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1. Introduction

Studies of the nonlinear propagation of finite amplitude
waves have been of increasing importance in plasma physics
during recent years. The amplitude-dependent changes of the
frequency, the wavenumber and the amplitude of a monochromatic
plane wave caused by weak nonlinearities can be investigated
by means of the Krylov-Bogoliubov-Mitropolsky perturbation
methodl). This method was used in the pioneering works of
Montgomery and Tidaanz) and Tidwan and Stainet3) to derive the
nonlinear wavenumber and frequency shifts for unbounded electron
plasma waves. However, a simplifying assumption (sufficient
but not necessary) made by these authors prevented them from
obtaining the long-term slow modulation of the wave amplitude,
as pointed out by Kakutani and Suginoto‘). By using an extension
of the Krylov-Bogoliubov-Mitropolsky perturbation procedure,
Kakutani and Sugimoto‘) deduced a nonlinear Schrédinger equation
govering the modulation of the amplitude of a monochromatic
plane wave. The essence of their method lies in the systematic
annihilation of all the secular terms arising in the perturbation
expansion. They applied the method to unbounded electron plasma
waves, magneto-acoustic waves, and ion acoustic waves. Later,
the method was applied by Chan and SeshadrIS) to investigate
the slow modulation of the ion plasma wave, taking into account
finite ion temperature and non-vanishing electron inertia,
contrary to the investigation in ref. 4. Further, the method
has recently been applied to plane electron waves in a plasma
stream®’ and finite amplitude shear Alfvén waves7).

In the work reported here we used the method of Kakutani
and Sugimoto to examine the nonlinear axial behaviour of the
lowest-order electron plasma mode propagating in a cold plasma
filling a cylindrical waveguide immersed in an essentially
infinite axial magnetic field. This mode has a dispersion
relation®’, (w/k; )2 = w2/ (k3 + xD), similar to that of ion
acoustic waves in a plasma consisting of cold ions and isothermal
9), with 1/kl replacing the Debye length, Here kll and
kL are the axial and perpendicular wavenumbers, respectively,
and wp is the electron plasma frequency. Kakutani and Sugimoto
found, in their treatment of the ion acoustic wave, that short
waves with wavenumbers larger than some critical wavenumber are

electrons

4)
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modulationally unstable, while long waves are stable. Because
of the similarity between the linear dispersion relations of
the problem treated here and those of the ion acoustic waves,
we could expect a similar result. Indeed, HlnhCIICIIO) predicted
theoretically that a long wavelength (l:‘L >> kll). nonlinear
electron plasma wave propagating in a cylindrical wavegquide
would steepen into a sharp density discontinuity, just like

a2 nonlinear ion acoustic wave. This steepening of bounded
electron plasma waves has been observed experinentallyll'IZ).
A nonlinear theory for electron waves in a plasma wave guide
in a strong magnetic field was also studied by Jensenla) in
connection with plasma wave echo.

We find here that such electron plasma waves with short
wavelengths in a cold plasma with statiinary ions (infinite ion
mass) are modulationally unstable; that is they are unstable
for wavenumbers larger than the critical wavenumber kc = 5.29/r°.
where r, is the radius of the waveguide. In the case of a
temperate plasma of infinite extent, on the other hand,

Kakutani and Suqimoto‘) found that the electron plasma waves
were stable for all wavelengths, assuming stationary ions. It
appears, however, that the inclusion of mobile ions in this
case alters this conclusion; that is the electron plasma waves
can become modulationally unstable with respect to long wave-
length, low frequency perturbationsl‘).

The disposition of the present report is as follows.
First, we review the linear theory of slow electron waves,

i.e. w/k << ¢ (velocity of ligth), in a plasma~filled waveguide,
and derive the linear dispersion relation for these modes in
Sec, II, In Sec. 111, we then deduce the nonlinear equations
describing the axial behaviour of the lowest-order mode by
neglecting the coupling to higher-order radial and azimuthal
modes. In Sec. IV we carry out the perturbation expansion of
the nonlinear equations, following Kakutani and Sugimoto4), and
obtain the first- and second-order solutions. The derivation

of the nonlinear Schrddinger equation, describing the long-term
slow modulation of the wave amplitude, is presented in Sec. V.
The consequences of this nonlinear Schrédinger equation are
considered in Sec, VI, where the amplitude-~dependent freguency
and wavenumber shifts are calculated, Further, the criteria for



and growth rate of the modulational instability are deduced.
This section also gives some egquilibrium solutions to the
ronlinear Schrodinger equation. Finally, in Sec. VII, the
results are discussed and in conclusion we present a numerical
example with reference to a Q~machine plasaa.
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II. The Basic Equations and the Linear Dispersion Relation

Let us consider a perfectiy conducting cylinder of radius
L, filled with a cold plasma in an infinite axial magnetic
field, as illustrated in Pig. 1. The electrons are constrained
by the magnetic field to move only in the x-direction (field
direction), and the ions will be assumed to form a stationary
neutralizing background; we are only concerned with oscillations

with frequencies much higher than the jion plasma frequency.

