Technical University of Denmark

Environmental radioactivity in Denmark in 1980

Aarkrog, Asker; Bøtter-Jensen, Lars; Dahlgaard, Henning; Hansen, Heinz Johs. Max; Lippert, Jørgen Emil; Nielsen, Sven Poul; Nilsson, Karen Kristina

Publication date: 1981

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Aarkrog, A., Bøtter-Jensen, L., Dahlgaard, H., Hansen, H. J. M., Lippert, J. E., Nielsen, S. P., & Nilsson, K. (1981). Environmental radioactivity in Denmark in 1980. (Denmark. Forskningscenter Risoe. Risoe-R; No. 447).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

OK 8200 123 Rise-<u>R-44</u>7

Ł

Environmental Radioactivity in Denmark in 1980

A. Aarkrog, L. Bøtter-Jensen, H. Dahlgaard, Heinz Hansen, J. Lippert, S. P. Nielsen, and Karen Nilsson

Risø National Laboratory, DK-4000 Roskilde, Denmark June 1981

ENVIRONMENTAL RADIOACTIVITY IN DENMARK IN 1980

A. Aarkrog, L. Bøtter-Jensen, H. Dahlgaard, Heinz Hansen, J. Lippert, S.P. Nielsen and Karen Nilsson

Abstract. Strontium-90 was determined in samples from all over the country of precipitation, ground water, drinking water, sea water, dried milk, grain, bread, potatoes, vegetables, fruit, total diet, and human bone. Furthermore, ⁹⁰Sr was determined in local samples of air, rain water, soil, sediments, grass, sea plants, fish and meat. Cesium-137 was determined in air, precipitation, sea water, lake water, sediments, milk, grain products, potatoes, vegetables, fruit, total diet, sea plants, fish, and meat. Estimates of the mean contents of radiostrontium and radiocesium in the human diet in Denmark during 1980 are given. Tritium was determined in precipitation, fresh water and sea water. Plutonium and Americium were measured in sea water sediments, sea plants and mussels. The y-background was measured regularly by TLD, ionization chamber and on site yspectroscopy at locations around Risø, at ten of the State experimental farms along the coasts of the Great Belt and around Gyllingnæs. The marine environments at Barsebäck and Ringhals were monitored for 137Cs and corrosion products (58Co, 60Co, ⁶⁵2n, ⁵⁴Mn). Finally the report includes routine surveys of environmental samples from the Risø area.

UDC 614.73(489)

June 1981 Risø National Laboratory

ISBN 87-550-0777-5 ISSN 0106-2840 ISSN 0106-407X . –

Risø Repro 1981

CONTENTS

				Page
ABB	REVIAT	IONS AND	UNITS	6
1.	INTRO	DUCTION	• • • • • • • • • • • • • • • • • • • •	9
2.	FACIL	ITIES		11
3.	ENVI R	ONMENTAL	MONITORING AT RISØ, BARSEBÄCK AND	
	RINGH	ALS IN 1	980	13
	3.1.	Gross ß	-activity in fresh water from Risø	13
	3.2.	Marine	environmental monitoring at Barsebäck	
		and Rin	ghals	14
		3.2.1.	y-emitting radionuclides in brown algae	18
		3.2.2.	y-emitting radionuclides in benthic	
			invertebrates	26
		3.2.3.	y-emitting radionuclides in fish	27
		3.2.4.	y-emitting radionuclides in sea	
			sediments	27
4.	PALLO	UT NUCLI	DES IN THE ABIOTIC ENVIRONMENT	29
	4.1.	Air		29
		4.1.1.	Strontium-90	29
		4.1.2.	Cesium-137	31
		4.1.3.	Short-lived y-emitting nuclides in air	33
	4.2.	Stronti	um-90 and various γ-emitters in	
		precipi	tation	34
	4.3.	Fresh w	ater	41
		4.3.1.	Strontium-90 in ground water	41
		4.3.2.	Cesium-137 in fresh water from	
			Danish lakes	45
	4.4.	Stronti	um-90, Cesium-137 and Cesi ¹¹ 134 in	
		sea wat	er in 1980	47
	4.5.	Stronti	um-90 in soil collected in 1978	56
	4.6.	Sedimen	ts	57
		4.6.1.	Strontium-90 in sediments collected	
			at Barsebäck and Ringhals in 1979	57
		4.6.2.	Cesium-137 in sediments collected	
			in Roskilde Fjord	58

•

		Page
DANIS	H FOOD AND VARIOUS VEGETATION	60
5.1.	Strontium-90 and Cesium-137 in dried milk	
	from the entire country	60
5.2.	<pre>Presh milk (no samples)</pre>	67
5.3.	Strontium-90 and Cesium-137 in grain from	
	the entire country	67
5.4.	Strontium-90 and Cesium-137 in bread from	
	the entire country	71
5.5.	Strontium-90 and Cesium-137 in potatoes from	
	the entire country	73
5.6.	Strontium-90 and Cesium-137 in vegetables	
	and fruits from the entire country	74
5.7.	Strontium-90 and Cesium-137 in total diet	
	from the entire country	76
5.8.	Strontium-90 and Cesium-137 in miscellaneous	
	foodstuffs	7 9
	5.8.1. Strontium-90 and Cesium-137 in meat	79
	5.8.2. Strontium-90 and Cesium-137 in fish	80
	5.8.3. Strontium-90 and Cesium-137 in	
	various animal foods	82
	5.8.4. Strontium-90 and Cesium-137 in	
	various vegetable foods	82
5.9.	Estimate of the mean contents of 90 Sr and 137 Cs	
	in the human diet in Denmark in 1980	82
5.10.	Grass collected around Risø	87
5.11.	Sea plants	88
	5.11.1. Sea plants collected in Roskilde Fjord	88
	5.11.2. Brown algae collected in Danish waters	
	in 1980	89
STRON	TIUM-90 AND CESIUM-137 IN MAN IN 1980	92
6.1.	Strontium-90 in human bone	92
6.2.	Cesium-137 in the human body	104
TRITI	UM IN THE ENVIRONMENT	106
7	Introduction	106
7.2.	Assay of tritium in low-level amounts	106
	-	
	DANIS 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10. 5.11. 5.11. STRON 6.1. 6.2. TRITI 7.1. 7.2.	 DANISH FOOD AND VARIOUS VEGETATION 5.1. Strontium-90 and Cesium-137 in dried milk from the entire country 5.2. Fresh milk (no samples) 5.3. Strontium-90 and Cesium-137 in grain from the entire country 5.4. Strontium-90 and Cesium-137 in bread from the entire country 5.5. Strontium-90 and Cesium-137 in potatoes from the entire country 5.6. Strontium-90 and Cesium-137 in vegetables and fruits from the entire country 5.7. Strontium-90 and Cesium-137 in total diet from the entire country 5.8. Strontium-90 and Cesium-137 in miscellaneous foodstuffs 5.8.1. Strontium-90 and Cesium-137 in meat 5.8.2. Strontium-90 and Cesium-137 in fish 5.8.3. Strontium-90 and Cesium-137 in fish 5.8.4. Strontium-90 and Cesium-137 in various animal foods 5.9. Estimate of the mean contents of 90Sr and ¹³⁷Cs in the human diet in Denmark in 1980 5.11. Sea plants 5.11. Sea plants collected in Roskilde Fjord 5.11.2. Brown algae collected in Danish waters in 1980 STRONTIUM-90 AND CESIUM-137 IN MAN IN 1980 6.1. Strontium-90 in human bone 6.2. Cesium-137 in the human bone 7.1. Introduction 7.2. Assay of tritium in low-level amounts

			Page
8.	TRANS	URANICS IN ENVIRONMENTAL SAMPLES	113
	8.1.	Naterials and methods	113
	8.2.	Results and discussion	114
		8.2.1. Sea water	114
		8.2.2. Sediments	116
		8.2.3. Sea plants	117
		8.2.4. Mussels	119
9.	MEASU	REMENTS OF BACKGROUND RADIATION IN 1980	121
	9.1.	Instrumentation	121
	9.2.	State experimental farms	121
	9.3.	Rise environment	124
	9.4.	Gylling Nes environment	127
	9.5.	Great Belt and Langeland Belt areas	129
	9.6.	The Baltic island, Bornholm	131
	9.7.	Discussior	132
10.	CONCL	USION	133
	10.1.	Environmental monitoring at Rise, Barsebäck	
		and Ringhals	133
	10.2.	Nuclear-weapon debris in the abiotic	
		environment	133
	10.3.	Fallout nuclides in the human diet	134
	10.4.	Strontium-90 and Cesium-137 in humans	135
	10.5.	Tritium in environmental samples	135
	10.6.	Plutonium in environmental samples	135
	10.7.	Background radiation	136
ACK	NOWLED	GEMENTS	137
APP	ENDICE	S	138
APP	ENDIX	A. Calculated fallout in Denmark in 1980	138
APP	ENDIX	B. Statistical information on population	
		density, area of the zones,, and milk,	
		grain, vegetable, and fruit production	
		in the zones	13 9
APP	ENDIX	C. A comparison between observed and predicted	
		levels in the human food chain in Denmark	
		in 1980	140
APP	ENDIX	D. Pallout rates and accumulated fallout	
		(mCi ⁹⁰ Sr km ⁻²) in Denmark 1950-1980	143
REF	ERENCE	\$	146

-

ABBREVIATIONS AND UNITS

```
joule: the unit of energy; 1 J = 1 Nm (= 0.239 cal)
J:
Gy: gray: the unit of absorbed dose = 1 J kg<sup>-1</sup> (= 100 rad)
Sv: sievert: the unit of dose equivalent = 1 J kg<sup>-1</sup> (= 100 rem)
Bq: becquerel: the unit of radioactivity = 1 \text{ s}^{-1} (= 27 pCi)
cal: calorie = 4.186 J
rad: 0.01 Gy
rem: 0.01 Sv
Ci: curie: 3.7 - 10<sup>10</sup> Bq (= 2.22 - 10<sup>12</sup> dpm)
     tera: 1012
T:
     giga: 10<sup>9</sup>
G:
     mega: 106
H:
     milli: 10-3
n:
     mikro: 10-6
u:
n: nano: 10-9
p: pico: 10<sup>-12</sup>
f: feats: 10-15
     atto: 10-18
a:
cap: caput: (per individual)
TNT: trinitrotoluol; 1 Mt TNT: nuclear explosives equivalent
     to 10<sup>9</sup> kg TNT.
cpm: counts per minute
dpm: disintegrations per minute
OR: observed ratio
CP: concentration factor
FP: fission products
wR: micro-roentgen, 10<sup>-6</sup> roentgen
S.U.:pCi 90Sr (g Ca)<sup>-1</sup>
O.R.:observed ratio
M.U.:pCi 137Cs (g K)-1
```

V: vertebrae male **m:** f: female 3 nSr: natural (stable) Sr eqv. mg KC1: equivalents mg KC1: activity as from 1 mg KC1 (~ 0.88 dpm) standard deviation: $\sqrt{\frac{\Gamma(\bar{x}-x_i)^2}{(n-1)}}$ S.D.: standard error: $\sqrt{\frac{\Gamma(\bar{x}-x_i)^2}{\Gamma(n-1)}}$ S.E.: U.C.L.: upper control level L.C.L.: lower control level sum of squares of deviation: $\Gamma(\bar{x}-x_i)^2$ S.S.D.: degrees of freedom f: s²: variance v²: ratio between the variance in question and the residual variance probability fractile of the distribution in question P: coefficient of variation, relative standard deviation π: ANOVA: analysis of variance relative standard deviation 20-33% A: relative standard deviation >33%, such results are B: not considered significantly different from zero activity below detection limit **B.D.L.:** In the significance test the following symbols were used: * : probably significant (P > 95%) ** : significant (P > 99%) ***: highly significant (P > 99.9%)

1. INTRODUCTION

<u>1.1.</u>

The present report is the twenty-fourth of a series of periodic reports (cf. ref. 1) dealing with measurements of radioactivity in Denmark. The organization of the material in the present report corresponds to that of last years report. After the introduction and a chapter on organization and facilities there follows a chapter on environmental monitoring around nuclear facilities (Risø, Barsebäck and Ringhals). Chapter four deals with fallout nuclides in the abiotic environment, i.e. air, water and soil. Chapters five and six comprise fallout nuclides in the human diet and human tissues, respectively. Chapter seven is devoted to environmental tritium studies. Plutonium and Americium in environmental samples are treated in chapter eight, and external radiation in chapter nine. The names of the authors of each chapter appear at its head.

The Becquerel has now replaced the Curie, however, in tables (mean values) and figures the Curie is shown for comparison. In the figures we have used the right-hand ordinate for Curie.

1.2.

The methods of radiochemical analysis²⁻⁴) and the statistical treatment of the results¹²) are still based on the principles established in previous reports¹).

<u>1.3.</u>

The environmental monitoring programme for Risø National Laboratory has been revised. Total β -measurements are only performed on waste water. The detailed tables of the programme appears in January-June 1980 and July-December 1980.

- 10 -

1.4.

The report contains no information on sample collection and analysis except in cases where these procedures have been altered.

1.5.

In 1980 the personnel of the Environmental Control Section of the Health Physics Department consisted of two chemists, one biologist, eight laboratory technicians, two sample collectors, and two laboratory assistants. The Section for Electronics Development continued to give assistance with the maintenance of counting equipment, with the interpretation of γ -spectra and with data treatment. The programme (cf. 2) used in the calculations of ⁹⁰Sr and the γ -analysis, as well as the programme for data treatment, were developed by this Section.

1.6.

The composition of the average Danish diet used in this report is identical with that proposed in 1962 by Professor E. Hoff-Jørgensen, Ph.D. 2. FACILITIES1,6,7,8)

By J. Lippert

2.1. Detectors

The activity of the samples is measured as follows:

Alpha $(^{239}Pu, ^{241}Am)$: 16 solid-state surface barrier detectors connected to four multichannel analyzers (64 channels per detector) and another two for total alpha counting.

Beta (⁹⁰Y mainly): Six "multidetector"-systems each containing 5 sample counters and a common anticoincidence shield are now put into regular use. This type of detector has replaced the mechanical sample changers previously used.

Gamma (natural and fallout isotopes): 4 Ge(Li) detectors in 10 cm lead shields and connected to a 8192-channel analyzer with four-input facility. One further Ge(Li) detector mounted on a tripod and a 4096-channel analyzer are used for field measurements, and a $8" \times 4"$ NaI(Tl) in an underground shielded room is used for whole-body counting. The Ge(Li) detectors have an efficiency of > 20% (relative to $3" \times 3"$ NaI(Tl)).

2.2. Data treatment

Measured spectra are transferred to a Burroughs B6700 computer for evaluation.

A program system STATDATA¹⁶) is developed for registration and treatment of environmental measurements including multichannel analyzer spectra. To date, approximately 50 000 sets of results have been registered covering the period from 1957.

Fig. 3.1.1. Sampling locations at Risø National Laboratory. 1-5: locations for rain bottles (0.03 m² each), ion-exchange columns (0.06 m² each) and grass samples. S: waste water and grass. R: 1 m² daily rain collector. (x): 10 m² monthly ionexchange rain collector. (b): new air collector.

3. ENVIRONMENTAL MONITORING AT RISØ, BARSEBÄCK AND RINGHALS IN 1980

by H. Dahlgaard

3.1. Gross *B*-activity in fresh water from Rise

Fig. 3.1.2 shows the control chart for S (cf. fig. 3.1.1). The yearly means for S in 1980 was 55 eqv. mg KCl 1^{-1} (1979: 45). Fig. 3.1.3 shows the activity in waste water.

<u>Fig. 3.1.3</u>. Annual total- β mean levels in waste water collected at Rise 1958-1980.

3.2. Marine environmental monitoring at Barsebäck and Ringhals

The radiological monitoring of the marine environment around the two nuclear power plants at Barsebäck and Ringhals in Sweden¹) was continued in 1980.

Figures 3.2.1.1, 3.2.1.2, and 3.2.1.3 show the sampling loca-tions.

<u>Fig. 3.2.1.1</u>. Sampling locations at Barsebäck. 49 and 50 indicate fishing tracks.

<u>Pig. 3.2.1.2</u>. Sampling locations at Ringhals. 14 and 16 indicate fishing tracks.

Fig. 3.2.1.3. Sampling locations in the Sound.

This programme is sponsored by the Nordic Liaison Committee for Atomic Energy (Nordisk kontaktorgan for atomenergi) as part of a co-operative activity together with the Department of Radiation Physics, University of Lund, Sweden. Tables 3.2.1.1, 3.2.1.2, and 3.2.1.3 show the radionuclide concentrations found by Y-spectrometric analysis in brown algae sampled near Barsebäck and Ringhals in 1980. Table 3.2.1.4 presents results from the Sound (Øresund) further away from Barsebäck.

As noted in the preceding reports¹) the concentration of the reactor-produced nuclides, 60_{CO} , 58_{CO} , 54_{Min} , 65_{Zn} , and 110_{MAg} ,

Date of sampling	1 A	pril	12 August						
Station No.**	24	23•	24	24	26	23•	23•		
Weight fresh/dry	5.35	6.58	3.93	3.75	4.54	3.60	7.57		
Species	Fu.ve.	Fu.ve.	Fu.ve.	Fu.se.	Fu.ve.	Fu. ve.	20.ma.		
Distance from outlet in km	1.4	2.8	1.4	1.4	4.0	2.8	2.8		
60 _{Co}	330	7.6	400	450	49	18.5	13.4		
58 _{CO}	14.2	0.2 A	65	73	7.5	2.2	2.5		
54 _{Mn}	9.2	0.46	17.0	17.4	2.9	0.79	0.6 A		
65 _{2n}	56	1.37	52	59	5.2	2,1	2.6		
110mAg	0.8 A								
137 _{C8}	2.6	1.97	3.5	3.6	3.2	3.8			
131 _I	1.3 A	0.69							

<u>Table 3.2.1.1</u>. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.), Fucus serratus (Fu.se.) and Zostera marina (Zo.ma.) collected at Barsebäck in 1980 (Unit: Bg kg⁻¹ fresh weight)

* Locations south of the outlet; the other locations were situated north of the outlet.

**Cf. Fig. 3.2.1.

.

^{3.2.1.} y-emitting radionuclides in brown algae

Station No.**	7	7	6	5	٠	٠		12	12	*	110	130
Weight fresh/dry	4-36	3.51	4-42	4.70	3.82	3.00	3.95	4-4)	3-96	4.15	4.01	4.91
Species	Pa.ve.	A6-no.	Pa.ve.	Pa.ve.	Pa. 44.	NS - 110 -	Pa-se-	Pa.ve.	Pa-se-	Pa.se.	Fu-vt-	Ps.ve.
Distance from outlet in No	9-2	0-2	1.9	4.1	4-8	4.8	4-8	6.)	6-3	1.1	1.9	4.1
64 _{Cb}	52	51	8-0	4.6	3.9	3-6	5.3	4-2	6.7	23	8-6	1.46
SHCo	22	14.7	3.7	2-2	2-6	1-2 A	2-6	2.0	3-0	13.0	3.7	0.6 A
54 _{PDs}	4.4	1.6 A	0-5 A		0-3 A		0.3 B		9-4 A	1.0 A	8-5 A	
65 _{2a}	122	147	11.2	7.0	5.4	5-9	9.6	J-2	5_#	63	41	4-5
137 _{CB}	3.9	3.7	2.7	2.3	3.3	2.8	3-5	4.3	4.1	3.1	2.7	2-5
11 003. g	3.2	4.5	9-4 A							1-46	1- 14	
134 _{CS}	0.5 A	9.2 A						9-3 A		0.4 A	0.) A	

Table 3-2-1-2. Gause-smitting radionuclides in Perms vasiculoses (Pe.ve.), Ascephyllum medneum (As.me.) and Perms servatus (Pe.me.) collected at Ringhals July 15 and 16, 1999. (Mpit: Og hg⁻¹ freeh weight)

* Incations south of the outlet; the other locations were situated morth of the outlet.

**Cf. fig. 3.2.2.

Station No.00	7	7	6	5	•	12	9 •	11-	13*
Weight fresh/dry	3.46	8.13	3.45	4.35	3.65	3.76	3.97	3.67	3.70
Species	fu.se.	epiphyt	Fu. ve .	Fu.ve.	fy. ve .	Fu-se-	fu.ve.	Fu.se.	fu.ve.
Distance from outlet in km	0.2	0.2	1.9	4.1	4.8	6.3	1.1	1.9	4.1
60 _{Co}	98	18.8	14.7	4.6	4.4	6.1	15.7	25	4.0
Se _{Co}	22	4.3	2.7	1.15	0.93	1.25	4.1	5.0	0.77
S4 _{Mn}	3.1	1.6 A	0.99	0.3 8	0.4 A	0.4 A	0,71	0.8 A	0.3 A
•Szn	360	171	27	15.7	18.2	9.3	60	134	18.6
137 _{C#}	4.7	3.0	4.5	2.6	3.5	4.0	2.6	3.4	3.5
110mAg	11.0	25	1.01	0.61	0.5 A		5.8	4.8	1.17

<u>Table 3.2.1.3</u>. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.), Fucus serratus (Fu.se.) and epiphytic green algae collected at Ringhals October 5, 1980. (Unit: by kg^{-1} fresh weight)

* Locations south of the outlet; the other locations were situated north of the outlet. **Cf. Fig. 3.2.2.

take of skapiling	t April	t April	t April	T April	1) Angest	t) August	1) August	1) August	8 Argust	H dagest	18 August	22 December
handle inter	Linkson	Mitter State	Bylainghaty	Belesniger #	Salthein #	Littlege	Soltholo S	Soltheim S	Service	3rager	St anget	Shorshoved
Rought Environmy	5.51	5-10	7. 19	4.13).B)	3.00	4.65	3.97	4.43	4.52	4.50	4-57
Matanar from	17.0	39.2	33.0	¥°-4 .	13.7	17.8	w.+	10_4	5. 4	25.7	29.7	34.4
Space of a	Pa-m-	Pa-14-	Pa-10-	Po.or.	Pa.we.	Pa. 10.	Pa. 44.	Se . 80 .	P4.54.	Fa. va.	Er.m.	Fu-se-
****	e. 35	4.35	0-53	0.) y	1.34	3.03	8.40 L		*. 45	4. 37.		4.76
138 _{CB}	2.4	1.71	1.65	2.1).0	3-2	2.4	9.27 🔺	2.9	2.4	3.24	2. 7
77 <u>87</u>												1.44
****												8_44
5-4 ₆₆₆	8. M A				0.29 A							
1728		1.60	0-2 B	1.66 A								
63 ₈₀				4-25 A								

<u>Table 3-2-5-4</u>. Spece-matting subungelists in Paras voicelapse (Perver), Paras services (Perser) and Indices agrees (In-ver) collected in the Same in 1980- (Bott: 8g by⁺² freeh voids)

MCF. Php. 3-2-1-3.

decreases with distance from the outlet in a similar manner.

The decrease in concentration 125 km along the Swedish West Coast north of the Barsebäck outlet has been described by a power function: $A = k X^{-1.4 \pm 0.1}$, where A is the activity concentration in Fucus and X the distance in km¹⁷.

The long-distance data from the Sound (Table 3.2.1.4) indicate that only a minor fraction of the activity reaches the Danish coast, and the main part of the plume from Barsebäck remains near the Swedish west coast.

Expressing the decrease in activity with distance from Ringhals by a power function, $A = kX^{-\beta}$, gives β -values of 0.83 and 0.95 northwards for July and October 1980, respectively. Southwards, the corresponding figures are 1.06 and 0.87. A pooling of the results from 1977-1980 yields β -values of 0.80±0.04 (S.E., n = 7) and 0.95±0.04 (S.E., n = 6) northwards and southwards, respectively.

Table 3.2.1.5 shows a comparison of the 3 fucoids Fucus vesiculosus, Fucus serratus, and Ascophyllum nodosum. Only 60 Co results for Fucus vesiculosus and Fucus serratus differ significantly from unity. The ratio: 60 Co/ 58 Co tends to increase in the order: Fucus vesiculosus < Fucus serratus < Ascophyllum nodosum, meaning that the "integration time" rises in the same

r

Isotope	Fu.ve./Fu.se.	tu.ve./As.no.
60 _{Co}	0.70±0.07 (n=6)	1.1±0.3 (n=5)
58 _{Co}	0.88±0.06 (n=5)	2.9±0.8 (n=5)
54 _{Mn}	1.1 ±0.2 (n=3)	2.3 (n+1)
65 _{2n}	0.90±0.20 (n=5)	1.4±0.3 (n=5)
110m _{Ag}	1.0 ±0.2 (n=2)	1.0t0.2 (n=3)
137 _{CS}	1.0 ±0.1 (n=4)	1.1±0.1 (n=2)
131 _I	1.0 (n=1)	0.\$ (n=1)
95 ₂₁	1.1 (n=1)	

Table 3.2.1.5. Ratios of activity concentrations on fresh weight basis in Fucus vesiculosus (Fu.ve.), Fucus serratus (Fe.se.) and Ascophyllum nodosum (As.no.) collected at Ringhals 1978, 1979 and 1980

The error term was 1 S.E.

manner. This may be explained by differences in the mean age of the various species sampled.

