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guide immersed in an infinite axial magnetic 

field is investigated using the Krylov-Bogoliu-

bov-Mitropolsky perturbation method, by means 

of which the nonlinear Schrodinger equation, 

governing the long-term slow modulation of the 

wave amplitude, is deduced. From this equation 

the amplitude-dependent frequency and wave-

number shifts are calculated, and it is found 

that the electron waves with short wavelengths 

are modulationally unstable with respect to 

long wavelength, low frequency perturbations. 

The growth rate of the instability is calculated 

and possible applications to experiments are 

discussed. 
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1. Introduction 

Studies of the nonlinear propagation of finit* amplitude 

waves have been of increasing importance in plasma physics 

during recent years. The amplitude-dependent changes of the 

frequency, the wavenumber and the amplitude of a monochromatic 

plane wave caused by weak nonlinearities can be investigated 

by means of the Krylov-Bogoliubov-Mitropolsky perturbation 

method . This method was used in the pioneering works of 
2) 3) 

Montgomery and Tidman and Tidman and Stainer to derive the 

nonlinear wavenumber and frequency shifts for unbounded electron 

plasma waves. However, a simplifying assumption (sufficient 

but not necessary) made by these authors prevented them from 

obtaining the long-term slow modulation of the wave amplitude, 

as pointed out by Kakutani and Sugimoto . B y using an extension 

of the Krylov-Bogoliubov-Mitropolsky perturbation procedure, 

Kakutani and Sugimoto deduced a nonlinear Schrodinger equation 

govering the modulation of the amplitude of a monochromatic 

plane wave. The essence of their method lies in the systematic 

annihilation of all the secular terms arising in the perturbation 

expansion. They applied the method to unbounded electron plasma 

waves, magneto-acoustic waves, and ion acoustic waves. Later, 

the method was applied by Chan and Seshadri to investigate 

the slow modulation of the ion plasma wave, taking into account 

finite ion temperature and non-vanishing electron inertia, 

contrary to the investigation in ref. 4. Further, the method 

has recently been applied to plane electron waves in a plasma 
6) 7) 

stream and finite amplitude shear Alfvén waves 

In the work reported here we used the method of Kakutani 

and Sugimoto to examine the nonlinear axial behaviour of the 

lowest-order electron plasma mode propagating in a cold plasma 

filling a cylindrical waveguide immersed in an essentially 

infinite axial magnetic field. This mode has a dispersion 

relation8J , (w/k.|) 2 - ">p/<k?i + kJ> > similar to that of ion 
acoustic waves in a plasma consisting of cold ions and isothermal 

9) 
electrons , with 1/k, replacing the Debye length. Here k.. and 
k. are the axial and perpendicular wavenumbers, respectively, 

4) 
and b> is the electron plasma frequency. Kakutani and Sugimoto 
found, in their treatment of the ion acoustic wave, that short 
waves with wavenumbers larger than some critical wavenumber are 
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modulationally unstable« while long waves are stable. Because 

of the similarity between the linear dispersion relations of 

the problem treated here and those of the ion acoustic waves, 

we could expect a similar result. Indeed. Hanheimer1 ' predicted 

theoretically that a long wavelength (k, >> k..), nonlinear 

electron plasma wave propagating in a cylindrical waveguide 

would steepen into a sharp density discontinuity, just like 

a nonlinear ion acoustic wave. This steepening of bounded 

electron plasma waves has been observed experimentally ' 

A nonlinear theory for electron waves in a plasma wave guide 

in a strong magnetic field was also studied by Jensen in 

connection with plasma wave echo. 

He find here that such electron plasma waves with short 

wavelengths in a cold plasma with stationary ions (infinite ion 

mass) are modulationally unstable; that is they are unstable 

for wavenumbers larger than the critical wavenumber k = 5.29/r . 

where rQ is the radius of the waveguide. In the case of a 

temperate plasma of infinite extent, on the other hand, 

Kakutani and Sugimoto found that the electron plasma waves 

were stable for all wavelengths, assuming stationary ions. It 

appears, however, that the inclusion of mobile ions in this 

case alters this conclusion; that is the electron plasma waves 

can become modulationally unstable with respect to long wave

length, low frequency perturbations . 

The disposition of the present report is as follows. 

First, we review the linear theory of slow electron waves, 

i.e. to/k << c (velocity of ligth), in a plasma-filled waveguide, 
and derive the linear dispersion relation for these modes in 

Sec. II. In Sec. Ill, we then deduce the nonlinear equations 

describing the axial behaviour of the lowest-order mode by 

neglecting the coupling to higher-order radial and azimuthal 

modes. In Sec. IV we carry out the perturbation expansion of 
4) 

the nonlinear equations, following Kakutani and Sugimoto , and 
obtain the first- and second-order solutions. The derivation 

of the nonlinear Schrodinger equation, describing the long-term 

slow modulation of the wave amplitude, is presented in Sec. V. 

