View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

A formalisation of failure mode analysis of control systems

Taylor, J.R.

Publication date:
1973

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Taylor, J. R. (1973). A formalisation of failure mode analysis of control systems. (Risg-M; No. 1654).

DTU Library
Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13779132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/a-formalisation-of-failure-mode-analysis-of-control-systems(a8a87395-4218-451a-91c7-e6ca5952585f).html

Ris6-M-1654

Danish Atomic Energy Commission

Research Establishment Riso

Ris6-M-1654

ELECTRONICS
DEPARTMENT

A formalisation of failure
mode analysis of control
systems

by

J.R. Taylor

September 1973

R-9-73

Avaiiable on request from: Library of the Danish Atomic Energy Commission
(Atomenergikommissionens Biblictek), Risd, DK-4000 Roexilde, Denmark.
Telephone: (03) 386101, telex: 5072

A.E. K. Risg

Ris@ - M - L1ese

154

Risg - M -

Title and author(s)

A formalisation of faitlure mode anulyvsis

of control syvstems

by

J.R. Tavlor

Qate 1s: October, 197

Department or group

Flectronics Depr,

pages 4 tabies -4 thusematons

Group's own registration
number{s})

R-9-75

Fi 25-204

Abstract

Failure mode analysis teclhniques using graphic aids
to evaluate failure conditions and ¢vents have been
developed over several years. Here i mathematical
di¢scription of conditions and evenis s described, and is
related to a mathematical model of a system. A system-
atic method for deducing event sequernces is developed,
and the method is applied to practical examples.

The main motivation for forn.alisation of failure
analysis is to provide a concept of ~cmpleteness or
thoroughness for a failure analysis. At the same time,
the possibilities for automation of failure analysis are

considered.

Available on request from the Library of the Danish
Atomic Energy Commission (Atomenergikommissionens
Bibliotek), Rise, Roskilde, Denmark,

Telephone: (03) 35 51 01, ext, 334, telex: 5072,

Copies to

Abstract to

Formalisation of failure mode analysis of control systems

CONTENTS
Chapter 1 Introduction [e eneieasnaareaneaas een 1
Chapter 2 System descriptions il i, 2
Formal descriptions of systems00.s . 2
Anexample.....c.veiniiiiniiiiiiiaieiann eneraeea 4
Classification of systems ceeneee
Cause andeffectccv0nvunnn. veenveness 8
Loops in cause effect graphs
Chapter 3 Cause and CONSEQUENCEec.corevnenaccroneson eeeeee 12
Cause- consequence analysiSccevneeree-s 12
Deducing the consequences of an event 13
Formal descriptionofeventsc.c..... .17
Components with memory............... [P ... 18
Complete deduction methods ceeeren vee 21
Chapter 4 Cause- consequence analysisScecucoeonssn .. 23
Eventchaingc.cciiniiiinninenonnnaanans 23
Tracingeventchains veo 25
Multiple failures............cccv.. eessrreesenenen 28
An example of systematic failure
R mode analysis [P sessrenaeseces 30
Failure descriptions ...e.ccc...0... cenasanna ceee. 34
Chapter 5 Practical aspects P
Significance of formal methods eerereeecanes 36
Possibilities for automationof
failure mode analysis-. -
Chapter 6 Conclusionscecccenee Cerisiesessavanseaes 39

REfETENCEB +--vevvnrrrvrvescenrsinrsscassannnrnnceasasernseserens 40

ISBN 87 550 0224 2

Appendix 1

Appendix 2

Appendix 3

Sets, functions and systems

Notationiiines.,

Sets and functions .

Conditionsvvieiviininnincnnsanas

Events

41

41
44
45
47
48

49

52
60

-1 -

Formalisation of fuilure mode analysis for control systems

Chapter 1

INTRODUCTION

Some simple systems work continuously until there is a failure, and then
stop. The quality of such systems can be measured by reliability - the prob-
ability that the system will perform its function for a specified period.

For complex control systems, the situation is not so simple, There are
many ways the system can fail, many recovery actions, and many different
consequences of failure. Failure mode analysis is a way of judging the per-
formance of such systems, by tracing the sequence of events following each
failure, or each group of failures. It is useful, because it can isolate those
cases where the probability of failure is high, or those where the probability
is low, but the consequence is serious. During design, failure mode analysis
can help to pinpoint those areas where design changes are necessary.

Various diagramatic aids are available (see e, g. Nielsen and Runge

1973), which help record the sequence of evénts, and the
probabilities of different conditions, in a system prone to failure, Diagram-
atic aids are a great help, because one of the problems of failure mode analysis
f a complex system, is to imagine all of the different things which could
happen in a system, to decide which is most important, and to record them.,

For very complex systems, such as those involving computers, it is
difficult, even with the aid of diagrams, to keep track of all the information
involved in a failure mode analysis. Such a system may have many thousands
of components, each with a low failure rate. Some will be more critical to
system performance than others. The analysis of such a system is very time
conguming, and may be impossible for practical purposes.

By formalising the task of failure mode analysis, the difficulties become
more clear, and some techniques for reducing the difficulties appear, Hope-
fully, formalisation will allow some of the tasks of failure mode analysis to
be automated, as has been done for electronic logic systems (see e.g. Chang
et alia 1970)

The first step in formalising analysis of failure event sequences, is to
define what is meant by a system, The description should be sufficiently
powerful to include all the components which are encountered in realistic
systems (valves, computers, people). This task is dealt with in chapter 2.

The next step is to define what is meant by a failure event, and to explain

-2 -

how tkz consequences of an event are calculated. This involves describing a
system as a set of interconnected components; and providing a method for
deducing the consequences within or at the output of a component, when an
event occurs at the input of the component. The logic of cause and effect in a
control system is treated in chapter 3.

In chapter 4, these ideas arc applied to sequences of events, taking place
in chains of system components. In chapter 5, the practical consequences of
these ideas are considered.

Notation, and the mathematical background for the methods used is given
in appendix 1. Appendix 2 describes the deduction methods used for event
sequences, Appendix 3 describes the methods for calculating event probability

distributions.

Chapter 2
SYSTEM DESCRIPTIONS

Formal descriptions of systems

Failure mode analysis involves describing what happens within a system
under failure conditions. Such a description could take the form of a mental
image of what happens, or a text description of the sequence of events in the
system, or a diagram showing the sequence of events and progress of con-
tinuous changes. These descriptions are informal, where they are derived
from a mental picture of the system.

A formal description of a system is a description written according to
certain precise rules, and with corresponding precise rules for manipulation
and use. For purposes of failure mode analysis, the two kinds of model are
complementary, The formal description may be more detailed, or less
detailed, than an informal description. But the consequences of the formal
description can be evaluated systematically, and the degree of completeness
of the evaluation can be measured.

Control systems involve many complex components such as computers,
switching circuits, amplifiers, and devices such as motors and turhines, which
are not usually described by one common theory. General systems theory
{Windeknecht 1971
components, and has been used here. Appendix 1 provides an abbreviated

) does provide a tool for describing such varied

version of the the¢ ory.
General systems theory enables a system to be described as a collection

-3-

of interconnected 'black boxes'. The interconnections are called inputs and
outputs, each input and each output is a (possibly vector) function of time.
Different time bases {time sets) can be used to describe different systems.
This is important, because some systems, such as switching networks, are
best described in terms of a discrete time base, others, such as motors, in
terms of continuous time.

A system description provides information about the relationship between
input and output functions of time, Any system can be described by specifying
the set of possible input functions of time, the set of possible output functions
of time, and a mapping between them. In general, there will be an additional
(vector) parameter, the state of the system at some particular time, before
the mapping becomes completely specified. This is a requirement; for a
particular input function of time and a particular system state, there should
be only one output function of time.

A system description is 'complete’, if it allows the output function of a
system to be determined uniquely, given an input function of time. For many
purposes, it is sufficient to have a partial description of a system, for example
one which specifies the output for those inputs normally met in practice.

A system description is 'consistent if for each particular state of the
system at each point in time, every subsequent input function results in only
one output function. All system descriptions should be consistent.

If a system description is inconsistent, it may mean that a mistake has
been made in writing it down. Alternatively, it may mean that the description
is an inadequate model of reality. For example the 'not gate' shown in fig. 1
is connected from output to mnput. The description alongside the mot gate' is
adequate for many purposes, but not in the configuration shown. The descrip-
tion leads to a contradiction because the switching delay of the 'not gate' has
not been described.

-4 -

Not gate description

- Input = x, x(t) = Oor x(t) = 1
Output =y, y(t) = 0or y(t) =1

NO T x(t) = 0 implies y(t) =1
x(t) = 1 implies y{t) = 0

Inter connection description

x(t) = y(t)

x(t) = 0 implies y(t) =1
x(t) = y(t)
x(t) = 0 implies x(t) = 1

Fig. 1 Inconsistent system description

Such a trivial fault as this would be detected easily in most design procedures.
For more complex examples, checking for consistency provides a way of

detecting some types of design errors, and modelling errors.

An example

An example is given here to show how formal notation can be used to
describe simple systems. The system is chosen to be as simple as possible,
while still providing an interesting failure mode analysis problem. Just the
system itself is described here, analysis will be treated later. Fig. 2 shows
a system for supplying compressed air for pneumatic operation of michinery.
The demand is fluctuating and intermittent, but requires a reasonably con-
stant pressure. Hence a compressor with limited capacity is provided, and
a reservoir tr1k is provided to smooth pressure fluctuations, and accomadate
peak demand. For safety reasons, both the peak pressure and the minimum
pressure in the system must be limited, and sensors are provided for safety
reasons.

The example is typical of many installations, except that greater emphasis
has been placed on gafety than is usual,

. Pressure
Switch regulator Safety valve

@ @ Alarm lights

Low & high
pressure
alarm switch

Regulotin§ valve
Motor Compre:!
pressor Accumulator

Fig.1. Schematic diagram of compressed air supply system.

R X
Rel v Motor/ | Fy | Accu- Regula- Valve
elay pump mulator ting actuator
5 valve)

[

Y P, rl R F, P,
On /oft Z | Pressure Safety
switch switch valve

u Block diagram

Arrows Indicate directions of cause /effect.

Fig. 2 A simplified compressed air supply system

-6 -

The input and output functions of the various components in the block

diagram are as follows.