Tables 3.2.1.6-3.2.1.8 report transfer factors calculated as

$$TF = \frac{A_{i}}{\frac{1}{m} \sum_{j=1}^{m} D_{j}} \cdot \left(\frac{Bg \ kg^{-1}}{GBg \ month^{-1}}\right)$$

and decay-corrected transfer factors calculated as

$$DTF_{m} = \frac{A_{i}}{\sum_{j=1}^{m} D_{j}e^{-\lambda(i-j)}} , \left(\frac{Bg \ kg^{-1}}{GBg \ (m \ months)^{-1}}\right)$$

where A_i is the activity of the sample collected in month i (Bq kg⁻¹ fresh weight), D_j is the discharge during month j (Bq month⁻¹), m is the number of months in the calculation, and λ is the radioactive decay constant (month⁻¹). Monthly discharges are from Reference 36. In the TF-calculation m is 12 months, whereas in the DTF-calculation m is chosen as the number of months for which DTF-values for 60 Co and 58 Co are equal. The "integration-time" is defined as this last m-value. If more months than the "integration time" are included in the calculation, DTF for 60 Co (T₄ ~ 1922 d) will be smaller than DTF for

Table 3.2.1.6. Transfer factor, TF, without decay-correction. Fucus vesiculosus collected at Barsebäck, location 24, 4.4 km month of the outlet

•

•

.

۹

	Sampling	Discharge th	e preceding mths	TF _ <u>Bq kg⁻¹</u>		
Isotope	døte	GBg month ⁻¹	rel. S.D.V	GBq month ⁻¹		
•• _{Co}	1/4-80	2.06	49	161		
•	12/8-80	2.62	65	155		
60 _{Co mten} :	1980			150 ± 3		
	1979			170 ±41		
	1978			122 ±65		
	1977			168 ±46		
SACo	1/4-80	0.63	92	22.6		
•	12/6~80	0.66	103	99.0		
Seco mean:	1980			61 ±39		
	1979			25.3± 9.5		
	1978			68 ±30		
	1977			75 t25		
J4:5	1/4-80	0.156	95	58.9		
•	12/8-80	0.153	>>	111.0		
54 _{Mn mean:}	1980			85 ±26		
	1979			79 ±10		
	1978			77 •27		
	1977			133 ±25		
65 _{2n}	1/4-80	0.455	65	1 22		
•	12/8-80	0.538	80	96		
652n mean:	1980			109 ±13		
	1979			141 ±40		
	1978			132 ±72		
	1977			157 ±43		
110mAg	1/4-80	0.064	74	12.9		
110mAg mean:	1980		· <u></u> ··	12.9		
	1979			14.3± 2.1		
	1978			16.4±11.7		
	1977			14.7± 7.5		
51Cr mean:	1979			14,8		
	1978			1.5		
	1977			5,6		

The error term was 11 S.E.

	Sampling	Discharge th	e preceding	TF = -	kg ⁻¹
Isotope	dete			GB	g month ⁻¹
•		GBg month ⁻¹	rel. S.D.V	Location 6	Location 9
60 _{C0}	15/7 -80	7.25	70	1.10	3.15
-	5/10-80	7.60	71	1.93	2.07
60 _{Co mean:}	1980			1.52:0.42	2.61±0.54
	1979			2.40	2.06±0.38
	1978			1.51±0.31	1.8910.69
	1977			4.09±0.56	6.90±0.90
58 _{Co}	15/7 -80	1.83	95	2.00	7.09
•	5/10-80	1.60	112	1.66	2.54
Seco mean:	1980			1.83±0.17	4.82±2.28
	1979			1.72	2.15±0.99
	1978			0.85±0.38	1.70±0.76
	1977			1.21±0.67	2.50±1.02
54 _{Mn}	15/7 -80	0.46	88	1.09	2.14
•	5/10-80	0.45	90	2.21	1.59
54 _{Hn mean:}	1980			1.65±0.56	1.8610.28
	1979			2.06	2.81±0.94
	1978			1.90±0.40	1.92±0.58
	1977			4.70±2.36	3.78:0.52
65 _{2n}	15/7 -80	7.80	172	1.43	8.05
•	5/10-80	3-41	79	7.94	17.5
65 _{2n mean:}	1980	·····		4.6813.26	12.8±4.7
	1979			7.69	13.0±3.9
	1978			4.54±0.08	10.6±5.1
	1977			12.9:7.9	22.7±10.2
110mAg	15/7 -80	0.015	130	28.4	100
•	5/10-80	0.078	250	13.0	75
110m _{Ag means}	1980	میں ہے ہیں 200 کا نام میں نام ہیں نام ہیں ا		20.717.7	88 ±12
	1979			6.35	9,2±2,3
	1978			4.80±0.22	5.01
	1977			45,8	49.0

<u>Table 3.2.1.7</u>. Transfer factor, TF, without decay-correction. Brown algae (from Tables 3.2.1.2 and 3.2.1.3) collected at Ringhals, location 6, 1.9 km north of the outlet and location 9, 1.1 km south of the outlet

The error term was ±1 S.E.

the relatively short-lived 58 Co (T₁ ~ 71.3 d), as 60 Co-releases not included in the sample are included in the calculation, whereas the corresponding 58 Co discharges have decayed. The calculation of the "integration time" by DTF-values is made on the assumption that the algae cannot distinguish between the two isotopes, i.e. they are assumed to be in the same physicochemical state.

<u>Table 3.2.1.8</u>. Decay-corrected transfer factors, DTF. Fucus vesiculosus collected at Barsebäck, location 24, 1.4 km north of the outlet. (Unit: Bq (m months) kg^{-1} GBq⁻¹)

Dite of sampling	770615	771022	771206	780417	7906 15	780908 *	781210	790406	79 06 19	800107	800401	800812
a month	7	7	4	8	8	3	10	13	16	16	19	5
60 _{Co}	31.5	21.9	23.5	3.33	8.13	24.1	29.9	20.6	7.14	9.20	8.53	28.2
58 _{Co}	28.8	21.9	23.7	3.30	7.67	23.3	30.3	20.6	7.08	8.69	9.07	27.3
54 _{Mn}	41.8	18.4	22.8	3.22	9.01	16-6	18.4	12.3	7.00	7.88	5.78	29.2
65 _{Zn}	34.1	22.6	25.0	5.14	9.36	22.7	46.0	30.9	10.7	13.2	12.7	24.3
110mAg	2.6	4.2		0.66			3.74	2.53	1.45	1.08	0.96	
51 _{Cr}	6.6			0.77				10.5				

*Mean of 2 samples.

Values of the normal transfer factor, TF, and the decay-corrected transfer factor, DTF, from this investigation have been reported and discussed earlier^{1,32}).

In Tables 3.2.1.6 and 3.2.1.7 normal transfer factors, TF, from Barsebäck and Ringhals from 1980, and mean values from 1977-1980 are reported. These values can be extrapolated to other distances by the power functions mentioned above. As the monthly discharges are very different the TF-values will vary even if the plants accumulate the same fraction of the discharged nuclides throughout the year. Differences in growth and perhaps in temperature also contribute to the variation. The fairly good reproducibility of the TF-value for most nuclides from both Barsebäck and Ringhals is therefore remarkable. These TFvalues, calculated on the basis of controlled discharges during several years, can be used to estimate the magnitude of an uncontrolled release of the basis of a few Fucus samples. A bias may occur due to differences in chemical specification. However, this will not be serious as bioindicator data reports the biologically available fraction and thereby the potential transport to man.

A comparison of the TF-values from Barsebäck and Ringhals indicates that even if the values are calculated for the same distance, or transformed to the same distance by the power functions established above, the TF-values for radiocobalt, 54 Mn, and 65 Zn are much higher in the Barsebäck than in the Ringhals area, whereas the 110m Ag values are of the same order of magnitude. Furthermore, at Barsebäck the TF-values for 65 Zn are of the same magnitude as those for 60 Co and 54 Mn, whereas at Ringhals the 65 Zn values are higher than those of 60 Co and 54 Mn. Thus, it is evident that differences between Barsebäck and Ringhals are not limited to absolute values of the transfer factors (e.g. due to hydrodynamical differences) but extend to ratios between different pairs of radionuclides.

These apparent differences in accumulation of the various nuclides between the two sites could be explained by differences between the environments. For instance, salinity is higher, approx. 20 o/oo, in the Finghals area, whereas it is lower, averaging approx. 10 o/oo, in the Barsebäck area. However, a more reasonable explanation is that the radionuclides may be discharged in different physico-chemical forms from the two plants due to differences in waste-water treatment.

Decay-corrected transfer factors, calculated for the number of months, m, that make 60 Co and 58 Co values approximately equal, are reported in Table 3.2.1.8. "m" is denoted the "integration time", which was described previously^{1,32}). As the DTF-values are independent of the physical decay of the nuclides, they are supposed to show the transfer of the metals independently of the decay constants. The variation observed for the DTF-values is apparently not correlated to season (cf. Table 3.2.1.8) as previously suggested¹.

3.2.2. γ-emitting radionuclides in benthic invertebrates In 1980, 2 mussel samples from Barsebäck were analysed (cf. Table 3.2.2.1); of these one (location 26) is comparable with a Fucus sample (cf. Table 3.2.1.1).

<u>Table 3.2.2.1</u>. Gamma-emitting radionuclides in Mytilus edulis collected at Barsebäck in 1980. (Unit: Bq kg⁻¹ fresh weight)

	Date	Sampling* location	Depth in m	Weight fresh/dry	137 _{Cs}	58 _{Co}	65 _{2 n}	60 _{Co}
Soft part	12/8	26	0.5	21	0.165	0.24	1.34	1.74
Shells	•	•	*	1.15			0.81 A	1.94
Soft part	13/8	49	7	9.7	0.36	0.29 A	2.0	1.70

*Cf. Fig. 3.2.1.1.

In Ringhals, 4 mussel samples were collected at the same sites as brown algae, and activity ratios were calculated as previous ly^{1} (Table 3.2.2.3). The mean values from 1977-1980 indicate that Fucus from Ringhals concentrates the corrosion products to a level approximately 5 times higher than Mytilus on a fresh weight basis. The dose commitment to a hypothetical critical individual consuming 20 kg Mytilus edulis soft parts yearly would be approximately 3 μ Sv y⁻¹ based on the 4 samples. Thus, this extreme approach gives only 0.3% of the yearly background radiation dose.

<u>Table 3.2.2.2.</u> Gamma-emitting radionuclides in benthic animals collected at Ringhals in 1980. (Unit: Bq kg⁻¹ fresh weight)

Species	Date	Sampling [#] location	Weight. fresh/dry	Depth in m	137 _{C8}	60 _{Co}	58 _{Co}	⁶⁵ Zn	^{110m} Åg	54 _{Mn}
Mytilus edulis (soft part)	15/7	7	7.2	0.5	0.53	9.1	2.4	90	1,56	0.25 A
* * * *	•	8	7.0	0.2-1.0		2.5		6.8 A		
Cyprina islandica (soft part)	16/7	16	5.2	18	0.94	0.46		0.90	0.12 A	
" (shells)	-	-	1.06	•	0.60	1.44				
Starfish	20/7	14	3.6	15	1.02	0.55		10.4	0,59 A	0.21 A
Nytilus edulis (soft part)	5/10	7	7.6	0.5	0,38	4.8	0,85	122	3.3	
	-	12	5.3	•	0.97	0.62		9.2	0.24 B	
Cyprine islandica (soft part)	11/10	16	5.9	18	0-84	0.48		0.51	0.15 A	0.09 A

*Cf. Fig. 3.2.1.2.

Brown	algae	Location	Date	60 _{Co}	58 _{Co}	54 _{Mn}	65 _{2n}	137 _{CS}	110mAg
Fucus	vesiculosus	7	15/7	0.18	0.11	0.06	0.74	0.14	0.49
Fucus	vesiculosus	8	•	0.64			1.26		
Fucus	serratus	7	5/10	0.05	0.04		0.34	0.08	D.30
Fucus	serratus	12	•	0.10			0.99	0.24	
Fu.ve	. and Fu.se.								
Mean	1977-1980			0.20	0.16	0.07	0.52	0.30	0.30
S.E.				0.05	0.04	0.01	0.11	0.07	0.09
n				12	9	3	10	7	5

<u>Table 3.2.2.3</u>. Activity ratios on fresh weight basis, Mytilus edulis soft part (from Table 3.2.2.2) to Brown algae (from Tables 3.2.1.2 and 3.2.1.3) collected at Ringhals in 1980

3.2.3. y-emitting radionuclides in fish

Corrosion-product levels in fish caught near Barsebäck and Ringhals are low (Table 3.2.3.1). The dose commitment to a hypothetical critical individual consuming 100 kg fish meat yearly from the vicinity of Ringhals would be approximately 5.5 μ Sv y⁻¹ or 0.5% of the yearly background radiation dose based on the results from Table 3.2.3.1. Of this dose the power plant is responsible for only approximately 0.7 μ Sv, as the radiocesium originates from Windscale and from fallout.

<u>Table 3.2.3.1</u>. Gamma-emitting radionuclides in fish meat collected at Barsebäck August 13, 1980 and at Ringhals July 20, 1980. (Unit: Bg kg⁻¹ fresh weight)

Location	Species	Species 137 _{Cs} 65 _{Zn}		60 _{CO}	134 _{Cs}
Barsebäck 5	0 Flounder	1.71	0.58 A		
Ringhals 14	Sea scorpi	on 4.1	4.8	0.90 A	
	Dab and pl	aice 3.1	1.35	0.19 A	0.21 A
• •	Catfish	4.5	0.87	0.29	0.21

3.2.4. y-emitting radionuclides in sea sediments

As previously sediments sampled by the HAPS bottom corer¹⁸) were sliced in 3-cm thick sections and analysed by γ -spectrometry

(cf. Tables 3.2.4.1 and 3.2.4.2). 60 Co originating from the power plants was detectable at both sites.

D-A-	Depth	137	Cs	60 ₀	:o	134 _{Cs}			
Date	in CM	Bg kg ⁻¹	Bg m ⁻²	Bg kg ⁻¹	Bq m ⁻²	Bg kg ⁻¹	Bq m ^{−2}		
8/8	0-3	68	690	14.9	150	1.89	19.2		
•	3-6	34	390	1.39	16.3				
•	6-9	6.1	65						
•	9-12	11.4	139						
•	12-15	3.9	50						
•	15-18	2.1	24						
	0-18		1360		166		19.2		
20/12	0-3	72	850	20	230	2.0 A	23 A		
	3-6	38	420	3.4	38				
•	6-9	8.1	101						
	0-9		1370		268		23		

Table 3.2.4.1. Gamma-emitting radionuclides in sediment samples collected at Barsebäck location 38 in 1980

Table 3.2.4.2. Gauna-emitting radionuclides in sediment samples collected at Ringhals location 2 in 1980

Date	Depth in cm	137		60 _C	60 _{Co}		Cs	125 _{Sb}		
		Bq kg ⁻¹	Bq m ⁻²	Bg kg ⁻¹	Bq m ⁻²	Bq kg ⁻¹	Bq m ⁻²	Bg kg ⁻¹	Bg m ^{−2}	
20/7	0-3	23	480	8.6	18 1					
-	3-6	11.5	374	1.81	59					
-	6-9	6.3	217							
-	9- 12	lost	lost							
-	12-15	1.69	54							
	0-9		1070		240					
11/10	0-3	20	550	27	743	1.0 A	27 A	2.9 A	78 A	
-	3-6	11.0	370	2.1	73					
•	6-9	3.8	145							
	0-9		1070	<u> </u>	820		27		78	

. .

4. PALLOUT NUCLIDES IN THE ABIOTIC ENVIRONMENT

by A. Aarkrog and J. Lippert

4.1. Air

4.1.1. Strontium-90

The mean air activity level for 1980: 9.9 μ Bq ⁹⁰Sr m⁻³, i.e. 0.7 times the 1979 level. The maximum activity in 1980 was measured in May at 17.1 μ Bg ⁹⁰Sr m⁻³.

Table	4.1.1.	Strontium-90	in a	air	collected	at	Rise	in
19 8 0.	(Unit:	µBq m ⁻³)						

Month	Daily air filters	Weekly air filters
	Paper	Glass
January	6.3)
February	7.5	7.8
March	11.4	J
April	10.1	J
Mav	17.1	13.6
June	15.4	J
July	13.6	
August	9.6	
16/9-29/9*	5.6	
October*	9.7	
November*	6.1	
December	6.2	
1980	9.9	
1980 fCi m ⁻³	0.27	<u></u>

*Glass fibre filters

٠

Fig. 4.1.1. Strontium-90 in ground level air at Risø, 1957-1980.

Figure 4.1.1 shows the quarterly levels of 90Sr in air since 1957.

4.1.2. Cesium-137

Air samples were collected weekly by means of a new air sampler installed in 1979 at Risø. The sampler collects the air dust on 6 glassfibre filters each 56 × 48 cm². The filters collect approximately 275,000 m³ in one week. Similar samplers have been operated during 1980 in Bornholm and in Mors (NW-Jutland).

Table 4.1.2.1 shows the monthly 137 Cs concentrations in air from the three stations. It is evident that there was no local variation between the three. Hence global air activity in Denmark seems adequately monitored by one sampling station.

Month	Risø	NW-Jutland	Bornholm
January	5.9±1.2		5.5±0.6
Pebruary	5.2±0.6		5.6±0.9
March	11.1±2.3		11.1
April	11.4±2.2		8.7
Мау	15.6±2.6	17.8±5.0	14.4±0.04
June	16.2±3.4	12.0	14.9
July	13.1±2.1	9.6	13.1
August	9.6±3.5	8.1	10.6
September	4.7±0.6	6.3	5.2
October	2.6±0.3	3.0	3.1
November	3.1±0.7		3.6±0.6
December	5.6±1.0		4.4
1980	8.7		8.4
1980 fCi m ⁻³	0.24		0.23

<u>Table 4.1.2.1</u>. Cesium-137 in glass-fibre air filters collected once a week at three locations in Denmark in 1980. (Unit: μ Bg m⁻³)

The error term is the S.E. of the mean of the activity found in 4 or 5 weekly filters collected during a month. In case of no error term the filters have only been measured monthly. Strontium-90 analyses of the glassfibre filters from the old air sampler have revealed that the gas meter of the old sampler was inoperative in 1978 and in the first half of 1979. The gas meter underestimated the air volume passing through the filters in this period. The 137Cs results (and results of other Y-emitters in these air filters) from 1978 should be multiplied by 0.54, and from the first half of 1979 by 0.65 (cf. Risø-R-403¹) p. 38-41 and Risø-R-421[?]) p. 43-45). Table 4.1.2.2 shows the annual 137Cs concentrations in air collected at Risø since 1958.

Fig. 4.1.2. Cesium-137 in ground level air at Ris# in 1980.

The 137Cs concentrations in air in 1980 were lower than at any other time since measurements began.

-

Year	fCi m ⁻³	µBg m ⁻³
1958	4.2	155
195 9	13.1	480
1960	1.98	73
1961	2.3	84
1962	23	850
1963	66	2400
1964	31	1150
1965	10.6	390
1966	5.7	210
1967	2.1	79
1968	2.4	88
1969	2.4	91
1970	3.4	127
1971	2.7	98
1972	1.37	51
1973	0.47	17.3
1974	1.96	73
1975	1.30	48
1976	0.42	15.5
1977	1.62	60
1978	1.70	63
1979	0.62	23
1980	0.24	8.7

Table 4.1.2.2. Cesium-137 in air collected at Rise 1958-1980

4.1.3. Short-lived y-emitting nuclides in air

On October 16, 1980, China tested a nuclear weapon in the intermediate range (~ 0.1 Mt) in the atmosphere. Table 4.1.3.1 shows the various short-lived γ -emitters measured in air from Oct 20 to Dec 29, 1980, and Table 4.1.3.2 gives the results from Bornholm. As for ¹³⁷Cs we notice no local variation (cf. also Table 4.2.7).

Date	95 _{2r}	95 _{ND}	103 _{RU}	106 _{Ru}	131 _I	140 _{Ba}	140 _{La}	141 _{C@}	144 _{Ce}
20-24/10			1.1 A		6.5	·····			
24-27/10			2.6		13.8	6 B	3.9		
27/10-3/11	9.0	3.7	13.0		9.9	25	22	12.2	5 B
3-10/11	9.8	4.6	17.1	4 B ·	9.7	23	22	14.4	6 A
10-17/11	29	16.6	43	6 A	15.3	49	50	41	43 A
17-24/11	147	101	200	13.9	32	177	175	184	40
24/11-1/12	71	61	90	8 A	12.2	62	62	81	21
1-8/12	72	62	77	11.7	9.2	40	39	65	18
8-15/12	320	330	330	35	14.1	140	143	300	93
15-22/12	310	3 30	330	44	13.9	112	114	290	98
22-29/12	310	350	270	33	4 A	70	66	230	66

<u>Table 4.1.3.1</u>. Short-lived fission products in airborn debris from the Chinese test explosion 16 October 1980 collected in ground level air at Rise, October-December 1980. (Unit: μ Bq m⁻³)

<u>Table 4.1.3.2</u>. Short-lived fission products in airborn debris from the Chinese test explosion 16 October 1980 collected in ground level air at Bornholm, October-December 1980. (Unit: μ Bq m⁻³)

Date	95 _{2 r}	95 _{Nb}	103 _{Ru}	106 _{Ru}	131 _I	140 _{Ba}	140 _{La}	141 _{Ce}	144 _{Ce}
21-28/10	2.3	0.7 A	2.8		10.4	6 A	4.0	2.6	
28/10-4/11	8.9	4.2	11.8		11.1	17.0	14.8	8.9	6 A
4-10/11	14.8	7.0	21	5 A	12.2	24	26	18.1	7 A
10-18/11	68	43	87	8 A	25	107	100	87	B.D.L.
18-24/11	144	108	172	12 A	30	150	154	165	38
24/11 1979- 2/1 1980	270	330	210	24	B.D.L.	75	81	196	72

4.2. Strontium-90 and various y-emitters in precipitation

Samples of rain water were collected in 1980 from the State experimental farms (cf. fig. 4.2) in accordance with the principles laid down in Risø Report No. 63, p. 51¹).

Table 4.2.1 shows the results of the 90Sr determinations and Tables 4.2.2 and 4.2.3 the analysis of variance of the results.

Pig. 4.2. State experimental farms in Denmark.

The maximum concentration in precipitation occurred in March-April when the mean content in precipitation was 11.2 Bg 90Sr m⁻³ (cf. also the air measurements in 4.1.1), and the maximum fallout rate also occurred in May-June, 1.35 Bg 90Sr m⁻². The mean levels for ten State experimental farms were 4.3 Bg 90Sr m⁻² and 5.6 Bg 90Sr m⁻³. The fallout rate in 1980 was 0.70 times that observed in 1979. The 90Sr deposition in 1980 was 1.5 times higher in Jutland than in the Islands. The ANOVA showed a significant local variation in 1980.

Period	Unit	Tylstrep	Berris	gi daga	Aster	St. Jyn- devod	Blang- stedgård	Tystefte	Abed	Å kirkeby	Ladre- borg	Hean
ha-tab	Ng m ⁻³	6-3	3.5	10.4	4-8	6-0	4-1	6.7	7.3	7.3	7.3	5.8
192 - 1 69	Ng m −2	0.30	0.26	n.24	0.30	0.34	9-22	0.20	0.26	0.28	0.24	0.26
March Rowi)	Ng m ⁻³	24	9-2	12.2	6-3	8.4	8-0	10.7	11.4	19.2	13-1	11.2
11 CH-14	₩ s ⁻²	0.67	0.44	0.47	0-60	0.57	0.41	0.37	0-55	0.48	0.43	0.50
	Þq =-3	11.6	13.1	11.0	11.8	8-4	14-0	11.5	4.8	11.1	12.9	10.6
ney-Jone	Ng m ⁻²	1.47	2.0	1.35	2.5	1.49	0.69	0.91	0.79	1,28	1.01	1.35
	Bq =-3	6.0	4.6	4.7	5.1	5.3	4.5	4.6	3.9	7.3	6-6	5.1
Jerla-wed	Ng m ⁻²	0.89	1.00	1.28	1-32	1.32	0.89	0-83	0-63	1.05	0-69	0.99
	Ng m ⁻³	2-2	5.4	2.2	1.69	2.4	2.4	3.0	3.1	5.8	5-8	3.3
Sept-Oct	Ng m ⁻²	8.36	1.46	0.33	0.49	0.70	0.35	0.42	0.50	0.72	0.87	0.62
	₩ m ⁻³	3.4	3.3	3.2*	2.2*	5.5*	3.9*	3.7*	2.9	5.0	3.0	3.6
Nov-Dec	Ng m ⁻²	0.53	8.80	0.49	0-63	1.26	0-60	0.43	0.33	0.84	0.33	0.62
	aq m ^{−3} X	6-3	5.9	5.5	5-0	5.3	4.9	5-4	4-5	7.6	7.0	5.6
1960	Ng m ⁻² L	4.2	6.0	4.2	5.8	5.7	3.2	3.2	3.0	4.6	3.6	4.3
	pCi 1-1 ¥	0.17	0.16	0.15	0.13	0.14	0.13	0.15	0.12	0.20	0.19	0.15
1988	mCi km ^{−2} I	0.114	0.162	0.114	0.157	0.154	0.086	0-086	0.081	0.124	0.097	0.11
n precipita	tion I	0-666	1.010	0.758	1.174	1.069	0.651	0-583	0-684	0.613	0.510	0.77

Table 4.2.1. Strention-90 fall-out in Denmark in 1900 (sampling area at each location: (.147 m²)

41/11-17/12

 $^{\rm Am}$ precipitation from Met. Inst. are used for calculation of Bq m^{-2} .