The consequences of this nonlinear Schrodinger equation are 

considered in Sec. VI, where the amplitude-dependent frequency 

and wavenumber shifts are calculated. Further, the criteria for 
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and growth rata of tha nodulational i n s t a b i l i t y ara daducad. 
This s ec t ion a l s o g i v e s t o s t equil ibrium so lu t ions to tha 
nonlinaar Schrodinger aquation. F i n a l l y , in Sac. VII , the 
r e s u l t s are discussed and in conclusion we present a numerical 
example with reference to a Q-aachine plasma. 



s 

II-. The — l e Equations and the Linear Dispersion Relation 

Let us consider a perfectly conducting cylinder of radius 

rQ filled with a cold plasu in an infinite axial Magnetic 

field« as illustrated in Pig. 1. The electrons are constrained 

by the Magnetic field to sove only in the x-direction (field 

direction), and the ions will be assumed to forsi a stationary 

neutralizing backgroundt we are only concerned with oscillations 

with frequencies such higher than the ion plasaa frequency. 

Thus the equations describing the sys te* are the fluid equations 

describing the conservation of electron nunber and sxxaentuB, 

and the Maxwell equations. 

f^* frn«)^ O (1) 

AJL. + g S** • 
dt tT * m tit = 0 (2) 

E =* ^n*nlr) ~ *•) &> 

>2£, (Vlv.g))x - (**£),' Mfjr-^fanuti, (9) 

where n is the unperturbed electron density at the centre of 

the plasma (= ion density), n(r) is a dimensionless function 

describing the radial density profile, n is the electron density, 

u is the fluid velocity in the x-direction and E is the electric 

field. In Eqs. (l)-(4) we made use of the fact that only the 

x-component E of the electric field is affected by the presence 
8) 

of the plasma. Substituting Eqs. (3) into (4) and considering 

only slow waves, i.e. w/k << c, we obtain the set of govering 

equations: 
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where v_ is the transverse Laplacian, here in cylindrical 

coordinates. 

He first analyze the linear solutions of Eqs. (5)-(7J. 

Thus we linearize the equations and obtain: 

& + •£-£ =o » 

where n n(r} + n, = n. Any wave in the system must have a radial 

structure which in some way is determined by the radius of the 

waveguide, because E must vanish at the wall of the perfectly 

conducting waveguide. Equations (8)-(10) can be solved by 

separating tl 

of the form: 

8) separating the variables , thus we assume a wave dependence 

E(r,Btx,t) oc £ r (rf 9) e.xp[i(Mx - ufV] . (<t4) 

Substitution of Eq. (11) and the similar forms for n. and u, 

into Eqs. (8)-(10), we find simply: 

7T* Br (r,») + ffån M - i) ErC r,9) » 0, m 

where utp • n0e*/£0rn. 
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equation (12) has the fora or" an eigenvalue equation with 

the boundary condition that E^(r«r0.9) * 0. The eigenfunctions 

can in principle be determined from nfr). Here, for simplicity. 

we assume the unperturbed density to be constant across the 

waveguide« i.e. n(r) s 1. The solution of Eg. 112) is then 

given in terms of Bessel functions: 

£.r(r,B)m JH(kÅr)explain&). f/j) 

J is the n'th order Bessel function of first kind, and the n 

eigenvalues k, must satisfy the relation: 

- £* Kg -1) - 0 
a 

<*>* = t u ; g*k* , M 

which is the dispersion relation for the axial modes. kA is 

determined by using the boundary condition J n^x"
ro^ * ° : 

*/. ~ •£ > 

whore p__ is the n*th zero of the n'th order Bessel function, nm 
The dispersion relation Eq. 14 now reads: 

*= uj* (H^/fim) w'= WP WføLr (1S) 

Equation (IS) is plotted in Pig. 2 for the lowest-order modes 

(n-0, m»l and n«l, m»l and n«o, m«2). 

