Technical University of Denmark

Details of design, irradiation and fission gas release for the Danish U02-ZR irradiation test 022

Bagger, Carsten; Carlsen, H.; Knudsen, P.

Publication date: 1978

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Bagger, C., Carlsen, H., & Knudsen, P. (1978). Details of design, irradiation and fission gas release for the Danish U02-ZR irradiation test 022. (Risø-M; No. 2152).

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A.E.K.Risø

Risø - M - 2152

٠

52	Title and author(s)	Date December 1978
A - [2]	DETAILS OF DESIGN, IRRADIATION AND FISSION GAS RELEASE FOR THE DANISH UO ₂ -ZR IRRADIATION	Department or group Metallurgy
2	TEST 022	
Risø	by C. Bagger, H. Carlsen and P. Knudsen	Group's own registration number(s)
	pages + tables + illustrations	
	Abstract	Copies to
	Test 022 comprised three UO ₂ -Zr test fuel pins	
	Risø at 7.2 MPa (70 ato) system pressure. A	
	burnup of approximately 3530 GJ/kg U (36,000	
	MWD/te UO_2) was accumulated at heat loads in the range 35 to 53 kW/m (350 to 530 W/cm) (test	
	avg. values). Fission gas analysis for two of the	
	pins showed that the releases were 48 and 36%. The experimental data are presented in suffici-	
	ent detail for use in the validation of fuel	
	performance codes.	
Fi 25-204	Available on request from the Library of the Danish Atomic Energy Commission (Atomenergikommissionens Bibliotek), Riss, DK-4000 Roskilde, Denmark Telephone: (03) 35 51 01, ext. 334, telex: 43116	

ISBN 87-550-0572-1

,

.

LIST OF CONTENTS

.

-

	Page
INTRODUCTION	1
FUEL PIN DESIGN	1
IRRADIATION	2
Facility	2
Conditions	2
Irradiation History	3
FISSION GAS RELEASE	3
APPENDIX: DETAILS OF IRRADIATION CONDITIONS	5
Test Average Power History	5
Individual Pin Calculations	5
Comparison of Calorimetric and Radiochemical	
Burnup Determination	6
Fission Gas Generation	6
Fast Neutron Flux in Cladding	7
Cladding Surface Temperature	7
ACKNOWLEDGEMENT	7
REFERENCES	8
TABLES I - III	
FIGURES 1 - 2	

DETAILS OF DESIGN, IRRADIATION AND PISSION GAS RELEASE FOR THE DANISH UO₂-IR IRRADIATION TEST 022

by

C. Bagger, H. Carlsen and P. Knudsen

INTRODUCTION

Fission gas release data at very high burnup from the Danish UO_2 -Zr irradiation test O22 are presented in this report, together with the design and irradiation data required as input for fuel performance code calculations. Although fission gas data were obtained for two fuel pins only (PA29-4 and M2-2C), design details are included for all three pins constituting the test, because part of this information is used in the local power and burnup calculation.

A first analysis of the experiment was published elsewhere(1). Since then, the power history has been re-evaluated to provide a more detailed description of the experiment, and an additional radiochemical burnup determination has been obtained. These details were previously reported in the Metallurgy Department report B-464; the data of the present report are identical to those of B-464 except for a change to SI units and an additional remark about end pellet effects in the section on Irradiation Conditions.

FUEL PIN DESIGN

The three almost identical test fuel pins had 12.6 mm sintered UO_2 pellets of 2.28% enrichment (end pellets with natural ^{235}U content) in 128 mm long stacks. The cladding was cold-worked and stress-relieved Zr-2 tubing of approximately 0.55 mm wall thickness which had been autoclaved on both sides. The diametral pellet-clad clearance was 0.24 mm, and the pins were backf..lled with 0.1 MPa (1 ata) He. Further design details are given in Table I.

