

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

A formalisation of failure mode analysis of control systems

Taylor, J.R.

Publication date:
1973

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Taylor, J. R. (1973). A formalisation of failure mode analysis of control systems. (Risø-M; No. 1654).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13779132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/a-formalisation-of-failure-mode-analysis-of-control-systems(a8a87395-4218-451a-91c7-e6ca5952585f).html

=6
CO

if

Ris6-M-165A

CO Danish Atomic Energy Commission

Research Establishment Riso

ELECTRONICS
DEPARTMENT

A formalisation of failure

mode analysis of control

systems

by

J .R . Taylor

September 1973

R-9-73

Avallabl« on raquaat trom: Library o\ tha Danish Atomic Enaroy Commtaaton

(Atomanarglkommlaalonana Bfelkrtak). Rut, DK-4000 Rca*IWa, Danmart.

Talaonofia: (03) » 6 1 CI, tat«: 9072

A. E. K.Risø Risø-M-Q^j
Title and author(s)

A formal i sa t ion of fai lure mode ana lys i s

of con t ro l s v s t e m s

bv

Date l s t O i - t obe r l'>7>

. l . R . Taylor -

pages tables -*• ifiusr-'ations

Department cr cjrejp

K l e c t r o n i c s I k p ; .

Group's own registrat ion
number s>

K-9-7 :?

Abstract

F a i l u r e mode ana lys i s techniqiu-s us ing g raph ic a ids

to eva lua te fa i lure condi t ions and events have been

developed over s e v e r a l y e a r s . H e r e a ma thema t i ca l

de sc r ip t i on of condit ions and even t s s d e s c r i b e d , and is

r e l a t e d to a m a t h e m a t i c a l mode l of a s y s t e m . A s y s t e m

a t i c method for deducing event s e q u e n c e s is developed,

and the method is applied to p r a c t i c a l e x a m p l e s .

The main motivat ion for forn-a l i sa t ion of fa i lu re

a n a l y s i s i s to provide a concept of - .cmple teness o r

t ho roughness for a fa i lure a n a l y s i s . At the s a m e t i m e ,

the poss ib i l i t i e s for automat ion of fa i lure ana lys i s a r e

c o n s i d e r e d .

v_opies to

lO

Abstract to

Available on request from the Library of the Danish
Atomic Energy Commiss ion (Atomenergikommissionens
Bibliotek), Risø , Roskilde, Denmark.
Telephone: (03) 35 51 01, ext. 334, te lex: 5072.

ISBN 87 550 0224 2

Formalisation of failure mode analysis of control systems

CONTENTS

Chapter 1 Introduction I

Chapter 2 System descriptions 2

Formal descriptions of systems 2

An example 4

Classification of systems 7

Cause and effect 8

Loops in cause effect graphs 9

Chapter 3 Cause and consequence 12

Cause- consequence analysis 12

Deducing the consequences of an event 13

Formal description of events 17

Components with memory 18

Complete deduction methods 21

Chapter 4 Cause- consequence analysis 23

Event chains 23

Tracing event chains 25

Multiple failures 28

An example of systematic failure

mode analysis 30

Failure descriptions 34

Chapter 5 Practical aspects 36

Significance of formal methods 36

Possibilities for automation of

failure mode analysis 3 7

Chapter 6 Conclusions , . , . . 39

References 40

Appendix 1 Sets, functions and systems 41

Notation 41

Sets and functions 44

Functions of time . 45

Processes 47

Memoryless systems 48

State

Appendix 2 Deduction of conditions and events 49

Conditions 49

Events 52

Appendix 3 Calculation of event probability distributions 60

- 1 -

Formalisation of failure mode analysis for control systems

Chapter 1

INTRODUCTION

Some simple systems work continuously until there is a failure, and then

stop. The quality of such systems can be measured by reliability - the prob

ability that the system will perform its function for a specified period.

For complex control systems, the situation is not so simple. There are

many ways the system can fail, many recovery actions, and many different

consequences of failure. Failure mode analysis is a way of judging the per

formance of such systems, by tracing the sequence of events following each

failure, or each group of failures. It is useful, because it can isolate those

cases where the probability of failure is high, or those where the probability

is low, but the consequence is serious. During design, failure mode analysis

can help to pinpoint those areas where design changes are necessary.

Various diagramatic aids are available (see e.g. Nielsen and Runge

1 973), which help record the sequence of events, and the

probabilities of different conditions, in a system prone to failure. Diagram

atic aids are a great help, because one of the. problems of failure mode analysis

3f a complex system, is to imagine all of the different things which could

happen in a system, to decide which is most important, and to record them.

For very complex systems, such as those involving computers, it is

difficult, even with the aid of diagrams, to keep track of all the information

involved in a failure mode analysis. Such a system may have many thousands

of components, each with a low failure rate . Some will be more critical to

system performance than others. The analysis of such a system is very time

consuming, and may be impossible for practical purposes.

By formalising the task of failure mode analysis, the difficulties become

more clear, and some techniques for reducing the difficulties appear. Hope

fully, formalisation will allow some of the tasks of failure mode analysis to

be automated, as has been done for electronic logic systems (see e. g. Chang

et alia 1970)

The first step in formalising analysis of failure event sequences, is to

define what is meant by a system. The description should be sufficiently

powerful to include all the components which are encountered in realistic

systems (valves, computers, people). This task is dealt with in chapter 2.

The next step is to define what is meant by a failure event, and to explain

- 2 -

how the consequences of an event are calculated. This involves describing a

system as a set of interconnected components; and providing a method for

deducing the consequences within or at the output of a component, when an

event occurs at the input of the component. The logic of cause and effect in a

control system is treqted in chapter 3.

In chapter 4, these ideas are applied to sequences of events, taking place

in chains of system components. In chapter 5, the practical consequences of

these ideas are considered.

Notation, and the mathematical background for the methods used is given

in appendix 1. Appendix 2 describes the deduction methods used for event

sequences. Appendix 3 describes the methods for calculating event probability

distributions.

Chapter 2

SYSTEM DESCRIPTIONS

Formal descriptions of systems

Failure mode analysis involves describing what happens within a system

under failure conditions. Such a description could take the form of a mental

image of what happens, or a text description of the sequence of events in the

system, or a diagram showing the sequence of events and progress of con

tinuous changes. These descriptions are informal, where they are derived

from a mental picture of the system.

A formal description of a system is a description written according to

certain precise rules, and with corresponding precise rules for manipulation

and use. For purposes of failure mode analysis, the two kinds of model a re

complementary. The formal description may be more detailed, or less

detailed, than an informal description. But the consequences of the formal

description can be evaluated systematically, and the degree of completeness

of the evaluation can be measured.

Control systems involve many complex components such as computers,

switching circuits, amplifiers, and devices such as motors and turbines, which

are not usually described by one common theory. General systems theory

{Windeknecht 1971) does provide a tool for describing such varied

components, and has been used here. Appendix 1 provides an abbreviated

version of the thf ory.

General systems theory enables a system to be described as a collection

- 3 -

of interconnected 'black boxes'. The interconnections are called inputs and

outputs, each input and each output is a (possibly vector) function of time.

Different time bases (time sets) can be used to describe different systems.

This is important, because some systems, such as switching networks, a re

best described in terms of a discrete time base, others, such as motors, in

t e rms of continuous t ime.

A system description provides information about the relationship between

input and output functions of t ime. Any system can be described by specifying

the set of possible input functions of time, the set of possible output functions

of time, and a mapping between them. In general, there will be an additional

(vector) parameter, the state of the system at some particular time, before

the mapping becomes completely specified. This is a requirement; for a

particular input function of time and a particular system state, there should

be only one output function of time.

A system description is 'complete', if it allows the output function of a

system to be determined uniquely, given an input function of t ime. For many

purposes, it is sufficient to have a partial description of a system, for example

one which specifies the output for those inputs normally met in practice.

A system description is 'consistent" if for each particular state of the

system at each point in time, every subsequent input function results in only

one output function. All system descriptions should be consistent.

If a system description is inconsistent, it may mean that a mistake has

been made in writing it down. Alternatively, it may mean that the description

is an inadequate model of reality. For example the 'not gate' shown in fig. 1

is connected from output to input. The description alongside the 'not gate' is

adequate for many purposes, but not in the configuration shown. The descrip

tion leads to a contradiction because the switching delay of the 'not gate' has

not been described.

- 4 -

Not gate description

Input = x, x(t) = 0 or x(t) = 1

Output = y, y(t) = 0 or y(t) = 1

x(t) = 0 implies y(t) = 1

x(t) = 1 implies y{t) = 0

Inter connection description

x(t) = y(t)

Fig. 1 Inconsistent system description

Such a trivial fault as this would be detected easily in most design procedures.

For more complex examples, checking for consistency provides a way of

detecting some types of design e r r o r s , and modelling e r r o r s .

An example

An example is given here to show how formal notation can be used to

describe simple systems. The system is chosen to be as simple as possible,

while still providing an interesting failure mode analysis problem. Just the

system itself is described here, analysis will be treated la ter . Fig. 2 shows

a system for supplying compressed air for pneumatic operation of machinery.

The demand is fluctuating and intermittent, but requires a reasonably con

stant pressure . Hence a compressor with limited capacity is provided, and

a reservoir t n k is provided to smooth pressure fluctuations, and accomadate

peak demand. For safety reasons, both the peak pressure and the minimum

pressure in the system must be limited, and sensors are provided for safety

reasons.

The example is typical of many installations, except that greater emphasis

has been placed on safety than is usual.

X

NO T

y

x(t) = 0 implies y(t) = 1

x(t) = y(t)

x(t) = 0 implies x(t) ~ 1

- 5 -

- .. . Pressure
Switch regulator Safety valve

!"DrftO-
RelayQ

Motor Compressor

8) S) Alarm lights

Low ft high
pressure
alarm switch

Regulating valve
Accumulator

Fig.1. Schematic diagram of compressed air supply system.

