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1. INTRODUCTION

In a measurement of angular correlation of positron
annihilation, a spectrum is obtained which in many cases
may be assumed to be a sum of central Gaussian curves, Sym-
metrical side~peak Gaussians, and a background. The computer
program PAACFIT was developed to perform the analysis nece-
ssary to extract the peak parameters from such spectra.



2. Mathematical Model of the Spectrum

The measured spectrum is first analysed by the processing and
editing code PAAC. This gives an output spectrum

(ei’ yi, oi) i= 1’ -o-’n (1)

on punched cards, which is fed as input to PAACFIT. Bi are the
angles (in mrad); in general they will not be equidistant.

¥i are the counts corrected for background, and o, associated
standard deviations. We want to make a least-squares fit of a

mathematical model
k

k 2 2, __S 2 2 2
£(8)=\C. exp[-p: (6-80) J*+i{ S;{expl-q. (0-6o+w.) ]+ expl-q.
J J 2' ] P ] J
i 31
(6-60-&5 ) 1} (2)

to the spectrum (1). The model has k o central peaks and k_ side
peak pairs. ¢ o is the angular position of the central peaks, and
w; is the angular distance from sidepeak pair no. j to g o The
absolute intensity of a central peak is
c C.
I, = L ! (3)
p.
J
and of a sidepeak pair:
s S.
IS = v

9 4)

The sharpness parameters pj and qj are related to the fwhm by

fwhm f s < > c
pj and fwhm j = -q-j (5)

with c= 2YTog2Z In particular, (2) degenerates to a sum of central
Gaussians if kg=0. Of the parameters in (2), g, is always adjust-
able and w; always fixed. Some or all of the remaining parameters

are adjustable, depending on the prescribed constraints (see eq.
(13) and (1%)).



3. The lLeast-Squares Technique

In formulating the least-squares condition, one could compare
the 'A from the spectrum (1) simply to the model value f(ei) ob-
tained from (2). However, some computational advantages are gained
(simpler handling of the constraints (14) and (17) and of the
statistics), if we replace f (8;) by an interval average

. V1+1
£ = *v—“'v} £(6)a0 (6)
The new angles Vi are related to ei by
3 iy )
Viz 2 01— 32 O2
Ry
vi= z(ei—i +ei)’ =2’ .o-’n \ (7)
3 2y
n+l: 2 Qn‘ 2 en-i
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| | X L | |
| 0 | 6 o ei: S S e, !
| i | | I
V‘ Vz vi vin Vn Vnu

The expression (6) for f.= f.(b), which depends on the parameter

vector b, turns out to be
k

1
£.(b)=, (z ACs z ) (8)
1
J:

i=

A is the difference operator with respect to index i; further,



1$
. 23 erf [pj(Vi°0°)] (9)
. & - -0 - }
and Sji' uJ g erf| qj(Vi 9°+uj) ]+ erf [qj(Vi 9, uj)] (10)

b has 2(kc+ks)+l components; kc+ks intensity parameters, kc+ks
sharpness parameters, and eo:
c

1%, ..., 1 -1?,...,1

¢ s
k k]
1 c

ks 3

pl’ ses 9 pkc; ql’ cee qks; eO (11)

According to the least-squares principle we shall find parameters (11)
SO that

¢ =S: w; [y;-f; (B)] 2 (12)

izl

where w; are weights of the data points, becomes minimum. The
parameters may vary without any restrictiont, or, alternatively,
constraints of different types can be imposed on them. In this
work permissible constraints will be of the following two types:

(a) A fixed value is assigned to one or more of the sharp-
ness parameters p and q (or the corresponding fwhm)

(13)
(b) m linear combinations of the (absolute) intensities
equal zero (m< kc+ks) (14)
If we define the relative intensity to be
ij = ;; for a central peak
} (15)
s

;i for a sidepeak pair

5
o
"R

e tn
]



where I is the total intensity of all peaks,
k k
c

S
I= = 1%. + 13
j Z 5 (16)

