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Abstract

A mathematical model is discussed, which analyses
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l. Definition of the Problamm

During irradiation in a reactor a fuel pellet expands and exerts a
pressure on the cladding tube. Since the pellet tends to assume an
hour-giass shape the ends of adjacent pellets in the tube will tend
to deform the tube so0 as to create a circumferential ridge.

In many cases the pellet will crack longitudinally in which case the
force distribution will not be axisymmetric. However, in this approach
ve shall assume that no such cracks form, i.e. the force distribution

is assumed to be axisymmetric.

As the pellets change their volume and shape they may not only exert
a normal force on the tube surface but also a friction force which,

due to the assumption of axisymmetry will be oriented in the axial
direction.

We shall assume that any two adjacent pellets behave likewise, i.e.
the ridge as wvell as the force distribution will be symmetric with
respect to the pellet end cross-section.

Fig. 1. illustrates how the situation is conceived. The tube is shown
in a longitudinal section, in the deformed situation. Only the lower
half of the ridge is shown. A length L is introduced, rather arbitrari-
ly, to specify some axial distance from the ridge top beyon? which

the force distribution is zero, except for the uniforms inner and outer

gas pressures.

Included in fig. 1 is a plot of the assumed force distributions which’
act on‘the inner tube surface. Kn denotes the normal force per unit
area, K’ the friction force per unit area. K_and KB are symmetric
with respect to the s-axis. KB is zero at t = 0, while both Kn and

l‘ are zero at t = 1.

Besides the mechanical forces there will be an effect of the tempera-
ture distribution throughout the material considered.

Rigorous treatment of the problem as stated requires the solution of
the thermo-visco-elastic equations in cylindrical coordinates for the
axisymmetric case. This again requires information about elastic
constants, thermal expansion coefficient, plastic deformation anisotropy
constants and an empirical model for the creep of the material under



the influence of fast flux, i.uence, effective stress and strain,

temperature, etc.

2. Definition of the Mathematical Model

Due to the complexity of the system equatioms,a rigorous solution is

not obtainable.

In order to determine an approximate solution,the deformations u and
w are ‘expressed ‘as fourth-ordsr polyrnoeial forms in the two coordinates
s and t, which are defined in fig. 1.

The order of the polyuomial forms has been chosen such as to provide
a suitable number of coefficients to be determined by application of
what 'is conesidered a remsonable set of boundery conditions.

Clearly, the second-order differential equations which describe the

state of deformation in cylindrical coordinates are not satisfied by
any polynomial forms. Hence, the success of ‘the method rests entirely
on the choice of appropriate boundary conditions. -

Since the creep model is of empirical nature and as such not readily
compatible with the polynomial approximation technique, it is neces-
‘sary to use e fitting procedure to link the Ccreep model to the over-all
model.

3. Description of the Model

2:1: Therno-Elastic Bguations in Cylindrical Coordinates

The general elestic equations of motion in cylindrical coordinates

read:
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Figure 1.

Tube wall in deformed situation



) o =a {1‘(1-\») (1 +1) - Qe e 1]
(5) o0g=a{1500-9 +v(1, +1) « Q4 a T}
(6) o =af{1 (1-0+v(1, +1y) - (14 a 2}
(?) 0,g=B1g

(8) %r = B 1o

(9) 9,=B1_

The total straine are expressed by the local deformations:

(10) & - g—:—
(11) Ee = %4- %g%
a2) e, =3.";
1 1
(13) €,4 = 5% + ;gé)
1 1
¥ €. =3GF+ 255 - %)
=1 <)
(5 £,, = 162 +

The relationship between total and elastic strain is:
(16) fu = l:i.j re s

If the plastic strains are known at any particular time, it is in
principle possible to splve for the elastic state of deformation
by substituting eqs. (16) into eqs. (10) through (15), eqs. (10)
through (15) into egs. (4) through (9), eqs. (%) through (9) into
egs. (1) through (3). This gives 3 second-order differential
equations in u, v, w,

3.2, _Anisotropic Theory_of Plasticity

1
H11l ) has formulated a theory of plastic deformation of anisotropic
saterials based on von lisesz idea of a plastic potential.

The equations are:

ané, = P{¥o.roy) - Ko -]

(18) 8 = P fG(ae-cr) - l'(ul-ae)j
a9 é, = P 1!1(0,-0.) - G(oe-ur)}
(20) 6,9 = P{Loyg}

(21) g, = P{Mog }

(22)¢ = Plno,]
2 = o
(23) p églog)/o, \
(24) o, = [¥(o "’6)2 + Glog-o )2 + Bo -0 )2 +

(] a S r 2,37 &

2Lg, " + 2Mog ° + 2Na j

o‘ is named the effective stress.