For the radial eigenfunction, we introduce the function 

R „ defined by: nm 



• 

With thm above definition of a, a-1 will describe thm nuabar 

of nodea la thm radial aifanfvactioa. 
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III, »onllnear Bauatlona for tha axial Behaviour 

In tha nonlinear treatment of Boa. (5)-(7) it is clear 

that tha nonlinear taras )(nu)/)x and u(3u/3x) will couple 

tha two asiauthal nodes n and n* to produce density fluctuations 

at n • n', as well as that the two axial nodes k and k' will 

giv« fluctuations at k • k*i however« tha coupling of radial 

•odes is wore coaplicated. Two radial node* a and a* will 

giv« rise to a driving tara of tha fora " M , ' 1 ' ' V « ' ' r ^ ' which 

can ha expanded into terns of *^H>niQ
 DY usino the fact that 

Il foras an orthogonal set of eigenfunctions CBessel functions 

Eq. (1«)): 

Ram^> *aW> * £ *•.""* ****}<** t (1*) 

where 

• at* a/ i rffa±«r.(r)<t> 

(19) 

The coupling between the three aodes w k r a, w'k'n'a' and 

•k"n"a" is resonant if the following conservation laws «re 

.tisfied15-1« 

W »«*>'• uT , k = k'+k" , n-vt' + rC' , (11) 

which can ha thought of as the conservation oi wave energy, 

wave axial aoaentua and wave asxauthal aoaentua, respectively. 

Tha nonlinear coupling between the different azluuthal and 

radial aodes has bean considered both theoretically and 

expariaantally by Laval at «1. 1 5 ) and by rranklin at «1. 1 6 ). 

It should be noted that Franklin at al. ' find that tha decay 

of the (n-o, a-1) aode into tha (n,a) node is only possible 

for wavenuabers k larger than *Anm given byt 
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C n ^ ' f W - P& >/**». &<» 

Here we are only interested in the nonlinear axial 

behaviour of the (n=o, m=l) mode. This implies that all the 

harmonics generated by the nonlinear terms will have n=o. 

However, resonant decay may produce any two modes that satisfy 

the conditions (19). Neglecting parametric decay, we assume 

that the radial structure of the quantities is at all times 

discribed by the linear radial eigenfunction Rni. Accordingly, 
10) following Manheimer , we take, 

n = nb + n(x,t)R01(r) (n) 

U. = U(X,t) R0i(r). 

Using Eqs. (21) we write Eqs. (5)-(7) 

Where o -, is given by Eq. (18), it is clear that oij,, is 

larger than any other a . ..J that is, the coupling oetween 

different axial modes of the same radial structure is stronger 

than the coupling to other radial modes. If we now only retain 

the a,,, driving terms - that is, we neglect coupling to other 
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radial modes - we get: 

49- + h.4$- * «-2&M1 = o Uå 
it "'^T ~ 9x 

£f +**-§*- + £-£ =0 te«) 

t-i?- + B - 7 y £ = <>. ft« 

where /3 = r0/p„ ( p#,-2.V0X) 

J** j/frrt d i / \ z 3>2Cz)dz ~ 0.72 . (24» 

Normalizing the quantities n with respect to nQ, u with 

respect to the characteristic velocity u « u> *B, and E with 

respect to the characteristic electric field EQ • m0u> /e, and 

taking 6 and u~ as characteristic length and time, respectively, 

we get these governing equations for' the nonlinear axial 

behaviour of the (n«o, m=l) mode: 

And the linear dispersion relation Eq. (15) takes the form 
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> ...a .1* fc*— u>* — u^A* = 0 (32) 

These equations (29-32) are the basic equations for the 

perturbation expansion carried out in the following sections. 
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IV. The Perturbation Expansion and the Second-Order Solution 

In order to examine the nonlinear behaviour of wave 

solutions to Eqs. (29)-(31), with small but finite amplitude 

over time-scales that are large compared to the wave period 

and spatial scales that are large compared to the wavelength, 

we use the method of Kakutani and Sugimoto ' based on the 

Krylov-Bogoliubov-Mitropolsky perturbation method '. The essence 

of this method lies in the systematic annihilation of all the 

secular terms arising in the perturbation expansion. This 

annihilation then gives the long-term and large-scale behaviour 

of the wave amplitude. The term "small amplitude" should here 

be understood in the sense that the electron movement in the 

wave electric field is much smaller than 0. This implies that 

the amplitude of the wave electric field is much smaller than 
2 

E„ = møw/e. 
o p 

We introduce a "smallness parameter" c and expand all 

quantities in Eqs. (29)-(31) around the unperturbed uniform 
4) state in powers of e in the following form 

' £ ' 

IL 

n 

• — < 
11 0 

[o\ 

1 
• + £ . 

M 
«< 

• * 

•+£*• 
M 
« i 

W 
+ £* 

M 
U3 

" • • > . 