F, air [low from compressor into accumalator
F, air flow from accumalator to regulating valve
F; air flow from safety valve

Fyu air flow from reguiating valve to supply lines
P, air pressure in accumalator

P2 air pressure in supply lines

v motor power supyly voltage

x regulating valve position

z pressure regulator switch signal

u on-off switch position

y on-off switch output

KI—KIﬁ constants

The various components, when working properly, can be described by

motor{compresso_r
F](t) = KI V(t)
relay

y(t) = 0 implies V(t) = 0
y(t) =1 implies V({t) = K,

pressure switch

if P, (t) « K2 then z{t) =
else z(t) =0

on off switch

if uft) = 'on' then y(t) = z (t)
else y(t) = 0

accumalator ¢
P(1) - KSJ;(F]M - Fylx) - Fyle)ds + P (t)
safety valve o

valve closed EP'(t)‘ K4 then Fs(t) =0
valve open else FB(t) = K5 Y P1(t)

Kgm/s
Kgm/s
Kgm/s
Kgm/s

Kg/cm2
Kg/cm2

Volt
cm
off/on
off/on
off/on

-7-
regulating valve 2
) Folt)
i x(t)> 0 then Py(t) = P(t) - Kg —o
and Fy(t) = F,(t)
if x(t) = 0 then Fz(t) =0 7
valve actuator
valve closed: if Pz(t)g K.,/K then x(t) = 0
normal range: K, p> Pz(t)> 7/K8 then x(t) = K, - Kg Pz(t)
fully open: if Pz(t)> K12 then x(t) = K15 8
=Ky -Kg-Kyp

The descriptions given here are much simplified and are only valid within
the normal operating range of the plant. The notation used is a mixture of
arithmetic and logical symbols. Automatic manipulation of the descriptions
is possible.

The statement which describes the relationship between input and output
of a system is called the system predicate,

Classification of systems

It is possible to classify systems according to the mathematical properties
of their descriptions, Two of these classifications are important here because
they require a different treatment in failure mode analysis.

A memoryless system is one in which the output at time t is determined
uniquely by the value of the input at time t. Many control system components
are usually described as memoryless systems e, g. amplifiers. Memoryless
systems have only one possible value for their 'state’.

Memoryless components are especially easy to treat in failure mode
analysis because, in evaluating the effect of an event on the component, only
the effect on output need be considered. There will be no effect on their state.
Also, the effect of the event on output will be a function of the current value
of input alone, and not of the past history of the input.

Very simple descriptions of memoryless systems can be given in stan-
dard form of an equation, giving the output of the system at time t explicitly
in terms of the system inputs at time t.

Time dependent systems are those in which the output at time t is a
function of input at time t, of the state of the system, and of the time t. In
effect, value of time becomes an extra parameter of the state of the system.
A classic example of a time dependent system is an alarm clock. But any

system which ages noticeably with time, that is, has performance parameters

-8 -

which change with time, is most conveniently described as a time dependent
process,

Time dependent systems are difficult to treat in failure mode analysis,
because not just the effect of a single failure event needs to be considered, but
all the different effects that the event can have, corresponding to the different

times at which the event can occur.

Cause and effect

Failure mode analysis is a technique which enables initial failure events,
that is, causes, and their subsegyuent effects, to be studied. To this end, the
models to be used in failure mode analysis must be cause-effect models.

The system descriptions provided by general system theory fulfill one of
the basic requirements for a cause-effect model of a system. Cause must
follow effect in time. General system descriptions must satisfy the condition
that output at any time is a function of previous state, previous input, and
time itself. Thus any change in output must follow a corresponding change in
input, or a change in the system itself, (these are changes in the model of
input and output. In a real system, effect always follows cause, by definition).

A causal model of a system also requires that the direction of cause and
effect be determined, that is, inputs and outputs be distinguished clearly. This
is not so straightforward, as many systems may work in either direction,

For exariple, a d.c. rotating machine may be treated as either a motor or a
generator, and the shaft torque may be considered to be either input or out-
put.

Some system models have an inherent direction of causality, since one
output may correspond to several different inputs. For example, a relay has
many different values of coil current (input) but only two values of contact
resistance (output). Descriptions in which there is a one to one corre'spondence
between input and output functions of time are called 'bifunctionalt or 'one to
one'. The direction of flow of cause and effect is not determined if a system
has a bifunctional description, and must be specified separately.

All energy fiow systems are inherently bidirectional. Taking a *force’ P,
a‘flow' F, and an 'impedance' R, then P = FR, Either force or flow can be
considered a cause, but if one is a cause, the other necessarily is an effect,

Generally a variable in a system is considered to be a cause, if emall
changes in its value correspond to large changes in other variables; and if
large changes in other variables correspond to smell changes in its value.
For example, varying load on an amplifier hardly affects the input signal,
relative to its normal range of variation. But changes in the input signal cause

wide variations in output.

-9

The energy flow aspects of information and control systems are usually
rtglected, and design is such that the direction of cause and effect is clear,
For those parts of a system involving important energy or mass flows, it is
desirable to have a method of assigning directions of causality, as far as is
possible.

A component of a systemn may be described in terms or a set of variables,
without designating any of the variables as input or output variables. If the
system is potentially bidirectional, than it is possible to describe the system
by means of one or more equations (possibly implicit). For each equation,
there will be one dependent variable and one or more independent (cause)
variables.,

System described by equations can be represented in the form of a graph,
with two types of nodes -~ variable nodes and equation nodes. A variable node
is connected by an arc to an equation node, if the variable appears in the
corresponding equation, Fig. 3 shows the compressed air supply system
expressed in this way.

Initially a graph constructed in this way is undirected, and assigning
causal directions to the graph turns it into a directed graph.

First, directions associated with control components such as relays and
amplifiers are marked on the graph. Then causal directions may be assigned
according to the rule that each equation may serve to determine only one
variable, and hence must have just one are leaving it. Similarly each variable
must be determined by just one equation.

These rules serve to assign directions in all cases except those in which
there is a loop in the graph, with each equation in the group being bidirectional
(The associated system is bifunctional). In these cases, the direction of
causality could be considered arbitrary,

Loops in cause-effect graphs

Given a set of equations which specify a graph with a single loop, there
are two possible ways of assigning causality to the loop. (Fig. 4). A rule
which can be used for assigning causal directions, is to make the assignment
in the direction of 'greatest sensitivity’. This means, taking fig. 4 for example,
that causal directions are first of all assigned in both possible ways, ACB
and BCA. Taking the case ACB, the loop is broken after variable B, and the
variation of A for a given variation in x is determined. Then the variation in
A for a given variation in x is determined, with the loop closed. The ratioc of
the two variations is taken., The ratio is also determincd for B, with the loop
broken after variable A, The variable for which the ratio is greatest becomes

- 10 -

Connection Connections
to other system to other systems

Fig. 3 Variable relationship graph for compressed air supply system

Fig. 4 Loop in variable relationship graph

-t -

the first in the causality chain.
This method of assigning causality can be applied to linear continuous

systems (where the ratios in the example become

A 3B
fox| Bconst , 3x | A constant)
dA dB8
@ ax
It can also be applied to other types of system, provided that the concept of
variation is defined appropriately. The method can be generalized to multi-
variable, multiloop sysiems of equations { Bristol 1965).

For cause effect analysis, the way of assigning causaliiy described above
will give an approximation to ihe effect of a cause cn the variables in the loop.
If cause-effect analysis is iterated around the loop, the iteration will con-
verge, to give closer approximations to the true effects.

A special case of this method is to assign causality in the direction of
integration, rather than differentiation, when there is a choice. In this way,
a step function 'cause' results in 'effect' variations which are finite. 1In many
cases, the method of assigning causality described above will give no clear
cut answer, because the ratios of variations involved are of similar magnitude.
In these cases, the concept of causality will also be of little use - the 'cause!
results in a reaction 'effect' almost as strong as the cause itself.

In such ¢ case, it is better to regard the variables involved in the loop
as a subsystem in their own right, and to consider just the inputs and outputs
of the loop as being causally determined. On meeting such a system in failure
mode analysis, the only available method is to rely on 'solving the balance
equations of the loop', without appealing to cause and effect.

Careful attention to the logical basis for assigning cause effect relation-
ships is important in failure mode analysis, because very often models of a
system are appropriate only over their normal working range. In failure
situations, a model may cease to be appropriate, and even the direction of
causality may change, For example, for a pump with output at atmospheric
pressure, flow is considered a dependent variable. If the output is now shut
off by a valve at the pump outlet, flow is fixed, and pump output pressure
becomes a dependent variable

Chapter 3

CAUSE AND CONSEQUENCE

Cause - Consequence analysis

Cause - consequence analysis (D.S. Nielsen 1973) is a technique for
tracing all the conditions which can lead to a failure event; and for tracing the
consequences of that event through the various components of the system. A
method is needed for representing not only the system itself, but also for
representing conditions and events. These will be used for deducing the effect
of an event at the input to a systern component, on the state of the component
itself, and on the output of the system.

A condition can be described by a statement, or predicate, This state-
ment gives the value of some function of time, over a period of time. Alterna-
tively, the statement may not describe the time function completely, but
only some properties of the function which restrict the range of possihle
functions. For example statements that a function is constant over a period
of time; that the value of a function is equal to a given value over a period;
or that a function is monotonically increasing over a period; or that the
function is less than a given value; all of these constitute descriptions of con-
ditions. Such statements can be expressed formally, using the notation of
logic and of set theory. The condition takes the form of a predicate, with a
span of time as a parameter.

Events too can be expressed by means of a predicate, similar in form
to the description of a condition. The event description is associated with a
point in time, and the meaning is that before the event time, the predicate is
untrue. At the event time, the event predicate becomes true. (see fig. 5).

As an example of an event description, the description of the event in
which the pressure in the compressed air reservoir increases over the safety
valve opening pressure is

notP ())K, ~ P ())K,

Thig statement is not a complete deseription of an event in logical terms,
but may be regarded as an abbreviation of the form given later in this chapter.

- 13-

General scheme for events:

not @ . Q

t - time

Q is event predicate

example of an event description:

not{P, (t) Y k) Py ())k,

Fig. 5 Scheme for event descriptions, and an example

Deducing the consequences of an event

The simplest type of component which can be treated by failure mode
analysis is one with a memoryless, time independent description, a single
input, and a single output.

If an event occurs at the input to such a component, then an event may
occur at the output of the component. The description of such an event can be
obtained by a process of deduction.

An example of the deduction process is provided by the safety valve of the
compressed air system. The event at the input to the valve is that in which
air pressure rises above valve trip pressure, The event at the output of the
valve component (Fig. 2) is that the flow through the valve ceases to be zero.

