Technical University of Denmark

Environmental radioactivity in Denmark in 1976

Aarkrog, Asker; Lippert, Jørgen Emil

Publication date: 1977

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Aarkrog, A., & Lippert, J. E. (1977). Environmental radioactivity in Denmark in 1976. (Denmark. Forskningscenter Risoe. Risoe-R; No. 361).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

196

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

<

Environmental Radioactivity in Denmark in 1976

by A. Aarkrog and J. Lippert

June 1977

Sales distributors: Jul. Gjellerup, Sølvgade 87, DK-1307 Copenhagen K, Denmark Available on exchange from: Risø Library, Risø National Laboratory, DK-4000 Roskilde, Denmark

INIS Descriptors

- (0) DENMARK ENVIRONMENT RADIOACTIVITY RADIOECOLOGICAL CONCENTRATION
- [1] AIR BONE TISSUES FRESH WATER GROUND WATER RAIN WATER STRONTIUM 90
- [1, 2] BACKGROUND RADIATION DIET FOOD FOOD CHAINS GAMMA RADIATION GLOBAL FALLOUT PLANTS SEAWATER
 - [?] WHOLE-BODY RADIATION
- [2, 4] CESIUM 137
- [1, 2, 3] SOILS
 - [3] CEREALS PLUTONIUM 239 PLUTONIUM 240 SEEDS
 - [3, 4] SEDIMENTS
 - [4] CORROSION PRODUCTS FUCUS MOLLUSCS NUCLEAR POWER PLANTS

UDC 614.73 (489)

Environmental Radioactivity in Denmark in 1976

by

A. Aarkrog and J. Lippert

Risø National Laboratory Health Physics Department

Abstract

The present report deals with the measurement of fall-out radioactivity in Denmark in 1976. Strontium-90 was determined in samples from all over the country of precipitation, soil, ground water, sea water, grass, dried milk, fresh milk, grain, bread, potatoes, vegetables, fruit, total diet, and human bone. Furthermore, 90 Sr was determined in local samples of air, rain water, grass, sea plants, fish, and meat. Caesium-137 was determined in soil, sea water, milk, grain products, potatoes, vegetables, fruit, total diet, fish, and meat. It was also measured by wholebody-counting of a control group at Rise. Estimates of the mean contents of radiostrontium and radiocaesium in the human diet in Denmark during 1976 are given. The γ -background was measured regularly at locations around Risø, and ten of the State experimental farms. The marine environments at Barsebäck and Ringhals were monitored for 137Cs and corrosion products. Finally the report includes routine surveys of environmental samples from the Risø area. Results of plutonium determinations in soil and sediments from 1975 and in grain from 1963 and 1965 are presented in this report.

Stougaard Jenson/Kabenhavn

1

F1 25 1888 87 550 470 9

CONTENTS

•

.

Abbr	eviati	ons and Units	6
1.	Intro	duction	9
2.	Organ	ization and Facilities	11
3.	Envir	onmental Monitoring at Ris¢ in 1976	12
	3.1.	Gross β-Activity	12
		3.1.1. Sea Water	12
		3.1.2. Soil (No Samples)	13
		3.1.3. Air	14
		3.1.4. Bed Soil from the Fjord	16
		3.1.5. Pish (No Samples)	16
		3.1.6. Grass	16
		3.1.7. Sea Plants	17
		3.1.8. Fresh Water	17
		3.1.9. Rain Water	19
	3.2.	Radiochemical <i>β</i> -Analysis	21
		3.2.1. Air	21
		3.2.2. Grass	23
		3.2.3. Sea Plants	24
		3.2.4. Rain Water	25
		3.2.5. Milk from a Farm near Risg	27
	3.3.	Y-Spectroscopy of Air. Precipitation and	
		Grass Samples	27
	3.4.	v-Spectroscopy of Bed Soil Samples	33
			•••
4.	Radio	strontium and Radiocaesium in Precipitation,	~ 4
	Soil,	and Ground Water in Denmark in 1976	34
	4.1.	Strontium-90 in Precipitation	34

			Page
	4.2.	Strontium-90, Caesium-137 and Plutonium in Soil	37
	4.3.	Strontium-90 in Ground Nater	43
5.	Radio	strontium and Radiocaesium in Danish Food	
	in 19	76	46
	5 1	Stroutium-80 and Cassium-137 in Dried Milk	
	J.T.	Sciencium-50 en Caesium-137 in Dried Hilk	16
	57	Strontium-90 and Cassium-137 in Proch Milk	10
].4.	from the Entire Country	51
		nom the Battle Country	71
	5.3.	Strontium-90 and Caesium-137 in Grain from	
		the Entire Country	53
	5.4.	Strontium-90 and Caesium-137 in Bread from	
		the Entire Country	55
	5.5.	Strontium-90 and Caesium-137 in Potatoes from	
		the Entire Country	57
	5.6.	Strontium-90 and Caesium-137 in Vegetables and	
		Fruits from the Entire Country	57
	5.7.	Scrontium-90 and Caesium-137 in Total Diet from	
		the Entire Country	58
	5.8.	Strontium-90 and Caesium-137 in Miscellaneous	
		Poodstuffs	62
		5.8.1. Strontium-90 and Caesium-137 in Meat	52
		5.8.2. Strontium-90 and Caesium-137 in Fish	€3
		5.8.3. Strontium-90 and Caesium-137 in	
		Imported Foodstuffs	63
	5.9.	Estimate of the Mean Contents of 90 Sr and 137 Cs	
		in the Human Diet in Denmark in 1976	64
6.	Stron	tium-90 and Caesium-137 in Man in 1976	69
•••	<u> </u>		60
	6.1.	Strontlum-90 in Human Bone	76
	b.2.	Caesium-13/ in the Human Body	/0
7.	Stron	tium-90 and Caesium-137 in Sea Water in 1976	7 9
8.	Speci	al Surverys	86
	8.1.	Meteorological Mast Experiment (No Samples)	86
	8.2.	Fission Porduct Ratios in Air Samples Collected	
		at Different Heights of the Meteorological Mast	
		(No Samples)	សត

8.3.	Strontium-90 and Caesium-137 in Human Milk	
	(No Samples)	86
8.4.	Country-wide Measurement of the γ -Background	
	in 1976	86
8.5.	Environmental Surveys at Barsebäck, Ringhals	
	and other marine Environments	90
	8.5.1. Sediment Samples	92
	8.5.2. Biological Samples	97
	8.5.3. Plutonium in 1975 Sediments Samples	99
9. Conclu	usion	101
Acknowledge	ements	104
Appendices	•••••••••••••••••••••••••••••••••••••••	105
Appendix A	. Calculated Fall-out in Denmark in 1976	105
Appendix B	. Statistical Information on Population	
	Density, Area of the Zones, and Milk,	
	Grain, Vegetable, and Pruit Production	
	in the Zones	106
Appendix C	. A Comparison Between Observed and	
	Predicted Levels in the Human Food Chain	
	in Denmark in 1976	107
Appendix D	. Fall-out Rates and Accumulated Fall-out	
	(mCi ⁹⁰ Sr/km ²) in Denmark 1950-1976	109
Appendix E	. Plutonium-239 in Grain from 1963 and 1965	111
References	•••••••••••••••••••••••••••••••••••••••	113

ABBREVIATIONS AND UNITS

PP	fission products	Sam	ples:
fCi	fentocurie 10 ⁻¹⁵ Ci		
pCi	picocurie, 10 ⁻¹² Ci, µµCi	H :	sea water
nCi	nanocurie, 10 ⁻⁹ Ci, mµCi	J:	soil
mCi	millicurie, 10 ⁻³ Ci	L:	air
ИРС	maximum permissible concentration	B:	bed soil
c/min	counts per minute	λ:	eel
d/min	disintegrations per minute	PG:	grass
c/h	counts per hour	Pff:	sea plants
μ R	micro-roentgen, 10 ⁻⁶ roentgen	D:	drain water
S.U.	pCi ⁹⁰ Sr/g Ca	S:	waste water
0.R.	observed ratio	R:	precipitation
¥.U.	pCi ¹³⁷ Cs/g K	M:	milk
V	vertebrae		
	male		
£	female		*
nSr	natural (stable) Sr		
eqa. hàn	equivalents µg uranium: activity a (∿90 d/h)	s fr	omn 1 µg U
eqv. mg KCl	equivalents mg KCl: activity as fr (~0.88 d/min)	om 1	mg KCl
\$.D.	standard deviation: $\sqrt{\frac{\Sigma(\bar{x}-x_i)^2}{(n-1)}}$		
S.E.	standard error: $\frac{L(x-x_i)}{n(n-1)}$		
U.C.L.	upper control level		
L.C.L.	lower control level		
۵	one standard deviation due to coun	iting	
\$.\$.D.	sum of squares of deviation: $\Sigma(\bar{x}-x)$	(₁) ²	
f	degrees of freedom	-	
s ²	variance		

v ²	ratio between the variance in question and the residual variance
P	probability fractile of the distribution in question
η	coefficient of variation, relative standard deviation
annova	analysis of variance
A	relative standard deviation 20-33%
B	relative standard deviation > 33%, such results are not considered significantly different from zero activity
B.D.L.	below detection limit

In the significance test the following symbols were used:

* : probably significant (? > 95%),

** : significant (P > 99%).

•••: highly significant (P > 99.98)

1. INTRODUCTION

<u>1.1.</u>

The present report is the twentieth of a series of periodic reports (cf. ref. 1) dealing with measurements of radioactivity in Denmark. The programme is unchanged as compared with 1975, but some samples (dried milk, grain, bread, vegetables and fruit) have due to low levels been pooled before analysis.

1.2.

The methods of radiochemical analysis²⁻⁴ and the statistical treatment of the results⁵ are still based on the principles established in previous reports¹.

1.3.

The report does not include detailed tables of the total β -measurements from the environmental control of the Risø site. These tables are available in the form of microcards at the Risø library.

1.4.

The report contains no information on sample collection and analysis except in the cases where these procedures have been altered.

1.5.

In 1976 the personnel of the Environmental Control Section of the Health Physics Department consisted of one chemist, ten laboratory technicians, two sample collecters, and two laboratory assistants. The Section for Electronics Development continued to give assistance in the maintenance of the counting

- 9 -

equipment and in the interpretation of the γ -spectra. The program (cf. 2) used in the calculations of ⁹⁰Sr and the γ -analysis, as well as the program for data treatment, were developed by this section.

1.6.

The composition of the average Danish diet used in this report is identical with that proposed in 1962 by Professor E. Hoff-Jørgensen, Ph.D. ۹

2. ORGANIZATION AND FACILITIES^{1,6,7,8)}

Four Ge-(Li)-detectors and an 8 inch NaI(TL)-detector used for whole-body measurements each connected to a 1024-channel analyzer are available. Eight detectors for alpha spectrometry are connected to two 256-channel analyzers.

A computer program, STATDATA¹⁶⁾, is available for the treatment of the results of this report (and the results of several other projects). The program checks and stores the data, produses lists, tables and plots and calls separate programs for analysis of variance and regression, etc. The principle for registering the data is the assignment of 6 parameters to each result or set of mulitple results. These parameters are:

Isotope (or code for γ-background, etc.) Sampling date Sample type Sampling location Quality of measurement (relative standard deviation) Unit of results

followed by:

Number of results Results.

Routines for treatment of γ -spectra and for calculations on empirical prediction models (app. C) has been included in programme.

To date approximately 40000 sets of results have been registered covering the period from 1957. However, a number of results still remains unregistered.

- 11 -

3. ENVIRONMENTAL MONITORING AT RISØ IN 1976

3.1. Gross *β*-Activity

3.1.1. Sea Water

Fig. 3.1.1.1 shows the sample locations in Roskilde Fjord. Fig. 3.1.1.2 shows the control chart for H I. The yearly mean for H I in 1976 was 58 eqv. mg KCl/2.5 g (in 1975: 56), for H III-VI: 55 eqv. mg KCl/2.5 g (in 1975: 53) and for H VII-X: 55 eqv. mg KCl/2.5 g (in 1975: 54). Fig. 3.1.1.3 shows the mean levels of radioactivity in sea salt since 1957.

Fig. 3.1.1.1. Roskilde Fjord.

- 13 -

in sea water 1957-76.

3.1.2. Soil

No soil samples from the environment of Risø were measured for total β -activity in 1976.

Fig. 3.1.2.1. Risø National Laboratory.

<u>3.1.3. Air</u>

Fig. 3.1.3.1 shows the diagram for FP activity in air samples in 1976. The mean value for the year was 0.15 eqv. mg $KC1/m^3$ as compared with 0.18 eqv. mg $KC1/m^3$ in 1975.

Fig. 3.1.3.2 shows the mean FP levels in air since 1957.

3.1.4. Bed Soil from the Fjord

The mean activity in bed soil B I was 136.5 eqv. mg KCl/ 3.0 g ash in 1976 as compared with 143 eqv. mg KCl/3.0 g in 1975. Fig. 3.1.4.1 shows the mean levels for B I since 1957 (cf. also 3.4).

Fig. 3.1.4.1. Mean radioactivity in bed soil, 1957-76.

3.1.5. Pish

No fish samples from Roskilde Fjord were measured for total β -activity in 1976.

3.1.6. Grass

The mean values were in 1976 for PG I: 15 eqv. mg KCl/0.1 g grass ash (in 1975: 14), for PG II-III: 20 eqv. mg KCl/0.1 g (in 1975: 11) and for PG IV-V: 10 eqv. mg KCl/0.1 g (in 1975: 7). Fig. 3.1.6.1 shows the mean activities in grass ash since 1957.

Fig. 3.1.6.1. Mean FP-radioactivity in grass ash, 1967-76.

3.1.7. Sea Plants

The mean FP level in 1976 in Fucus vesicolosus (PH I) was 2 eqv. mg KCl/0.1 g ash (2 in 1975). In Zostera marina (PH III-IX) we found 2 eqv. mg KCl/0.1 g ash in 1976 (1 in 1975).

3.1.8. Fresh Water

Fig. 3.1.8.1 shows the control chart for S (cf. fig.3.1.2.1). The yearly means for D I, D II, D IV, and S in 1976 were 17 eqv. mg KCl/l (1975: 18), 19 eqv. mg KCl/l (1975: 14), 42 eqv. mg KCl/l (1975: 55), and 46 eqv. mg KCl/l (1975: 35) respectively. Fig. 3.1.8.2 shows the activity in drainage water (D) and sewage water (S).

- 17 -

Fig. 3.1.8.2. Mean radioactivity in 1976.

3.1.9. Rain Water

Figs. 3.1.9.1 and 3.1.9.2 show the specific FP level in and the total fall-out from rain water collected daily at Riss in $1 m^2$ rain collector in 1976. The total fall-out in 1976 was measured at 0.014 $\cdot 10^6$ eqv. mg RCl/m², and the annual mean concentration in rain water at Riss was 42 eqv. mg RCl/l. In 1975 the corresponding figures were 0.008 $\cdot 10^6$ and 18 respectively.

Fig. 3.1.9.3 shows the specific activity in rain water since 1957.

Fig. 3.1.9.1. Concentration of 8-activity in precipitation in 1976.

Fig. 3.1.9.3. Specific activity in precipitation, 1957-76.

3.2. Radiochemical &-Analysis

3.2.1. Air

The "big air sampler" described in Risø Report No. 23¹⁾ has a shunt through which the air volume is determined. As in previous years, both the shunt filter (I) and aliquots cut out of the main filter (II) were analysed to see whether activity levels were identical in the two filters. As $I/II = 1.14 \stackrel{+}{=} 0.08$ (1 SE), we still concluded that the two filters showed the same levels. The mean air activity level for 1976 is reported as the mean of the glass-fibre filter collection and the daily paper filter sampling: $0.21 \stackrel{+}{=} 0.07 \text{ pCi} \, {}^{90}\text{Sr}/10^3 \text{ m}^3$, i.e. a quarter of the 1975 level. The mean peak activity of the three collections in 1976 was measured in June at 0.39 pCi ${}^{90}\text{Sr}/10^3 \text{ m}^3$.

Fig. 3.2.1.1 shows the 90Sr levels in air since 1957.

Table 3.2.1.2 shows the presence of fresh fall-out from a Chinese atmospheric explosion on 26 September 1977. The corrected ratios indicate a 89 Sr/ 90 Sr at formation in the range of 145-185, i.e. equal to the expected value.

Fig. 3.2.1.1. Quarterly ⁹⁰Sr levels in air, 1957-76.

Table	3.2.1.1

Strontium-90	in	əir	çq	llected	at	Risø	in	1976
	pCi	90	ir	$10^{-3}m^{-3}$				

Month	Daily air filters	Monthly a (glass-fib	ir filters re filters)		
	Paper	I	II		
Jan	0.165	0.102	0.083		
Feb	0.205	0.162	0.122		
March	0.193	0.223	0.125		
April	0.189	0.180	0.173		
May	0.297	0.377	0.359		
June	0.318	0.417	0,423		
July	0.250	0.416	0.344		
Aug	0.197	0.275	0,198		
Sept	0.122	0.099 A	0.110		
Oct	0.204	0,158	0.158		
Nov	0.194	0,188	0,184 A		
Dec	0.124	0.090	0.129		
1976	0.205	0.224	0.201		
I: the	I: the normally used shunt filters.				
II: aliquots cut out of the main filters also used for ¹³⁷ Cs determinaticn (cf. table 3.3.1).					

Table 3.2.1.2

Ratio ⁸⁹Sr/⁹⁰Sr in air collected at Risø in 1976

Month	Daily paper air filters	Ratios corrected for old ⁹⁰ Sr*				
Oct	70	100				
Nov	49	72				
Dec	29	57				
*The of estim the r	*The old ⁹⁰ Sr in Oct-Dec 1976 was empirically estimated to 50% of the Sept level. This was the ratio observed in 1975.					

3.2.2. Grass

Table 3.2.2 shows the 90 Sr content in grass ash from Zealand in 1976. The mean 90 Sr activity was 1.6 pCi 90 Sr/g ash or 25 S.U. as compared with 2.6 pCi/g ash or 44 S.U. in 1975, i.e. the 1976 level was 0.6 times the 1975 level. Fig. 3.2.2.1 shows the 90 Sr concentration in grass since 1957 and fig. 3.2.2.2 shows the predicted levels (cf. Appendix C) compared with the measured.

Strontium-90 in grass from Sealand, 1976						
	pCi 90 Sr (g ash) ⁻¹	$pCi = 90 gr (g Ca)^{-1}$				
Jan-March	1.46	21.4				
April-June	1.46	26.6				
July-Sept	1.83	25,9				
Oct-Dec	1.83	25.2				
Mean	1,64	24.8				

Table 3,2,2 Strontium-90 in grass from Sealand, 1976

rig. 3.2.2.2. A comparison between observes (\pm 1 S.E.) and calculated (curve, cf. appendix C) S.U. levels in grass from Zealand.

3.2.3. Sea Plants

Fig. 3.2.3 shows the S.U. levels in sea plants since 1959 and table 3.2.3 the results for 1976. The level in Fucus vesicolosus was 22.5 pCi 90 Sr/g Ca, and in Zostera marina 2.5 pCi 90 Sr/g Ca.

Month Locatic		Location Species pCi ⁹⁰ Sr (g Ca) ⁻¹		pCi 90 Sr (g ash) ⁻¹	
July	I	Fucus vesicolosus	10.2	0.72	
Nov	I	Fucus vesicolosus	34.8	0.94	
June	111	Sostera marina	2.4	0.26	
Nov	111	Sostera marina	3.1	0.25	
July	IX	Sostera marina	1.9	0.076	

<u>Table 3.2.3</u> Strontium-90 in sea plants from Roskilde Fjord in 1976

Fig. 3.2.3. Strontium-90 in sea plants from Rosk.lde Fjord, 1959-76.

3.2.4. Rain Water

Table 3.2.4.2 shows the quarterly radiostrontium levels in rain water collected in ion exchange columns at Risø in 1976. The total 90Sr fall-out in 1976 was 0.04 mCi 90Sr/km² (237 mm precipitation), and the mean concentration in the rain water was 0.17 pCi 90Sr/1. In 1975 we measured 0.27 mCi 90Sr/km² (477 mm precipitation) and 0.56 pCi 90Sr/1, i.e. the 1976 90Sr concentrations were 0.3 times the 1975 figures. The deposition values in 1976 were probably too low due to incomplete sampling of the rain water; the precipitation measured by the ion exchange columns was thus nearly a factor of two too low in 1976.