(33) 

where e indicates the relative "smallness" of the terms on the 

right-hand side, and it will later be set equal to unity. We 

then choose a monochromatic plane wave as a starting solution 

to E,: 

Ei = a zxpd y) +d exp(-ip), C3v; 

where a is the complex amplitude of the perturbed electric 

field normalized with respect to E . i.e. |a| << 1, a denotes 

the complex conjugated to a, and i|> is the phase defined as 
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• » kx - wt, where the vavenuaber k and the frequency u smst 

satisfy the linear dispersion relation (Eq. (32)). We assume 

that each coefficient of the c power depends on x and t through 

a, a and ••. The complex amplitude a is further assumed to be 

a slowly varying function of x and t described through the 

relations: 

-|}-=£B/a,a}+^^a#a)+ (36) 

together with the complex conjugate relations, while the phase 

<i> remains unchanged from the linear limit, i.e. ty « kx - wt, 

because nonlinear effects on the phase will be taken into 

account through the "phase part" of the complex amplitude. The 

unknown functions A.,B.,A_,B2... will be determined by eliminating 

the secular terms in the perturbation expansion. 

Substituting the expansions Eq. (33) into Eqs. (29)-(31) 

and collecting terms with the same powers in e we obtain: 

ft«) 
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where c.c. stands for the complex conjugate. From the set of 

equations for o(e) and Eq. (34), we get the following starting 

solutions for n^ and u^ that satisfy the linear dispersion 

relation Eq. (32): 

M ~ t&£a-e*P<^> ~ cL&tpi-L^)} (9o) 

ut=- -£r[cLeHpiLy)- OL&Lpi-iif)] (to) 

We now seek the set of second-order solutions. Substituting 

the first-order solutions (Eqs. (34)(40) and (41)) into the set 
2 

of equations for o(e ), we arrive at the differential equations 

for n2,u_ and E-: 

~MT^ -*- £2 = £-%&pav) -* Let JL-<£eupCtii/')+ c. c. L*3) 

k$? + kl-£ui-£z=LkV-iI? -VexPW+tt. tøv) 

By appropriate manipulation of Eqs. (42)-(44) and using 

the dispersion relation Eq. (32), we deduce the differential 

equation satisfied by E2: 

In order that E2 *
n o u l d be free of secular terms, we must require 

that the coefficient of exp (+ lip), i.e. the resonant term with 

respect to the solutions of the homogeneous part of (45), in 

Eq. (45) vanishes. This yields 
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P, + VgBi = 0, CV6) 

and its complex conjugate, where v - ai is the group 
velocity of the wave, v • du/dk, which is seen from the 
dispersion relation Eq. (32). By virtue of the relations (35) 
and (36), we can regard A, and B,, respectively, as 3a/3t, and 
da/ax^ to the lowest order in e where t̂  » et and Xj = ex. 
Thus we may interpret Eq. (46) as: 

i£+*-&-0' ("7i 

and its complex conjugate, which shows that, to the lowest 
order in e, the amplitude a is constant in a frame of reference 
moving with the group velocity, i.e. a depends on t, and x, 
only through £ = [x, - va

ti * c(x - v t)]. 
By using Eqs. (46) and (32) we can now evaluate the 

secular free second-order solutions from Eqs. (45), (42) and 
(43) and obtain 

C$o) 

where the complex functions b and b, and the real functions c^ 
and c~, are constants with respect to <j> and depend on fl and a 
alone. They should be determined from the non-secular conditions 
of higher orders. 
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V. Third-Order Equations and the Nonlinear Schrodinger Equation. 

He now proceed to the set of third-order equations. 

Substituting the first-order (Eqs. (34), (40) and (41)) and 

the second-order solutions (Eqs. (48)-(50)) into the set of 

equations for o(e ), we can derive the following equations for 

n3, u~ and E,: 

(51) 

(S2) 

where the terms D.. are relegated to the appendix in view of 

their complexity. The secular-free conditions for the third-

-order solutions consist of two parts: One is the annihilation 

of the secularity-producing constants, and the other is that 

of secularity-producing resonant terms. From the former, we 

obtain a sufficient number of equations to determine c^ and 

c2 by averaging Eqs. (51)-(53) with respect to the fast phase 

*>*0S ° J *ZO= -03o 

and 

Q.k/L <=»••& 2 ; r ; y » «»*««, (St) 

'*-•& K^Y1 ****** , (ss> 
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where d, and d. are absolute constants with respect to <l>, * 

and a (for a further discussion of the interpretation of d, 

and d , the appendix of Ref. 4 should be consulted). 

By manipulating Eqs. (51)-(53) in the same way as when 

deriving Eq. (45), we can deduce the differential equation 

determining E3. The requirement that E, be free of secularity 

arising from the resonant terms yields 

j f n ^ I n ^_± #-4,*T5rV^rft"0 

Inserting the expressions for D,,, D^l a n d Dll a n d u s i n9 Eqs. 