Thus the equations describing the system are the flujd equations
describing the conservation of electron number and momentum,

and the Maxwell equations,

22 , 2 _(nu)= o (1)

=0 (2)

v-E=§&(nnr-n) )

2
(v(v-E), — (P2E), = h(EH-EEnuw),

where n, is the unperturbed electron density at the centre of
the plasma (= ion density), n(r) is a dimensionless function
describing the radial density profile, n is the electron density,
u is the fluid velocity in the x~-direction and E is the electric
field. In Egs. (1)-(4) we made use of the fact that only the
x=component E of the electric field is affected by the presence
of the plasma.a) Substituting Egs. (3) into (4) and considering
only slow waves, i.e. w/k << c, we obtain the set of govering

equations:



-g%-+-g?(n¢)::o s)
Wyl S =0 (6)
£ 3
{E:'%E}"' j%ﬁfé"*'v¢153'== o, (»
2

vhere vT is the transverse Laplacian, here in cylindrical
coordinates.

We first analyze the linear solutions of Eqs. {(5)~(7).
Thus we linearize the equations and obtain:

-git‘-t + n,qlr)-g-“:" =0 (8

Qu . e fF -0 (9
2

.ii-%sy-4-é%fi--&cng'::t)l (o)

where non(r; +n =n, Any wave in the system must have a radial
structure which in some way is determined by the radius of the
waveguide, because E must vanish at the wall of the perfectly
conducting waveguide. Equations (8)-(10) can be solved by
separating the variablesa), thus we assume a wave dependence

of the form:

E(r,0,x,t) oc E_(r,0)explitkx-wt)]. (14)

Substitution of Eq. (11) and the similar forms for n, and uy
into Egs. (8)-(10), we find simply:

v} E (r6) + k‘(—w“-’;n (r) =1)E (r,0) = 0, (12)

where wj = n,eve,Mm.
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Equation (12) has the form orf an eigenvalue equatioa with
the boundary condition that :r(r-ro.el = 0. The eigenfunctions
can in principle be determined from nir). Nere, for simplicity.,
we assume the unperturbed density to be constant across the
wavequide, i.e. nir) £ 1. The solution of Eq. (12) is then
given in terms of Bessel functions:

E, (r,0) =7, (kir)cxpl—ino). (13

Jn is the n'th order Bessel function of first kind, and the

eigenvalues k; must satisfy the relation:

_k‘:'-o. k‘(—wﬁ- —1):0 or

w? = wp b, )

g ¢ k*

which is the dispersion relation for the axial modes. k, is
determined by using the boundary condition J (k, *r ) = o:

k=P

whi:re p, . is the m'th zero of the n'th order Bessel function.
The dispersion relation Eq. 14 now reads:

2
L - a [
w w’—-a‘-l'?ﬂl—?,'*( e (15)

Equation (15) is plotted in Pig, 2 for the lowest-order modes
(n=0, m=1 and n=l, m=1 and n=0, ma2).

For the radial eigenfunction, we introduce the function
an defined by:



Rom(r)=J, (B=r). (16)

With the above definition of m, 1 will describe the number
of nodes imn the radial eigenfunctioa.



I1I. Monlinear Equations for the Axjal Behaviour

In the nonlinear treatment of BEgs. (5)-(7) it is clear
that the nonlinear terms 3(nu)/dx and u(du/¥x) will couple
the two azximuthal modes n and n' to produce density fluctuations
at n + n', as well as that the two axial modes k and k' will
give fluctuations at k + k'; however, the coupling of radial
modes is more complicated. Two radial modes m and m' will
give rise to a driving term of the form Rm(r)-ltn.-.(r). which
can be expanded into terms of 'h+n'q by usino the fact that
R, [orms an orthogonal set of eigenfunctions (Bessel functions
Bg. (16)):

Rupn (r) Rpp e (¥) = {, g’ Rntu'g"') ) (13)
where
“’nw g-fr R.,."’R om’ (7)) k.-t'i':‘” dy . (12)

g: r R:g,.:‘(r) dr

The coupling between the three modes w k r m, w'k'n’m’ and
«#"k"n"m" is resonant if the following conservation laws are
ntisﬂdls-“)

w=w+w, k=kK+k" , n=na+n’ (19)

which can be thought of as the conservation ot vave energy,
wave axial momentum and wvave azimuthal momentum, respectively.
The nonlinear coupling between the different azimuthal and
redial modes has beer considered both theoretically and
experimentally by Laval et .1.15) and fFranklin et al.“).
It should be noted that Pranklin et al. 6) find that the decay
of the (n=0, m=1) mode into the (n,m) mode is only possible
for wavenumbers k larger than "dm given by:
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K =4 0pim — P2)/372 (20)