Tab	le	3.	2.	4.	1

Strontim-90 in rain water collected in ion-exchange column collectors at Risø in 1976 (sampling area 0.325 m^2)

Month	min	pCi ⁹⁰ sr 1 ⁻¹	mCi ⁹⁰ Sr km ⁻²	⁸⁹ sr/ ⁹⁰ sr
Jan-March	48	0,157	0.0075	
April-June	64	0,175	0.0111	
July-Sept	63	0.126	0.0080	32
Oct-Dec	62	0.224	0.0140	9.6 B
1976	£ 237	x 0.171	E 0.0406	

٠,

3.2.5. Milk from a Farm near Risø

The Chinese test explosion on 26 September 1976 resulted in a temporary contamination of cows' milk by ^{131}I . The timeintegrated level was approx. 200 pCi ^{131}I days, corresponding to a dose of 2 mrad to the infant thyroid²¹⁾.

Table	3.	2.	. 5

Iodine-131 in milk from Ris#* in 1976

pCi ¹³¹ I 1 ⁻¹					
12.5					
5.9					
22.6±0.8					
22.8±0.8					
7.4					
*The milk was obtained from the milk-producing farm nearest to Ris#.					

3.3. Y-Spectroscopy of Air, Precipitation and Grass Samples

As in 1962-1975, samples of air were collected twice a weak by means of the air sampler described in Risø Report No. 23^{1} . The filters were measured on a 30 cm³ Ge(Li) detector⁸⁾. Table 3.3.1 shows the monthly means of the ¹³⁷Cs determinations. The peak value was observed in May. The mean level in 1976 was a third of the 1975 mean. The ¹³⁷Cs/⁹⁰Sr mean ratio in air filter was 2.1 in 1976.

Debris from the Chinese atmospheric nuclear test explosion on 26 September 1976 appeared in ground-level air collected at Risø ten days after the explosion. The short-lived nuclides were followed in air filters until the end of November (fig. 3.3.2). The mean ratios (corrected for decay to 26 September between short-lived radionuclides measured in air samples were compatible with those expected⁴) (table 3.3.4). Some ratios, however, showed an evident time trend: $^{131}I/^{140}Ba$, $^{141}Ce/^{103}Ru$ and $^{95}Zr/^{103}Ru$ thus decreased with time, while $^{140}Ba/^{95}Zr$ and $^{141}Ce/^{95}Zr$ increased. This may indicate that the fresh fall-out from the explosion was enriched in ^{95}Zr and depleted in ^{140}Ba

Table 3.3.1

Caesium-137 in glass-fibre air filters collected twice a week at Risø in 1976

Month	pCi 137cs /103m3				
Jan.	0.25±0.04				
Feb.	0.33±0.03				
March	0.34±C.03				
A pril	0.41±0.06				
May	0.64±0.06				
June	0.61±0.05				
July	0.56±0.10				
Aug.	0.42±0.03				
Sept.	0.27±0.04				
Oct	0.48±0.14				
Nov	0.47±0.08				
Dec	0.25±0.03				
1976	0.42				
The error term is the S.E. of the mean of					

the activity found in 8 or 9 filters collected during a month.

Table 3.3.2 (unit fCi m⁻³)

Short-lived nuclides in ground-level air samples collected at Risø in 1976 Activity referred to the middle of the sampling period

Nuclide	Collected Oct 4-Oct 7	Collected Oct 7-Oct 11	Collected Oct 11-Oct 14	Collected Oct 14-Oct 18	Collected Oct 18-Oct 21
144 _{Ce}	-	7.0	8.7	3.7	6.1
141 _{Ce}	4.0	29	40	9.4	15
237 _U	1.0	2.7	2.1	-	-
²³⁹ Np	19	56	27	-	-
140 _{La}	11±1	60±7	98±12	18±2	26±3
¹³¹ I	8.6	25	30	6.8	8.8
⁷ Be	100	130	78	50	105
¹⁰³ Ru	2.8	10	29	6.2	8.5
106 _{Ru}	1.2	5.6	6.2	2.6	2.1
140 _{Ba}	8.7	43	75,	14	21
¹³² I	5.2±0.5	15.3±0.2	13±1	1,9±0,1	-
95 _{2r}	2.9	20±2	40±4	8,6±1	15±2
95 _{Nb}	0.9	6.0	3.5	3,4	6.6

- 29 -

	Collecte	d Oct 5-7	Collecte	d Oct 15	Collected Oct 17		
	pCi 1 ^{~1}	pCi m ⁻²	pCi l ⁻¹	pCi m ⁻²	pCi 1 ⁻¹	pCi m ⁻²	
144 _{Ce}	-	-	2.0	38	-	-	
¹⁴¹ Ce	2.4	47	3.2	61	9.4	110	
140 _{La}	14±1	280±20	15±2	290±40	41±5	490±60	
131 _I	37	730	11	210	21	250	
7 _{Be}	15	300	17	320	47	560	
103 _{Ru}	8.8	170	9.8	190	11	130	
¹⁰⁶ Ru	2.7	55	3.8	73	5.7	68	
140 _{Ba}	22	4 30	18	340	41	500	
95 _{2r}	3.5±0.1	70±2	4.1±0.4	78±8	5.7±1.3	69 ±15	
95 _{ND}	0.8	15	1.3	25	3.0	36	
The samples were collected by means of a 1 m^2 rain collector (3.1.9), and before Ge- γ -spectroscopy the rain water was ion-exchanged on a mixed-bed Doweg-column in the laboratory.							

Short-lived radionuclides in precipitation samples collected at Risø in 1976 (activity at time of collection)

Table 3.3.4

Sample	Period of sampling	Nuclide ratio	Mean ratio 11 S.E. on Sept 26, 1976 (1)	Theoretical ratio at formation ⁴⁾ (II)	t-test between (I) & (II) t df. sign
Air Rain	Oct 4-Nov 27 Oct 5-Oct 17	131 _{1/} 140 _{Ba}	1.04±0.09 1.3 ±0.2	0.89	1.59 15 - 1.97 2 -
Air Rain	Oct 4-Nov 27 Oct 15-Oct 17	¹³¹ 1/ ¹⁴¹ ce	2.9 ±0.2 18 ±7	2.59	1.61 15 - 2.25 2 -
Air Rain	Oct 4-Nov 27 Oct 5-Oct 17	¹³¹ 1/ ⁹⁵ 2r	5.5 ±0.6 18 ±3	4.6	1.55 15 - 4.12 2 -
Air Rain	Uct 4-Nov 27 Oct 5-Nov 30	140 _{Ba/} 95 _{Zr}	5.9 ±0.9 13 ±2	5.2	1.23 15 - 2.83 3 -
Air Rain	Oct 4-Nov 27 Oct 5-Nov 30	¹⁴¹ Ce/ ¹⁰³ Ru	1.37±0.14 0.58±0.15	1.05	2.26 15 • 3.09 3 -
Air Rain	Oct 4-Nov 27 Oct 5-Nov 30	¹⁴¹ Ce/ ⁹⁵ Zr	1.9 ±0.1 0.55±0.14	1.77	0.84 15 - 8.48 3 **
Air Rain	Oct 4-Nov 27 Oct 5-Nov 30	95 _{2r/} 103 _{Ru}	0.85±0.11 0.66±0.16	0.60	2.20 14 • 0.35 3 -

Radionuclide ratios in air and rain samples collected at Ris# in Oct and Nov 1976

<u>Table 1.1.5</u> Washoot factors in fresh debris ($W_{a} = \frac{pCi \ 1^{-1} \ (rain)}{\sqrt{1-1}}$)

				-		fCi	m ² (a)	i r)		
Buclide Date	95 ₂₁	95 ₁₈₆	103 ₃₀₄	140 _{8.0}	140 _{La}	141 _{Ce}	1311	Ŧ	S.D.	S.E.
Oct 4-7	1.22	0.87	1.1	2.5	1.32	0.40	4.3	1.99	1.36	0.51
Oct 14-18	0.57	0.63	1.7	2.1	1.58	0.67	2.4	1,38	0.76	0.29
Nov 1976	1.57	1.48	1.00	1.55	1.76	0.97	•)	1.32	0.33	0.13
The radionuclide concentrations in rain were determined by ion exchange; the October samples .a the laboratory on precipitation collected in the 1 n^2 rain sampler at Rise (3.1.9) and the Hovember sample on the monthly collection of fallout in the five										
ion-exchange collectors at Rise (3.2.4).										
*) too low a	concent	ratioa	for reli	able det	erminati	08 .				

Date 1976	Oct 12	0et 15*	Oct 15	Oct 18*	Oct 21	0et 25*	Nev 1*	Nev 8	Hev 15
g fresh weight a ⁻²	260	257	174	200	174	319	353	397	230
g dry weight m ⁻²	36	43	66	61	66	44	49	61	33
am procipitation since last sampling	•	6	6	31	1.3	2.3	1.1	4.4	2.3
95 ₅₁	220	406	795	365	\$10	469	415	473	154
95 _{Nb}	82	144	291	130	323	215	227	310	103
103 _{Ru}	39	70	228	95	157	109	129	110	48
131 ₁	172	235	457	196	264	132	79	60	7
140 _{8a}	197	244	727	344	621	284	193	162	58
140 ₁₋₈	429	618	1406	670	1089	514	405	278	70
¹⁴¹ Ce	327	568	1116	525	940	525	517	544	107
*the grass samples used	*the grass samples used in the estimation of deposition velocities.								

<u>Table 3.3.6</u> pCL m⁻² in gross from Risd in Oct-How 1976

and 103 Ru. This is in agreement with the early observations on fractionation phenomena by Edvarson et al.²²⁾, who predict that fresh fall-out is enriched in 95 Zr and depleted in 103 Ru, 140 Ba and 131 I, while 141 Ce is somewhere in between.

A few daily samples of precipitation and a monthly were also studied for fresh debris (table 3.3.3). A comparison between the rain and precipitation samples made a calculation of the washout-factors (W_0) possible (cf. table 3.3.5). The ratios were in general higher than the ratios observed for 90 Sr, which in the period 1960-72¹⁾ showed a mean ratio of 0.99. The difference may be due to the higher dry deposition (which was included in the rain samples) of fresh debris than of old. In grass with a dry matter yield of 44 \pm 3 (1 SD) gm⁻² (cf. table 3.3.6^x), the ¹⁴¹Ce levels were nearly constant (532 \pm 24 pCi m⁻²) from 15 October to 1 November. We may thus assume that the daily uptake by grass of ¹⁴¹Ce from fall-out approximately equalled the daily field loss. During summer the retention half-life of radionuclides on grass is approx. 19 days and in winter 49 days (23). Let us assume that the half-life in autumn is in between these values, i.e. 34 days. The effective halflife of ¹⁴¹Ce on grass then becomes 17 days and the daily field loss was thus 532 (1 - $e^{-1n 2} \frac{17}{17}$) = 22 pCi m⁻² d⁻¹.

The mean air activity during the last half of October 1976 was $47 \cdot 10^{-3}$ pCi ¹⁴¹Ce m⁻³. Hence, the deposition velocity was $\frac{22}{47 \cdot 10^{-3}}$ m \cdot d⁻¹ = 0.5 cm s⁻¹; if the retention half-life had been 19 days instead of 34 days, the deposition velocity would have changed to 0.7 cm s⁻¹. The winter half-life of 49 days gave 0.4 cm s⁻¹.

We may similarly estimate the deposition velocities of the other radionuclides: 95 Zr = 0.3 cm s⁻¹, 103 Ru = 0.1 cm s⁻¹ and 140 Ba = 0.4 cm s⁻¹. In the case of iodine, we calculated the

Fig. 3.3.2. Short lived fissions products in airborne debris from the Chineese test explosion 26 september 1976 collected in groundlevel air at Riss, October-November 1976. The timeintegrated levels are indicated for the various radionuclides.

amount of ¹³¹I deposited on the grass between two samplings from the levels measured in the grass, and under the assumption of effective half-lives varying from 5-8 days. The median value of the deposition velocities for ¹³¹I calculated in this way was l cm s⁻¹, and the range of values was 0.1 - 3.1 cm s⁻¹. The values showed a decreasing tendency with time in agreement with expectations, as small particles (old fall-out) have a lower deposition velocity than large particles (fresh fall-out)²⁴⁾. It should, however, also be noticed that from 15-18 October the precipitation was substantial (31 mm), which may have increased deposition on the grass. The estimated deposition velocities on grass were of the same order of magnitude as given in the literature²⁵⁾. The transfer factors from air to grass were estimated for ¹³¹I from the infinite, time-integrated ¹³¹I levels in air and grass. We found 1 pCi ¹³¹I m⁻³ · d ~ 6.5 nCi ¹³¹I m⁻² · d grass · d ~ 158 nCi ¹³¹I kg dry matter · d ~ 23 nCi ¹³¹I freshweight · d.

3.4. Y-Spectroscopy of Bed Soil Samples from Roskilde Pjord

North of the outlet from the Waste Treatment Station (fig. 3.1.2.1), bed soil samples were collected with a HAPS sampler. Cores down to a depth of approx. 15 cm were analysed by $Ge(\gamma)$ spectrometry. Table 3.4.1 shows the results, which are equal to those in previous years.

Table	3.4.1

Date	Depth in cm	pCi ¹³⁷ Cs kg ⁻¹	mCi ¹³⁷ Cs km ⁻²
July 5 (1)	0-15	147	25
July 5 (II)	0-16	224	31
Sept. 30(1)	0-15	187	31
Sept. 30(II)	0-15	164	25
Nean		180	28
S.D.		33	3
S.E.		16	2

Caesium-137 in fjord-bed soil collected in Noskilde Fjord in 1976 (HAPS) (145 cm²)
4. RADIOSTRONTIUM AND RADIOCAESIUM IN PRECIPITATION, SOIL AND GROUND-WATER IN DENMARK IN 1976

4.1. Strontium-90 in Precipitation

Samples of rain water were collected in 1976 from the State experimental farms (cf. fig. 4.1.1) in accordance with the principles laid down in Risø Report No. 63, p. 51^{1} .

Table 4.1.1 shows the results of the 90 Sr determinations and tables 4.1.2 and 4.1.3 the analysis of variance of the results. The variation with time was significant (P > 99%).

The maximum concentration in precipitation occurred in May-June, when the mean content in precipitation was 0.34 pCi 9C Sr/l (cf. also the air measurements in 3.2.1) while the maximum fall-out rate occurred in Nov.-Dec. 0.024 mCi 90 Sr/km². Tables 4.1.2 and 4.1.3 show that the variation between locations was not signifi-

Period	Unit	Tylstrup	Studa- gård	84m	Add ov	St. Jyn- devad	Blang- stedgård	Tystofte	Vir ut- gård	Abed	Akirke- by	Ledre- boty	Mean *
	pCL 1 ⁻¹	9.23	0.182	0.21	0.30	0.195	0.20	0.25	0.192	0.30 A	0.34	0.21	0.23
799-148	MCL KM ⁺²	0.0106	0.0168	0.0132	0.031	0.0156	0.0138	0.0105	0.0125	0.0140	0.0137	0.0094	0.0153
Perstalant	pCi i ⁻¹	0.10	0.27	0.186	0.37	0.193 9	0.25	0.21	9.41	0.194	0.22	0,24	0.25
Harch-April	acı ke ^{r 2}	0.0101	0,0125	0.0095	0.0145	0.0096	0.0005	0.0056	0.0096	0.0062	9.0095	0.0044	0.0095
Paula Lund	pCi i ⁻¹	0.)6	0.30	0.21	ə. 12	0.43	0.25	0.57	0.28	0.30	0,]0	0.196	0,34
Hay-Suite	aCi ka ⁻²	6.025	0.0171	0.0123	0.026	0.024	9.0188	0.039	0.022	0.0187	0.0147	0,0095	0.022
i. In the second	pCi 1 ⁻¹	0.174	0.13	(0.13)	0.66	0.26	0.80	0.29	0.16	0.30	0.175	(0.21)	0.29
3019-200	≡Ci km ⁻²	0.0043	0.0017	0.0067	0.0179	0.025	0.0101	0.0080	9.0972	9.0140	9.0962	0.0084	0.9102
fact of ct	pCi i	0.151	0,166	0.193	0.159	1.27	0.22	0.20	0.128	0.22	0.25	0,162	0.194
seperoce	#C1_3# ^{*2}	0.036	0.024	0.0184	0,028	0.644	0.0165	0.9151	0.0079	0.020	0.0186	0,0116	0.022
No. 40 Car	pC1 1 ⁻¹	0.26	0.136	0.193	0.27	(0.215)	0.23	0.164	(0.179)	0.38	0.22	0,119	0.22
MOV-DEC	mC1 Xm ⁺²	0.030	0.022	0.0149	0.035	0.019	0.027	9.0130	0.017	9.028	0.028	0,0071	0.024
1016	PC1 1 ⁻¹ X	0.23	0.189	0.20	0.27	0.25	0.25	0.20	0.21	0.27	0.25	0,177	0.0230
17/8	MC1 KM ⁴³ (0.110	0.095	0.075	0.152	0,147	0.094	0.091	0.076	0,101	0.091	0,050	0.103
· precipit	ition 1	487	54)	374	556	579	381	320	369	376	368	283	432

Table 4.1.1

Strontium-90 fall-out in Denmark in 1976

"Ladrabory not included in mean, figures in brackets salculated from VAR \pm ¹²⁾.

- 35 -

 $\frac{\text{Table 4.1.2}}{\text{Analysis of variance of ln pCi}^{90}\text{Sr 1}^{-1} \text{ precipitation in 1976}}$ (from table 4.1.1)

Variation	SSD	f	s ²	v ²	P
Between locations	1.330	10	0.133	1.250	-
Between months	1.832	5	0.366	3.444	991
Remainder	4.894	46	0.106		

Table 4.1.3

Analysis of variance of $\ln mCi = 90 \text{ Sr km}^{-2}$ precipitation in 1976 (from table 4.1.1)

Variation	SSD	f	s ²	v ²	P
Between locations	5.656	10	0.566	4,092	>99,95%
Between months	9.480	5	1.896	13.718	>99,951
Remainder	6.358	46	0.138		

Location	November	December
Tylstrup	43	107 B
Studsgård	33	24 A
Ødum	15 B	20 B
Askov	4.2	40
St, Jyndevad	-	57
Blangstedgård	55	35
Tystofte	20 B	13 B
Vi rumgå rd	36	-
Abed	62	0.4 B
Åki rkeby	47	28 A
Ledreborg	32 B	25 A
x ± 1 S.E. (B exclusive)	40±7	35±5

 $\frac{\text{Table 4.1.4}}{\text{The ratio}}$ The ratio ⁸⁹Sr/⁹⁰Sr in precipitation in Denmark in 1976

cant. The mean levels for ten State experimental farms were 0.10 mCi 90 Sr/km² and 0.24 pCi 90 Sr/l. In Appendix A the country mean level (area-weighted) is estimated to be 0.10 mCi 90 Sr/km² for a mean precipitation of 523 mm (area-weighted), i.e. a quarter of the fall-out in 1975.

Fig. 4.1.1. State experimental farms in Denmark.

A comparison between the amounts of precipitation found in the rain gauges used by the Danish Meteorological Institute⁹⁾ and the amounts collected in our rain bottles at the same locations in 1976 showed a mean ratio of $1.22 \stackrel{+}{=} 0.04$ (1 SE) between the two sampling systems. The summer of 1976 was drier than $n_{\rm c}$ dl. This resulted in a considerable evaporation from our rain bottles as compared to the rain gauges collected daily by the Danish Meteorological Institute; hence the ratio between the two systems became greater than usual.

Table 4.1.4 shows the presence of 89 Sr in precipitation collected in November and December. The 89 Sr/ 90 Sr ratios were equal to those observed in air (table 3.2.1.2).

4.2. Strontium-90, Caesium-137 and Plutonium in Soil

The aims of soil sampling in 1976 were partly to examine the importance of the application of manure to the fields (with respect to the levels of fall-out nuclides) and partly to repeat soil sampling at a few locations that showed unexpected activity levels in 1975. The results of these studies are given in tables 4.2.1-4.2.11.