(54) and (55), we obtain after simple but lengthy algebra the 

following differential equation for a (as well as a ) : 

where 

With the aid of Eqs. (35) and (36) we note that A2, B2 and 

B, (3B,/3a) + B,OB,/3a) can be interpreted, respectively, as 
2 2 2 2 

3a/3t2-A,/e, 3a/3x2-B,/e and 3 a/dx^* where t2 * e t, x~ * e x 
and x, = ex. Equation (56) then reads: 

* 7 
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It was shown that a only depends on x, and t, through 

£ = x,-v t. (Eq. (47)), this leads to the introduction of the 
4) following coordinate transformation : 

by means of which we can convert (60) to a nonlinear Schrodinger 

equation: 

i -§fr - P ̂  = Q/a/2a -*-fta &2) 

The arbitrary constants d, and d, (in the expression for R, 

Eq. (59)) and therefore R may be determined if appropriate 

initial or boundary conditions are specified. However, the 

linear interaction term Ra only causes a simple phase shift, 

and can be removed from Eq. (62) by the substitution 

CL &cp(-LJ RCC') cLT') . (63) 

It is interesting to note that the variables T and £ 

introduced into Eq. (61) are identical to the stretched variables 
18-19) used by Tanuiti et al. in deriving the nonlinear 

Schrodinger equation for nonlinear wave modulation. 
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VI. nonlinear Dispersion Relation and Modulational Stability 

Solutions to the nonlinear Schrodinger equation (62) have 
4 18-27) 

been extensively studied ' in connection with nonlinear 

propagation of waves of various kinds. In this section we 

consider some of these solutions and their physical consequences. 

We note that Eq. (62) is complex, therefore the solutions 

are also complex. Thus we introduce the real functions p(t,i) 

and 0(£,T) representing the real and imaginary parts of a 

through: 

a = p &LpLlQ) (6Y) 

Substituting this expression into Eq. (62), we have 

ff+^!%!f-+pp!T=0 <* 

and 

-*+&-{%})+*?+*">• (66) 

It is easily seen that Eq. (65) can be written in the form 
2 

of a conservation equation for p : 

i^+J7^p!f->=0 ^ 
2 2 

Noting that p «|a! , Eq. (67) expresses that the "wave energy", 
2 

proportional to |a I # is conserved. In order to obtain the 

nonlinear dispersion relation for the electron plasma wave, 

Wfr consider the plane wave solution to Eq. (62): 
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a - p0 ernpd (Kg-ftr)] to>s> 

where p . K and # are constants and oQ the value for |a| at 

infinity, i.e. in Eq. (64) P"P And 9 ^ •<{• 

and (66), we obtain the dispersion relation 

infinity, i.e. in Eq. (64) p«pQ and e«eo»*C-*T- Using. Eqs. (65) 

<f ~ Pe*=Qft+R , (691 

and the group velocity U *2PK. Recalling that 

£, = a &cp Ci(k* -u)t)J •#- c C. j 

we have 

£ Y » poeKp{Lr(k+£KU-(u)+£.K'Vg+£z4>>tj}+ c.C. 

From this we get the nonlinear dispersion relation 

U>(k+Ak,p0) S(UJ +*3Ak+P(Ak)Z) +£2(Qff+R), (7c) 

where Ak>cic. 

The first bracket in (70) is the term obtained by Taylor 

expansion about k and results from linear dispersion, that is: 

U>(k+&k) =u> hv3Ak+i^f(Ak)Z 
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The second tern in Bq. (70) shows the effect of finite amplitude 

on the dispersion relation. Suppose that we now consider an 

initial value problem, in which we give the amplitude and 

the wave number as spatially constant« at say t-o. Then, with 

the discussion of the »-term in Sec. V in mind, we see from 

(70) that the amplitude-dependent frequency shift induced by 

the nonlinear!ties is given by (setting the expansion parameter 

equal to unity) 

Au> -Q.pl 

By means of Bq. (58) the relative frequency shift can be written 

-a** ii^-reyw-*»**-» A * (7i) 

Conversely, if we consider a boundary value problem (which 

is more applicable from an experimental point of view) in which 

the progressive wave is excited with a time-independent 

frequency and amplitude at some spatial boundary, e.g. x«o in 

a semi-infinite plasma, the nonlinear!ties will cause an 

amplitude-dependent wavenumber shift as given by (Eq. (70)) 

*—£tf 

And the relative wavenumber shift can be written 

* k k'i 1Ské- 3Sk¥- 3QkZ- 9 zp a (72) 

In Fig. 3 we have plotted Au/w and Ak/k as function of k. 