Here we are only interested in the nonlinear axial
behaviour of the (n=0, m=1) mode. This implies that all the
harmonics generated by the nonlinear terms will have n=o.
However, resonant decay may produce any two modes that satisfy
the conditions (19). Neglecting parametric decay, we assume
that the radial structure of the quantities is at all times
discribed by the linear radial eigenfunction ROl' Accordingly,

following uanheimerm’. we take,

E = Elx,1) Ry, (r)

n=n, +nxt)R (r (21)

uw

wix,tYR,,(r).

Using Egs. (21) we write Egs. (5)-(7)

. 2 _ ,
g'?" R“"' ’l"g‘:—ﬂ,'z -gr(nu-)ku —“%x—(nk)§qqneos (22)

, 4
%‘tu- Rw + _’%-ERM=- “ %,‘VL Rof':— “%}E“Q" R"Q 23
L8R BERAE TR =0 (20

Where aqn is given by Eq. (18), it is clear that %11 is
larger than any other aqll’ that is, the coupling petween
different axial modes of the same radial structure is stronger
than the coupling to other radial modes. If we ..ow only retain

the %111 driving terms - that is, we neglect coupling to other



- 11 -

radial modes - we get:

%?'*"r%%‘*«-a"‘“’ax =0 (29)

%‘t‘“ *““%*'&E =0 (26)
a

£+ 58 - HE=0, (2%

where /5 =Vo/Pos ( Peg=3.905) ,

' P
o = Ith:(z) dz/J z'.f]:(z)d.z > 0.722 . (29
(-] ° .

Normalizing the quantities n with respect to Ny v with
respect to the characteristic velocity u, = up'B, andzE with
respect to the characteristic electric field E, = mbp/e, and
taking B8 and w;1 as characteristic length and time, respectively,
we get these governing equations for the nonlinear axial
behaviour of the (n=o, m=l) mode:

35+ 3 va = o @
-g{?— +¢LLL-Sf§-'+£; =0 (30)

2
8. + ”bux' -E=0 (31)

And the linear dispersion relation Eqg. (15) takes the form



K-w?—w?k =0 (32)

These equations (29-32) are the basic equations for the
perturbation expansion carried out in the following sections.
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IV. The Perturbation Expansion and the Second-Order Solution

In order to examine the nonlinear behaviour of wave
solutions to Eqs. (29)-(31), with small but finite amplitude
over time-scales that are large compared to the wave period
and spatial scales that are large compared to the wavelength,
we use the method of Kakutani and Sugimoto‘) based on the
Krylov-Bogoliubov-Mitropolsky perturbation methodl). The essence
of this method lies in the systematic annihilation of all the
secular terms arising in the perturbation expansion. This
annihilation then gives the long-term and large-scale behaviour
of the wave amplitude. The term “"small amplitude®™ should here
be understood in the sense that the electron movement in the
wave electric field is much smaller than B. This implies that
the amplitude of the wave electric field is much smaller than
E, = mb;/e-

We introduce a "smallness parameter” ¢ and expand all
quantities in Eqs, (29)-(31) around the unperturbed uniform

state in powers of ¢ in the following form4)

E 0 £l &) [Es
wt =40r+é€du + £ W, e T T , (33)
n 0 n, n, n,

where ¢ indicates the relative "smallness” of the terms on the
right~-hand side, and it will later be set equal to unity. We
then choose a monochromatic plane wave as a starting solution
to Elz

E,=aexp(iyp) +a exp(-iy), (34)

where a is the complex amplitude of the perturbed electric
field normalized with respect to E , i.e. |a| << 1, 3 denotes
the complex conjugated to a, and ¢y is the phase defined as



v = kx - wt, where the wavenumber k and the frequency w must
satisfy the linear dispersion relation (Egq. (32)). We assume
that each coefficient of the ¢ power depends on x and t through
a, a and ¢. The complex amplitude @ is further assumed to be

a slowly varying function of x and t described throuqgh the

relations:
28 =4 f,(a,8)+ £ Ay, d)+ - (39
42 =€B@A+E B+ (s6)

together with the complex conjugate relations, while the phase
¥ remains unchanged from the linear limit, i.e. ¥ = kx - wt,
because nonlinear effects on the phase will be taken into
account through the "phase part” of the complex amplitude. The
unknown functions Al,Bl,Az,Bz... will be determined by eliminating
the secular terms in the perturbation expansion.