Figure 6b shows this example, and it seems an excessive amount of
description for a conclusion which is almost obvious. The important point is
that the output event description can be dediced according to a standard pro-
cedure. If necessary, this procedure can be automated, using a computer,

-14 -

event description NOoT P I P

event description NOT R R

NOT P and Q implies

P and Q implies

: component description

not R

R

Fig. 6a Simple event deduction across a component 1

event Not P,(t))K,

P,it)) K,

safety valve

if P1(t) ¢K4 then Fs(t) =0
description else Fh(t) =K VP, (0 - P,

event _rﬂ Fa(t) 20

Fig. 6b Example

From the example, it can be seen that there are several possible output

event descriptions, for example

E: Fg4lt) = 0 = not Fa(t) = 0

E:not Fy(t) < K VPTH = Fo(t) = K VP60

Fs(t) 70

- 15 -

Which is the correct output event description ?

The requirements for an output event description are that as much infor-
mation as possible should be retained, concerning the output variables; that
no unnecessary information concerning the input variables should be retained;
and the output event description should not be redundant.

These requirements are satisfied by taking first of all the event descrip-
tion, and the system description and reducing them to a simplified standard
form. Several different forms are possible, depending on the kind of notation
used, but for simple logiral notation, a form known as conjunctive normal form
is used (see e, g. Nilsson 1971).

The result of a transformation to conjunctive normal form is an expression
consisting of 'clauses: linked by 'and' operators. Each term consists of a
comparison, an equality, or the negation of a comparison or equality. The
result of transferring the safety valve example to conjunctive normal form is
shown in fig. 7.

The next step is to draw as general conclusions as possible from the
statements, and this can be done using a process -alled resolution’ (Robinson

1965). If there is an expression of the form
(A or B or C)
and (F or G or (not C))
then an a2dditional clause is added of the form
and(A or B or F or G)
This process is repeated (in its most general form) as often as possible
(see fig. 8).
The next step is to remove as much redundant information as possible.

A and (A or B) , the
clause (A or B) is deleted. The reasoning here is that information represented

This means that if there is an expression such as

by (A or B) is uncertain, may be contradicted by more certain information in
other clauses, and in any case does not indicate the certainty of occurrence
of an event. The process of deleting clauses is called subsumption,

Finally, any clauses dealing with input variables alone may be deleted,
as irrelevant,

The result of this process is a single logical expression giving the con-
ditions at the output of a component at the time of an event, The process is
repeated, with the negation of the input event description, to obtain the de-
scription of the conditions prior to the event.

The only remaining step is to ascertain whether any change ig involved
at the output as a result of the input event. If the description of conditions

-16 -

Definitons

event: — Py(t)) K,

safety valve: if Pl(t) « K, then F3(t) =0
else Fa(t) =Y P]it)

Conjunctive normal form

1 not P (t) (K,

2 and (not Py{t) = K,

3 and (ot P,t) K, or Fylt)=0

4 and (ot P,(t) =K,) or Felt)=0

5 and (P, (t) (K, or P (t) =K, or Fg(t) =V P)

Fig. 7 Cenjunctive normal form for statement of safety valve trip event

(conditions after event)

Resolution between 1 and 5

6 and (P{t) = K, or Fult) VP &)

Resolution between 2 and 6

7 and Fu(t) VP,

Delete clauses 3, 4,5,6 by subsumption

I "ete clauses 1 and 2 - do not affect F,

Which leaves

F3(t) =¥ P]Zt)

Fig. 8 Deduction of an output event description (conditions after event)

- 17 -

after the input event is the same as the description of the conditions before
the input event, then there is no output event, since there has been no change
in output conditions. Similarly, if output condition after the event time is a
logical consequence of the output condition before the event time, then no
output event can be recorded (no new information about the output conditions
has been produced).

Whether the second condition is a logical consequence of the first can be
decided by trying to deduce the second from the first, possibly using an auto-
matic theorem prover (see e.g. Robinson 1965).

As the example shows, the correct output event description for the saftety

valve is
E: Fa(t) =0 — Fa(t) = K5 Y P](t)

Formal description of events

For memoryless control system components, the effect of an event at
the input to the component will be an immediate event at the output of the
component, or no output event at all. For a component with memory, there
may be output events which are delayed, and there may also be a change in
state within the systems. Also, whether an output event occurs will generally
depend on the state of the system at the time of the input event.

For these reasons, the event descriptions must be accompanied by a
statement of the time at which the event occurs, and a more general form of
event description is required. Also some more formal idea of what constitutes
a condition and what constitutes the deduction of an event, is required. No
simple definition can be given of what constitutes a condition description,
but an idea of the range of what is possible is given by the following set of
examples

! condition P holds for funetion f during period t; to t2'
holds (P, t, t,, 1)
=P (t,, ty, f)

tz,

At this point, there are many form the condition description could take.
For example, let T be a get of instants of time, Then the following is a con-
dition

i 1 : it
forallt, tisa T and t‘ ats 12 implies P {t,)
Another possible form ig

forallta, ty taisaT and tbiggT andt, ¢ ta(t, ¢ ty

tmplies f(t,) £ (t,)

- 18 -
In general, if P(t], t,, f) is a condition description, then

for all ta' tb.[isa T and tb isa T

and t) <t ('t (1,]
implies P(ta, tb)

t
a

This constitutes a test to discover if a statement is a condition description.
Given a definition of what constitutes a condition, an event can be defined.

The idea is given by the following set of equivalences

'event I occurs for function f at time t'
= ocecurs (E, t, f)
= E'(t,1)
= E"(P, (t;. t,), Py {t, t,, 1))

= there is a t, such that Pl(tl‘ t, f)
and there isa t2 such that Pz(t, tz, f)

and not (P, (t,, t,.) implies Py(t_, t , f)

where P, and P2 are condition descriptions

An event occurs at time t if an expression of this form can be deduced

from other true statements concerning the system.

Components with memory

A method is required which enables event descriptions to be deduced for
components with memory. There are two major types of problem here, First,
it is desirable for convenience that the deduction of an output event be obtained
by considering only a single input event, rather than considering all possible
sequences of one, two, events, etc. Secondly, it may be possibie to deduce the
occurrence of an output event at some time after the input event, but on the
condition that nothing else happens at the input to counteract the (potential)
output event.

A schenie for deduction of events aceross a component with memory is
given in figure 9,

The notation

A, B
-T
of figure 9. means that given statements A and B, statement C can be deduced,

The state condition S, can be deduced from the state condition S1 , the
input conditions P, and P,, and the component description R. By keeping track
of the different state conditions during a sequence of events, state and output

19 -

changes can be deduced by combining information from a single event and the
state, rather than making deductions from statements about a sequence of
events. This will become especially significant in the next chapter,

The output conditions Qz can be deduced from the state condition SI’ the
input conditions P, and P2, and the component description R.

x
therisa t‘ suchthat P‘l(tl‘ t, x) therisa "2 suchthat Pz(t, tZ' x)
R, therisa 4 R, therisa t2 suchthat

suchthat S, (t,, t,s) Sz(t. tys s)

therisa t3 suchthat Q, (13. t, g therisa t4 suchthat Qz(t'. t4, ¥)

1 (therisa t. suchthat (Pl (tl’ t, x)} and R and (therisa t, suchthat Sl(t‘. t, s}}

therisa tg suchthat Q, (ts, t', y)

2 {therisa t; suchthat Sl(tl‘ t, 8)) and R and (therisa t, suchthat Pz(t, tys x))

therisa t, suchthat Sz(t, ty, 8)

3 (therisa t, suchthat 51“:’ t, s)) gﬂ R and (therisa t, suchthat P,(t, t,, x))

therisa t, suchthat Qz(t‘, 14, ¥}

4 not ((therisa t3

P - input conditions Q - output conditions

R - Component description S - state conditions

Fig. 9 Scheme for deduction of an output event

suchthat Q1 (tS’ t', y)) implies (therisa t4 suchthat Qz(t', 14,)

- 20 -

In general, the output condition will take the form of a statement about y which
is dependent on the initial state condition S, and on the length of time t to

ty for which the input condition holds. Once again the rules of resolution
(augmented with special rules for %, =, etc.), subsumption and nonrelevance

can be used to derive an output description. (Appendix 2).

Example

As an example of a deduction accross a component with memory, the
pressure sensitive switch can be used. The description assaciated with fig., 2
is oversimplified. Such components usually incorporate hysteresis, to avoid
over frequent switching of the air compressor. The description incorporating

hysteresis is:
pressure switeh

if P](t) (KS then s(t) = 1
and if Pi{t)) K, then s(t) = 2
andi_f (Kg P P‘I(t) - K10
and there i_sit] such that (t1 (t
and forall t', t,(t' { t implies s(t') = 1))
then s(t) = 1
and if (KS < P, (t) « Ko and therisa 4 such that
(t,{t and forall t', t; { t' { t implies s(t') = 2))

then s{t) = 2

and if s{t) =1 then z(t) = 1
g_n_di_f s(t) =2 then z(t) = 0

P

The idea of this definition is to give the output of the pressure switch in
terms of a state, S{t) and a condition on the input, P‘(t). The descriplion is
somewhat unwieldy because of the difficulties in expressing facts about con-
tinuous functions in a simple system of logic. For general use, a more con-
cise notation is desirable. This is used in figure 10, where the notation

s(t-) is used to represent the state of the system an instant before the event
time t.

The event description deduced for the pressure switch is
s(t-) = 2 and if P(t+) (K9 then s(t+) = 1

The event deduced is a state change event, and is dependent on certain con-
ditions being fulfilled by the input function P](t). To achieve this description

a new rule was needed - there were two possibilities for the output, s{t+) =

2 or s(t+) = 1. One of these corresponded to an event, the other did not. Work-
ing backwards, the input conditions for an event to occur, were derived. The

result is the description of a 'conditional event'.

Camplete deduction methods

The methods used is dedueing cutput events so far are resolution and
subsumption, These methods apply to expressions involving 'forall', 'there
is a', 'and', ‘or', 'not', 'implies'. Extra rules must be used for handling
'greater than', 'is a' and 'equals’ operators, and here, such rules have been
used on an ad hoc basis.

Resolution and subsumption, when applied to expressions involving
logical symbols only, are 'complete'. The result of applying resolution is to
find all possible deductions of a certain form from an initial set of clauses.
This means that the corresponding output event deseription is certain to be
found.

For expressions involving numeric and set operators, such complete
methods are not generally possible, However, incomplete methods will
generally give satisfactory results, more efficiently.