- 1 -

IRRADIATION

Facility

Each irradiation was performed in a water-cooled rig (see Refs. (2) and (3)) in the 10 MM heavy-water materials testing reactor DR 3 at Risø. The normal reactor cycle comprises 2 Ms (23½ days) at full reactor power and 0.4 Ms (4½ days) shut-down for exchange of experiments and maintenance.

The irradiation rig was loaded in a hollow, highly enriched U-Al driver fuel element in a core position corresponding to the desired heat load. In this rig type, the fuel pin is cooled by natural convection inside the rig of the primary water (H_2O) pressurized to 7.2 MPa (70 ato) with He gas. There is a small external circulation of the primary water for purification purposes. The rig thermal output is determined from flow rate and temperature increase of the secondary cooling water.

Conditions

The thermal output from the test (i.e. the three fuel pins screwed together axially) was obtained by correcting the rig thermal output for gamma heat generation.

Gamma scans on several fission products indicated that the fission density of the (initially lower enriched) end pellets had increased during the irradiation and approached the level of the central pellets. This is a result of different Pu buildup rates caused by different initial ²³⁵U contents and corresponding differences in neutron capture. Gamma scans of this and similar irradiations have revealed a certain peaking effect near the pellet stack ends, too. This, however, usually applies to part of an end pellet only; it is thus considered an effect separate from the difference in Pu build-up rate. The gamma scans were supplemented with physics calculations of the ratio between fission densities in end and central pellets as a function of burnup. From this, local heat load and burnup levels were obtained, as described in the appendix. The data reported in the next section are corresponding values on a test average basis.

The appendix gives further details about the irradiation conditions including cladding surface temperature and fast flux levels, as

well as a comparison between burnup results from radiochemical analysis and calorimetry.

Irradiation History

The three fuel pins (M2-2D, PA29-4, and M2-2C) were screwed together in the sequence given with M2-2D at the top. A burnup of approximately 3530 GJ/kg U (36,000 NMD/te UO₂) was accumulated over 46 reactor periods. The heat load was in the range 35-53 kW/m (350-530 W/cm). Fig. 1 gives an overview of the power history on a test average basis.

The pin average and local pellet conditions were calculated as described in the appendix, the results are presented in Table II. Fig. 2 shows the gamma scans of which the 137 Cs scans (half-life 0.95 Gs (30 years)) were used to distribute the test average values for the whole irradiation. The 95 Zr/Nb (half-life 5.5 Ms (64 days)) are representative of the latest part of the irradiation period and shows little or no difference between central and end pellets. Both scans reveal the rather flat axial power shape.

The test was visually inspected at four intermediate reactor shut-downs, where a gradually increasing extent of surface corrosion was observed. Most of the cladding surfaces were covered with a very thin, "soot-like" surface deposit, as also seen with other tests in DR 3 (this surface deposit is easily removable, e.g. with a wet paper tissue).

FISSION GAS RELEASE

The two pins PA29-4 and M2-2C were punctured and the extracted gas analyzed; the results are shown in Table III. The calculated fission gas releases are 48.1 and 35.6%, respectively.

From the data in the table, a partial He pressure (after irradiation) of 0.16 and 0.20 MPa (1.6 and 2.0 ata) can be calculated for the two pins PA29-4 and M2-2C, whereas the as-fabricated pressure was 0.10 MPa (1 ata). This observed increase in He content is attributed to ternary fission yield and alpha decay of heavy isotopes (in particular 242 Cm to 238 Pu). (8).

Ceramography on one sample from each of the pins PA29-4 (117 mm from the bottom of the pellet stack) and M2-2C (66 mm from stack bottom),

showed that a fraction of 0.47 and 0.43 of the fuel had restructured to columnar grains. Using Nichols' model (4) for restructuring, these fractions correspond to fuel centre temperatures of 2200 and 2100 K (1927 and 1827° C), respectively. Further, a small centre void of approximately 0.3 mm diameter was observed in PA29-4.