[S]
e
4]
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then we observe that:

relative intensity = qQ = constant (513005 M) (17)

is a set of constraints that is a special case of (b) above.
Constraints of type (a) are realized simply by deleting the
fixed p and q from the parameter list. The vector of adjustable
parameters then becomes:

C

= (1 s s T
b- (Il’..., Ikc, Il’--., Iks’ pl,.o-, pkcv, ql,-to’ qk v’eo) (18)

where kcv and ksv are the number of central peaks and sidepeak
pairs with variable fwhm, and T stands for transpose.

Our model (8) is linear in the absolute intensities, but non-
linear in the peak sharpnesses and in e . Marquardt's iteration
technique !) is used in the subspace of nonllnear parameters 2V.

The same method was applied successfully in the program POSITRONFIT”“)
which analyses position lifetime spectra. The iterations start from

a guessed initial set of the nonlinear parameters and are terminated
when & has proved to be stationary, A detailed description of the
applied ideas is given in an earlier report?) that is the basis of

the subsequent analysis. The decomposition of the parameter vector

in its linear and nonlinear components reads

b=[ § p } with

S
a‘ (Ic’aoc’ Ik, Il’nco’ Iis ) T (19)

B2 (pseres Py 5 G 0eees G )5 (20)

then the model f; (b) is linear in g and nonlinear in g. The dimen-

sion of gis ka = k. +k g? and that of g is kB ov ksv+l.



Now (8) can be written
k

f.= 0. Uss (21)

with ugs = uij (B8), and the formulae from the semi-linear least-
squares analysis?) can be used. Let a=a(B) be the solution of a
conditioned on B, i.e., the a-vector (cf.(19)) that for a fixed B
(cf. (20)) minimizes ®(cf. (12)) under the possible constraints (13),
(14), (17). It cen be shown?) that a is determined by solution of

the linear system

k m
[¢

]

X C b kT a Y (22)
a | _

m K ) o )

|

L

The submatrix C has the elements cjj1= i ¥i uij uijl’ and the
vector y the components Yj= E LI A uij' © is here a zero matrix
(or vector). K contains the ka coefficients of each of the m
constraints of type (14%); these constraints read Ka=0. In the

special case (17) the coefficients of K.turn out to be

ko: =8

i3,

Gij is the Kronecker delta, and jz (1< jsza)is the term no.

(cf. (19)) associated with constraint no %£. y is the vector of
Lagrangian multipliers appropriate for the present constraint-minimum
problem; no explicit use will be made of y,

In the nonlinear B- iterations we shall need the quantities

%zf;as a= a(B), these can be expressed by

J

k
o
afi = 3aj: u.: + g dujis
3B.» Z [ 38.,1 1], %3, _uUlJ
J - J 98 .
J1=1 J



(j.= l,-c.,k ) (2“)

B

jl
be done by taking the derivative of both members of (22) with re-

Hence, to evaluate 9fi daj has to be evaluated, and this can
jl

spect to B;.The result can be expressed as a matrix equation

B
|4 m | S
a B kg
|
T
k, C : K A | = (25)
m K : 0 M 9

A' contains the unknown derivativesajj; da. . E has the elements:
B

]
e E: ] | k“ 3
.. u.. ..
jit = Wi ij] (y.=f.)-u.. %31 . —~il1]  (26)
5 ij 385 _]
sl

M' contains the derivatives of the Lagrangian multipliers and is

not used explicitly. In specializing (26) to the present model,

it is practical to introduce some abbreviations:

EX,.= ! —p?
137 A eXP ( P3 ti2)/ 4 V.
\ = 1 -p.2t,2 .
TEXij = - A (ti exp ( P4 ti ))/AV1 (27)