.22 -
Pressure switch

i P (t) (Ky then s(t) = 1
and if P, {t) }K;q then s(t) = 2
ﬂlﬂi_f(Ks‘P](t) éKlosn_ds(‘l:-) = I)th_er_ls(t) =1
in_di_f(l(sﬁ Pl(t) sKmﬂi_s(t-) =2)£e£s(t) =2

event description
Pi{t-)) Ky
and P](t+) (Ko

Conjunctive normal form

not P (t) {Ky or s(t) =1

or s{t) =2

and Py () (K or Py(t) <K or

m_dP](t)(Kg gﬂt?l(t) =K, or not s{t-) = 1 or s(t) = 1

0

gﬂgP](t) K, or not P](t) K ﬂ‘n_ots(t-)=1(£s(t)=1

9 i0

and P,(t) Xy ornot P,(t) = Ky or not s(t-) = 2 or s(t) = 2
and P](t) K9 or not P](t) KIO or not s(t-) = 2o0rs(t) =2

andnot P(t-) Kyq

andnot Pt-) = K,

EE P(t+) K]O
Resolve 7 and 2: and Pl(t) = KIO or s(t-) = 2
Resolve 8 and 10: and s{t-) = 2

Resolve 9 and 6 and P(t+) K9 or not s{t-) = 2 or s(t+)
Resolve 11 and 12; and P(t+) K9 or s(t+) = 2

Resolve 13 and 1; and s(t+) = 1 or s(t+) = 2

14

11 and 14 together provide an event description, but a better form can be

obtained by combining with 1

s(t-} = 2 and if P{t+)(Ky then s{t+) = 1

Fig. 10 Deduction accross a component with memory - pressure switch

example

.23 -

Chapter 4

CAUSE - CONSEQUENCE ANALYSIS

Event chains

The methods described in the last chapter enable the consequences of a
single event on a single component to be evaluated. Consequence analysis is
a method of tracing through networks of components, calculating output events
for one component, and then treating these as input events for the next com-
ponents in the network. In this way, branching chains of events can be re-
corded. (Fig. 11). The start of such a chain of events will be a simple initial
event in the normal operation of a piece of equipment; or a failure event.

The occurrence of some events will depend on the conditions prevailing
within a component, or within the rest of the system, when the event occurs.
In some cases, complete 'trees' of coincident conditions must be built up,
in order to analyse under which conditions a particular event can take place.
The process of building these trees is called 'cause analysis'.

In failure mode analysis, one is interested in discovering if there are any
conditions of normal operation which can cause a failure event; and in finding
which failure events lead to further serious damage events.

Failure events may usefully be divided info three classes. 'Spontaneous
failure events' occur as a result of no recognised cause, on a statistical
basis. 'Situation induced failure events' occur as a result of chance coinci-
dence of otherwise normal conditions within a system. 'Cascade failure events'
occur as the result of other previous failures.

For failure mode analysis, we need a model of all the components in a
system, under normal operating conditions. A description is also required of
the ~onditions under which the model is accurate, and the conditions under
which another, failure model is required.

A model is also required to express the seriousness or cost, of damage
to a component. For example, for the compressed air system, the compressed

air reservoir dangers can be represented by

if Pi{t) 2 xK, then cost is high

4

The objective of a failure analysis will be to find those possible failure events
with a high cost.

Fig, 11,

- 24 -

Block diagram
of hardware

'Unwinding' an event sequence chain from a hardware block diagram,

[YR,

- 25 -

Tracing event chains
il AL LN

Formal methods of cause - consequence analysis can be regarded as trans-
lating from a block diagramdescription of a system to an event sequence dia-
gram, by a process of 'unwinding'. A notation for event sequence diagrams
is given in figure 12 (Probability rules for each box are also given, see appen-
dix 3).

The simplest case of event tracing is for a block diagram with a set of
components connected in series (fig. 13). For each possible initial event
(spontaneous or situation induced) there will be a simple chain of events. How-
ever, if thers are any components with memory, then the event chain may
branch, depending on the state of the component, At any point an event chain

may simply stop, because there are no further events to be observed.

event description box

or box for conditions

and box for conditions

NOT BOX FOR CONDITIONS

Fig. 12.

K.
cost per
event=¢

Fig. 12, Continued

- 26 -

event A or event B occurs

depending on condition C

condition C is the condition that
event A has happened

delay involved in passing from

one event to another

expression for cost of a failyre

event.

- 27 -

Block diagram Event sequence diagram
1 Initial event
incomponent
1
1
2 Event
atoutput of
1
3 Event
Component atoutput of
hos memory 2
4 Is stote of 3
S, =1
Condition - - - T W
{] [[
5 Change of Event A Event B
state of at output of atoutput of
3
EventC Event D
at output of at output of
4 L]
i i
! 1
Fig. 13. Event tracing in series connected components.

- 28 -

Other cases important in event tracing are given in figure 14. If a component
has twu output connections, it will give rise to a fork in the event sequence
diagram and to two subsequent event chains.

If a component has two input connections, then the consequences of an
event at one input connection will depend on the conditions at the other con-
nection. The result is a conditional fork in the event sequence diagram, and
also a sysiematic evaluation of the conditions may be required.

Feedback loops it a block diagram can result in long sequences of events,
involving some delay between events. The sequence may continue indefinitely
(that is, until some other spontaneous event interrupts the sequence) or the
system may reach a stable state in which no further events occur.

If a loop in a block diagram involves components with memory, especial
care is needed. Several 'delayed event' chain can occur as the result of one
input event. If the effect of the first of these event chains is evaluated, it
may lead to the conclusion that the conditions for the other event chains are
not maintained. The consequences of the later 'delayed events' may not need
to be evaluated.

Multiple failures

One of the most useful aspects of cause - consequence analysis is the
help it provides in evaluating the consequences of multiple failures. At a
formal level, there are two practical aspects of multiple failure problems -
firstly, in a cascade of failure events which influence each other, the relative
timing of the events is important - and secondly, a failure event may'not lead
to subsequent damage events as a direct result, but only to a change of state
of a component, an 'unrevealed fault’', which may make its presence felt
under later changed conditions.

The problem of relative timing of events in several 'parallel' chains of
events, can be solved by first evaluating the chains of events, tentatively -
and then considering whether the different chains can represent reality by

considering the logical cousequences of different event timings.

Pla

n]s u]v

- 29 -

Event

PQ

——

Component with two outputs

PIG. In orS

Event Event
RS uv
! |
|
Event
PaQ
1)
' 1 1
1 3
i A
Condition; RorS Condition
R T S

—

Event
Uy vy

Component with two inputs

LOOE

T V|X

Event
PQ

o

Event
Ry $1

T

Event
Vy Xy

Event

T Uy

&

Event
R2 S2

—

Event
V2 X2

Event
T2 U2

Fig. 14. Block diagrams and event sequence diagrams.

- 30 -

The second problem, of unrevecled faults, is solved by recording any
possible state changes, or permanent changes in component model, which
are possible as a result of some initial event. Then subsequent event chain
evaluations must take into account not only the different normal conditions
for the component, but also the possible failure conditions. An iterative

process is required to provide a complete analysis of all unrevealed faults.

An example of systematic failure mode analysis

The example of the compressed air supply system will be used to illug-
trate systematic failure mode analysis. The analysis provided here is not
thorough, since it involves only two failures, in the relay, and in the safety
valve. An attempt has been made to follow a systematic algorithm for the
analysis (fig. 15) but the needs of presentation require the use of some heu-
ristic rules.

1 Record initial conditions for system and set time ti = to
2 Select initial event, call it A
3 Apply event A to relevant system component X
4 Deduce changes of state, if any, and record them
5 Deduce different events B,C, on different outputs of X,
and at different times (on some output possibly).
6 If there were 13 events B,C then take an event from an unfinigshed

event chain, call it A, and go to 3.
7 If there are no unfinished event chains, go to 1. If there are no more

initial events, stop.

8 Select the output event which occurs first on B,C att, and call it F.

9 Check event F to ensure that it is consistent with conditions at time 'ti -
if not, delet ¥ from B, C.......... and go to 7

10 Check other events on B, C to see if they are compatible with

F if not, delete them. If they are, record them as unfinished event chains.

11 Record F on the event sequence diagram,
Update conditions to time tj'
Replace ti by tj, event A by event F.

12 Goto 3.

Fig. 15 Algorithm for consequence tracing
Note: thig algorithm does not cover all situations, but does cover those situ-
ations met in the example of fig. 16.

The description of the system given with fig. 2 needs to be augmented,
with information about the values of the constants involved, with information
about the initial state of the system, and with information about load on the

system,

- 381-

The additional information required is provided by the following state-
ments.
load le(t)) K then F4(t) »o0
else F4(t) = 0y
10

The constant values obey the following relations constants

Ky) Kyp) Kyp D Kg DKy

where K4 is safety valve trip pressure
K10
K1
K, is pressure at which regulating valve opens fully.

12

KQ is pressure control switch lower trip pressure.

is pressure control switch upper trip pressure.

is air supply minium useable pressure.

damage

if Pi(t))K, x 1.5 then cost is high
initial state

Pt) = Pylt) = Flt) = Fylt) = Falt) = Fylt) =0

x(t) = Kl 5

uft) = *off' - uft) = 'on'

Any automatic process will experience some difficulty in making deduc-
tions about a set of non linear equations. For this reason, the model of the
regulating valve and actuator need to be reformulated. This can be seen, by
deducing from statements 7 and 8

2
K, (Fy(t)

if Kyy (Pylt) (1(7/1<8 then P,(t) = P, (t) -
7~ KglPy(th

i Pyft) > K, /K, then (x =0 and Fy(t} = 0)
Pyt (K, then Po(t) = P, (1) - K, ¢(F,(t)°

The problem is caused by the implicit equation in the first line, which
may be replaced by

if KIZ ¢ Pz(t) ¢ K7/K8 Lll_e_n.(Pz(t) = 9] (Pl(t) - BZ(FZ(t))
and Py(t) & P,(t)
and (F,(t) = 0 implies 9,(F,(t)) = 0))

If the regulating valve ir within its normal working range, the valve
actuator component may then be ignored.
The first task in the failure mode analysis is to investigate the normal