These relative frequency and wave number shifts are small of 

second order in the normalized amplitude pQr which is indicated 

http://-Q.pl
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by the c2 factor in En.. (70). However, fro« (72) we see that 

(AU/MJ and |ak/k|-» - when k * o and that |akA| * • for k * - that 

is the expansion Eq. (33) breaks down for both snail k-values 

and large k-values, and the results obtained are only valid 

in the intermediate range. 

In addition to the —pi i tude-dependent frequency and 

wavenunber shifts, the nonlinearities can in general cause 

a slow Modulation, described by Eq. (€2), of the amplitude 

of the electron wave. Pro*) the theory of the nonlinear Schroding*r 

equation (see e.g. nefs. 4, 16-27), we find that the plan* 

electron wave is aodulationally stable or unstable according 

to whether PQ > o or PQ < o. Inspection of Bqs. (57) and (SS) 

shows that PQ $ o according as k $ kc = 2.2. This neans that 

short waves,k > kc,*re nodulationally unstable, while long 

waves,with k * kc,are stable. In unnoraalized quantities the 

critical wavenunber is given by 

(kc is narked on Pig. 2). 

In order to find the growth rate and wavenunber for the 

•adulation, we consider a snail perturbation of the stationary 

plane wave (68). Thus we writes 

P ~p» • fy %e l*tpU(K | -AT)]} and 

9 =6>0 + 69 Ra. [otpCi (*i - QxU] , 

that is «p and 60 account for the Modulation in aMplitude and 

phase, respectively. Substitution into Eqs. (65)-(66) and 

linearising give the dispersion relation between ft and K 
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where U is defined in connection with Eq. (69). For PQ < o it 
9 , i k 

is seen that G has * imaginary part for K < (2 |Q/P|) ̂  p . 

Hence, a long wave cisturbance of the electron wave will grow, 

as expected. From Eq. (74) the growth rate of the modulation 

is obtained as: 

Y =JWi2) =/P/K^^[p o
i - K*)* (75) 

It has the maximum value of 

Y^Qpo (*4 

at 

** "m= (!Q/Pl)'*p0 j ^7) 

where Q and P are given by Eqs. (57)-(58). (Note that Y_ and 

K are independent of the R term). The dependence of y on K 
is shown in fig. 4, and the variation of y^ and K with respect 

m m 

to k is shown in fig. 5. The modulational instability is seen 

to be a weak instability, Ym
 i s of second order in the small 

amplitude. In the next section we discuss this further and 

give a numerical example. 

The physical mechanism of the modulational instability can 

be understood in the following simple way. Suppose a small 

modulation perturbation is applied to the plane wave. If, for 

instance, we consider a boundary value problem, we see from 

Eq. (72), since Q > o, that the wavenumber of the plane wave 

is smaller in the crest of the modulation than in the trough. 

Since P < o, the group velocity then becomes greater in the 

crest than in the trough, resulting in a pile-up of wave energy 

in the crest of the modulation. This implies growth of the 

modulation perturbation. 
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For PQ > o, i.e. long electron waves with k < k_# equation 

(74) shows that Q has only real solutions and that the waves 

are raodulationally stable, in accordance with the discussion 

above. In this case the nonlinear terns in (65)-(66) will 

generate harmonics and thus generally steepen the waveform. 

However, the "dispersion" term P will control the steepening 

and prevent a break-down of the waveform, since |a| is 

conserved (Eq. (67)). Steepening of a long wavelength electron 

plasma wave in a plasma waveguide was predicted theoretically 

by Manheimer , and has been investigated experimentally 

by Ikezi et al. ' and Saeki ' in Q-machine plasma. In Refs. 

11 and 12 the nonlinear behaviour is described in terms of 

the Korteweg-de Vries equation. In this connection it is 

interesting to note that Johnson2®) recently showed that the 

long wave limit of the nonlinear SchrSdinger equation coincides 

with the short wave limit of the Korteweg-de Vries equation, 

in the case where these equations were applied to short and 

long water waves on shear flows, respectively. 