The mean ratios between the accumulated activities in cultivated soils from Tylstrup, Askov, Blangstedgård, Abed and Risø with and without manure were for 90 Sr, 0.92 ± 0.09 (1 SE), and for 137 Cs, 1.17 ± 0.10 (mCi km⁻², 0-50 cm, cf. tables 4.2.1, 4.2.3 and 4.2.7 and in Risø Report No. 345^{1}) tables 4.2.6 and 4.2.8). We thus conclude that the application of manure apparently plays no major role for the levels of accumulated 90 Sr and 137 Cs in Danish soil. This is in accordance with the

Depth in cm	Tylstrup	Askov	Blangstedg.	Abed
0-20	29.1	28.6	32.8	26.4
20-30	13.4	9.3	10.5	10.1
30-50	8.2	4.9	3.0	2.1
Σ 0-30	42.5	37,9	43,3	36.5
Σ 0-50	50.7	42.8	46,3	38.6

Table 4.2.1 Strontium-90 in manured, cultivated soil in 1976 (mCi km⁻²)

Tab	le	4	<u>.</u> 2,	2	
				_	

Strontium-90 in manured, cultivated soil in 1976 (pCi kg $^{-1}$)

Depth in cm	Tylstrup	Askow	Blarestedy.	Abed				
0-23	94	119	112	112				
20-30	79	73	69	61				
30-50	24	19	9.9	7.2				
<u> </u>	88	183	97	95				
x 0-59*	62	69	62	57				
"veighted mean								

Table 4.2.3

Caesium-137 in manured, cultivated soil in 1976 (mCi km^{-2})

Depth in cm	Depth in cm Tylstrup		Blangs tedy.	Abed
0-20	77	69	64	41
20-30	25	6.7	7.6	15.4
30-50	4.0	0.9 A	2.2	1.9
Σ 0-30	103	76	71	56
Σ 0-50	107	77	73	58

Table 4.2.4

Caesium-137 in manured, cultivated soil in 1976 (pCi kg⁻¹)

Depth in cm	n can		Blangstedg.	Abed				
0-20	248	288	216	174				
20-30	150	52	50	103				
30-50	11.6	3.5 A	7.3	6.5				
x 0-30*	214	206	159	146				
₩ 0 ~50 *	129	123	98	86				
"weighted mean								

- 39 -

Depth in cm	Tylstrup	Askov	Blangstedg.	Abed				
0-20	13.2	12.6	17.0	16.1				
20-30	12.9	13.9	16.2	9.1				
30-50	12.9	13.4	16.6	14.1				
x 0−30*	13.1	13.0	16.7	13.4				
x 0-50*	13.0	13.2	16.7	13.7				
*weighted mean								

g K kg⁻¹ in manured, cultivated soil in 1976

Table 4.2.6

Strontium-90, Caesium-137 and Potassium-40 in uncultivated soil collected at Tystofte and Jyndevad in 1976

	[Jyndevad			Tystofte					
	40 SE 201 K2	⁹⁰ sr půt kg ⁻¹	¹³⁷ Cs mC1 km ⁻²	137 _{Cs pCs kg} -1	⁴⁰ x y kg ⁻¹	90Sr mCs km ⁻²	*Osr pCi kg*1	137 _{CS III} CL km ⁻²	137Cs pC1 kg ⁻¹	40 x g kg -1	
10	43.8	117	91	449	10.1	20.9	144	49.9	339	15.6	
11+20	14.*	84	32.6	140	9,9	11.4	80	12.6	••	14.9	
20-30	13.0	68	5.*	29	10.4	4.3	32	0.9	6.7	16.5	
10450	4.3	25	2.0 A	5.2 A	10.6	2.0	7.0	8.D.L	B.D.L	16.4	
.+20	10,1		124	1		32.3		61			
-).	52.3		136			34.6		62			
Q=50	n1.6		1.1.2			30.6		62			
¥ 0-20*		:03		330	10.0		112		215	14.3	
5 0+JL*		•1		224	19.1		87		148	14.4	
x 0+50+		65		130	10.3		55		••	16.4	
freighte	d mean			••••••••••••••••••••••••••••••••••••••	.		·····		••••••••••••••••••••••••••••••••••••••	•	

Table 4.2.7

Strontium-90 and Caesium-137 in cultivated soil from Risø and Ledreborg, 1976 (mCi km⁻²)

Depth		Ri	5ø		Ledro	eborg	
in cm	culti	vated	culti	vated*	cultivated*		
	90 _{Sr}	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ sr	¹³⁷ Cs	
0-20	23.8	44.2	30.1	60.0	36.2	72	
20-30	9.5	11.9	7.4	4.0	16.7	16.5	
30-50	4.3	3.8	1.9	1.9	4.3	1.7	
Σ 0-30	33.4	56.2	37.5	64.0	52.9	89	
£ 0-50	37.7	60.0	39.4	65.9	57.2	90	
*manured							

- 40 -

Table 4.2.8

Strontium-90 and Caesium-137 in cultivated soil from Risø and Ledreborg, 1976 (pCi kg⁻¹)

Depth		Ri	isø		Ledr	eborg	
in cm	culti	vated	culti	vated*	cultivated*		
	90 _{Sr}	137 _{Cs}	90 _{Sr}	¹³⁷ Cs	90 _{Sr}	¹³⁷ Cs	
0-20	94	174	81	161	105	72	
20-30	62	78	48	26	84	16.5	
30-50	14.0	12.2	6.3	6.6	12.3	1.7	
x 0-30**	82	138	71	122	98	89	
x 0-50**	53	84	48	80	64	90	
<pre>* manured **weighted</pre>	i mean			.			

Table 4.2.9

g K kg⁻¹ cultivated soil from Risø and Ledreborg, 1976

Depth	RI	5ø	Ledreborg
III CM	cultivated	cultivated*	cultivated*
0-20	19.3	17.2	17.1
20-30	18.6	17.1	18.3
30-50	18.2	16.3	19.1
x 0-30**	19.0	17.2	17.6
x 0-50**	18.7	16.9	18.2
<pre>* manured **weighted</pre>	d mean	·	

Table 4.2.10

The ratio $^{137}Cs/^{90}Sr$ in manured, cultivated soil in 1976 (from tables 4.2.1 and 4.2.3)

Depth in cm	Tylstrup	Askov	Blangs tedgård	Abed	Mean	SD	SE
0-20	2.65	2.41	1.95	1.55	2.14	0.43	0.24
20-30	1.87	0.72	0.72	1.52	1.21	0.58	0.29
30-50	0,49	0.18	0.73	0.90	0.58	0.31	0.16
x 0-30	2.42	2.01	1.64	1.53	1.90	0.40	0.20
x 0-50	2.11	1.80	1.58	1.50	1.75	0.27	0,14

- 41 -

Table 4.2.11

The ratio ¹³⁷Cs/⁹⁰Sr in soil in 1976

Depth in cm	Jyndevad uncultivated	Tystofte uncultivated	Risø cultivated	Risø cultivated*	Ledreborg cultivated*
0-10	3.82	2.33			
0-20			1.86	1.99	1.99
10-20	2.22	1.11			
20-30	0.43	0.21	1.25	0.54	0.99
30-50	0.22	-	0.88	1.00	0.40
x 0-20	3.22	1.89			
x 0-30	2.49	1.69	1.68	1.71	1.68
x 0-50	2.14	1.61	1.59	1.67	1.57
*manured	L				

$\frac{\text{Table 4.2.12}}{\text{Plutonium in uncultivated soil collected in Danish experimental farms in 1975}} (mCi \frac{239,240}{\text{Pu km}^{-2}})$

	Tylstrup	Studs- gård	Askov	Blang- stedgård	Tystofte	Ledre- borg	Abed	Akir- keby	Mean	SD	SE
0-10 cm	1.52	1.29	1.33	0.69	1.15	0.60	1.10	1.80	1.19	0.40	0.14
10-20 cm	0.16	0.25	0,52	0.55	0.46	0.34	0.16	0.24	0.34	0.16	0.06
20-30 cm	-	0.03	0.16	0.13	0.05	0.22	0.30	0.09	0.14	0.10	0.04
30-50 cm	Analyses differen	of 50 g it from a	, sample ero act	s did not ivity	show Pu le	evels sig	nifican	tly			
0-50 cm	1.68	1.57	2.01	1.37	1.66	1.16	1,56	2.21	1.65	0.33	0.12

 $\label{eq:constraint} \frac{Table~4.2.13}{Plutonium~in~cultivated~soil~collected~in~Danish~experimental farms~in~1975} (mCi ^{239,240} Pu~km^{-2})$

	Tylstrup	Studs- gård	Øđum	Askov	St. Jyn- devad	Blang- stedgård	Tystofte	Ledre- borg	Abed	Akis- keby	Mean	\$D	SE
0-20 ся	0.32	1.78	0.98	1.47	1,75	0.76	0.88	0,38	0.34	1.00	0.97	0,55	0.17
20-30 cm	0.07	0.09	0.11	0.10	-	0.22	0.60	0.11	0.09	0.17	0.17	0,17	0,05
30-50 cm	Analysis from zer	of 50	y sampi ty	es did	not show F	Pu levels s	ignificant	ly diffe	rent				
0-50 cm	0.39	1.87	1.09	1.57	1.75	0.98	1,48	0,49	0.43	1,17	1.12	0.55	0,17
Cultivat Signific	ed soils s ant (p < 0	nowed a :	iover ²	39,240 _p	u content	than uncul	tivated Sc	oils, The	differ	ence vai	proba	bly	

estimates in 1975 (Risø Report No. 345^{1}) table 4.2.20), which indicated that the amounts of 90Sr and 137Cs removed by crops and later returned to the fields as manure were in the order of 5% of the deposit.

From table 4.2.6 and from Risø Report No. $345^{1)}$ it appears that the 1975 samples from Jyndevad were atypical. Especially the 90Sr 1975 levels were anomalously high in the deeper layers. On the other hand, the 137Cs seemed to have been underestimated in 1975. Table 4.2.7 shows that the 1976 samples of cultivated soils from Risø and Ledreborg contained more 90Sr and 137Cs than the 1975 samples, which were anomalously low (cf. in Risø Report No. $345^{1)}$ tables 4.2.6, 4.2.8, 4.2.13 and 4.2.15). We conclude that the few samples found in the 1975 material that deviated from the expected fall-out levels were atypical, because a repeated sampling at these locations in 1976 gave results in agreement with expectations based on earlier years' sampling at these locations. The extremely high levels found in the 1975 ødum samples were not further investigated in the 1976 studies, but will be examined later in a special study.

The 1975 soil samples were used for a study of 239,240 Pu in Danish soils. The analysis was performed on 10 g of ashed soil by the classical Pu-analysis method described by TALVITE¹⁹⁾. Most determinations were carried out as double or triple analyses. Plutonium concentrations below 30 cm were generally so low that the analyses were performed on 50 g aliquots. From tables 4.2.12 - 4.2.14 we conclude that the total accumulated 239,240 Pu in Danish uncultivated soil was 1.7 ± 0.1 (1 SE) mCi km⁻² in 1975; 239,240 Pu/⁹⁰Sr = 0.032 ± 0.002 (1 SE) and 239,240 Pu/¹³⁷Cs

	Tylstrup	Studs- gård	ødun	Askov	St. Jyn- devad	Blang- stedgård	Tystofte	Ledre- borg	Abed	Âkir- keby	Mean	SD	SE
0-10 cm	1.63	1.59	2.7	2.15	2,09	1.68	1.95	1.43	3.67	2,86	2,18	0.71	0.22
10-20 cm	2.00	3.01	2.3	1.68	1.88	1.31	2.80	1.36	0.44	1.04	1.78	0.79	0.25
20-30 cm	- 1	0.88	2.0	0.86	6,42	3.38	0.68	3.24	2.48	1,70	2.18	1.80	0.60
30-50 cm	-	-	2.2	-	-	-	-	-	-	-		-] -
0-50 cm	1.78	1.68	2.30	1.64	3,85	1.81	1.07	1.57	2.15	2,30	2.10	0.67	0.21
No signif: cultivated	icant varia d and uncul	tion cou tivated	ald be soils.	found :	in the ²³⁹	,240 _{Pu/} 137	S ratios v	rith samp	ling de	pth, or	betwee	en	·

Table 4.2.14 239,240 $p_U/137_{CS} \times 100$ in uncultivated soil cted at Danish experimental farms in 1975 (cf. Riné Report No. 345, table 4.2

<u>Table 4.2.15</u> 239,240pu/¹³⁷Cs x 100 in cultivated soil collected at Danish experimental farms in 1975 (cf. Riss Report No. 345, table 4.2.8)

	Tylstrup	Studs- gård	9dus	Askav	St. Jyn- devad	Blang- stedyård	Tystafte	Ledre- borg	Abed	Akir- kaby	Hean	SD	SE
0-20 сла 20-30 сла	0.44 0.27	2.12 0.76	1.56 0.80	2.13 0.89	2,30	2,24 1,79	1,47 3.82	0.84 6.11	0.65 0.75	1.92 1.42	1.57	0.70 1.91	0.22 0.64
0-50 ств	0.53	1.87	1.68	1.92	2.16	2.06	1.05	1.04	1.13	1.95	1.62	0.53	0.17

= 0.021 \pm 0.002. These ratios are compatible with other findings assuming a ^{239,240}Pu/⁹⁰Sr ratio of 0.02 in air²¹, and thus of 0.028 in soil in 1975. Cultivated soil probably contained less ^{239,240}Pu than uncultivated soil, the mean ratio between the activity contents of the two soils being 0.6 \pm 0.1 (1 SE). The ^{239,240}Pu activity showed the same vertical distribution as ¹³⁷Cs in the soil column, even in the case of an atypical ¹³⁷Cs distribution as found in Ødum (table 4.2.14).

4.3. Strontium-90 in Ground Water

As in previous years, ground water was collected in March from the nine locations selected by the Geological Survey of Denmark.

	⁹⁰ Sr fCi 1 ⁻¹	g Ca 1 ⁻¹						
Hvidsten	3	0.0708						
Feldbak	18	0.0259						
Rømø	15 A	0.0281						
Rønne New*	19	0,0050						
Rønne Old	2 A	0.0237						
Hasselø	3	0.173						
Fåretofte	B.D.L	0,0918						
Kalundborg	7	0,0823						
Ravnholt	B.D.L	0.0719						
Fredericia	8	0.0708						
Исал	194	0.0643						
Median	5	0,0708						
*collected in June.								

Table 4.3.1

Strontium-90 in ground water collected in March 1976

Fig. 4.3.1. Ground-water sampling locations in Denmark.

Figure 4.3.1 shows the sample locations and table 4.3.1 the results of the 90Sr analyses (cf. also 5.8.4).

The median level of 90Sr in 1976 was a third of that found in 1975 but nearly equal to the values observed in 1973 and 1974. Figure 4.3.2 shows the median levels in Danish ground water since 1961.

As appears from fig. 4.3.3, the ground water from Feldbak had showed no decreasing tendency by March 1976, but the March 1977 level were lower than both 1975 and 1976.

Fig. 4.3.3. Strontium-90 in ground water at Feldbak, 1961-76.

- 45

5. RADIOSTRONTIUM AND RADIOCAESIUM IN DANISH FOOD IN 1976

5.1. Strontium-90 and Caesium-137 in Dried Milk from the Entire Country

As in previous years, monthly samples of dried milk were collected from seven locations in Denmark (cf. fig. 5.1.1) but the analyses for 90 Sr and 137 Cs were performed on pooled quarterly samples.

Table 5.1.1 shows the results of the 90Sr determinations and table 5.1.2 the analysis of variance of the results. As in

Month	Hjørring	Århus	Videbæk	Åbenrå	Odense	Ringsted	Lolland-Falster Møn	Mean
Jan Feb March	5.2	4.8	6.6	5.5	3.4	3.9	2.2	4.5
April May June	4.8	4.3	5.5	4.2	2.8	2.8	1.7	3.7
July Aug Sept	3.2	3.0	4.1	2.8	1.31 A	1.23 A	2.3 A	2.6
Oct	3.4	3.7	4.0	3,1	1,83	2.1	1.51	2.8
Nov	3,2	3.0	2.3	4.4	1.84	2.1	1.75	2.7
Dec	2.0	2.5	3.7	3,1	2,8	1.39	1.02 B	2.4
Mean	4.0	3.8	4.9	4.0	2.4	2.4	1.91	3.4
As 1 1 produc	litre of mi ced in 1976	llk cont 5 was 4,	tains 1.2 .1 pCi 1 ⁻¹	g Ca, th	ne mean ⁹	⁰ Sr conter	nt in Danish milk	

<u>Table 5.1.1</u> Strontium-90 (pCi (g Ca)⁻¹) in Danish dried milk in 1976

recent years the time variation was significant for S.U.; the levels in the first quarter of the year were the highest. The S.U. mean level in 1976 was 3.4 pCi ⁹⁰Sr/g Ca, i.e. 0.8 times the 1975 mean.

As previously, milk from eastern Denmark showed significantly lower levels than that from Jutland.

Table 5.1.3 shows the results of the 137Cs determinations and table 5.1.4 the analysis of variance of the results. The M.U. mean level in 1976 was 2.6 pCi 137 Cs/g K or 0.7 times the 1975 level.

Figures 5.1.2 - 5.1.5 show the S.U. and M.U. levels in dried milk compared with the predicted values (cf. Appendix C).

(from table 5.1.1)						
Variation	SSD	f	s ²	v ²	P	
Between locations	3.095	6	0.516	13.522	> 99.951	
Between guarters	1.753	3	0.584	15.316	> 99.951	
Remainder	0.687	18	0.038			

Table 5.1.2 Analysis of variance of $\ln pCi = 90$ Sr (g Ca)⁻¹ in dried milk in 1976

ween quarters	1.753	3	0.584	15.316	> 99
mainder	0.687	18	0.038		

Table 5.1.3. Caesium-137 (pCi $(g K)^{-1}$) in Danish dried milk in 1976

Month	Hjørring	Århus	Videbæk	Åbenrå	Odense	Ringsted	Lolland-Falster Møn	Mean
Jan Feb March	3.0	3.2	3.8	4.2	2.1	2.1	2.1	2,8
April May June	3.4	2.9	3.5	3.0	1.2	3.8	0.8 A	2.7
July Aug Sept	3.6	3.6	5,4	3.3	0.7 B	1.5 A	1.2 A	2.8
Oct Nov Dec	2.7	2.3	2.2	3.5	0.8 A	1.7	1,2:0,3	2.1
Mean	3.2	3.0	3.7	3.5	1.2	2.3	1.2	2,6
As 1 I milk i	litre of mi In 1976 was	lk cont estima	ains appr Ited at 4.	юх. 1.66 З рСі 1	g K, th 1	e mean ¹³⁷	Cs content in Dan	ish

Fig. 5.1.1. Dried milk factories in Denmark.

Table 5.1.4

Analysis of variance of $\ln \frac{137}{\text{Cs}}$ pCi (g K)⁻¹ in Danish dried milk 1976 (from table 5.1.3)

Variation	SSD	f	s ²	v ²	P
Between locations	6.581	6	1.097	12.476	>99.951
Between quarters	0.403	3	0.134	1.527	-
Remainder	1.582	18	880.0		

Fig. 5.1.2. A comparison between observed and calculated (curve, cf. appendix C) S.U.-levels in dried milk from the Islands.

Fig. 5.1.4. A comparison between observed and calculated (curve, cf. appendix C) pCi 137 Cs/gK levels in dried milk from the Islands.

from Jutland.

5.2. Strontium-90 and Caesium-137 in Fresh Milk from the Entire Country

The samples of fresh milk were collected in the eight zones and in Copenhagen (cf. fig. 5.2.1) in connection with the totaldiet collection (cf. 5.7).

		Strontium-90 and	i Caesium-137 in	fresh milk in 1976		
		June 1976		Decembe	r 1976	
Zone	$pCi^{90}sr (g Ca)^{-1}$	pCi ¹³⁷ Cs (g K) ⁻¹	pCi 137Cs 1-1	$pCi \stackrel{90}{=} Sr (g Ca)^{-1}$	рСі ¹³⁷ Св (g К) ⁻¹	pCi ¹³⁷ Cs 1 ⁻¹
I: North Jutland	4.4:0.3	3.6	6.2	3.3	1.93	3.1
II: East Jutland	4.2:0.2	2.3 A	3.7 A	2.9	1.45	2.3
III: West Jutland	4.4:0.0	3.0	4.9	3.7	2,21	3.7
IV: South Jutland	2,9:0,2	2.2 A	3.4 A	2.6 A	1.54	2.5
V: Funen	2.6:0.2	2.4 A	3.8 A	2.6	1.19 B	1.82 8
VI: Zealand	3.0:0.1	1.42 N	2.2 A	2.5	1,98 A	3.2 A
VII: Lolland-Falster	2.1	2.0 A	A 1.C	1.78	1.42 A	2.3 A
VIII:Bornholm	3.7:0.2	1,02 8	1.56 B	3.7	1.79	2.8
Mean	3.4	2.2	3,6	2.9	1.69	1.7
Copenhagen	3.4.0.1	1.72 B	2.7 B	5.0	3,41	5.7
Population-weighted mean	3.6	2.2	3.6	3.5	2.2	3,6
Production-weighted mean	3,8	2.6	4,3	3.0	1.74	2,8
Relative error due to analysis	71					

Table 5.2.1

Fig. 5.2.1. Sample locations for fresh milk, bread and total diet.

