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APPLICATION OF STATISTICAL LINEAR ELASTIC FRACTURE 
MECHANICS TO PRESSURE VESSEL RELIABILITY ANALYSIS 

P.E. BECHER, A. PEDERSEN 
Danish Atomic Energy Commission, 

Reactor Engineering Department, Research Establishment Rise, DK-4000 Roskilde, Denmark 

SUMMARY 

An evaluation of the failure probability for a pressure vessel is made on the basis of 
LEFM (Linear Elastic Fracture Mechanics). Failure is identified by actual crack length equal 
critical crack length. 

The probability of failure is the joint probability that there exists a crack (i.e. Kt) greater 
than a given crack (i.e. K) and that the critical crack (i.e. Klc) is smaller than that same crack, 
where K, and K]C are considered for same tirre and location. 

KjC as well as K, are treated as statistical variables with probability density functions 
(p.d.f.), which are functions of material, location and time. 

The variability of Klc (that is the p.d.f. of K,c) is a result primarily of the statistical 
nature of the material properties and to a lesser degree of the increasing neutron-do»e 
experienced by certain parts of the pressure vessel. 

The variability of Ks (that is the p.d.f. of K,) is a result of the following parameters 

(1) Initial distribution of cracks (that is the crack distribution at the start-up of the reactor) 
regarded as a statistical variable, because of the uncertainty in the non-destructive testing 
of the pressure vessel prior to start-up. 

(2) Stresses, regarded as a statistical variable because of the uncertainty in the stress analysis 
and the geometry of the vessel. 

(3) Crack growth by fatigue, which is a result of the normal (with probability equal to 1.0) 
and abnormal (with a p.d.f.) operational transients. The statistical nature of the crack 
growth is due to the statistical variation of the abnormal operational transients. 

(4) Material properties (that is KIC, yield strength and the factors governing the fatigue 
crack growth) regarded as statistical variables. 

The p.d.f.'s of the above mentioned parameters are evaluated on basis of available 
literature. The integrated calculations of failure probability are performed by a computer 
program utilizing the Monte Carlo technique with importance sampling, which gives a greater 
freedom in selection of p.d.f.'s. The influence of periodic in service inspection on the failure 
probability isconsidered. Calculations of failure probability on existing reactors are presented. 
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i. lilTKODrCTIOi: 

Failure probabilities of reactor pressure vessels have been 

devoted considerable attention during the last years. Many efforts 

have been made to translate statistical evidence of conventional 

high pressure vessel integrity and results of surveillance testing 

into failure probabiliries of nuclear pressure vessels. Both in UK 

and in Germany sui-h investigations on vessels comparable with nu

clear vessels were conducted (ref. 1 and 2) covering a total of ap

proximately 100.000 and 1.000.000 vessel years respectively. The 

total number of failures relevant for nuclear vessel services cor-
-3 -k 

respond to failure rates of 10 - 10 per year and catastrophic 

failure rates of 2 x 10 per year in the UK investigations, 

3 x 10 per year in the German ones. 

Another approach to evaluation of pressure vessel failure 

probabilities has developed from the increasing application of re

liability engineering methods in the aircraft and satellite design. 

Most of these applications are concerned with reliability calcula

tions of integrated system performance from knowledge of failure 

statistics of the different components in the systems. However, 

the methodology is applicable also to calculations of the prob

ability that a given failure mode for a specific component is ex

ceeded when the variations of the associated design parameters are 

known. 

Examples of such calculations on pressure vessels are given 

in ref. J>. In these cases the failure criterium is related to 

either the yield strength or the ultimate tensile strength of the 

construction material neglecting possible defects. In the first 

case the failure criterium is hardly to be considered as a failure, 

in fact yielding is accepted for certain loading conditions and in 

certain areas of the vessel. In the second case the failure prob

ability calculated is bound to be extremely low. 