<u>Table 4.2.2</u>. Analysis of variance of ln Bq m^{-3} precipitation in 1980 (from Table 4.2.1)

Variation	SSD	f	s ²	v ²	P
Between months	15.166	5	3.033	33.566	> 99.95%
Between locations	1.734	9	0.193	2.132	> 95%
Remainder	4.066	45			

<u>Table 4.2.3</u>. Analysis of variance of ln Bg m^{-2} precipitation in 1980 (from Table 4.2.1)

Variation	SSD	f	s ²	v ²	P
Between months	15.477	5	3,095	39.415	> 99.951
Between locations	2.735	9	0.304	3.870	> 99.5%
Remainder	3.534	45			

A comparison between the yearly amounts of precipitation found in the rain gauges used by the Danish Meteorological Institute⁹) and the amounts collected in our rain bottles at the same ten locations in 1980 showed a mean ratio of 1.11±0.11 (1 S.D.) between the two sampling systems.

In April 1980 during a sandstorm we measured the soil drift in a height of one meter by weighing the amount of soil collected in the rain bottles at the State experimental farms. The mean amount of soil collected at 8 stations was 20 g m⁻² (1 S.D.: 18 $g = m^{-2}$, median 13 $g = m^{-2}$. The total area of Denmark is 43,000 km². Hence the total amount of soil drift in the country was estimated at 0.02 kg m⁻² × $43 \cdot 10^9$ m² = 0.86 \cdot 10⁹ kg. The ploughing layer contains 0.1 nCi 90Sr kg⁻¹, 0.2 nCi 137Cs kg⁻¹, and 0.005 nCi 239,240 Pu kg⁻¹. Hence the amounts of activity carried by drift soil in a height of one meter during the storm of April 1980 was approx. 0.1 Ci 90Sr, 0.2 Ci 137Cs, and 5 mCi 239,240pu (or 3 GBq 90Sr, 6 GBq ¹³⁷Cs, and 0.16 GBq ²³⁹, 240Pu). This corresponds to 50-100 ppm of the total inventory of these radionuclides in Danish soils. Compared with the total 90Sr fallout with precipitation in March-April 1980, the contribution from drift soil amounted to approx. 5%. Tables 4.2.4 and 4.2.5 show the 90Sr and 137Cs levels in rain water collected at the 10 m² rain collector at Risø.

As compared with the State experimental farms in Zealand (Tystofte and Ledreborg in Table 4.2.1) the 90Sr fallout (Bq m⁻²) measured at Risø was only 77% and the concentration (Bq m⁻³) was 81%. The amount of precipitation at Risø was 0.545 m, which was nearly the same as the mean of the Tystofte and Ledreborg values.

The ratio: 137Cs/90Sr measured in monthly rain at Risø was $1.29\pm$ 0.29 (1 S.D.); in air we found the ratio as 0.85 ± 0.25 . Both results are lower than those hitherto observed.

The washout ratios calculated for Risø was $\frac{4.8}{9.9} = 0.48$ for 90 Sr and $\frac{6.1}{8.7} = 0.70$ for 137 Cs, these values were also lower than the usually observed washout ratio of 1.0. At present, we have no explanations for these deviations from the "normal"

- 37 -

Period	-	Bg m ⁻³	Bq m ⁻²
January	0.024	4.8	0.115
February	0.020	4.4	0.089
March	0.015	6.5	0.096
April	0.028	6.8	0.189
May	0.010	14.5	0.148
June	0.076	9.2	0.703
July	0.083	5.9	0.486
August	0.041	5.5	0.226
September	0.072	1.79	0.129
October	0.076	1.82	0.139
November	0.061	2.1	0.128
1/12-19/12	0.038	4.0	0.152
1980	Σ 0.545	¥ 4.8	Σ 2.60
1980		pCi 1 ⁻¹ : 0.129	mCi km ⁻² : 0.070

<u>Table 4.2.4</u>. Strontium-90 in rain water collected in a 10 m² ion-exchange column collector at Rise in 1980

<u>Table 4.2.5</u>. Cesium-137 in rain water collected in a 10 m^2 ion-exchange column collector at Risø in 1980

Period	m	Bg m ^{−3}	Bg m ⁻²
January	0.024	4.7	0.112
February	0.020	5.6	0.114
March	0.015	9.6	0.143
April	0.028	10.8	0.30
Мау	0.010	13.7	0.140
June	0.076	9.9	0.76
July	0.083	8.1	0.67
August	0.041	6.7	0.27
September	0.072	2.8	0.21
1/10-27/10	0.048	2.8	0.137
27/10-31/10	0.028	1.15	0.033
November	0.061	3.7	0.23
1/12-19/12	0.038	3.7	0.141
1980	Σ 0.545	x 6.1	Σ 3.26
1980		pCi 1 ⁻¹ : 0.165	mCi km ⁻² : 0.089

values; however, the relatively large amount of precipitation in 1980 (~ 30% more than normal) may have lowered the washout ratio.

Tables 4.2.4 and 4.2.5 show the 90Sr and 137Cs levels in rain water collected at the 10 m² rain collector at Rise. As compared with the State experimental farms in Zealand (Tystofte and Ledreborg in Table 4.2.1) the 90Sr fallout (Bq m⁻²) measured at Rise was only 77% and the concentration (Bq m⁻³) was 81%. The amount of precipitation at Rise was 0.545 m which was nearly the same as the mean of Tystofte and Ledreborg.

In order to investigate the distribution of fresh fallout in the 10 m² deposition collector at Risø, we measured the fallout from the Chinese test explosion of Oct 16, 1980. Precipitation was collected in the period Oct 27 to 31. Measurements were performed separately on 1: the dust remaining on the surface of the collector, 2: the prefilter before the ion-exchange column, 3: the ion-exchange column resin, and 4: the effluent from the column. The dust on the surface of the collector was washed off with 9 1 1% HNO₃ and divided into an AMP-fraction and a $Pe(OH)_3$ precipitate, and the effluent from the column (cf. Table 4.2.7) was divided as well.

Isotope	1-27	/10	27-3	1/10	Nove	mber	1-19/12		
	Bq m ⁻³	Bg m ⁻²	Bg m ^{−3}	Bq m ^{−2}	Bq m ⁻³	Bq m ^{−2}	Bq m-3	Bq m ^{−2}	
95 _{2 r}	1.22	0.059	23	0,65	74	4.5	115	4.4	
95 _{ND}	0.3 B	0.02 B	7.4	0.21	65	4.0	126	4.8	
103 _{RU}	6.5	0.31	39	1.11	155	9.5	174	6.6	
106 _{Ru}					14.1	0.86	17.0	0.65	
131 ₁	33	1.58	46	1.31	65	4.0	14.1	0.54	
140 _{Ba}	26	1.25	58	1.65	185	11.3	87	3.3	
140 _{La}	23	1.10	44	1.25	189	11.5	88	3.3	
141 _{Ce}	1.26	0.060	32	0.91	74	4.5	85	3.2	
144 _{Ce}					21	1.28	31	1.18	

<u>Table 4.2.6</u>. Short-lived y-emitting nuclides in rain water collected in the 10 m^2 ion-exchange column collector at Rise in 1980

Radionuclide .	Dust was face of	Dust washed off from the sur- face of the 10 m ² collector					Ion-exch colum	ange n	Eff	Total deposit			
	AMP frac	AMP fraction Fe(OH)3-					(resi	(resin)		AMP fraction		Fe(OH)3-fraction	
	Bq m ^{−2}	•	Biq m ^{−2}	•	Bq m ⁻²	2	Bq m ^{−2}	۲	Bq m ^{−2}	١	Bq m ^{≁2}	•	Bq m ^{−2}
7 _{Be}	0.09	0	1.20	3	2.98	9	31.07	88	-	0	0.1	D	35
95 _{Zr}	0.05	7	0.02	3	0.12	16	0.35	47	0.10	13	0.11	14	0.75
95 _{Nb} ÷	0.02	8	0.01	4	0.06	25	0.07	29	0.04	17	0.04	17	0.24
103 _{Ru}	0.01	1	0.01	1	0.07	5	1.13	80	0.03	2	0.15	11	1.40
131 _I	0.06	1	-	0	0.74	18	2.65	66	0.49	12	0.10	3	4.04
140 _{Ba}	0.15	4	0.26	8	0.49	15	2.48	73	-	0	-	0	3.38
140 _{La*}	0.04	2	0.26	10	0.51	20	1.70	66	0.04	2	-	0	2.55
141 _{Ce}	0.11	9	0.58	48	0.33	27	0.10	8	0.03	3	0.06	5	1.21
Radionuclide r	atios on (Oct 16	, 198 0	Rain 27-31/10	-80	Air(± 28/10-	1 S.D.) -1/12-80	The	eoretical r at formatic	atios on ⁴⁾			
¹⁴¹ Ce/ ⁹⁵ Zr				1.6		1.70	6±0.24		1.77				
140 _{Ba/} 95 _{Zr}				4.5		6.2	0 ±1.9 5		5.2				
131 _{I/} 95 _{Zr}				5.4		5.0	7 ±1.53		4.6				
103 _{Ru/95zr}				1.9		1.7 (10	610.46 samples)		1.67				

<u>Table 4.2.7</u>. Radionuclides in fresh fall-out in various fractions (cf. the text) collected by the 10 m² rain collector at Riss in the period 27-31 October 1980. The results (Bq m⁻²) are referred back to the day of the text explosion (16 Oct 198ⁿ)

*Decay corrected with half life of parent nuclide.

It appears that the parts of the ion-exchange system normally measured, i.e. prefilter and resin collect 97% of 7Be, 63% 95_{Zr} , 54% 95_{Nb} , 85% 103_{Ru} , 84% 131_{I} , 88% 140_{Ba} , 86% 140_{La} and 35% 141_{Ce} . The system is thus inadequate for collecting 141_{Ce} , 95_{Zr} and 95_{Nb} . Most of the 141_{Ce} adhered to the surface of the 10 m² collector (57%). To a considerable degree 95_{Zr} and 95_{Nb} passed through the column without being collected, 27% in the case of 95_{Zr} and 34% for 95_{Nb} .

We cannot preclude that the total deposits estimated from the 6 measurements of the various radionuclides may have been lower than the actual deposit because the AMP and Fe(OH)₃ precipitations may not have collected all activity from the wash water and the effluent. However, the ratios shown at the bottom of the table indicate that the measured ratios in rain are close to those in air (and to the theoretical ones). Hence we assume that we have recovered essentially all activity by the method applied, because it would be highly unlikely that radionuclides,

2

which behave so differently in the ion-exchange system, should come out with the correct ratios if some of the activity had not been accounted for by the analysis.

We conclude further that initially none of the four ratios differed significantly from the theoretical ones.

As regards the resin's efficiency of collecting 137 Cs, during 1980 we have determined 137 Cs in the effluent by AMP precipitation. We found no indication of 137 Cs in the effluent, but some 137 Cs (and 90 Sr) may stick to the 10 m² surface of the collector. This will be examined further.

4.3. Fresh water

4.3.1. Strontium-90 in ground water

As in previous years¹), ground water was collected in March from the nine locations selected by the Geological Survey of Denmark. Figure 4.3.1.1 shows the sample locations and Table 4.3.1 the results of the 90Sr analyses.

The median level of 90Sr in 1980 was compatible with the values found since 1967 (cf. fig. 4.3.1.2).

As appears from fig. 4.3.1.3, the 90 Sr levels in ground water from Feldbak have been around 50-75 Bq m⁻³ in later years except in 1978 where we found about 100 Bq 90 Sr m⁻³. 137 Cs was not measurable in 45 1 samples of Feldbak water from 1977, 1978, 1979, 1980 and 1981; the levels must have been less than 7.4 Bq 137_{Cs m⁻³}.

Pig. 4.3.1.1. Ground water sampling locations in Denmark.

Location	Bc; m ^{−3}	kg Ca m ^{−3}
Hvidsten	U.07U	0.054
Feldbak	67	0.030
Reme	U.U3 B	0.040
Rønne new	0.141	0.011
Renne old	0.141 A	0.025
Hasselø	0.070	0.116
Fåretbfte	0.033 A	U.U92
Kalundborg	2.4	0.093
Ravnholt	0.13 B	0.097
Fredericia	0.66	0.071
Geometric mean	0.14*	0.063**
Median	9.14	0.062
Geometric mean: pCi 1 ⁻¹	0.0038	
Median: pCi 1-1	0.0038	<u></u>

Table 4.3.1. Strontium-90 in ground water collected in March 1980

A sample of ground water from Haglekilde in Roskilde contained 0.65 Bg 90Sr m⁻³ and 0.194 kg Ca m⁻³. In June a sample of ground water from Kalundborg contained 10.2 Bg 90Sr m⁻³ and 0.041 kg Ca m⁻³.

- Feldbak was not included in the geometric mean.
- **Arithmetic mean.

Fig. 4.3.1.2. Nedian ⁹⁰Sr levels in Danish ground water, 1961-1980.

-

Pig. 4.3.1.3. Strontium-90 in ground water at Feldbak 1961-1980.

4.3.2. Cesium-137 in fresh water from Danish lakes

In February 1980 we collected fresh water from Danish lakes (sø) from the locations shown in fig. 4.3.2.1. The results are shown in Table 4.3.2. The purpose was to compare the 137Cs and the 90Sr concentrations in lake water. As the 90Sr levels in lake water has been rather constant in later years we used the 90Sr results from 1979 for the comparison. The 137Cs/90Sr mean ratio was 0.16±0.14 (1 S.D.). The lowest ratios (~ 0.04) were found in Norssø and in Almindingen; the highest ratio (~ 0.40) was observed in Flyndersø.

<u>Fig. 4.3.2.1</u>. Sample locations for fresh water from Danish streams (\hat{a}) and lakes ($s\sigma$).

Ione			Date	8q n ⁻³
I:	North Jutland	Norsse	1/9	3.3
II:	East Jutland	Nosse	3/9	3.0
III:	West Jutland	Flynderse	2/9	3.7
IV:	South Jutland	Hostrup se	4/9	12.2
V:	Funen	Arreskov so	9/9	2.7
VI:	Tealand	Arrese	28/8	9.8
VII:	Lolland-Falster	Sandersa	10/9	3.8
VIII:	Bornholm	Almindingen	19/8	1.22
Rean		<u> </u>		4.9
±1 S.	E.			1.4
Rean :	pCi 1 ⁻¹			0.135
±1 5.	E.			0.037

Table 4.3.2. Cesium-137 in Danish lakes collected in 1980

4.4. Strontium-90, Cesium-137 and Cesium-134 in sea water in 1980

As in previous years, sea water samples were collected by M/S Pyrholm in the summer from inner Danish waters (cf. Table 4.4.1 and figs. 4.4.1 and 4.4.2). Furthermore, sea water samples were collected at Barsebäck in the Sound (Table 4.4.2), and at Ringhals in the Kattegat (Table 4.4.3). Samples from the North Sea were obtained from the State ships "Nordjylland" and "Havørnen" (fig. 4.4.4 and Table 4.4.4).

Figure 4.4.2 shows that the maximum 137 Cs concentration in bottom water occurred in 1979, since then the levels have decreased. According to BNFL³⁷) the maximum release from Windscale took place in 1975 (~ 5.2 PBq 137 Cs). In 1976-78 the annual releases had decreased to about 4 PBq and in 1979 further down to 2.7 PBq. Hence we conclude that the transport time to Danish waters from Windscale is approximately 4 years, i.e. in agreement with last year's estimate. We may further conclude that the inflow from the North Sea (500 km³ y⁻¹) carried (500 × 10⁹ m³ × $\frac{86+60}{50}$ Bq m⁻³) =

	Posi	ition			Augus	st.			No V4	mber-Dec	enber	
	N	E	Depth in m	905r Bq m ⁻³	137 _{Cs} Bq m*3	134 _{Cs} Bq m*)	Salinity o/oo	Depth in m	905r Bq m-)	137 _{Cs} Bq m ^{~3}	134 _{Cs} Bq m ⁻³	Salinity 0/00
Kullen	560 15 .	120251	1)	28	41	1.6 B	16.4	0	17.8	67	2.8	21.9
-		·	21	29	113	5.4	34.0	22	17.0	Lost	Lost	24.1
H es sel ø	56° 10°	11047'	0	30	48	2.1 A	17.7	0	12.4	68	3.4	24.3
*			24	32	105	4.6	34.1	25	29	108	5.1	33.0
Kattegat SW	56°07'	11010*	0	23	30	B.D.L.	14.4	ð	16.8	50	2.4 A	23.9
•			39	2 9	112	4.5	28-4	33	lost	51	2.6	32-1
Åsn as rev	55038'	10047*	0	lost	35	B.D.L.	12.7	0	26	57	3.1	22.1
# #			39	lost	105	5.5	30.9	35	26	95	4-2	30.7
Halskov rev	55023'	11003.	ى ٥	lost	26	8.D.L.	10.8	0	16.3	48	2.2 B	18.9
n m			19	34	91	5.2	29.2	20	í).1	73	2.8	24.3
Langeland belt	54052'	10050	0	33	23	B.D.L.	9+2	0	24	49	2-3	18-4
. -			48	31	93	5.0	29.7	4 5	27	53	2.8 A	18.6
Femern bælt	54°36*	11005'	0	20	30	1.7 P	12.0	0	17.3	37	2.3 A	16.9
			28	22	68	5.7	28.8	20	16.3	48	2-2 B	14.0
Gedser odde	54 ⁰ 28*	11059'	0	13.A	17.6	8.0.L.	A.2	0	25	33	B.D.L.	13.4
			18	19.8	75	3.2	27.3	18	lost	40	3.D.L.	14.9
M#en	54057'	120411	0	17.4	18.2	9.D.L.	7.9	0	24	23	B.D.L.	9.3
-			21	15.2	18.1	B.D.L.	7.8	21	26	26	B.D.L.	11.2
The Sound - South	55025*	12°39'	0	31	31	1.4 A	11.1	0	24	27	B.C.L.	11.2
			12	lost	33	B.D.L.	12.5	12	25	28	B.D.L.	11.9
The Sound - North A	55°48'	12 ⁰ 44'	n	28	41	2.5 A	13.6	0	18.9	63	2.9	19.5
ан на гл			19	32	89	4-4	27.2	20	19.1	62	2.6	22.6
The Sound - North B	55°59'	12042*	n	24	29	B.D.L.	10.7	0	21	67	3.0	21.3
			26	lost	114	5.4	32.9	25	26	79	3.4	27.3
Mean		•	5urface	25	31		12.1	_	20	50		18.4
S.D.				6.3	9.5		3.1		4.3	16.7		4.9
S.E.				2.0	2.7		0.9		1.2	4.8		1.4
Mean			Bottom	27	86		25.9		23	60		22.1
S.D.				6,5	31		8.2		5.1	26		7.9
S.E.				2.2	9.0		2-4		1.6	7.9		2.3
Mean: pCi 1 ⁻¹			Surface	0.67	0.85				0.55	1.35		
S. 0.				0.17	0.26				0.12	0-45		
<u>S.E.</u>				0.05	0.07			, 	0.03	0.13		
Mean: pCi 1 ⁻¹			Bottom	0.73	2+34				0.62	1.63		
s.o.				0+18	0.84				0.14	0.71		
<u>S.E.</u>				0.06	0.24				0.04	0.21		

Table 4.4.1. Strontium-90, Cesium-137 and Cesium-134 in sea water collected around Zealand in August and November-December 1980

<u>Pig. 4.4.1</u>. Strontium-90 in surface sea water from inner Danish waters, 1962-1980. (1 S.D. indicated) (from Table 4.4.1).

 36.5×10^{12} Bq in 1980 or 0.85% of the discharge from Windscale in 1976, i.e. around 1% of the ¹³⁷Cs from Windscale enters the Baltic Sea.

From July-August to November-December the 50 Bg 137Cs m⁻³ isocurve in Danish surface water moved from a line Hals – south of Læsø – Göteborg to just North of Zealand, i.e. a distance of approximately 150 km, in five months or 1 km d⁻¹ (~ 1 cm s⁻¹). The mean ratio: 134Cs/137Cs in Danish sea water in 1980 was 0.047 and the relative S.D. was approximately 10%.

<u>Pig. 4.4.2</u>. Cesium-137 in surface and bottom water collected in inner Danish waters 1972-1980.

Pig. 4.4.3. Sea water locations around Zealand.

Date	Depth in m	90 _{Sr} Bg m ⁻³	137 _{Cs} Bg m ⁻³	134 _{Cs} Bg m ⁻³	Salinity o/oo
8/8	0	36	36	-	13.1
•	16	101	104	-	31.6
29/12	0	17.6	28	B.D.L.	11.2
•	16	18.5	57	2.9	19.2

Table 4.4.2. Strontium-90, Cesium-137 and Cesium-134 in sea water collected in the Sound at Barsebäck, location 38 (cf. Fig. 3.2.1) in 1980

Table 4.4.3. Cesium-137 and Cesium-134 in sea water collected at Ringhals in 1980

Samling location (cf. Fig. 3.2.2)		Ju	ily 20			Octob	er 11	<u></u>
	Depth in m	137 _{C 5} Bq m ⁻³	134 _{Cs} Bg m ⁻³	Salinity 0/00	Depth in m	137 _{Cs} Ba m-3	134 _{Cs} 8g m ⁻³	Salinity 0/00
U*	v	53	2.4 \	20.8	0.	78	2.5	30.0
•	66	112	5.4	35.3	65	108	5.2	33.0
2					U	56	2.6	18.6
-					22	82	4.1	29.7
Mean: Surface		53	2.4	20.8	Surface	67	2.6	24.3
S.D.						16	0.07	8.1
S.E.						11	0.05	5.7
Mean: Bottom		112	5.4	35.3	Bottom	95	4.6	31.4
S.D.						18	0.78	2.3
S.E.						13	0 .5 5	1.6
Mean: Surface	· · · · · · · · · · · · · · · · · · ·				Surface	1.81	0.069	
S.D.						0.42	0.002	
pC1 1 ⁻¹ S.E.						0.30	0.001	
Mean: Bottom					Bottom	2.57	0.126	
S.D.						0.50	0.021	
s.e.						0.35	0.015	

*57º14'N 11º53'7E

Posi N	tion E	Date	137 _{Cs} Bq m ⁻³	134 _{Cs} Bg m ⁻³	Salinity o/co
57019'	110371	21/7	52	2.5 A	21.6
570251	11022'	•	63	3.0	23.3
57031 ·	11007	•	70	3.6	30.8
570371	100521	-	71	3.3 A	27.1
570421	100381	•	73	3.6	30.6
570281	10°42'	24/7	74	3.7	26.5
570131	10044*	•	62	2.1 A	20.8
560591	109521	-	46	2.0 B	18.1
560461	11004'	•	50	2.2 B	18.1
56°33'	11017'	•	48	1.4 8	18.0
56º19'	11030'	•	50	2.0 A	19.5

Table 4.4.4. Cesium-137 and Cesium-134 in surface sea water collected at Cattegat in July 1980

As was done earlier we calculated the regression equations between salinity and Sr and 137Cs activity in the sea water:

```
Bq 90Sr m<sup>-3</sup> = 34.8-0.67 o/oo (1967-1971)
Bq 90Sr m<sup>-3</sup> = 35.9-0.74 o/oo (1972)
Bq 90Sr m<sup>-3</sup> = 35.2-0.52 o/oo (1973)
Bq 90Sr m<sup>-3</sup> = 34.4-0.37 o/oo (1974)
Bq 90Sr m<sup>-3</sup> = 29.2-0.22 o/oo (1975)
Bq 90Sr m<sup>-3</sup> = 26.3-0.074 o/oo (1976)
Bq 90Sr m<sup>-3</sup> = 26.3-0.056 o/oo (1977)
Bq 90Sr m<sup>-3</sup> = 27.8-0.107 o/oo (1978)
Bq 90Sr m<sup>-3</sup> = 27.8-0.31 o/oo (1979)
Bq 90Sr m<sup>-3</sup> = 20.8+0.159 o/oo (1980)
```

The regression analysis showed only significant regression in 1967-1971, 1972 and in 1974.

Bq 137Cs m⁻³ = 29.6-0.16 o/oo (1972) Bq Cs m⁻³ = 22.2+0.44 o/oo (1973) Bq Cs m⁻³ = 20.0+0.67 o/oo (1974) Bq Cs m⁻³ = 23.7+0.37 o/oo (1975) Bq Cs m⁻³ = 19.6+0.70 o/oo (1976)

```
Bq 137_{\text{Cs}} m<sup>-3</sup> = 15.2+1.00 o/oo (1977)
Bq 137_{\text{Cs}} m<sup>-3</sup> = -10.4+2.85 o/oo (1978)
Bq 137_{\text{Cs}} m<sup>-3</sup> = -33.3+4.44 o/oo (1979)
Bq 137_{\text{Cs}} m<sup>-3</sup> = -9.1+3.26 o/oo (1980)
```

The regression analysis showed significant or probably significant regression in all years except in 1972.