Finally, in addition to the plane wave solution described 

above, the nonlinear Schrodinger equation has equilibrium 

solutions exhibiting the dynamical balance between nonlinear 

and dispersion effects of the form 

a = pli-u9T
x&>p[L(tcs-<pr)] , (7*) 

where <, f and U are defined in connection with Eqs. (68) and 

(69). By substituting (78) into (65) and (66) we arrive at 

p"=f-p*-fp/p, 

where the differentiation concerns (£•- U T ) . Integrating 

once gives 
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with 

v(py=-t-9-Up¥-f??>, 

where F is an arbitrary constant. This equation is equivalent 

to the classical equation of motion for a unit mass with total 

energy F under the potential V(p), as noted by Kakutani and 

Sugimoto*'. With this analogy in mind, it is easily found from 

the form of V(p) that for Q/P > o (i.e. modulational stability) 

bounded solutions only exist for o < P (Q/4P)p . These solutions 
29) are in general expressible in terms of Jacobi elliptic functions 

In the special case where P * (Q/P)P_# P(£-U T) represents the 

so-called "phase jump" or "envelope shock" expressed as: 

P(l-U3T) =potanh.[-ffrp0(l-UaT)] . (SO) 

This "envelope shock" is plotted in fig. 6a. It is seen to 

propagate in (x,t) space with approximately the group velocity 

v of the electron wave (the correction U is much smaller than 
9 9 

v ) . For Q/P < o, on the other hand, two types of bounded 

solutions exist: One for F > o, "large" amplitude waves, and 

one for —|Q/4P|p* < PQ < o, "small" amplitude waves. Both may 

generally be expressed by Jacobi elliptic functions. In 

particular, F • o, we obtain the solitary wave of the form 

p(S-U9T) = j2p0sech[/jftpc.(s-usT)J. (Si) 

Also this solitary wave propagates in the (x,t) space approximately 

with the group velocity v . The width of the solitary wave, 

which is plotted in fig. 6b, is seen to agree with the wavelength 

of the unstable modulation mode with maximum growth rate (Eq.77). 

This leads to the conjecture that the modulation of the electron 

wave is eventually deformed into the solitary wave described 

by (81). Numerical solutions of the nonlinear SchrSdinger equation 
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support this conjecture . Mention should also be made of 

the numerical calculations by Yajima and Outi . They show 

that a solitary wave solution like (81) is so stable that it 

preserves its identity in spite of the nonlinear interactions. 

For this reason, the solitary wave is often called the "envelope 

soliton". 

The deformation of the electric field into the envelope 

soliton is accompanied by formation of the density cavity as 

seen from the first-order solutions Eqs. (34), (40). This may 

also be understood in the following way. The ponderomotive 
32) force , arising from the gradients in the electric field 

amplitude, pushes away the electrons from regions with high 

field intensity, and thus digs the cavity in the density. 

Propagation of such density cavities enclosing an electric 

field "soliton" have been observed by Kim et al. and Ikezi 

et al. ' in experiments where the plasma could be treated as 

infinite. 
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VII. Discussion and Conclusion 

Calculations were presented of the nonlinear behaviour of 

a finite amplitude electron plasma wave propagating in a cold 

plasma filling a cylindrical waveguide immersed in an infinite 

axial magnetic field. By means of the Krylov-Bogoliubov-Mitro-

polsky perturbation method ' extended by Kakutani and Sugimoto , 

we derived the nonlinear Schr5dinger equation for the long-term 

slow modulation of the wave amplitude of the lowest order mode 

(n*o, m«l). From this nonlinear SchrSdinger equation we calcu

lated the amplitude-dependent shifts in frequency and wavenumber 

introduced by the nonlinearities. Further, we found that the 

electron plasma wave with short wavelength was moduletionally 

unstable with respect to long wavelength low-frequency pertur

bations, contrary to the case for electron waves in infinite 

plasma with stationary ions .He have thus an example of a 

nonlinear effect introduced by a finite geometry, which is often 

met in experiments. 

The basic assumption we made in setting up the nonlinear 

governing equations in Sec. Ill was that the transverse structure 

of the wave field was described by the linear transverse elgen-

functions even in the nonlinear limit. In other words, we assumed 

that the nonlinear axial propagation of one mode would not 

alter its transverse structure. This assumption is justified 

by the fact that, at sufficiently strong magnetic fields, the 

electrons will only move in the field direction, and che 

transverse structure of the wavefield will not be affected by 

the presence of the plasma at all, as also noted in Sec. II. 

However, the coupling to other transverse modes, which was 

neglected, is, of course still possible, as discussed in Sec. 

III. Vurther, the critical wave number k_ » 5.29/r (Eq. (73)) 

for modulational instability is larger than the low wave number 

limit kdll * 3.45/ro (Eq. (20)) for resonant decay to the (n « 1, 

m » 1) mode (see fig. 2). Thus the modulational instability of 

the (n«o, m«l) mode will evolve in competition with the decay 

of this mode to the higher order transverse modes (for 

kc < k < kjQ.'
 o n l v decay to the (n » 1, m » 1) mode is possible). 