It is noted that ¢, + e'o + e'r = 0, reflecting the idea that there

can be no plastic dilatation.
F, G, H, L, M, N are named the constants of anisotropy.

The quantity P corresponds to the elastic modulus of the theory of
elasticity. It is prisarily a function of o_ but depends also on
various other parameters, like temperature, mechanical and heat
treatment, irradiation level, irradiation history, etc.

3.3, Creep Model by Nichols

There does not exist a generally accepted theory for the irradiation-
enhanced creep of metals. lichola’ ), however, has compiled a model
which is widely used and probably gives reasonable resulta.

Bnai::ully, the model gives the quantity P of the previous sectionm
as a fuaction of effective stress, temperature, neutron flux and
integrated flux as well as a number of materials parameters.

Nichols' model is based on empirical relationships and can be
adapted to represent almost any currently accepted truth.

3.4, The Equations in the Axisymetric_Case

Eqs. (4) through (9) becoms in axial symmetry:
@5) o, = AfLG-W +H1g1) - (14w a2 ]
(26) oy = Af{1501-9 Mgal) - AN a r}



(@7 o = A1V (1 41g) - QW) at}
(28) o= 3B 1.
Eqs. (10) through (15) become:
(29) €, = ‘)‘1‘,
(30) g5 = =
Gy g, -3
G2 €, =L G5

3.5. The Polynomial Approach

The local deformations u and w are expressed by the following
polynomial forms:

(33) u = L s" + g st + 8y, sztz + 84 si:3 + agy t"

+ ‘30 B} + 85 szt +a, stz + a°5 i:3 +ay, 52
+anst+n°2t "'10‘*'01‘*'00
(W) v = by, et 4 ete.
8imilarly for the plastic deformations, we .define:
(35) wp aP,0 s" + etc.
(36) wp

The idea behind the present approach is to apply the set of boundary

bp,.o 5" + etc.

conditions discussed in the next paragraph to the above polymomial
forms, making proper use of egs. (16) through (32).

This permits us for any known set of npulml bpijt" establish a
set of 30 eqs. for the determination of the corresponding n“nnd

by '
Once the nulnd hijlre known the stress state is also known and
hence the rate of plastic deformation may be determined in any point.

This is carried out by applying Nichols’ model to a number of
points throughout the material.

Vhen the io. ¢ , and o'.“ have been determined, the values are used
for the fitting of the polynomial coefficient charge.rates li“
and biuby means of an ras criterion.

Finally, when the l];i1 and hf:ﬁ are known an intsgration can be
performed over a time interval to give a new state of plastic
deformation.

At this point a new state of elastic deformation and « new svalua-
tion of the plastic deformation rate can be worked out so that
another time-step may be taken, etc. etc.

3.6. Discussion of Boundary Conditions

Fifteen boundary conditions have been used in the model. In the
following, each of them will be briefly explained.

Condition I

Axial symsetry at t = O:

Dn(stlol - an(-t,o) =0

w(s,0) = wp(a,0) =0

This condition causes 9 of the .ﬂ and h’J' and 9 of the nnﬂ
and b}h to vanish.

Zero rlastic dilatation at any point:
dgn‘éa,t) up(s,t)  Jwpla,t) _
r * r MY =0

This condition causes 7 of the -pﬁm bpﬁ to vanish and
yields another 7 equations among the lpum bpij'

Condition III
The norsal stress at the outer surface matches the external

pressure:

o, (x,t) = -», '

This condition yields 5 equations among the lullld hiJ'
Condition IV

The shear stress vanishes at the outer surface:
Our (s,t) - [

This condition yislds 3 equations.



Condition V

The norsal stress at the inner surface satches the normal
force from the fuel plus the internal pressure:

o, (1,t) = - (pl + Kn)
This condition yields & equations.
Condition VI

The shear stress at the inner surface matches the friction

force from the fuel:

o (L,t) = - K

This condition yields 2 equations
Condition VII

The axial tension, averaged over the ridge top cross-sectionm,

equals a specified value:
T .
2 1.2 2
L_l CA (s,0) ar = 5 (ry” = 1)") o
This condition yields onme equation.
Condition VIII

The axial tension, averaged over the cross-section, decreases
as t goes from O to 1 by an amount equal to the total fuel

friction force:
T, Ty L
jrl LA (8,0) rdr - r, %, {(s,1) rdr = nlo x. dz

This condition yields one equation.
Condition IX
Total radial force balance: .
L T, L r
}o J,.l og(s,t) ardz = r, Jo (py K ~p,)dz + ;ri 0y (8:1) rar
This conditiofi yielde one eguation.
Condition X '

The interface at t = 1 is assumed to connect with an infinite
tube subjected to the same inner and outer pressures and to a
temperature increase equal to the average of that of the
interface.