= 1 L(t. . - .
ERS;;= L4 gerf [qj(t1+ wj)] + erf| qj(ti wj)]}/AV1
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Y - aql Lew. )2 -q? . =ws )2 .
EXS;;* ¥ Ag exp [ qj (t1+mJ) ]+ expl qf (t;-w;) ]}IAVI

=L .+, -q? (t.+w;)? . s -q? (t;=a
'I‘E)(SiJ s A{ (tlmj) exp [ qj (t1+uJ) ]+(t1 “')) exp[ qj (t; “J)q},Avi

The expression for uij becomes:

3 2 kgiougsE aC. . = ER
3 i = .
wooTe i)
p ]
(28)

kc <j < kc+ks: uij= Asjoi - ERSijo (Jozj-kc)
AV, -1S
jo

The expression in brackets in (26), hi’ can now be evaluated.
We find:

(29)
. . In- 31,
2) ] -<' kc’ kcv < J f' kcv+ksv (J“- ] kCV)
(30)

- - d S0
h; koti" ER;s TEXS .,

2~

k k
Ji1= ji=a
4) k, <3 2 k vk (3o=3-k)s 37 2k .
h;= - ERS;s. ay. TEX;s, (32)
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5) kc <j < kc+ks (jo:j—kc), ch <j?§kcv+ksv (jn:jt_kcv)

. COPR S -|=
§) ky <3 2 k kg (jo=j kc), 3 kBk
c kg
(3u)
Now we consider the Marquardt procedure !,?) in the space of
T T
B: (pl,"., pk 'Y q!,--., qk ,eo) = (p’q’eo) (35)
cv sv

for minimizing ¢= Zw; [y;-f(x; 3B)]? for variation of B
without constraints [f(xi 38)is an abbreviation for f(x; ;u(B);B)J

This method is derived from the familiar Gauss-Newton iteration
technique by addition of positive terms to the elements of the
diagonal of the matrix A corresponding to the system of "normal
equations"

Ad = g (36)

A stands for PTwP. P, W, and g have the elements

pij= agi > Wiga Gii' and
3 n_ 551
J 1

GJ - Z wi(yi-fi) EE; (i< kB ).

B (Brs...» Bk )T refers to a guessed or previously iterated non-

linear paraleter vector. d is the resulting correction vector to g,
The Marquardt modification of (36) reads

(A+ uD2)d= g (37)

D is a diagonal matrix with its elements scaled according to

A, diJ = 61] 13)5 The additional parameter,® , that is at our

disposal provides for interpolation between the Gauss-Newton method



(x=0) and a gradient-like method (= e ). Details in Marquardt's

iterative strategy are given elsewhere !,%,%),
afi

To set up eq. (37) we shall need the elements Pis® 3B . of P.
From a=a(B) is obtained ]
k
ofi = z[auil uij + (lj auilil ] (j‘< kB) (38)
BBj. 3B ! 1 3Bj, -
iy Y
3ui.
The derivatives 3§—1 are given by:
j'
1 j< kc, i°< kcv : ij, TExij
2) 3 < kc’ j°= kcv + 3" : 0
] < ‘= . -P . »
3 2 ker 375 Ky Py BXi3 (39)
4) 3 =k, + 3o, 37 Kk, : 0
L] - 3 -l_ LT .
5) j = kc + jo, 3°= kcv + 3" sjoj“ TBXSijo
6) 3 = k, + Jo, j°s kB

[}
oD
o
tm
>
L2
-
e
o
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4. Statistical Analysis

In this _section are given the results of a statistical analysis?)

of the least-squares problems with constraints of the present type.
This analysis assumes

(1) an ideal model
(11) small fluctuations of the data ordinates
(count numbers) around their means.

(iii) T"statistical weighting"

Concerning (i) we know that model (2) is not an ideal model. We
have no general theory which indicates that the measured curves
can be represented by the model. However, experiments have shown
that in many cases parts of the curves or the whole curve can be
fitted well by use of one or several Gaussian curves.