Posi N	tion E	Date	90sr Bg m ⁻³	137 _{Cs} Bq m ⁻³	134 _{Cs} Bg m ⁻³	Salinity 0/00
550571	03030+	5/9-1980	-	210	11.4	35.1
55°13'	080121	26/1-1981	20	32	1.3 A	29.5
550551	05057 * 5	27/1-1981	44	250	10.8	34.5

<u>Table 4.4.5</u>. Strontium-90, Cesium-137 and Cesium-134 in surface sea water collected by "Havørnen" in the North Sea in 1980

<u>Table 4.4.6</u>. Strontium-90, Cesium-137 and Cesium-134 in surface sea water collected at different locations in 1980

Location	Date	90 _{Sr} Bg m ⁻³	137 _{Cs} Bg m ⁻³	134 _{Cs} Bg m ⁻³	Salinity o/oo
Listed, Bornholm	19/8		17.0	8.D.L.	8.8
Risø mole	26/8		25.2	B.D.L.	
Risø I*	July	36	24.8	B.D.L.	13.9

*Cf. Fig. 4.6.2.

According to the above regression lines, the mean levels in Danish surface waters (16 o/oo salinity) were estimated at 23 Bq 90Sr m⁻³ and 43 Bq 137Cs m⁻³ in 1980. The corresponding levels in North Sea water (34 o/oo) were 26 and 102, respectively, and in Baltic water (9 o/oo) the equations gave 22 and 6.7, respectively (cf. fig. 4.4.6).

Figure 4.4.7 shows that the concentrations in 35 o/oo Danish sea water could be predicted from the discharges of ¹³⁷Cs from Windscale.

<u>Fig. 4.4.6</u>. Cesium-137 in inner Danish waters of 3 different salinities (1972-1980). The values were calculated from the regression equations in 4.4.

<u>Pig. 4.4.7</u>. Cesium-137 in 35 o/oo Danish sea water (By m^{-3}) during 1975-1980 related to the Windscale discharges of 137Cs (PBg y⁻¹) 4 years earlier (1971-1976).

4.5. Strontium-90 in soil collected in 1978

As described in Risø-R-403¹) p. 60 soil samples were collected in 1978 at St. Jyndevad (cf. fig. 4.2) in two trenches, A and B, each approximately 4 m long, 1.5 m wide, and 2 m deep. We reported the 137Cs and 239,240Pu results earlier in Risø-R-403. Table 4.5 presents the ⁹⁰Sr data from trench A. The ⁹⁰Sr levels were surprisingly low both as compared with the ¹³⁷Cs and ^{239,240}Pu concentrations, but also compared with earlier soil measurements at St. Jyndevad (cf. Risø Report No. 345¹)). The ⁹⁰Sr activity seems to have moved to greater depths than 137Cs and 239,240pu, which were not detected below 30 cm. The penetration may even be beyond 100 cm. This may explain that we found only 819 ± 12 Bg 90Sr m^{-2} (±1 S.E., mean of A₁ and A₂) down to 1 m. This level corresponds to 22.1 mCi km⁻² and from our 137Cs determinations in 1978 we would have expected: $\frac{92.5}{1.6} = 57.8 \text{ mCi} \frac{90}{90} \text{ Sr km}^{-2}$ where 1.6 is the 137Cs/90Sr ratio in fallout. It is well known that the soil at St. Jyndevad is very sandy and this may explain the deep penetration of ⁹⁰Sr at this location.

Depth		A1	A2			
in cm	Bg kç ^{−1}	Bq m ⁻² cm ⁻¹	Bq kg ⁻¹	Bq m ⁻² cm ⁻¹		
2.5	1.63	21	1.34 ±0.06	15.8±0.6		
5	0.93	21	0.96 20,04	18.6±0.8		
10	0.99	16.6	1.00 20.06	19.2±1.2		
15	1.11	20	0.96 ±0.06	18.6±1.1		
20	0.93	20	0.86 10.02	16.2±0.4		
25	0.72	14-8	0.70 +0.01	12.4±0.2		
30	0.30	5.6	0.53 +0.07	11 .8 ±1.6		
40	0.25	4.8	0.23 10.03	4.1:0.5		
50	0.20	3.8	0.172±0.009	3.8±0.2		
65	0.21	3.9	0.181±0.011	3.6±0.2		
80	0.132	2.1	0.156 20.007	3.6t0.2		
100	0. 170	3.0	0.172±0.009	3.8±0.2		

Table 4.5. Strontium-90 in soil samples collected in June 1978 at St. Jyndevad

4.6. Sediments

4.6.1. Strontium-90 in sediments collected at Barsebäck and Ringhals in 1979

In order to determine the amount of fallout 90Sr present in sediments from inner Danish waters, we analysed the contents in two sediment cores collected in 1979 from location 48 at Barsebäck (cf. fig. 3.2.1.3) and location 2 at Ringhals (cf. fig. 3.2.1.2). As expected²¹), the 90Sr levels were low in marine sediments: only 1-2% of the 137Cs content (cf. Risø-R-421 p. 39 and p. 41). Hence we may disregard 90Sr in marine sediments.

<u>Table 4.6.1</u>. Strontium-90 in sediments samples (depth: 0-9 cm) collected at Barsebäck and Ringhals in 1979

Location		Date	Bg kg−1	Bq m ^{−2}
Barsebäck*	48	7/4-1979	0.130	. 5.7
Ringhals**	2	11/5-1979	0,126	11.2

* Cf. Fig. 3.2.1.

**Cf. Fig. 3.2.2.

4.6.2. Cesium-137 in sediments collected in Roskilde Fjord As a part of the environmental control around Risø National Laboratory, sediments are collected in Roskilde Fjord (cf. fig. 4.6.2). The highest 137Cs concentrations as well as the highest depositions were found at location X: 820 Bg m⁻² (22 nCi m⁻²). The other five locations showed nearly the same deposition: 494±43 Bg m⁻² (1 S.D.). At stations I, III and IX: 50±5% of the total 137Cs were in the 0-3 cm layer; at the other 3 locations: IV, V and X this layer contained only 28±5% of the total 137Cs suggesting a more rapid sedimentation rate or a greater biotubation at these 3 locations than at the others.

Fig. 4.6.2. Roskilde fjord.

The Kd value for 137Cs in Roskilde Fjord sediments becomes 10^3 (Bq kg⁻¹ surface (0-3 cm) sediments/Bg 1⁻¹ sea water) (cf. Table 4.4.6).

Depth in cm	I	111	IV	v	IX	x
0-3	26	27	13.4	11.0	36	38
3-6	15.2	15.0	9.8	5.4	18.8	42
6-9	4.8	6.6	4.6	2.4	4.6	32
9-12	1.19	2.7	2.3	2.5	2.6	13.2
12-15		1.2 A	1.72	1.95	0.9 A	5.2
15-18			1.06 A		0.8* B	3.5

<u>Table 4.6.2.1</u>. Cesium-137 in sediment samples collected in Roskilde fjord, July 25, 1980. (Unit: Bq kg⁻¹ dry) (HAPS) (Area 0.0145 m²)

#15-17 cm

<u>Table 4.6.2.2</u>. Cesium-137 in sediment samples collected in Roskilde fjord, July 25, 1980. (Unit: Bq m⁻²) (HAPS) (Area 0.0145 m²)

Depth in cm	I	111	IV	v .	IX	x
0-3	300	250	128	145	220	191
3-6	172	160	177	115	166	300
6-9	55	52	98	64	58	200
9-12	18.4	17.5	47	66	33	82
12-15		9.2 A	31	43	12.6 A	27
15-18			19.6 A		6.8♥ B	18.9
ε	550	490	500	430	500	820

*15-17 cm

5. DANISH FOOD AND VARIOUS VEGETATION

by A. Aarkrog

5.1. Strontium-90 and Cesium-137 in dried milk from the entire country

As in previous years, monthly samples of dried milk were collected from seven locations in Denmark (cf. fig. 5.1.1). Table

Fig. 5.1.1. Dried milk factories in Denmark.

5.1.1 shows the results of the 90 Sr determinations and Table 5.1.2 the analysis of variance of the results. As in recent years, the time variation was significant for Bq 90 Sr (kg Ca)⁻¹; the levels in the second quarter of the year were the highest. The Bq 90 Sr (kg Ca)⁻¹ mean level in 1980 was 106 Bq 90 Sr (kg Ca)⁻¹, i.e. the same as the 1979 mean.

Honth	Njerring	Arhus	Videbak	Åbenrå	Odense	Ringsted	Lolland- Falster Hen	Hean
Jan	138	125	111±3	113	82±7	81	77	104
Feb	118	114	135	112	78±11	87	67	102
March	107	107±1	128	145	72	82±10	60	100
April	112	9418	132	144	64	81	64	99
Ray	127	95	152	115	(89)	90	9 9	110
June	123	117	153	153	(84)	76	61±1	109
July	143	109	126	160	(84)	72	60	108
Aug	126	103	105	125	84	76	67	98
Sept	132	101	133	104	(78)	59	78	98
Oct	146	135	142	166	96	95	7 7	123
Nov	119	(120)	119	159	101	(87)	85	113
Dec	95	(117)	158	134	116	79	79	111
Hean	124	111	133	136	86	80	73	106
Hean pCi (g Ca) ⁻¹	3.4	3.0	3.6	3.7	2.3	2.2	2.0	2.9

<u>Table 5.1.1</u>. Strontium-90 in Danish dried milk in 1980. (Unit: Bg (kg Ca)⁻¹)

As 1 cubic meter of milk contains 1.2 kg Ca, the mean 90 Sr content in Danish milk produced in 1980 was 127 Bq m⁻³ (3.4 pCi 1⁻¹). Figures in brackets calculated from VAR3¹²). The error term is 1 S.E. of the mean of double determinations.

<u>Table 5.1.2</u>. Analysis of variance of ln Bg 90 Sr (kg Ca)⁻¹ in Danish dried milk in 1980 (from Table 5.1.1)

Variation	SSD	f	s ²	v ²	Р
Between months	0.387	11	0.035	1.805	-
Between locations	4.892	6	0.815	41.790	> 99.95%
Months * locations	1.151	59	0.020	1.359	-
Remainder	0.101	7	0.014		

As previously, milk from eastern Denmark showed significantly lower levels than that from Jutland.

Table 5.1.3 shows the results of the 137 Cs determinations and Table 5.1.4 the analysis of variance of the results. The 137 Cs mean level in 1980 was 67 Bg 137 Cs (kg K)⁻¹, or 0.6 times the 1979 level.

Month	Hjørring	Århus	Vinlebæk	Abenrå	Odense	Ringsted	Lolland- Falster Mon	flean
Jan	77 A	97	101	55	39 A	40 A	35	63
Feb	107	92	89	73	53 A	33 A	37	69
March	85 A	84	78 A	76	71	47 A	37	68
April	84	72	96	75	39	33	45	64
May	85	70	76	61	(40)	33	38	58
June	134	106	117	92	(59)	47	49	86
July	112	100	122	110	(54)	34	39	82
Aug	111	85	133	134	50	43	34	85
Sept	87	158	106	121	(53)	31 A	34	84
Oct]								
Nov	63	63	73	62	31	27	26	49
Dec								
Mean*	89	88	95	82	46	35	36	67
Mean ^e Bg (kg K) ⁻¹	2.4	2.4	2.6	2.2	1.24	0.95	0.97	1.81

Table 5.1.3. Cesium-137 in Danish dried milk in 1980. (Unit: Bq $(kq K)^{-1}$)

As 1 cubic meter contains approx. 1.66 kg K, the mean content in Danish milk produced in 1980 was estimated at 111 Bg m⁻³ (3.0 pCi 1^{-1}). Figures in hrackets were calculated from VAR312).

*Weighted mean.

<u>Table 5.1.4</u>. Analysis of variance of ln Bg 137Cs (kg K)⁻¹ in Dunish dried milk in 1980 (from Table 5.1.3)

Variation	SCD	f	s ²	v ²	P
Between months	2.959	11	0.269	10,470	> 99.95%
Between locations	14.077	6	2.346	91.331	> 99.95%
Remainder	1.593	62	0.026		

Fig. 5.1.2. Predicted (curve) and observed 90Sr/Ca levels in dried milk from the Islands (May 1962-April 1981).

Figures 5.1.2-5.1.5 show the 90 Sr and 137 Cs levels in dried milk compared with the predicted values (cf. Appendix C). The observed 90 Sr levels in 1980 were 1.12 times the predicted, while the observed 137 Cs levels were 1.00 times the predicted ones (means of Jutland and the Islands).

5.2. Fresh milk

No samples in 1980.

5.3. Strontium-90 and Cesium-137 in grain from the entire country

As in previous years, grain samples were obtained from the State experimental farms (cf. fig. 4.2). Strontium-90 was determined as previously (Risø Report No. 63^{1}), and 137Cs was measured on ashed samples by γ -spectrometry on a Ge(Li) detector.

Tables 5.3.1 and 5.3.2 show the measurements of 90Sr in grain in 1980. According to Appendix B, approximately 2/3 of all rye in Denmark is grown in Jutland and 1/3 in the eastern part of the country. As regards wheat, 4/5 is produced in eastern Denmark and 1/5 in Jutland. In the calculation of the means in Tables 5.3.1 and 5.3.2 and in Tables 5.3.5 and 5.3.6 Jutland is represented by four rye samples and six wheat samples, while eastern Penmark contributes nine wheat and three rye samples. Thus the means in Table 5.3.1 for wheat are higher than the production-weighted means for the country while the mean for rye is lower because the levels in Jutland are higher than those in East Denmark. Table 5.3.4 gives the analysis of variance of the Bq 90Sr (kg Ca)⁻¹ figures and Table 5.3.3 that of the Bq 90Sr kg⁻¹ grain figures.

Table 5.3.4 shows that the variations in Bq 90 Sr (kg Ca)⁻¹ between species and locations were significant. Oats showed the lowest Bq 90 Sr (kg Ca)⁻¹ levels. The Bq 90 Sr kg⁻¹ figures did not show any significant difference between species (cf. Table 5.3.3).

	Rve	Bar	ley	Who	eat	Oats	Oats	
	Winter	Spring	Winter	Winter	Spr ing	Sprin	ng	
Tylstrup	0.70	1.24	1.07	1.18		1.2	4	
Ødum		0.65	D.48	0.72		0.7	2	
Askov	0.68	1.55	0.73	1.37		1.3	2	
Borris	1.28	1.38	1.02	1.72	0.57	1.0	2	
St. Jyndevad	1.35	1.44	0.59	1.77				
Funen		0.64		0.54		0.8	3	
Tystofte	0.30	0.80	0.50	0.46	0.92	0.8	8	
Ledreborg	0.54	0.73	0.68	0.72	0.93) . 9	7	
Abed		0.57		0.52	0.42	0.6	2	
Renne	0.32	0.70	1.08	0.38	0.26	0.6	6	
Mean Bg kg ⁻¹	Rye: 0.74	Barley	: 0.88	Wheat:	0.83	Oats: 0	0.92	
Mean pCi kg ⁻¹	Rye: 20	Barley	: 24	Wheat:	22	Oats: 2	5	

<u>Table 5.3.1</u>. Strontium-90 in Danish grain in 1980. (Unit: Bg kg^{-1})

<u>Table 5.3.2</u>. Strontium-90 in Danish grain in 1980. (Unit: Bq (kg Ca)⁻¹)

	Rye Winter	Barley		Wheat		Oats
		Spring	Winter	Winter	Spring	Spring
Tylstrup	2600	3600	2000	3400		1690
Ødum		1340	1160	1700		820
Askov	2700	2400	2000	2700		1810
Borris	1810	3300	4200	4400	1740	2700
St. Jyndevad	3400	3800	1730	4400		
Funen		1000		1530		1030
Tystofte	1090	1750	1310	1580	1760	1120
Ledreborg	1320	1400	1730	2000	1980	970
Abed		1120		1700	920	720
Rønne	1060	1020	1950	1180	730	740
Mean Bg (kg Ca)-1	Rye: 2000	Barley:	2050	Wheat:	2100	Oats: 1290
Mean pCi (g Ca) ^{.1}	Rye: 54	Barley:	55	Wheat:	57	Oats: 35

<u>Table 5.3.3</u>. Analysis of variance of $\ln Bq \frac{90}{Sr} kg^{-1}$ in grain in 1980 (from Table 5.3.1)

Variation	SSD	f	s ²	v ²	P
Between species	1.026	3	0.342	3.526	> 951
Between locations	5.301	9	0.589	6.075	> 99.951
Spec. * loc.	2.230	23	0.097	0.642	-
Remainder	1.963	13	0.151		

<u>Table 5.3.4</u>. Analysis of variance of ln Bq 90 Sr (kg Ca)⁻¹ in ' grain in 1980 (from Table 5.3.2)

Variation	SSD	f	s ²	v2	P
Between species	1.236	3	0.412	8.090	> 99.91
Between locations	7.505	9	0.834	16.378	> 99.951
Spec. * loc.	1.171	23	0.051	0.433	-
Remainder	1.529	13	0.118		

As in previous years, the variation with location was highly significant; the mean pCi 90 Sr kg⁻¹ level for grain from Jutland was 1.7 times that in eastern Denmark. The observed pCi 90 Sr kg⁻¹ levels in grain from 1980 were 1.58±0.51 (1 S.D.) times those predicted (cf. Appendix C).

Tables 5.3.5 and 5.3.6 show the measurements of 137Cs in grain in 1980. The 137Cs mean level in grain from 1980 was 0.76 times the level in 1979. The fallout in May-August 1980 was 0.73 times that of the fallout in May-August 1979.

The ANOVA's (Tables 5.3.7 and 5.3.8) showed significant variation between species (rye > the other species) and between locations (Jutland = $1.54 \times \text{The Islands}$).

The observed pCi 137 Cs kg⁻¹ levels in grain from 1980 were 1.30± 0.28 (1 S.D.) times those predicted (cf. Appendix C).

	Rye Winter	Barley		Wheat		Oats
		Spring	winter	Winter	Spring	Spring
Tylstrup	0.25	0.188	0.35	0.24		0.22
Ødum		0.197	0.25	0.29		0.26
Askov	0.39	0.48	0.30	0.44		0.70
Borris	0.33	0.32	0.30	0.25	0.41	0.30
St. Jyndevad	0.50	0.23	0.38	0.29		
Funen		0.24		0.24		0.37
Tystofte	0.24	0.175	0.154	0.120	0.137 A	0.21
Ledreborg	0.34	0.24	0.26	0.174	0.181	0.25
Abed		0.198		0.177	0.20	0.144
Rønne	0.28	0.31	0.191	0.175	0.138	0.164
Mean Bq kg ⁻¹	Rye: 0.33	Barley	: 0.26	Wheat:	0.23	Oats: 0.29
Mean pCi kg ⁻¹	Rye: 8.9	Barley	: 7.0	Wheat:	6.2	Oats: 7.8

Table 5.3.5. Cesium-137 in Danish grain in 1980. (Unit: Bg kg^{-1})

<u>Table 5.3.6</u>. Cesium-137 in Danish grain in 1980. (Unit: Bg (kg K)⁻¹)

	Rye Winter	Barley		Wheat		Oats Spring
		Spring	Winter	Winter	Spring	
Tylstrup	63	35	64	50	<u> </u>	51
Ødum		44	66	58		56
Askov	96	121	78	169		152
Borris	82	77	68	61	98	87
St. Jyndevad	87	56	81	67		
Funen		51		55		89
Tystofte	53	36	47	36	29	58
Ledreborg	76	52	66	40	46	60
Abed		48		43	49	41
Rønne	55	44	31	40	37	40
Mean Bg (kg K)-1	Rye: 73	Barley: 59		Wheat: 54		Oats: 71
Mean pCi (g K) ⁻¹	Rye: 1.97	Barley	\$ 1.60	Wheat:	1.46	Oats: 1.91
<u>Table 5.3.7</u>. Analysis of variance of ln Bg 137Cs kg⁻¹ in grain in 1980 (from Table 5.3.5)

SSD	f	s ²	v ²	P
0.506	3	0.169	3.155	> 95%
3.782	9	0.420	7.865	> 99.95%
1.229	23	0.053	0.927	-
0.749	13	0.053		
	SSD 0.506 3.782 1.229 0.749	SSD f 0.506 3 3.782 9 1.229 23 0.749 13	SSD £ s ² 0.506 3 0.169 3.782 9 0.420 1.229 23 0.053 0.749 13 0.053	SSD £ s ² v ² 0.506 3 0.169 3.155 3.782 9 0.420 7.865 1.229 23 0.053 0.927 0.749 13 0.053

<u>Table 5.3.8</u>. Analysis of variance of ln Bg 137Cs (kg K)⁻¹ in grain in 1980 (from Table 5.3.6)

Variation	SSD	f	s ²	v ²	P
Between species	0.512	3	0.171	6.352	> 99.5%
Between locations	4.133	9	0.459	17.077	> 99.95%
Spec. = loc.	0.619	23	0.027	0.487	-
Remainder	0.717	13	0.055		

5.4. Strontium-90 and Cesium-137 in bread from the entire country

In 1980, samples of white bread (75% extraction) and dark rye bread (100% extraction) were collected all over the country (cf. fig. 5.4) in June, and 90Sr and 137Cs were determined on pooled samples except 137Cs in rye bread, which was determined on each zone separately. The 137Cs determinations were carried out on the ash by Ge γ -spectroscopy.

Table 5.4.1 shows the results. It is assumed that 1 kg flour yields approximately 1.35 kg bread¹¹) and that wheat flour of 75% extraction contains 20% of the 90Sr and 50% of the 137Cs found in wheat grain¹), while rye flour is 100% extraction. Hence we can compare the 1980 bread levels with the 1979 grain levels (cf. Table 5.4.2). The above assumptions for transfer of 137Cs from grain to bread seem justified, however, the transfer of 90Sr from wheat to white bread may be underestimated. This has in fact been envisaged in Risø-R-437 p. 86^{21}) where it is predicted that the transfer will increase from 20 to 33%.

Fig. 5.4. Sample locations for bread and total diet.

Table 5.4.1. Strontium-90 and Cesium-137 in Danish bread collected in June 1980

Zane		Bye bre	e d		White bread			
	Bg ⁹⁰ 5r kg ⁻¹	Ng 90Sr (kg ca)=1	B g 137 _{CS kg} =1	1137 _{СВ} (1қанк)=1	Bq 905r kg-1	Bg ⁹⁰ Sr (kg Ca) ⁻¹	Bg ¹³⁷ Cs kg*1	Bg ¹³⁷ CB (kg g) ⁻¹
I: N. Jutland			0.50	147				
EI: E. Jutland			0.33	115	ĺ			
III: W. Jutland	(0.76	230	0.42	124	0.151	82	0.121	11
IV: S. Jutland	J		0-27	90	J			
V: Funen	٦		0.27	8)	٦			
VI: Zealand			0.31	103				6 0
VII: Lolland-Falster	}	783	0.34	107	0.157	75	0.0/9	59
VIII: Bornholm	J		0.24	62	j			
Plean	0.66	2 10	0.33	104	a . 159	78	0. 100	68
Maen	17.7 pCi kg=1	5.6 pC1 (g Ca)*1	9.0 pCi kg ⁻¹	2.8 pCi (g K)*1	4.3 pCi kg=1	2-1 pCi (g Ca)-1	2.7 pCi kg=1	1.84 pCi (g x)*1
Copenhagen	0.62	260	0.38	112	0.105	57	0.085	50
Population- weighted mean	0.66	2 30	0.36	112	0.145	74	0.100	67

<u>Table 5.4.2</u>. A comparison between 50 Sr and 137 Cs levels in bread and grain 1980

Nuclide	Species	Bread activity in June 1980 calculated as gr 'n in Bg kg-1 (cf. text)	Activity in grain from harvest 19791) Bg kg ⁻¹	"Bread"/grain ratio	
906	Wheat	1.07	0.72	1.5	
JUST	Rye	0.89	0.75	1.2	
1370-	Wheat	0.27	0.29	0.9	
137Cs	Rye	0.45	0.45	1.0	

5.5. Strontium-90 and Cesium-137 in potatoes from the entire country

The samples of potatoes were collected in September from ten of the State experimental farms (cf. fig. 4.2) and analysed for 90 Sr and 137 Cs (γ -spectroscopy of bulked samples of the ash).

Table 5.5.1 shows the 90Sr and 137Cs contents in potatoes. The mean contents for the country were 0.084 Bg 90Sr kg⁻¹, or 1730 Bg 90Sr (kg Ca)⁻¹, and 0.077 Bg 137Cs kg⁻¹ or 18.5 Bg 137Cs (kg K)⁻¹. The levels were nearly equal to those in 1979.

	8g ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	8g ¹³⁷ Cs (kg K) ⁻¹
Tylstrup	0.078±0.010	2070±330		
Borris	0.096±0.005	2320± 70		
Ødum	0.123±0.013	1500 ± 40	0.127	31
Askov	0.181	5210		
St. Jyndevad	0.054±0.001	1750± 90		
Funen	0.110±0.001	1920± 10		
Tystofte	0.043±0.001	590 ± 30		
Ledreborg	0.035±0.001	650± 10	0.027	6
Abed	0.047±0.001	470± 10		
Rønne	0.061±0.002	1170± 20		
Mean	0.083	1770	0.077	18.5
Mean	2.2 pCi kg ⁻¹	48 pCi (g Ca) ⁻¹	2.1 pCi kg ⁻¹	0.50 pCi (g K) ⁻¹
The error term	m is 1 S.E. of	the mean of double de	eterminations.	