- 32 -
Pl (to) : 0
switchon t.: u=off su=on Pt) (Ko conditions checked and
tyr ¥ 20 oy 1 (--z(to) i established
motor on t_: V(to) =0 V() = Kig
air supply t : F(t] - O—DF](U K, Ky
starts initial conditions
t: Py{t) = 0P (1) = K, Ky, Kq(t) Fy(t) = 0.and Fy(t } = 0
Y i) (Kyo
A i i
Y Vi) = Ky
t v
t):F,(t)0 Y fi Fdt YK,
& F ()0 0 &
3 tl'ftoFl-FZ'FIiflt)K'l
i
1
i
4
t]: Fz(t) = O*Fs(t)= K,‘_.'UP.I (t)(—PI(t1)> l(4
B safety valve opens - this chain of

events abandoned
since it involves a
contradiction

t]
.r® L 4
tos tz./to F,(t) - Folt) ¥ Fy(t) dt JK,

¢
t2: z(t) =1 = z(t) = 0 ¢ ==-- P] (t‘;))Kz
This chain of events is abandoned, since
the other chain, C, involves events which
occur earlier. The immediate sympton is
conflict in the condition tree (not fully
developed here)
Valve press- to;Pz(t)=0 -— Pz(t) K] K4 t t-—-I-) to: Fz(t) =0
ure rises
F4(t) =05 F4(t))0 €-mty:
Pz(t))K"
This sequence of events abondoned,
Regulating Valve because sequence E occurs first,
starts to close ty :x(t)=K 5—; x(t) = 7 - K P (t) §--- Pz(t) y K12 é~---etc,
,pé(t) leﬁ—;Pét) = 9,(P, (t))

Fig. 16 Normal operation of compressed air system

air begins

to flow through t

regul. valve ty

Pressure switch tg

trips - com-

pressor stops t

: Fz(t) =0

- 33 -

F
Fsiy=0 = F 0 Y0
- Fylt)) 0
P (t) = KKy~ Pit) (K, K

ty: Py(0)K, ete.

4t

T~ safety valve opens -
G \ chain abandoned
regulating valve closes -
chain abondoned

t P =Ky = Pi)YK oo tS:K3f:§ K K, - Fylt) dt
:s(t) =1 - sft)y=2)Klo and s{t) = 1
z{t) = 1 - z(t) = -
s y(t) =1 - y(t) = 0a-ts:u(t)=on | This is the first con
1 V() = KM ~V{t) =0 dition which cannot be
5 confirmed by examining
gt Byt K Ky = Fy(t)= 0 initial conditions
. ts. - t
ts' P1 (t) = KS-/ KIKQ - Fz(t)dt - P1 (t) K3 fts Fz(t)
dt ts FS(t) =0
safety valve opens -
chain abandoned
regulating valve fully
v open - chair abandoned
t First event of a pair - this

Pressure switch t7:

tripscompressor t

starts

Fig. 16.

:PI(t)) KIO

- P1 (t)e K1 0
one results in no further
consequences, but the next,
delayed longer, does have

J further consequences.
Pt)a K, - P(t) Ky
7: 8(t)= 2 - 8(t) =
z(t)= 0 - z(t) =
ty: y(t)= 0 - y(t) =
t: v(t)= 0 - Vi) =K,
tpF) =0 - Fit) =K Ky
ty 5y = 'Kaft7 Fz(") dt - Pyt) = Ka’t 1¥1g -

Continued

Fy(t) d(t) . Fglt) =0
e
Event sequence diagram becomes
repetitive here

- 34.

operation of the system. The event sequence diagram for this is shown in

fig. 16. The notation used is as follows

event 4t P‘ - Pz
dition at time t. t: P
condition al i 3 Py

condition between time tj and time tk

Failure descriptions

Two types of failure event will be treated for the example of fig. 16. The
first is failure of the safety valve by 'sticking’, with the result that the valve
does not open when it should.

The valve failure can be described as follows.
te! ir P] (t) < K4 then F3(t) =0 else FS(t) = K5 VP1 {t)
Fa(t) =0

Applying this event to the safety valve component, under all the normal
conditions derived in fig. 16, there are no output events to record for Fa(t),
because F3(t) = 0 under all normal conditions. However, the event should be
recorded, in the same way that an event would be recorded for a change of

state in a component with memory,

The second failure event to be described is the failure of the relay by
constant welding. The event can be described by,

te! (Y(t) = 0 implies V(t) = 0) and (Y(t) = 1 implies V(t) = K‘M)

This yields the event sequence diagram shown in fig. 17,
Note that now, the effect of the unrevealed safety valve fault becomes
apparent,

R e

- 35 -

t Py Ky P> Kg and s(t) = 2
\

[
} t: Y(t)= 0 implies V(t)= 0 and Y(t)= 1 implies V(t)=K]4
v(t}) = ON and z(t) = 0 -~ vt} = ST Relay failure
t
‘ u(t) = OFF T
c o™ H
o Y(t) =0

]
Lo tg: Vit) = 0--V(t)=K]4 event sequence abandoned,
18: Fl(t) = 0-.Fl(t) = KI l(]9 very similar to H
= - - = t -
tg: FB(t) =0 »ty: Pl(t) K, ['s Fz(t) dt

t
~ P,(t) - sttg Fy(t) - Fyft) dt + P.l(ts)]

tg: Pl(t)(K10
~——aftg: P <K) < P DK o

chain abandoned, similar to

ot
t“).fto F (t) - Fylt) dt.)Kq‘
chain K.

I
[tm: P (t) 4K, % P {t1>K,]"‘

Safety valve
fail. hagsnot safety valve trips
occurred- —

1o Fa(th= 0= Fylt) = K;VPI (t)
tyo Pylt) - K3/§°F,(t) - Fylt)dt
1
- P,(t) =K, /to F 4 (1)-Fy(t)-F (1)

Safety valve failure
has occurred
tyat Pl(t) “Kyx 1.5

|
-

- 1:’1(1:))1(4 x1.5
t;o: high cost damage

ty: Py(t) K, - Pi(1) K,

4

closes
event sequence diagram becomes
repetitive here

Fig. 17 Failure mode analysis of relay and safety valve failure

event ty: Fylt) = K5VPl(t)-F3(t) safety valvel

- 36-

Chapter 5

PRACTICAL ASPECTS

Significance of formal methods

The techniques described in the previous chapters allow a rigorous
meaning to be attached to the intuitive methods of failure mode analysis. The
most important advantage is that a clear meaning can be given to thoroughness
and completeness of a failure mode analysis. For example the statement 'An
analysis has been made of all interactions between components, except inter-
actions accross insulation and physical barriers' acquires meaning because
it becomes possible to consider 'all interactions'.

Used as a tool in reliability oriented design, such methods are basically
conservative. If all that is known about a component is the way that it works
normally, and the fact that it can fail, then the formal methods provide a way
of finding the 'worst' way in which it can fail. Unless information is forth-
coming about the actual modes of failure in practice, a conservative policy is
to provide protection against the effects of all possible failure modes. As
more experience is gathered, more liberal design rules can be adopted.

The modelling techniques used here are particularly appropriate for
engineering purpose. Very often, analogue modelling is constrained by the
lack of data. Logical reasoning of the kind used here can often yield adequate
results, and allow more accurate simulation methods to be used in just those
areas where the economics of design are most serious. (For example, only
relative sizes of constants for the compressed air supply system, not their
numeric values, were needed).

The modelling techniques are also significant for the collection of failure
data. The normal working of a component can be described, and its 'normal
working range. Then failure properties can be described by a model, either
as certain consequences of a situation or as events occuring under normal .
circumstances with a certain probability. Failures occuring in a situation
{condition) and failures occuring during an event, can be clearly distinguished
(for example, failure of solder connections depends on situation, usually,
Failure of relay contacts usually occurs during switching). Again, more
precise descriptions of failure modes allows more liberal design rules to be
used,

It should be possible by using modelling techniques, to answer questions
such as "can the sequence of events which happened ‘there' also happen here'
An interesting application would be to use accident reports in this fashion,

- 37-

and extend the range of usefulness of case studies as far as possible to new
situations.

The main problem with formal methods of failure analysis (or any form
of failure analysis for that matter) is the cost. To achieve significant results
for complex systems, with reasonably reliable components, requires a large
amount of work. Use will generally be restricted to those areas where safety
is involved. Formal methods have something to offer here. There is a possi-
bility for at least semi-automation of the analysis.

There are three basic stages in failure mode analysis; modelling; cause
consequence diagram construction; and mathcmatical analysis of event prob-
abilities. The methods used here are applicable to the second step - con-
structing event sequence diagrams. Analysis of probabilities involves a further

step. Some of the simpler rules involved are described in appendix 3.

Possibilities for automation of failure mode analysis

Comparing a modern control system with earlier examples, the modern
system generally has more compunents, and these components are generally
more reliable. The effect is that each failure mode has a lower probability.
But the number of possible failure modes is much greater. A full analysis
requires examination of a large number of unlikely circumstances.

Failure mode analysis itself is a partial answer to this problem. The
technique described in chapter 4 can be further automated, using a computer.

The time taken to produce the diagram of fig. 16, by hand, was 1} man
days. Most of this time was taken up in deducing events, and even more so
in checking the ccnditions under which an event could take place. Procedures
for performing such deductions on a computer exist (e.g. Robinson 1965).

Both automatic and manual procedures suffer a disadvantage - they cannot
be guaranteed to produce an answer in a finite amount of time. This situation
does not occur often in practice, and in any case is not an important problem
for failure mode analysis. If a failure event is suspected to occur, but cannot
be proved to occur, assume that it does occur. However, the problem means
that human monitoring is required, because if event deduction takes too long,
it usually means that an error has been made in modelling,

Further automation can help with recording information, and with plotting
failure mode analysis. The technique can certainly not be automated completely,
however. There is simply too much computation involved, and heuristic rules
are needed to guide the analysis. These are best applied by a human being,
Also, one of the prime effects of the analysis process is to refine the
component models and to correct errors in them, Failure mode analysis is

- 38-

best regarded as a method of helping an engineer to understand a system, As
such, complete automation is meaningless.

Automation of parts of the failure mode analysis process is technically
feasible. Whether such a step is worthwhile depends on how much of this kind
of analysis is performed. Practical use would require use of interactive
computing facilities, and the collection of a set of simple models for the com-
mon system components. It would also require some effort in improving the
ease of understanding of the iogical processes involved, and a better presen-
tation of the component descriptions. Natural language translations of the
logical expressions would be desirable.

More work is required in studying the individual steps in the deduction
process. In particular, it is in principle possible for the event descriptions
to become completely unwieldy, and for the deduction process to become very
inefficient. The success in the examples chosen probably owes a lot to their
simplicity.