(ii) is justified if the total number of counts in the spectrum is
sufficiently large. This is generally true in this application.
(iii) concerns the choice of the weights, w;, of the data points
in the expression for ¢ (eq(l2)). These have hitherto been regarded
as arbitrary coefficients,but several advantages will be gained?)
if the so-called statistical weighting is chosen,

We = — (u40)

ai is the variance of the ith data ordinate y, and is estimated by
the auxiliary program PAAC. With assumptions (i)~ (iii) it is pos-
sible?) to compute the covariance matrix, Q, of the statistical va-
riable b [the vector that minimizes (12)]. The result is that Q is
obtained by deletion of the last m [ of (14)] rows and columps from
the inverse of the matrix



k m
k [ | T |
H = A | R (41)
|
— - r.- -
m R | 0

Here, the matrix A=pTwp refersto all k=ku+kB parameter components

(in contrast to A for the B-iterations, eq. (36)), so in this case

P is an n x k matrix with the elements P..= %%5 . R is related to
1] j;

the set of general constraints

kz (b) = 0(2=1,...,m) (42)
by rzj= ;;% . In the present case R becomes an extention of K
3
(cf. (22) and (23)),
k, kB
R:m[KE ] (43)

In the special case of no constraints, Q = A™}.

We want to express the parameters as well as the associated statis-
tics in terms of relative intensities

(44)

and fwhm (eqs(5)). The new parameter vector

b, = (ih'-"ika,h seeey 'k +k ,eo )t, where ¢ has been writtgn
cv sV
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for fwhm, has the covariance matrix Q,= JQJT. J is the Jacobian
of the transformation b+b,,

k“ ktv‘ktv [ §
[ Lu-i) _ ol | ]
U, u‘
~ | I
e h ~ | S l
|
_ 'tl Ly (’-lh)l (u5)
J=|=____"&1___ _le
|-% 2 |
LT
K+ kgl e l 0 \\\ l
|- T T T T T e It

where c=2 Vlog2. Q; contains in particular the variances of the
parameters in the diagonal. The minimal sum-of-squared-errors

¢min will approximately have a x*- distribution with q=n-ke .o
degrees of fredom, where

Kenee = ka+kB- m=k, +ko+k, +k +1lnm (46)
q is always so large that this X2-distribution is close to a normal

distribution with mean q and variance 2q. Hence the quantity
g% = (47)

will be approximately normal (l,V—%'). S? will be denoted "the
variance of the fit ". It serves as an indicator of the validity

of our model [cf. assumption (i)] ; S2-values substantially greater
than 1 suggest that our model is not a good representation of the
measured spectrum.
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5. Description of the Code PAACFIT

5.1 Structure

The;fortran program PAACFIT (AEK P-673)consists of a driver pro-
gram and the ‘subroutines GAUSFT, DISP, COLDEC, and COLSOL.

The driver program contains all the input and most of the output

instructions. It carries out all the statistical analysis.

GAUSFT is the iterative least-squares fitting routine. It passes
to the driver program converged values of the model parameters.

DISP produces a table with data as well as fit ordinates and a
lineprinter display of the deviations.

COLDEC and COLSOL are used in the solution of linear systemS with
symmetric matrices and for inversion of such matrices. COLDEC per-
forms an extended Cholesky decomposition, and COLSOL solves the
system on the basis of this decomposition. The two subroutines are
called from the driver program during the statistical calculations’
and from GAUSFT.

5.2 Input

All input data are read from punched cards. The data are divided
into five consecutive blocks.

BLOCK1 is a single card containing the word JOB and a job number,
IJOB. The format is A3,I17. If "JOB" is not recognized, an error
message is printed. IJOB<O signals the end of the job stream.

BLOCK2 is a single card containing the print-out option IPRINT,
format I 10. IPRINT=0 causes print-out of the main results. IPRINT=1l
gives in addition a print-out of the parameters at each iteration,
and IPRINT=2 furthermore a table with data as well as fit ordinates
and a graphical display of the deviations.