Table 5.5.1. Strontium-90 and Cesium-137 in Danish potatoes in 1980

The mean ratio between observed and predicted 90Sr concentrations in potatoes was 0.77 and for 137Cs we found 0.76 (cf. Appendix C).

5.6. Strontium-90 and Cesium-137 in vegetables and fruit from the entire country

In 1980, as in previous years, vegetables and fruit were collected in the autumn from eight larger provincial towns, one in each of the eight zones (cf. fig. 5.4).

The γ -measurements were performed on bulked ash samples representing the entire country (cf. Table 5.6.2).

Table 5.6.3 shows a calculation of the mean contents of 90Sr and 137Cs in Danish vegetables collected in 1980. The levels are the population-weighted means and are similar to those in 1979 and 1978 suggesting that most of the activity in vegetables depends upon the accumulated activity in the soil.

		Ca	bbage	Ca	rrot	Apples		
		Bg kg ⁻¹	84 (kg Ca)-1	84 kg ⁻¹	Bg (kg Ca) ⁻¹	Bq kg ⁻¹ Bq	(kg Ca)-1	
I:	North Jutland	0.50	760	0-4610-03	1960 2 160	0-064	1610	
11:	East Jutland	0.9920.11	2620 \$310	0-41	850	0.060	1660	
III:	Mest Jutland	9.5910.04	1340 1 80	0.7320.01	2009±120	0.035	960	
IV:	South Jutland	Q.36	560	0-64	2 100	0-000	120	
۷:	Funen	0.3010.02	570 20	0-5810-05	20101270	0.018	480	
¥I:	Sealand	0.1910.02	440 % 60	0.30 %.11	920 \$340	0.023	510	
VII:	Lolland-Falster	0-23	430	0.16	510	0.027	690	
VIII :	Dernholm	0-4620-07	8501130	0-63	13901 50	0-041		
Nean		0-44	950	0-49	1590	0-034	860	
Hean	<u> </u>	12-0 pCi kg ⁻¹	26 SU	13.2 pCi kg ⁻¹	43 SU	0.93 pCi kg ⁻¹	23 SU	
Copen	hagen	0.2610.03	400± 60	0.27±0.01	900± 30	0-065	1090	
Popul Weigh	ation- ted mean	0.45	980	0.43	1420	0.044	1000	

Table 5.6.1. Strent	tium-90 in vegetables	and fruits collected	in September	1960
---------------------	-----------------------	----------------------	--------------	------

The error term is 1 S-E- of double determinations.

Table 5-6-2. Cesium-137 in Danish wegetables and fruits in September 1980

	Cabbage		Carı	rot	Apples	
	Bg kg ⁻¹	Bq (kg K)-1	Bg kg ⁻¹	Bq (kg K) ⁻¹	Bq kg ⁻¹	Bg (kg K) ⁻¹
Jutland	0.25	106	0-060	24	0.053	45
The Islands	0.020	8.8	0-040	19	0.037	30
Heen	0.134	50	0.050	22	0.045	38
Hean	3-6 pCi kg ⁻¹	1.6 M.U.	1-35 pCi kg ⁻¹	0.6 M.U.	1-2 pCi kg ⁻¹	1.0 M.U.
Population- weighted man	0.124	53	0-049	21	0-044	37

Daily intake in g	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	_{Bq} 137 _{Cs kg} -1	Bg ¹³⁷ Cs (kq K)−1
50 leaf vegetables (cabbage)	0.45	980	0.124	53
30 root vegetables (carrot)	0.43	1420	0.049	21
40 pea (1977 data)	0.13	440	0.059	4
120	0.34	910	0.084	29

Table 5.6.3. Calculated 90Sr and 137Cs mean levels in vegetables in 1980

The 1979 levels in Danish fruit were calculated from apples and the mean levels in Danish fruit were thus 0.044 Bg 90Sr kg⁻¹ and 0.044 Bg 137Cs kg⁻¹. The observed Bg 90Sr kg⁻¹ levels in vegetables and fruit in 1980 were 1.46±0.46 (1 S.D.) times those predicted (cf. Appendix C). In the case of 137Cs, the observed values were 1.42 times the predicted ones.

5.7. Strontium-90 and Cesium-137 in total diet from the entire country

In 1980 total-food samples representing an average Danish diet according to E. Hoff-Jørgensen (cf. Appendix B in Risø Report No. 63¹⁾) were collected from eight towns each representing one of the eight zones (cf. fig. 5.2.1) and from Copenhagen. The sampling took place as previously in June and December.

Tables 5.7.1 and 5.7.2 show the results. The diet levels from Jutland were 29% higher than those from the Islands.

Figure 5.7.1 show the zone mean Bg 90Sr (kg Ca)⁻¹ levels (not population-weighted) in total diet compared with the predicted values (cf. Appendix C), the observed value was 0.92 times that predicted.

The 90Sr 1980 levels (June and December values) in the total diet were nearly equal to the 1979 levels, and the 137Cs levels were approximately 18% lower.

Table 5.7.1.	Strontium-90 a	und Cesium-137	in Danish	total diet	collected	in Ju	ne 1980

- 77 -

Zone		Bq 90Sr (kg Ca)~1	Bq ⁹⁰ Sr d ⁻¹	g Ca d=1	Bq 137Cs (kg K)-1	Bq 137Cs d-1
1:	N. Jutland	230± 7	0,37±0.01	1.61	97	0.37
11:	E. Jutland	217±13	0.36±0.02	1.64	90	0.32
111:	W. Jutland	165±10	0.27±0.02	1.62	101	0.38
IV:	S. Jutland	145±13	0.24±0.03	1.69	73	0.28
V:	Funen	179± 5	0.28±0.01	1.57	77	0.28
VI:	Zealand	122 + 2	0.22±0.01	1.82	120	0.47
VII:	Lolland-Falster	113+ 3	0.21:0.00	1.81	62	0.25
VIII:	Bornholm	156t 5	0.25:0.01	1.62	58	0.22
Mean		166	0.28	1.67	85	0.32
Mean		4.48 S.U.	7.4 pCi d-1		2.3 M.U.	8.7 pCi d-1
Copen	hagen	155∓ 1	0.26:0.02	1.65	80	0.32
Popul weigh	ation- ted mean	170	0.28	1.67	92	0.35
Relat to an	ive error due alysis	78	91		<u> </u>	

The error term is 1 S.E. of the mean of double determinations.

Table 5.7.2. Strontium-90 and Cesium-137 in Danish total diet collected in December 1980

Zone	$Bq 90Sr (kg Ca)^{-1}$	Bq ⁹⁰ Sr d ⁻¹	g Ca d ⁻¹	Bq ¹³⁷ Cs (kg K) ^{−1}	Bq ¹³⁷ Cs d ⁻¹
I: N. Jutland	167±2	0.26±0.01	1.54	74	0.27
II: E. Jutland	158±8	0.22±0.01	1.42	77	0.29
III: W. Jutland	162±2	0.27±0.01	1.66	92	0.34
IV: S. Jutland	158±8	0.27±0.01	1.70	84	0.32
V: Funen	126±6	0.22±0.02	1.67	65	0.24
VI: Zealand	124±2	0.20±0.00	1.62	74	0.28
VII: Lolland-Falster	129±5	0.23±0.00	1.77	70	0.27
VIII: Bornholm	137±5	0.22±0.02	1.62	70	0.26
Mean	145	0.24	1.62	76	0.28
Nean	3.92 8.0.	6.4 pCi d ⁻¹		2.05 M.U.	7.6 pCi d-1
Copenhagen	153\$3	0.26±0.00	1.72	101	0.37
Population- weighted mean	149	0.24	1.63	84	0.31
Relative error due to analysis	5%	78			

The error term is 1 S.E. of the mean of double determinations.

Fig. 5.7.1. Predicted and observed 90Sr levels in the Danish total diet. The dotted curve represents the predicted values for "Diet C" (cf. Tables 5.7.1 and 5.7.2) and the circles are the corresponding observed values. The unbroken curve represents the predicted values for "Diet P" (cf. Table 5.9.3), and the triangles the corresponding observed values.

From the total-diet sampling it is possible to estimate the mean levels of 90Sr and 137Cs in the Danish diet in 1980. For the period January-March 1980, the 90Sr level in the total diet is assumed to have been equal to that measured in December 1979, Risø Report No. 421¹). For the period April-September we assume the level to have corresponded to that measured in June 1980. The December 1980 figures are taken to represent the last three months of the year. Hence the mean content in the total diet in 1980 was 157 Bg 90Sr (kg Ca)⁻¹, or 0.26 Bg 90Sr (day)⁻¹.

Similarly, the 137Cs content in the Danish diet in 1980 was estimated to be 0.37 Bq 137Cs (day)⁻¹ or 91 Bq 137Cs (kg K)⁻¹. The observed 137Cs fallout level in total diet was 1.20 times that predicted (cf. Appendix C.2) (corrected for 137Cs from Windscale cf. 5.8.2).

5.8. Strontium-90 and Cesium-137 in miscellaneous foodstuffs

5.8.1. Strontium-90 and Cesium-137 in meat Pork and beef samples were collected in Copenhagen in three large shops in March and September. Table 5.8.1 shows the results. As compared with 1979, the mean 137Cs levels were a little lower in 1980.

The mean ratio between observed and predicted (cf. Appendix C.2) 137Cs levels in meat was 1.36. As observed values we used those from September 1980 and March 1981, as the meat models cover the period April(i)-March(i+1).

		Pork				Beef				
Month	Bg ⁹⁰ 8r kg ⁻¹	Bg ⁹⁰ Sr (kg Ca) ⁻¹	Bcg ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	B q ⁹⁰ Sr kg ⁻¹	90 Big Sr (kg Ca) ⁻¹	137 Bg Cs kg=1	137 Big Cs (kg K) ⁻¹		
March	0.012	260	0.82	220	0.012	140	0.37	100		
Sept	0.006	80	0.52	140	0.020	270	0.40	90		
Mean	0.009	170	0.67	180	0.016	205	0.38	95		
Mean	0.24 pCi kg ⁻¹	4.6 S.U.	18 pCi kg ⁻¹	4.9 M.U.	0.43 pCi kg*	¹ 5.5 8.0.	10.4 pCi kg	- ¹ 2.6 M.U		

Table 5.8.1. Strontium-90 and Cesium-137 in Danish meat collected in Copenhagen in 1980

5.8.2. Strontium-90 and Cesium-137 in fish

Fish samples were collected in the North Sea and in inner Danish waters. Tables 5.8.2.1 and 5.8.2.2 show the results. The mean levels of the two samplings were 0.028 Bg 90 Sr kg⁻¹ and 4.55 Bg 137 Cs kg⁻¹ (0.75 pCi 90 Sr kg⁻¹ and 123 pCi 137 Cs kg⁻¹). In the fish from the North Sea the 134 Cs/ 137 Cs mean ratio was 0.046 while it was 0.032 for fish from inner Danish waters.

<u>Table 5.8.2.1</u>. Strontium-90, Cesium-137 and Cesium-134 in fish meat from the North Sea purchased in Esbjerg in September 1980

Species	Bq ⁹⁰ Sr kg ⁻¹	Bg ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bg ¹³⁷ Cs (kg K) ⁻¹	134 _{Cs/} 137 _{Cs}
Cod	0.030	30 (27)	8.30	1# 70	0.044
Plaice	0.013	20 (15)	1.22	320	0.048
					•

Bone levels are shown in brackets.

<u>Table 5.8.2.2</u>, Strontium-90, Cesium-137 and Cesium-134 in fish meat from inner Danish waters purchased in Hundested in September 1980

Species	Bg ⁹⁰ Sr kg ⁻¹	B g ⁹⁰ Sr (kg Ca) ⁻¹	Bg ¹³⁷ Cs kg ⁻¹	8q ¹³⁷ Cs (kg K) ⁻¹	134 _{Cs/} 137 _{Cs}
Cod	0.055	55 (40)	4.34	960	0.017
Plaice	0.033	30 (20)	5.21	1150	0.038
Herring	0.007	20 (11)	3.66	1260	0.041

Bone levels are shown in brackets.

The ratio: 134 Cs/137 Cs in North Sea water was 0.047 (cf. 4.4) in 1980, i.e. the same as found in fish. From inner Danish waters the ratio: 134 Cs/137 Cs in fish was approximately 70% of that in fish from the North Sea, where approximately 5% of the 137 Csresults from fallout (Risø-R-421 p. 63-64¹)). In other words, nearly all radiocesium in water and fish from the North Sea in 1980 was of Windscale origin. In the inner Danish waters we estimate that 70% of the 137 Cs was due to Windscale. As most fish are caught in the North Sea our best estimate of the Windscale contribution to 137 Cs in Danish fish in 1980 is 90% (~ 4.1 Bq kg⁻¹). Garpikes migrate every spring from the waters around Britain to Danish inner waters. Elis Holm (University of Lund) got the idea that garpike thus may transport ¹³⁷Cs from Windscale to the Baltic area more directly than other fish and therefore contain relatively more radiocesium. Table 5.8.2.3 shows that flesh of garpike had indeed a ¹³⁷Ce concentration four times higher than other fish. The ratios: ¹³⁴Cs/¹³⁷Cs were a little higher in garpike than in North Sea water. Both observations suggest a short circuit of the transport of radiocesium from Windscale to Danish waters. Table 5.8.2.3, furthermore, shows that there was no systematic difference between the radiocesium concentrations in

Sample	Date	Bg ⁹⁰ Sr kg ⁺¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Ba 137Cs kg ⁻¹	Bg 137Cs (kg K)-1	134 137 Cs/ Cs
Flesh	May 6			22.9	4400	0.056
Roe	•			9.6	2700	0.073
Bone (head)	•			2,5	4200	-
Bone (back)	-			2.6	3300	-
Flesh (large)	May 16			21.6	3900	0.049
Flesh (small)	•			16.9	4000	0.060
Roe	•			11.0	2900	0.055
Flesh (4 yr) (small)	May 29		bone: 13	16.8	3400	0.059
Flesh (5 yr) (large)	-	0.032	25	13.2	2900	0.047
Flesh mean ±1	S.D.			18,2±3,9	3700±600	0,054±0,006

Table 5.8.2.3. Strontium-90, Cesium-137 and Cesium-134 in garpike caught in the Cattegat in May 1980

large (5-yr-old) and small (4-yr-old) garpike^{*)}. Roe as well as bones contained apparently lower ¹³⁷Cs concentrations than flesh. There was a tendency for radiocesium concentrations to decline in the flesh from the beginning of May to the end of the month. This was probably due to the dilution from the stay of the garpike in the less-contaminated Danish waters. It should, furthermore, be noticed that the ⁹⁰Sr levels in garpike did not differ from those in other fish.

^{*)}The age determinations were kindly performed by Jørgen Dalskov (Danmarks Fiskeri og Havundersøgelser).

5.8.3. Strontium-90 and Cesium-137 in various animal foods Eggs and chicken were collected in Copenhagen and Roskilde in 1980. As compared with the corresponding sampling in 1979, the levels were lower in 1980.

<u>Table 5.8.3</u>. Strontium-90 and Cesium-137 in eggs from Copenhagen and chickens from Roskilde in September 1980

Sample	Bq ⁹⁰ Sr kg ⁻¹	⁹⁰ Sr (kg Ca) ⁻¹	Bg ¹³⁷ Cs kg ⁻¹	Bg ¹³⁷ Cs (kg K) ⁻¹
Eggs	0.014	24	0.028	21
Chicken meat	0.006	33	0.13	54
Chicken bone	-	54	-	-

5.8.4. Strontium-90 and Cesium-137 in various vegetable foods

As compared with the corresponding sampling in 1978 the 90Sr and 137Cs levels in coffee and tea had decreased by 40% and approximately 10%, respectively; the 90Sr levels in orange and banana were lower in 1980 by a factor of approximately two.

SampleBg 90Sr kg⁻¹Bq 90Sr (kg Ca)⁻¹Bq 137Cs kg⁻¹Bq 137Cs (kg K)⁻¹Coffee (as drunk)0.436600.8150Tea (as drunk)1.1252005.0350

300

6200

20

530

250

B.D.L.

B.D.L.

0.031

0.38

0.42

_

_

30

70

94

Table 5.8.4. Strontium-90 and Cesium-137 in imported vegetable products collected in Copenhagen in December 1980

5.9. Estimate of the mean contents of 90Sr and 137Cs in the human diet in Denmark in 1980

5.9.1. The annual quantities

0.10

0.219

0.011

0.35

0.86

Orange

Banana

Hazelnuts (Danish)

Oats (Danish)

Rice

The annual quantities are calculated by multiplication of the daily quantities by 365 (as stated by E. Hoff-Jørgensen, cf. Risø Report No. 63, Table B¹).

5.9.2. Milk and cream

The 90Sr and 137Cs contents per kg milk were calculated from the annual mean values for dried milk (cf. Tables 5.1.1 and 5.1.3). 1 kg ~ 1 l milk, containing approximately 1.2 g Ca and 1.66 g K. Hence the mean contents in milk were 0.127 Bq 90Sr kg⁻¹ and 0.111 Bq 137Cs kg⁻¹.

5.9.3. Cheese

One kg of cheese contains approximately 8.5 g Ca and 1.2 g K. The 90 Sr and 137 Cs contents in cheese were calculated from these figures and from the 90 Sr/Ca and 137 Cs/K ratios in dried milk (cf. Tables 5.1.1 and 5.1.3). One kg of cheese appeared to contain 0.90 Bg 90 Sr and 0.080 Bg 137 Cs.

5.9.4. Grain products

Tables 5.9.1 and 5.9.2 show the estimates of 90Sr and 137Cs, respectively, in grain products consumed in 1980. From these tables, the activity levels in grain products were estimated at 0.38 Bg 90Sr kg⁻¹ and 0.24 Bg 137Cs kg⁻¹.

5.9.5. Potatoes

The figures in Table 5.5.1 were used, i.e. 0.083 Bg 9° Sr kg⁻¹ and 0.077 Bg 137Cs kg⁻¹.

Туре	Fraction	from harve	st 1979	Fraction	from harve	st 1980	
	kg flour	Bq kg-1	Bq	kg flour	Bg kg ⁻¹	Bq	Total Bg
Rye flour 60% extraction	21.9	0.74	16,22	7.3	0.74	5.40	21.62
Wheat flour 75% extraction	32.9	0 . 15	4.87	10,9	0.17	1.81	6,68
Grits	5.5	0.30	1.63	1.8	0.31	0.55	2.18
Total	60.3	0.38	22.72	20.0	0.39	7.76	30.48

<u>Table 5.9.1</u>. Estimate of the 90Sr content in grain products consumed per caput in 1980

Fraction	from harvest	1979	Fraction	from harve	st 1980	
kg flour	Bg kg-1	Bq	kg flour	Bq kg ⁻¹	Bg	Total Bg
21.9	0.45	9.90	7.3	0.33	2.41	12.31
32.9	0.14	4.75	10.9	0.12	1.25	6.00
5.5	0.16	0.88	1.8	0.13	0.23	1.11
60.3	0.26	15.53	20.0	0.19	3.89	19.42
	kg flour 21.9 32.9 5.5 60.3	kg flour Bq kg ⁻¹ 21.9 0.45 32.9 0.14 5.5 0.16 60.3 0.26	kg flour Bq kg ⁻¹ Bq 21.9 0.45 9.90 32.9 0.14 4.75 5.5 0.16 0.88 60.3 0.26 15.53	kg flour Bq kg ⁻¹ Bq kg flour 21.9 0.45 9.90 7.3 32.9 0.14 4.75 10.9 5.5 0.16 0.88 1.8 60.3 0.26 15.53 20.0	kg flour Bq kg ⁻¹ Bq kg flour Bq kg ⁻¹ 21.9 0.45 9.90 7.3 0.33 32.9 0.14 4.75 10.9 0.12 5.5 0.16 0.88 1.8 0.13 60.3 0.26 15.53 20.0 0.19	kg flour Bq kg ⁻¹ Bq kg flour Bq kg ⁻¹ Bq 21.9 0.45 9.90 7.3 0.33 2.41 32.9 0.14 4.75 10.9 0.12 1.25 5.5 0.16 0.88 1.8 0.13 0.23 60.3 0.26 15.53 20.0 0.19 3.89

<u>Table 5.9.2</u>. Estimate of the 137Cs content in grain products consumed per caput in 1980

5.9.6. Vegetables

Table 5.6.3 shows the calculation of 90 Sr and 137 Cs in Danish vegetables consumed in 1980. The mean contents were 0.34 Bg 90 Sr kg⁻¹ and 0.084 Bg 137 Cs kg⁻¹.

5.9.7. Fruit

The levels in imported fruit in 1980 are assumed to be equal to the mean levels found in oranges and bananas collected in Copenhagen in 1980, i.e. 0.06 Bg 90Sr kg⁻¹ and 0 Bg 137Cs kg⁻¹. The mean levels in Danish fruit (apples) in 1980 were 0.044 Bg 90Sr kg⁻¹ and 0.044 Bg 137Cs kg⁻¹ (cf. 5.6). The daily mean consumption of fruit consisted of 100 g of Danish and 40 g of foreign origin. Hence the mean contents in fruit were 0.05 Bg 90Sr kg⁻¹ and 0.03 Bg 137Cs kg⁻¹.

5.9.8. Meat

The annual mean values of 90Sr and 137Cs in meat were calculated from Table 5.8.1: 0.011 Bq 90Sr kg⁻¹ and 0.57 Bq 137Cs kg⁻¹. (In a Danish diet meat comprises 2/3 pork and 1/3 beef).

5.9.9. Fish

The 90 Sr and 137 Cs contents in fish are estimated from 5.8.2 at 0.028 Bq 90 Sr kg⁻¹ and 4.55 Bq 137 Cs kg⁻¹.

5.9.10. Eggs

The contents of activity in eggs were estimated from 5.8.3. The levels were 0.014 Bg 90Sr kg⁻¹ and 0.028 Bg 137Cs kg⁻¹.

5.9.11. Coffee and tea

One third of the total consumption consists of tea and two thirds of coffee. The mean contents were in 1980 0.66 Bg 90Sr kg⁻¹ and 2.21 Bg 137Cs kg⁻¹ and these figures were used.

5.9.12. Drinking water

The 90Sr level (population-weighted mean) found in drinking water collected in April 1979¹) was used as the mean level for drinking water, i.e. 0.0007 Bg 90Sr kg⁻¹. The 137Cs content in drinking water is assumed to be negligible.

Type of food	Annual quantity in kg	Bq ⁹⁰ Sr per kg	Total Bq ⁹⁰ Sr	Percentage of total Bg ⁹⁰ Sr in food
Milk and cream	164.0	0.127	20.83	23.6
Cheese	9.1	0.90	8.19	9.3
Grain products	80.3	0.38	30.48	34.6
Potatoes	73.0	0.083	6.06	6.9
Vegetables	43.8	0.34	14.89	16.9
Fruit	51.1	0.05	2.56	2.9
Meat	54.7	0.011	0.60	0.7
Еддь	10.9	0.014	0.15	0.2
Fish	10.9	0.028	0.31	0.4
Coffee and tea	5.5	0.66	3.63	4.1
Drinking water	548	0.0007	0.38	0.4
Total			88.08	

<u>Table 5.9.3</u>. Estimate of the mean content of 90 Sr in the human diet in 1980

The mean Ca intake was estimated at 0.62 kg y⁻¹ (approx. 0.2-0.25 kg creta praeparata). Hence the 90Sr/Ca ratio in total diet was 142 Bg 90Sr (kg Ca)⁻¹ (3.8 S.U.) in 1980.

5.9.13. Discussion

Tables 5.9.3 and 5.9.4 show the estimates of 90Sr and 137Cs in the Danish diet in 1980. The figures should be compared with the levels calculated from the total-diet samples (cf. 5.7). The 90Sr estimates obtained by the two methods (cf. also fig. 5.7.1) were 142 Bq (kg Ca)⁻¹ and 157 Bq (kg Ca)⁻¹, respectively, and the 137Cs estimates were 0.39 Bq 137Cs (day)⁻¹ and 0.37 Bq 137Cs (day)⁻¹.

The ratio between observed and predicted (cf. Appendix C) diet levels was 0.97 for 90 Sr and 1.01 for 137 Cs (corrected for Windscale 137 Cs).

Type of food	Annual guantity in kg	Bą 137 _{CS} per kg	Total Bg 137 _{Cs}	Percentage of total Bg ¹³⁷ Cs in food
Milk and cream	164.0	0.111	18.20	12.8 (18.6)
Cheese	9.1	0.080	0.73	0.5 (0.7)
Grain products	80.3	0.24	19.42	13.6 (19.9)
Potatoes	73.0	0.077	5.62	4.0 (5.7)
Vegetables	43.8	0.084	3.68	2.6 (3.8)
Fruit	51.1	0.03	1.53	1.1 (1.6)
Meat	54.7	0.57	31.18	21.9 (31.9)
Eggs	10.9	0.028	0.31	0.2 (0.3)
Fish	10.9	4.55	49.60(4.96)	34.8 (5.1)
Coffee and tea	5.5	2.21	12.16	8.5 (12.4)
Drinking water	548	0	0	0 (0)
Total			142.43 (97.79)	

<u>Table 5.9.4</u>. Estimate of the mean content of 137Cs in the human diet in 1980

In brackets are shown the values if the contribution of Windscale ^{137}Cs in fish is excluded. This contribution is approx. 90% of the ^{137}Cs content in Danish fish. Windscale thus contributed with approximately 30% of the total ^{137}Cs content in Danish diet in 1980.