APPENDIX

DETAILS OF IRRADIATION CONDITIONS

The following sections describe the principles used to obtain the irradiation conditions and the results are provided in detail, so that input can be formulated for fuel performance code calculations. This applies to: Power history including burnup, fission gas generation, fast neutron flux in cladding, and cladding surface temperature.

Test Average Power History

Continuous measurement of flow rate and temperature increase of the secondary rig cooling water provided the rig thermal output. Subsequent corrections for gamma heat in the rig material and the non-fissile fuel pin materials (both obtained from measurements in the specific DR 3 positions) gave the fuel thermal output relevant to calculation of linear heat load and fuel temperature. After a further correction for gamma heat in the fuel, the fission heat output relevant to burnup calculation was obtained.

The resulting heat load and burnup values are shown in the third and fourth column of Table IIa.

Individual Pin Calculations

The gamma scans revealed that Pu build-up occurred faster in the natural end pellets than in the enriched central pellets, as already pointed out. As a consequence, the difference between heat generation in the end and central pellets decreased gradually and the ratio approached unity. Physics calculations (5), adapted to DR 3 conditions, of this ratio as a function of burnup, were used to separate heat load and burnup for central and end pellets.

The test average data were converted into pin average and local data by means of the 137 Cs gamma scans and the physics calculations of Ref.(5). The results are included in Table IIa.

Comparison of Calorimetric and Radiochemical Burnup Determination

The calorimetric calculations were checked by radiochemical analysis of three samples, one from each of the central pellet columns and one from the lower end pellet of PA29-4.

The above calculations provided the local calorimetric burnup values for the three samples. The physics calculations (5) showed that the following fission energies are relevant for the DR 3 fuel irradiation experiments:

Fissile isotope	235 _U	239 _{Pu}	241 _{Pu}
pJ/fission	31.9	32.7	32.7
(MeV/fission)	(199)	(204)	(204)

This, combined with the heavy isotope analysis of each sample, then provided the energy conversion applicable to the individual samples, considering the distribution of fissions between the three fissile isotopes. The resulting comparison between calorimetry and radiochemistry (6) is shown below:

Sample	PA29-4-3	PA29-4-6	H2-2C-4
Pellet type	Central	End	Central
Calorimetry, GJ/kg U (MMD/te UO ₂)	3997 (40,776)	3402 (34,712)	3586 (36,589)
Radiochemistry, GJ/kg U (MND/te UO ₂)	4011 (40,922)	3388 (34,564)	3591 (36,633)
Relative difference	0.41	0.4%	0.1%

The agreement lends confidence in the calorimetry as well as the physics calculations (5).

Fission Gas Generation

The fission gas quantity generated in each pin was calculated from the above pin average burnup and a generation rate of 0.347 cm^3 (273K, 0.1 MPa) per GJ (30.0 cm³(0°C,1 ata.) per MWD). This was then used to calculate the observed fission gas release from the measured gas quantities, see Table III.

Fast Neutron Flux in Cladding

Fast neutron flux levels in the centre of the hollow DR 3 fuel elements were obtained from Ni wire scans. These unperturbed fluxes were then modified by DR 3 physics calculations (7) to give estimates of the fast flux in the fuel pin cladding. The results were as follows:

DR 3 Period	Fast flux	Total Irr.	Fast Fluence		
No.	in Clad	Time	at End of		
	n/m ² /sec.	Ms (hrs.)	Period n/m ²		
129-137	$3.5 \cdot 10^{17}$	17.74 (4928)	6.2 - 1024		
138-150	$4.2 \cdot 10^{17}$	25.56 (7095)	$1.7 \cdot 10^{25}$		
151-180	5.3 · 10^{17}	50.00(13888)	4.3 · 10 ²⁵		
		93.30(25915)			

Cladding Surface Temperature

The temperature of the cladding surface depends on the system pressure and the surface heat flux. Above a heat load of approximately 20 kW/m (200 W/cm), there will be boiling on the pin surface at the 7.2 MPa (70 ato.) system pressure. The cladding surface temperature is to be calculated from the following expression:

T[K] = 554 + 1.45 (Q[kW/m²])^{0.25})or $T[^{\circ}C] = 281 + 2.57 (Q[W/cm²])^{0.25})$

this includes an estimated 4 K (4° C) depression of coolant boiling point due to dissolved He.