BLOCK3 is a single card containing the length of the table N,
format Ilo0.

BLOCKS 4 and 5 both start with a text card with one of the words
NEW or REP, format A3. If the card is a REP card, this will be the
entire contents of that block, and the corresponding block data
from the previous job are repeated. If neither "NEW" or "REP" is
recognized, an error message OCCurs.
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BLOCKY4 contains the spectrum data. The first card after a NEW
card 1s a text card with a description of the spectrum (col. 1-72).
The next items are the angle table (X(I),I=1,N), format 10F8.2; the
count-rate table (Y(I), I=1,N), format 16F5.0; and the standard-
deviation table (SIGMA(I),I=1,N), format 16F5.0. These tables con-
stitute the punched output from the PAAC program. (cf.(1l), sec. 2).

BLOCKS contains information on number of terms, parameter guesses
and constraints. The first card after a NEW card holds the five in-
tegers KC, KS, KCF, KSF, M, format 5I10. KC is the number of central
peaks, KS the number of sidepeak pairs in the model. 0f these, KCF
central fwhm and KSF sidepeak fwhm are fixed. |M| is the number of
constraints on the intensities. If KS>0, a card follows with the
sidepeak positions, format 2E10.5. The next card contains all the
KC initial values (guessed followed by fixed) of the central fwhm,
format 5E10.5. If KS>0, a card follows with the KS initial values
(guessed followed by fixed) of the sidepeak fwhm, format 2E10.5.
The next card holds the guessed value for the angle-zero 6o, format
E10.5. If M>0, M of the relative intensities are fixed. In this case,
the next data item is a pair of cards with the numbers (JL(L),L=1l,...,
M) and (RINTF(L),L=1,...,M), format 6I10/6E10.5; JL(L) is the term
no. associated with constraint no. L (the numbering of terms is
defined from the previous card(s) with the central fwhms followed
by the sidepeak fwhms), and RINTF(L) is the corresponding fixed re-
lative intensity in percent. If M<O, |M| linear combinations of the

absolute intensities equal zero,

KC+KS

in this case the next data item contains [M] cards so that card

number £ holds the coefficients kzj with the identifier COMB (J,L)

(J=14...4, KC+KS), format 7E10.5. The option M<0 may be used to fix

ratio between intensities or the sum of certain relative intensities.
Restrictions on the input data in the present version (1/7 1973) of

PAACFIT are: Ng 100, O<KC< 5, O < KS < 2, 0 £ |M| < KC + KS,

0 < KCF < KC, 0 < KSF < KS,
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6. Experience with the Program.

The program has until now been used in about 500 analyses of
more than 100 different angular correlation curves. Most of the
results will be published in detail in other papers. In figures
1 and 2 are shown some of the curves. These figures were computer-
plotted by use of the program PAACDRAW. The fitting parameters of
the curves, determined by the PAACFIT analyses, are given in table
1 and the fitting curves-are plotted in the figures.

As mentioned earlier (sec 4) we normally have no theory indi-
cating that the model is ideal. In practice, however, we frequent-
ly measure curves which, wholly or in part, can be fitted well by
one Gaussian (e.g. the broad component of many metal curves). Our
experience is that we have been able to fit well all the curves
we have analysed. In a typical case of a bell-shaped curve with
no sidepeaks a one -Gaussian fit is rather bad, a two-Gaussian
fit is fairly reasonable, and three Gaussians fit very well with
parameters that are already not too well determinded (see the
cystine parameters in table 1.)A four-Gaussian fit will normally
be so uncertain that much computing time is used and some of the
fitting parameters attain unacceptable values (e.g. intensities
of thousands of precent or very large fwhm's). We want to empha-
size that the model can contain so many fitting parameters that a
good fit can nearly always be obtained, and thus extreme care must
be exercised in the final correlation of the parameters to some
pPhysical quantities.

