 72 A by(i-1)			
pCi Ca-137/kg rye	59	77	pCi Cz-137/kg = 126 d(m-a)			
pCi Cs-137/kg barley	53	60	pCi Ca-137/kg * 97 d(m-a)			
pCi Cs-137/ing wheat	38	53	pCi C=-137/kg = 86 d(m-a)			
pCi Ce-137/kg oats	31	49	pCi Cs-1 37/hg = 80.5 d(m-a)			
pCi Sr-90/kg potatoes	3.9	3,4	pCi Sr-90/kg = 0,17 d(j) + 0.059 A by(i-1)			
pCi Cs-137/kg potatoes	7	8	pÇi Cs-137/kg = 5,45 d(i)			
pCi Sr-90/kg cabbage	10	13	pCi Sr-90/kg = 0.44 d(i) + 0.24 A by(i-1)			
pCi Sr-90/kg carrots	17	15	pCi Br-99/kg = 0, 50 d(i) + 0, 27 A by(i-1)			
pCi Cs-137/kg beef	75	75	pCi Cs-137/kg=34, 9 d(i)+ 2, 8 d(i-1)+ 0, 84 A by(i-1)			
pCi Cs-137/kg pork	76	76	pCi Cs-137/kg=34, 8 d(i)+22, 4 d(i-1)+0, 15 A by(i-1			
S.U. in dist	B.0	9, 5	5. U. = 0. 52 d(i) + 1. 41 d(i-1) + 0. 124 A by(i-1)			
pCi Cs-137/day in dist	28	30	pCi_Cs=137/day=7,8d(i)+11,6d(i=1)+6.5d(i=1)			
S.U. in newborn bine	1.1	1,4	S. U. =0. 168 d + (1-1) + 0, 03! d(1-2)+0. 02! A by(1-1)			
S. U. in scalt vertebras	1.8	1.6	S. U. =0. 0245 (1-1)+ 0. 059 d(1-2)+ 0. 032 A by(1-1)			
M.U. in scalt body	40	40	M. U. = 6, 8 d ^{+ (1-1)} + 5, 8 d(1-2)+ 0, 48 A by(1-1)			

A comparison between observed and predicted levels in the burnan food chain in Denmark in 1969

The prediction models were calculated from data collected 1962-64¹⁸⁾.

d is the fall-out rate in mCi fir-90/km². A is the accumulated fall-out in mCi fir-90/km² (1) is the current year, (1-1) the year before etc. (1-2) is July-Angust and (m-a) is May-Angust.

ACKNOWLEDGEMENTS

The authors wish to thank Miss Anna Holm Pedersen, Miss Bodil Lassen, Miss Birgitte Ladefoged, Miss Karen Nielsen, Mrs. Jytte Lene Clausen, Mrs. Agnethe Sørensen, Mrs. Anna Madsen, Mrs. Laila Leth, and Mrs. Else Sørensen for their conscientious performance of the analyses, and Mr. Peder Kristiansen and Mr. Hans Hansen for collection of the samples and performance of the Y-background measurements.

The collection of samples from the waters round Zealand would have been impossible without the assistance of the Royal Danish Navy.

Our special thanks are directed to the staffs of the eleven State experimental farms at Tylstrup, Ødum, Studsgård, Askov, St. Jyndevad, Blangstedgård, Tystofte, Ledreborg, Virumgård, Abed, and Åkirkeby, who as in previous years have supplied a number of the most important samples dealt with in this report.

REFERENCES

- Risö Reports Nos. 1, 3, 9, 14, 23, 41, 63, 85, 107, 130, 154, 180, and 201 (1957-69).
- R. G. Osmond, M. J. Owers, C. Healy, and A. P. Mead, The Determination of Radioactivity due to Caesium, Strontium, Barium and Cerium in Waters and Filters. AERE-R 2899 (1959).
- F.J. Bryant, A. Morgan and G.S. Spicer, The Determination of Radiostrontium in Biological Materials, AERE-R-3030 (1959).
- John H. Harley and Ira B. Whitney, Manual of Standard Procedures. NYO-4700 (March 1957).
- 5) A. Hald, private communication (1958).
- 6) J. Lippert, Low Level Counting. Risö Report No. 44 (1963).
- Y. Sever and J. Lippert, Nuclear Instruments and Methods <u>33</u>, 347 (1965).
- J. Lippert, Some Applications for Semiconductor Detectors in Health Physics. Proc. of the First International Congress of Radiation Protection, 271-277 (Pergamon Press, 1968).
- 9) Meteorologisk Institut, Ugeberetning om nedbør m. m. 1969.
- 10) L.J. Middleton, Int. J. Rad. Biol. 4, 387-402 (1959).
- Folmer Dam and Agnes Elgström, Vore isdemidler (Svegårds Forlag, Sors, 1968).
- J. Vestergaard, Analysis of Variance with Unequal Numbers in Group. GIER System Library No. 211 (A/S Regnecentralen, Copenhagen, 1964).
- A. Aarkrog, Caesium-137 from Fall-out in Human Milk. Nature 197, No. 4868, 667-668 (1963).
- 14) Statistisk årbog 1966 (Statistical Yearbook) (Copenhagen, 1967).
- Fortegnelse over samtlige mejerier og mejeriorganisationer i Danmark (Århus, 1962).
- 16) Statistisk årbog 1962 (Statistical Yearbook) (Copenhagen, 1963),

- N.T. Mitchell, Radioactivity in Surface and Coastal Waters of the British Isles 1968. FRL5 (1969).
- 18) A. Aarkrog, Prediction Models for Strontium-90 and Caesium-137 Levels in the Human Food Chain. Health Physics (1970) (in press).