Relay

—x—

Motor/
pump

Accu
mulator

On/off
switch (•

T
Pressure
switch

Regula
ting
valve

TT
F« P 2

Valve
actuator

Safety
valve

Block diagram
Arrowf Indicate direction! of cauM/offtct.

Fig. 2 A simplified compressed air supply system

- 6 -

The input and output functions of the various components in the block

diagram are as follows.

F ,

F ,
F 3
F 4

P ,

P ,
V

X

z

u

y
K r K i 6

air flow from compressor into accumalator

a i r flow from accumalator to regulating valve

air flow from safety valve

air flow from regulating valve to supply lines

air pressure in accumalator

air pressure in supply lines

motor power supply voltage

regulating valve position

pressure regulator switch signal

on-off switch position

on-off switch output

constants

K g m / s

K g m / s

K g m / s

K g m / s

Kg/cm

Kg/cm

Volt

cm

off/ on

off/on

off/ on

The various components, when working properly, can be described by

motor/compressor

F ^ t) ^K1 V(t) 1

relay

y(t) = 0 implies V(t) = 0

y(t) = 1 implies V(t) = K] 4 2

pressure switch

if P ^ t) * K2 then z(t) = 1

else z(t) =0 3

on off switch

if u(t) = 'on* then y(t) = z (t)

else y(t) = 0 4

accumalator

P , (t) = K3 f (F1 (T) - F 2 (T) - F3(T))dT + P , (tQ) 5

safety valve °

valve closed if P (t) « K4 then Fg(t) = 0

- 7 -

regulating valve 0
F (t) l

if x(t)>OthenP 2 (t) = P ^ t) - K6 - J J ^

and F2(t) = F4(t)

if x(t) = 0 then F2(t) = 0 7

valve actuator

valve closed: if P 2 (t) » K 7 /K g then x(t) = 0

normal range: if K12"» P 2 (t)> 7 /K g then x(t) = K ? - Kg P2(t)

fully open: _if P2(t)>- K] 2 then x(t) = K) 5 8

= K7 - Kg - K1 2

The descriptions given here are much simplified and are only valid within

the normal operating range of the plant. The notation used is a mixture of

arithmetic and logical symbols. Automatic manipulation of the descriptions

is possible.

The statement which describes the relationship between input and output

of a system is called the system predicate.

Classification of systems

It is possible to classify systems according to the mathematical properties

of their descriptions. Two of these classifications are important here because

they require a different treatment in failure mode analysis.

A memoryles s system is one in which the output at time t is determined

uniquely by the value of the input at time t. Many control system components

are usually described as memoryless systems e. g. amplifiers. Memoryless

systems have only one possible value for their ' s ta te ' .

Memoryless components are especially easy to t reat in failure mode

analysis because, in evaluating the effect of an event on the component, only

the effect on output need be considered. There will be no effect on their s tate.

Also, the effect of the event on output will be a function of the current value

of input alone, and not of the past history of the input.

Very simple descriptions of memoryless systems can be given in stan

dard form of an equation, giving the output of the system at time t explicitly

in te rms of the system inputs at time t.

Time dependent systems are those in which the output at time t is a

function of input at time t, of the state of the system, and of the time t. In

effect, value of time becomes an extra parameter of the state of the system.

A classic example of a time dependent system is an alarm clock. But any

system which ages noticeably with time, that i s , has performance parameters

- 8 -

which change with time, is most conveniently described as a time dependent

process.

Time dependent systems are difficult to t reat in fpilure mode analysis,

because not just the effect of a single failure event needs to be considered, but

all the different effects that the event can have, corresponding to the different

times at which the event can occur.

Cause and effect

Failure mode analysis is a technique which enables initial failure events,

that is , causes, and their subsequent effects, to be studied. To this end, the

models to be used in failure mode analysis must be cause-effect models.

The system descriptions provided by general system theory fulfill one of

the basic requirements for a cause-effect model of a system. Cause must

follow effect in t ime. General system descriptions must satisfy the condition

that output at any time is a function of previous state, previous input, and

time itself. Thus any change in output must follow a corresponding change in

input, or a change in the system itself, (these are changes in the model of

input and output. In a real system, effect always follows cause, by definition).

A causal model of a system also requires that the direction of cause and

effect be determined, that i s , inputs and outputs be distinguished clearly. This

is not so straightforward, as many systems may work in either direction.

For exariple, a d. c. rotating machine may be treated as either a motor or a

generator, and the shaft torque may be considered to be either input or out

put.

Some system models have an inherent direction of causality, since one

output may correspond to several different inputs. For example, a relay has

many different values of coil current (input) but only two values of contact

resistance (output). Descriptions in which there is a one to one correspondence

between input and output functions of time are called 'bifunctional * or 'one to

one'. The direction of flow of cause and effect is not determined if a system

has a bifunctional description, and must be specified separately.

All energy flow systems are inherently bidirectional. Taking a ' force' P,

a flow' F , and an 'impedance' R, then P = FR. Either force or flow can be

considered a cause, but if one is a cause, the other necessarily is an effect.

Generally a variable in a system is considered to be a cause, if small

changes in its value correspond to large changes in other variables; and if

large changes in other variables correspond to smell changes in its value.

For example, varying load on an amplifier hardly affects the input signal,

relative to its normal range of variation. But changes in the input signal cause

wide varirttions in output.

- 9 -

The energy flow aspects of information and control systems are usually

utglected, and design is such that the direction of cause and effect is clear.

For those parts of a system involving important energy or mass flows, it is

desirable to have a method of assigning directions of causality, as far as is

possible.

A component of a system may be described in terms of a set of variables,

without designating any of the variables as input or output variables. If the

system is potentially bidirectional, than it is possible to describe the system

by means of one or more equations (possibly implicit). For each equation,

there will be one dependent variable and one or more independent (cause)

variables.

System described by equations can be represented in the form of a graph,

with two types of nodes - variable nodes and equation nodes. A variable node

is connected by an arc to an equation node, if the variable appears in the

corresponding equation. Fig. 3 shows the compressed air supply system

expressed in this way.

Initially a graph constructed in this way is undirected, and assigning

causal directions to the graph turns it into a directed graph.

Fi rs t , directions associated with control components such as relays and

amplifiers are marked on the graph. Then causal directions may be assigned

according to the rule that each equation may serve to determine only one

variable, and hence must have just one are leaving it. Similarly each variable

must be determined by just one equation.

These rules serve to assign directions in all cases except those in which

there is a loop in the graph, with each equation in the group being bidirectional

(The associated system is bifunctional). In these cases, the direction of

causality could be considered arbi t rary.

Loops in cause-effect graphs

Given a set of equations which specify a graph with a single loop, there

are two possible ways of assigning causality to the loop. (Fig. 4). A rule

which can be used for assigning causal directions, is to make the assignment

in the direction of 'greatest sensitivity'. This means, taking fig. 4 for example,

that causal directions are first of all assigned in both possible ways, ACB

and BCA. Taking the case ACB, the loop is broken after variable B, and the

variation of A for a given variation in x is determined. Then the variation in

A for a given variation in x is determined, with the loop closed. The ratio of

the two variations is taken. The rat io is also determined for B, with the loop

broken after variable A. The variable for which the ratio is greatest becomes

- !1 -

the first in the causality chain.

This method of assigning causality can be applied to linear continuous

systems (where the ratios in the example become

d A a ^

/d x | E const , Tx~ | A constant N
dA cTB J
ctX <5x

It can also be applied to other types of system, provided that the concept of

varia**on is defined appropriately. The method can be generalized to multi-

variable, multiloop systems of equations (Bristol 1965).

For cause effect analysis, the way of assigning causality described above

will give an approximation to ihe effect of a cause on the variables in the loop.

If cause-effect analysis i s iterated around the loop, the iteration will con

verge, to give closer approximations to the true effects.

A special case of this method is to assign causality in the direction of

integration, rather than differentiation, when there is a choice. In this way,

a step function 'cause ' results in 'effect' variations which a re finite. In many

cases , the method of assigning causality described above will give no clear

cut answer, because the ratios of variations involved are of similar magnitude.

In these cases , the concept of causality will also be of little use - the 'cause'

resul ts in a reaction 'effect' almost as strong as the cause itself.

In such c case, it is better to regard the variables involved in the loop

as a subsystem in their own right, and to consider just the inputs and outputs

of the loop as being causally determined. On meeting such a system in failure

mode analysis, the only available method is to rely on 'solving the balance

equations of the loop', without appealing to cause and effect.

Careful attention to the logical basis for assigning cause effect relation

ships is important in failure mode analysis, because very often models of a

system are appropriate only over their normal working range. In failure

situations, a model may cease to be appropriate, and even the direction of

causality may change. For example, for a pump with output at atmospheric

pressure , flow is considered a dependent variable. If the output is now shut

off by a valve at the pump outlet, flow is fixed, and pump output pressure

becomes a dependent variable

- 12 -

Chapter 3

CAUSE AND CONSEQUENCE

Cause - Consequence analysis

Cause - consequence analysis (D.S. Nielsen 1973) is a technique for

tracing all the conditions which can lead to a failure event; and for tracing the

consequences of that event through the various components of the system. A

method is needed for representing not only the system itself, but also for

representing conditions and events. These will be used for deducing the effect

of an event at the input to a system component, on the state of the component

itself, and on the output of the system.

A condition can be described by a statement, or predicate. This state

ment gives the value of some function of time, over a period of t ime. Alterna

tively, the statement may not describe the time function completely, but

only some properties of the function which restr ic t the range of possible

functions. For example statements that a function is constant over a period

of time; that the value of a function is equal to a given value over a period;

or that a function is monotonically increasing over a period; or that the

function is less ihan a given value; all of these constitute descriptions of con

ditions. Such statements can be expressed formally, using the notation of

logic and of set theory. The condition takes the form of a predicate, with a

span of time as a parameter.

Events too can be expressed by means of a predicate, similar in form

to the description of a condition. The event description is associated with a

point in t ime, and the meaning is that before the event t ime, the predicate is

untrue. At the event t ime, the event predicate becomes t rue , (see fig. 5).