As the approximate intake of potassium was 1.365 kg y⁻¹ the $^{137}Cs/K$ ratios were 104 (71.6) Bg ^{137}Cs (kg K)⁻¹ or 2.8 (1.93) M.U. in 1980.

The relative contributions of 90Sr from milk products (~ 33%) and from grain (35%) were similar to those in 1978 and 1979. The contribution from potatoes, other vegetables, and fruit was ~ 27%, i.e. a little higher than in 1979. The relative contribution of 137Cs in the total diet changed from 1979 to 1980 as follows: milk products (16 to 13%), grain products decreased from 28 to 14%, and meat increased (19 to 22%). Fish contributed 35% to the total 137Cs intake in 1980, and is thus the most important source of 137Cs. This is, however, due to the 137Cs contribution from Windscale. If this was excluded, milk products would contribute with 19%, grain: 20%, meat: 32% and fish: 5%.

5.10. Grass collected around Risø

Table 5.10.1 shows the 90Sr content in grass ash from Zealand in 1980. The mean 90Sr activity was 51 Bg 90Sr (kg ash)⁻¹, or 1080 Bg 90Sr (kg Ca)⁻¹, i.e. the 1980 level was approximately equal to the 1979 level. Figure 5.10 shows the 90Sr concentration in grass since 1957. The ratio between observed and predicted (cf. Appendix C.1) 90Sr level in grass in 1980 was 1.88.

	Bq ⁹⁰ Sr (kg ash) ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹
Jan-March	39	1110
April-June	64	1210
July-Sept	55	1090
Oct-Dec	46	890
Mean	51	1080
Mean	1.38 pCi g-1	29 S.U.

Table 5.10.1. Strontium-90 in grass from Zealand, 1980

Table 5.10.2 shows the 137Cs content in grass collected weekly in the spring at Risø. The 137Cs levels decrease from March to May due to growth dilution. The decrease is most pronounced for the 137Cs/K ratios, which decreased by a factor of four.

Fig. 5.10. Quarterly ⁹⁰Sr levels in grass, 1957-1980.

rable 5.10.2.	Cesium-13/	in grass	trom	R150,	1380	

	n	Bq ¹³⁷ Cs kg ⁻¹ fresh	Bq ¹³⁷ Cs m ^{−2}	Ba 137Cs (kg K)-1
March	5	3.51±0.13	1.2310.16	1010± 70
April	4	3.39±0.86	1.38±0.26	880±220
May	3	1.69±0.60	0.84±0.25	250± 90

The error term is 1 S.E. of the mean of n samplings during the month.

5.11. Sea plants

5.11.1. Sea plants collected in Roskilde Fjord

Figure 5.11.1 shows the Bq 90Sr (kg Ca)⁻¹ levels in sea plants since 1959 and Table 5.11.1 the results for 1980. The mean level in Fucus vesiculosus was 390 Bg 90Sr (kg Ca)⁻¹, and in Zostera marina 70 Bg 90Sr (kg Ca)⁻¹. The mean ratio between observed and predicted 90Sr levels in sea plants was 0.81.

fig. 5.11.1. Strontium-90 in sea plants from Roskilde fjord, 1959-1980.

Location	Species	Date	8q ⁹⁰ Sr (kg Ca)+1	Bq ⁹⁰ Sr kq ⁻¹ fresh weight	Bq ¹³⁷ Cs (kg K) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹ fresh weight
111	Zostera marina	July 25	64	0.22	52	0.23
IX		- * -	75	0.22	34	0.11
I	Fucus vesículosus	Aug 6	280	1.09	300	2.20
1		Oct 22	380	1.42	290	1.92
I	- • -	Dec 12	520	1.84	250	1,85

Table 5.11.1. Strontium-90 and Cesium-137 in sea plants from Roskilde Fjord in 1980

Zostera marina contained 43 Bg 13^{7} Cs (kg K)⁻¹ and Fucus vesiculosus 280.

5.11.2 Brown algae collected in Danish waters in 1980

In Table 3.2.1.4 measurements on fucoids collected in the Sound are presented, and Table 5.11.1 shows the data from Roskilde Fjord. Besides these samples, brown algae have been collected in the Baltic Sea at Bornholm and Rødvig, in the Kattegat at Anholt, Endelave and Skagen, and in the Great Belt at Halskov Rev (cf. Table 5.11.2).

.

Location	Species	Date	Bq ¹³⁷ Cs kg ⁻¹ fresh weight	Bg ¹³⁷ Cs (kg K) ⁻¹	Bg ⁶⁰ Co kg ⁻¹ fresh weight
Anholt harbour	Fucus ves.	May 4	1.98 (12.9)	450	0.07
Endelave	. • -	April 22	2.11 (13.3)	520	-
Bornholm Svenskehavn	- • -	June 3	1.42 (8.3)	340	-
Bornholm Arnager	_ • _	June 3	1.43 (12.3)	410	-
Bornholm Hammeren	- • -	June 3	1.03 (8.5)	250	-
Anholt harbour	_ • _	Oct 11	2.19 (10.5)	430	0.3
Redvig Korsnæb	- • -	Aug 6	1.86 (9.7)	380	-
Halskov Rev	_ * _	Aug 2	2.38*(10.7)	400	-
Bornholm Listed	- • -	Aug 19	2.39 (12.9)	380	-
Skagen	Laminaria	July 22	2.16 (10.9)	270	-
In brackets	are shown Bq	137 _{Cs kg} -1	dry weight.	<u> </u>	• • • • • • • •-
+134 _{Cs/} 137 _{Cs}	= 0.045				

<u>Table 5.11.2</u>. Gamma-emitting radio nuclides in brown algae collected in inner Danish waters (except the Sound) in 1980

Table 5.11.3 indicates that there was no difference between the 137Cs concentrations in brown algae from the various Danish waters. As the 137Cs concentration is nearly proportional to the salinity (cf. 4.4) we conclude that 137Cs is concentrated more in low- than in high-salinity waters. A similar conclusion was drawn in 1979 (cf. Risø-R-421 p. 112¹)). The ratio between Bg kg⁻¹ dry weight sea plant and Bg 1⁻¹ sea water was approximately 170 in the Kattegat, 360 in the Sound and Roskilde Fjord, and 690 in the Baltic Sea.

Furthermore, it is evident that the variance of the dry weight data, in general, are less than that of the fresh weight figures. As compared to 1979 the 137Cs concentrations in Danish fucoids increased with 10-15% in 1980. According to fig. 4.4.6 the 137Cs concentrations in "typical Danish surface water" (16 o/oo salini-ty) increased from 1979 to 1980 by 14% (cf. also 8.2.3).

-

Water	Number of samples	Bg ¹³⁷ Cs kg ⁻¹ fresh weight	Hq ¹³⁷ Cs kg ⁻¹ dry weight	Approximate salinity range where the samples are collected
The Kattegat	4	2.1±0.05	11.9±0.7	20-30 0/00
The Sound	10	2.5+0.2	11.7±0.5	10-15 0/00
Roskilde Fjord	3	2.0±0.1	9.9±0.8	10-15 0/00
The Great Belt	1	2.4	10.7	15-20 o/oo
The Baltic Sea	5	1.6±0.2	10.3±1.0	5-10 0/00
Total mean	23	2.16±0.13	11.16±0.35	
Mean		58 pCi kg ⁻¹ f.w	. 300 pCi kg ⁻¹ d	.w.

<u>Table 5.11.3</u>. Resume of 137Cs measurements on fucoids and laminaria collected in Danish waters in 1980

The error term is 1 S.E. of the mean.

ba

6. STRONTIUM-90 AND CESIUM-137 IN MAN IN 1980

by A. Aarkrog and J. Lippert

6.1. Stronium-90 in human bone

The collection of human vertebrae from the institutes of forensic medicine in Copenhagen and Århus was continued in 1980. As in the total-diet survey (cf. 5.7), the country was divided into eight zones. The samples were divided into five age groups: new-born (< 1 month), infants (1 month-4 years), children and teenagers (5-19 years), adults (\leq 29 years), and adults (> 29 years), however, no samples of new-borns bone were obtained in 1980.

Tables 6.1.2-6.1.5 show the results for the four groups. The 90Sr concentrations in human bone collected in 1980 were unchanged from those observed in 1979.

Table 6.1.1. Strontium-90 in bone from new-born children (< 1 month old) in 1980

No samples.

Zone	Age in years and months	Month of Sex death		Bg (kg Ca) ^{−1}	
11	2 m	3	м	46	
VI	2 m	2	м	40 A	
-	1 y 1 m	2	F	7 в	
-	1 y 5 m	2	F	34	

<u>Table 6.1.2</u>. Strontium-90 in bone from infants (\leq 4 years) in 1980

<u>Table 6.1.3</u>. Strontium-90 in bone from children and teenagers (\leq 19 years) in 1980

Zone	Age in years	Month of death	Sex	Bq (kg Ca) ^{−1}
11	14	10	M	36
111	19	3	F	36
IV	16	2	F	21
•	16	9	м	21
•	19	9	м	24

<u>Table 6.1.4</u>. Strontium-90 in vertebrae from adults (\leq 29 years) in 1980

Zone	Age in years	Month of death	Sex	Bq (kg Ca) ⁻¹
11	21	10	M	26
-	24	10	м	32
VI	29	2	F	27

Zone	Age in years	Month of death	Sex	Bq (kg Caa)∽1
II	39	10	F	33
•	70	2	F	31
•	72	2	F	35
•	74	10	F	29
•	30	3	м	23
•	40	2	M	29
•	49	3	м	30
•	56	3	M	28
•	59	2	м	59
•	81	10	м	40
•	83	10	M	38
III	58	3	F	26
•	47	6	м	28
IV	37	3	M	22
•	39	10	M	31
•	60	10	м	30
	75	10	M	44
VI	39	2	F	24
	31	2	M	40
•	37	2	M	47

<u>Table 6.1.5</u>. Strontium-90 in vertebrae from adults (> 29 years) in 1980

<u>Table 6.1.6</u>. Strontium-90 in human vertebrae collected in Denmark in 1980. (Unit: Bq (kg Ca)⁻¹)

Age group	Number of samples	Min.	Max.	Median	Mean
Infants (<u><</u> 4 years)	4	7	46	37	32
Children (<u><</u> 19 years)	5	21	36	24	28
Adults (<u><</u> 29 years)	3	26	32	27	28
Adults (> 29 years)	20	22	59	30	33

The observed mean concentration in adults (\geq 30 years) was 76% of that predicted (cf. Appendix C).

•

Tables 6.1.7-6.1.10 show ANOVA's on the adult (\geq 30 years) bone data from E. Jutland (zone II) and Zealand (zone VI). The data were divided into two periods: one with "high" levels (1964-1968) and "low" error, and another (1960-1963 and 1969-1980) with "low" levels and "high" error. The purpose of this division was to see if we could detect any significant difference in ⁹⁰Sr levels between male and female vertebrae. It appears that this was not possible in the present material.

<u>Table 6.1.7</u>. Analysis of variance of ln Bg 90Sr (kg Ca)⁻¹ in vertebrae from adults (\geq 30 years) collected in E-Jutland (Zone II), 1964-1968. (Age groups: 30-39, 40-49, 50-59, 60-69, 70-79 and 80-89 years)

Variation	SSD	f	s ²	v ²	P
Between year (Y)	0.099	4	0.025	0.298	-
" sex (S)	0.176	1	0.176	2.120	-
age group (A)	0.930	5	0.186	2.241	-
" ¥ × 5	U.181	3	0.060	0.726	-
" S×A	0.638	5	0.128	1.532	-
" Y * A	0.428	11	0.039	0.468	-
" ¥ * S * A	0.736	5	0.147	1.774	-
Remainder	1.665	20	0.083		

<u>Table 6.1.8</u>. Analysis of variance of ln Bg 90Sr (kg Ca)⁻¹ in vertebrae from adults (\geq 30 years) collected in Zealand (Zone VI), 1964-1968. (Age groups: 30-39, 40-49, 50-59, 60-69, 70-79 and 80-89 years)

£

Variation		SSD	f	s 2	v ²	P
Between	year (Y)	0.079	3	0.026	0.376	-
	sex (S)	0.148	1	0.148	2.114	-
-	age group (A)	0.723	5	0.145	2.066	-
	Y × S	0.120	1	0.120	1.714	-
	S * A	0.076	3	0,025	0.362	-
	Y × A	0.466	6	0.078	1.109	-
Remaind	Br	1,045	15	0.070		

s2 Variation v2 SSD f ₽ Between year (Y) 13.973 1.075 10.538 > 99.95% 13 . sex (S) 0.152 1 0.152 1.490 _ . age group (A) 0.819 5 0.164 1.606 . Y × S 1.730 12 0.144 1.417 SXA 0.488 5 0.098 0.960 Y × A 3.019 38 0.079 0.781 Y×S×A 2.275 0.103 1.016 22 Remainder 9.567 94 0.102

<u>Table 6.1.9</u>. Analysis of variance of ln Bq 90Sr (kg Ca)⁻¹ in vertebrae from adults (\geq 30 years) collected in Julland (Zone II), 1960-1963 and 1969-1980. (Age groups: 30-39, 40-49, 50-59, 60-69, 70-79 and 80-89 years)

<u>Table 6.1.10</u>. Analysis of variance of ln Bg 90Sr (kg Ca)⁻¹ in vertebrae from adults (≥ 30 years) collected in Zealand (Zone VI), 1960-1963 and 1969-1980. (Age groups: 30-39, 40-49, 50-59, 60-69, 70-79 and 80-89 years)

Variation		SSD	f	s ²	v ²	P
Between	year (Y)	9.726	14	0.695	5.938	> 99.95
•	sex (S)	0.009	1	0.009	0.077	-
•	age group (A)	0.909	4	0.227	1.942	-
•	Y × S	1.794	11	0.163	1.397	-
•	S×A	0.194	2	0.097	0.830	-
•	X × A	2.295	19	0.121	1.035	-
	Y = S × A	0.262	3	0.087	0.747	-
Remaind	er	8.873	76	0.117		,

f

!

<u>Fig. 6.1.1</u>. Strontium-90 levels (sample number weighted mean) in bone from newborn (< 1 month) 1961-1980.

-

Pig. 6.1.3. Strontium-90 levels (sample number weighted mean) in bone from children (> 4 years < 19 years) 1961-1980.

<u>Fig. 6.1.4</u>. Strontium-90 levels (sample number weighted mean) in bone from adults (> 19 years \leq 29 years) 1961-1980.

<u>Fig. 6.1.5</u>. Strontium-90 levels (sample number weighted mean) in bone from adults (> 29 years) 1961-1980.

<u>rig. 6.1.6</u>. Strontium-90 in human bone from Danish cohorts 1960-1966. Abscissa: age in years. Ordinate: bone level in Bg 90gr (kg Ca)-1.

ł

Whole-body measurements were initiated at Risø in July 1963 (cf. 2.3 in Risø Report No. 85^{1}). A control group from the Health Physics Department was selected and has since then been measured as far as possible three times a year.

However, due to the decreasing 137 Cs content in the body the contribution from interfering radionuclides to the γ -spectra has made the determination of 137 Cs unreliable and since 1978 we have not published whole-body measurements. From the prediction model

<u>Fig. 6.2</u>. A comparison between observed (± 1 S.E.) and calculated²¹) Bq 137Cs (kg K)⁻¹ levels in whole-body from the Islands.

for whole body $137 cs^{21}$) we have estimated the level in 1980 at 162 Bq 137 cs (kg K)⁻¹ (= 4.4 M.U.) and from the diet measurements (cf. 5.7) for the Islands our estimate becomes: 2.85.77 = 219 Bq 137 cs (kg K)⁻¹ (= 5.9 M.U.), where 2.85 is the observed ratio between 137 cs/K in body and diet²¹). 7. TRITIUM IN THE ENVIRONMENT

by Heinz Hansen

7.1. Introduction

Tritium is produced naturally in the atmosphere by the interaction of cosmic-ray protons and neutrons with nitrogen, oxygen or argon. Surface waters contain about 0.37 kBg m^{-3} from this source²⁵). Tritium is also produced and injected into the stratosphere as the result of thermonuclear explosions. At present, this latter source has enhanced the natural inventory by about a factor of ten²⁵). Finally, tritium is produced as a by-product of the peaceful uses of atomic energy: it is released both during reactor operation and fuel reprocessing.

Before Denmark builds any nuclear power stations of her own, it is of interest to know the general tritium levels in the environment that could be affected by this new energy source. Also, an assay of the current tritium levels can be used already now to control any tritium which may be released from the Swedish nuclear power stations at Barsebäck and Ringhals, and from the reprocessing plants at Windscale and La Hague.

7.2. Assay of tritium in low-level amounts

The present assays of tritium levels in water are based on a relative enrichment of ${}^{3}\text{H}_{2}\text{O}$ by electrolysis and subsequent liquid scintillation counting as previously described (Risø Reports Nos. 386, 403)¹).

In spite of a series of adaptions of the original method, based on further experience, we have not yet quite resolved the problem that a few sea water samples show apparently enhanced tritium levels, which decay with storage time.
7.3. Results

Local precipitation values at Risø were affected by changes in the cooling system of the reactor DR 3, which in autumn 1980 resulted in a minor extra release of ${}^{3}\text{H}_{2}\text{O}$ to the environment.

Month	s ra	Small (1 m ²) rain collector			Large (10 m ²) rain collector			
	n	kBq m ⁻³	kBq m ^{−2}	m	kBq m ⁻³	kBq m ^{−2}		
Jan	0.020	6.7±0.19	0.133	0.024	<u> </u>	-		
Feb	0.019	6.7±0.19	V.126	0.020	-	-		
March	0.015	4.4±0.74	0.067	0.015	-	-		
April	0.025	9.6±0.93	0.24	0.028	11.1±0.37	0.31		
May	0.020	11.1±0.56	0.22	0.010	8.9±0.93	0.089		
June	0.077	7.4±0.19	0.57	0.076	12.6±0.56	0.96		
July	0.084	7.0±0.74	0.59	0.083	11.5±0.37	0.96		
Aug	0.060	9.8±2.0	0.59	0.041	-	-		
Sept	0.062	-	-	0.072	-	-		
1-27/10				0.048	32 ±3.1	1.54		
27-30/10	0.072	48 ±6.1	3.5	0.028	113 ±2.0	3.2		
Nov	0.060	7.0±0.37	0.42	0.061	-	-		
Dec	0.051	4.3±0.56	0.22	0.038	5.6±0.74	0.21		
<u></u>	Σ _m 0.565			Σ _m 0.544				

Table 7.3.1. Tritium in precipitation collected at Rise in 1980

The error term is 1 S.E. of the mean of double determinations.

Location 	квq эн m ⁻ э
Hvidsten	2.0 ±1.30
Feldbak	2.2
R ene	0.56±0.18
Rønne new	0.74±0.00
Renne old	3.7
Hasselo	4.4 ±0.00
Fåretofte	9.6 ±0.37
Kalundborg	8.9 ±1.11
Ravnholt	11.8 ±1.11
Fredericia	5.7 ±0.92
Mean	5.0 ±3.9 (1 S.D.)
Mean: nCi 1~1	0.134±0.105 (1 S.D.)
Median	4.0
Median: nCi 1 ⁻¹	0.109

Table 7.3.2. Tritium in ground water collected in March 1980 (cf. 4.3.1)

A sample of ground water from Maglekilde in Roskilde contained 9.6±1.11 kBg 3 H m⁻³.

The error term is 1 S.E. of the mean of double determinations.

.

•

colle (cf.	cted Fig.	in 4.0	Roski i.2),	ilde 1980	f jor	d	(1)
Date					kB q	3 _H	"."

Table 7.3.3. Tritium in sea water

Date	kBq 3H m ⁻³
30/1	7.4±0.00
4/3	6.7±0.92*
8/4	7.8±1.48
6/5	6.7±0.74
3/6	11.1±0.44*
3/9	9.8±0.18
3/11	20.8±1.52*
	and a second

The error term is 1 S.E. of the mean of double determinations. *Triple determinations.

A regression analysis of the overall relation between sea water salinity (0/00) and tritium content (nCi l^{-1}) in late 1979 (Table 7.3.4) and 1980 (Table 7.3.5) showed no significant changes from the figures for early 1979 quoted in our last report (Risø-R-421¹)). In early 1979 we had found: nCi ^{3}H 1⁻¹ = 0.28-0.0064 o/oo. Now we find for late 1979: nCi ${}^{3}H 1^{-1} = 0.31 - 0.0073 \text{ o/oo, and for}$ all 1979: nCi ³H 1^{-1} = 0.28-0.0066 o/oo. For 1980 we find: nCi 3 H l⁻¹ = 0.34-0.0071 o/oo. This shows again that the tritium contamination of Danish waters is predominantly due to fallout ${}^{3}\text{H}_{2}\text{O}$ in precipitation. It is not affected to any significant extent by tritium from Windscale or from Swedish nuclear plants.

Location	Positi Station N	ion or number E	is∙pth in m	Date	kBq m ⁻³ ±1 S.E.	Salinity o/oo
Kullen	569151	12025'	0	Nov 1979	5.7 ±1.66	25.7
- • -	- • -	- * -	22	- • -	4.4 10.37	26.3
Messele			0	Jan 1980	5.4 ±0.18	22.9
Kattegat SW			υ	· • • •	5.9 20.37	20.0
ASTHS YEV			Q	- • -	5.7 10.05*	18.7
Halskov rev			C	- • -	5.6 10.85*	15.5
femern bælt			0	- * -	6.8 10.56	17.4
Gedser rev			Û	- " -	10.7 ±0.37	11.7
The Sound - North A	55048 *	12044*	0	Dec 1979	5.0 ±0.18	26.2
. • • .	- • -	- • -	19	- • -	3.9 ±1.30	32.0
The Sound - North B	55°59'	12042.	U	Nov 1979	4.8 ±0,74	25.0
-**-	- • -	- • -	25		2.2 ±0.37	32.0
Bersebäck	38		U	Dec 1979	5.9 ±0.37	21.6
- • -			tu	- " -	8.5 10.74	26.3
Ringhals	2		ũ	Nov 1979	3.3 10.74	23.0
- • -	•		24	- " -	1.85 10.35	35.6
Ringhals	57º14'	11053'07	U	- • -	4,8 ±0,00	24.5
- • -	- * -	- • -	65	- " -	2.0 10.56	36.2
Hesselø	56010'	11047'	U	June 1979	5.6 10.00	18.1
- • -	- • -	- * -	24	- * -	1.48±0.00	34.2
Dybe rende	57049.9'	11017.5'	V.5	Aug 1979	2.2 10.00	32.1
Hirtshals	57034.5'	90421	0.5		2.0 ±0.18	32.9
Hanstholm	570071	80271	0.5	- " -	2.4 10.18	32.9
Lyngvig	56014.4'	70581	0.5	- • -	2.8 ±0.18	32.8
Horn rev	550401	7035.4'	ι.5	- - -	2.8 10.18	33.4
Rema	55006.31	8016.31	0.5	- • -	2.6 ±0.00	30.7
The North Sea	57045'	50301	U	June 1979	2.8 ±0.56	30.7
Skagerak	57017'	9003'	0	- • -	2.8 ±0.18	30,8
The North Sea	55059'	7052'	0	May 1979	3.0 ±0.00	32,8
- * -	55048 '	40301	0	June 1979	1,48:0,00	35.6
Skagerak	57041'	100101	0	Nov 1979	4.6 ±1.30	26.0
The North Sea	55017'6	700715	0	Jan 1980	3.1 ±0.56	35.7
Around the Zealand				1971	9.2	

Table 7.3.4. Tritium in sea water collected in 1979 and January 1980 (cf. Rise-R-4211))

*Triple determinations.

.

The error term is 1 S.E. of the mean of double determinations.

. ţ

•

.