ACKNOWLEDGEMENT

The achievements presented in this report resulted from the effort of many staff members of the departments of Metallurgy, Engineering, Chemistry, and DR 3 Reactor at Riss. The authors gratefully acknowledge their collaboration throughout the phases of design, fabrication, irradiation, and hot-cell examination, as well as their stimulating discussions and comments during the evaluation of the results. REPERENCES

- H. CARLSEN, "Fission Gas Belease in LNR Fuel Bods Exhibiting Very High Burn-up", paper presented at the IAEA Specialists" Meeting on "Fuel Element Performance Computer Modelling", Blackpool (U.R.), 12-17 March 1978; to be published in "Nuclear Engineering and Design".
- H. H. HAGEN, K. HANSEN, and J. A. LETH, "Design and Experience with Rigs Simulating LMR Conditions in a Research Reactor", IAEA-Sm-165/8, International Atomic Energy Agency, Vienna (1972).
- 3. K. H. HANSEN and J. A. LETH, "Danish High Pressure Irradiation Pacilities Used for Overpower Testing of Experimental UO₂-Er Fuel Pins", Riss-M-1862, Riss National Laboratory (1976).
- P. A. HICHOLS, "Theory of Columnar Grain Growth and Central Void Pormation in Oxide Fuel Rods", J.Hucl. Mat., <u>22</u>, 214-222 (1967).
- 5. P. HØJERUP and T. PETERSEN, Risø, personal communication.
- 6. N. R. LARSEN, Risø, personal communication.
- 7. G. K. KRISTIANSEN, Rise, personal communication.
- 8. H. CARLSEN, "Xenon, Krypton and Helium Release in High Burn-Up UO₂Sr Fuel Rods", paper presented at the "Workshop on Fission Gas Behaviour", Karlsruhe, 26-27 Oct. 1978, organized by the Joint Research Centre of the European Community.

TABLE	I
	_

Fue:	l Pin	Design	Detai	ls
------	-------	--------	-------	----

.				
Fuel Pin No.		M2-2D	PA29-4	M2-2C
Pellet			1	
	{		1 30 60	
Diameter	mm	12.60	12.60	12.60
Length (central avg.)	mm	18.3	18.5	12.0
Dishing depth *(both ends)	mm	.38	.38	.38
Dishing sphere radius	mm	41.5	41.5	41.5
Dishing shoulder	mm	.7	.7	.7
Surface roughness (OD), Ra	um	.9	.9	.9
D nsity, central pellets	STD	94.7	94.7	94.7
Doneity and pollete	STID	95 4	95 A	95 4
Enviolment 9 control	1 91035	2 29	2 20	2.29
Enfic menc, o central	80235	2.20	2.20	2.20
perfets				
Enrichment, 2 end	80235	.72	./2	.72
pellets				
Grain size (avg.)	μm	8.0	8.0	8.0
H ₂ O content	<u> </u>	not	determine	d
N ² content		not	determine	d
Shaping process		cold	pressir	ter, grind -
Sintering temperature	K (°C)	1948/16751	10/9/1675	1049/1675
Sintering time /n				
Sincering cime (H ₂ -atm.)	(nrs)	1.2 (2)	1.2 (2)	1.2 (2)
Clad				
Inner diameter	mm	12.84	12 84	12.84
Wall thicknoss	Jiuli	52	12.04	52
Wall Unickness	1000	.55		.55
Surface roughness (1D), Ra	μm	.9	. 9	.9
Alloy supplier (2r-2)		Sandviken	VDM	Sandviken
Temper	2	cold-work	ed and str	ess relieved
Tensile strength (RT)	MN/m ²	740	630	740
Yield strength (RT)	MN/m ²	550	490	550
Elongation in 50.8 mm(2") (R	r) 8	22	22	22
			[
Pin				
Pellet-clad gap (diam.)	mm	.24	.24	.24
Total pellet stack	πm	128	128	128
Total pellet stack	ka	0 163	0 163	0 161
R central pellets	~~	109 9	110 0	108 0
0 central pellets	1.	0 140	0 140	1 1 2 6 7
o central perfects	ĸg	0.140	10.140	0.130
2 end pellets	ππη	10.1	18.0	20.0
2 end pellets	kg	0.023	0.023	0.025
End plenum spring, mat.		Inconel	Inconel	Inconel
End plenum spring, vol.	ົາຫາ	466	495	495
Washer (between spring		2r-2	2r-2	Zr-2
and end pellet)				
Total free volume (cold.	יייייי ר	1	1	1
as fab.)	ກຫັ	2830	2800	2950
Helium filling gas	MPa(at a) 0.1 (1)	0.1 (1)	0.1 (1)