Table 5.2.1 shows the results of the determinations of radiostrontium and 137 Cs in consumer milk.

The production-weighted means for 90 Sr and 137 Cs in Danish consumer milk in 1976 collected in June and December were 3.4 S.U. ($\sim 4.1 \text{ pCi} \, ^{90}$ Sr/1) and 2.2 M.U. or 3.6 pCi 137 Cs/1, respectively.

As observed previously (except in 1973), fresh milk showed lower levels of caesium than the corresponding dried milk. Strontium showed slightly heigher levels in fresh milk than in the corresponding dried milk.

5.3. Strontium-90 and Caesium-137 in Grain from the Entire Country

As in previous years, grain samples were obtained from the State experimental farms (cf. fig. 4.1.1). Strontium-90 was determined as previously (Risø Report No. 63^{1}), and 137 Cs was measured on pooled ashed samples by γ -spectrometry on a Gedetector.

Table 5.3.1 shows the measurements of 90 Sr in grain in 1976. According to Appendix B, approx. 2/3 of all rye in Denmark is grown in Jutland and 1/3 in the eastern part of the country. As regards wheat, 4/5 is produced in eastern Denmark and 1/5 in Jutland. In the calculation of the means in tables 5.3.1 and 5.3.4. At Jutland is represented by five rye samples and seven wheat samples, while eastern Denmark contributes nine wheat and four rye samples. Thus the means in table 5.3.1 for wheat are higher than the production-weighted means for the country, while the rye means are perhaps too low. Table 5.3.2 gives the analysis of variance of the S.U. figures and table 5.3.3 that of the pCi 90 Sr/kg grain figures.

Tables 5.3.2 and 5.3.3 show that the variations in S.U. between species and locations were significant. Rye showed the highest S.U. levels and oats and barley the lowest, while the pCi 90 Sr/kg figures were higher in oats than in the other species.

As in previous years, the variation with location was highly significant; the mean pCi 90 Sr/kg level for grain from Jutland was 2.3 times that in eastern Denmark.

Table 5.3.4 shows the measurements of 137 Cs in grain in 1976. The 137 Cs levels in grain from 1976 were 0.55 times the

- 54 -

1	[<u>ab</u>]	le 5.3.	<u> </u>		
Strontium-90	in	Danish	grain	in	1976

	Rye		Barley		Wheat		Oats	
	pCi ⁹⁰ Sr kg ⁻¹	s. u.	pCi ⁹⁰ Sr kg ⁻¹	s.u.	pCi ⁹⁰ Sr kg ⁻¹	s.v.	pCi ⁹⁰ Sr kg ⁻¹	s.u.
Tylstrup	19.6	51	23	45	\$:16.4	s:47	37	32
Studsgård	38	92	24	60	25	01		
Ødun	30	57	7.6	13.5	s: 9.6 v:14,7	s:20 w:47	20	18.3
Askov	w:21	w: 49	21	39	29	62	38	43
St. Jyndevad	34	75	26	45	s:43 v:63	⊀: 74 ₩:121	45	51
Blangstedgård	23	68	8.9	16.6	8.8	30	13.8	13.4
Tystofte	10.8	27	9.4	17.1	s: 7.0 w:11.8	s:18.3 w:32	30	27
Ledreborg	w:15.5	39	8.9	19.6	s:14.4	s:23	37	39
Abed			8.8	17.8	s: 4.8 w: 5.6	s:10.2 w:24	13.8	12.4
Akirkeby	9.3	25	5.3	12.5	s: 8.6 w: 9.0	s:23 w:37	15.5	16.6
Mean	22	54	14.3	29	17.0	43	28	28

Table 5.3.2

Analysis of variance of In S.U. in grain in 1976

SSD	f	s ²	v ²	P
2.386	3	0.795	8.361	> 99.91
9.403	9	1.045	10.984	> 99.951
2.378	25	0.095	0.551	-
1.036	6	0.173		1
	SSD 2.386 9.403 2.378 1.036	SSD f 2.386 3 9.403 9 2.378 25 1.036 6	SSD f s ² 2.386 3 0.795 9.403 9 1.045 2.378 25 0.095 1.036 6 0.173	SSD f s ² v ² 2.386 3 0.795 8.361 9.403 9 1.045 10.984 2.378 25 0.095 0.551 1.036 6 0.173 10.173

(from table 5.3.1)

Table 5.3.3										
Analysis	of	variance of	ln	pCi	⁹⁰ sr	kg ⁻¹	grain	in	1976	
		(fro	m ta	able	5.3.1)				

Variation	SSD	f	s ²	v ²	P
Between species	3.571	3	1,190	10,575	> 99.958
Between locations	11,280	9	1.253	11.133	> 99.95%
Spec. x loc.	2,814	25	0.113	1.714	-
Remainder	0,394	6	0.066		

Table 5.3.4 Caesium-137 in Danish grain in 1976

	Rye		Barley	Barley		Wheat		
	pCi 137Cs kg ⁻¹	M.U.	pCi ¹³⁷ Cs kg ⁺¹	M.U.	pCi 137Cs kg ⁻¹	M.U.	pCi 137Cs kg ⁻¹	N.U.
Jutiand (zones I~IV)	16.0	2.71	6.8	1.26	7.0	1.78	13.0	1.85
The Islands (zones V-VIII)	6.5	1.16	0.86 B	0.22 B	3_0	0.63	6.5	1.21
Mean	11.8	2.02	3.0	0.74	4.8	1.13	9.4	1.53
The number of :	samples from the	variou	s species and ar	eas of t	the country appea	ars in	table 5.3.1.	L

levels in 1975. The ratio between fall-out in May-August in 1976 and 1975 was 0.2.

We may thus conclude that the 137 Cs grain levels in 1976 were higher than expected from the fall-out in May-August (cf. Appendix C). This may be due to root-uptake of 137 Cs or to dry fall-out not captured by our rain collectors.

Comparing the S.U. levels in grain from the harvest of 1976 with the levels from $1975^{1)}$, we find that the 1976 figures are 0.8 times the 1975 levels.

5.4. Strontium-90 and Caesium-137 in Bread from the Entire Country

In 1976, samples of white bread (75% extraction) and dark rye bread (100% extraction) were collected all over the country in June, and ⁹⁰Sr and ¹³⁷Cs were determined on pooled samples. The ¹³⁷Cs determinations were carried out on the ash by Ge γ spectroscopy.

Tables 5.4.1 and 5.4.2 show the results. It is assumed that 1 kg flour yields approx. 1.35 kg bread¹¹⁾ and that wheat flour of 75% extraction contains 20% of the ⁹⁰Sr and 50% of the ¹³⁷Cs found in wheat grain¹⁾, while rye flour is 100% extraction. Hence we can compare the 1976 bread levels with the 1975 grain levels (cf. table 5.4.3).

Table 5.4.3 shows that the 90 Sr and 137 Cs levels in bread were in reasonable agreement with the above-mentioned model, expect for 90 Sr in rye bread, where the bread levels were lower than expected.

- 56 -

Table 5.4.1

Strontium-90 in Danish bread in	June	13/6
---------------------------------	------	------

_	White b	read	Rye br	ead
Zone	pCi kg ⁻¹	s.v.	pCi kg ⁻¹	s.v.
Jutland (Zones I-IV)	3.2	1.51	11.9	4.0
The Islands (Zones V-VIII)	1.90	0.92	10.9	3.6
Mean	2.6	1.22	11.4	3.8
Copenhagen	2.6	1.46	5.9	2.6
Population-weighted mean	2.7	1.33	10.0	3.5

Table 5.4.2

Caesium-137 in Danish bread in June 1976

	White	bread	Rye b:	read
20ne	pCi kg ⁻¹	M.U.	pCi kg ⁻¹	M.U.
Jutland (Zones I-IV)	4.5 A	2.7 A	13.5	4.3
The Islands (Zones V-VIII)	4.6	2.8	15.4	4.1
Mean	4.6	2.8	14.4	4.2
Copenhagen	4.3	1.7	6.9 B	2.5 B
Population-Weighted mean	4.5	2,5	12.3	3.8

Table 5.4.3

A comparison between 90 sr and 137 Cs levels in bread and grain in 1976

Nuclide	Species	Bread activity in June 1976 calculated as grain in pCi kg ⁻¹ (cf. text)	Activity in grain from harvest 1975 ¹⁾ pCi kg ⁻¹	"Bread"/grain ratio		
90 _{sr}	Wheat 18.2		20	0.9		
	Rye 13.5		20	0.7		
137 _{Cs}	Wheat	12.2	9.3	1.3		
	Rye	16.6	17.0	1.0		

5.5. Strontium-90 and Caesium-137 in Potatoes from the Entire Country

The samples of potatoes were collected in September from ten of the State experimental farms (cf. fig. 4.1.1) and analysed for 90 Sr and 137 Cs (γ -spectroscopy of bulked samples of the ash).

Table 5.5.1 shows the 90 Sr and 137 Cs contents in potatoes. The mean contents for the country were 1.7 pCi 90 Sr/kg or 32 S.U. and 2.2 pCi 137 Cs/kg or 0.6 M.U. The levels were one half to one third of those of 1975.

	pCi ⁹⁰ Sr kg ⁻¹	s.v.	pCi ¹³⁷ Cs kg ⁻¹	M.U.
Tylstru p	1.50±0.03	60 ±7	η	
Studsgård	0.89 A	6.9 A		
Ødum	1.73	30	3.5	0.9
Askov	4.5 ±0.5	71 ±9		
St. Jyndevad	1.41	49	J	
Blangstedgård	0.83±0.13 A	11.5±0.3]	
Tystofte	3.1	35		
Ledreborg	1.29:0.33	33 ±10	0.9 В	0.2 B
Abed	0.94±0.22	15.5±3.1		
Rønne	0.71	10.9	J	
Меал	1.69	32	2.2	0.55

Table 5.5.1

Strontium-90 and Caesium-137 in Danish potatoes in 1976

5.6. Strontium-90 and Caesium-137 in Vegetables and Fruit from the Entire Country

In 1976, as in previous years, vegetables and fruit were collected in the autumn from eight larger provincial towns, one in each of the eight zones. The samples were pooled into two groups one from Jutland and one from East Denmark (table 5.6.1).

Some of the γ -measurements were performed on bulked ash samples representing the entire country (cf. table 5.6.2).

The highest 90Sr levels (pCi/kg) were found in kale, the lowest in apple.

Table 5.6.1 Strontium-90 in vegetables and fruit in 1976

	ظفف	age	Carr	ot !	Kaiw*	·]	Colory :	1001	Bestros	26 €	Leek*	•	Apple	8
	pet kg=1	s.v.	pCi kg ⁼¹	s.u.	püi kg ⁻¹	s.v.	pCi kg ⁻¹	3.U.	pci kg=1	s .v.	pC1 kg ⁻¹	s.v.	pCL kg ⁻¹	s .u.
Jutland	6,7-9_6	11.5-1.1	2.6	0.6	щ	26	16.3	30	19.5	70	•.7	41	1.10	12
The Islands	4.5-0.4	4.0-0.9	4.4	D.0	23	12.1	24	42	7.4	26	8.9	24	0_90	20
Reas	5.6	10.2	1.5	11.2	ю	19.0	20	40	13.4	40	9.3	32	1.00	21

Table 5.6.2 Caesium-17 in vegetables and fruit in 1976

	Cablo		Carro	e	Kale	,	Celery :	00t	Beetro	ot	Leek		Apple	
	pC1 kg ⁻¹	M.U.	pCi kg ⁻¹	H.U.	pCi kg ⁻¹	M.U.	pCi kg ⁻¹	H_17,	pCi kg ⁼¹	M.U.	pCi kg ⁻¹	H.U.	pCi kg ⁼¹	H.U.
Jutland					11.3	3.4	٥	0	6.1	1.12	2.9 A	1.218		
The Islands					٥	٥	a	0	3.2 A	0.81 A	7.0 A	1.144		
Denmark (Hean)	2.11	1.04	0.4 0	0.1 B	5.6	1.7	٥	٥	4.6	0,97	5.0	1.10	1,89	1.52

Tab	le	5.	. 6	.3	
					•

Calculated 90 Sr and 137 Cs mean levels in vegetables in 1976

Daily intake in g	Species	⁹⁰ Sr pCi kg ⁻¹	\$.V.	¹³⁷ Cs pCi kg ⁻¹	M.U.						
50	Leaf vegetables (cabbage, kale)	6.6	10.6	2.2	1.07						
30	Root vegetables (carrot, celery, beet, leek)	9.5	28	2.6	0.61						
40	Pea	(4.5)	(17.6)	(3.7)	(0.7)						
120	Vegetable total	6.6	17.3	2.8	0.83						
The ⁹⁰ 9 The ¹³¹	The ⁹⁰ Sr levels in peas are those found in 1973 The ¹³⁷ Cs levels in peas are those found in 1974										

Table 5.6.3 shows a calculation of the mean contents of 90 Sr and 137 Cs in Danish vegetables collected in 1976 (90 Sr in peas was taken to be the same as the 1973 figures). The levels are the population-weighted means.

The 1976 levels in Danish fruit were calculated from apples and the mean levels in Danish fruit were thus 1.0 pCi 90 Sr/kg and 1.9 pCi 137 Cs/kg.

5.7. Strontium-90 and Caesium-137 in Total Diet from the Entire Country

In 1976 total-food samples representing an average Danish diet according to E. Hoff-Jørgensen (cf. Appendix B in Risø

Report No. 63^{1}) were collected from eight towns each representing one of the eight zones (cf. fig. 5.2.1) and from Copenhagen. The sampling took place as previously in June and December.

Tables 5.7.1 and 5.7.2 show the results. In contrast to previous experience, it was not possible in 1976 to see any significant difference in the diet levels from Jutland and the Islands.

Figures 5.7.1 - 5.7.4 show the zone mean levels (not population-weighted) of S.U. and M.U. in total diet compared with the predicted values (cf. Appendix C).

Stortium-So and Cassium-13. In Dentan (Stat Mat Corrected in Some 1374								
	Ione	pCi ⁹⁰ Sr (g Ca) ⁻¹	pCi ⁹⁰ Sr day ⁻¹	g Ca đay ⁻¹	pCi ¹³⁷ Cs (g R) ⁻¹	pCi ¹³⁷ Cs day ⁻¹		
I:	North Jutland	3.4±0.0	5.3:0.0	1.54:0.00	2.3	8.8		
11.	East Jutland	2.9±0.2	5.3:0.4	1.79:0.00	2.0	8.1		
:111	West Jutland	4.2:0.2	6.5:0.2	3.56:0.01	1.7 A	6.2 A		
IV:	South Jutland	3.0:0.2	5.1:0.3	1.70:0.01	2.2	8.1		
٧:	Funen	3.2:0.0	5.6:0.1	1.74:0.00	2.8	10.1		
VI:	Zealand	3.5±0.0	5.7±0.1	1.63:0.01	1.9	7.8		
VII:	Lolland-Falster	2,9±0.2	4.8:0.3	1.66±0.00	2.7	9.7		
V111:	Bornholm	4,8±0,3	7.910.4	1.66:0.00	2.4	10.4		
Kean		3.5	5.8	1.66	2.2	8,6		
Coper	hagen	3.3±0.1	5.0:0.2	1.50:0.01	2.6	10.8		
Popul mean	lation-weighted	3.4	5.5	1.62	2.2	8.9		
Relat to ar	tive error due malysis	78	68	18				

		Ť	ble 5.7.1	-				
Strontium-90	and Caesium-137	in	Danish to	tal dist	collected	in J	une	1976

	Str	ontium-90 and Caesiu T	m-137 in Danish to	otal diet col	lected in December 1	976
	lone	$pCi = 90 Sr (g Ca)^{-1}$	pCi ⁹⁰ Sr day ⁻¹	g Ca day ⁻¹	pCi ¹³⁷ Cs (g K) ⁻¹	pCi ¹³⁷ Cs day ⁻¹
I:	North Jutland	3.9:0.0	6.2±0.0	1,58:0.02	3,2	12.0
π.	East Jutland	3.7:0.4	5,8±0,6	1,55±0.00	3.3	12.4
	West Jutland	3,8:0,1	5,8:0,3	1.53:0.02	3.8	14,2
IV:	South Jutland	3.5:0.1	5,0:0,2	1,44:0,00	1.5	6.2
V:	Funen	2.7:0.1	4,7:0.2	1,74:0.01	2.3	8.7
¥1:	Zealand	2.7:0.2	4,4±0,4	1,66:0,00	1.6 A	5,8 A
VII:	Lolland-Falster	3.1.0.3	5.8:0.6	1.88:0.02	3.0	14,1
VIII:	Bornholm	3.9:0.2	6.2-0.4	1.60:0.02	1.9	8.2
Mean		3.4	5.5	1.62	2.7	10.2
Coper	ihagen	3.3.0.2	5,1:0,3	1,55:0.01	3.3	12.4
Popul mean	lation-weighten	3,4	5.3	1.59	2.9	11,0
Relat to ar	live error due malysis	98	10 %	18		

<u>Table 5.7.2</u> trontium-90 and Caesium-137 in Danish total diet collected in December 1976

The 1976 levels in total diet were approx. 2/3 of the 1975 levels.

From the total-diet sampling it is possible to estimate the mean levels of 90 Sr and 137Cs in the Danish diet in 1976. For the period January-April 1976, the 90Sr level in the total diet is assumed to have been equal to that measured in December 1975, Risø Report No. 345^{1} . For the period May-September we assume the level to have corresponded to that measured in June 1976. The December 1976 figures are taken to represent the last three months of the year. The population-weighted mean of 90Sr in total-diet samples was 5.2 pCi 90Sr/g Ca in December 1975. Hence the mean content in the total diet in 1976 was 4.0 pCi 90Sr/g Ca or 7 pCi 90Sr/day.

Similarly, the 137 Cs content in the Danish diet in 1976 was estimated to be 10 pCi 137 Cs/day or 2.6 pCi 137 Cs/g K.

Fig. 5.7.1. A comparison between observed (\pm 1 S.E.) and calculated (curve, cf. appendix C) S.U.-levels in total diet from the Islands.

Fig. 5.7.3. A comparison between observed (\pm 1 S.E.) and calculated (curve, cf. appendix C) pCi ¹³⁷Cs/gK levels in total diet from the Islands.

culated (curve, cf. appendix C) pCi ¹³⁷Cs/gK levels in total diet from Jutland.

5.8. Strontium-90 and Caesium-137 in Miscellaneous Foodstuffs

5.8.1. Strontium-90 and Caesium-137 in Meat

Pork and beef samples were collected in Copenhagen in three large shops in June and November. Table 5.8.1 shows the results.

Strontium	Strontium-90 and Caesium-137 in pork and beer from copennagen in 1976									
Species	Unit	June	November	Mean						
Pork	p ^r i ⁹⁰ sr kg ⁻¹	0.39 B	0.26 B	0.32						
	pCi ⁹⁰ sr (g Ca) ⁻¹	5.9 B	1.27 B	3.6						
	pCi ¹³⁷ Cs kg ⁻¹	27	17.6	22						
	pCi ¹³⁷ Cs (g K) ⁻¹	8.4	5.3	6.8						
Beef	pCi ⁹⁰ Sr kg ⁻¹	0.98 A	0,38 B	0.68						
	pCi ⁹⁰ Sr (g Ca) ⁻¹	17.4 A	3,7 B	10.6						
	pCi ¹³⁷ Cs kg ⁻¹	14.9	49	32						
	pCi ¹³⁷ Cs (g K) ⁻¹	4.5	17,8	11.2						

Table 5.8.1

127 in nort and heaf from Comenhagen in 1976

5.8.2. Strontium-90 and Caesium-137 in Fish

Fish samples were collected in inner Danish waters together with the sea-water samples (cf. 7). Table 5.8.2 shows the results. The mean levels in fish from 1976 were 59 pCi 137 Cs/kg (8 samples) and 0.52 pCi 90 Sr/kg (8 samples).