As an example of an event description, the description of the event in

which the pressure in the compressed a i r reservoir increases over the safety

valve opening pressure is

n o t P j (t) > K 4 - P , (t}>K 4

This statement is not a complete description of an event in logical t e rms ,

but may be regarded as an abbreviation of the form given later in this chapter.

- 13 -

General scheme for events:

not Q . Q

t -• time

Q is event predicate

example of an event description:

n o U P ^ t)) ^) i y t)) k 4

Fig. 5 Scheme for event descriptions, and an example

Deducing the consequences of an event

The simplest type of component which can be treated by failure mode

analysis is one with a memoryless, time independent description, a single

input, and a single output.

If an event occurs at the input to such a component, then an event may

occur at the output of the component. The description of such an event can be

obtained by a process of deduction.

An example of the deduction process is provided by the safety valve of the

compressed a i r system. The event at the input to the valve is that in which

a i r pressure r i ses above valve t r ip pressure . The event at the output of the

valve component (Fig. 2) is that the flow through the valve ceases to be zero .

Figure 6b shows this example, and it seems an excessive amount of

description for a conclusion which is almost obvious. The important point is

that the output event description can be ded iced according to a standard pro

cedure. If necessary, this procedure can be automated, using a computer.

event description NOT I" I I

event description NOT R R

: component description

NOT P and Q implies not R

P and Q implies R

Fig. 6a Simple event deduction across a component

safety valve

description

Not P,(t)>K P l (*) > K 4

if P (t) <K4 then F3(t) = 0

else F3(t) = K5 V P 7 (t) - P a

event not Fg(t) / 0

Fig. 6b Example

From the example, it can be seen that there are several possible output

event descriptions, for example

E: F3(t) = 0 - not_F3(t) = 0

E:not_F3(t) = K5fP^T!l - Fg(t) = Kg VT^t)

- 15 -

Which is the correct output event description ?

The requirements for an output event description are that as much infor

mation as possible should be retained, concerning the output variables; that

no unnecessary information concerning the input variables should be retained;

and the output event description should not be redundant.

These requirements are satisfied by taking first of all the event descrip

tion, and the system description and reducing them to a simplified standard

form. Several different forms are possible, depending on the kind of notation

used, but for simple logical notation, a form known as conjunctive normal form

is used (see e .g . Nilsson 1971).

The result of a transformation to conjunctive normal form is an expression

consisting of clauses, linked by 'and* operators. Each term consists of a

comparison, an equality, or the negation of a comparison or equality. The

result of transferring the safety valve example to conjunctive normal form is

shown in fig. 7.

The next step is to draw as general conclusions as possible from the

statements, and this can be done using a process .ailed resolution (Robinson

1965). If there is an expression of the form

(A £T B or C)

and (F or G _or (not C))

then an additional clause is added of the form

and (A or B or F or G)

This process is repeated (in its most general form) as often as possible

(see fig. 8).

The next step is to remove as much redundant information as possible.

This means that if there is an expression such as A and (A or B) , the

clause (A or B) is deleted. The reasoning here is that information represented

by (A or B) is uncertain, may be contradicted by more certain information in

other clauses, and in any case does not indicate the certainty of occurrence

of an event. The process of deleting clauses is called subsumption.

Finally, any clauses dealing with input variables alone may be deleted,

as irrelevant.

The result of this process is a single logical expression giving the con

ditions at the output of a component at the time of an event. The process is

repeated, with the negation of the input event description, to obtain the de

scription of the conditions prior to the event.

The only remaining step is to ascertain whether any change is involved

at the output as a result of the input event. If the description of conditions

- 16 -

event- —> P ^ t) > K4

safety valve: if Pj(t) * K4

Conjunctive normal form

1 not P,{t) < K4

2 .and (not P ^ t) = K4)

3 and ((not P}{t) K4) or Fg(t) = 0

4 and ((not P,(t) = K 4) or F3(t) = 0

5 and (P1 (t) < K 4 o r P ^ t) =K 4 or Fg(t) = f T ^ t l

Fig. 7 Conjunctive normal form for statement of safety valve t r ip event

(conditions after event)

Resolution between 1 and 5

6 and (P^ t) = K4 or Fg(t) = V P 1 (t) }

Resolution between 2 and 6

Delete clauses 3,4, 5, 6 by subsumption

I'-. 'ete clauses 1 and 2 - do not affect F„

Which leaves

P3(t) =lfP7F)

Fig. 8 Deduction of an output event description (conditions after event)

- 17 -

after the input event is the same as the description of the conditions before

the input event, then there is no output event, since there has been no change

in output conditions. Similarly, if output condition after the event time is a

logical consequence of the output condition before the event time, then no

output event can be recorded (no new information about the output conditions

has been produced).

Whether the second condition is a logical consequence of the first can be

decided by trying to deduce the second from the first, possibly using an auto

matic theorem prover (see e .g . Robinson 1965).

As the example shows, the correct output event description for the safety

valve is

E: F3(t) = 0 —* F3(t) = K5 V P ^ t j

Formal description of events

For memoryless control system components, the effect of an event at

the input to the component will be an immediate event at the output of the

component, or no output event at all. For a component with memory, there

may be output events which a re delayed, and there may also be a change in

state within the systems. Also, whether an output event occurs will generally

depend on the state of the system at the time of the input event.

For these reasons, the event descriptions must be accompanied by a

statement of the time at which the event occurs, and a more general form of

event description is required. Also some more formal idea of what constitutes

a condition and what constitutes the deduction of an event, is required. No

simple definition can be given of what constitutes a condition description,

but an idea of the range of what is possible is given by the following set of

examples

1 condition P holds for function f during period tj to t« '

H holds (P, t r t 2 , f)

• p-fV v n
At this point, there are many form the condition description could take.

For example, let T be a set of instants of time. Then the following is a con

dition
for all t, t is a T and tj * t * t implies P" (t, f)

Another possible form is

for al l t , t , , t is a T and t is a T affil tj < t& { tfa t t 2

implies f(ta) * f (tb)

In general, if P(t , , t9 , f) is a condition description, then

for all t , t. , [t isa T and t. isa T a b a b

implies P(t t.)

This constitutes a test to discover if a statement is a condition description.

Given a definition of what constitutes a condition, an event can be defined.

The idea is given by the following set of equivalences

'event E occurs for function f at t ime t1

= occurs (E, t, f)

= E ' (t,f)

= E " (P , (t] , t, f), P 2 (t , t2 , f))

= there is a t ; such that P . (t , , t, f)

and there isa t , such that P2(t , t„, f)

a n d n o t J P ^ , tb , f) impUes P J t ^ , t f)

where Pj and P„ are condition descriptions

An event occurs at time t if an expression of this form can be deduced

from other true statements concerning the system.

Components with memory

A method is required which enables event descriptions to be deduced for

components with memory. There are two major types of problem here . F i r s t ,

it is desirable for convenience that the deduction of an output event be obtained

by considering only a single input event, rather than considering all possible

sequences of one, two, events, etc. Secondly, it may be possible to deduce the

occurrence of an output event at some time after the input event, but on the

condition that nothing else happens at the input to counteract the (potential)

output event.

A scheme for deduction of events accross a component with memory is
given in figure 9.

The notation

A B

of figure 9. means that given statements A and B, statement C can be deduced.

The state condition S2 can be deduced from the state condition S , the

input conditions P , and ? y and the component description R. By keeping track

of the different state conditions during a sequence of events, state and output

- 19 -

changes can be deduced by combining information from a single event and the

state, rather than making deductions from statements about a sequence of

events. This will become especially significant in the next chapter.

The output conditions Q , can be deduced from the state condition S the
^ 1'

input conditions P and Pg, and the component description R

therisa t1 suchthat P 1 (t , J t, x) therisa t„ suchthat P,(t . t„, x)

R, therisa t1

therisa t„ suchthat Q, (t„, t ' .g)

R, therisa t~ suchthat

therisa t . suchthat Q2(t*. t . , y)

1 (therisa t, suchthat (P.f t , . t, x)) and R and_(therisa t, suchthat S J t , , t, s))

therisa t„ suchthat Q, (t„, t ' , y)

2 (therisa t , suchthat S.(t . , t, s)) and R and (therisa t 0 suchthat P„(t, t?, x))

therisa t 2 suchthat S„(t, t«, s)

3 (therisa t , suchthat S ^ t j , t, s)) and R and (therisa t , suchthat P ?(t , t^,x))

therisa t^ suchthat Q 2(t \ t . , y)

4 not ((therisa t- suchthat Q1 (t„, t1, y)) implies (therisa t,. suchthat Q,(t', t . , y))

P - input conditions Q - output conditions

R - Component description S - state conditions

Fig. 9 Scheme for deduction of an output event

- 20 -

In general, the output condition will take the form of a statement about y which

is dependent on the initial state condition S1 , and on the length of time t to

t9 for which the input condition holds. Once again the rules of resolution

(augmented with special rules for > , = , etc.), subsumption and nonrelevance

can be used to derive an output description. (Appendix 2).

Example

As an example of a deduction accross a component with memory, the

pressure sensitive switch can be used. The description associated with fig. 2

is oversimplified. Such components usually incorporate hysteresis , to avoid

over frequent switching of the air compressor. The description incorporating

hysteresis i s :

pressure switch

if P , (t) < K g then s(t) = 1

a n d ^ P ^ t)) K1 0 then s(t) = 2

and if (K 9 * P ^ t U K ^

and there isa t^ such that (t1 < t

and forall t ' , tj< t* < t implies s(t') = 1))

then s(t) = 1

and if (Kg A P . (t) < K] Q and therisa t^ such that

(t1 < t and forall t ' , tj < t* < t implies s(t ') = 2))

then s(t) = 2

and if s(t) = 1 then z(t) = 1

and if s(t) = 2 then z(t) = 0

- 21 -

The idea of this definition is to give the output of the pressure switch in

terms of a state. S(t) and a condition on the input, P . (t) . The description is

somewhat unwieldy because of the difficulties in expressing facts about con

tinuous functions in a simple system of logic. For general use, a more con

cise notation is desirable. This is used in figure 10, where the notation

s(t-) is used to represent the state of the system an instant before the event

time t.