Central pellets only.

- 9 -

TABLE IIa

•

.

Per.	Time	Test	Avg.	L	Pin PA 29-4				Pin M2-2C				
				710	AVG.	6-10	6-7	Pin	Avg.	1	Z	3	14
		32/~~		1/00	BC AND	14/000	**/~~	107-	SUD /AA	127-00			14/0
14	n	W/ CE		#/ C#		w/ Çai		117.000	tin tin	w/ ca	W/CE.	- 47 Cin	m/c
			~2		³⁰ 2				~~ <u>2</u>				ł –
129	550	482	846	534	937	267	578	503	890	218	478	578	26
130	558	518	1771	574	1961	333	613	541	1863.	266	507	613	33
131	562	5o3	2675	557	2962	355	590	525	2814	284	488	59c	35
132	560	451	3479	. 499	3852	337	525	471	3660	270	434	525	33
133	561	461	4304	511	4765	359	535	401	4228	287	443	535	35
134	463	451	4963	499	5502	362	521	471	5227	290	432	521	36
135	564	477	5827	528	6452	393	549	498	. 6130	314	454	549	39
136	550	477	6677	528	7393	403	548	498	7024	322	453	548	40
137	552	464	7493	513	8296	401	531	484	7882	320	440	531	40
138	560	502	8387	555	9286	442	573	524	8823	353	475	573	44
139	557	476	9230	527	10219	427	542	497	9710	341	449	542	42
140	562	460	10050	509	11127	419	523	480	10572	335	434	523	41
141	561	447	10846	495	12009	413	507.	467	11410	330	420	507	41
142	561	424	11598	467	12841	397	480	442	12201	317	398	480	39
143	560	437	12373	483	13679	413	493	456	13016	330	409	493	41
144	394	476	12968	527	14350	454	538	497	13642	363	445	530	45
145	556	424	13714	467	15186	408	474	44Z	14427	326	396	478	40
146	556	408	14431	451	15978	396	459	426	15181	317	301	459	39
147	556	397	15129	440	16751	389	447	415	15915	311	371	447	30
148	556	353	15746	391	17434	344	396	369	16564	279	329	396	34
149	560	367	16396	405	10154	360	414	385	17248	293	344	414	36
150	560	374	17056	414	19894	374	419	390	17942	299	348	419	37
151	56Z	448	17844	472	19757	451	30Z	467	10771	36Z	417	502	45
152	/32	470	19310	242	21003	470	248	211	17756	399	455	548	47
723	723	464	20020	213	22100	4/2	517	4.44	21061	381	430	517	47
124	222	420	20618	204	23030		205	•/•	21900	377	422	205	47
155	33/	410	21:05	4/2	230//		4/8	448	22686	350	398	478	44
120	224	4//	44474		29909	111	4/0	440	23933	434	390	470	1 1 1
157	202	427	2308/	270	27302	4/3	201	4/0	24287	379	41.6	201	1 47
120	33/	347	24749	202	20209	300	471	222	22203	998	4444	280	20
101	223	412	25443	107	20102	444	454	470	26796	302	787	4/1	
104	330	414	26228	452	28051	440	430	467	276-2	373	300	420	
103	30/	100	26922	440	20014	410	441	116	20222	3//	403	403	1 22
164	500	377	27620	440	30583	412	441	214	28054	345	30/		
103	222	377	78761	A11	11790	405	211	184	29020	225	30/		
147	547	350	28887	197	11083	107	197	375	30388	116	110	387	1 30
172	522		29618	495	12791	491	495	447	31157	301	411	405	
1:2		464	20419	511	33670	516	512	ANA	11000	407	426	473	
174	520	477	11105	527	34539	526	526	497	17814	420	417	526	1 22
174	i seal	425	11074	140	35350	447	467	141	11564	275	1 200	147	
176	KOA	422	12848	466	36370	464	164	440	14554	274	244		
177	550	415	13504	441	37197	478	478	ASA	15342	300	100	476	
178	554	415	14140		38031	478	478	454	16114	184	100	470	1.74
174	554	461	15144	510	18917	507	507	441	36074	A14	421	6.7	
110	667	416	36055	481	39920	478	478	454	17024	200	200	478	1 20
200									31747	377	370	4/9	1 2/