Substituting the expansions Eq. (33) into Egs. (29)-(31)
and collecting terms with the same powers in £ we obtain:

&[—w%!'l’l- +k-§“';-} .,.g{-wi; +k-a-% +a k 3%&‘5‘4-(;73%-.-

B,-gﬁ’- +c_c,)} +£‘(—w-%’i’-l +k %-l- +ak -a%yidlk %ﬂ;,y'*( Hz%

+R, Qg Ot g Qe 4 g B 4 o} +o() =0 (37)

e{-w%‘—“ +E }4-&‘[-:0%—“- + E,+ak u,-%‘qi’l- A, -%ﬁ'- +cc)} +€ {-w%‘-;',’

+E,+ qku,-%v& +qku‘%t *‘"&%’"4%‘; +aB tc‘:%-“é‘ »c.c)} +agn=0
(&)

E{ka—uk%ﬁt E}+£{k B K Bk £ o 2o+ 248 LEc -
ce )}uﬂkgﬂ' W2E 2 -£,+[8% +8 2 +2k8-2q5"; ~ELh +
B850k +(5 R0 15 RE) B 4B Tkt +c ) +oterz0, (39)
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where c.c. stands for the complex conjugate. From the set of
equations for o(e) and Eq. (34), we get the following starting
solutions for ny and u, that satisfy the linear dispersion
relation Eq. (32):

;- hlaepliy) — aept-iy)] (v0)
~— ~faexpliy) - aexp-iy)) (4)

We now seek the set of second-order solutions. Substituting

the first-order solutions (Eqgs. (34) (40) and (41)) into the set
of equations for o(cz).we arrive at the differential equations
for nysu, and EZ:

. 2
—w-g—;l +k-g“; =-t(n 5K +q)ap(£yl+m2-“’§|dadﬁV)+ac. 42)

—w-g%% +E, = -‘g-n,apu p)+ o -&a‘ap&il{)-o- c.c (43)
k38 + RBH £ = ikB(L -2)ewplit)s cc. (44)

By appropriate manipulation of Eqs. (42)-(44) and using
the dispersion relation Eq. (32), we deduce the differential
equation satisfied by E,:

2 .
‘aa_:,‘i +E = ‘?ﬁ'( A+ ':?B.,)ebp(éy) + L'at3-u‘§-,,a'eu,¢>(2¢‘yl) +c.cC

(&/8)

In order that E, should be free of secular terms, we must require
that the coefficient of exp (+ iy), i.e. the resonant term with
respect to the solutions of the homangeneous part of (45), in

Eg. (45) vanishes. This yields
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A, + 4B, =0, (v6)

and its complex conjugate, where vg = w3/k3 is the group
velocity of the wave, vg = dw/dk, which is seen from the
dispersion relation Eq. (32). By virtue of the relations (35)
and (36), we can regard A, and By, respectively, as aa/atl and
aa/ax1 to the lowest order in ¢ where t; = et and x; = €x.
Thus we may interpret Eq. (46) as:

oa_ oa_ _
ot, Y'Y ox, =0, é7)

and its complex conjugate, which shows that, to the lowest
order in €, the amplitude a is constant in a frame of reference
moving with the group velocity, i.e. 2@ depends on t and Xy
only through £ = [x1 - vgt1 = g(x = vgt)].

By using Eqs. (46) and (32) we can now evaluate the
secular free second-order solutions from Eqs. (45), (42) and
(43) and obtain

E,=-+tiaat exp(ziy) + beepiiy) +c.c. (%8)
u,= -.lg'%%f)aaz exp(h“')'*(%B," ’uLTb) exp(iy) rec+c, (49)

.2 2 .
n,=— L%‘%“ﬁ')uo? eep(2il) 4-(-1%4‘—64- ‘T’,‘rb)ezp(éwﬂ.c.w,,
(s0)

where the complex functions b and b, and the real functions <
and Cyr are constants with respect to ¢ and depend on 4 and a
alone. They should be determined from the non-secular conditions
of higher orders.
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V. Third-Order Equations and the Nonlinear Schrodinger Equation.

We now proceed to the set of third-order equations.
Substituting the first-order (Eqs. (34), (40) and (41)) and
the second-order solutions (Eqs. (48)-(50)) into the set of

equations for 0(53), we can derive the following equations for
ny, Uy and Eq:

—w %‘; + K -%l =0D,, exp(3ily) + D exep(2iy) +D,, explip)+D,,0cc

(s1)
—w-%t,' tE,= D‘23 eep(3cfy) +Dy, evp (2cp)) +D, explip)+D0,,+<.c.
(52
2 )2 : ~
k -gﬁ-' +k -%—5} -E=D,,eep(2ip) +0, evp (LW)+ D, +cc.  (53)

where the terms Dij are relegated to the appendix in view of
their complexity. The secular-free conditions for the third-
-order solutions consist of two parts: One is the annihilation
of the secularity-producing constants, and the other is that
of secularity-producing resonant terms. From the former, we
obtain a sufficient number of equations to determine c; and

¢, by averaging Eqs. (51)-(53) with respect to the fast phase

D4o= (0] J DZO= —D

30 ’

and

(s5%)

w2
ng w”r thé__tf_“_aa.p dl , (SS)
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where d1 and d2 are absolute constants with respect to y, @
and a (for a further discussion of the interpretation of dl
and dz. the appendix of Ref. 4 should be consulteld).