More work is also required in studying the way heuristic ruies are used to
limit the size of the failure mode analysis task. A list of some of the heuristic
rules observed during intuitive construction of cause-consequence diagrams
(Nielsen 1972) is shown in fig. 18.

1 Having detected an event with a serious consequence, work backwards to
find other event chains leading to the same consequence

2 Stop analysing an event chain, or a tree of condition combinations, when
the probabilities involved become very low.

3 If a chain or group of components has a simple constant input output
description for all event chains, it can be treated as a single component,
to reduce effort. The new description is deduced from the old. This can
be extended to a hierarchical structuring of a system, with reduced detail,

4 Standard situation combinations and event sequences can be recognized
and stored for later use.

5 Analysis for a single fault of for a single direct and several unrevealed
faults, is most useful (generally gives high probabilities)

6 Treat most frequent iniiial events first, and ignore low probability initial

events,

7 For probability distribution analysis of states - recognise repetition in
an event sequence, and restructure the event sequence as a loop. Then
use techniques for modelling markoff processes,

Vig. 18 IHeuristic rules used in simplifying failure mode analysis

- 39 -
Chapter 6
COXCLUSIONS

Some conclusions can be drawn from this study. On a theoretical levet,
the idea of formalizing failure mode analysis is primarily useful in that
enables one to define what completeness means. A complete analysis is one
which all possible sequences of events have been traced through a model.
Differcnt orders of completencss arise because one may take one, two, or
more simultaneous failures into account. And any analysis is compliete only
with respect to a particular plant model (either a mental model or a formai
model). A model will never be complete in explaining all possible features of
plant behaviour, but it may be complete in explaining all observed forms of
behaviour, or explaining a particular set of accident records for similar plant.

The idea of using component models as a basis for organising failure data
collection is attractive. But the amotnt of work involved before a reasonably
large set of data could be collected, is daunting. Some improvement in mod-
elling procedure, over those used here, is required, if such work is to be
made economic for complex systems.

The amount of computation (mental or automated) involved in producing
a complete failure mode analysis (even with just a simple plant model) is
seen to be very large. There is no doubt that engineers can produce qualitative
analyses more cheaply than a computer system working alone. The main
advantages from any automated approach would be in simpler data handling
and presentation of results, and in enabling a greater level of confidence in
the completeness of the analyses. (If a designer can make a logical error, so
can an analyst).

Any automated procedure will require interaction between man and ma-
chine, if only to draw on the mans experience of modelling, and to correct
modelling errors. Human aid in recognising failure patterns, and in redirecting
analyses along more efficient paths, should also be of great help. The initial
attempts at 'applying' automated procedures, using peneil and paper calculation,
are encouraging. The amount of effort involved would be a trivial load for a

computer,

2)

3)

4)

5)
6)
7)

8)

9)

- 40 -

REFERENCES

Chang, Manning, and Metze, Fault Diagnosis of Digital Systems, New
York, Wiley 1970,

Nielsen. The Cause Consequence Diagram Methods as a Basis for
Quantitative Accident Analysis. 1971.

Windeknecht, 'General Dynamical Processes' Academic press 1971,
Risg-M-1374.

Bristol 1965 'On a new Measure of Interaction for Multivariable Process
Control', IEEE Trans. Automatic Control, pp. 133-134, Jan. 1966.

Nillson 1971, Problem Solving Methods in Artificial Intelligence.
Nielsen, 1973 Private Communication

Robinson, 1965 'A Machine Oriented Logic Based on the Resolution
Principle’ J ACM Vol. 12 No. 1, Jan. 1965,

Cox 1962, Renewal Theory, Methven 1962,

D.S. Nielsen aud B. Runge. Unreliability of a Standby System with Repair
a Imperfect Switching, to be published in IEEE Trans Reliability, 1974

- 41 -

APPENDIX 1

SETS, FUNCTIONS, AND SYSTEMS

Notation

The concept of a system used here is based on mathematical logic, set
theory, and general systems theory. The logical notation used is not standard,

and so a short overview is given here

mathematical logic

The symbols used are shown in fig. 19.

Meanings for the letters used may be given as follows. Letters at the
beginning of the alphabet represent 'individual constants', names of individual
objects such as 'this girl', 'the colour green', 'the set of all integers'. Capital
letters at the end of the alphabet represent 'propositions’, that is statements
which are either true or false e, g. 'this girl is young'; or predicates, that
is, truth statements including variables e. g. 'x is young'!'. Lower case letters
at the end of the alphabet represent variables. The letters P and Q, in this
section, represent general strings of symbols, and are used to describe the
way expressions are built up.

Certain of the symbols used are regarded as basic symbols. The way in
which the basic symbols may be combined to form expressions is shown in
fig. 20. Other symbols are introduced by definition, in terms of the basic
symbols. These are shown in fig. 21.

In addition to the symbols described in table 1 and table 2, the sets of
real and natural numbers are assumed to exist, and also the predicates
tgreater than' and 'less than' are used, and the functions tplus!, 'minus'

‘times’ etc.

- 42 -

constant letters
Proposition letters,
Predicate letters

variable letters
notation used here

not
or
for all

is a

implies

and

if then

i_fj if and only if

thereisa such that

the unique such that

therisa unique such that

standard notation

Tuzemns<a

W o~ w

Fig. 19. Symbols used

1 each letter is a term (upper and lower case letters included, but not

P, or Q)

2 if x and X are terms then x isa X is a formula

3 if xand Y are terms, then X = Y is a formula

4 if P is a formula then not P is a formula

5 if P and Q are formulae, then P or Q is a formula

6 if P is a formula, then forall x, P

is a formula.

7 if P is a formula then the unique x such that P is a term.

8 The only terms and formulae are those given by rules 1 to 7

Fig, 20. Construction of logical formulae

P implies Q
Pand Q
if Pthen Q
i P then Q
else R
Piff Q

is defined as
is defined as
is defined as

is defined as

is defined as

(if and only if)

- 43 -

DotPorQ
not ((not P) or (not Q))
P implies Q
(P implies Q)
and {(not P) implies R)
(P implies Q)
and (Q implies P)

thereisa x such that P is defined as not for all x, (not P)

Fig. 21, New

symbols introduced by definition

_ 44 -
Sets and functions

Given the symbols already defined, it is possible to define 'sets'. The
set of all objects with the property P (where P is a predicate) is written

{x|Pp w}

and is read 'the set of all x such that P is true of x'

This expression is equivalent to:

The unique X such that forall x

(x isa X iff ((thereisa Y such that x isa Y) and P(x)}))
Another way to describe a set is to list its members e. g.
{x, vz}

is the set which contains just x, y, and z .,

An ordered pair is a set in which one member of the set is distinguished,

being the first member of the set. An ordered pair is written as

(x, y)

and is defined as

{x {x vyl

Note the way that x is distinguished as the first member of the pair, by
including it in the definition in two different ways.

A function is a set of ordered pairs. The i‘ea of a function is that, given
the first member of an ordered pair, a single s -ond member can be found.
For example, given the function {(a, 1), (b, 2),(c, 3), (d, 3) } and the
parameter b, the value of the function, 2 can be found. "

Functions can be written using set notation, as above, or they can be
given names e.g. F. Provision of a name for a function allows the value of
a function for a particular parameter to be written.

e.g. F(x)

The set of 'first elements’ in a function (a, b, and c in the example above)

is the value of the function F given the parameter x.

is called the domain of the function. The set of second elements is called the
range o the function. A function should be thought of as providing a single
member of the range set for each member of the domain set.

- 45 -

domain range

Fig. 22. A function

The operators plus, minus, times, etc. are func’ions with two parameters,
since for each pair of parameters, a single value for the function is produced.

The arithmetic operators can be written using functional notation
e.g. plus (1, 2) =3

The usual notation 1 + 2, is regarded as on abbreviation of the functional
notation.

Functions of time

In systems theory, different concepts of time are used for different
purposes e. g, discrete time, continuous time. The concept of a 'time set?
provides a basis for definition of these concepts.

Two sets are introduced here - a set of time instants and a set of time
intervals. These two sets should obey certain properties, or axioms, given
as follows

T is a set of time instants

t is a set of time intervals
4, t2
tl, T, etc. are time intervals

etc. are time instants

1 all time instants can be compared
Forall t, forall tye t (t2 ort, = t2 ort,) ty
There is a corresponding rule for time intervals.
2 The sum of a time instant and a time interva! is a time instant

forall t, foralls, t+ v isa T

There is a corresponding rule for a pair of time intervals 1, 7,

- 46 -
3 the sum relation is associative and reflexive

(t+'r])+ T =t+(-r] +12)

2
t+te=1+t

there is a corresponding set of rules for pairs of time intervals

T T
1 2

4 consistency

t+1l=t+12i_ff T

5 closure

a forall ty forall 1 thereisa t, such thatt, = tl +1

b forall 4 forall t2 thereisa T such that

t] =t2 +1£t2 =t1 +T
6 definition of subtration

tl =t2 +1 L_fz t2 =t1 -1
If an instant of time t0 is chosen, then for any other time instant t] , rules
5 b and 6 guarantee that there is a time instant r such that

=t +1 or t,=t - =
o 1 o

Rule 4 guarantees thatt is unique. As a result, the set of time intervals,
together with one 'initial time’, can serve as a time set.

The real numbers may be used as a time set. So may the integers, or
the positive integers, ete. Generally, either two time sets are isomorphic,
{one to one correspondence between their elements, and obeying the same
rules} or one time set can be treated as a subset of the other.

A function of time is a function for which the domain is a set of 1ime
instants, T, and the range is a set of values, V. A vector function of time is
a time function for which the set of values is a set of ordered pairs, a set of

ordered triples, etc.
[
'
]
t
t
]

T

v

1

Fig. 23. A function of time

- 47 -
Processes

The treatment here is based on (Windeknecht 1971). A process is a set
of functions of time, in which all of the elements (that is, all of the time

functions) are defined on the same time set

T is the set of
real numbers

Fig. 24. A process

If p is a time function p(t) is the value of p at time t. If P is a process,

P [t] is the set of possible values of processes in P at time t.

Pt]= {pt) | pisaP})

P [t]is called the attainable space of P at time t.