Species	Location		⁹⁰ Sr pCi kg ⁻¹	⁹⁰ Sr pCi (g Ca) ⁻¹	¹³⁷ Cs pCi kg ⁻¹	¹³⁷ Cs pCi (g K) ⁻¹		
Plaice	The north part	Meat	0.1 B	0.1 B	34	10.0		
Tarce	of the Great Belt	Bone	-	0.64	-	-		
Horming	The north part	Meat	0.3 B	0.8 B	54	14.1		
nerring	of the Great Belt	Bone	-	0.08 B	-	-		
Cod	The north part	Meat	0.2 B	0.1 B	50	13.4		
Cou	of the Great Belt	Bone	-	0.35	-	-		
		Meat	1.00 A	1.04 A	82	23		
Flaice	Kødbynavn	Bone	-	0.80	-	-		
	Rødbyhavn	ifeat	0.3 B	0.4 B	64	- 15.0		
Herring	"Fehmern Belt"	Bone	-	0.09 B	-	-		
	Rødbyhavn	Meat	1.79	1.03	67	18.8		
Loa	"Fehmern Belt"	Bone	-	1,12	-	-		
	Perkilde fjord	Meat	0.2 B	0.2 B	76	18.3		
nerring	RUSKING I JOIG	Bone	-	0.1 B	-	-		
		Meat	0,28 A	0.69 A	41	15.1		
Eel	Roskilde fjord	Bone	-	0.59	-	-		

Table 5.8.2 Strontium-90 and Caesium-137 in fish collected in 1976

5.8.3. Strontium-90 and Caesium-137 in Various Foods

As compared with the corresponding sampling in 1974^{1} , the levels were generally lower in 1976.

Table 5.83

Strontium-90 and Caesium-137 in various foods collected in December 1976

	pCi ⁹⁰ Sr kg ⁻¹	s.u.	pCi ¹³⁷ Cs kg ⁻¹	M.U.
Orange	10.7	12,5	2.8	2.1
Banana	0.43 A	15.1 A	1.4 B	0.4 B
Coffee	6.8 A	5.6 A	38	1.8
Tea	8.2	19.4	31	2.1

5.9. Estimate of the Mean Contents of 90 Sr and 137 Cs in the Human Diet in Denmark in 1976

5.9.1. The Annual Quantities

The annual quantities are calculated by multiplication of the daily quantities by 365 (as stated by E. Hoff-Jørgensen, cf. Risø Report No. 63, table $B^{(1)}$).

				Table 5	5.9.	.1		
Estimate	of	the	⁹⁰ sr	content	in	grain	products	consumed
			ນຄ	er capita	a in	1976		

	Fraction	from har	vest	Fraction	from harv		
Thin a		1975			1976	Total	
туре	kg flour	pCi kg ⁻¹	pCi	kg flour	pCi kg ⁻¹	pCi	ρCi
Rye flour (100% ex- traction)	21.9	20	438	7.3	22	161	599
Wheat flour (75% ex- traction)	32.9	4.0	132	10.9	3.4	37	169
Grits	5.5	12.4	68	1.8	11.2	20	88
Total	60.3	10.6	639	20.0	10.9	218	857

5.9.2. Milk and Cream

The 90 Sr and 137 Cs contents per kg milk were calculated from the annual mean values for dried milk (cf. tables 5.1.1 and 5.1.3). 1 kg \sim 1 1 milk, containing approx. 1.2 g Ca and 1.66 g K. Hence the mean contents in milk were 4.1 pCi 90 Sr/kg and 4.3 pCi 137 Cs/kg.

- 65 -

timate	of	the	¹³⁷ Cs	content	in	g ra in	products	consumed
			nei	r canita	in	1976		

Table 5.9.2

	Fraction	from harv	vest	Fraction from harvest			
_		1975			1976	Total	
Туре	kg flour	pCi kg ⁻¹	pCi	kg flour	pCi kg ⁻¹	pCi	pCi
Rye flour (100% ex- traction)	21.9	17	372	7.3	11.8	86	458
Wheat flour (75% ex- traction)	32.9	4.6	151	10.9	2.4	26	177
Grits	5.5	12.3	68	1.8	7.0	12.6	81
Total	60.3	9.8	591	20.0	6.2	125	716

5.9.3. Cheese

Es

One kg of cheese contains approx. 8.5 g Ca and 1.2 g K. The 90 Sr and 137 Cs contents in cheese were calculated from these figures and from the S.U. and M.U. levels in dried milk (cf. tables 5.1.1 and 5.1.3). One kg of cheese appeared to contain 28.9 pCi 90 Sr and 3.1 pCi 137 Cs.

Table 5.9.3

Type of food	Annual quantity in kg	pCi ⁹⁰ Sr per kg	Tot al pCi ⁹⁰ Sr	Percentage of total pCi ⁹⁰ Sr in food
Milk and cream	164.0	4.1	672	27.9
Cheese	9.1	28.9	263	10.9
Grain products	80.3	10.7	859	35.6
Potatoes	73.0	1.7	124	5.2
Vegetables	43,8	6.6	289	12.0
Fruit	51,1	2,3	118	4.9
Meat	54.7	0.4	21.9	0.9
Eggs	10.9	0.9	9.8	0.4
Fish	10,9	0,5	5,4	0.2
Coffee and tea	5.5	7.3	40	1.7
Drinking water	548	0.02	11	0.3
Total			2413	

Estimate of the mean content of 90 Sr in the human diet in Denmark in 1976

The mean calcium intake was estimated at 620 g (approx. 200-250 g Creta praeparata). Hence the 90 Sr/Ca ratio in the total diet was 3.9 S.U. in 1976.

5.9.4. Grain Products

Tables 5.9.1 and 5.9.2 show the estimates of 90 Sr and 137 Cs, respectively, in grain products consumed in 1976. From these tables, the activity levels in grain products were estimated at 10.7 pCi 90 Sr/kg and 8.9 pCi 137 Cs/kg.

Estimate of the mean content of 13'Cs in the human diet in Denmark in 1976								
Type of food	Annual quantity in kg	pCi ¹³⁷ Cs per kg	Total pCi ¹³⁷ Cs	Percentage of total pCi ¹³⁷ Cs in food				
Milk and cream	164.0	4.3	705	17.3				
Cheese	9.1	3.1	12	0.3				
Grain products	80.3	8.9	716	17.6				
Potatoes	73.0	2.2	161	4.0				
Vegetables	43.1	2.8	123	3_0				
Fruit	51.1	2.0	102	2.5				
Meat	54.7	25.3	1384	34.0				
Eg gs	10.9	2.7	29	0.7				
Fish	10.9	59	643	15.8				
Coffee and tea	5.5	35.7	196	4.8				
Drinking water	548	0	o	0				
Total			4071					
As the approximate intake of potassium was 1365 g, the pCi 137 Cs (g K) $^{-1}$ ratio was approx. 3.0. The daily mean intake in 1976 was 11.2 pCi 137 Cs								

Table	5.9.4
117	

5.9.5. Potatoes

per capita.

The figures in table 5.5.1 were used, i.e. 1.7 pCi 90 Sr/kg and 2.2 pCi 137 Cs/kg.

5.9.6. Vegetables

Table 5.6.3 shows the calculation of 90 Sr and 137 Cs in Danish vegetables consumed in 1976. The mean contents were 6.6 pCi 90 Sr/kg and 2.8 pCi 137 Cs/kg.

5.9.7. Pruit

The levels in imported fruit in 1976 are assumed to be equal to the mean levels found in oranges and bananas collected in Copenhagen in 1976, i.e. 5.6 pCi 90 Sr/kg and 2.1 pCi 137 Cs/kg. The mean levels in Danish fruit (apples) in 1976 were 1.0 pCi 90 Sr/kg and 1.3 pCi 137 Cs/kg (cf. 5.6). The daily mean consumption of fruit consisted of 100 g of Danish and 40 g of foreign origin. Hence the mean contents in fruit were 2.3 pCi 90 Sr/kg and 2.0 pCi 137 Cs/kg.

5.9.8. Meat

The annual mean values of 90 Sr and 137 Cs in meat were calculated from table 5.3.1: 0.4 pCi 90 Sr/kg and 25.3 pCi 137 Cs/kg. (In a Danish diet meat comprises 2/3 pork and 1/3 beef).

5.9.9. Fish

The 90 Sr and 137 Cs contents in fish are estimated from table 5.8.2 at 0.5 pCi 90 Sr/kg and 59 pCi 137 Cs/kg.

5.9.10. Eggs

The activity contents in eggs were estimated from a 1975 sample collected in Copenhagen. The levels were 0.9 pCi 90 Sr/kg and 2.7 pCi 137 Cs/kg.

5.9.11. Coffee and Tea

One third of the total consumption consists of tea and two thirds of coffee. The mean contents from table 5.8.3 were used: 7.3 pCi 90 Sr/kg and 35.7 pCi 137 Cs/kg.

5.9.12. Drinking Water

Th: 90 Sr level (population-weighted mean) found in drinking water collected in June 1973 was used as the mean level for drinking water, i.e. 0.02 pCi 90 Sr/l. The 137 Cs content in drinking water is assumed to be negligible, because it cannot be detected even in surface fresh water (cf. 4.4).

5.9.13. Discussion

Tables 5.9.3 and 5.9.4 show the estimates of 90 Sr and 137 Cs in the Danish diet in 1976. The figures should be compared with the levels calculated from the total-diet samples (cf. 5.7). The 90 Sr estimates obtained by the two methods were 3.9 S.U. and 4.0 S.U. respectively, and the 137 Cs estimates were 11 pCi 137 Cs/day and 10 pCi 137 Cs/day. The relative contributions of 90 Sr from milk products (~39%) and from grain (36%) were similar to those in 1975. The contribution from potatoes, other vegetables, and fruit was ~ 22%, i.e. also nearly unchanged from 1975. The relative contribution of 137 Cs in the total diet changed as follows from 1975 to 1976: milk products were a little higher (16 to 18%), grain products decreased from 31 to 18%, and meat was higher (25 to 34%). Fish contributed nearly 16% to the total 137 Cs intake in 1976.

6. STRONTIUM-90 AND CAESIUM-137 IN MAN IN 1976

6.1. Strontium-90 in Human Bone

The collection of human vertebrae from the institutes of forensic medicine in Copenhagen and Århus was continued in 1976. As in the total-food survey (cf. 5.7), the country was divided

Tab	le	5.1	.1
	_	_	_

Zone	Age in days	Month of death	Sex	pCi ⁹⁰ Sr (g Ca) ⁻¹
VI	2	3	F	1.20 A
VI	∿ 30	∿ 5	F	0.85*

Strontium-90 in bone from new-born children (< 1 month old) in 1976

Table 6.1.2

Strontium-90 in bone from infants (\leq 4 years old) in 1976

Zone	Age in years and months	Month of death	Sex	pCi ⁹⁰ Sr (g Ca) ⁻¹				
II	4 m	8	м	1.48				
VI	1 y	4	м	1.00 A				
VI	4 m	9	F	1.01				
IN	4 y	10	F	1.0 B				
VI	∿ 4 m	~ 4	F	1.24*				
VI	∿ 2 m	~ 5	F	1.09*				
VI	∿6 m	~ 6	F	1.15**				
VI	~ 3 m	∿10	F	0.93**				
* 4 sa	* 4 samples combined in one analysis							
**2 sa	**2 samples combined in one analysis							
into eight zones. The samples were divided into five age groups: new-born (< 1 month), infants (1 month-4 years), children and teenagers (5 - 19 years), adults (\leq 29 years) and adults (> 29 years).

Tables 6.1.1 - 6.1 5 show the results for the five groups.

The levels were on the average two-thirds of those in 1975. The highest mean level in vertebrae was found in infants, but the levels in the different age groups were not much different.

Table 6.1.3

Zone	Age in years	Month of death	Sex	pCi ⁹⁰ sr (g Ca) ⁻¹
I	11	7	м	1.12
II	17	9	F	0.71
II	5	8	м	1.40
II	17	8	M	1.26
II	8	9	м	1.04
III	18	6	М	0.91
VI	9	2	F	0.4 B
VI	18	10	F	1.5 B
VI	14	• 2	F	0.86
VI	14	2	F	1.28
VI	19	10	F	0.54
VI	17	2	М	0.94
VI	14	2	м	0.84
VI	19	3	м	0.74
VI	15	10	м	0.93
VI	15	10	м	1.2 B
VI	9	3	м	1.03
VI	15	2	м	1.2 B
VI	18	4	м	0.51
VI	15	5	м	0.66
IV	18	4	м	0.84
VI	9	4	м	1.30 A
VI	17	11	м	0.94
VI	16	11	м	0.90
VI	15	11	м	0.74

Strontium-90 in bone from children and teenagers (\leq 19 years) in 1976

- 71 -

Table 6.1.4

Strontium-90 in vertebrae from adults (< 29 years) in 1976

Zone	Age in years	Month of death	Sex	pCi ⁹⁰ Sr (g Ca) ⁻¹
I	26	8	м	0.66
11	21	9	м	1.17
11	29	9	з	0.82
11	23	9	M	0.77
11	25	6	м	1.02
11	22	8	H	0.87
III	20	6	м	1.08
111	27	8	м	0.79
VI	23	10	F	1.42
VI	23	10	F	1.01
VI	22	9	F	0.70
VI	22	5	F	0.86
VI	22	11	F	0.85 A
VI	23	11	F	0.64
VI	24	1	м	1.16 A
VI	25	1	м	1.99
VI	26	1	м	1.42
VI	26	1	м	1,42
VI	20	3	M	1.62 A
VI	27	2	м	0.88
VI	23	3	м	0.93
VI	25	2	M	1.21
VI	29	2	м	1.29
VI	26	3	м	0.77
VI	24	4	м	0 .98 A

- 72 -

Tab	le	6.	.1	•	5	
	_		-	_		

Zone	Age in years	Month of death	Sex	pCi ⁹⁰ Sr (g Ca) ⁻¹
I	42	9	F	0.80
I	51	6	м	0.78
I	83	3	M	1,43
II	45	5	F	0.51
11	28	8	F	0.77
11	54	6	F	0.81
11	69	8	F	0.8 B
11	63	7	M	1.26
11	37	7	M	2,39
11	47	7	M	1.03
11	44	8	M	1,01
11	68	6	M	1.66
11	30	8	м	0.85
11	41	8	м	0.58
11	96	8	м	1,21
III	67	5	F	0.95
111	40	9	F	1.10
111	31	8	F	1.05
111	57	9	м	1.00
IV	47	7	F	0.92
v	79	7	F	0.90
VI	36	2	F	1.52 A
VI	35	2	F	0.75
v ı	39	2	F	0.65
VI	30	5	F	0.85 A
VI	34	5	F	0.84

Strontium-90 in vertebrae from adults (> 29 years old) in 1976

Table 6.1.6

Strontium-90 (pCi (g Ca) $^{-1}$) in human vertebrae collected in Denmark in 1976

Age group	Number of samples	Number of analysis	Min.	Max.	Median	Mean of analysis	Sample number weighted mean
New-born (< 1 month)	4	2	0.85	1.20	1.03	1.03	G.94
Infants (≤ 4 years)	16	8	0.93	1.49	1.07	1.12	1.13
Children (<u><</u> 19 years)	25	25	0, 39	1,48	0.93	0.95	0.95
Adults (<u><</u> 29 years)	25	25	0.64	1.99	0.98	1.05	1,05
Adults (<u>></u> 30 years)	26	26	0,51	2.39	0.91	1.01	1.01

Fig. 6.1.5. Strontium-90 in vertebrae from adults > 29 y,1961-76.

Fig. 6.1.7. Strontium-90 in human bone from Danish cohorts 1960-67 (Abscissa: age in years. Ordinate: bone level in pCi 90 Sr/g Ca).

- 75 -

6.2. Caesium-137 in the Human Body

Whole-body measurements were initiated at Risø in July 1963 (cf. 2.3 in Risø Report No. 85^{1}). A control group from the Health Physics Department was selected and has since then been measured as far as possible three times a year. Table 6.2 shows the results.

The annual mean value of the control group was 9.5 pCi 137 Cs/g K. As earlier, we shall consider this figure representative of the mean of the Danish population in 1976. The total-body content of 137 Cs in 1976 for a standard man containing 140 g of potassium equals 140 \cdot 9.5 \cdot 10⁻³ nCi = 1.3 nCi 137 Cs, i.e. approx. 80% of the 1975 level.

Figure 6.2 shows the mean M.U. values (with one S.E.) for men and women measured in 1963-1976.

The maximum was reached in August 1964. The figure also shows that the mean level in the male group was approx. 1.3-1.5 times as high as that in the female group.

-	77	-
---	----	---

Table 6.2

		whole-bod	y measi	urements	or caesiu	m=13/and	potassium in 1976	
40.	Sex	Counting date	Age	Height in cm	Weight in kg	M.U. in body	pCi ¹³⁷ Cs kg ⁻¹	g K kg ⁻¹ body weight
— ,		Apr. 1		145		14.6		
4	F	April	52	165	52	10.1	13.8	1.5
7	F	-	48	171	63	(2.5)	(3.0)	1.2
8	м	-	44	193	76	40	70	1.7
10	M	-	24	170	64	14.4	26	1.8
12	M		28	172	74	10.1 2 4 B	18,8	1.9
15	F	-	40	165	52	(2.5)	(3.5)	1.4
18	м	-	37	178	60	6.3	9,9	1.6
20	м	-	43	172	69	7.8	12.8	1.6
22	M	-	53	183	72	2.5 B	4.2 B	1.7
27		_	19	170	63	1.4 8	2.4 B	1.7
33	м	-	44	184	62	12.1	24	2.0
35	м	-	34	181	74	1.7 B	2.8 8	1.6
39	F	-	27	172	64	(2.5)	(3.0)	1.2
43	M	-	54	167	69	21	34	1.6
44	F	-	26	170	54	36 B	52 B	1.4
57	M	-	26	187	78	Э.1 В	5.4 B	1.7
59	м	-	29	190	82	2.0 B	3.3 B	1.7
62	м	-	41	173	71	7.6 A	12.6 A	1,7
2	F	Aug	27	165	52	9.1	15.0	1.7
	r M	_	47	171	63	9.1 A	14.2 A 38	1.6
10	M	_	23	171	63	12.3	24	2.0
19	м	-	33	174	69	10.3	19.4	1.9
20	M	-	43	172	69	13.4	22	1.6
22	и	-	52	183	72	11.9	23	1:9
23		-	45	192	76	2.7 B	6.7 B	1.0
26	*	-	36	160	54	18,3	24	1.3
30	н	•	30	168	60	9.7	17.8	1.8
32	8	-	47	157	62	16.4	26	1.6
33	M	-	44	184	62	20	57	2.0
41	R		54	167	6.9	7.2 8	33 13.6 A	1.9
44	7	-	26	170	53	15.5	23	1.5
48	7	-	39	162	50	12.0	17.7	1.5
50	M	•	28	169	67	36	60	1.0
51	к	-	44	175	89	16.2	27	1.9
60	,	-	30	164	83	16.7	21	1.3
61	7	-	32	158	43	17.0	26	1.5
62	M	-	40	173	68	12.0	21	1.6
		Dec	20	165	52	(2.5)	(3.5)	1.4
	7 H	-	44	193	79	(2.5)	(4.5)	1.0
10	M	-	24	171	63	(2.5)	(3.0)	1.5
12	м	-	38	170	61	(2.5)	(4.2)	1.7
19	М	-	33	174	71	(2.5)	(4,5)	1.0
20			44	1.72	69 72	(2.5)	(4.0) (4.5)	1.₽
23	R R	-	46	192	86	(2.5)	(4.0)	1.6
24	н	-	45	170	61	(2.5)	(3.0)	1.5
25	r	•	34	167	56	34	41	1.2
30	н -		30	368	61	(2.5)	(3.0)	1.2
34	й		36	177	70	(2,5)	(4.0)	1,6
35	И	-	35	381	76	(2.5)	(4.2)	1.7
39	r	-	27	172	66	(2.5)	(3.5)	1.4
43	И	•	59	167	69	(2.5)	(4.0)	1,6
51			50	167	50	(2.5)	(3.5)	0.9
54		•	36	163	62	(2.5)	(2.5)	1.0
57	м	-	27	107	80	(2.5)	(4,5)	1,0
59	н	-	29	190		(2.5)	(4.0)	1.6
61	7		33	158	44	(2.5)	(3,2)	1,3
L.,		L		100		B / . C	4.0 B	
Fi au		bradista -			a hal-mu A	etection 1	imit. They ware -	nticated at

Figures in brackyts relate to results below detection half of detection limit.