The event description deduced for the pressure switch is

s(t-) = 2 and if P(t+) < Kg then s(t+) - 1

The event deduced is a state change event, and is dependent on certain con

ditions being fulfilled by the input function P,(t) . To achieve this description

a new rule was needed - there were two possibilities for the output, s(t+) =

2 or s(t+) = 1. One of these corresponded to an event, the other did not. Work

ing backwards, the input conditions for an event to occur, were derived. The

result is the description of a 'conditional event'.

Complete deduction methods

The methods used is deducing output events so far are resolution and

subsumption. These methods apply to expressions involving 'forall ' , ' there

is a', 'and', 'or ' , 'not*, 'implies1. Extra rules must be used for handling

'greater than', 'is a' and 'equals' operators , and here, such rules have been

used on an ad hoc basis.

Resolution and subsumption, when applied to expressions involving

logical symbols only, a re 'complete'. The result of applying resolution is to

find all possible deductions of a certain form from an initial set of clauses.

This means that the corresponding output event description is certain to be

found.

For expressions involving numeric and set operators, such complete

methods are not generally possible. However, incomplete methods will

generally give satisfactory results , more efficiently.

- 22 -

Pressure switch

if P,(t) < Kg then s(t) = 1

and if P , ft)) K, Q then s(t) = 2

event description

pi<4-> > K i o

andP,(t+) < K1Q

Conjunctive normal form

not P ^ t) <K g or s(t) = 1 1

a n d P ^ t X K ^ o r P , (t) =K 1 Q or s(t) = 2 2

w i d P 1 (t) < K 9 o r n o t P j t t) = K ^ o r n o t s(t-) = 1 or s(t) = 1 3

and Pj(t) Kg or not P ^ t) K 1 Q £ r mrt s(t-) = 1 or s(t) = 1 4

andPj I t) Kg or not P (t) = K 1 Q £ r not s(t-) = 2 or_s(t) =2 5

and Pj(t) Kg or not P ^ t) K1Q OT not s(t-) = 2 ^ r s(t) = 2 6

andnot_ P(t-) K1() 7

andnot^ P(t-) = K1Q 8

and P(t+) K1Q , 9

Resolve 7 and 2 : and P (t) = K- 0 or s(t-) =2 10

Resolve 8 and 10:ands(t -) = 2 11

Resolve 9 and 6: and P(t+) Kg or not s(t-) = 2 or s(t+) 12

Resolve 11 and 12: and Pft+) Kq or s(t+) = 2 13

Resolve 13 and 1; and s(t+) = 1 £ r s(t+) =2 14

11 and 14 together provide an event description, but a better form can be

obtained by combining with 1

s(t-) - 2 and if P ^ t + X Kg then s(t+) = 1

Fig. 10 Deduction accross a component with memory - pressure switch
pynmple

- 23 -

Chapter 4

CAUSE - CONSEQUENCE ANALYSIS

Event chains

The methods described in the last chapter enable the consequences of a

single event on a single component to be evaluated. Consequence analysis is

a method of tracing through networks of components, calculating output events

for one component, and then treating these as input events for the next com

ponents in the network. In this way, branching chains of events can be r e

corded. (Fig. 11). The s tar t of such a chain of events will be a simple initial

event in the normal operation of a piece of equipment; or a failure event.

The occurrence of some events will depend on the conditions prevailing

within a component, or within the rest of the system, when the event occurs.

In some cases, complete ' t r ees ' of coincident conditions must be built up,

in order to analyse under which conditions a particular event can take place.

The process of building these t rees is called 'cause analysis ' .

In failure mode analysis, one is interested in discovering if there are any

conditions of normal operation which can cause a failure event; and in finding

which failure events lead to further serious damage events.

Failure events may usefully be divided into three classes. "Spontaneous

failure events ' occur as a result of no recognised cause, on a statistical

basis . 'Situation induced failure events' occur as a result of chance coinci

dence of otherwise normal conditions within a system. 'Cascade failure events'

occur as the result of other previous failures.

For failure mode analysis, we need a model of all the components in a

system, under normal operating conditions. A description is also required of

the conditions under which the model is accurate, and the conditions under

which another, failure model is required.

A model is also required to express the seriousness or cost, of damage

to a component. For example, for the compressed air system, the compressed

a i r reservoir dangers can be represented by

if Pift) 2 x K. then cost is high

The objective of a failure analysis will be to find those possible failure events

with a high cost.

- 24 -

Block diagram
of hardware

Fit:. 1 1. 'Unwinding' an event sequence chain from a hardware block diagram.

- 25 -

Tracing event chains

Formal methods of cause - consequence analysis can be regarded as t rans

lating from a block diagramdescription of a system to an event sequence dia

gram, by a process of 'unwinding1. A notation for event sequence diagrams

is given in figure 12 (Probability rules for each box are also given, see appen

dix 3).

The simplest case of event tracing is for a block diagram with a set of

components connected in ser ies (fig. 13). For each possible initial event

(spontaneous or situation induced) there will be a simple chain of events. How

ever, if ther« a re any components with memory, then the event chain may

branch, depending on the state of the component. At any point an event chain

may simply stop, because there are no further events to be observed.

event description box

J—h

or box for conditions

if
and box for conditions

NOT BOX FOE CONDITIONS

Fig. 12.

- 26 -

event A or event B occurs

depending on condition C

condition C is the condition that

event A has happened

delay involved in passing from

one event to another

cost per
event = c

expression for cost of a failure

event.

Fig. 12. Continued

- 27 -

Block diagram Event sequence diagram

1

"
2

i

3
Component
hos memory

1
«

' '
S

Condition »

i
Change of
stato of

3

+ Event A
at output of

3

"
Event C

at output of
4

Initial event
in component

1

1 '
Event

at output of

1

"
Event

at output of

2

1
Is slate of 3

S , . 1

1 1 N

I
1

Event B
at output of

3

!'
Event D

at output of
S

Fig. 13. Event tracing in se r ies connected components.

- 28 -

Other cases important in event tracing are given in figure 14. If a component

has two output connections, it will give r i se to a fork in the event sequence

diagram and to two subsequent event chains.

If a component has two input connections, then the consequences of an

event at one input connection will depend on the conditions at the other con

nection. The result is a conditional fork in the event sequence diagram, and

also a syscematic evaluation of the conditions may be required.

Feedback loops in a block diagram can result in long sequences of events,

involving some delay between events. The sequence may continue indefinitely

(that is , until some other spontaneous event interrupts the sequence) or the

system may reach a stable state in which no further events occur.
If a loop in a block diagram involves components with memory, especial

care is needed. Several 'delayed event' chain can occur as the result of one

input event. If the effect of the first of these event chains is evaluated, it
may lead to the conclusion that the conditions for the other event chains are

not maintained. The consequences of the later 'delayed events' may not need

to be evaluated.

Multiple failures

One of the most useful aspects of cause - consequence analysis is the
help it provides in evaluating the consequences of multiple failures. At a
formal level, there are two practical aspects of multiple failure problems -

firstly, in a cascade of failure events which influence each other, the relative
timing of the events is important - and secondly, a failure event may 'not lead
to subsequent damage events as a direct result , but only to a change of state
of a component, an 'unrevealed fault', which may make its presence felt
under later changed conditions.

The problem of relative timing of events in several 'parallel ' chains of

events, can be solved by first evaluating the chains of events, tentatively -

and then considering whether the different chains can represent reality by
considering the logical consequences of different event timings.

R IS U V Evtnt

RS
T"

Component with two outputs

Event

pa

Event

U V

RorS

Event

pa

Component with two inputs

1
Condition

R
— -

Evtnt

U, Vi

RorS

R 1 S

J L

.... Condition

S

Evtnt

U2 V2

PlQ.

T v[x_

Loop

Evtnt

pa

I
Evtnt

RiSi

Evtnt

Vi Xi

J
Evtnt

Ra Sa

Evtnt

V2 X2

Evtnt

1, U,

Evtnt

Ta U2

Fig. 14. Block diagrams and event sequence diagrams.

- 30 -

The second problem, of unreve^led faults, is solved by recording any

possible state changes, or permanent changes in component model, which

are possible as a result of some initial event. Then subsequent event chain

evaluations must take into account not only the different normal conditions

for the component, but also the possible failure conditions. An iterative

process is required to provide a complete analysis of all unrevealed faults.

An example of systematic failure mode analysis

The example of the compressed air supply system will be used to illus

trate systematic failure mode analysis. The analysis provided here is not

thorough, since it involves only two failures, in the relay, and in the safety

valve. An attempt has been made to follow a systematic algorithm for the

analysis (fig. 15) but the needs of presentation require the use of some heu

rist ic rules.

1 Record initial conditions for system and set time t. = t
J i o

2 Select initial event, call it A

3 Apply event A to relevant system component X

4 Deduce changes of state, if any, and record them

5 Deduce different events B, C, on different outputs of X,

and at different times (on some output possibly}.

6 If there were i o events B, C then take an event from an unfinished

event chain, call it A, and go to 3.

7 If there are no unfinished event chains, go to 1. If there are no more

initial events, stop.

8 Select the output event which occurs first on B, C at t . and call it F .

9 Check event F to ensure that it is consistent with conditions at time t. -
i

if not, delet F from B, C and go to 7
10 Check other events on B, C to see if they are compatible with

F if not, delete them. If they are , record them as unfinished event chains.

11 Record F on the event sequence diagram.

Update conditions to time t..

Replace t. by t., event A by event F.

12 Go to 3.

Fig. 15 Algorithm for consequence tracing

Note: this algorithm does not cover all situations, but does cover those situ

ations met in the example of fig. 16.

The description of the system given with fig. 2 needs to be augmented,
with information about the values of the constants involved, with information
about the initial state of the system, and with information about load on the
system.