P is the set of all values at which the functions in P may take, and is
called the atta’nable space of P.
The product of two time functions p, and g is defined by

pg = {{t, (x,y)){ forall t, tisa T implies (p(t) = x and g(t} = y)}

In other words, if p and g are functions of time, pg is a vector function of time
formed by taking the pairs of values p(t) and g(t), for each time t.
The composite of two processes is defined by

PQ-{pg| pisaPandgisaQ}
The composite of two processes is formed by taking all possible pairs of

functions of time, and combining each pair to produce a vector function of time.

systems

A system description is a description of a composite process, as defined
above, or a description of a subset of a composite process. More meaning can
be given to this statement if special cases of system descriptions are con-
sidered,

A composite process PQ is uncoupled if

- 48 -

In effect, if p is an input function, it provides no information about the
output function,

A composite process PQ is functional if

P] = P2 implies B ° 8
Interpreting p and g as input and output functions of time, the output of
a functional processor is completely determined by the input function.

A composite process is bifunctional if

Py =Py iff g, =g,

Output is determined by input, input is determined by output. The direction
of causality is not determined for a bifunctional system description.

A composite process PQ is free if the process P is constant, that is, if

p has only one member. In input output terms, there is only a constant

input.

In general, a system is simply a composite process. However the example
of tuncoupled composite processes shows that in some cases, the systems
may appear somewhat strange. An uncoupled composite process corresponds
to a system where input has no effect on output.

memoryless systems

A composite process PQ is static, or memoryless if for all t, PQ(t) is
a function,

That is, if Py By, Py B, are members of PQ

pl(t) = pz(t) implies g,(t} = gz(t)
In other words, at each time t, there is only one output value to be associ-

ated with each input value. Such systems can be described by means of the
function F

forall t, g{t) = F (t, p(t))

If the function F is a function of p(t) only, and not of t, the equation can
be written

forall t, g{t) = F(p(t})

Such systems are both memoryless and time invariant or uniforri,

- 49 -

State

The examples of functional, and free systems give some idea of the con-
cept of state. For a free system, there is only one possible value for input.
Any differences in output are therefore explained in terms of differences in
'initial state’.

A functional system has only one possible output function of time, for
each input function of time. It is then natural to say that a functional system
has only one initial state.

In general, a state description of a system P, will consist of two further
systems, R and Q, connected in series. R will have an output which depends
only on past input. The value of the output of R at time t, will correspond to
state at time t. Q will be memoryless, and so correspond to an output func-
tion for the system. Windeknecht has shown how these ideas can be formalised,
and that a state description can be given for any system. At the very worst,

a ptate can be provided at each time t for every future output function. This
corresponds to an explanation of all outputs in terms of changes of state
alone.

If a system is such that its output at time t is determined solely by inputs
up to time t (and not by any differences in ‘'initial state'), then the set of dif-
ferent input functions up to time t can serve as the state of the system at time
t. This is about as far as one can go, in general, in providing state descriptions
of systems. It is always possible in principle, for a system to 'record’ inputs
up to time t, and to change the output at time t so that it depends uniquely on

this information.

APPENDIX 2
DEDUCTION OF CONDITIONS AND EVENTS

Conditions
A predicate P(t;, t,,) is a condition description if
forall t. tb' [(ta isa T and ES isa T and ty ‘ta< tb(tz)
implies P(ta, b)]
This effectively states that a condition description is a predicate of such
a form, that if it holds during a period, it holds during any subset of that

period. To deduce a condition accroes a component means to deduce a con-
dition description with the component output signal as parameter, and which

- 50 -

contains as much irredundant information about the output signal as possible.
The idea of deduction accross a component can be made more precise,

if the language for expressing condition descriptions is restricted, so that

the only symbols to be used are forall, and, not, function symbols, predicate

symbols, variables, and constants. The form of statements required is called

skolem normal form, and is defined as follows.

A constant is a term

A variable is a term

A function symbol followed by a string of terms is a term(the number of
terms following the function symbol is the degree of the function)

A predicate symbol followed by a string of terms is a formula.

A formula preceded by a not symbol is a literal

A set of formulae, ceparated by or symbols is a clause.

A set of clauses separated by and symbols is a matrix.

A forall symbol followed by a variable is a quantification.

A matrix, preceded by a set of quantifications, so that there is one
quantification for each variable in the matrix, is a statement

in skolem normal form.

Any mathematical statement can, if necessary, be transglated to skolem
normal form, although methods which avoid doing this are preferable because
of the inconvenience and complexity of the resulting statements. If a state-
ment does not involve variables, then skolem normal form simplifies, to
become conjunctive normal form.

A method, called resolution, (Robinson 1965) exists for deducing all of
the clauses which follow, or can be deduced from, a given initial set of clauses.

For clauses which do not involve variables, the method is quite simple
e.g.

1 (AorBor C)and (D or E or (not C))
2 AorBorDorkE

Which means that line 2 can be deduced from line 1.
For clauses which do involve variables, it involves finding a substitution
for the variables, so that a deduction of the kind given above can be made,

e.g.
Forall x, Forall y, (A or C(x)) and (B or not C(y))
Forall 2, (A or C{z)) and (B or not C(z}))

AorB

- 51 -

Once all possible clauses have been deduced, they can be separated, and each
clause treated as a statement in its own right. Resolution, applied to a set of
clauses consisting of an input condition description and a component descrip-
tion, produces an extended set of clauses. This extended set is an apt candi-
date for the role of output condition description.

There are two problems with this new output condition description. 1t
contains too much information about the input conditions and the component
itself. And it contains some redundant information about the output of the
component itself.

The first problem can be solved by striking out all clauses which make
no reference to the output of the component.

The second problem, of redundant information, arises because of pairs
of clauses of the form

A or Bor C and Aor B

The second clause, A or B is said to subsume the first clause, A or B or
C, because whenever the second clause is true, the first clause is inevitably
true. Similarly the clause forall x, P(x) subsumes the clause P(a). Subsumed
clauses add no additional information to the output condition description, and
are not necessary for deducing subsequent output conditions for other com-
ponents. Subsumed clauses may therefore be deleted. Resolution is a com-
plete method, in that it will find all possible clauses which can be deduced
{by any sound method) from an original set of clauses, However, resolution,
in its own right, treats only those expressions containing and, or, not, and
forall symbols., The set of expressions treated can be very quickly extended,
to include if-then-elge, implies, there exists, However extensions to include
the symbols of set theory, isa, =, or to include the symbols of arithmetic,

PP A , is much more difficult.

There are two basic ways of extending the scope of the resolution method,
One is to add a set of new clauses, as axioms to describe the new operators.
These are introduced for all subsequent deductions and lead 10 a considerable
loss of efficiency. An alternative is to develop new methods of deduction,

which are complete, like resolution, but allow more symbols to be used. This
is a considerable technical problem, but some progress has been made
(Robinson 196 Slagle 1972), For many practical purposes, incomplete methods
may suffice, provided only that all the desired output conditions are obtained.

The general form of an output condition, if a component with memory and
with several inputs, is treated, will be

If A (input) and B(state) then C (output)
and If A,(input) and B, (state) then C,(output)
and EAn(input) and Bn(state) MCn(output)

This form will correspond to a condition tree in a cause consequence

diagram, and will be called a contingent condition.

events
An ordered pair of condition descriptions,
A= (Pt sty 1)) Pyltyys toy, G0,
is an event description if and only if

fl =f2:f

and thereisa tl . tz such that

forall t not{(P,(t,, t, f) implies P,(t, t,. N}

In other words P] and P, refer to the same time function f; and either
Pl(t’ t, f) is inconsistent with Pz(t, t2, f), or Pz(t, tz, f) contains more
information or is more precise, than anything which could be deduced from
Pl(tl' t,).

The fact that event A occurs at time te is written

terPylty, t,) = Pylt, t,,)

This is equivalent to:

there is a t] such that P'(t], tos f)

and there is at, such that Pz(te, tys)

To deduce an event accross a component involves taking three sets of
clauses

1 The component description

2 The set of conditions on any 'auxiliary inputs'

3 The set of 'state conditions'

,

and resolving these with the first part of an input event description, to pro-
duce the first output condition description, P;. In general, this will be a
contingent condition description, and will be valid over a wider period of time
(i. e. later) than the input condition,

The second step is to repeat this deduction, but using the second part of
the event description, to obtain P,'. The third step is to try to find if there
are any points in time, greater than t,, at which either P,' is inconsistent
with PZ" or at which P,' cannot be deduced from P,'. A theorem proving
program can be used for both of these tasks, but there are problems, The
time to deduce inconsistency cannot be predicted, and so in general it is

- 53 -

impossible to guarantee inconsistency within a finite period of computing time,
(the condition descriptions may be consistent anyway). Similarly, the only
way to prove that P,' cannot be deduced from P, ! is to try to make the deduc-
tion, for a potentially infinite period of time.

However, in practice, consistency and deducibility can be judged ‘by eye!,
if the formulae are presented in a reasonable way. And for more difficult
cases, it is sufficient to try to prove consistency, for a reasonable period of
time, and if unsuccessful, to try to prove inconsistency, again for a reason-
ahle period. If neither attempt is successful, the 'safe' assumption, that an
event takes place, is assumed.

The result is, in general, a contingent event description, the occurrence
of the event being dependent on the state of the component; and on the con-
ditions at any inputs other than the one associated with the input event descrip-
tion,

As an example of this process, a 'thermal relay' can be used. Such a
relay has the property that if an input current is provided at time t, the relay
closed at some later time, t + a. If the input current is shut off at time t°,
the relay opens at some later time, t' + b. A rapid sequence in which the
relay current is cut, and then restored once more, will not result in the relay
cantacts opening.

An approximate model of a thermal relay, which shows this behaviour,
is:

Forallt, y{t) =1 iff

[(Forallt,, t - a (t; (t implies x(t,) = 1)

or (thereisa ty such that x(tz) =1 and y(tz) =1

andt, (t (t,+b)]

The result of an input event

te: x(t) =0 - x{t) =1

is evaluated in diagram 26

The resulting output event is.

Condition 1

Forall t, [not (therisa t* such that x(t') = 1 and y(t') = 1 and t' { t (t' + b)
andt" (t (t,+a) implies y(t) = 0

Condition 2
Forall t, [(thereisa t' such that x(t') = 1 and y(t') = 1 and t' { t {(1' + b)
ort +a {t{1"'] impliea y(t) =1

- 54 -

te:
zlt)h=1 Yo+ a-bet z{t)=0->x{t}=1

tgta:
y{ti= 0>

Fig. 25 Contingent event

This can be reformulated as two contingent events
V not therisa t such that t_ +a - b {t{t and x(t) =1 and y(t) = 1
t, *a: y(t} =0 - y(t)=1
2 not thereisa t such that t_ +a - b{ t(t" and x(t) = ¥ and y(t) = 1
and therisa t such that t" - b(t{ t, +aand x{t) =1 and y{t) = 1

cy(t) =0 - y(t) =1

On checking the second event - it proves impossible to fulfill the necess-
ary conditions, within the period of interest. After producing an output event
description, it is necessary to check whether the conditions upon which the
output event description are contingent, can actually exist. In principle, this
means checking backwards through the component network at each step, is
a similar fashion to event tracing. However, a simpler procedure will be
described.