Location	Position or station number N E	Depth r in m	Date	kBq ³ H m ⁻³ ±1 S.E.	Salinity o/co
Kullen	569151 12925	• 0	December	7.8±0.37	21.9
- • -	م + رسور م + م	22	- • -	5.0±0.56	24.1
Hesselø	56010 11047	• 0	November	7.4±0.37	24.3
		25	- • -	4.6:1.30	33.0
Kattegat SW	56007 11010	• 0	July	9.2±1.11	14.4
_ = = _	-**-	39		3.7±0.37	28.4
	- • • -	0	November	7.6±0.56	23.9
- • -	_ * *	33	- • -	6.1±0.18	32.1
Asnæs rev	55038* 10047	• 0	July	9.4±0.5€	12.7
	- • • -	39	- • -	3.3±0.00	30.9
- • -	-**-	0	November	8.1±1.48	22.1
- • -	- • • -	35	- • -	5.7±0.18	30.7
Halskov rev	550231 11003	• 0	August	9.2:0.74	10.8
	- * - - • •	19	- * -	3.1+0.18	29.2
- • -	_ * * _	0	November	7.4±0.74	18.8
- • -	- * * -	20	- • -	6.3±0.37	24.3
Langeland bælt	54050 10050	• 0	August	9.1±0.56	9.2
- • -	. * . . * .	48	- " -	3.3±1.48	29.7
- • -		0	December	8.3±0.56	18.4
- * -	- * * -	45	- " -	10.2±0.56	18.6
Femern b≇lt	549361 11905	• 0	August	8.7±0.18	12.0
- • -	_ * * _	28	_ * _	5.0±0.18	28.8
- * -	• * - - * -	0	December	8.1±0.00	16.9
- * -	- # - # -	20	- * -	8.1±1.11	14.0
Gedser odde	549281 11959	• 0	August	9.4±0.56	8.2
_ * _	• * • • * •	18	- * -	3,9±0,56	27.3
· _ # _	- * * -	0	December	12.0±0.56	13.4
- " -	_ * * _	15	- " -	10.9±0.56	14.9
Møen	540571 12041	• 0	August	12.6±1.41*	7.9
~ * -	_ # #_	21	- " -	10.2±0.18	7.8
	- * * -	0	December	10.7±0.37	9.3
- * -	- * * -	21	- • -	9.4±0.18	11.2

Teble 7.3.5. Tritium in sea water collected in 1980

,

\$

...

.

Table 7.3.5 continued

Location	Positi station N	on or numbur E	Depth in m	Date	käq ³ H m ^{−3} ±1 S.E.	Salinity o/oo
The Sound - South	55025.	12039'	0	August	9.4±1.30	11.1
- • -	- • -	- • -	12		8.5±1.11	12.
- • -	- • -	- • -	0	December	11.7±0.18	11.2
	- • -		12	- • -	9.4±0.18	11.9
The Sound - North A	550481	12044'	0	August	8.7±1.30	13.6
- • -	- • -	- • -	19	- • -	4,8±1.11	27.2
- • -	- • -	- • -	0	December	6.5±0.92	19.5
- • -	- • -	- • -	20		7.9±1.30*	22.6
The Sound - North B	55059'	12942'	0	August	8.5±0.37	10.7
- • <i>-</i>			26	- * -	2.8±0.18	32.9
- • -	- • -	- • -	0	December	5.9±0.37	21.3
- * -	- • -	- • -	25	- • -	5.410.18	27.3
Barseblick	38		0	August	7.4±1.11	13.1
- * -	•		16		3.0±0.00	31,6
- • -	•		0	November	10.0±0.37	11'.2
- * -	•		16	- • -	8.3±0.18	19.2
Ringhals	57014'	11953'7	0	July	11.8±0.37	20.8
- • -	- • -	- • -	66	- • -	5.4±1.67	35.3
- • -	- • -	- • -	0	October	4.8±0.00	30.0
- • -	- * -	- • -	65	- * -	2.8±0.18	33.0
- • -	2		0		6.3±1.15*	18.6
- • -	-		22	- * -	6.1±0.56	29.7
The North Sea	550571	3030 '	0	September	2.8±0.56	35.1
- • -	550551	505715	0	January 81	5.0t0.56	34.5
- • -	55013'	8º12'	0	· _ • _	6.1±0.56	29.5

8. TRANSURANICS IN ENVIRONMENTAL SAMPLES

by Karen Nilsson, Henning Dahlgaard, and Asker Aarkrog

8.1. Materials and methods

The studies have comprised four types of marine samples in sea water, marine sediments, brown algae (Fucoids and Laminaria), and mussels (Mytilus edulis mostly). The samples were collected in Danish waters from Skagen to Bornholm by the research vessel Fyrholm (fig. 8.1).

Sea water samples were measured both as total water and as particulates filtered by a $0.45-\mu$ Gelman Acroflow II filter (500-1000 l h⁻¹). The samples for Pu-Am analysis were 200-1000 l and they were collected by a pump through a rubber tube. The Pu and Am were precipitated with ²³⁶Pu and ²⁴³Am spikes (kindly provided by Drs. H. Volchoch, EML, and J. Sedlet, ANL) by adding NaOH to the water on board the ship (pH = 10). This method was developed by Dr. Elis Holm, Lund University.

Sediments were collected down to 15-cem depths by the HAPS¹⁸) 135mm cylindrical stainless steel cover. The samples were divided into 3-cm thick sections before analysis.

Brown algae were collected as fresh growing plants. The total plant was included in the analysis, but epifauna was removed.

Mussels were divided in flesh and shells before the analysis. The bysus threads were removed before the preparation. The samples were analysed for Pu by the method of Talvitie^{19,30}) and the Am was determined by a method developed by Elis Holm³³).

Fig. 8.1. Sampling locations for marine samples in July-August 1980

8.2. Results and discussion

8.2.1. Sea water

Figure 8.2.1 shows that the Pu concentration in sea water increases with increasing salinity in the Danish waters. For comparison, a sample from the Norwegian West Coast (approximately 63° N) and 9 samples from Thule waters (approximately 76° N) (contaminated by fallout only) are plotted on the figure. It appears that these data fitted into the pattern of samples from Danish waters. Kautsky³⁴) collected 3 sea water surface samples in the Kattegat and two in the Baltic Sea in July 1980. The mean 239,240Pu content in these samples was 0.23 ± 0.05 fCi 1^{-1} (±1 S.D.) (0.0084 Bg m⁻³). This was in the same range as our surface water samples collected in July-August 1980.

<u>Pig. 8.2.1</u>. Plutonium-239,240 in sea water related to salinity, 1979-1980. o: Danish surface sea water (1980). ∇ : Danish bottom sea water (1980). N: Norwegian sea water (1980). T : Thule waters (1979) (±1 S.D., 9 determinations).

The particulate fraction $(\gtrsim 0.45 \ \mu)$ of the Pu activity in the Danish samples were 7[±]2 (1 S.D.)%. In the Thule samples we found 13[±]4%. The particulate fraction for Danish inner waters is surprisingly low and may be a result of the filtering method applied.

The mean ratios: $241_{\text{Am}}/239,240_{\text{Pu}}$ was 0.11 ± 0.03 in Danish waters (1 S.D.; 7 samples); in Thule waters we found 0.18 ± 0.09 (1 S.D., 4 samples). These ratios are lower than that in accumulated fallout (~ 0.3) because Am is more easily removed than Pu from the water column to the sediments.

The source of Pu and Am in Danish waters during 1978-1980 has mainly been global fallout. There may have been contributions from Windscale, too, but this could not be confirmed by our data. Kautsky³⁴) has, however, shown an increase in Pu concentrations in the Kattegat in March 1979 which probably was due to Windscale.

Location	Stup? 7	salinity in	Date	239,240		241 _{Am}	
		6/90		hq n-3	fci 1-1	Bq m-3	fC1 1-1
Skagen	10t 1 curface water	25.3	July 22	0.0094	0.25	0.002	0.04
- • -	187 1 joeton (19 m) vetse	J2.#		0.019	0-5 0	0.061	0.03
	1665 1 swrface 0.45 µ perticulates	25.3	 -	0.00055	3.Q18	-	-
The Great Belt	The I mutaer water	11.4	Aug 2	0.0055	0.15	-	-
ی ک ی	199 1 Putton (19 m) Piter	30.3		0.015	0.41	-	-
- • -	719 1 sorface 2.35 p ganticulates	11.4	- • -	0.00044	0-012	-	-
Rengisle 2	200 % surface water	13.6	Jaiy 16	3.0079	0.19	0.9968	0.62
_ • _	NG 7 Sotton (18 m) Water	34.0	. • .	6.013 6	0.37	0.0016	0.04
- • -	1039 l surface 0.45 p particulates	19.0		0.00953	0.014	-	-
lereebick	160 1 surfere water	12.7	Aug B	9.0665	0.18	-	-
	180] bottom (16 m) water	31.6	- • -	C.010	0.27	0.0012	0.03
løen -	186] surface water		Aug 5	0.0061	0.17	-	-
	180 1 bottom (19 m) Water	8.8	- • -	0.0065	0. 18	-	-
• • -	570 l surface 0.45 µ particulates	9.8		0.00057	0-015	-	-
lornhols, Listed	180 1 surface water	8.0	Aug 19	0.0053	0.14	-	-
-•-	1000 l surface 0.45 µ particulates	8.8		0.00017	0-0046	-	-
tean surface we	ter 11 8.D.			0.0067±0.002	0.18±0.04	0.001410.0009	(.03±0.01
fean buttom wat	ar 11 S.D. (except Mpen))		C.01410.004	0.3920.1U	0.031320.0003	0.03±0.006
Meen particulate	ms 11 S.D.			0.0004710.0002	0.01310.005		

Thole (.2.1. Plutanium and Americium in rea vater collected in Panish vaters in July-August 1980

8.2.2. Sediments

In 1980 sediments were collected along with the sea water samples shown above. The mean deposition (0-12 cm) at Ringhals, Barsebäck, and the Great Belt was 56 ± 7 Bg 239,240Pu m⁻² (±1 S.D.) (or 1.5 ±0.2 nCi m⁻²). The mean ratio: 238Pu/239,240Pu was 0.04 ±0.015 and the mean ratio: 241Am/239,240Pu was 0.35 ±0.06 . These observations are similar to those in the previous period 1975-1979¹).

3

The mean concentration ratios between 0-3 cm-sediments (Bq kg⁻¹ dry weight) and bottom sea water (Bq 1⁻¹) were $1 \cdot 10^5$ for 239,240 Pu and $3 \cdot 10^5$ for 241 Am. Similar ratios were found in Thule in 1979. The higher concentration ratio between sediments and sea water for Am than for Pu agrees with the lower solubility of Am in sea water.

Location 6 date	Section in cm	239,240 _{Pu}		238 _{Pu/} 239,240 _{Pu}	241 _{Am/} 239,240 _{Pu}	
		Bg kg ^{−1}	Bq nr−2			
Ringhals 2	0-3	0.63	13.5	0.071	0.31	
(Fig. 3.2.1.2)	3-6	0.55	18.2	0.053	-	
July 16	6-9	0.40	14.0	0.03	-	
	9 -12	0.065	2.4	-	-	
Barsebäck 38	0-3	2.09	21.5	0.051	0.27	
(rig. 3.2.1.1)	3-6	2.29	26.9	0.034	0.43	
Aug 8	6-9	0.05	0.5	-	-	
	9-12	0.65	8.0	0.027	-	
The Great Belt	U-3	1.40±0.08	17.8	U.034±U.003	0.36±0.03	
55°23'N, 11°03'E	3-6	1.49±0.11	29.3	0.033±0.005	0.36±0.02	
Aug 2	6-9	0.72±0.01	14.5	0.024±0.003	0.38	
	9-12	0.053±0.002	1.1	-	-	
Mæn 54°57'N,12°41'S Aug 5	0-5	0.12	10.3	-	-	
<u></u>				·····		

Table 8.2.2. Plutonium and Americium in sediments collected in inner Danish waters in July-August 1980

The error terms are 1 S.E. of the mean of double determinations.

8.2.3. Sea plants

Sea plants were collected at the same locations as sea water (cf. fig. 8.1). Figure 8.2.3 indicates that the plutonium concentrations in sea plants were lower in 1980 than in 1979, which was contrary to the observation made for 137Cs (cf. 5.11.2). The figure further shows that there was no significant difference in Pu concentrations in Fucoids collected in "low"- and "high"-

salinity Danish waters. Within the year the Fi levels showed variations similar to those observed between years. The reasons for these variations may be explained by the varying growth rate of the sea plants.

Location and date	Species	By kg ⁻¹ wet	Ng kg ⁻¹ dry
Skagen			
July 22	Laminaria	0.014	0.073
	Pucus vesiculosus	0.005	0.031
The Great Belt			
Aug 2	Fucus vesículosus	0.013	0.057
Barsebäck			
Aug 10	Fucus vesiculosus	0.002	0.039
Rødvig-Korsnab			
Aug 6	Fucus vesiculosus	0.006	0.033
Listed, Bornholm			
Aug 19	Pucus vesiculosus	0.006	0.034
Mean 11 S.D.		0.0077±0.0048	0.045±0.017
Mean		0.21 pCi kg ⁻¹	1.20 pCi kg ⁻¹

Table 8.2.3. Plutonium 239,240 in fucoids and laminaria collected in July-August 1980 in Danish waters

<u>**Pig. 8.2.3.</u>** Plutonium-239,240 kg⁻¹ dry weight fucoids collected in Danish waters 1977-1980. (Méan values ± 1 S.E.) (number of samples indicated).</u>

The concentration ratio between brown algae (Bq kg⁻¹ dry weight) and surface sea water (Bq 1⁻¹) was $(7\pm0.9)\times10^3$ (±1 S.E., 5 determinations) for Pu (on a wet weight basis it was 1×10^3). These ratios are approximately 3 times lower than those observed in Thule (cf. Risø-R-423³⁵) but the difference is hardly significant.

Earlier measurements of Am in sea plants^{1,35}) have shown that the concentration ratio between brown algae and sea water is the same as that observed for Pu.

8.2.4. Mussels

The concentration ratio for plutonium between Mussel flesh (Bq kg⁻¹ dry weight) and surface sea water (Bq l⁻¹) was estimated at $(6\pm1.2)\cdot10^3$ (±1 S.E., 5 determinations) (on a fresh weight basis: $6\cdot10^2$); the mean ratio of shells/flesh (dry weight) was 0.31 ± 0.07

Location and date	Semple	Bq kg ⁻¹ fresh w.	Bq kg ⁻¹ dry w.
Skagen July 22	Mytilus edulis flesh	0.0025	0.019
The Great Belt Aug 2	Mytilus edulis flesh shell	0-0041	0.033 0.013
Ringhals July 16	Cyrina islandica flesh shell	0.015	0.079 0.026
Berseblick Aug 12	Mytilus edulis flesh	0.0019	0.040
Dragør, the Sound Aug 10	Mytilus edulis flesh shell	0-0069	0.060 0.014
Korsnab, Rødvig Aug 6	Mytilus edulis flesh	0.0051	0.048
Mean (Mytilus edul;	is flesh) ±1 S.D.	0.0041±0.0020	0.040±0.015
Hean (Mytilus edul;	is flesh)	0.11 pCi kg ⁻¹	1.08 pCi kg ⁻¹

Table 8.2.4. Plutonium in mussels collected in Danish waters in July-August 1980

(1 S.D.). On a dry weight basis mussels thus showed a concentration ratio similar to that of Fucus; but on a fresh weight basis Fucus concentrated Pu more easily than Mutilus by a factor of approximately two. As for Fucus we found no strong indication of any relationship between salinity and Pu-concentration in mussels.

-

9. MEASUREMENTS OF BACKGROUND RADIATION IN 1980

by L. Bøtter-Jensen and S.P. Nielsen

9.1. Instrumentation

Measurements of the background radiation were made with thermoluminescence dosimeters (TLD's), a mobile Ge(Li) spectrometer system²⁴⁾, a high-pressure ionization chamber (Reuter-Stokes RSS-111), and a NaI(T1) detector.

9.2. State experimental farms

The State experimental farms are situated as shown in fig. 4.2. The results of the TLD measurements are shown in Table 9.2.1. The results of the NaI(T1) detector measurements are shown in Table 9.2.2.

	Win⊦∍r 1979/80	Summer 1980	Mean
Tylstrup	7.3	7.5	7.4
Borris	6.6	6.5	6.6
Ødum	7,6	7.9	7.8
Askov	7.2	7.3	7.3
St. Jyndevad	6.4	6.4	6.4
Blangstedgård	7.7	7.4	7.7
Tystofte	8.4	8.4	8.4
Abed	8.4	-	8.4
Mean	7.5	7.5	7.5

<u>Table 9.2.1</u>. TLD-measurements of the background radiation (μ R h⁻¹) at the State experimental farms in 1979/80

Location	June	Sep	Dec	Mean	
Tylstrup	3.7	3.0	(3.1)	3.3	
Borris	3.5	2.9	(3.0)	3.1	
Ødum	5.0	4.4	(4.5)	4.6	
Askov	4.1	3.4	3.2	3.6	
St. Jyndevad	2.2	1.6	1.8	1.9	
Blangstedgaard	4.6	4.0	3.8	4.1	
Ledreborg	5.2	4.8	(4-8)	4.9	
Tystofte	4.9	3.8	(4.1)	4.3	
Abed	5.2	4.8	5.2	5.1	
Tornbygård	5.9	(5.3)	(5.3)	5.5	
Mean	4.4	3.8	3.9	4.0	
		·····			

<u>Table 9.2.2</u>. Terrestrial exposure rates at the State experimental farms measured with the NaI(T1) detector in 1980 (μ R h⁻¹)

Figures in brackets calculated from VAR2¹²⁾.

The γ -background measured with the NaI(T1) detector in four groups of sampling stations is shown in fig. 9.2.1 from 1962 to 1980. The change of levels in 1977 is due to a modification of the instrument and of the calculational procedure³¹⁾.

The results of ionization chamber measurements are shown in Table 9.2.3. The results of Ge(Li) spectrometer measurements are shown in Tables 9.2.4 and 9.2.5.

Fig. 9.2.1. Terrestrial exposure rates at the State experimental farms in 1962-1976 and 1978-1980 measured with the NaI(Tl) detector ($\mu R h^{-1}$).

..... Åkirkeby/Tornbygård

----- Abed, Blangstedgård, Tystofte

----- Virumgård/Ledreborg, Ødum, Tylstrup

— · — Jyndevad, Askov, Studsgård/Borris

<u>Table 9.2.3</u>. Ionization chamber measurements of the background radiation at the State experimental farms in 1980 (μ R h⁻¹)

Location	September
Askov	6.9
St. Jyndevad	5,8
Blangstedgård	8.3
Ledreborg	8.7
Abed	8.6
Tornbygård	9.2
Nean	7.9

.

Location	40 _K	226 _{Ra}	232 _{Th}	137 _{CS}	Total
Askov	1.3	0.5	0.6	0.1	2.5
St. Jyndevad	1.0	0.3	0.3	0.2	1.8
Blangstedgård	2.1	0.9	1.3	0.1	4.4
Ledreborg	2.3	0.9	1.5	0.1	4.8
Abed	2.1	1.1	1.2	0.1	4.4
Tornbygård	2.7	0.8	1.4	0.1	4.9
Mean	1.9	0.7	1.1	0.1	3.8

<u>Table 9.2.4</u>. Terrestrial exposure rates at the State experimental farms estimated from field spectroscopic measurements made in September 1980 ($\nu R h^{-1}$)

<u>Table 9.2.5</u>. Radionuclides in the soil at the State experimental farms estimated from field spectroscopic measurements made in September 1980. (Unit: Bg kg^{-1})

Location	40 _K	226 _{Ra}	232 _{Th}	137 _{Cs}
Askov	250	6.5	8.1	7.8
St. Jyndevad	200	5.6	4.4	11.1
Blangstedgård	420	17.8	17.8	5.6
Ledreborg	470	17.0	20.4	5.2
Abed	422	20.4	15.9	5.6
Tornbygård	540	15.9	18.1	2.6
Mean	380	14.4	14.1	6.3

9.3. Risø environment

The five zones around Risø are located as shown in fig. 9.3.1. The results of the TLD measurements are shown in Table 9.3.1, and the results of the NaI(T1) detector measurements are shown in Table 9.3.2. e.

<u>Table 9.3.1</u>. TLD-measurements of the background radiation (μ R h⁻¹) in five zones (I-V) around Rise in 1979/80

Rise zone	Location	Ninter 1979/80	Summer 1980	Hean
· · · · · · · · · · · · · · · · · · ·	1	8.8	8.2	8.5
	2	8.9	8.7	8.8
	3	23.0	21.7	22.4
	4	9.6	9.0	9.3
	5	14.9	16.7	15.8
an		13.0	12.9	13.0
	1	8.2	8.2	8.2
	2	8.6	8.5	8.6
	3	7.8	7.6	7.7
	4	8.9	8.4	8.7
חו		8.4	8.2	8.3
I	1	8.8	8.6	8.7
	2	7.9	-	7.9
	3	8.9	8.6	8.8
m		8.5	8.6	8,5
	1	8.1	7.8	8.0
	2	8.1	8.5	8.3
	3	8.6	8.3	8.9
	4	9.0	8.8	8.9
	5	6.7	6.4	6,6
	6	8.1	8.1	8.1
	7	9.2	9.5	9,4
n		8.3	8.2	8.3
	1	8.2	7.9	8.1
	2	8.8	8.9	8.9
	3	8.5	8.4	8,5
	4	8.4	8.1	8.3
	5	9.4	9.1	9.3
	6	8.8	5.7	8.8
	7	8.7	8.8	8,8
	8	7.4	7.3	7.4
	9	9.2	8.7	9.(
	10	8.1	8.2	8.2
		8,5	B.4	8,5

.

Rise zone	Location	Feb	May	Aug	Nov
1	1	4.6	4.4	5.3	4.6
•	2	· 5.7	5.8	7.1	6.7
•	3	74.7	54.4	64.8	58.8
•	4	4.6	6.8	6.2	5.4
•	5	23.5	11_2	33.0	10.8
Mean		22.6	16.5	23.3	17.3
11	1	3.4	5.2	5.2	4.5
•	2	4.7	6.6	6.0	5.2
•	3	3.9	3.9	4.5	3.3
•	4	3.5	5.1	5.3	4.5
Mean		3.9	5.2	5.3	4.4
111	t		6.6	6.0	6.1
•	2		5.2	5.6	4.7
-	3		4.8	5.4	4.4
Mean			5.5	5.7	5.1
IV	1		5.0		4.0
*	2		5.1		4.8
•	3		5.2		4.7
-	4		4.5		4.2
•	5		3.4		3.4
•	6		4.0		4.0
•	7		3.9		4.3
Mean			4.4		4.2
v	1		5,5		4,3
•	2		5.6		5.4
-	3		5.9		4.9
•	4		5.0		4.3
-	5		4.7		4.4
•	6		5.0		4.7
-	7		5.2		4.8
M	8		4.4		4.2
-	9		4.9		4.7
# 	10		3.9		4.1
Mean			5.0		4.6

<u>Table 9.3.2</u>. Terrestrial exposure rates at the Rise zones in 1980 measured with the NaI(T1) detector ($\mu R h^{-1}$)

<u>Fig. 9.3.1</u>. The environment of Rise. Locations for measurements of the background radiation.

9.4. Gylling Næs environment

The Gylling Næs environment (a potential nuclear power plant site) is routinely monitored with TLD's, and the results from three zones around the site are given in Table 9.4.1. The locations are shown in fig. 9.4.1.

<u>Pig. 9.4.1</u>. The environment of Gylling Næs. Locations for measurements of the background radiation.

Table 9.4.1.	TLD-measurements	of the	background
radiation in	four zones (I-IV)	around	the
Gyllingnæs si	ite in 1979/80		

Gyllingnæs 10ne	Location	Winter 1979/80
I	1	7.3
-	2	7.6
•	3	8.1
•	4	7.6
Hean		7.7
II	1	8.3
-	2	8.3
Hean		8.3
111	1	7.3
•	2	7.6
-	3	7.9
-	4	-
•	5	8.0
Hean		7.7
IA	1	8.0
*	2	8.1
-	3	7.7
Mean	· · · · · · · · · · · · · · · · · · ·	7.9

9.5. Great Belt and Langeland Belt areas

Locations on both shores of the Great Belt and the Langeland Bel (an international shipping route) are likewise routinely monitored with TLD's; the results and locations are shown in Table 9.5.1 and fig. 9.5.1, respectively.

Fig. 9.5.1. The coasts of the Great Belt. Locations for measurements of the background radiation.

- 131 -

Location	Winter 1979/80	Summer 1980	Mean
Resnas	7.4	7.3	7.4
Reerso	8.5	8.4	8.5
Svendstrup	7.6	7.5	7.6
Frederiksda]	8.7	8.6	8.7
Vesternæs	8.4	8.4	8.4
Kelds Nor	9.3	9.1	9.2
Tranekar	8.6	8.5	8.6
Ноч	7.2	7.4	7.3
Fyns Hoved	.7.8	8.0	7.9
Knuds Hoved	8.1	8.3	8.2
Mean	ð.2	8.2	8.2

ground radiation (wR h⁻¹) along the coasts of the Great Belt and Langeland Belt in 1979/80

9.6. The Baltic island, Bornholm

Locations on the island of Bornholm have been monitored with TLD's in the period November 1979-June 1980. The results and locations are shown in Table 9.6.1 and fig. 9.6.1, respectively.

Location	Nov 1979-June 1980
1	9.1
2	7.4
3	8.7
4	14.3
Mean	9.9

Table 9.6.1. TLD-measurements of the background radiation on the island Bornholm in 1979/80

Fig. 9.6.1. Locations for measurements on Burnholm.

9.7. Discussion

The reported results are in reasonable agreement with those obtained in 1979.

10. CONCLUSION

10.1. Environmental monitoring at Risø, Barsebäck and Ringhals

No radioactive contamination of the environment originating from the operation of the research establishment was ascertained outside Risø in 1980.

Benthic brown algae, mussels and fish collected at the Swedish nuclear plants at Barsebäck and Ringhals were analysed for radioactive pollution. Transfer factors from releases of various radionuclides to <u>Fucus</u> were calculated. The radioactive contamination of the marine environment due to the operation of the Swedish nuclear power plants resulted into doses of less than 5 µSv per year to any individual eating 20 kg mussel and 100 kg fish per year.