Fig. 6.2. A comparison between observed (± 1 S.E.) and calculated (curve, cf. appendix C) pCi 137 Cs/gK levels in wholebody from the Islands.

7. STRONTIUM-90 AND CAESIUM-137 IN SEAWATER IN 1976

As in previous years, seawater samples were collected by M/S Fyrholm in the summer and late autumn from inner Danish Waters (cf. table 7.1 and figs. 7.1 and 7.2). Furthermore, seawater samples were collected at Barsebäck in the Sound (table 7.2), and at Ringhals in the Kattegat (table 7.3). The DANA took samples in the North Sea and the Skagerak in February and in June (table 7.4).

In Risø Report No. $305^{1)}$ it was suggested that the increasing 90Sr and 137Cs levels observed in 1973 in inner Danish waters were due to contamination from inflow of water from the North Sea contaminated with 137Cs and 90Sr from nuclear plants in the UK and France.

In accordance with this hypothesis, the ⁹⁰Sr concentration increased especially in seawater of high salinity as shown in the following regression equations:

pCi 90 Sr 1⁻¹ = 0.94 - 0.018 o/oo (1967-71) pCi 90 Sr 1⁻¹ = 0.97 - 0.020 o/oo (1972) pCi 90 Sr 1⁻¹ = 0.95 - 0.014 o/oo (1973) pCi 90 Sr 1⁻¹ = 0.93 - 0.010 o/oo (1974) pCi 90 Sr 1⁻¹ = 0.79 - 0.006 o/oo (1975) pCi 90 Sr 1⁻¹ = 0.71 - 0.002 o/oo (1976)

(The regression analysis showed significant or probably significant regression in all cases except in 1973, 1975 and 1976).

Table	7.1

Strontium-90 in sea water collected around Tealand in June and November 1976

	Post	t 100	June				November			
	N	E	depth in m	9°sr pCi 1 ⁻¹	Salinity 0/00	137 _{C8} pCi 1 ⁻¹	desth in m	30 ₅₁ 9Ci 1-1	Salinity 0/00	137 _{CS} pCi 1 ⁻¹
Kullen	56025.	12925.	o	0.64	10.5	0.82	G		29.9	1.25
-			22		31.2	1.02	23	0.49	34.3	1.38
Hesselø	56 ⁰ 10*	11 ⁰ 47'	٥	0_70	18.2	0.77	٥	0.68	23.6	1.18
-			22	0.43	33.4	0.96	25		29.3	1.67
Kattegat SW	56 ⁰ 07*	11 °10'	٥	0.66	15.1	0.87				
-			36		33.0	0.94				
Asnæs reef	55°36'	10 ⁰ 47'	٥		18.0	0.95	٥	0.68	24.3	1.16
• •			46	0.52	32.1	1.24	42		30.7	1.38
Halskov reef	55 ⁰ 20'	11 ⁰ 02'	•		14.6	0.88	đ	0.75	25.8	0.94
			45		32.0	1.29	49	0.66	29.3	1.31
Langeland belt	54 ⁰ 52*	10 ⁰ 50 *	٥		12.6	0.80	0	lost	25.5	0.96
			47		30.2	1.51	50	0.83	33.7	1.05
Fehmern belt	54 ⁰ 36*	11005'	U		10.3	0.79	ð	0.75	19.9	0.80
			30		28.9	a .89	24	lost	24.5	1.56
Gedser reef	54 ⁰ 28'	12013.	0		9.8	0.61	0	0.88	13.9	0.46
• •			26	0.62	17.8	0_81	23		31.6	0.94
Apen	54 ⁰ 57*	12 ⁰ 417	0	0.68	0. 1	9.72				
-			20		13.4	0.80	20	0,80	lost	1.03
The Sound - south	55°25'	120 39.	0	0.67	7.9	0.55	0		25.7	0.62
			12		9.1	0.55	12	0,66	21.8	1.08
The Sound - north A	55°48'	120 44 *	0	0.46	19.9	0.94	0		11.7	0.53
			20		35.4	0.74	19	0.59	31.5	1,27
The Sound - porth B	55°59'	12°42'	0		19.2	0.99	٥	0.66	22.9	0.80
			27	0.47	32.3	1.20	27	0.54	32.7	1,32
Rean			Surface	0.64	14.4	0.81	Surface	0.71	22.3	0.67
šD				0.09	4.5	0 .13		0.08	5.6	0.28
SE		· · ·	L	0.04	1.3	0.04		0.03	1.8	0.09
Rean			Bottom	0.51	27.3	0.99	Bottom	0.65	29.9	1.27
SD				0.08	0.0	0.26		0.13	4.0	0,23
SE				0.04	2.5	0.08		0.05	1.3	0.07

Table	7	.2	
			ł

Strontium-90 and Caesium-137 in sea water collected in the Sound (Barsebäck) in 1976

Pos	ition			June	December			
N	E	depth in m	⁹⁰ sr pCi 1 ⁻¹	¹³⁷ Cs pCi 1 ⁻¹	Salinity 5/00	depth in m	¹³⁷ Cs pCi 1 ⁻¹	Salinity 0/00
55 ⁰ 42'08"	12 ⁰ 54'	0	0.55	0.71	19.1	0	0.69	11.8
-*-	*-	14.5	0.51	1.03	24.1	14	1.13	18.8
55 ⁰ 47'05"	12 ⁰ 51'07"	0	0.63	1.22	19.9	0	0 .8 1	lost
-*-	_ * _	16	0.59	1.13	26.0	15	1.23	27.7
Mean		Surface	0.59	0.97	19.5	Surface	0.75	11.8
SD			0.06	0.36	0.6		0.08	
SE			0.04	0.26	r .4		0.06	
Mean		Bottom	0.55	1.08	25.0	Bottom	1.18	23.2
SD			0.06	0.07	1.3		0.07	6.3
SE			0.04	0.05	1.0		0.05	4.4

Table 7.3

Strontium-90 and Caesium-137 in sea water collected at Ringhals in July 1976

Posi N	tion E	depth in m	⁹⁰ Sr pCi 1 ⁻¹	¹³⁷ Cs pCi 1 ⁻¹	Salinity o/oo
57 ⁰ 16 '05"	12 ⁰ 06'	0	0,71	0.90	20.7
- " -	_ " _	15	0,65	1.05	35.9
57 ⁰ 13'03"	12 ⁰ 03'04"	0	0.71	0.91	28.3
- " -	- " -	24	0,84	1.16	31.6
57 ⁰ 14'	11 ⁰ 53'06"	0	0.68	0.96	10.7
- * -	- * -	74	0.93	0.90	33.2
Mean	i	Surface	0.70	0.92	19.9
S.D.			0.02	د ۵٫۵	8.8
S.E.			0,01	0.02	5.1
Mean		Bottom	0.81	1,04	33.6
S.D.			0,14	0.13	2.2
S.E.			0,08	0.08	1.2

Table 7.4

Position	Date	90 _{Sr pCi 1} ⁻¹	¹³⁷ Cs pCi 1 ⁻¹	Salinity o/oo
57 ⁰ 30'N 08 ⁰ 0	0'E Feb 2	0.44	0.77	34.0
61 ⁰ 03'N 01 ⁰ 0	5'W -	0.12	0.25	34.9
00 ⁰ 4 א' 59 ⁰ 32	4'E -	0.32	1.64	34.6
59 ⁰ 21'N 02 ⁰ 5	7'E -	0.18	0.57	34.9
54 ⁰ 18'N 07 ⁰ 4	4'E -	0.66	1.14	31.1
55 ⁰ 18'N 05 ⁰ 0	0'E -	0.96	1.78	34.6
59 ⁰ 51 יא 03 ⁰ 2	8'E June 21	0.13	0.50	34.5
56 ⁰ 42'N 06 ⁰ 4	3'E June 18	0.66	1.60	33.2
56 ⁰ 37'N 04 ⁰ 3	5'E June 19	0.44	1.37	34.3
56 ⁰ 15'N 05 ⁰ 3	0'E June 19	0.80	1.32	34.1
56 ⁰ 15'N 07 ⁰ 3	0'E June 17	0.78	1.41	33.7
57 ⁰ 14'N 01 ⁰ 5	4'E June 20	0.43	1,57	35.0
Mean		0.49	1.16	34.1
S.D.		0.28	0.51	1.1
S.E.		0.08	0.15	0.3

Strontium-90 and Caesium-137 in sea water collected at the North Sea in 1976

In analogy with 90 Sr, the following regression equations were found for 137 Cs in inner Danish waters:

pCi	137 _{Cs}	1-1	=	0.80	_	0.004	3 0/00	(1972)
pCi	137 _{Cs}	1-1	=	0.60	+	0.012	0/00	(1973)
pCi	137 _{Cs}	1-1	=	0.54	+	0.018	0/00	(1974)
- pCi	¹³⁷ Cs	1-1	=	0.64	+	0.010	0/00	(1975)
- pCi	¹³⁷ Cs	1-1	=	0.53	+	0.019	0/00	(1976)

(The regression analysis showed a significant regression in 1974 and 1976, probably significant in 1973 and 1975, and insignificant in 1972).

According to the above regression lines, the mean levels in Danish surface waters (16 o/oo salinity) have been relatively constant since 1972. The mean 90 Sr concentration was estimated at 0.70 \pm 0.05 (1SD) pCi 1⁻¹ and the 137 Cs level was 0.80 \pm 0.04 pCi 1⁻¹.

Fig. 7.2. Seawater locations around Zealang.

- 84 -

Fig. 7.5. Concentrations (pCi/l) of ^{137}Cs and ^{90}Sr (italics) in surface sea-water collected in February (+) and June (\bullet) 1976.

8. SPECIAL SURVEYS

8.1. Meteorclogical Mast Experiments

No samples were collected in 1976.

8.2. Fission Product Ratios in Air Samples Collected at Different Heights in the Meteorological Mast

No samples were collected in 1976.

8.3. Human Milk

No human milk samples were collected in 1976.

8.4. Country-wide Measurement of the y-Background in 1976

8.4.1. State Experimental Farms

As in previous years¹⁾, the γ -background was measured at the State experimental farms (cf. fig. 4.1.1). Table 8.4.1.1 shows the results, and table 8.4.1.2 gives the analysis of variance. The variation between locations was highly significant (P > 99.95%). As previously, it was evidently not the fall-out that determined the variation between locations. The mean level in 1976 was lower than the 1975 level.

Fig. 8.4 shows the γ -background since 1962 in four groups of sampling stations. The fact that stations with a low fallout rate and a high clay content in the soil (Abed, Blangstedgård, and Tystofte) show higher γ -levels than stations with a high fall-out rate and a low clay content (but a high sand content) (Studsgård, St. Jyndevand, and Askov) was discussed in Risø Report No. 154¹⁾.

-	8	7	-
---	---	---	---

γ -background at the state experimental farms in 1976 (uR/h)								
	June-July	October	December	Mean				
Tylstrup	5.2	4.7	5.6	5.2				
Studsgård	4.3	4.2	4.4	4.3				
2dum	6.3	5.7	6.0	6.0				
Askov	5.3	5.8	5.3	5.5				
St. Jyndevad	3.8	5.5	4.6	4.6				
Blangstedgård	6.2	5.5	5.8	5.8				
Tystofte	5.8	7.4	7.4	6.9				
Virumgård	5.1	5,5	5.9	5.5				
Ledreborg	5.2	4.0	5.7	5.6				
Abed	5.1	6.4	6.4	6.0				
Tornbygård	(6.4)	6.9	(6.9)	(6.7)				
Mean	(5.3)	5.8	(5.8)	5.6				

Table	8.	4.	1	.1	
	_	_	-	_	-

Table 8.4.1.2

Analysis of variance of the y-background at the state experimental farms in 1976 (from table 8.4.1.1)

Variation	SSD	f	s ²	v ²	2
Between locations	92.948	10	9.295	6.289	> 99.95%
Between months	7.265	2	3.633	2.458	-
Loc. x months	26.602	18	1.478	12.546	> 99.95%
Remainder	17.199	146	0.118		

Fig. 8.4. The y-background at the State experimental farms, 1962-76.

8.4.2. The Ris# Environment

Gamma background measurements were performed in the five zones round Risg. The measurements were carried out at the locations where grass is collected (cf. figs. 3.1.2.1 and 3.1.2.2 (the coloured map)).

Tables 8.4.2.1 and 8.4.2.2 show the results.

At all locations in zone I, especially at the waste treatment station (location 3), the γ -background showed increased levels because of the various radiation sources at the research establishment. The weighted annual mean for zones III-V was 5.9 μ R/h. In zone I the excess activity from the research establishment was $17.8 - 5.9 = 11.9 \mu R/h$ (in 1967; 4.0, in 1968: 3.9, in 1969: 3.3, in 1970: 4.7, in 1971: 1.6, in 1973: 11.5 in 1974: 16.0 and in 1975: 21.2 μ R/h). A man working in the open in the Risø area 40 hours a week for 45 weeks a year would thus get an excess dose of 21 mR/year.

	T	ab le	e 8.4.	.2.	.1		
round	1	in	7000	т	around	Died	

	γ-background (μR/h) in Zone I around Risø in 1976									
Location	Feb 2	July 1	Aug 2	Sept 1	Oct 1	Oct 29	Nov 29	Mean		
1	5.8	5.6	6.1	5.9	6.0	5.9	5.9	5.9		
2	8.0	7.0	6.8	7.3	7.3	6.7	7.9	7.3		
3	78.4	ú6.J	61.0	63.3	26.1	44.5	44.7	54.9		
4	7.4	6.4	6.2	6.6	6.4	6.3	6.4	6.5		
5	14.9	15.5	14.4	15.3	13.3	13.2	13.2	14.3		
Mean	22.9	20.1	18.9	19.7	11.8	15.3	15.6	17.8		

-	89	-
-	93	-

Table 8.4.2.2

*Risø zone	Location	Jan	Feb	July	Aug	0ct	Nov	Mean
II	1		6.6	5.3	5.2	5.1	5.6	5.6
-	2		7.2	6.0	6.0	6.0	6.2	6.3
-	3		6.2	5.0	4.9	4.9	5.2	5.3
-	4		6.6	5.5	5.8	5.7	6.1	5.9
Mean			6.6	5.4	5.5	5.4	5.8	5.7
111	1		7.4	6.3	6.8	6.9	7.2	6.9
-	2		7.0	5.7	5.8	5.7	5.8	6.0
-	3		6.6	5.2	5.3	5.2	5.9	5.6
Mean			7.0	5.7	6.0	5.9	6.3	6.2
IV	1	5.8		4.8		5.4		5.4
-	2	6.8		5.1		5.5		5.8
-	3	6.8		5.0		5.4		5.8
-	4	7.0		5.5		5.3		5.9
-	5	5.4		5.7		5.6		5.6
-	6	6.2		4.5		4.8		5.1
-	7	6.6		5.4		6.0		6.0
Mean		6.4		5,1		5.4		5.6
v	1	6.2		7.2		6.6		6.7
-	2	7.0		6.2		6.4		6.5
-	3	6.0		5.0		5.2		5.4
-	4	6.0		5.3		6.1		5.8
-	5	6.8		5.8		5.7		6.1
-	6	6.6		5.5		6.0		6.0
-	7	6.0		7.0		7.2		6.8
-	8	6.2		5.5		6.4		6.0
-	9	7.0		5.7		6.1		6.3
-	10	6.2		4.9		5.3		5.5
Mean		6.4		5 .8		6.1		6.1
*(cf. col	oured map in	Risø re	eport No	5. 323 ¹⁾).			

 γ -background (μ R/h) in four zones (II-V) around Risø in 1976

8.5. Environmental Surveys at Barsebäck, Ringhals and in other Marine Environments

Sweden is operating nuclear power plants on the Sound at Barsebäck and on the Kattegat at Ringhals. At present two units

are in operation at each site. As both locations are close to Danish waters and fishing grounds, the marine environment around them is monitored by collection of seawater (table 7.2 and 7.3), sediments (8.5.1) and biological samples (8.5.2).

Fig. 8.5.2. Sampling locations for sea-watur (+) bed soil (o), seaanimals (x) and seaplants (a) at Ringhals.

8.5.1. Sediment Samples

The sediments were taken by the HAPS sampler¹⁸ and 3 cm thick sections were analysed to a depth of approx. 15 cm. Anova's (tables 8.5.1.3 and 8.5.1.5) showed that the ¹³⁷Cs levels were similar to those observed in 1975. The vertical distribution sometimes showed a maximum in the 3-6 cm layer, probably an indication of the 1962-63 fall-out peak. The integrated mean levels in the sediments were estimated at approx. 15 mCi km⁻² at Barsebäck (tables 8.5.1.1-8.5.1.2). Sediments from Ringhals (table 8.5.1.4), the Great Belt (table 8.5.1.8) and the North Sea (table 8.5.1.9) showed similar, integrated ¹³⁷Cs levels. A few sediment samples (tables 8.5.1.1, 8.5.1.2 and 8.5.1.7) near Barsebäck contained traces of ⁵⁴Mn, ⁵⁸Co and ⁶⁰Co indicating releases of corrosion products from the plant.

Position	Depth in cm	pCi ¹³⁷ Cs kg ⁻¹	mCi ¹³⁷ Cs km ⁻²	Trac es
55 ⁰ 44'07"N 12 ⁰ 53'01"E	0-3	820	5.8	54 _{Mn}
-**-	3-6	162 A	1.7 A	
- • • -	6-9	130 A	1.0 A	
-••-	9-12	5.D.L	8.D.L	
- * * -	12-15	B.D.L	B.D.L	
	0-15		S 8.5	
55°43'08"N 12°54'04"E	0-3	1091	6.4	
- " " -	3-6	460	4.3	
- " " -	6-9	90	1.2	
- " " -	9-12	107	1.5	
- " " -	12-15	13 B	0.2 B	
	0-15		E 13.6	
55°44'00"N 12°56'02"E	0-3	106	4.1	
- " " -	3-6	82	3.5	
- " - " -	6-8	124	3.3	
	0-8		E 10.9	

Table 8.5.1.1

Caesium-137 in bed soil collected at Barsebäck in June 1976

- 93 -

Table 8.5.1.2

Position	Depth in cm	pCi ¹³⁷ Cs kg ⁻¹	mCi ¹³⁷ Cs km ⁻²	Traces			
55°44'07"N 12°53'01"E	0-3	970	6.2				
	3-6	470	4.8				
	6-9	360	4.7				
- • • -	9-12	84	0.8				
	0-12		2 16.5				
55°43'08"N 12°54'04"E	0-3	1270	8.1	- 58			
	3-6	680	7.2	54 _{Nn} ,			
_ • • _	6-9	330	3.1	• • • Co•			
	9-12	180	1.8				
- " " -	12-15	B.D.L	B.D.L				
	0-15		Σ 20.2				
55 ⁰ 44'00"N 12 ⁰ 56'02"E	0-3	790	2.7				
- •	3-6	940	7.4	60 _{Co}			
- •	6-9	110 A	1.3 A				
. • • .	9-12	75 B	1.0 P				
- " " -	12-15	156	2.2				
	0-15		£ 14.6				
*Reference to table 8.5.1.4							

Caesium-137 in bed soil collected at Barsebäck in December 1976

Table 8.5.1.3

Analysis of variance of ln ¹³⁷Cs mCi km⁻² in bed soil from Barsebäck 1975-1976

Variation	SSD	£	s ²	v ²	P
Between month	3.885	3	1.295	3.583	-
Between depth	14.692	4	3.673	10.163	> 99.91
Between location	0.816	3	0.272	2,442	-
Between month x depth	3.976	11	0,361	3.775	> 97.58
Between depth x location	1.207	7	0.172	1.801	-
Between month x location	0,301	5	0.060	0.629	-
Between month x depth x loc.	1.053	11	0.096		
· · · · · · · · · · · · · · · · · · ·					