This tube deforss in the radial direction approximately according
to an exponential law, apart f-om the base deformation due to
pressure and temperature. The shear stress corresponding to the
elastic part of this deformation must match the average shear
stress at t = 1. Further, the surfaces must be smooth at the
Junction.

This condition yieids 3 equations.

Condition XI

Moment balance.

Let lll denote the moment of the aximl stresses at the t = O
croass-section, positive counta~-clockwise, and HZ the corre-
sponding moment at the t = 1 zross-section, positive clock-
wise. Further, let Hh denote the moment of the hoop stress
with respect to the t = 1 cross-section, positive clockwise,
and )lx the moment of the extermal force with respect to the
inner surface cross-sectional tangent line at t = 1, positive
clockwise.

¥e then have:
l.1 - H2 = Hh + Hx

This condition yields one equatiom.

Condition XII

Energy minimization.
The internal elastic energy is given by
L (»
_we 212y ., 2 2 2 2
Ve 1-2V SO srl{ 2 ul + lr + 19 +2'lur )
.

¥ 2
+3 (11+1r+19) (1+V) aT (1a+1r+19)J rdrds

Minimization of this expression with respect to a selected
coefficient yields one quation.

In this model minimization is performed with resrccct to a.
and b

10

01’ i.e6. two equations are obtained.

Condition XIII

Shear stress linilintiqn.
The average square -of the shear stress is proportional to

. J: :: { (g_ . & ; o . é}))z réras
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Minimization of this quantity with respect to b21 and bll Yields

two equations.

Condition XIV
Specified moment of axial atress at 2 = L.
If the axial stress were evenly distributed across the cross-

gection it would have moment zero with respect to some radial

distance r . We now impose on the a:tusl stress distribution that
o

it have a specified moment HZ with respect to T,

Condition XV
Specified axial stress distribution a¥ z = L.

This condition yields 5 equatioms.

h. Short Description of the Code
4:1. General
The equations, derived from the 15 boundary conditions and the
application of the creep model, have been coded into a computer

programme named RIDGE.

This programme starts from a situation of no deformation, then
appliea a prescribed set of forces and a prescribed temperature
distribution in order to obtain a state of stress, a state of
elastic deformation and a distribution of plastic deformation

rates.

It then goes on to integrate the plastic deformation rates over a
prescribed time step, taking into account a set of forces and a
temperature distribution prescribed for the new point in time. An
jteration is performed so that the plastic deformation rates used
in the integration process equal the averages of those calculated
at the end points of the time step.

The 15 boundary conditions discussed in paragraph 3.6 provide an
overcomplete set of equations for the determination of the coeffi-
cients.

Yor a particular case, jJudgement must be sxercised to select a
suitable subset of boundary conditions.

Yor the present, the following options are available in the model:

-1l -
IPEL|
10PT 0 1 2
Cond's. XII through XV | Cond's XII through XV deleted.

° deleted. Cond. X partly | Cond. X modified to secure zero
deleted. * average shear at z = L.
acm=“‘i0=° 850 =840 = 0
Cond's. X and XIII through XV deleted | Cond‘'s. X, XII, XIV

1 and XV deleted.

Bo0 = o 800 = 0
Conditions XII through | Cond's. VII Cond’s. X, XIII and
2 XV deleted through XI, XV deleted.
XIII and XIV
deleted

x)

Cond. X in this case neglects the condition that the surfaces must
be smooth at the junctiom.

The options are selected by means of the two input integers, IOPT
and IPEL.

As it appears from the table, in some cases one or two coefficients
are arbitrarily put to zero in order to maintain the balance of the
equations.

A}

To calculate a ridge, one should select IOPT = 2, IPEL = O,

To calculate a free pellet, one should select IOPT = 2, IPEL = 1.
The remaining options have been valuable during the checking of the
model. They have been retained because some of them are practical
in special cases.

4,3, Time step Selection

The convergence properties of the code seem rather promising. A
time step of 100 hours has been successfully performed with a fuel
normal force big enough to give & heavy plastic deformation.
"Successfully” seans that 5 eucceseive time steps of 20 hours each
gave closely the sase plastic deformation.
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The input consists of specifications of geometry, materiale proper-
ties and, for esch point in tise, fuel normsl amd friction force
distributions, temperature distribution and axial stresa. Farther,
a set of points in space must be defined in which to apply Nichols®
model for the deformation rates.