- 31 -

The additional information required is provided by the following state

ments.

load i ! P 2
(t) > KH t h e n Fy*) > °

else F4(t) = 0;

The constant values obey the following relations constants

K 4 > K10 > K1t > K 9 > K12

10

damage

i fPj(t) >K4 x 1.5 then cost is high

initial state

W = ps«V=IW = W'W
» J t) = K | 5

initial event

= F4(t)

u(t) = 'off1 - u(t) = 'on'

Any automatic process will experience some difficulty in making deduc

tions about a set of non linear equations. For this reason, the model of the

regulating valve and actuator need to be reformulated. This can be seen, by

deducing from statements 7 and 8

if K,_ < P,(t) <K„/KH then P (t) = P.(t) - K 6 (F 2 (t)) ,
- 12 V 2 7 8 2 1 (K7 - K8(P2(t))2

if P2(t) s. K 7 /K 8 then (x = 0 _and F2(t) = 0)

if P2(t) < K 1 2 then_P2(t) = P,(t) - K) 6 (F 2 (t)) 2

The problem is caused by the implicit equation in the first line, which

may be replaced by

if K , 2 < P2(t) < K 7 /K 8 then_(P2(t) = 9,(P,(t) - 92(F2(t))

andP 2 (t) * P,(t)

and (F2(t) = 0 implies 9,(F?(t)) = 0))

If the regulating valve iF within its normal working range, the valve

actuator component may then be ignored.

The first task in the failure mode analysis is to investigate the normal

- 32 -

pi'fo>:-°
switch on t • u = off —>u= on PjCt) (. K,fl

t„- y = o -» y= 1 <--»(*„) " 1

motor on t : V(t) = 0-»V(t) = K] 4

air supply tQ: F ^ t) = 0 -»F , (t) =K, K) 4

conditions checked and

established

initial conditions

P 1<" <,K10

V(t) = K,

l to . t , :F2(t)>0 _ , , t] f\ F, dt
M 4

I F„(t)>0
* . < P2 - F3 f > K4

ure r ises

Regulating Valve

i t , : F2(t) = 0-F3(t)= KgVF^f t f -P^ t ,)) K4

safety valve opens - this chain of

events abandoned

since it involves a

contradiction

V V A 6 F,(t)-F2(t)*F3(t)dt>K2

,X2: z(t) = 1 - z(t) = 0 • V^t2))K2

This chain of events is abandoned, since

the other chain, C, involves events which

occur ear l ier . The immediate sympton is

conflict in the condition t ree {not fully

developed here)

P ^ t J K , K 4 t «. — - tQ: F2(t) =0

^ to t 2 : F 4 (t) - 0 - F 4 (t) > 0 * « t 2 :

P 2 (t) > K n

This sequence of events abondoned,

because sequence E occurs first.

s tarts to close t3 : x(t)=K] 5_* x(t) = Kq - Kg P2(t) « - - tgi P2(t) > K] 2 * — etc.

i F

Fig. 16 Normal operation of compressed air system

- 33 -

a i r begins

to flow through

regul. valve

P res su re switch

trips - com

pressor stops

V

t •
s

t
s

t
s

t
s

t
s

*6

F4(t) = 0 - F4(t) > 0 ^

F2(t) = 0 - F2(t) > 0

P,(t) =K,K 4

4 : P 2 (t) > K n etc.

- P , (t) < K, K 4 t

\ ^ * * safety valve opens -

Q >v chain abandoned

regulating valve closes -

chain abondoned

P , W - K 1 0

s(t) = 1

z(t) = 1

y(t) = 1

V (t) = K , 4

F,(t)=K] 4K,

' P , (t > > K 1 0 ^ y i ^ s K ^ - F ^ t l d t

"" S (t) = 2 > K , n ands(t) = 1
- z(t) = 0 , U

- y(t) = 0-«-ts:u(t)=on

- V(t) = 0

- F,(t)= 0

This is the first con

dition which cannot be

confirmed by examining

initial conditions

P,(t) = K 3 / t s K , K 9 - F2(t)dt - P,(t) = -K3/\s F2(t)

. dt t F,(t) = 0

\ \
\ safety valve opens -

\ chain abandoned

regulating valve fully

* open - chair, abandoned

P , (t) > K 1 0 - P 1 (t) * K. 0 Firs t event of a pair - this

one results in no further

consequences, but the next,

delayed longer, does have

further consequences.

P re s su re switch t . : P(t)»K„

t r ipscompressor t„: s(t)= 2

- P(t) K9

- s(t) = 1

z(t)= 0 - z(t) = 1

t , : y(t)= 0 - y(t) = 1

t 7 : v (t) = 0 - V (t) = K 1 4

t 7 : F , (t) = 0 - F,(t) =K, K) 4

t ^ S ^ - K j / ^ F ^ d t , P,(t) = K ^ K , K , 4 -

F2(t) d(t) t„: F,(t) = 0

Event sequence diagram becomes

repetitive here

Fig. 16. Continued

- 34 -

operation of the system. The event sequence diagram for this is shown in

fig. 16. The notation used is as follows

P
2

condition at time t. t-: P q

condition between time t. and time t,
J K

Failure descriptions

Two types of failure event will be treated for the example of fig. 16. The

first is failure of the safety valve by 'sticking', with the result that the valve

does not open when it should.

The valve failure can be described as follows.

V 1? p] (*) * K
4
 t h e n F3(t) = 0 else Fg(t) = Kg Y P ^ T

Applying this event to the safety valve component, under all the normal

conditions derived in fig. 16, there are no output events to record for Fg(t).,

because F„(t) = 0 under all normal conditions. However, the event should be

recorded, in the same way that an event would be recorded for a change of

state in a component with memory.

The second failure event to be described is the failure of the relay by

constant welding. The event can be described by.

t e : (Y(t) = 0 implies V(t) = 0) and (Y(t) = 1 implies V(t) = K 1 4)

This yields the event sequence diagram shown in fig. 17.

Note that now, the effect of the unrevealed safety valve fault becomes

apparent.

- 35 -

t g i P ^ t ^ K ^ . P ^ t) * K g a n d s (t) = 2

v(t) = ON and z(t) = 0
j

u(t) = OFF

t : Y(t)= 0 implies V(t)= 0 jind Y(t)= 1 implies V(t)=KH

- v(t) = K 1 4 Relay failure

t : Y(t) = 0

tg: V(t) = 0-V(t)=K,4

t8: F3(t) = 0-*jt°: P,'(t) = K 3 /'s - F2'(t) dt

event sequence abandoned,

very similar to H

- P , (t) = Kg/* F , (t) - F2(t) dt + P , (ts)

L__ 7
- H t 9 i P i W ' , ' K i o ' p i W > K i o l

chain abandoned, similar to

chain K.
V ^ o ^ ' - V " *) ^

t 1 0 : P l (t ' * K 4 - » P 1 (t ' > K 4

Safety valve f
fail, has not safety valve t r ips

Safety valve failure

, has occurred

t] 2 : P ^ t) * K 4 x 1.5

- P] (t)) K 4 x 1 . 5

t. „: high cost damage

event

occurred-

*10

'10

-

F3(t) =

P,(t)

P,(t) -

""I i
0 - F 3 (t) =

= VtoF|W

VP,(tj

- F2(t)dt

K 3 / * F j t ø - F j M - F j t o
0

V^W K
4 - pi<*) K4

t„ : F3(t) = K5lTP1(t)-F3(t) safety valvel

closes

event sequence diagram becomes

repetitive here

Fig. 1 7 Failure mode analysis of relay and safety valve failure

- 3 6 -

Chapter 5

PRACTICAL ASPECTS

Significance of formal methods

The techniques described in the previous chapters allow a rigorous

meaning to be attached to the intuitive methods of failure mode analysis. The

most important advantage is that a clear meaning can be given to thoroughness

and completeness of a failure mode analysis. For example the statement 'An

analysis has been made of all interactions between components, except inter

actions accross insulation and physical ba r r i e r s ' acquires meaning because

it becomes possible to consider 'all interactions' .

Used as a tool in reliability oriented design, such methods are basically

conservative. If all that is known about a component is the way that it works

normally, and the fact that it can fail, then the formal methods provide a way

of finding the 'worst ' way in which it can fail. Unless information is forth

coming about the actual modes of failure in practice, a conservative policy is

to provide protection against the effects of all possible failure modes. As

more experience is gathered, more liberal design rules can be adopted.

The modelling techniques used here are particularly appropriate for

engineering purpose. Very often, analogue modelling is constrained by the

lack of data. Logical reasoning of the kind used here can often yield adequate

resul ts , and allow more accurate simulation methods to be used in just those

areas where the economics of design are most ser ious. (For example, only

relative sizes of constants for the compressed a i r supply system, not their

numeric values, were needed).

The modelling techniques are also significant for the collection of failure

data. The normal working of a component can be described, and its normal

working range. Then failure properties can be described by a model, either

as certain consequences of a situation or as events occuring under normal

circumstances with a certain probability. Failures occuring in a situation

(condition) and failures occuring during an event, can be clearly distinguished

(for example, failure of solder connections depends on situation, usually.

Failure of relay contacts usually occurs during switching). Again, more

precise descriptions of failure modes allows more liberal design rules to be

used.

It should be possible by using modelling techniques, to answer questions

such as "can the sequence of events which happened ' there ' also happen here'

An interesting application would be to use accident reports in this fashion.

- 3 7 -

and extend the range of usefulness of case studies as far as possible to new

situations.

The main problem with formal methods of failure analysis (or any form

of failure analysis for that matter) is the cost. To achieve significant results

for complex systems, with reasonably reliable components, requires a large

amount of work. Use will generally be restricted to those areas where safety

is involved. Formal methods have something to offer here. There is a possi

bility for at least semi-automation of the analysis.

There are three basic stages in failure mode analysis; modelling; cause

consequence diagram construction; and mathematical analysis of event prob

abilities. The methods used here are applicable to the second ttep - con

structing event sequence diagrams. Analysis of probabilities involves a further

step. Some of the simpler rules involved are described in appendix 3.

Possibilities for automation of failure mode analysis

Comparing a modern control system with earl ier examples, the modern

system generally has more components, and these components are generally

more reliable. The effect is that each failure mode has a lower probability.