10.2. Nuclear-weapon debris in the abiotic environment

The mean content of 90Sr in air collected in 1980 was 9.9 μ Bq m⁻³ (0.27 fCi 90Sr m⁻³), i.e. approximately 0.7 times the 1979 level. The average fallout at the State experimental farms in 1980 was 4.3 Bq 90Sr m⁻² (0.12 mCi 90Sr km⁻²) or 0.7 times the 1979 figure, and the mean concentration of 90Sr in rain water was 5.6 Bg 90Sr m⁻³ (0.15 pCi 90Sr 1⁻¹).

By the end of 1980 the accumulated fallout was approximately 1750 Bg 90Sr m⁻² (47 mCi 90Sr km⁻²). The corresponding 137Cs was estimated at 2800 Bg m⁻².

In agreement with the greater precipitation in that part of the country, fallout levels in Jutland were 25-50% higher than levels found in eastern Denmark.

The median level of 90Sr in Danish ground water was 0.14 Bq m⁻³ (4 fCi 90Sr 1⁻¹). Lake water showed a countrywide mean level of 4.9 Bq 137Cs m⁻³ (0.135 pCi 137Cs 1⁻¹).

Inner Danish surface waters (salinity 16 0/00) contained 23 Bg 90 sr m⁻³ (0.6 pCi 90 sr 1⁻¹) and 43 Bg 137 cs m⁻³ (1.2 pCi 137 cs 1^{-1}).

10.3. Fallout nuclides in the human diet

The mean level of 90Sr in Danish milk was 106 Bq (kg Ca)⁻¹ (2.9 S.U.), and the mean content of 137Cs was approximately 111 Bq m⁻³ (3.0 pCi 137Cs 1^{-1}).

The 1980 90Sr and 137Cs levels were 1.0 and 0.6 times respectively the levels found in milk produced in 1979.

The 90 Sr mean content in grain from the 1980 harvest was 0.84 Bq kg⁻¹ (23 pCi 90 Sr kg⁻¹). The 137 Cs mean content in grain was 0.28 Bq kg⁻¹ (7.5 pCi 137 Cs kg⁻¹). The 90 Sr level in grain from the 1980 harvest was equal to the level found in the 1979 harvest, and 137 Cs was 0.75 times the 1979 level.

The mean contents of 90Sr and 137Cs in Danish vegetables collected in 1980 were 0.34 Bq 90Sr kg⁻¹ (9.2 pCi kg⁻¹) and 0.084 Bq 137Cs kg⁻¹ (23 pCi kg⁻¹), respectively, and in fruit 0.044 Bq 90Sr kg⁻¹ (1.2 pCi kg⁻¹) and 0.045 Bq 137Cs kg⁻¹ (1.2 pCi kg⁻¹) and 0.045 Bq 137Cs kg⁻¹ (1.2 pCi kg⁻¹); potatoes contained 0.083 Bg 90Sr kg⁻¹ (2.2 pCi kg⁻¹) and 0.077 Bg 137Cs kg⁻¹ (2.1 pCi kg⁻¹).

The mean levels of 90Sr and 137Cs in total-diet samples collected in 1980 were 157 Bq 90Sr (kg Ca)⁻¹ (4.2 S.U.) and 91 Bq 137Cs (kg K)⁻¹ (2.46 M.U.), respectively. From analyses of the individual diet components, the 90Sr level in the Danish average diet was estimated to be 142 Bq 90Sr (kg Ca)⁻¹ (3.8 S.U.) and the 137Cs level to be 104 Bq 137Cs (kg K)⁻¹ (2.8 M.U.). The levels of 137Cs in the Danish total diet consumed in 1980 were 25% lower than the levels observed in 1979, while the 90Sr content was nearly unchanged. Grain products contributed 33% and milk products 35% to the total 90 Sr intake; 14% of the 137 Cs in the diet originated from grain products, 22% from meat, and 13% from milk products. Fish contributed with 35% to the 137 Cs diet intake, of this 90% were estimated to be due to radiocesium from Windscale.

Both 90Sr and 137Cs diet levels were on the average higher in Jutland than in eastern Denmark.

10.4. Strontium-90 and Cesium-137 in humans

The 90Sr mean content in human bone (vertebrae) collected in 1980 was about 30 Bq (kg Ca)⁻¹ (1.1 S.U.).

Whole-body measurements of ^{137}Cs have been suspended due to the low ^{137}Cs concentrations in man. The estimated level in 1980 was 190 Bq ^{137}Cs (kg K)⁻¹ (5 pCi ^{137}Cs (g K)⁻¹).

10.5. Tritium in environmental samples

Tritium levels varied between 4.3 and 113 kBg m⁻³ in rain water and between 0.56 and 11.8 kBg m⁻³ in ground water. The tritium concentration in sea water varied inversely as the salinity, 16 o/oo sea water contained 8.4 kBg m⁻³.

10.6. Plutonium in environmental samples

Plutonium and americium were determined in sea water, sediments, fucoids and mussels collected at five locations in inner Danish waters. The mean concentrations were: surface sea water 6.7 μ Bq 239,240pu 1⁻¹ (0.18 fCi 1⁻¹), bottom water: 14 μ Bq 1⁻¹ (0.39 fCi 1⁻¹) (241Am/239,240pu = 0.15); the mean deposition in sediments was 56 Bq 239,240pu m⁻² (1.5 nCi m⁻²) and the ²⁴¹Am level was one third of this.

10.7. Background radiation

The average total background exposure rate measured with TLD's at the State experimental farms was 7.5 μ R h⁻¹. The average terrestrial background exposure rate measured with a NaI(Tl) detector at the State experimental farms was 4.0 μ R h⁻¹. These results are in accordance with those observed in 1979.

ACKNOWLEDGEMENTS

The authors wish to thank Miss Anna Holm Pedersen, Mrs. Karen Mandrup Jensen, Miss Karen Wie Nielsen, Mrs. Jytte Lene Clausen, Mrs. Anna Madsen, Mrs. Pearl Baade Pedersen, Mrs. Alice Kjølhede, Mrs. Helle Porsdal, Mrs. Oda Brandstrup, Mrs. Elise Gudmundsen and Mrs. Else Sørensen for their conscientious performance of the analyses. We are grateful to Mr. Peder Kristiansen and Mr. Gunnar Bitsch for collection of samples and performance of the Y-background measurements. We thank Mrs. Lis Sørensen and Mr. Jørgen Rabe for careful work with the TL dosimeters.

We are specially indebted to the staffs of the eleven State experimental farms at Tylstrup, Ødum, Studsgård, Borris, Askov, St. Jyndevad, Blangstedgård, Tystofte, Ledreborg, Abed, and Åkirkeby, who have continued to supply us with a number of the most important samples dealt with in this report.

Finally, we convey our thanks to M/S "Havørnen" in Hanstholm and M/S "Nordjylland" in Skagen for the sea water samples received from the North Sea.

Zone		pre	mm ecipitation in 1980	Bq ⁹⁰ Sr m−2 in 1980	Accumulated Bg 90Sr m ⁻² by the end of 1980	
I:	N. Jutland	ך				
II:	E. Jutland		912	4 07	1040	
III:	W. Jutland		(970)	4.0/	1949	
IV:	S. Jutland	J				
V:	Funen	٦				
VI:	Zealand	}	779 (697)	3.63	1555	
VII:	: Lolland-Falster		(0).,			
VIII:	Bornholm		779 (812)	4.41	-	
Area-	weighted mean		809 (830)	4.2	1700	

Appendix A. Calculated fallout in Denmark in 1980

The amounts of precipitation were obtained from ref. 9. The 90 Sr deposition was estimated from 4.2 and appendix D.

The precipitations in brackets were the mean of values measured by the Meteorological Institute at the State experimental farms: <u>Jutland</u>: Tylstrup, Ødum, Studsgård, Askov, St. Jyndevad; <u>The Islands</u>: Blangstedgård, Tystofte, Ledreborg, Abed; <u>Bornholm</u>: Åkirkeby.

Zone		Area in km ² 15) 1971	Population in thousands 28) 1976	Annual milk production in mega-kg 14) 1971	Annual wheat production in mega-kg 13) 1972	Annual rye production in mega-kg 13) 1972	Annual potato production in mega-kg 13) 1972	Vegetable area in km ² 13) 1972
1:	N. Jutland	6,171	471	911				
11:	E. Jutland	7,561	881	1,258	145	145 155	60 9	14
111:	W. Jutland	12,104	687	926				
IV:	S. Jutland	3,929	245	572				
۷:	Funen	3,486	44 G	393				
VI:	Zealand	7,435	2,165*	395				
VII:	Lolland-Falster	1,795	123	68	448	71	100	73
VIII:	Bornholm	588	47	39				
Total		43,069	5,065	4,562	593	226	709	87

Appendix B. Statistical information

*1,270,000 people were living in Greater Copenhagen and 895,000 in the remaining part of Zealand.

APPENDIX C

The mean ratio between observed and predicted values was $1.22\pm$ 0.52 (1 S.D.) for ⁹⁰Sr and 1.15 ± 0.43 for ¹³⁷Cs. In general, the prediction models underestimated the levels in 1980.

For the calculation of the 137Cs levels we have assumed the 137Cs/90Sr ratio equal to 1.6. This may as is suggested from Tables 4.2.4 and 4.2.5 have overestimated the 137Cs deposition in 1980, on the other hand, it may have underestimated it for the previous years¹).

Sample	Location	Unit	Observed	Predicted	Obs./pred.	Model in reference (21)
Dried milk*	Jutland	Bq ⁹⁰ Sr (kg Ca) ⁻¹	128	137	0.92	C.3.2.1 No. 1
	Islands	- • -	85	65	1.31	No. 3
Rye	Jutland	₽1 ⁹⁰ Sr kg ⁻¹	1.00	0.55	1.82	C.2.2.1 No. 1
•	Islands		0.39	0.179	2.18	- " - No. 3
Barley	Jutland		1.02	0.75	1.36	- " - No. 4
•	Islands		0.71	0.33	2. 15	- - 10. 6
Meat	Jutland	- • -	1.22	0.74	1.65	- " - Ho. 8
-	Islands		0.57	0.33	1.73	- - 10. 10
Oats	Jutland	- • -	1.05	1.54	0.70	- " - No. 12
•	Islands	- • -	0.79	0.73	1.08	-e ⁿ - Ho- 13
Rye bread	Denmark		0.66	0.42	1.57	C.2.3.1 Hs. 1
White bread	•	- • -	0.159	6.14	1.14	- = - He- 2
Potatoes	Jutland		0.1 06	0.112	0.95	C.2.5.1 Ho. 8
-	Islands	- • -	0.059	0.100	0.59	- " - No. 10
Cabbage	Jutland	- • -	0.60	0.35	1.71	- " - No. 1
•	Islands		0.30	0.30	1.00	- * - No. 3
Carrot	Jutland	- • -	0.56	9.60	0.93	- " - Ho. 5
•	Islands	- * -	0.42	0.24	1.77	-*- No.6
Apples	Denmark	 -	0.034	0.018	1.89	- " - No. 13
Pork*	-	- • -	0.006	0.029	0.21	C.3.4.1 No. 3
Beef*	-	- • -	0.020	0.039	0.51	- " - No. 1
Eggs	-	- * -	0.014	0.0178	0.79	C.3.6.1 Mo. 6
Total diet C	•	$Bq 90 Sr (kg Ca)^{-1}$	157	170	0-92	C.4.2.1 No. 1
" " P	-	- * -	144	147	0.97	-"- No.7
Human bone > 29 yr	-	- • -	33	43.7	0.76	C.4.3.1 No. 13
Whole year grass	Islands	- * -	1080	576	1.88	C.2.4.1 No. 1
Fucus vesículosus	-	- • -	393	497	0.79	C.2.7.1 No. 3
Zostera marina	-	- " -	70	84	0.83	- " - No. 1
Ground water	Denmark	Bq ⁹⁰ Sr m ⁻³	0.44	0.38	1.16	C.1.4.1 No. 1

Appendix C.1. Comparison between observed and predicted 90Sr levels in environmental samples collected in 1980

*May 1980 - April 1981 ("milk year" (21)).

Sample	Location	Unit	Observed	Predicted	Obs./pred.	Nodel in reference (21)
Dried milk*	Jetlani	$Bq^{137}Cs (kg K)^{-1}$	81	69	1.17	C-3.2.2 No. 1
• •	Islands	- • -	33	40	0.83	- " - No. 3
Rya.	Jutland	Bg ¹³⁷ Cs kg ⁻¹	0.37	0.44	0.84	C.2.2.4 No. 2
•	Islands	· · ·	0.29	. 0-22	1.33	- " - No. }
Barley	Jutland	- • -	0.30	0.20	1.09	- " - No. 4
•	Islands	- • -	0.22	0.15	1.50	- " - No. 5
West	Jutland	- • -	0.32	0.30	1.08	- " - No. 6
•	Islands		0.17	0.13	1.36	- * - 160. 7
Cets	Jutland	- • -	0.37	0.24	1.52	- " - No. 8
-	Islands	- • -	0.23	2.14	1.69	10.9
Rye brood	Dennark	- • -	0.33	0.47	0.70	C.2.3.1 No. 4
White broad	-		0.100	0.155	0.65	- " - 150.5
Potatoes	Jutland		0.127	0.153	0.#3	C.2.5.3 No. 5
-	Islands		0.027	0.019	0.70	- * - 160. 7
Cabbage	Dennazk	- • -	0.134	0.174	0.77	- " - No. 1
Carrot	-		0.050	0.020	2.50	-"- ¥0.]
Apples	-	- * -	0.045	0.045	1.00	- " - No. 11
Port*	-	- • -	0.30	0.30	1.27	C.3.4.2 No. 3
Beef*	-		0-30	0.26	1.46	- " - No. 1
2998	-	- * -	0.028	0.039	0.72	C.3.6.2 No. 6
Total diet C	-	Bq ¹³⁷ Cs (kg K) ⁻¹	63**	52.5	1.20	C.4.2.2 No. 1
,	-	- * -	71.6**	70.9	1.01	- " - 1 10.6

<u>Appendix C-2</u>. Comparison between observed and prodicted ¹³⁷Cs levels in environmental samples collected in 1900

* (cf. note to Appendix C.1)

**Buclusive contribution of ¹³⁷Cs from Windscale. (30% Windscale, 70% fallout)
APPENDIX D

<u>**d**</u>_i:

Annual fallout rate in mCi 90Sr km⁻² y⁻¹.

Accumulated fallout by the end of the year (i) assuming effective half-lives of 90Sr of 27.7 y. Unit: mCi 90Sr km⁻².

di(May-Aug) and di(July-Aug):

The fallout rates in the periods: May-Aug and July-Aug, respectively. Unit: mCi 90Sr km⁻² period⁻¹.

The fallout rate (d_i) was based on precipitation data collected for all Denmark in the period 1962-1980 (cf. Table 4.2.1¹)). Before 1962 the levels in the tables were estimated from the HASL data for New York (HASL Appendix 291, 1975)²⁹) considering that the mean ratio between ⁹⁰Sr fallout in Denmark and New York was 0.7 in the period 1962-1974.

The d_{i(May-Aug)} and d_{i(July-Aug)} values were also obtained from Table 4.2.1¹) for the period 1962-1980. For the years 1959-1961 the values were calculated from data obtained from 90Sr analysis of air (1959) and precipitation samples (1962 and 1961) collected at Risø. Before 1959, the values were estimated from the corresponding d_i values assuming that the ratios d_{i(May-Aug)}/d_i and d_{i(July-Aug)}/d_i were constant in time and equal to the means found for the period 1962-1974, which were 0.54 (1 S.D.: 0.09) and 0.24 (1 S.D.: 0.06), respectively.

Appendix D.	Fallout	rates and	accumulated	fallout	(mCi	90sr	km ^{−2})	in	Denmark	1950-1980

	Denmark		Ju	it land	Islands		
	di	Ai(27.7)	di	Ai(27.7)	di	Ai(27.7)	
1950	0.021	v.020	0.022	0.021	0.020	0.020	
1951	0.101	0.118	0.114	0.132	680.0	0.105	
1952	0.198	0.309	0.224	0.347	0.172	0.270	
1953	0.500	0.789	0.566	0.891	0.434	0.687	
1954	1.901	2.623	2.152	2.967	1.650	2.279	
1955	2.501	4.997	2.831	5.655	2.171	4.340	
1956	3.101	7.898	3.510	8.939	2.692	6.858	
1957	3.101	10.728	3.510	12.142	2.692	9.313	
1958	4.302	14.658	4.869	16.591	3.734	12.725	
1959	6.102	20.247	6.908	22.918	5.297	17.576	
1960	1.140	20.859	1.291	23.610	0.990	18.107	
1961	1.481	21.787	1.676	24.661	1.285	18.913	
1962	7.428	28.493	7.976	31.830	6.880	25.155	
1963	16.695	44.071	18.453	49.041	14.937	39.101	
1964	10.412	53.136	11.685	59.225	9.139	47.048	
1965	3.954	55.679	4.204	61.861	3.704	49.497	
1966	2.145	56.395	2.166	62.445	2.124	50.345	
1967	1.047	56.023	1.176	62.048	0.918	49.997	
1968	1.403	56.006	1.568	62.045	1.237	49.968	
1969	1.035	55.632	1.241	61.721	0.829	49.542	
1970	1.647	55.863	1.993	62.140	1.301	49.586	
1971	1.506	55.951	1.726	62.288	1.286	49.615	
1972	0.435	54.993	0.457	61.194	0.413	48.792	
1973	0.192	53.821	0.215	59.891	0.168	47.750	
1974	0.710	53,183	0.779	59.171	0.643	47.197	
1975	0.414	52.272	0.452	58.150	0.376	46.397	
1976	0.103	51.082	0.116	56,826	0.090	45.339	
1977	0.384	50.204	0.405	55.827	0.362	44.581	
1978	0.463	49.426	0.538	54,985	0.388	43.867	
1979	0.166	48.379	0.174	53.810	0.156	42.947	
1 98 0	0.116	47.307	0.140	52.628	0.095	41.988	

Der	mark	Jul	land	Islands		
di(May-Aug)	di _(July-Aug)	di(May-Aug)	^{di} (July-Aug)	di(May-Aug)	di (July-Aug)	
0.01	0.01	0.01	0.01	0.01	0.01	
0.05	6.02	0.06	U.O 3	0.05	0.02	
0.11	0.05	0.12	0.05	0.09	0.04	
0.27	0.12	U.31	0.14	0.23	0.10	
1.03	0.46	1.16	0.52	U.89	0.40	
1.35	0.60	1.53	U . 68	1.17	0.52	
1.67	0.74	1.90	0.84	1.45	0.65	
1.67	0.74	1.90	0.84	1.45	0.65	
2.32	1.03	2.63	1.17	2.02	0.90	
2.50	0.68	2.76	0.75	2.24	0.61	
0.47	0.31	0.52	0.34	0.42	0.28	
0.66	0.47	0.73	0.52	0.59	0.42	
4.223	1.857	4.566	2.052	3.880	1.662	
9.965	5.629	10.753	5.932	9.177	5.327	
6.235	2.568	7.170	2.910	5.299	2.226	
2.029	0.850	2.094	0.852	1.964	0.848	
1.049	0.418	0.984	0.496	1.114	0.340	
0.367	0.141	0.380	0.134	0.354	0.148	
0.848	0.426	0.910	0.460	0.786	0.392	
0.614	0.276	0.723	0.319	0.505	0.233	
0.908	0.547	1-076	0.632	0.740	0.462	
0.992	0.405	1.154	0.516	0.830	0.294	
0.253	0.084	0.262	0.084	0.244	0.084	
0.075	0.033	0.093	0.03 9	0.057	0.027	
0.421	0.190	0.463	0.219	0.378	0.162	
0.159	0.075	0.179	0.091	0.157	0.060	
0.032	0.010	0.032	0.011	0.032	0.009	
0.178	0.107	0.164	0.085	0.190	9.1 29	
0.232	0.096	0.275	0.098	0.188	0.093	
0.086	0.030	0.087	0.031	0.084	0.029	
0.063	0.027	0.079	0.031	0.047	0.022	

;

- Risø Reports Nos. 1, 3, 9, 14, 23, 41, 63, 85, 107, 130, 154, 180, 201, 220, 245, 265, 291, 305, 323, 345, 361, 386, 403, and 421 (1957-80).
- R.G. Osmond, M.J. Owers, C. Healy, and A.P. Mead, The Determination of Radioactivity due to Caesium, Strontium, Barium and Cerium in Waters and Filters. AERE-R 2899 (1959).
- F.J. Bryant, A. Morgan, and G.S. Spicer, The Determination of Radiostrontium in Biological Materials. AERE-R 3030 (1959).
- John H. Harley, Manual of Standard Procedures. HASL-300 (1972).
- 5) A. Hald, private communication (1958).
- 6) J. Lippert, Low Level Counting. Risø Report No. 44 (1963).
- 7) P. Quittner, Nucl. Instr. and Methods 76, 115-124 (1969).
- J. Lippert, Some Applications for Semiconductor Detectors in Health Physics. Proc. of the First International Congress of Radiation Protection, 271-277 (Pergamon Press, 1968).
- 9) Meteorologisk Institut, Ugeberetning om nedbør m.m. 1980.
- 10) S.L. Kupferman, V.T. Bowen, H.D. Livingstone and A. Aarkrog, Radioactive effluent from Windscale as a perturbation of the fallout tracer experiment in the North Atlantic Ocean. Submitted for publication in Earth Planet. Sci. Lett. (1979).
- Folmer Dam and Agnes Elgström, Vore fødemidler (Svegårds Forlag, Sorø, 1968).
- 12) J. Vestergaard, Analysis of Variance with Unequal Numbers in Group. GIER System Library No. 211 (A/S Regnecentralen, Copenhagen, 1964).
- 13) Landbrugsstatistik 1975. Danmarks Statistik (Copenhagen, 1977).
- 14) Fortegnelse over samtlige mejerier og mejeriorganisationer
 i Danmark (Århus, 1972).
- 15) Statistisk årbog 1972 (Statistical Yearbook) (Copenhagen, 1972).

- 16) J. Lippert, Statdata, Risø-M-1780, June 1975.
- 17) S. Mattsson, R. Finck and M. Nilsson, Distribution of activation products from Barsebäck nuclear power plant (Sweden) in the marine environment. Temporal and spatial variations as established by seaweed. Environ. Pollut. Ser. B <u>1</u>, 105-115 (1980).
- 18) Ebbe Kanneworff and Willy Nicolaysen, The "HAPS". A Framesupported Bottom Corer. Ophelia 10:119-129 (Oct. 1973).
- 19) N.A. Talvitie, Analyt. Chem. 43, 1827 (1971).
- 21) A. Aarkrog, Environmental Studies on Radioecological Sensitivity and Variability with Special Emphasis on the Fallout Nuclides ⁹⁰Sr and ¹³⁷Cs. Risg-R-437 (June 1979).
- 22) J. Brolund Larsen and S. Klausen, Foderplaner for malkekøer,
 11. Ed. (Landhusholdningsselskabet, Copenhagen). 30 pp.
 (1969).
- 24) S.P. Nielsen, In situ measurements of environmental gamma radiation using a mobile Ge(Li) spectrometer system. Risø Report No. 367 (1977).
- 25) UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. (New York) 725 pp. (1977).
- 26) P. Theodorson, Improved Tritium Counting through High Electrolytic Enrichment, Int. f. Appl. Radiat. Isotopes 25 (1974). 97-104 pp.
- 27) J.F. Cameron and B.R. Payne, Proc. of the 6. International Conference on Radiocarbon and Tritium. Dating, Pullmann, Washington, June 7-11, 1965, 454 pp. Conf. - 650652 mikro.
- 28) Statistisk årbog 1977 (Statistical yearbook) (Copenhagen 1978).
- 29) HASL 291 Appendix, 1975.
- 30) N.A. Talvitie, Electrodeposition of Actinides for Alpha
 Spectrometric Determination. Analytical Chemistry 44, pp.
 280. Feberuary 1972.
- 31) S.P. Nielsen and L. Bøtter-Jensen, Intercomparison of Instruments for Measurements of Background Radiation, Risø-M-2239 (1981).

- 33) Elis Holm and B.G.R. Persson, Proc. of the Third NEA seminar on Marine Radioecology, p. 237 (1979).
- 34) Hans Kautsky, Unpublished data presented at a joint EEC-Nordic meeting at DHI in Hamburg 5-6 March 1981.
- 35) Rise-R-423. (July 1980).
- 36) Sydkraft: Månadsrapport, and Vattenfall: Rapport över luftoch vätskeburna utsläpp, ... Ringhals. (Monthly reports to the Swedish authorities on discharges from Barsebäck and Ringhals, respectively) (in Swedish).
- 37) British Nuclear Fuels, Limited: Annual Report on Radioactive Discharges and Monitoring of the Environment 1979 (July 1980).

4

Sales distributors: Jul. Gjellerup, Sølvgade 87, DK-1307 Copenhagen K, Denmark

'

7

Available on exchange from: Risø Library, Risø National Laboratory, P. O. Box 49, DK-4000 Roskilde, Denmark ISBN 87-550-0777-5 ISSN 0106-2840 ISSN 0106-407X