Before we used the program for analysis of the measured curves
we analysed some calculated curves. For example we analysed a cal-
culated curve with a shape close to the shape of the a-axis ice
curve. The program found the same intensities and fwhm's as used in
the calculation, except for the fwhm's :f the very narrow central
and side peaks, where the program found 0.7815 instead of 0.8
mrad and 0.5749 mrad instead of 0.6 mrad respectively. This very
small error arises because the measured numbers yi are compared
to interval averages for the model curve in the fitting procedure
(cf. sec. 3) It can be reduced if more points are measured on the
narrow peaks. We have also tested the program many times by e.g.



varying the initial guesses of the fwhm's or by analysing different
curves measured for identical sample conditions.

A more detailed discussion of a series of analyses of the a-axis
ice curves will illustrate some of the problems we encountered in
the fitting procedures. At low temperatures the curves consisted
of a broad component, a narrow component, and a sidepeak pair,
while at higher temperatures also a middle-broad component was
found. We wanted especially to get good values for the intensities
of the narrow central and side peaks (due to annihilation of delo-
calized para-positronium (para Ps)) and of the middlebroad component
(due to localized para-Ps). At first we analysed nearly all the
a-axis curves by use of three central Gaussians and one pair of
side-peak Gaussians. The side-peak positions were calculated by
use of the ice lattice parameters. The fitting was good, but for
many of the curves the values of the fitting parameters were not
acceptable. For example the fwhm's of the side peaks sometimes
attained values of 5 to 10 mrad at some of the highest temperatures,
where the side peaks were rather small. For the a-axis - 182°C
curve (see fig. 1) the broad component was well fitted by two
Gaussians (84.6757% with fwhm = 10.394%1 mrad and - 1.0130% with
fwhm = 5.8701 mrad). A one-Gaussian fit of the broad component
was rather bad and three Gaussians did not give a smaller variance
of the fit.

We then analysed the curves by use of four central Gaussians and
a pair of side-peak Gaussians. The shape of the broad component was
fixed to the shape found at -182°C by use of fixed fwhm's(fwhm,
= 5.8701 mrad and fwhms = 10.3941 mrad) and one linear - combina-
tion - of-intensities constraint, 84.6757xi;+ 1.013xi, = O.

Again the parameters for some of the higher temperature curves were
unacceptable. The reason was that the larger angle parts of the
curves strongly influenced the intensity of the broad component,
and hence the side peaks and middle-broad component were to some
extent used to compensate a too small or a too large broad compo-
nent at smaller angles.

From theory we expected that the broad component would be ap-
proximately independent of temperature except for a small correc-
tion of the intensity. This was found to be roughly in agreement
with the results of the first analyses. We therefore analysed the
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curves by use of four central Gaussians and one pair of side -
peak Gaussians with the broad component fixed to the shape used
before and an intensity calculated by use of lifetime data. The
parameters were now fairly acceptable but for some curves they
were still somewhat too uncertain. We analysed once more using
fixed side-peak fwhm's with a theoretical temperature dependence.
The fwhm's for the middle-broad curves for temperatures above
-40°C, where the middle-broad components were well defined, were
then found to be very constant. For 1l curves we found fwhm,
= 3.94:0.09 mrad.

In the final analyses we therefore also fixed fwhm, to be
3.94 mrad. This gave a variance cf the fit close to the best
values obtained in the analyses, where all the parameters were
free, and the parameters, which were free to vary, were well de-
fined. The ice curves for other orientations and for HF-doped
ice were treated similarly. Manual treatments of some of the
curves have been published in ref. 5. The ice curves givern in Fig.
1l and table 1 are the results of the final analysis. The complete
lineprinter output for curve 1 (c-axis, -181°C) is shown as the
test run output in appendix 2.