In spite of the possible decay of the (n • o, m • 1) mode, which 

my extract energy from this wave, the theory considered here 

will still be valid, but the other nonlinear processes not taken into 
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account may limit the growth of the modulational instability. 

It should be noted that the theory can be applied to the 

higher-order modes too« by changing a and 6 appropriately. 

In a real plasma there will always be a finite temperature, 

but our calculations can still be applied in the case where 

r » A_ (the Debye length) for waves with u/k » v (electron 

thermal velocity) and v » c (ion acoustic speed). The last 

requirement is needed for the assumption of stationary ions. 

Mien the phase velocities w/k approach the electron thermal 

velocity, temperature effects can no longer be neglected and 

the linear dispersion relation must be altered. Further, the 

effects of trapped particles begin to play an important role 

Nonlinear phase shifts of electron plasma waves due to trapped 

particles have been studied extensively both theoretically and 

experimentally, recently by Sugai and Mark , who give 

references to related work. It is interesting to note that the 

nonlinear frequency shift introduced by the trapped particles 

is proportional to the square root of the wave amplitude , 

while the frequency shift deduced in Sec. VT is proportional 

to the square of the wave amplitude. The modulational instability 

of an electron plasma resulting from the trapped electrons was 
38) Investigated theoretically by Dewar et al. ' for an infinite 

plasma. These authors used a nonlinear Schrodinger equation 

similar to Eq. 62 with Q replaced by the frequency shift 

resulting from the trapped particles. They found that trapped 

particles could give rise to modulational instability, at least 

as long as the fraction of particles was sufficiently small. 

In conclusion we consider a numerical example of the 

modulational instability in a typical Q-machine plasma with 

n « 5.108 cm"3, Te • T± » 0,2 eV and r 0A D - 100. Electron 

plasma waves in such a plasma have, for u/k » v , been found 
39) 

to follow approximately the dispersion relation Eq. (15) 

Generally, in plasma wave experiments the wave is launched at 

one end of the machine and detected at the other end. Thus, 

in order to observe the modulational instability, we must 

have a spatial growth length of the same order of size as the 

machine length, typically 1 m. The spatial growth rate KA can 

be obtained from Eq. (76) by using the fact that the modulation 

in the (x,t) space approximately propagates with the group 
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v e l o c i t y v , thus we have" 

*•'*•£*•%-# w* 

(note that K, is normalized with respect to B) . Now let us 

consider an electron plasma wave with wavenumber k = 3/6. This 

wave will easily fulfil the conditions for applying the theory, 

u>/k - 13 v and v = 0.5 (M/m)' c (M and m are the mass of e g s , 
ions and electrons, respectively, (M/m) - 500 for Cs-plasma) . 

In order that the spatial growth length L » (2n/K.)0 equals 

1 m, Eq. (82) yields p = 0.14. From this, noting that p is 

the unperturbed electric field normalized with respect to E 

(= mu 6/e), we find the wave potential 4 needed to give a 

growth length of the order of the machine length: 

*V#-"w 
12) (u * @ u ) . With reference to the work of Saeki , it seems 

possible to obtain such a wave amplitude in a Q-machine plasma. 

However, since other nonlinear effects will compete with the 

evolution of the modulational instability as discussed above, 

one cannot conclusively predict that the instability will be 

detectable in a Q-machine plasma. Therefore it seems reasonable 

to consider the possibility of an experimental verification. 
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APPENDIX 

"a/ *' ' B< 6a s , a s . ' T^< Bf da H ,T*V 

»,«— -Mit-**%»» ikW frSS- +ifr*\) 
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Fig. 1, Schematic of the plasma-filled waveguide. 
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Fig. 2. Oiaperaion curve« for the lowest order modes. k d n m indicate! the 

lower limit for decay of the (n-o, m-1) mode into the (n, m) mode, 

kc ia the critical wavenumber for modulational instability, waves 

with k > kc are unatable. 
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Pig. 3. The amplitude dependent frequency (Aui/u) and wavenumber <Ak/k) shifts 

versus the wavenumber of the electron plasma wave. pQ is the 

normalised wave amplitude, B - rQ/2.40S. 
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Fig. 4. The growth rate of the modulational instability, y» , versus its 

wavenumber, K . 
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Fig. 5. The maximum growth rate, y , and the corresponding wavenumber, K , 

of the modulation versus the wavenumber of the electron plasma wave, 

p is the normalized wave amplitude, 6 = r /2.405. 
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Fig. 6. Equilibrium solutions to the nonlinear Schrodinger 

equation. 

a) The "envelope shock", 

b) The "envelope soliton". 