But the number of possible failure modes is much greater. A full analysis

requires examination of a large number of unlikely circumstances.

Failure mode analysis itself is a partial answer to this problem. The

technique described in chapter 4 can be further automated, using a computer.

The time taken to produce the diagram of fig. 16, by hand, was 1 \ man

days. Most of this time was taken up in deducing events, and even more so

in checking the conditions under which an event could take place. Procedures

for performing such deductions on a computer exist (e.g. Robinson 1965).

Both automatic and manual procedures suffer a disadvantage - they cannot

be guaranteed to produce an answer in a finite amount of time. This situation

does not occur often in practice, and in any case is not an important problem

for failure mode analysis. If a failure event is suspected to occur, but cannot

be proved to occur, assume that it does occur. However, the problem means

that human monitoring is required, because if event deduction takes too long,

it usually means that an e r ro r has been made in modelling.

Further automation can help with recording information, and with plotting

failure ir.ode analysis. The technique can certainly not be automated completely,

however. There is simply too much computation involved, and heuristic rules

are needed to guide the analysis. These are best applied by a human being.

Also, one of the prime effects of the analysis process is to refine the

component models and to correct e r r o r s in them. Failure mode analysis is

- 3 8 -

best regarded as a method of helping an engineer to understand a system. As

such, complete automation is meaningless.

Automation of parts of the failure mode analysis process is technically

feasible. Whether such a step is worthwhile depends on how much of this kind

of analysis is performed. Practical use would require use of interactive

computing facilities, and the collection of a set of simple models for the com

mon system components. It would also require some effort in improving the

ease of understanding of the logical processes involved, and a better presen

tation of the component descriptions. Natural language translations of the

logical expressions would be desirable.

More work is required in studying the individual steps in the deduction

process. In particular, it is in principle possible for the event descriptions

to become completely unwieldy, and for the deduction process to become very

inefficient. The success in the examples chosen probably owes a lot to their

simplicity.

More work is also required in studying the way heuristic rules are used to

limit the size of the failure mode analysis task. A list of some of the heuristic

rules observed during intuitive construction of cause-consequence diagrams

(Nielsen 1972) is shown in fig. 18.

1 Having detected an event with a serious consequence, work backwards to

find other event chains leading to the same consequence

2 Stop analysing an event chain, or a t ree of condition combinations, when

the probabilities involved become very low.

3 If a chain or group of components has a simple constant input output

description for all event chains, it can be treated as a single component,

to reduce effort. The new description is deduced from the old. This can

be extended to a hierarchical structuring of a system, with reduced detail.

4 Standard situation combinations and event sequences can be recognized
and stored for later use .

5 Analysis for a single fault of for a single direct and several unrevealed

faults, is most useful (generally gives high probabilities)

6 Treat most frequent initial events first, and ignore low probability initial
events.

7 For probability distribution analysis of states - recognise repetition in

an event sequence, and restructure the event sequence as a loop. Then

use techniques for modelling markoff processes.

Kig. Mi Heuristic rules used in simplifying failure mode analysis

- :i!) -

Chapter 6

CONCLUSIONS

Some conclusions can be drawn from this study. On a theoretical level,

the idea of formalizing failure mode analysis is primarily useful in that

enables one to define what completeness means. A complete analysis is one

which all possible sequences of events have been traced through a model.

Different orders of completeness ar ise because one may take one, two, or

more simultaneous failures into account. And any analysis is complete only

with respect to a particular plant model (either a mental model or a formal

model). A model will never be complete in explaining all possible features of

plant behaviour, but it may be complete in explaining all observed forms of

behaviour, or explaining a particular set of accident records for similar plant.

The idea of using component models as a basis for organising failure data

collection is attractive. But the amount of work involved before a reasonably

large set of data could be collected, is daunting. Some improvement in mod

elling procedure, over those used here , is required, if such work is to be

made economic for complex systems.

The amount of computation (mental or automated) involved in producing

a complete failure mode analysis (even with just a simple plant model) is

seen to be very large. There is no doubt that engineers can produce qualitative

analyses more cheaply than a computer system working alone. The main

advantages from any automated approach would be in simpler data handling

and presentation of resul ts , and in enabling a greater level of confidence in

the completeness of the analyses. (If a designer can make a logical e r ror , so

can an analyst).

Any automated procedure will require interaction between man and ma

chine, if only to draw on the mans experience of modelling, and to correct

modelling e r r o r s . Human aid in recognising failure patterns, and in redirecting

analyses along more efficient paths, should also be of great help. The initial

attempts at 'applying1 automated procedures, using pencil and paper calculation,

are encouraging. The amount of effort involved would be a trivial load for a

computer.

- 40 -

REFERENCES

1) Chang, Manning, and Metze, Fault Diagnosis of Digital Systems, New

York, Wiley 1970.

2) Nielsen. The Cause Consequence Diagram Methods as a Basis for

Quantitative Accident Analysis. 1971.

3) Windeknecht, 'General Dynamical Processes 'Academic press 1971.

Risø-M-1374.

4) Bristol 1965 'On a new Measure of Interaction for Multivariable Process

Control', IEEE Trans. Automatic Control, pp. 133-134, Jan. 1966.

5) Nillson 1971, Problem Solving Methods in Artificial Intelligence.

6) Nielsen, 1973 Private Communication

7) Robinson, 1965 'A Machine Oriented Logic Based on the Resolution

Pr inc ip le ' J ACM Vol. 12 No. 1, Jan. 1965.

8) Cox 1962, Renewal Theory, Methven 1962.

9) D. S. Nielsen a id B. Runge. Unreliability of a Standby System with Repair

a Imperfect Switching, to be published in IEEE Trans Reliability, 1974

- 41 -

APPENDIX 1

SETS, FUNCTIONS, AND SYSTEMS

Notation

The concept of a system used here is based on mathematical logic, set

theory, and general systems theory. The logical notation used is not standard,

and so a short overview is given here

mathematical logic

The symbols used are shown in fig. 19.

Meanings for the letters used may be given as follows. Letters at the

beginning of the alphabet represent 'individual constants', names of individual

objects such as 'this girl*, 'the colour green', 'the set of all integers' . Capital

let ters at the end of the alphabet represent 'propositions', that is statements

which are either true or false e. g. 'this girl is young1; or predicates, that

i s , truth statements including variables e.g. 'x is young'. Lower case letters

at the end of the alphabet represent variables. The letters P and Q, in this

section, represent general strings of symbols, and are used to describe the

way expressions are built up.

Certain of the symbols used are regarded as basic symbols. The way in

which the basic symbols may be combined to form expressions is shown in

fig. 20. Other symbols are introduced by definition, in terms of the basic

symbols. These are shown in fig. 21.

In addition to the symbols described in table 1 and table 2, the sets of

real and natural numbers are assumed to exist, and also the predicates

'greater than' and ' less than* are used, and the functions 'plus' , 'minus'

' t imes ' etc.

- 42 -

constant letters

Proposition letters,

Predicate letters

variable letters

notation used here

not

or

for all

is a

implies

and

if then

iff if

thereisa such that

the unique such that

therisa unique such that

and only if

a, b t c

X. V, Xi , Yl

x, y, X,, y

standard notation

-\
V
¥

£

A&

=*
<=>
3
i
3!

Fig. 19. Symbols used

1 each letter is a term (upper and lower case let ters included, but not

P, or Q)

2 if x and X are terms then x isa X is a formula

3 if x and Y are terms, then X = Y is a formula

4 if P is a formula then not P is a formula

5 if P and Q are formulae, then P or Q is a formula

6 if P is a formula, then forall x, P is a formula.

7 if P is a formula then the unique x such that P is a te rm.

8 The only terms and formulae are those given by rules 1 to 7

Fig. 20. Construction of logical formulae

- 43 -

P implies Q is defined as not P or Q

P and Q is defined as not ((not P) or (not Q))

if P then Q is defined as P implies Q

if P then Q is defined as (P implies Q)

else R and ((not P) implies R)

P iff Q is defined as (P implies Q)

and (Q implies P)

(if and only if)

thereisa x such that P is defined as not for all x, (not P)

Fig. 21. New symbols introduced by definition

- 44 -

Sets and functions

Given the symbols already defined, it is possible to define 'sets'. The

set of all objects with the property P (where P is a predicate) is written

{ x | P (x) }

and is read 'the set of all x such that P is true of x1

This expression is equivalent to:

The unique X such that forali x

(x isa_X iff ((thereisa Y such that x isa_Y) and P(x)))

Another way to describe a set is to list its members e. g.

{ x, y.Z }

is the set which contains just x, y, and z ,

An ordered pair is a set in which one member of the set is distinguished,

being the first member of the set. An ordered pair is written as

{x, y)

and is defined as

< * , { x , y } }

Note the way that x is distinguished as the first member of the pair, by

including it in the definition in two different ways.

A function is a set of ordered pairs. The i^ea of a function is that, given

the first member of an ordered pair, a single s ond member can be found.

For example, given the function {(a, 1), (b, 2) , \c , 3), (d, 3)} and the

parameter b, the value of the function, 2, can be found.

Functions can be written using set notation, as above, or they can be

given names e. g. F. Provision of a name for a function allows the value of

a function for a particular parameter to be written,

e. g. F(x) is the value of the function F given the parameter x.

The set of 'first elements' in a function (a, b, and c in the example above)

is called the domain of the function. The set of second elements is called the

range of the function. A function should be thought of as providing a single

member of the range set for each member of the domain set.

- 45 -

domain range

Fig. 22. A function

The operators plus, minus, times, etc. are functions with two parameters,

since for each pair of parameters, a single value for the function is produced.

The arithmetic operators can be written using functional notation

e.g. plus (1, 2) = 3

The usual notation 1+2, is regarded as on abbreviation of the functional

notation.

Functions of time

In systems theory, different concepts of time are used for different

purposes e.g. discrete time, continuous time. The concept of a 'time set*

provides a basis for definition of these concepts.