By manipulating Egs. (51)-(53) in the same way as when
deriving Eg. (45), we can deduce the differential eguation
determining E3. The requirement that E3 be free of secularity
arising from the resonant terms yields

1 4 4 -
7F_l%1+ :5rl%f* w éb'- 0

Inserting the expressions for 031, 021 and Dll and using Eqs.
(54) and (55), we obtain after simple but lengthy algebra the
following differential equation for & (as well as a):

(R, + Vg B,) +P(8,,—%%’_— +§,g—§_‘) = Qlalfa +Ra (se)

where

— 3wl _ 1 dy (5%)

ak

10 [3 17 2
= 3 - 15k " =35 k'~ 30k—- 9 2
Q=w Lk (K7+ 3k5+3) « S
R =(kd,+ 4d,)a . 59)

With the aid of Egs. (35) and (36) we note that A,, B, and
B (381/86) + Bl(aal/aa) can be interpreted, respectively, as
a/atz-Al/c, aa/axz-Bl/c and 23 a/axl, where t, = czt, Xy = ezx
and x; = €x. Equation (56) then reads:

. 3
L(%%*bb%:)*P‘sfoi‘=Q’ale+ Ra . (60)
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It was shown that a only depends on x) and tl through

£ = xl—vgt1 (Eq. (47)), this leads to the introduction of the

following coordinate transformation‘):

£ =Fx, —vut,) =x,-v,T, = E(x-vt)
(61)

T= t2=£t1 = g2 ,

by means of which we can convert (60) to a nonlinear Schrdédinger

equation:
i D% _ 2
L-%,q[__h + P oe =Qlal'a +Ra . 62)

The arbitrary constants d1 and d2 (in the expression for R,
Eq. (59)) and therefore R may be determined if appropriate
initial or boundary conditions are specified. However, the
linear interaction term Ra only causes a simple phase shift,

and can be removed from Eq. (62) by the substitution17)

T
a—>a ep(-if R(T)AT'). 63

It is interesting to note that the variables 1 and §
introduced into Eq. (61) are identical to the stretched variables
used by Tanuiti et a1.18-19) in deriving the nonlinear
Schrédinger equation for nonlinear wave modulation.



- 20 -

Vi. Nonlinear Dispersion Relation and Modulational Stability

Solutions to the nonlinear Schrddinger equation (62) have
been extensively stndied‘
propagation of waves of various kinds. In this section we

+18=27) 45 connection with nonlinear

consider some of these solutions and their physical consequences.
We note that Eq. (62) is complex, therefore the solutions

are also complex. Thus we introduce the real functions p(£,1)

and 9(§,1) representing the real and imaginary parts of a

through:

a=peeplid). (69)

Substituting this expression into Eq. (62), we have

26
-g-%+zp gsa—g-*-pp-%?:() (63)

and

3 -rp BE - (85) - eper=

It is easily seen that Eq. (65) can be written in the form

of a conservation eguation for pz:

Y Selpar g =0 “?

Noting that p2-|352, Eq. (67) expresses that the "wave energy",
proportional to la|2. is conserved. In order to obtain the
nonlinear dispersion relation for the electron plasma wave,

we consider the plane wave solution to Eg. (62):



-21 -

a=p, explilns-PT)] (68)

vhere p , x and ¢ are constants and p, the value for |a] at
infinity, i.e. in Eq. (64) P=p,, and G-Go-zz-ot. Using Eqs. (65)
and (66), we obtain the dispersion relation

P - Pr*=qg+R , 69

and the group velocity Ug=2Px. Recalling that
E,=aep[i(kr-wt)] +cc,

we have

E,= Poeup {<[(k+eR)X = (wrekvy+£2PIt]}+ cc.