In Fig. 2 (see also table 1) are shown curves for cystine,
acetylmethionine and y-irradiated (30 Mrad) acetylmethionine.
In acetylmethionine y-irradiation reduces the amount of Ps formed.
Para-Ps annihilation results in a middle-broad component in the
angular correlation curves. We assumed that the rest of acetyl-
methionine curves, the broad component, had the same shape as the
cystine curve, where no Ps is formed. For the cystine curve three
Gaussians were necessary to give a good fit. Hence, we analysed
the acetylmethione curves by use of four Gaussians, one for the
middle~broad component and three to fit the broad component, using
two linear - combination - of - intensities constraints and fixed
fwhm's to fix the shape of the broad component to the shape of
cystine curve. The intensities of the middle-broad curves in Fig. 2
and table 1 therefore give the amount of para-Ps formed, A manual
treatment of the same curves have been published in ref. 6. This
example illustrates how a curve may be separated into two parts,
of which one has a fixed shape, by use of the linear - combination -



of - intensities constraints.

In sec. 4 it was pointed out, that on the assumption of an
ideal model, the distribution of the "variance of the fit", s?
(cf.(47)), should be approximately normal with mean value 1 and
with s.d. =V?§ %~ 0.17 (in our application q was always near
70). Except for a very few cases we found much larger values,
typically about 4. The reason is of course that the model is
not ideal. Firstly, the curves cannot always be fitted by use
of only Gaussians. Secondly, the curves contain small errors due
to different experimental effects. For example, the narrow peaks
are not completely symmetrical because of a small asymmetry of
the resolution curve of the set-up owing to the variation of
the position-penetration depth of the ice sample. The curves
measured with the smallest statistical counting uncertainties
gave the largest & - values, as expected.

The computing time on a Burroughs B 6700 was roughly 10 to
20 seconds, this corresponds roughly to 1-2 sec. on an IBM 370/165,
depending on the number of points in the curves (typically around
75) and on the constraints used. The number of iterations to obtain
convergence was usually of the order of 14 for unconstrained fits
and arcand 7 for heavily constrained fits.

We conclude that the program is a very useful tool for the ana-
lysis of angular correlation curves. It may of course also be used
for the analysis of symmetrical curves obtained in other experi-
ments (e.g. the resolution curve of a positron lifetime set-up).

As the program can handle negative intensities, curves of many
different shapes can be analysed. In particular the possibility

of using different constraints in the analysis has been found to

be very applicable. The main problems of an analysis is to use the
constraints in an intelligent way in order that the fitting para-
meters can be correlated unambiguously to the physical quantities.
In other words, it is nearly always possible to obtain a good fit,
but it may be very difficult to make out the meaning of the fitting
parameters.
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ITS DISTRIBUTION SHULULD BE APPROXIMATELY NORMAL (150,167)