First, when begining a cause consequence analysis, an initial get of
conditions are required for each of the variables of the system. These are
either assumptions, or are derived from other assumptions by deduction.
These initial conditions are recorded for each component.

In evaluating a sequence of events gtarting from, say, a single failure,
it is only necessary to check that the event sequence produced is consistent
with the initial conditions. In evaluating the event sequence, a new set of

Brall b,
[Comit b, t-actict bl wr)et) implie yid) =1]

omil [(uuu__. ty enabthad x(h)sl amd y(n)el and B EChet) inglns -au)a.iJ
wd act [_({L.n By t-a b ek inplu wlt)el) :

Lo (thastion b oaudilad x(ty)sd ad ‘(Q‘)=1 ad et (l‘idr)]“ﬁl-_'u ‘Lt)= o:

Eladnaka i-+l‘.uhn oir-o.

Ferall ¥,
[a_o_k((_m_llt.’g(e-.u.u) o w(h)ed) o a(e)=i]

exd [t (Musion by anshbiak x(t)ed end ylh)od ed Werhar) or wi1a1]

C_'_A, [uﬂ- o, :ﬁ(t-c(h(l) c_ru(k.):l)
gr (thawise b, enahtigh %(h)sd and yih}=1 endd ¢y <t <r¢v)] ar yieo

———

' Radires scolas -& ur&:n 4!7-4

Fm.\\.k’
L’({’n_lh., t-ach et o akxle)el) o« yWet]

and [(ol b, b xth)et guh ylh)el omark b Cieheb) oyt ol]
and [((-L“ by, ub(t-actyct) or x(n)ei)

o (Hastion by cbttal clip)et ond ylrget ad b cerar)] gryt) oo

Fig. 26. Deductior of an event accross a thermal relay component.

- 56 -

Oiminsks taishautied 'f“‘""f"' cotlack o varval r..h;;.'u-

S P(i) = ke, He b o thea t .Jrldu thom b-br Jarhida x(t):-.‘,(l‘)-'f
—_ C‘h-.l-.h‘-.. amiebs,
Bl ¢, Fenlte, , Fomdl b, Fprall by,

b ow(y)sl o ~au)u]

[t ctct .
wd [a2 xl)et oo g0t orad Herchot & 3 et]
.ﬂ [_n_.\'_ t-a < by <t ot -g(t'a)=i

or (,(n.))-u ad JPONL od POYChe PL o 1)

wWee]

i3

Trowmelale ‘o m&w&:u nortmad {....

® twa <t <t b xlt)zl o oy l8) =t

1 oed mxly)al et g(h)ed oret K crlhal ooy (el

3 ed x(P(h):1 ored® t-adbyit or xlby)sd or act yl=4
¢ e glPzt gredt b-albger gr xlf)sd oroak g U)ed
5 owd P <t <Peb armdt t-a ctj¢t & = (4)ed g_nd_" ,(o)-i

Fig. 26. Continued.

- 57 -
=(t)20 = x() =1

M‘Po‘,uﬂ be:

e traasletss o
tanien vy arahthal fedl ¥, g (kg <ty €ty) inplise s le) w0
e Headen ¢y gabtid forll by, (ke € g <tp) impline % (43} ed

[Y V2N o.n-q.l;.n-s
. Forall £, gt (Pl € by Cbe) grabm(b)s &

Eomll £y nok (te Sty <Rl))er = lty)=1

7 emd

Reoctiukion lbwun Kua & and L3 | 62 &

8 x(P))sl eradt t-a <ttt gr adb P,lt.)(t,(t,: o st 1(»)-1

f:-:\ol!-‘
a \'(Plt))d. orat taully Cb e ab P L)<k Kty o at ‘,lf’:i
of ack 7(')4

10 PUICt < Po)ob grack b by €t oragk P (k)Y &4,

tmealake Umia 8,9,10 tv (mpliant form -fr’“)

(! [{t(’ﬂ)ﬁl orndt ben Ctyct geadd P o(bedety <l’.>

sod § UM m b b-a <ty <t pra Rl Cte)
ond $P(ctCPMy grast t-a Kty CF orast P(h)CEy <v,_)]_) inplisg ») 5 0

(2 [(x(".i))-i ed y (P et i PLOCE RO
ol bachcr grat Plnd<h ch]) imbu g0

[ot [xl'(t)):j, gud }u(r))u amd POt <P¢o)+b:]
ondd b-n < by &t

o PODCh < | imle

Fig. 28. Continued.

att) .I°

- 58 -

temlida Yo tevead 2o

Foratlty Forodht, tlamiom P (t) owshtiek P,(t) € tycte .
L
ol t-e ey < b

._.J_ not (tassion P") onehthal g(?(o»ll

ELI) [R]OTE)
ed POICE C PU)eb)

Lt ‘u) zo-

thaiso P, {te) awchihek

frolk v, [lfmallty, RUICH SN amd t-acly Ct)

et ok (Bamism PUY) gualtal o (PB)) <4
omdd (p() =4
=t PM <e<Pu)w)_] ingku 3l)=0

T hae W frm q e gt Wy r}...u..} davcaipbion,
it e hoo te Iw-s’ 'S u-nl’hr-t ot 1o

. LNV Mt'H 1‘1.

tas iva P (te) ouchihat

" freall &, [Blk) ¢t ¢ byra

sod wet (liamion Al) smahtlak x (P4
gl o (P() 54
s P < k€ P40] inplar ylh)eo

Fig. 26. Continued

- 59 -

,55 aiwalew vy o tecewd L..q.,gl.. vtk doouiifplion ncomse

Haaiw P (o) gueh bhab
(.o.llb)[ke +a €k € Pt

o0 (Barsisn 1) ardhthed (Pt
ad g (Pt
ed PUIC M+] inphe 30

‘3 Topaskion, thieie When toptlaioitht q u\k:-?.l‘ avint,-

Fig. 26. Continued.
tg:
t> z(t)= 0~
x(t)=1 yit)s 1 te +a-b x{t)s1
N |
oo
Y ylty=1

y

Caset

te teta

. S

% |

Case2 : PO svent ocewrs
becouse
- | tere y(tia1 betore tetesn
teca-d

no event occurs because
y(t) = 1 before t =t +a

Pig. 26, Continued.

- 60 -

conditions will be deduced for each component, These must also be stored,
temporarily, for checking, in the case that there is a loop in the component
network,

If a 'double failure' analysis is to be performed, not only the initial
conditions must be checked, for each event, but also the set of conditions
which might result from a previous failure.

APPENDIX 3
CALCULATION OF EVENT PROBABILITY DISTRIBUTIONS

Many of the events in a failuremode analysis are 'certain’. That is, they
will certainly happen at some particular time during system operation. Many
failure events, though, are best described by giving a probability of failure.

For use with automated failure analysis, the most convenient method is
to work with an event 'probability density function', p.d.f, (Cox 1962),
If x is the event time
p.d.f. (x)=(t prob{t { x « t+at)
at-o ot
There will be a pdf associated with every event description box in an

event sequence diagram: What follows is a set of rules for finding the pdf's
for all the event descriptions, when the p.d.f.'s for a set of initial events
are given.

1 Simple chain of events, without delay

Pyit)

’i:':“l s '|“,

Pyt

- 61 -

The probability of occurrence of an event at time t, is the same for a cause

event and a consequence event

Chain of events with delay

Py(t)

¥1: Pyt = Py[t-ty)

Pa(t)

Chain of events with non deterministic delay

In some cases, one event follows another, with a delay which cannot be

determined precisely, but a probability distribution can be given for the delay.

Let x, be the time for the first event, t 4 be the delay time x, be the time

for the second event. Let P, PZ' P3' be the corresponding pdf's. Let Pys
Py P3 be the corresponding 'incremental probabilities’.

then

tr=

pglt x, t+ = F pt-t(x«t-t'+8¢tand
' tr(tyet'+at]
0
f Py{t - t1). pyt!) at’
*2

since even: and length of delay are independent

o
P,(t) =j;P1(t -t Pyftn) dtt

A

Pltdzt)=zPy(t)

v r,m:f'r,u--) Pyin) dx
°

Pylt)
B 3

4 Event depends on a prior condition

In some cases an event A, occurring at time t, will cause an event B,

occuring at time t, only if some condition C is fulfilled at the time t,

- 62 -
Let P, be the probability that A occurs between times t and t +4 ¢,
Let P2 be the probability that condition C holds between times t and
t+ At Pyit) Palt)
Let P3 be the probability that event B occurs between times t and t +4 t
Then
i [H
P, =P (A and C) Or box
=P, P, given that A and C are independent
|
| 2131 ¥t P3{t) = Py(t1 4Py (1)-P (VN0
lr,m 1
Pyit) -
2 ¥t Pylt) = Pyit). Pylt)
_____ SN 3 111 Pat
r,ml lmu wt P = Py (i-ppiu)
Decision box
Pylt) Pa(t)
5 Contingent events —H—
In many cases, an event B occurs as a result of an event 4, but only if c: And b
n x
some other event, C, has already occurred. The probability that an event °
has occurred prior to time t, is the integral of the probability density func- I
tion, and is called the cumulative distribution function, : Pyit) ¥t Py(th = Pyitl. Pylt)
s P3ltrz Fyith. Fa
|
Pyit)
P2t weimyt) =J" Pylx) _hw
0 . |
!
} :
Event to condition box) Not box
. me variable |
Not= the change of time variable involved, 1 Pyit) ¥e: Pyithz 1~ Py (1)

- 64 -

6 Compound conditions

Conditions are best described by the probability that the condition holds
at time t. This will generally be a result of the fact that some event has
occurred prior to time t. So conditions are described by cumulative distri-
bution functions.

:ombinations of independent conditions may be evaluated as in the
following diagrams. As an example - the probability that two conditions, A

and B, both hold at time t, is given by

let Pl (t) be the probability that A holds at time t
let Pz(t) be the probability that B holds at time t

let conditions A and B be independent.

Then
P3(t) = P (A holds at time t and B holds at time t)

=P, (t). Pz(t)