From this we get the nonlinear dispersion relation
W(k+ak,p,) =(w +vyak +Prak)?) +£2(Qp+R), e )

where Ak=ck.
The first bracket in (70) is the term obtained by Taylor
expansion about k and results from linear dispersion, that is:

wlk+ak) =w + vgak + fﬁ?(ak)z :
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The second tera in Bg. (70) shows the effect of finite mmplitude
on the dispersion relation. Suppose that we now consider an
initial value problems, in which ve give the amplitude and

the wvave nusber as spatially constant, at say t=o. Then, with
the discussion of the R-term in Sec. V in mind, ve see from

(70) that the amplitude-dependent frequency shift induced by

the nonlinearities is given by (setting the expansion pa-amster
equal to unity)

Aw -le): :

By means of Eq. (50) the relative frequency shift can be written

o k= 15k*— 35k"— 30k -9
.Aul,!_ —w® lyk‘(%%—Sk'-le) qP: . 77

Conversely, if we consider a boundary value problem (which
is more applicable from an experimental point of view) in which
the progressive wave is excited with a time-independent
frequency and amplitude at some spatial boundary, e.g. x=0 in
a semi-infinite plasma, the nonlinearities will cause an
ampl itude-dependent wavenumber shift as given by (Eq. (70))

Ak-.-—-%-ﬂ,’_

And the relative wavenumber shift can be written

0

ak —_ K2 15k°- 35k" 30K’- 9
k Yk®(k*+3k*+2)

a’pl. (72)

In Fig. 3 we have plotted Aw/w and Ak/k as function of k.
These relative frequency and wave number shifts are small of
second order in the normalized amplitude P’ Which is indicated
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by the ¢ factor in Eq. (70). Mowever, from (72) we see that
|Au/u]| and |ak/k|[+ = wvhen k + 0 and that |Ak/k| + « for k +- = that
is the expansion Egq. (33) breaks down for both small k-values
and large k-values, and the results obtained are only valid
in the intermediate range.

In addition to the amplitude-dependent frequency and
wvavenumber shifts, the nonlinearities can in general cause
& slow modulation, described by Eq. (62), of the amplitude
of the electron wave. From the theory of the nonlinear Schrodinger
equation (see e.g. Refs. 4, 18-27), we find that the plane
elestron wave is modulationally stable or unstable according
to whether PQ > o0 or PQ < o. Inspection of Egs. (57) and (58)
shows that PMQ ¢o accn;dinq as k § tc * 2.2. This means that
short waves k > k_,are modulationally unstable, while long
waves,with k < k_,are stable. In unnormalized quantities the
critical wavenumber is given by

k‘sﬁz =&’.;”' (73,

(kc is marked on Pig. 2).

In order to find the growth rate and wavenumber for the
modulation, we consider a small perturbation of the stationary
plane wave (68). Thus we write:

P=ps* Jp Re [ap[i(Kg-.Q‘l’)]] and

0 =6, +56Re(epli(kg -QTN]},

that is ép and 80 account for the modulation in amplitude and
phase, respectively. Substitution into Eqs. (65)-(66) and
linearizing give the disépersion relation between I and K

(0 - Kug) = P LK% 42 - -ﬁ:p,"’] (74)
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where Ug is defined in connection with Eq. (69). For PQ < o it
is seen that Q has » imaginary part for X < (2 IQ/PI)s Poe
Hence, a long wave cisturbance of the electron wave will grow,
as expected. From Eq. (74) the growth rate of the modulation
is obtained as:

Y =Im(2) =PIk (248p> - k)% (75)

It has the maximum value of

Ym=Qp) ( 76)
at
K= K= (larp))%p, (77)

where Q and P are given by Egs. (57)-(58). (Note that Ym and

xm are independent of the R term). The dependence of y on K

is shown in fig. 4, and the variation of Yo and Km with respect
to k is shown in fig., 5. The modulational instability is seen
to be a weak instability, Ym is of second order in the small
amplitude. In the next section we discuss this further and

give a numerical example.

The physical mechanism of the modulational instability can
be understood in the following simple way. Suppose a small
modulation perturbation is applied to the plane wave. If, for
instance, we consider a boundary value problem, we see from
Eq. (72), since Q > o, that the wavenumber of the plane wave
is smaller in the crest of the modulation than in the trough,
8ince P < 0, the group velocity then becomes greater in the
crest than in the trough, resulting in a pile~up of wave energy
in the crest of the modulation. This implies growth of the
modulation perturbation.
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For PQ > 0, i.e. long electron waves with k < kc. equation
(74) shows that I has only real solutions and that the waves
are modulationally stable, in accordance with the discussion
above, In this case the nonlinear terms in (65)-(66) will
generate harmonics and thus generally steepen the waveform.
However, the "dispersion" term P will control the steepening
and prevent a break-down of the waveform, since Ial2 is
conserved (Eq. (67)). Steepening of a long wavelength electron
plasma wave in a plasma waveguide was predicted theoretically
by HanheinerIO), and has been investigated experimentally
by Ikezi et al.ll) and Saekilz) in Q-machine plasma. In Refs.
11 and 12 the nonlinear behaviour is described in terms of
the Korteweg-de Vries equation. In this connection it is
interesting to note that Johnson?8) recently showed that the
long wave limit of the nonlinear Schrddinger equation coincides
with the short wave limit of the Korteweg-de Vries equation,
in the case where these equations were applied to short and
long water waves on shear flows, respectively.