Two sets are introduced here - a set of time Instants and a set of time

intervals. These two sets should obey certain properties, or axioms, given

as follows

T is a set of time instants

t is a set of time intervals

t . , t . etc. are time instants

T , T„ etc. are time intervals
1 ^

1 all time instants can be compared

Forall t j , forall t=J t, < tg or t, = t2 or t, > tg

There is a corresponding rule for time intervals.

2 The sum of a time instant and a time interval is a time instant

forall t, forall T , t + T isa T

There is a corresponding rule for a pair of time intervals T 1 T 2

- 46 -

3 the sum relation is associative and reflexive

t + T = T + t
there is a corresponding set of rules for pairs of time intervals

consistency
t + T .

definition of subtration

+ T iff t„ :U L 1 u 2 ^ — ^ 1

If an instant of time t is chosen, then for any other time instant t , , rules o ' J 1 *
5 b and 6 guarantee that there is a time instant T such that

t, = t + i or t , = t - T

1 o l o

Rule 4 guarantees that Y is unique. As a result, the set of time intervals,

together with one 'initial t ime' , can serve as a time set.

The real numbers may be used as a time set. So may the integers, or

the positive integers, etc. Generally, either two time sets are isomorphic,

(one to one correspondence between their elements, and obeying the same

rules) or one time set can be treated as a subset of the other.

A function of time is a function for which the domain is a set of Aime

instants, T, and the range is a set of values. V. A vector function of time is

a time function for which the set of values is a set of ordered pairs , a set of

ordered triples, etc.

Fig. 23. A function of time

- 47 -

Processes

The treatment here is based on (Windeknecht 1971). A process is a set

of functions of time, in which all of the elements (that i s , all of the time

functions) a re defined on the same time set

If p ia a time function p(t) is the value of p at time t. If P is a process,

P [t] is the set of possible values of processes in P at time t.

P [t] = { p(t) | p isa_P}

P [t] is called the attainable space of P at time t.

P is the set of all values at which the functions in P may take, and is

called the atta:'nable space of P .

The product of two time functions p, and g is defined by

pg = {<t, U,y)) | forall t, t isa_T implies (p(t) = x and g(t) = y)}

In other words, if p and g are functions of time, pg is a vector function of time

formed by taking the pairs of values p(t) and g(t), for each time t.

The composite of two processes is defined by

P Q = { Pg I P isa P and g isa Q }

The composite of two processes is formed by taking all possible pairs of

functions of time, and combining each pair to produce a vector function of time.

systems

A system description is a description of a composite process, as defined

above, or a description of a subset of a composite process. More meaning can

be given to this statement if special cases of system descriptions are con

sidered.

A composite process PQ is uncoupled if

- 48 -

(g isa Q and p isa P) implies pg isa PQ

In effect, if p is an input function, it provides no information about the

output function.

A composite process PQ is functional if

p l = P 2 i m P l i e s gj = 82

Interpreting p and g as input and output functions of time, the output of

a functional processor is completely determined by the input function.

A composite process is bifunctional if

P, = P2 i ? S-t = S2

Output is determined by input, input is determined by output. The direction

of causality is not determined for a bifunctional system description.

A composite process PQ is free if the process P is constant, that i s , if

p has only one member. In input output terms, there is only a constant

input.

In general, a system is simply a composite process. However the example

of 'uncoupled composite processes shows that in some cases, the systems

may appear somewhat strange. An uncoupled composite process corresponds

to a system where input has no effect on output.

memoryless systems

A composite process PQ is static, or memoryless if for all X, PQ(t) is

a function.

That is, if p g^, p 2 g2 are members of PQ

PtU) - p2(t) implies g1 (t) = g2(t)

In other words, at each time t, there is only one output value to'be associ
ated with each input value. Such systems can be described by means of the
function F

forall t, g{t) = F (t, p(t))

If the function F is a function of p(t) only, and not of t, the equation can
be written

forall t, g{t) - F(p(t))

Such systems are both memoryless and time invariant or uniforn.

- 49 -

State

The examples of functional, and free systems give some idea of the con

cept of state. For a free system, there is only one possible value for input.

Any differences in output are therefore explained in terms of differences in

'initial state1.

A functional system has only one possible output function of time, for

each input function of time. It is then natural to say that a functional system

has only one initial state.

In general, a state description of a system P, will consist of two further

systems, R and Q, connected in ser ies . R will have an output which depends

only on past input. The value of the output of R at time t, will correspond to

state at time t. Q will be memoryless, and so correspond to an output func

tion for the system. Windeknecht has shown how these ideas can be formalised,

and that a state description can be given for any system. At the very worst,

a state can be provided at each time t for every future output function. This

corresponds to an explanation of all outputs in terms of changes of state

alone.

If a system is such that its output at time t is determined solely by inputs

up to time t (and not by any differences in 'initial state'), then the set of dif

ferent input functions up to time t can serve as the state of the system at time

t. This is about as far as one can go, in general, in providing state descriptions

of systems. It is always possible in principle, for a system to ' record' inputs

up to time t, and to change the output at time t so that it depends uniquely on

this information.

APPENDIX 2

DEDUCTION OF CONDITIONS AND EVENTS

Conditions

A predicate P(t] f t2 , f) i s a condition description if

forall t^, tb , [(t a i s a T and t b isa T and tj * tft (tfe (t)

implies P(t a , tfe, f)]

This effectively states that a condition description is a predicate of such

a form, that if it holds during a period, it holds during any subset of that

period. To deduce a condition accross a component means to deduce a con

dition description with the component output signal as parameter, and which

- 50 -

contains as much irredundant information about the output signal as possible.

The idea of deduction accross a component can be made more precise,

if the language for expressing condition descriptions is restricted, so that

the only symbols to be used are forall, and, not, function symbols, predicate

symbols, variables, and constants. The form of statements required is called

skolem normal form, and is defined as follows.

A constant is a term

A variable is a term

A function symbol followed by a string of terms is a termfthe number of

te rms following the function symbol is the degree of the function)

A predicate symbol followed by a string of terms is a formula.

A formula preceded by a not symbol is a li teral

A set of formulae, separated by or symbols is a clause.

A set of clauses separated by and symbols is a matrix.

A forall symbol followed by a variable is a quantification.

A matrix, preceded by a set of quantifications, so that there is one

quantification for each variable in the matrix, is a statement

in skolem normal form.

Any mathematical statement can, if necessary, be translated to skolem

normal form, although methods which avoid doing this are preferable because

of the inconvenience and complexity of the resulting statements. If a state

ment does not involve variables, then skolem normal form simplifies, to

become conjunctive normal form.

A method, called resolution, (Robinson 1965) exists for deducing all of

the clauses which follow, or can be deduced from, a given initial set of clauses.

For clauses which do not involve variables, the method is quite simple

e .g .

1 (A or B or C) and (D or E or (not C))

2 A or B or D or E

Which means that line 2 can be deduced from line 1.

For clauses which do involve variables, it involves finding a substitution

for the variables, so that a deduction of the kind given above can be made.

e .g .

Forall x, Forall y, (A or C(x)) and (B or not C(y))

Forall 2 , (A or Cfe)) and (B or not C(z))

A or B

- 51 -

Once all possible clauses have been deduced, they can be separated, and each

clause treated as a statement in its own right. Resolution, applied to a set of

clauses consisting of an input condition description and a component descrip

tion, produces an extended set of clauses. This extended set is an apt candi

date for the role of output condition description.

There are two problems with this new output condition description. It

contains too much information about the input conditions and the component

itself. And it contains some redundant information about the output of the

component itself.

The first problem can be solved by striking out all clauses which make

no reference to the output of the component.

The second problem, of redundant information, arises because of pairs

of clauses of the form

A or B or C and A or B

The second clause, A or B is said to subsume the first clause, A or B or

C, because whenever the second clause is t rue, the first clause is inevitably

t rue . Similarly the clause forail x. P(x) subsumes the clause P(a). Subsumed

clauses add no additional information to the output condition description, and

are not necessary for deducing subsequent output conditions for other com

ponents. Subsumed clauses may therefore be deleted. Resolution is a com

plete method, in that it will find all possible clauses which can be deduced

(by any sound method) from an original set of clauses. However, resolution,

in its own right, t reats only those expressions containing and, or, not, and

forall symbols. The set of expressions treated can be very quickly extended,

to include if-then-else, implies, there exists. However extensions to include

the symbols of set theory, is a, = , or to include the symbols of arithmetic,

, , +, - , is much more difficult.

There are two basic ways of extending the scope of the resolution method.

One is to add a set of new clauses, as axioms to describe the new operators.

These are introduced for all subsequent deductions and lead to a considerable

loss of efficiency. An alternative is to develop new methods of deduction,

which are complete, like resolution, but allow more symbols to be used. This

is a considerable technical problem, but some progress has been made

(Robinson 196 Slagle 1972). For many practical purposes, incomplete methods

may suffice, provided only that all the desired output conditions are obtained.

The general form of an output condition, if a component with memory and

with several inputs, is treated, will be

If A (input) and B(state) then C (output)

and jf A 1 (input) and Bj (state) then Cj (output)

and lf_An(input) and Bn(state) then._ C (output)

This form will correspond to a condition t ree in a cause consequence

diagram, and will be called a contingent condition.

events

An ordered pair of condition descriptions,

A M P ^ t , , . t , 2 , f,). P 2 (t 2 r t 2 2 , f2)).

is an event description if and only if

f = f = f *1 2 X

and thereisa t . , t„ such that

forall t n o t f c p ^ , t, f) implies P2(t , Xv f) |

In other words P . and P 9 refer to the same time function f; and either

P J t , t, f) is inconsistent with p (t, X , f), or P2(t , t2> f) contains more

information or is more precise, than anything which could be deduced from

P 1 (t 1 , t, f).

The fact that event A occurs at time t is written

t e : P 1 (t r t, f) - P2(t , t2 , f)

This is equivalent to:

there is a t . such that P (t , , t , f)

and there is a t g such that P 2 (t e . t„ , f)

To deduce an event accross a component involves taking three sets of

clauses

1 The component description

2 The set of conditions on any 'auxiliary inputs'

3 The set of 'state conditions'

and resolving these with the first part of an input event description, to pro

duce the first output condition description. P. ' . In general, this will be a

contingent condition description, and will be valid over a wider period of time
(i .e . later) than the input condition.