A more advanced example in which defects and crack growth 

are considered is presented in connection with the pipe rupture 



study performed by the General Electric Company (rof. 4). This 

study makes an estimate of pipe reliability by "the distribution 

of time to damage method" (ref. 5). Using Monte Carlo technique 

with importance sampling, the method gives the probability that 

cracks grow through the wall of a cylindrical pipe in a chosen 

time period due to low cycle fatigue. All parameters are regarded 

as distributed variables, each with separate distribution functions. 

The failure probability calculated by this method seems to be in 

better agreement with practical failure experience. 

2. FAILURE MODEL 

In calculations of the reliability of a nuclear pressure ves

sel on a fully probabilistic basis, all the variables used in the 

calculations should be regarded as statistical variables each with 

their own probability distribution (p.d.) function. The number and 

nature of the parameters are governed by the particular failure mode 

to be examined. Furthermore the time-dependency of every parameter 

has to be evaluated, in order to give "probability of failure" as a 

function of time. 

In this paper the type of pressure vessel failure considered 

has been restricted to gross failures of the vessel in excess of the 

type of failures considered as design basis for engineered safeguards 

such as containment and emergency core cooling. 

The only available method considered to give a realistic de

scription of that type of catastrophic failure is the Linear Elastic 

Fracture Mechanics theory (LEFM). In brief, the theory suggests 

that gross failure occurs when the stress intensity factor around 

a cracks with a depth "a" in a nominal stress field S exceedr the 

plain strain fracture toughness KTf,, i.e. when 

Kj = S • tfM • a i" KIC 

where 

M is a constant which depend upon the type of load and the 

geometry of the crack. 



The probability that cracks of different sir.es exist in the 

vessel, the uncertainty about the real stress field and in principle 

also the variation in the constant M due to different crack geom

etries are combined into a probability distribution function for 

the stress intensity factor, K . These values of KT are compared 

with the variation in the fracture toughness K giving the prob
ity 

ability of failur- as: 

Prob. o4- failure = Probability (KT = K
X and K r ^ K

X) 

where 

K assumes all values 0 < K < 00 (.see fig- 1). 

Tn this first application of the method a few simplifications 

have been introduced. 

In calculating the time dependency of the probability rf 

failure, the only contribution considered is crack growth by low 

cycle fatigue. The crack distribution function is thus the only 

parameter which is assumed to vary with time. The variation is de

termined on basis of the initial distribution of cracks, the stress 

transients and the parameters governing low cycle fatigue. The 

most important limitation is that degradation of material properties 

from neutron irradiation is neglected. This will normally be true 

for most boiling water reactors while the phenomena probably should 

be included in calculations on pressurized water reactors. 

Further only the cylindrical part of the vessel free from 

structural discontinuities is treated so far. Admittedly uhe nozzle 

and flange areas of the vessel, subject to higher stresses and more 

severe stress cycles, are the more questionable parts of the vessel. 

The T.T-FM theory, however, is not direct applicable in these circum

stances when the stresses approach the yield stress - at best the 

theory represents a conservative approach in this case and very high 

values of failure probabilities which is calculated on this basis 

might be acceptable. 

Finally, the geometry of the cracks considered has been 

idealized. They are all considered to be semi-elliptic surface 

http://sir.es
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crack will reduce the stress intensity factor with only Yj% for the 

same crack depth. 

Beside these simplifications which may be deleted without 

greater difficulty it has been necessary to introduce an approxi

mation of a more fundamental nature due to difficulties in measuring 

the plain strain fracture toughness KT_ at temperatures of above 10 

- 20 C. These difficulties are directly connected to the discussion 

about the validity of the LEFM concept in the tough region at elev

ated temperatures. However, Corten and Sailor (ref. 6) has suggested 

that the plain strain fracture toughness above the transition tem

perature may be calculated on basis of the upper shelf Charpy-V, C , 

fracture toughness and the yield strength, Sy, at the temperature 

in question as: 

KIC = V5(cv sy - 0.05 Sy 

The distribution function of KTr, is thus readily calculated from the 

distribution functions of C and S„. 

A survey of the relations between the different parameters 

used in the calculations and the resulting failure probability are 

shown in fig. 2. 