Detailed Power and Burnup Distribution for Test 022

Conversion factors: 1 W/cm = 0.1 kW/m; 1 MWD/te $UO_2 = 0.09802 \text{ GJ/kg U}.$

TABLE IIb

Notes

(i) The heat rating P is composed of P[fiss], representing the heat originating from fissions in the fuel, and P $[\gamma, fuel]$ representing the heat originating from absorption in the fuel of radiation from the external gamma field.

P [fiss] is determined by subtracting from P the term $G[\gamma, \text{ fuel}] \times \frac{\text{fuel weight}}{\text{fuel length}}$. $G[\gamma, \text{ fuel}]$ (W/g) is given in Table IIc. The fuel weight and the fuel length apply to the fuel section in question and are found from Table I.

(ii) The local positions (1-12) refer to the axial locations shown on the sketch below of the gamma activity distribution.

TABLE IIC

Heat Production in the Fuel of Test 022 Caused by the External Gamma Field

DR3 Period No.	129-137	138-150	151-180
G[Y, fuel] kW/kg	1.03	1.22	1.68

TABLE III

PA29-4 Pin No. M2-2C Total gas content, cm³ at 0.1 MPa, 273 K (1 ata, 0°C) 101. 71.6 Free volume, post irr., cm³ 2.90 2.93 Calculated internal pressure MPa at 293 K (ata at 20°C) 3.91(38.6) 2.73 (26.9) Gas composition, vol. * H_2 0.647 -5.733 6.350 He D2 -N₂+CO 0.300 2.025 0.023 0.250 °2 0.006 Ar 0.025 c02 0.317 0.050 Kr-83 0.373 0.360 2.797 Kr-84 2,845 0.445 Kr-85 0.417 Kr-86 3.707 3,805 Xe-130 0.427 0.425 Xe-131 4.307 4.145 Xe-132 19,867 19.595 Xe-134 23.033 22.675 Xe-136 38.067 37.030 100,021 Sum 100.025 7.294 Kr 7.455 85,701 83.870 Xe Kr+Xe 92,995 91,325 Calculated fission gas 48.1 35.6 release, %.

Fission Gas Analysis

Fig. 1. Power History of Test 022.

- 13 -

٠.

•

Fig. 2. Gamma Scans After Test 022.