Pinally, in addition to the plane wave solution described
above, the nonlinear Schrédinger equation has equilibrium
solutions exhibiting the dynamical balance between nonlinear
and dispersion effects of the form

A =pIys-U,T eplilcg-9T)] @)

where x, ¢ and Ug are defined in conﬁection with Egqs. (68) and
(69) . By substituting (78) into (65) and (66) we arrive at

p'=Fp*~ FPp.

where the differc.atiation concerns (£'- U_ 7). Integrating

g
once gives

+pr+vip=£,, (49)
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with
Vipr=—1 B (0¥ -pip,

where Fo is an arbitrary constant. This equation is equivalent

to the classical equation of motion for a unit mass with total
energy F_ under the potentiai V(p), as noted by Kakutani and
Sugimoto ). With this analogy in mind, it is easily found from
the form of V{p) that for Q/P > o (i.e. modulational stability)
bounded solutions only exist for o < F, (Q/dP)p:. These solutions
are in general expressible in terms of Jacobi elliptic functionszg).
In the special case where Fo = (Q/P)p;, p(E-Ugr) represents the

so-called "phase jump" or "envelope shock” expressed as:

plE-U,T) =p, tanh [-f%p, (§- 4, T)] . #0)

This "envelope shock" is plotted in fig, 6a. It is seen to
propagate in (x,t) space with approximately the group velocity
v_ of the electron wave (the correction U_ is much smaller than
vg). For Q/P < o, on the other hand, two types of bounded
solutions exist: One for F, > o, "large"” amplitude waves, and
one for -|Q/4P|pg < F, < o, "small” amplitude waves. Both may
generally be expressed by Jacobi elliptic functions. In

particular, F. = o, we obtain the solitary wave of the form

PE -UsT) =2 p, sechl VD, (5-u,T)] . @1)

Also this solitary wave propagates in the (x,t) space approximately
with the group velocity vg. The width of the solitary wave,

which is plotted in fig. 6b, is seen to agree with the wavelength
of the unstable modulation mode with maximum growth rate (Eq.77).
This leads to the conjecture that the modulation of the electron
wave is eventually deformed into the solitary wave described

by (8l). Numerical solutions of the nonlinear Schrddinger equation
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30). Mention should also be made of

31)

support this conjecture
the numerical calculations by Yajima and Outi
that a solitary wave solution like (81) is so stable that it

preserves its identity in spite of the nonlinear interactions.

+ They show

For this reason, the solitary wave is often called the "envelope
soliton®.

The deformation of the electric field into the envelope
soliton is accompanied by formation of the density cavity as
seen from the first-order solutions Eqs. (34), (40). This may
also be understood in the following way. The ponderomotive
32). arising from the gradients in the electric field
amplitude, pushes away the electrons from regions with high
field intensity, and thus digs the cavity in the density.
Propagation of such density cavities enclosing an electric
field "soliton™ have been observed by Kim et a1.33) and Ikezi
et a1.3‘) in experiments where the plasma could be treated as
infinite.

force



VII. Discussion and Conclusicn

Calculations were presented of the nonlinear behaviour of
a finite amplitude electron plasma wave propagating in a cold
plasma filling a cylindrical waveguide immersed in an infinite
axial magnetic field. By means of the Krylov-Bogoliubov-Mitro-
polsky perturbation -cthodl) extended by Kakutani and Sugiloto‘).
we derived the nonlinear Schrddinger equation for the long-term
slow modulation of the wave amplitude of the lowest order mode
(n=0, m=1). From this nonlinear Schrddinger equation we calcu-
lated the amplitude-dependent shifts in frequency and wavenumber
introduced by the nonlinearities. Further, we found that the
electron plasma wave with short wavelength was modulationally
unstable with respect to long wavelength iow-frequency pertur-
bations, contrary to the case for electron waves in infinite
plasma with stationary 1ons‘). We have thus an example of a
nonlinear effect introduced by a finite geometry, which is often
met in experiments. )