In order to carry out such calculations in which different 

types of distribution functions obviously exist, Monte Carlo tech

nique (simulation) is the only possible solution. However, since 

the failure probability expected is in the order of 10~ the number 
8 9 

of Monte Carlo trials would be in the order o* 10 - 10 if a 

reasonable small error should be obtained. With a typical computer 

time of 10 sec/trial direct simulation becomes impossible and im

portance sampling is just as necessary a feature as the Monte Carlo 

technique itself. 

As indicated in fig. 2 the calculations are performed in two 

steps by computer programs named PFM 690 and PFM 683 respectively. 

Separate block diagrams for the two programs are shown at fig. 3 and 

k. 



PFM 69O calculates the crack growth as a function of time on 

basis of an initial crack distribution (or a single crack of a given 

length), crack growth characteristics and stress transients. Re

sulting crack distribubions after different intervals of operation 

are supplied in the form of hi s fco gramt;. 

PFM 683 calculates the probability of failure from a given 

set of distribution functions for cracks, stresses, yield strength 

and Charpy-V fracture toughness. The result is thus the probability 

of failure wheii the vessel is loaded with the stresses used in the 

calculations. Performing such .calculations at different intervals 

of operation with the relevant crack and material data distribution 

functions, failure probability as function of time may be calculated. 

The program may also supply histograms of the resulting f (K ) and 

f (K I C). 

PFM 690 uses direct Monte Carlo simulation while PFM 683 uses 

Monte Carlo simulation with importance sampling. The probability 

distribution functions may be supplied either in the form of a table 

x, f(x) or as a Weibull function given by the three constants m, K 

and x . The importance sampling is accomplished by Weibull functions 

as weighting functions supplied as another set of constants. 

3. DISTRIBUTION FUNCTIONS 

OF INPUT PARAMETERS 

3«1 Initial cracks 

The existence of cracks in a vessel when it is taken into 

operation after initial testing and control depends upon many dif

ferent factors such as fabrication techniques, non-destructive 

testing methods and requirements, reliability of the methods and 

the operators, etc. The general appearance of the crack distribu

tion function is expected to be an exponential distribution with 

respect to crack size. Small cracks with a depth in the order of 

1 - 2 mm exist almost for sure while the probability that bigger 



cracks will not be detected decreases sharply with the crack size. 

Defects in the order of 10% of the wall thickness of the vessel 

i.e. typically 10 - 20 mm in depth should be readily detectable. 

Nevertheless vessels do fail now and then aue to unrevealed big 

cracks approaching critical crack sizes. In ref. 8 Jordan and 

O'Neil suggest that the probability of missing a potential danger-
_2 

ous defect by ultrasonic testing is somewhere between 1 and 10 

Under the impression of these indications the crack distribution 

function shown at fig. 5 was chosen. The probability that a crack 

with a depth of 2 cm will not be detected was specified to 10 

5.2 Crack growth characteristics 

Crack growth data are normally expressed in terms of the 

cyclic range of the stress intensity factor AKT. Fig. 6 shows a 

logaritmic diagram of the generalized fatigue crack growth rate 

law: 

4ff = C ^ dN o 

For a given AK the variation in measurements of the crack 

growth rate may be expressed as a probability distribution func

tion f(da/dN). In the calculations the distribution function is 

considered to be normal in the logaritmic scale and the same func

tion is used for all AK. 

Crack growth data on the pressure vessel steel A533B pub

lished from the HSST program are combined in fig. 7« The data 

represent measurements on different types of material (base plate, 

heat affected zone and electro slag weld material) and in differ

ent environments (BWR, PWR and air). From fig. 7 the constants in 

the crack growth equation and standard deviation of the normal 

distribution function are evaluated. 

5.5 Stress transients 

A typical set of reactor operating transients used to evalu

ate fatigue life of the pressure vessel in a BWR is reproduced from 

a safety analysis report (ref. 10) in fig. 8. The number of tran-



sients indicated are considered to be the most probable number of 

occurrences. 