A.5: Output

The output comsists of the radial and axial displacements, the & non-
vanishing strain cosponents, the 4 non-vanishing stress components,
both elastic and plastic, for a number of spatial points and for each
point in time. The spatial points are coincident with thoae specified
for application of Nichols' model.

3. Aspects of the Approach
With the options available (see paragraph %.2) it is possible to treat
both cladding segments and free fuel pellets.

With a fev wodifications it will be rossible to treat interacting

fuel pellets as well. This requires only the added capability of match-
ing the norma' and shear stresses on the outer surface with non-zero,
specified distributions.

Thus, the approach provides a tool for handling nearly all axisymmetric
cases of fuel and pellet mechanical and thermal loading and inter~
action, within the limitations inherent in the method.

The code consists of subroutines which may conveniently be integrated
into future fuel performaace models.

6. Comparison with Selected Data

Two types of calculations have besn subjected to comparison against
available data:

1., Uniform Heating and Pressurization
The cases of uniform heating anmd of pressurisation can be solved

rigorously. The mathematical eolutions have bsen derived amd the results
compared to those generated by the model. The agresment wvas perfect.

-13 -

II. Free Pellet Calculations

This type of calculation involves a parabolic radial temperature distri-
bution. There are no direct measurements available of pellet deforma-
tiona, only correspoanding ridge heights. Veeder ' has used basically
the same calculational technique as the present model and compared his
results successfully to ridge height data. It was therefore decided o
compare the present model with Veeder's model for this type of calcula-
tion. Two cases were run, with length/radius = 1 and 2, respectively.

The results used from Veeder's model refer to a solid cylinder. The
results used from the present model refer to a cylinder with a marrow
central hole, since the model does not allow an inner radius of zero.
The ratio of inner radius to outer radius, however, vas made as smali
as 0.02.

For the case of length/radius = 2, Veeder's wodel shows a characteristic
effect of the radisl displacement at the center being greater than the
minimum radial displacement. This is tuought to be due to the capability
of Veeder’'s model to date a hyd tic pressure at the pellet
center. The present model does mot produce this effect because of con-
dition V. Veeder also reports cases of hollow cylinders, and in those
cases the above effect is not present.

Considering these cir . the agr is found to be very
reasonable:
Length/diameter = 1 Longth/di-aleter =2
Veeder's Present Veeder's Present
¢ model model model model
Fax. radial 110 18 121 130
displacement (u)
Center radial 62 53 > Y
displacement ()
Min, radial 62 53 67 48
displacement (j) : :
Axial displacesent] .., ‘ 193 201 409
at axis (p) ]
Axial displacemen 50 s 124 23
at surtace (p)




2. List of Symbols
r,z

8,t

Fye Ty ’

L

u,V,w

up, wp

pr’ Be' pl
% % %
%6 %r* ra
i,3
Cij

1)

iJ
%0

%

,6,H,L,M,N

QA W N AR QN

o »
[Pulyvur 3
b b
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Cylindrical coordinates

Normalized cylindrical coordinates
Inner and outer radius of segment
Length of segment

Radiel, circumferential and axial displace-
ments

Badial and axial plastic displacements
Components of body force

Components of normal stress
Components of shear stress

Used to generalize indices of various types
Components of deformation
Components of elamtic deformation
Components of plastic deformation
Applied axial stress

Density

Elastic modulus

Poisson's ratio

Shear modulus = B/2/(1+V)
Temperature coefficient

Temperature change

Internal elastic energy

Anisotropy constants

Plastic modulus

Bffective stress

Coefficients of u-polynomial
Coefficients of w-polynomial
Coefficients of up-polynomial
Coefficients of wp-polynomial
Internal pressure

External pressure

Fuel normal force

Fuel friction force

Moment of axial stress at ridge top
Moment of axial atress at z = L
Moment of hoop stress

Moment of external load

-15 -

8. References

1)

2)

3

&)

R. Hill: A theory of the yielding and plastic flow of amisotropic
metals, Roy. Soc. Proc., 193A, 281 (1948).

R. von Miges: Mechanik der plastischen Forminderungen vom Kristallenm,
Zeitschrift fiir angevandte Matematik und Mechanik, June 1928,

F.A. Nichols: Theory of the creep of Zircaloy during Neutron
Irradiation, J. Nuc. Mat., 30, 249 (1969).

J. Veeder: Thermo-Elastic Expansion of Finite Cylinders,
AECL-2660, 1967.