The basic assumption we made in setting up the nonlinear
governing equations in Sec. 11l was that the transverse structure
of the wave field was described by the linear transverse eigen-
functions even in the nonlinear limit. In other words, we assumed
that the nonlinear axial propagation of one mode would not
alter its transverse structure. This assumption is justified
by the fact that, at sufficiently strong magnetic fields, the
electrons will only move in the field direction, and che
transverse structure of the wavefield will not be affected by
the presence of the plasma at all, as also noted in Sec. II.
However, the coupling to other transverse modes, which was
neglected, is, of course still possible, as discussed in Sec.
I1I. :urther, the critical wave number kc = 5.29/:0 (Eq. (73))
for modulational instability is larger than the low wave number
limit kdll = 3.45/:o (Eg. (20)) for resonant decay to the (n =1,
m=1) mode (see fig. 2). Thus the modulational instability of
the (n=0, m=1) mode will evolve in competition with the decay
of this mode to the higher order transverse modes (for
kc <k < kdo:' only decay to the (n= 1, m = 1) mode is possible).
In spite of the possible decay of the (n = o, m = 1) mode, which
may extract energy from this wave, the theory considered here
will still be valid, but the other nonlinear processes not taken into



account may limit the growth of the modulational instability.
It should be noted that the theory can be applied to the
higher-order modes too, by changing a and 8 appropriately.

In a real plasma there will always be a finite temperature,
but our calculations can still be applied in the case where
r, > AD (the Debye length) for waves with w/k >> Ve (electron
thermal velocity) and N >> ¢, (ion acoustic speed). The last
requirement is needed for the assumption of stationary ions.
When the phase velocities w/k approach the electron thermal
velocity, temperature effects can no longer be neglected and
the linear dispersion relation must be altered. Purther, the
effects of trapped particles begin to play an important role
Nonlinear phase shifts of electron plasma waves due to trapped
particles have been studied extensively both theoretically and
experimentally, recently by Sugai and Mirk36)
references to related work. It is interesting to note that the
nonlinear frequency shift introduced by the trapped particles
is proportional to the square root of the wave amplitude37),
while the frequency shift deduced in Sec. VI is proportional
to the square of the wave amplitude. The modulational instability
of an electron plasma resulting from the trapped electrons was
investigated theoretically by Dewar et 31.38) for an infinite
plasma. These authors used a nonlinear Schrdodinger equation
similar to Eq. 62 with Q replaced by the frequency shift
resulting from the trapped particles. They found that trapped
particles could give rise to modulational instability, at least
as long as the fraction of particles was sufficiently small.

35)

» who give

In conclusion we consider a numerical example of the
modulational instability in a typical Q-machine plasma with
n=510° ™, 7 =T, =0,2 eV and r /A, = 100. Electron
plasma waves in such a plasma have, for w/k >> Ver been ;g?nd
to follow approximately the dispersion relation Eq. (15) .
Generally, in plasma wave experiments the wave is launched at
one end of the machine and detected at the other end. Thus,
in order to observe the modulational instability, we must
have a spatial growth length of the same order of size as the
machine length, typically 1 m. The spatial growth rate K, can
be obtained from Eq. (76) by using the fact that the modulation

in the (x,t) space approximately propagates with the group
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velocity vg, thus we have’
- - L2
KL——?,;“ = p @2

(note that Ky is normalized with respect to B8). Now let us
consider an electron plasma wave with wavenumber k = 3/8. This
wave will easily fulfil the conditions for applying the theory,
w/k = 13 Ve and vg = 0,5 (H/m)s Cg (M aid m are the mass of
ions and electrons, respectively, (M/m)® = 500 for Cs-plasma).
In order that the spatial growth length L = (Zn/xi)ﬂ equals
lm, Eq. (82) yields Po = 0.14. From this, noting that Po is
the unperturbed electric field normalized with respect to E

(= mwp B/e), we find the wave potential ¢ needed to give a
growth length of the order of the machine length:

el ~ _po g5

mu “Kkp

(u° = Bwp). With reference to the work of Saekilz). it seems
possible to obtain such a wave amplitude in a Q-machine plasma.
However, since other nonlinear effects will compete with the
evolution of the modulational instability as discussed above,
one cannot conclusively predict that the instability will be
detectable in a Q-machine plasma. Therefore it seems reasonable
to consider the possibility of an experimental verification.
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APPENDIX
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Fig. 1. Schematic of the plasma-filled waveguide.
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2. Dispersion curves for the lowest order modes. kanm indicates the

lower limit for decay of the (n=0, m=1l) mode intoc the (n, m) mode,

kc is the critical wavenumber for modulational instability, waves
with k > kc are unstable.
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Fig. 3. The amplitude dependent frequency (Aw/w) and wavenumber (Ak/’k) shifts
versus the wavenumber of the electron plasma wave. Po is the
normalized wave amplitude, B = r_/2.405,



Y/¥m

1 K/Km

Fig. 4. The growth rate of the modulational instability, f, . versus its
wavenumber, K .
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m’ and the corresponding wavenumber, K m’
of the modulation versus the wavenumber of the electron plasma wave.
o is the normalized wave amplitude, B8 = ro/2.405.

Fig. 5. The maximum growth rate, Yy
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Fig. 6. Equilibrium solutions to the nonlinear Schrddinger
equation,
a) The "envelope shock”,
b) The "envelope soliton”,