The effects of thece transients in terms of imposed stress 

cycles on the cylindrical part of the vessel has been evaluated. 

Some of the transients are connected to normal operation 

of the plant, e.g. start up, shut down, pressure tests etc. and 

may be considered to occur with a given frequency characterized by 

a period of not more than one year. 

The other transients are connected to incidents and other 

abnormal events with an occurrence which is statistical by nature. 

Average numbers of the different abnormal transients may be derived 

from practical operational experience and they are considered to 

occur evenly distributed over the lifetime of the plant. 

The operating history of the plant has therefore been div

ided into periods of one year such that the combination of tran

sients is the same in each one year period. The average numbers 

per year for the different transients used in the calculations are 

specified in the table fig. 9 together with the corresponding 

stress cycles. 

Since the number cf abnormal transients are statistical 

figures it is necessary to evaluate the probability that different 

numbers of a particular transient occur in the one year period. A 

binomial distribution function may be used to calculate these prob

abilities if the period is divided into so many intervals that not 

more than one transient of the type considered can occur in each 

interval. 

In the calculations intervals of one month are used. With 

the probability of occurence p in each single interval being equal 

to the average number of transients per month, the probability 

distribution function with respect to the number of occurrences in 

one year will be (ref. 7): 

f (x) = (̂ 2) px (1 - p ) 1 2 " x 

where 

x = 0, 1, 12. 
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In order to calculate the failure probability in a specific 

operating situation, the stress distribution function should de

scribe the real stress condition in the area of the vessel con

sidered. Calculation of the stresses in the plain cylindrical 

part of the veasel can be done very accurate - the real stresses, 

however, may be different. 

Residual stresses from welding may be considerable but also 

deviations in geometry, in the elastic modulus of the material etc. 

may influence the real stresses. For the material considered the 

allowable calculated stress in normal and upset operation is 26,7 

KSI (l8,7 kg/mm ) according to the ASME III code for nuclear pres-
2 

sure vessels. Residual stresses up to 8 KSI (5,6 kg/mm ) may be 

present according to ref. 9« The esidual stresses are considered 

to exist equally probable as tensile and compression. The result

ing real stresses in the vessel cylinder may thus vary from approx. 

18 KSI (12,7 kg/mm2) to 3^ KSI (23,9 kg/mm2) with a distribution 

function as shown at fig. 11. This stress level exists in the 

vessel cylinder during start up and shut down of the plant and in 

the rather frequent abnormal situations in which the pressure ap

proach the s-f-Lj valve set point. 

If other pressure vessel codes were used in which allowable 

stresses are related solely to the yield strength of the material 

the calculated stress level in the example considered would have 

o 

been 28, rj KSI (20 kg/mm"") instead of 26,7 KSI and the stress dis

tribution curve moved to correspondingly higher stresses. 

A special situation which might be interesting to consider 

is the p re-operational pressure test of the vessel. Most pressure 

vessel codes require test pressures which result in stress levels 

in the cylindrical part of a typical reactor pressure vessel of 33 

KSI (23,1 kg/mm 2). 

The yield strength distribution function is also shown in 

i i<j. 11. 



3.5 Yield strength and Charpy-V toughness 

Published data from the HSST program on pressure vessel 

steel plate A533-B have been used to evaluate frequency distribu

tion curves for the yield strength and the Charpy-V toughness. 

Only test specimens from the inner half of the plate were included 

in order to eleminate the variation in material properties due to 

the location within the plate. The distribution functions were 

fitted to Weibull distribution functions in order to allow a 

specific lower limit of the material properties to be introduced. 

The actual distribution functions are shown at fig. 12 and 13« The 

lowest possible values in the distribution functions chosen are 60 

ftlb and 35 KSi for the Charpy-V toughness and the yield strength 

respectively. These lower limits compare very well with 

the code requirements of a minimum yield strength of 42,7 KSI and a 

minimum charpy-V toughness of 50 ftlb based upon measurements from 

rather few specimens. 

k. RESULTS 

On basis o^ the distribution functions discussed above cal

culations of crack growth, crack distribution functions and failure 

probabilities at different intervals of operation have been perfor

med. 