The second step is to repeat this deduction, but using the second part of

the event description, to obtain P 2 ' . The third step is to t ry to find if there
are any points in time, greater than t , at which either P . ' is inconsistent

with P«1, or at which P „ ' cannot be deduced from P 1 ' . A theorem proving
program can be used for both of these tasks, but there are problems. The
time to deduce inconsistency cannot be predicted, and so in general it is

- 53 -

impossible to guarantee inconsistency within a finite period of computing time,
(the condition descriptions may be consistent anyway). Similarly, the only
way to prove that P 2 ' cannot be deduced from P 1 ' is to try to make the deduc
tion, for a potentially infinite period of time.

However, in practice, consistency and deducibility can be judged 'by eye1,
if the formulae are presented in a reasonable way. And for more difficult
cases, it is sufficient to try to prove consistency, for a reasonable period of
time, and if unsuccessful, to try to prove inconsistency, again for a reason
able period. If neither attempt is successful, the 'safe' assumption, that an
event takes place, is assumed.

The result i s , in general, a contingent event description, the occurrence
of the event being dependent on the state of the component; and on the con
ditions at any inputs other than the one associated with the input event descrip
tion.

As an example of this process, a 'thermal relay' can be used. Such a
relay has the property that if an input current is provided at time t, the relay
closed at some later time, t + a. If the input current is shut off at time t :,
the relay opens at some later time, t* + b. A rapid sequence in which the
relay current is cut, and then restored once more, will not result in the relay
contacts opening.

An approximate model of a thermal relay, which shows this behaviour,
i s :

Forall t. y(t) = 1 iff
[(Forall t , , t - a (t, < t implies x(t,) = 1)

or (thereisa t„ such that x(t,) = 1 and y(t„) = 1
and t 2 < t < t 2 + b)]

The result of an input event

te: x(t) » 0 - x(t) - 1
is evaluated in diagram 26

The resulting output event i s .

Condition 1

Forall t, [not (the ris a t' such that x(t') = 1 and y(t') = 1 and t' < t (V + b)
and t" < t (t + a] implies y(t) = 0

Condition 2

Forall t, [(thereisa t» such that x(t') « 1 and y(t') * 1 and t* (t { t' + b)
or t + a < t < t ,M] implies y(t) = 1

z «) * 1
and
y(«)=l

ta4a~b<t
z(t)sO-><(tM

t .+a:
»10=0*

Fig. 25L Contingent event

This can be reformulated as two contingent events

1 not therisa t such that t + a - b (t < t" and x(t) = t and y(t) = 1

t e + a: y{t) = 0 - y(t) = 1

2 not thereisa t such that t + a - b(t (t" and x(t) = 1 and y(t) = 1

and therisa t such that t" - b (t (t + a and x(t) = 1 and y(t) = 1

: y(t) = 0 . y(t) = 1

On checking the second event - it proves impossible to fulfill the necess
ary conditions, within the period of interest. After producing an output event
description, it is necessary to check whether the conditions upon Which the
output event description are contingent, can actually exist. In principle, this
means checking backwards through the component network at each step, is
a similar fashion to event tracing. However, a simpler procedure will be
described.

First, when begining a cause consequence analysis, an initial set of
conditions are required for each of the variables of the system. These are
either assumptions, or are derived from other assumptions by deduction.
These initial conditions are recorded for each component.

In evaluating a sequence of events starting from, say, a single failure,
it is only necessary to check that the event sequence produced is consistent
with the initial conditions. In evaluating the event sequence, a new set of

fV^il b,

s (t U t i « \ ,*MUi »CUM !~é) < 0 =1 (J ' i " < i-i+tOj i-&« ^0= o

fwiu,

Fig. 26. Deduction of an event accross a thermal relay component.

- 56 -

££»»••*» <4»;«h»JktaA y»»fcb*r (&Jink »~iv«»«A y«*»*;|c««

i\k fik) - t« tU >•'•* U.»tU» t »JLyuUr tk -̂ t-lr J i i »W—(]«•)'(

2C)<»)=» J

(b t»«. < t, < t f "«* * " •) s * £. -̂ CtJ =-4.

2. —«

«(PM):i <WJ» t-«£t,<t- sr *Uj)= i ar "*)•• ^ W M

Fig. 26. Continued.

- 57 -

* * J U U . «ĵ «b-«£ v«Jk t f . > (t) > 0 -» »CO » 1

IU* truwLJfcM tir

t F«^"- kfc KgV (P, tu) < tfc < Ve) o r « * * (t») = L

^ »-£ Vr~Å t , j > (t , < t | < f ^ O) e r * C *8) = 1

8 «.(PcO) = i f -A t - » < t j / t »r a t P,<»»)<t,<»t £ »at « (0 » i

1 1 | t P W) « l £ * t U < ») < t «r M * P , i * t) < t , < t » <* M» ^ (0 « i

(j f V f" £ c (P (l)) t l rr •«* t - * < t j < t QW* P. (*»)<*»< * i ^

tei $PM<KPW*C^ *-» ° i <* E^ P.̂ »>< H <tfc^J-) ^ u jW» f l

— 4 k - » < kj < t

Fig. 26. Continued.

- 58 - - 59 -

t-J p&) < t < P<»1 *lr)

isj^ji« * l>) = 6

•r (tuj»». P, iri «.«MU> xtpt^si
~A «(H»))» t
iU P<t) < t< PH +t- ^ iikj« »<04

Fig. 26. Continued.

U I X fc , n ^ J J l K , P, Ct,>< *J < k* S£d *** < *» < 0

tcd »«V(tU»tw HO » . A n a K CMtt) ' 1

tU*i»o> P, (t t) «.J»M'

isé j fNOJ-l
Fig. 26. Continued '

x l t) . l

T
tt +a-b

ittt.o—
«(t)»t

^ TT

l».v
yW -0—

»10-1

C O M I
tot*

t t t *

t t « - »

nowmocnif«
bscomi
yttt-1 bsfera t>l i*a

no event occurs because
y(t) = I before t - t-ta

Flg. 26. Continued.

- 60 -

conditions will be deduced for each component. These must also be stored,
temporarily, for checking, in the case that there is a loop in the component
network.

If a 'double failure' analysis is to be performed, not only the initial
conditions must be checked, for each event, but also the set of conditions
which might result from a previous failure.

APPENDIX 3

CALCULATION OF EVENT PROBABILITY DISTRIBUTIONS

Many of the events in a failure mode analysis are 'certain'. That is , they
will certainly happen at some particular time during system operation. Many
failure events, though, are best described by giving a probability of failure.

For use with automated failure analysis, the most convenient method is
to work with an event 'probability density function', p. d. f. (Cox 1962).

If x is the event time
p.d.f. (x) = (t prob (t (x < t t j t)

a t - o '. t
There will be a pdf associated with every event description box in an

event sequence diagram. What follows is a set of rules for finding the pdf's
for all the event descriptions, when the p.d.f. 's for a set of initial events
are given.

1 Simple chain of events, without delay

M«)

* t :P 2 (i) = P,ltl

P2(t)

- 61 -

The probability of occurrence of an event at time t, is the same for a cause
event and a consequence event

2 Chain of events with delay

I Pilt)

* t : P 2 (t) = P,(t-td)

Pjttl

3 Chain of events with non deterministic delay

In some cases, one event follows another, with a delay which cannot be
determined precisely, but a probability distribution can be given for the delay.

Let x̂ be the time for the first event, t , be the delay time x„ be the time
for the second event. Let P j , P- , P„, be the corresponding pdf's. Let p „
p2> p3 be the corresponding 'incremental probabilities'.

then
t'=0

p3(t x2 t + t) » t , S t p [t - t ' < x , « t - t' t t t and

t ' < t d « f + A t]

= r p,(t - f) . p2(t')dt'
J x 2

since even* and length of delay are independent

P3W = = / t P , (t - t ' , ,

P|»d = 1) = Pjl1)
¥ 1 : P j l t u f ' p , ! ! - «) P2I»)H«

|PS(t> J°
B

4 Event depends on a prior condition

In gome cases an event A, occurring at time t, will cause an event B,

occuring at time t, only if some condition C is fulfilled at the time t.

- 62 -

Let P . be the probability that A occurs between times t and t + 4 t.
Let P , be the probability that condition C holds between times t and
t+ At
Let P„ be the probability that event B occurs between times t and t +A t

Then

given that A and C are independent

•Ml)

P,(«)

P 3 t t l T T ^ l t

v t p 3 m = p ^ t i . P j i t)

i v t p 4 i t i = p , (t) . (i - P j (t i)

Decision box

5 Contingent events

In many cases, an event B occurs as a result of an event A, but only if
some other event, C, has already occurred. The probability that an event
has occurred prior to time t, is the integral of the probability density func
tion, and is called the cumulative distribution function.

p,in A
p 2»> ¥ i : P 2 | t) : ("' P,(«)dx

Jo

Event to condition bo«

Note the change of time variable involved.

- 63

I ' l l*) P2(«)

—H—
Or box

| P 3 l t l V t : P j (t) : P ^ t l + P j I t M V H . t y t)

I

Pit«) p 2 m

And box

T
| P j (t) ¥ t : P I (t) : P 1 («) . P 2 | t |

Pi It)

IL
Not bo«

| P | (t) V t : P j | t l = l - P , (t |

- 64 -

6 Compound conditions

Conditions are best described by the probability that the condition holds

at time t. This will generally be a result of the fact that some event has

occurred prior to time t. So conditions are described by cumulative dis t r i

bution functions.

Combinations of independent conditions may be evaluated as in the

following diagrams. As an example - the probability that two conditions, A

and B, both hold at time t, is given by

let P1(t) be the probability that A holds at time t

let P„(t) be the probability that B holds at time t

let conditions A and B be independent.

Then

P3(t) = P (A holds at time t and B holds at time t)

= P ^ t) . P2(t)