94 -

Table	8.5.1.4
-------	---------

Position	Depth in cm	pC1 ¹³⁷ Cs kg ⁻¹	mCi ¹³⁷ Cs km ⁻²
57 ⁰ 15'01"N 12 ⁰ 03'07"E	0-3	159	3.8
-**-	3-6	103	3.7
-**-	6-9	103	3.7
-**-	9-12	36	1.46
-**-	12-13	B.D.L	B.D.L
	0-13		£ 12.7
57 ⁰ 16'05"N 12 ⁰ 06'03"E	0-3	101	3.0
- • • •	3-6	74	2.6
- * * -	6-9	26 B	0.92 B
-**-	9-12	B.D.L	B.D.L
- " " -	12-13	B.D.L	B.D.L
	0-13		Σ 6.5
57 ⁰ 17'01"א 12 ⁰ 07'02"E	0-3	24 B	0.93 B
- • • -	3-6	73 A	2.74 A
- * * -	6-9	48 A	1.70 A
_ * * -	9-12	58 A	1.38 A
	0-12		Σ 6.8
57°13'03"N 12°03'04"E	0-3	250	4.5
- " - " -	3-6	190	6.2
- " " -	6-9	58	1,94
- " " -	9-12	63	2.2
_ " " _	12-13	22 B	0,3 B
	0-13		Σ 15.1

Caesium-137 in be	d soil	collected	at	Ringhals	in	July	1976
-------------------	--------	-----------	----	----------	----	------	------

		1	able	8.5	.1.9	5		
Analysis	o£	vat	i ance	e of	ln	137 _{CI}	mCi	km ⁻²
in be	d se	bil	from	Rin	ghal	ls 197	15-19	76

Variation	SSD	f	s ²	v ²	Р
Between month	0.093	1	0.093	0.552	-
Between depth	1.988	3	0.663	3.943	> 97.51
Between location	3.665	3	1.222	7.270	> 99.51
Between month x depth	đ.087	3	0.029	0.101	-
Between depth x location	0.930	8	0.116	0.404	-
Between month x location	0.327	3	0.109	0.378	-
Between month x depth x loc.	1.441	5	0.288		

Table 8.5.1.6

Caesium-137 in bed soil collected in the Sound in June 1976

Position	Depth in cm	pCi ¹³⁷ Cs kg ⁻¹	mCi ¹³⁷ Cs km ⁻²	Traces
55 ⁰ 59'N 12 ⁰ 42'E	0-3	250	3.6	54
_ * * _	3-6	220	4.1	- Mn
	0.6		Σ 7.7	

Table 8.5.1.7

Zink-65 and Cobalt-60 in bed soil (3-6 cm) collected at Barsebäck in December 1976

Position	Isotope	pCi kg ⁻¹	mCi km ⁻²
55 ⁰ 43'08"N 12 ⁰ 54'04"E	65 _{2n}	865	9,1
- " " -	60 _{Co}	910±30	9,6±0,3

_

-

Table 8.5.1.8

Poisition	Depth in cm	pCi ¹³⁷ Cs kg ⁻¹	mCi ¹³⁷ Cs km ⁻²
55°38'N 10°47'E	0-3	180	4.2
	3-6	139	3.4
	0-6		Σ 8.0
55 ⁰ 13'N 11 ⁰ 06'E	0-3	290	4.3
	3-6	340	5.5
- • • -	6-9	90	1.69
_ • • -	9-10	91	0.33
	0-10		E 11.8

Caesium-137 in bed soil collected in Great Belt in June 1976

Table 8.5.1.9

Caesium-137 in bed soil collected in The North Sea in February 1976

Position	Depth in cm	pCi ¹³⁷ Cs kg ⁻¹	mCi ¹³⁷ Cs km ⁻²
55°18'N 05°00'E	0-3	55	1.71
- • • -	3-6	87	3.8
	0-6		5.5
57°30'N 08°00'E	0-3	108	0.97
	3-6	140	3.4
- " " -	6-9	94	2.6
	0-9		7.0
60°15'N 00°30'E	0-3	200	3.0
- " "	3-6	133	3.2
- • • -	6-9	189	4.8
_ * * _	9-12	170	4.8
	0-12		15.8

8.5.2. Biological Samples

A sample of <u>Fucus vesicolosus</u> collected at Barsebäck in June 1976 contained corrosion products (table 8.5.2.2). The cobalt isotopes 58 Co and 60 Co were the most prominent, but 54 Mn and probably also 65 Zn were detectable too. A sample of Mytilus edulis contained traces of 60 Co (table 8.5.2.1).

The Ringhals samples from July 1976 (Mytilus and Pucus: table 8.5.2.3) also contained corrosion products. The levels did not present any health hazards. The annual dose to a hypothetically critical individual consuming 20 kg of Mytilus flesh annually would be less than 1 o/oo of the background radiation dose, i.e. < 0.1 mrem y^{-1} (wholebody dose), estimated from the present measurement.

Table 8.5.2.1

Caesium-137 in Mytilus Edulis collected at the outlet of Barsebäck in 1976

	¹³⁷ Cs pCi kg ⁻¹	M.9.	Traces
Heat	8.6 A	10.1 A	
Shells	1.5 B	0.2 B	
Total	14.0	19.5	60 _{Co}

Table 8.5.2.2

Radionuclides in Fucus vesicolosus collected at the outlet of Barsebäck June 17, 1976

Isotope	pCi kg ⁻¹ dry	pCi kg ⁻¹ fresh			
137 _{Cs}	220 A	34 A			
58 _{Co}	8700	1330			
54 _{Mn}	880	134			
65 _{2n}	300 B	50 B			
60 _{Co}	3200	490			
Potassium 16.6 g kg ⁻¹ dry					

•	98	-
---	----	---

Table 8.5.2.3

pCi kg ^{~1} fresh weight								
Sample and locations	Sampling date	⁵⁴ m	58 _{C0}	60 _{C0}	65 _{2n}	95 _{2r}	137 _{Cs}	40 _{K g kg} -1
Nytilus Edulis flesh N.E. of Ringhals	July 1 1976	-	310 A	190	300	-	22 A	1.6
Mytilus Edulis shells N.E. of Ringhals	-	-	-	49	-	-	24 A	0.5
Nytilus Edulis flesh at the outlet of Ringhals	-	-	0 11	1020	1250	-	38 A	0.68
Mytilus Edulis shells at the outlet of Ringhals	-	36 A	-	260	80 A	-	-	0.16
			pCi kg ⁻¹ á	iry weigh	t			
Fucus Vesicolosus Ringhals I	July 1 1976	480 A	2200 A	1900	490 B	-	260	17.5
Fucus Vesicolosus Ringhals II	-	1080	3400 A	4700	1200 A	-	270 A	13.2
Fucus Vesicolosus Ringhels III	-	1800	9100	13000	4600	-	160 B	13.9
Activities were corrected to sampling date.								

Table 8.5.2.4

Caesium-137 in bottom animals collected at Ringhals in July 1976

Species		Location	¹³⁷ Cs pCi kg ⁻¹	M.U.	Traces
Mytilus Edulis " "	Flesh Shells	at the outlet	13 B 4 B	5.5 B 6.6 B	⁹⁵ zr ⁹⁵ zr, ⁶⁰ Co
Mytilus Edulis	Flesh Shells	N.E. of the outlet	B.D.L 30 B	B.D.L 19 B	60 _{Со} 54 _{Ил}
Cray fish	Total	at the outlet	240 A	60 A	
Snail	Flesh	at the outlet	43 B	22 B	

L L	6621 AM-17	7 IN LISH COLLECTED AT MIN	mais in July 1976	
Species		Position	¹³⁷ Cs pCi kg ⁻¹	M.U.
Dab	Heat	57 ⁰ 15'01"N 12 ⁰ 03'07"E	46	14.1
-	Total	- • • -	85	11.7
•	Total	-••-	34	12.7
Whiting	Meat	- • • -	61	20
Cod	Heat		58	19.1
Plaice	Meat	-**-	29	8.7
Norway lobster	Heat	-**-	155 A	36 A
Plaice	Heat	57 ⁰ 16'05"N 12 ⁰ 06'03"E	B.D.L	B.D.L
Dab	Meat	- • • •	19.1	5.8

Table 8.5.2.5

Caesium-137 in fish collected at Ringhals in July 1976

8.5.3. Plutonium in 1975 Sediment Samples

Sediments from the 1975 program (cf. Riss Report No. $345^{1)}$, 8.5) were analysed for ^{239,240}Pu. The integrated Pu deposit in the sediments (table 8.5.3) corresponded to the levels in soils

Depth	55 ⁰ 44*N	55°44 'N	55°59'N	57°13'N	57°16'N	57°17'N	55°38'N		
	12°53*E	12°56'E	12°42'E	12°03'E	12°06'E	12°07'E	10°44'E	ž	:1 S.E.
		The Sound		Г т	The Cattegat				
0-3 -	0.53:0.03	0.50:0.02	0.21:0.02	0.77:0.19	0.39:0.03	0,44:0,06	0.31	C.45	0.07
("Pu/Cs")	(0.08)	(0.15)	(0.08)	(0.28)	(0.24)	(0.15)	(0.09)		
	0.87:0.44	0.73:0.12	0.41	0.89:0.24	0.66	0.56:0.10	0.52.0.02	0.59	0.09
J-6 Cm ("Pu/Cs")	(0.16)	(0.08)	(0.08)	(0.21)	(0.18)	(0.26)	(0.13)		
(-)	0.38:0.21	∿ 0	0.50	0.30:0.11	0	0.19:0.03	0.20.0.01	0.23	0.07
("Pu/Cs")	(0.12)	-	(0.16)	(0.11)		(0.18)	(0.17)		
0-12	0.15:0.14	∿ 0	0.52	0.03:0.01	-	~ 0	0,11	0.14	9.08
("Pu/Cs")	(0.08)	-	(0.20)	(0.01)			(0.14)		
	0.07	0.03	0.24:0.03	0.00:0.01	-	-	0.02	0.07	0.04
12-15 cm ("Pu/Cs")	(0.06)	-	(0.06)						
2 0-15 cm	2,00	0.76	1.88	1.99	05	1.18	1.24	1.44	0.19
The error term is 1 S.E. determined from multiple (mostly triplicate) analyses. ${}^{P}u/cs^{n}$: ${}^{233,240}Pu/{}^{137}cs$									

<u>Table 8.5.3</u> 239,240_{Pu mCi km}-2

-

(tables 4.2.12-4.2.15), indicating that nearly all fall-out plutonium in shallow waters, such as the Danish, is found in the the sediments. The 239,240 Pu/ 137 Cs ratios showed that the vertical distributions of Pu and radiocaesium were similar, i.e. exponential with a half-depth of ~4 cm (cf. also the soil observations).

9. CONCLUSION

9.1. Ris# Environmental Monitoring

No radioactive contamination of the environment originating from the operation of the research establishment was ascertained outside Risø in 1976. As in previous years, the variations in contamination level were independent of the distance of the sampling locations from Risø.

9.2. Nuclear-Weapon Debris in Air, Precipitation, Soil, Ground Water, and Surface Water

The mean content of 90 Sr in air collected in 1976 was 0.2 fCi 90 Sr m⁻³, i.e. a quarter of the 1975 level. The average fall-out at the State experimental farms in 1976 was 0.10 mCi 90 Sr km⁻² or a quarter of the 1975 figure, and the mean concentration of 90 Sr in rain water was 0.24 pCi 90 Sr 1⁻¹.

By the end of 1976 the accumulated fall-out was approx. 53 mCi 90 Sr km⁻². The corresponding 137 Cs was estimated at 85 mCi km⁻².

In agreement with the greater precipitation in that part of the country, fall-out levels in Jutland were 15-25% higher than levels found in eastern Denmark.

The median level of 90 Sr in Danish ground water was 5 fCi $90_{\rm Sr}$ 1⁻¹.

9.3. Strontium-90 and Caesium-137 in the Human Diet

The mean level of 90Sr in Danish milk was 3.4 S.U., and the mean content of 137Cs was approx. 4.3 pCi 137Cs 1^{-1} .

The 1976 90 Sr and 137 Cs levels were lower than the levels found in milk produced in 1975.

The 90Sr mean content in grain from the 1976 harvest was 20 pCi 90Sr kg⁻¹. The 137Cs mean content in grain was 7 pCi

 137 Cs kg⁻¹. The ⁹⁰Sr level in grain from the 1976 harvest was nearly equal to the level found in the 1975 harvest, and 137 Cs was half the 1975 level.

The mean contents of 90 Sr and 137 Cs in Danish vegetables collected in 1976 were 7 pCi 90 Sr kg⁻¹ (17 S.U.) and 3 pCi 137 Cs kg⁻¹, respectively, and in fruits 1.0 pCi 90 Sr kg⁻¹ and 1.9 pCi 137 Cs kg⁻¹; potatoes contained 1.7 pCi 90 Sr kg⁻¹ and 2.2 pCi 137 Cs kg⁻¹.

The mean levels of 90 Sr and 137 Cs in total-diet samples collected in 1976 were 4.0 S.U., or 7 pCi 90 Sr day⁻¹ and 10 pCi 137 Cs day⁻¹, respectively. From analyses of the individual diet components, the 90 Sr level in the Danish average diet was estimated to be 3.9 S.U. and the 137 Cs intake to be 11 pCi 137 Cs day⁻¹. The levels of 90 Sr and 137 Cs in the Danish total diet consumed in 1976 were lower than the 1975 levels.

Grain products contributed 36% and milk products 39% to the total 90 Sr intake; 34% of the 137 Cs in the diet originated from meat, 18% from grain products, and 18% from milk products.

Both 90 Sr and 137 Cs diet levels were on the average higher in Jutland than in eastern Denmark.

9.4. Strontium-90 and Caesium-137 in Humans

The ⁹⁰Sr mean content in human bone (vertebrae) collected in 1976 was approx. 1 S.U. in all age groups. The 1976 bone levels were lower than the 1975 levels.

The mean content of 137 Cs in the human body in 1976 was estimated from whole-body countings to be 1.3 nCi (10 pCi 137 Cs/g K), i.e. a little lower than the 1975 level.

9.5. Strontium-90 in Seawater

The mean content of 90 Sr in inner Danish surface water was approx. 0.7 pCi 90 Sr 1⁻¹ in 1976, and the 137 Cs mean level in Danish surface waters in 1976 was 0.8 pCi 1⁻¹, i.e. nearly unchanged from 1975.

9.6. The γ -Background

The average γ -background measured with a NaI crystal at the State experimental farms in 1976 was 5.6 μ R/h.

9.7. Radionuclides in the Marine Environment at Barsebäck and Ringhals

Sea plants (<u>Fucus</u>) and bivalves (<u>Mytilus</u>) collected at Barsebäck and Ringhals in 1976 showed low levels of corrosion products (54 Mn, 58 Co, 60 Co, 65 Zn) originating from the operation of the power plants. The levels did not constitute any health hazards.

9.8. Iodine-131 in Cows' Milk in 1976

The Chinese test explosion on 26 September 1976 resulted in a temporary contamination of cows' milk with 131 I. The estimated dose to an infant thyroid in Denmark from this contamination was 2 mrad.

9.9. Summary

The concentrations of long-lived fall-out nuclides in ground-level air and precipitation collected in 1976 were a quarter of the levels found in 1975.

In milk produced in 1975 the levels were approx. 3/4 of the 1975 levels. In grain from 1976 the ¹³⁷Cs levels were half of those found in 1975 while the ⁹⁰Sr concentrations were nearly unchanged.

The 90 Sr and 137 Cs levels in the total diet consumed in 1976 were approx. 2/3 of the 1975 levels.

The 90 Sr concentrations in human bone were lower in 1976 than in 1975.

ACKBONLEDGENENTS

The authors wish to thank Niss Anna Holm Pedersen, Niss Lone Dyrgaard Jensen, Mrs. Karen Mandrup Jensen, Miss Karen Wie Hielsen, Mrs. Jytte Lene Clausen, Mrs. Ulla Wilhelmsen, Mrs. Anna Madsen, Mrs. Laila Leth, Mrs. Pearl Baade Pedersen, and Mrs. Else Sørensen for their conscientious performance of the analyses. We are grateful to Mr. Peder Kristiansen and Mr. Gunnar Bitsch for collection of the samples and performance of the γ -background measurements.

We are specially indebted to the staffs of the eleven State experimental farms at Tylstrup, #dum, Studsgård, Askov, St. Jyndevad, Blangstedgård, Tystofte, Ledreborg, Virumgård, Abed, and Åkirkeby, who have continued to supply us with a number of the most important samples dealt with in this report. •

Zone	precipitation ia 1976	mCi ⁹⁹ Sr km ⁻² in 1976	Accumulated uCi ⁷⁰ Sr km ⁻² by the end of 1976			
I: N. Jutland II: E. Jutland III: W. Jutland IV: S. Jutland	546	0.107	57			
V: Funen VI: Zealand VII: 'olland-Faister	42 1	0.086	45			
VIII: Bornholm	532	0.107	-			
Arec-weighted mean	523	0.103	53			
The amounts of precipitation were obtained from ref. 9. The ⁹⁰ Sr deposition was estimated from 4.1 and appendix D. It was considered that the amount of precipitation collected by the rain bottles only were 0.82 times that measured by the Reteorological Institute.						

APPENDIX A

Calculated Fall-out in the Eight Zones in 1976
	•			Aug1 -415		3	Lanual antata	Venetable
	zone	Area 16 km ² 15) 1971	Population in thousands 15) 1971	Annual milk production in mega-kg 14) 1971	Annual wheat production in mega-kg 13) 1972	production in mega-kg 13) 1972	production in mega-kg 13) 1972	area in km 13) 1972
I :	N. Jutland	6,171	457	911				
11:	E. Jutland	7,561	\$41	1,250	1.44	166	609	14
111:	W. Jutland	12,104	6 61	926	143	100	807	
IV:	S. Jutland	3,929	239	572				
v:	Funen	3,486	434	393				
v1:	Zealand	7,435	2,146 [#]	395				
VII;	Lolland-Faister	1,795	125	68	448	71	100	73
V111:	Bornholm	598	47	39				
		43,069	4,950	4,562	593	226	709	87

APPENDIX B

APPENDIX C

Our prediction models for grass, milk, vegetables and meat were revised in 1976. For these samples we used the data¹⁾ from 1962-75; for grain we used: 1959-74 (137 Cs: 1962-74), and for total diet: 1961-74. The terms in the models were similar to

Sample and area	Observed	Predicted	Prediction equation	IEI
Grass from Zealand	25	19	$su_{i} = 29 \ d_{i} + 13 \ d_{i-1} + 4.4 \ \lambda_{i-2(1)} + 0.19 \ \lambda_{i-2(20)}$	56
Milk from Jutland Milk from the Islands	4.2	4.7 2.6	$SU_{i} = 1.03 \ d_{i}^{+0.69} \ d_{i-1}^{+0.26} \ A_{i-2(2)}^{+0.059} \ A_{i-2(28)}$ $SU_{i} = 0.74 \ d_{i}^{+0.66} \ d_{i-1}^{+0.14} \ A_{i-2(6)}$	4.8
Rye from Jutland Rye from the Islands	65 40	51 28	$SU_{i} = 220 d_{i} (Jul-Aug)^{+0.15} A_{i-1} (5)^{+0.79} A_{i-1} (28)$ $SU_{i} = 170 d_{i} (Jul-Aug)^{+0.57} A_{i-1} (28)$	70 51
Barley from Jutland Barley from the Islands	40 17	38 19	$SU_{i} = 164 \ d_{i} (Jul-Aug)^{+1.8} \ A_{i-1} (5)^{+0.17} \ A_{i-1} (28)$ $SU_{i} = 98 \ d_{i} (Jul-Aug)^{+0.83} \ A_{i-1} (5)^{+0.18} \ A_{i-1} (28)$	47 30
Wheat from Jutland Wheat from the Islands	64 25	58 32	$SU_{\underline{i}} = 164 d_{\underline{i}} (Jul - Aug)^{\pm 1.7} A_{\underline{i}-1} (5)^{\pm 0.55} A_{\underline{i}-1} (28)$ $SU_{\underline{i}} = 138 d_{\underline{i}} (Jul - Aug)^{\pm 0.44} A_{\underline{i}-1} (5)^{\pm 0.56} A_{\underline{i}-1} (28)$	62 49
Oats from Jutland Oats from the Islands	36 22	54 24	$SU_{i} = 74 d_{i(Jul-Aug)}^{+0.91} A_{i-1(28)}$ $SU_{i} = 60 d_{i(Jul-Aug)}^{+0.50} A_{i-1(28)}$	49 30
Potatoes from Jutland Potatoes from the Islands	2.0 1.4	3.3 2.9	pci 90 sr kg ⁻¹ = 0.13 d ₁ +0.08 d ₁₋₁ +0.05 A ₁₋₂ (1) + +0.054 A ₁₋₂ (28) pci 90 sr kg ⁻¹ = 0.16 d ₁ +0.07 d ₁₋₁ +0.061 A ₁₋₂ (28)	2,4
White cabbage from Jutland White cabbage from the Islands	6.7 4,5	11 9	$pCi \stackrel{90}{=} sr kg^{-1} = 0.24 d_{i} + 0.72 d_{i-1} + 0.178 A_{i-2} (28)$ $pCi \stackrel{90}{=} sr kg^{-1} = 0.56 d_{i} + 0.01 d_{i-1} + 0.08 A_{i-2} (3) + 0.176 A_{i-2} (28)$	8,1 8,0
Carrots from Jutland Carrots from the Islands	2.6 4.4	18 8	pCi 90 Sr kg ⁻¹ (i) = 0.16 d ₁ +1.1 d ₁₋₁ +0.29 A ₁₋₂ (28) pCi 90 Sr kg ⁻¹ (i) = 0.34 d ₁ +0.31 A ₁₋₁ (9) ⁺ +0.016 ¹ A ₁₋₁ (28)	13 5
Total dist from Juliand	4,3	5,8	$su_{i} = 1.49 \ d_{i} + 0.95 \ d_{i-1} + 0.097 \ A_{i-2}(5)^{+} + 0.061 \ A_{i-2}(28)$	5,6
Total diet from the Islands	4.0	5,1	$SU_{i} = 1.39 \text{ d}_{i}+0.98 \text{ d}_{i-1}+0.114 \text{ A}_{i-2}(5)^{+} +0.094^{i}\text{ A}_{i-2}(28)$	6.2
Newborn's bone	0.9	1,2	$su_{i} = 0.073 d_{i} + 0.14 d_{i-1} + 0.022 A_{i-2} (28)$	1,1
Human bone > 29 y	1.0	1.2	$SU_{1} = 0.067 \frac{d_{1+(1-1)}}{2} + 0.036 \lambda_{1-2(5)}^{+0.012} \lambda_{1-2(28)}^{-0.012}$	0.8

<u>Table C.1</u> A comparison between observed and predicted ⁹⁰Sr levels in the human food chain in Denmark in 1976

those used in previous years (cf. Risø Report No. 345, Appendix C^{1}), but in the case of ^{137}Cs the fall-out rate: <u>d'</u> and the accumulated fall-out: <u>A'</u> refer to ^{137}Cs fall-out instead of as earlier to ^{90}Sr fall-out; d' = 1.6 \cdot d and A' = 1.6 \cdot A, as the $^{137}Cs/^{90}Sr$ in fall-out is 1.6²¹⁾. The IEI (infinite time exposure integral) for ^{137}Cs is now based on ^{137}Cs fall-out and is thus 1.6 times less than the earlier values.