The calculated crack growth proved to be rather small even 

for the bigger cracks. In order to obtain a sufficient acctirate 

calculation of the change of the crack distribution function with 

time very long computer times would therefore be required. There

fore an indirect method for evaluation of the changes of the crack 

distribution function with time were introduced. 

Distribution functions for single cracks are much easier to 

calculate. Results for 1", 2" and 3" cracks are shown in fig. 14. 

Most probable and maximum expected growth of the different crack • 

sizes are easily recognized. For the biggest crack considered (3" 

depth) it appears that the growth after 40 years of operation is 
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in the order of 1/1O". From these figures the most probable and 

maximum expected changes of the initial crack distribution func

tion after 10 and hO years of operation are evaluated as shown in 

fig. 1S. Only failure probabilities corresponding to maximum ex

pected crack distribution functions are included. 

Results from the failure probability calculations are shown 

in the table fig. 16. It appears that a nominal stress of 26 KSI 
P _o 

(18,3 kg/mm ) gives a probability of failure of app. 10 in the 

beginning of the vessel life. Such stress levels exist during 

normal heat up and cool in the cylindrical part of a reactor ves

sel designed in accordance with the ASME III code. An increase of 

the nominal stress with app. 10$, which would be allowable accord

ing to the DIN code with the material considered, increases the 

failure probability with a factor of 7. Even higher stresses are 

allowed during pre-operational hydrostatic testing, typical Z5% 

higher than the stresses during normal operation. The resulting 

failure probability is app. 2 x 10 , i.e. an increase with a fac

tor of 200. 

Further it is seen that the failure probability remains 

almost constant with time. This means, that the contribution from 

crack growth to the time dependency of the failure probability is 

insignificant. Our calculations thus imply that most catastrophic 

failures occur during hydrostatic testing before the vessel is 

taken into operation. An estimate of the failure probability per 

vessel year, as it is normally given, would be 5 x 10~ (2 x 10~ / 

ko). 

Practical failure experience seems to be inconsistent with 

these results. To explain these differencies it should be recalled 

that deterioration of material properties with time is neglected 

and that only crack growth by low cycle fatigue is considered. 

Other possibilities such as corrosion fatigue and stress corrosion 

are not included. Further the stress cycles in the cylindrical 

part of the vessel are actually modest. In other parts of the 

vessel jspeically in some of the nozzles the stress cycles are 

more severe both in terms of frequency and stress range. Finally 
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recent crack growth rate data published from the HSST program 

(ref. 11) indicate that crack growth rates may increase consider

ably if the load cycling is carried out at lower frequencies than 

normally used, i.e. at frequencies more representative of the load 

cycles in a reactor pressure vessel. 

These limitations in the calculations carried out so far 

imply that specific figures of failure probabilities calculated 

should be somewhat lower than figures from practical statistical 

experience. 

Further development of the method will include establishment 

of more accurate distribution functions, inclusion of other factors 

contributing to time dependency and application of the method to 

other parts of the vessel. 
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PFM 683, which calculates 

failure probability 
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Fig. 5̂ 5 Initial crack distribution. 
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Fig. 6.: Statistical model for crack growth 

(log-log diagram). 

Fig. 7.: Crack growth data for A5J3B 

steel (from HSST-program) 



Transient Condition Occurrences 

Normal Startup (100°F/Hr) 120 

jG% Power Operation 1^,600 

Rod Worth Tests *f00 

Loss of Feedwater Heaters 

Turbine Trip at 25# Power 10 

Feedwater Heater Bypass 70 

Loss of .p'eedwater Pumps 10 

Turbine Generator Trip kO 

Reactor Overpressure 1 

Safety Valve Blowdown 2 

All Other Scrams ^^7 

Improper Start of Cold Recirc. Loop 5 

Sudden Start of Cold Recirc. Loop 5 

Normal Shutdown 

100°F/hr Cooldown (5^6-375°F) 

Shutdown Flooding (375-330°F) 

100°F/hr Cooldown (330-10O°F) 118 

In addition, the vessel is expected to be subjected to 133 cycles 

of hydrostatic pressure tests, three of which will be at 125$ of 

design pressure, and 130 at design pressure. 