EXCESS PROBABILITY =

0.v0 PCT

NUMBER uF CENTRAL PLAKS = 3
NUMBER yF FIXED CENTRAL FdHM = 2

NUMBER yuF CONSTRAINTS FDR RELATIVE INTENSITIES = 2
FIXED RELATIVE INTENSITIES FOR PEAKS NO

PFRCENTUAL INTENSITIES
POSITION OF SIDEPEAKS

LENGTH uF TABLE = 77

INTENSITIES OF CENTRAL PEAKS IN PCT

STANDARL DEVIATIONS

INTENSITIES OF SIDEFEAK PAIRS IN PCT
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FWwHM FOR CENTRAL PEAKS

STANDARuU DEVIATIONS
FWwHM FOor SIDEPEAK PAIRS

3.3150 646300

ANGLE®ZLRO THETAO (MRAD)
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AREA FROM FIT
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* v . ) - {
Curve |Substan; ! 2 13 1y ig FWHM FWHM, FWHM,, FWHM, FWHM Symme try Variance |
No. lce 1 5 angle of the Remarks
' (\) (1) (8) (8) (8) (mrad) (mrad) (mrad) | (mrad) (mrad) | (mpad) Fit {
1 ice 14.559 0.05u4 B3.66 0.559 1.167 0.861 3.700 10.590 0.950 0.950 -0.0063 2.083 -181¢ C .
c-axis | $0.089 | £0.097 £ £ £0.038 | $0.005 £ £ £ £ £0.6018 pure
+
! ] N
ice 13.813 0.007 -1.013] 84.676 2.517 0.848 3.940 5.870 [10.394 0.950 -0.0082 5. 164 1820 ¢
2 |a-axis |+0.077 | :0.088 £ £ £0.039 | 20.004 £ £ £ £ £0.0016 pure
ice 10.569 5.060 83.333 | 0.318 6.722 1.105 3.700 | 10.59 1.081 1.081 -0.0135 4.023 49t ¢
3 |c-axis | :0.074 | 20.080 £ £ 10.027 | 20.006 £ £ £ £ £0.0019 pure
i
ice 6.430 9.367 -1,005 { 83.987 1.221 0.883 3.64 5.870 |10.394 0.960 ~0..000 6. 325 N
Y la-axis | t0.065 | :0.07u £ £ £0.029 | $0.008 £ £ 4 £ £0.023 23 ppm HF j
1
g |ice 5.88 10.474 -1.004 | 83.943 0.698 1.251 3.940 5.870 ]10.394 1.112 0.0815 L6032 ue C
a-axis | $0.192 £0.209 £ (4 $0.068 $0.034 £ f f £ +0.,0067 pure
ice $.223 | 11.203 -1.00% | 83.912 0.666 1.22% 3.94 5.87 10;39u 1;115  -0.0083 1. 7us e e
6 |a-axis [$0.131 | $0.1us £ £ £0.044 | 0.024 4 £ £0.0045 pure
cystine |-16.402 [110.393 6.009 - - 5.564 8.830 | 20.566 - - 0,967 1.104 200 C
7 potver. | 25,975 | su.002 £2.326 - - $0.386 | 20.216 | 25.630 - - £0.0049 non-ire
-
g [acetylmd 1v.982 [13.945 33.85% | 5.109 - 4,128 §.564 8.830 | 20.566 - 0.7826 1.820 00 c
olyer. | 20.305 | :0.050 £0.337 | 20.018 - £0.064 f £ £ - .£0.0069 non-irr |
cetylmd 8.9v7 |-1v.935 | 100.516 | s.472 - 3.822 5.564 T.530 111 = -
’ lycr | 20.266 | £0.0uy £0.29% | 20.016 - $0.091 £ £ £ - -1035 1.285 200 ¢
olyc . . + 0.0068 y ~irp
Table 1 The fitting parameters and their uncertainties

o o

as determined by the PAACFIT analyses for all the curves
shown in figures 1 and 2. The letter f indicates that the
paramater has been fixed.
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Figure 1. Positron annihilation angular correlation curves

for ice single crystals plotted by use of the PAACDRAW-
program. The curves are the best fits to the measured points
calculated by use of the PAACFIT-program. The points and the
fitting curves have been plotted after the subtraction of
the broad components, which have been plotted for the a-axis
and c-axis low temperature curves. The statistical counting
uncertainties are all smaller than roughly the size of the

marks. The parameters of the curves are shown in table 1.

R e e



e 4~

COUNTS (ARBITRARY UNITS)

P

e

byl -
hionine

&t

ANGLE (MILLIRADIAN)

Figure 2. Positron annihilation angular correlation curves
for cystine (7), acetylmethionine (8), and y-irradiated (°°Co)
acetylmethionine (9) plotted by use of the PAACDRAW-program.
The curves are the best fits to the measured points calculated
by use of the PAACFIT-program. The two acetylmethionine curves
are shown after the subtraction of the broad components (shown
in the figure), whose shapes have been fixed to the shape of
the cystine curve by use of constraints in the fitting analysis.
The statistical counting uncertainties are only shown if they
are larger than roughly the size of the marks. The parameters
of the curves are shown in table 1.
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