In Appendix D values are shown for the 90 Sr fall-out rates (d_i) and some of the accumulated 90 Sr fall-out (A_i) used in our calculations of prediction models.

The predicted values in 1976 for 90 Sr were in general higher, whereas the 137 Cs values were lower than those observed.

Sample and area	Observed	Predicted	Equation used for the prediction	161,
Milk from Jutland	3.4	1.3	$pC1 \frac{137}{Cs} (g R) \frac{-1}{(1)} = 2.7 d_1^{+}0.77 d_{i-1}^{+}+0.20 d_{i-2}^{+}$ $pC1 \frac{137}{Cs} (g R) \frac{-1}{(1)} = 1.76 d_1^{+}0.66 d_{i-1}^{+}+0.022 A_{i-2}^{+}(5)$	3.6
Milk from the Islands	1.6	1.1		2.6
Rye from Jutland	16	4,2	$pC1 \frac{137}{Cs} kg_{(1)}^{-1} = 82 d'_{1} (May-Aug)$	27
Rye from the Islands	6.5	4.0	$pC1 \frac{137}{Cs} kg_{(1)}^{-1} = 78 d'_{1} (May-Aug)$	26
Barley from Jutland	6.8	3.2	$pCi \frac{137}{Cs} kg_{(1)}^{-1} = 63 d'_{i} (May-Aug)$ $pCi \frac{137}{Cs} kg_{(1)}^{-1} = 53 d'_{i} (May-Aug)$	21
Barley from the Islands	0.9	2.7		18
Wheat from Jutland	7.D	3,6	$pCi \frac{137}{C_{B}} kg_{(1)}^{-1} = 71 d'_{i} (l/ay-Aug)$ $pCi \frac{137}{C_{B}} kg_{(1)}^{-1} = 45 d'_{i} (May-Aug)$	24
Wheat from the Islands	3.D	2,3		15
Oats from Jutland	13	2.7	$pCi \frac{137}{Cs} kg_{(1)}^{-1} = 52 d_1^{+} (May-Aug)$ $pCi \frac{137}{Cs} kg_{(1)}^{-1} = 49 d_1^{+} (May-Aug)$	17
Oats from the Island.	6.5	2.5		16
Potatoes from Jutland	3.5	0.6	pCi 137 Cs kg ⁻¹ _(i) = 3.5 d'_{i}	3.5
Potatoes from the Islands	0.9	0.5	pCi 137 Cs kg ⁻¹ _(i) = 3.3 d'_{i}	3.3
White cabbage	2.1	1.8	pci 137 cs kg ⁻¹ ₍₁₎ = 0.81 d'_1+0.043 A'_{i-1}(8)	1.3
Carrots	0.6	0.6	pci ¹³⁷ Cs kg ⁻¹ ₍₁₎ = 1.49 d [*] ₁ +0.092 A [*] ₁₋₁ (2)	1.8
Pork	22	15	pCi ¹³⁷ Cs kg ⁻¹ _(i) = 16.6 d'_i+16.4 d'_{i-1}+1.17 A'_{i-2(1)}	35
Beel	32	9	pci ¹³⁷ cs kg ⁻¹ ₍₁₎ = 25 d ₁ ^{+0.2} d ₁ ^{+1+1.17} A ₁₋₂ [*] ₍₂₎	29
Total diet from Jutland	2.6	2,4	pci ¹³⁷ Cs (g K) ⁻¹ = 2.4 $d_1^{*+1.0} d_{(1-1)+(1-2)}^{*}$	4,4
Total diet from the 1slands	2.5	1,8	pci ¹³⁷ Cs (g K) ⁻¹ = 2.2 $d_1^{*+0.93} d_{(1-1)+(1-2)}^{*}$	4,1
Whole body from the Islands	9.5	15	pCi ¹³⁷ Cs (g K) ⁻¹ = 2.4 d'+4.2 d' ₁ -1)+(1-2) ⁺ 0,10 ¹ A' ₁₋₃ (30)	15

	Table C 2		
A comparison between	observed and	predicted ¹³⁷ Cs	levels
in the human f	ood chain in	Denmark in 1976	

APPENDIX D

 d_i : Annual fall-out rate in mCi ⁹⁰Sr km⁻²y⁻¹. $A_{i(5)}$:Accumulated fall-out by the end of the year (i) assuming an effective half-life of 90Sr of 5 y. Unit: mCi 90 Sr km⁻². A_{i(15)} and A_{i(27.7)}: Accumulated fall-out by the end of the year (i) assuming effective half-lives of 90 Sr of 15 y and 27.7 y, respectively. Unit: mCi 90 Sr km⁻². d_{i(May-Aug.)} and d_{i(July-Aug.)}: The fall-out rates in the periods: May-Aug. and July-Aug., respectively. Unit: mCi 90 Sr km⁻² period⁻¹. The fall-out rate (d;) was based on precipitation data collected for all Denmark in the period 1962-1976 (cf. table 4.1.1¹⁾). Before 1962 the levels in the tables were estimated from the HASL data for New York (HASL Appendix 291, 1975) considering that the mean ratio between ⁹⁰Sr fall-out in Denmark and New York was 0.7 in the period 1962-1974. The d_{i} (May-Aug.) and d_{i} (July-Aug.) values were also obtained from table 4.1.1¹⁾ for the period 1962-1976. For the years 1959-1961 the values were calculated from data obtained

years 1959-1961 the values were calculated from data obtained from ⁹⁰Sr analysis of air (1959) and precipitation samples (1962 and 1961) collected at Risø (cf. ref. 17). Before 1959, the values were estimated from the corresponding d_i values assuming that the ratios $d_i(May-Aug.)/d_i$ and $d_i(July-Aug.)/d_i$ were constant in time and equal to the means found for the period 1962-1974, which were 0.54 (1 S.D.: 0.09) and 0.24 (1 S.D.: 0.06), respectively.

	T	De	nmark			Jut	land			111	ands		Den	mark	Jut	land	Isl	ands
	di	A1 (5)	A1 (15)	A1 (27.7)	dı	A1 (5)	A1 (15)	A1 (27,7)	dı	Ai (5)	A1 (15)	Ai (27.7)	di (May-Aug.)	di (July-Aug.)	di (Nay-Aug.)	di (July-Aug.)	di (Nay-Aug.)	di (July+Aug.)
1950	150.0	0.018	0.020	0.020	0.022	0,019	0.021	0.021	0.020	0.017	0.019	0.020	0.01	0.01	0.01	0,01	0.01	0,01
1951	0.101	0.104	0.116	0,118	0.114	0.116	0,129	0,132	0.088	0,092	0,102	0,105	0.05	0.02	0.06	0,01	0.05	0,02
1952	0,199	0.263	0.299	U.309	0.224	0,296	0,337	0.347	0.172	0.230	0.262	0.275	0.11	0.05	0,12	0,05	0,09	0,04
1953	0.500	0.664	0,763	0,789	0.566	0.751	0.862	0,491	0.434	0.578	0.665	0.687	9.27	0.12	0,31	0.14	0,23	0.10
1954	1.901	5.533	2,544	2.623	2.152	2.526	2.878	2,967	1.650	1,939	2.210	2.279	1.03	9.46	1.16	0.52	0,89	0,40
1955	2,501	4.121	4,817	4,997	2.831	4.664	5,451	5,655	2,171	3,578	4.183	4.340	1.35	0,60	1,50	0.68	1,17	0,52
1956	3.191	6.287	7.560	7.896	3.510	7.116	8.557	8.939	2.692	5.458	6,564	6.858	1,67	0.74	1.90	0.84	1.45	0.65
1957	3,102	8.173	10,180	10,728	3.510	9,251	11.522	12.142	2.692	7,095	8,838	9,313	1.67	0,74	1,90	0,84	1,45	0.65
1958	4.302	10.860	13.858	14,650	4.869	12.292	15.651	16,591	3.734	9,427	12,004	12.725	2.32	1.03	2,63	1.17	2.02	0,90
1959	6.102	14,766	19,030	20.247	6.408	16.715	21.540	22.918	5,297	12.817	16,519	17,576	2,50	0.68	2,76	0,75	2,24	0.61
1960	1.140	13.847	19,259	20,859	1.291	15.675	21.800	23.610	0.990	12.020	36,718	18,107	0,47	0.31	0.52	0.34	0.42	0,20
1961	1.481	13.344	19.803	21.787	1.676	15,105	22,416	24.661	1,285	11,583	17,190	18,913	0,66	0.47	0.73	0.52	0.59	0,42
1962	7.428	18.083	26,001	28,493	7.976	20,093	29,019	31,830	6.880	16,073	22,983	25,155	4,223	1.057	4,566	2,052	3.680	1,662
1963	16.695	30,276	40.768	44.071	18.453	33,556	45,329	49.041	14,937	26.996	36.208	39,101	9,965	5.629	10,753	5,932	9.177	5.327
1964	10.412	35,421	48,869	53,136	11.685	39,384	54,439	59,225	9,139	31,457	43,299	47,048	6,235	2.568	7,170	2,910	5,299	2.226
1965	3.5.4	34.277	50,437	55.679	4.204	37.946	55,994	61,861	3.704	30,609	44,880	49,497	2,029	0.850	2.094	0.852	L.964	0.048
1966	2,145	31,707	50,207	56.395	2.160	34.919	55.534	62.445	2,124	28,495	44,881	50,345	1,049	0.418	0.984	0.496	1,114	0.140
1967	1.047	28.514	48,940	56,023	1.176	31,423	54.149	62,048	0,918	25,606	43,731	49,997	0,367	0.141	0,380	0,134	0,354	0,148
1968	1,403	26.044	48,069	56,006	1.568	28,720	53,201	62.045	1,237	23.368	42,938	49,968	0,848	0.426	0.910	0,460	0.786	0.392
1969	1.015	23.574	46.887	55,632	1.241	26.083	51,983	61.721	0.829	21.065	41,791	49,542	0.614	0,276	0.723	0,319	0.505	0.233
1970	1.647	21.956	46.342	55,863	1,993	24.442	51,539	62.140	1.301	19.471	41,146	49,586	0.908	0,547	1,076	0,632	0.740	0,462
1971	1.506	20.425	45,688	55,951	1.726	22.780	50,860	62,288	1,286	18.070	40,515	49,615	0,992	D.405	1,154	0.516	0,810	0.294
1972	0,435	18.160	44.040	54,993	0,457	20,229	49.000	61.194	0,413	16,090	39,080	48,792	0,253	0.084	0,262	0.084	a,244	0.084
1973	0.195	15.976	42,235	53.821	0.215	17.798	46.993	59.891	0.168	14,153	37,476	47,750	0.075	0.033	0,093	0.039	0.057	0.027
1974	0,710	14.526	41.006	53,183	0,779	16.172	45,615	59,171	0,643	12.001	36,398	47,197	0,421	0.190	0,463	0.219	a, 378	0,162
1975	0.414	13.006	39,550	52.272	0.452	14,472	43,987	58.150	0,176	11,541	35,113	46, 397	0,159	0.075	0,179	0,091	0,141	0.060
1976	0.103	11.413	37,862	51,082	0,116	12.699	12,110	56.826	0,090	10.126	33.614	45, 339	0.032	0.010	0.032	0.013	0,032	0,009

APPENDIX D Fallout rates and accumulated fallout (mCi ⁹⁰Sr km⁻²) in Denmark 1950-1976

T

1

APPENDIX E

<u>Plutonium-239 and -240 in grain samples from 1963 and 1965</u> The maximum concentrations of long-lived fall-out nuclides occurred in the first half of the sixties. The present study was carried out to get an impression of the possible maximum plutonium concentrations from fall-out to be found in Danish diet components. Grain was selected because grain products have been the main contributors to radioactive contamination of the Danish diet during periods with high fall-out rates.

In 1963 the mean concentrations in rye and wheat were 1.43 and 0.35 \pm 239,240 Pu kg⁻¹, respectively. In 1965 these levels had decreased by a factor of 5-6, corresponding to the ratio between the ⁹⁰Sr fall-out in the summer months of the two years.

	Rye		Barl	ley	Whe	at	Oats
	Winter	Spring	Spring	Winter	Winter	Spring	Spring
Tylstrup	*1.48:0.10		2.6:0.1				1.97:0.41
Studsgård			1.70	3.1			0.83
J dum	*0.97±0.05		1.47		0,22:0,10		0.99
Askov	1.14		1.64		0.183	0.54	2.0±0.1
St. Jyndevad			1.34				0.66
Blangstedgård			2.1		0.24		1.27
Tystofte	2.1		0.71			0.34	0.74
Virumgård	1.46		2.0				2.9
Abed			1.13		0.49	0.47	0.99
Åkirkeby			1,38				0.78
Hean	1.43		1.61	3.1	0,28	0.45	1.31
*triple determ	Instions			••••••••••••••••••••••••••••••••••••••			

Appendix E.1

Plutonium-239.240	in grain	from the	state	experimental	farms	in	1963

- 112 -

App	enc	lix	Ε.	2

	Rye	Bar	ley	Whe	Oats		
	Winter	Spring	Spring	Winter	Winter	Spring	Spring
Tylstrup	0.145		0.21		0.062	0.095	0.122
Studsgård	0.29	0.132	0.46		0.23	0.112	0.149
ýðun.	0.157		0.41		0.070	0.047	0.109
Askov	0.48		0.72		0.110		0.146
St. Jyndevad	0.39		0.48		0.084		0.30
Blangstedgård	-		0.30		0.046		0.21
Tystofte	0.134		0.28		B.D.L	0.043	0.21
Virumgård	0.071±0.011		0.31		0.0116	0.086	0.25
Abed			0.41		0.0170	0.092	0.34
Akirkeby			0.37		0.070	0.065	0.27
Ledreborg			0.29		B.D.L	0.032	0.104
Mean	0,24	0.132	0.39		0.064	0.072	0.20

Plutonium-239,240 in grain from the state experimental farms in 1965

Appendix E.3

Effect	Source of variation	SSD	f	s ²	v ²	P
Main	years (y)	59.8 95	1	59 .8 95	236.92	> 99.95%
-	species (s)	38.555	3	12,852	50 .836	> 99.95%
-	location (1)	3.910	10	0.391	1,547	∿ 85.2%
Interaction	ухз	0.636	3	0.212	0.902	∿ 53.9%
*	s x 1	4.781	26	0.184	0,782	∿ 27.98
•	y x 1	3.253	9	0.361	1.537	∿ 78.7 %
•	y x s x l	3.998	17	0.235	0.793	∿ 3 1.6%
Remainder		6,528	22	0.297		

Anova of ln pCi 239,240 Pu kg⁻¹ grain from 1963 and 1965

It is remarkable that the interspecific variation is more pronounced for plutonium than for other radionuclides (90 Sr, 137 Cs, 54 Mn) and that the concentration order is barley > oats \sim rye > wheat, while the order of the direct contamination for other radionuclides¹) is rye > barley> wheat \sim oats.

A discussion of these observations will appear in forthcoming publication.

REFERENCES

- Risø Reports Nos. 1, 3, 9, 14, 23, 41, 63, 85, 107, 130, 154, 180, 201, 220, 245, 265, 291, 305, 323 and 345 (1957-76)
- 2) R.G. Osmond, M.J. Owers, C. Healy, and A.P. Mead, The Determination of Radioactivity due to Caesium, Strontium, Barium and Cerium in Waters and Filters. AERE-R 2899 (1959).
- F.J. Bryant, A. Morgan, and G.S. Spicer, The Determination of Radiostrontium in Biological Materials. AERE-R 3030 (1959).
- 4) John H. Harley, Manual of Standard Procedures. HASL-300 (1972).
- 5) A. Hald, private communication (1958).
- 6) J. Lippert, Low Level Counting. Risø Report No. 44 (1963).
- 7) P. Quittner, Nucl. Instr. and Methods 76, 115-124 (1969).
- J. Lippert, Some Applications for Semiconductor Detectors in Health Physics. Proc. of the First International Congress of Radiation Protection, 271-277 (Pergamon Press, 1968).
- 9) Meteorologisk Institut, Ugeberetning om nedbør m.m. 1976.
- 10) L.J. Middleton, Int. J. Rad. Biol. 4, 387-402 (1959).
- Folmer Dam and Agnes Elgström, Vore fødemidler (Svegårds Forlag, Sorø, 1968).
- 12) J. Vestergaard, Analysis of Variance with Unequal Numbers in Group. GIER System Library No. 211 (A/S Regnecentralen, Copenhagen, 1964).
- 13) Landbrugsstatistik 1975. Danmarks Statistik (Copenhagen, 1977).

- 113 -

- Fortegnelse over samtlige mejerier og mejeriorganisationer i Danmark (Århus, 1972).
- 15) Statistisk årbog 1972 (Statistical Yearbook) (Copenhagen, 1972).
- 16) J. Lippert, Ris#-H-1780, June 1975.
- 17) A. Aarkrog, Prediction Models for Strontium-90 and Caesium-137 Levels in the Human Food Chain. Health Physics <u>20</u>, 297-311 (1971).
- 18) Ebbe Kanneworff and Willy Nicolaysen, The "HAPS". A Framesupported Bottom Corer. Ophelia 10:119-129 (Oct. 1973).
- 19) N.A. Talvite, Analyt. Chem. 43, 1827 (1971).
- 20) Landbrugsstatistik 1900-1965, vol. I and II.
- 21) UNSCEAR: Ionizing Radiation vol. I: levels. (United Nations, New York 1972).
- 22) K. Edvarson, K. Löw and J. Sisefsky, Nature <u>184</u>, 1771-74 (1959).
- 23) R.C. Chadwick and A.C. Chamberlain, Atmospheric Environment <u>4</u>, 51-56 (1970).
- 24) A.C. Chamberlain, J. Air Polution 3, 63-88 (1960).
- 25) D.H. Pierson and J.R. Keane, Nature 196, 801-807 (1962).