Fig. 8.: Standard design operating con

ditions (from. ref. 10 ). 



Operating 
condition 

Preoperational 
hydrostatic 
test to 125^ 
of design press 

Start-up/ 
Shutdown 

Hydrostatic 
test to design 
press 

Scram -
Hot Standby 
- Full Power 

Scram -
Shutdown -
start-up 

Loss of re
circulation 
flow 

Blow down 

Category 

Normal 

Normal 

Normal 

Abnormal 

Abnormal 

Abnormal 

Abnormal 

Stress 
psi 

33-000 

26.000 

27.000 

26.000 

30.000 

28.000 

27.000 

No. of 
cycles 
40 years 

No. of 
cycles 
1 year 

No. of 
cycles 
1 month 

3 prior to initial start-up 

240 

120 

240 

60 

5 

2 

6 

3 

6 

1.5 

0.125 

0.05 

-

-

0.5 

0.125 

0.01 

0.0042 

Fig. 9.5 Condensed scheme of stress transients. 
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Fig. 10.: Probability density function for number of 

abnormal transiente. 



f(S) 

Yield strength 

(fig. 9) 
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26 28,5 33 
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Fig. 11.: Probability density function for stresses 
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Fig.12.: Probability density function for Charpy-V. 

Published data from HSST-program. 

f(SY) 

f(SY), 1,57-lO'12(SY-35)8,2 exp(- a'57;1° "(SY-35) 8 , ? 
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Fig.13«: Probability density function. 

Published data from HSST-program. 



In i t i r i l 
c r ack in 

1.0 

2 . 0 

3 .0 

S t a t i s t i c a l 
c o n d i t i o n 

Mof;t p r o b . 

Max. 

Most p r o b . 

Max. 

Most p r o b . 

Max. 

R e s u l t i n g c r a c k 
a f t e r 10 y e a r s 

of o p e r a t i o n 

1.01 

1.02 

2 . 0 1 5 

2.0*15 

3-02 

3-075 

R e s u l t i n g c r a c k 
a f t e r *t0 y e a r s 

of o p e r a t i o n 

1.025 

1.0^5 

2 . 0 5 5 

2 . 0 9 5 

3 .09 

3-155 

f(a) 

i 

1 
1.0 

Fig. 1 if.: Statistical crack growth for 1", 2 " and 3 " cracks 

after 10 and M) years of operation 



0,5 

f(a) - K oxp(-K(a-a )) 
o 

Initial crack distr.; K - 2.^6, 0,1 in 

Max. growth after 10 years; K=2,50i a =0,1 ir. 

Most prob. growth after +̂0 years; 

r K -- iM, a = 0.1 it 
' ' '— o 

Max. growth after kO years: 
K = 2.13. a^ = 0,103 in 

2,0 3,0 in 

0,103 

Fig. 15.: Crack diatribution at 0, 10 and kO years of operation, 

Evaluated on basis of fig. 13. 



Years of 

operation 

0 

10 

4o 

0 

0 

Mean stress 

Ksi 

26.0 

26.0 

26.0 

53.0 

28.5 

Failure probability 

6 

1.24 x 10 

1.89 x 10~~ 

2.45 x 10 

178 x 10~B 

7.8 x 10"b 

95$ confidence 

limits 

0.90 -, x 10-8 

1.58 J 
1 ' ^ l x 1 0 - 8 

2.45 J 
1 - 7 3 l x 1 0 " 8 

-z: 01 I 
r?"~ ' 
1 6 3 1x10-« 
194 i 
7 ' 5 ) X 1 0 - 8 

8.3 J 

f(K) 

4.10 -2 

3-10 

2-10 

-2 

1-10 -2 

f(KI0) 
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Fig. 16. Result of failure calculati ons 


