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iAbstra
t
The results in this thesis are part of the work 
arried out during the author's do
toral stud-ies. The PhD proje
t has been funded partly by the Danish National Resear
h Foundation(grant no. 74) through the Center for Fluid Dynami
s, and partly by the Department ofMi
ro- and Nanote
hnology at the Te
hni
al University of Denmark. The overall title forthe PhD proje
t is Osmoti
ally driven �ow in mi
ro�uidi
 systems and their relation tosugar transport in plants. The work has 
onsisted of several smaller proje
ts fo
using ontheory, and to some extend experiments, with osmoti
ally driven �ows as the predominanttheme. This thesis 
ontains sele
ted parts of the results obtained. Other parts of the workhave been published in peer-reviewed journals or presented at 
onferen
es, see Se
. 1.2.The study of osmoti
ally driven �ows is motivated by phenomena observed in plantswhi
h have highly e�
ient vas
ular system that fa
ilitates the transport of �uid and nutri-ents between distal parts of the organism. In this PhD proje
t the author and 
o-workers1have studied one of these vas
ular system, the phloem, whi
h is responsible for the distri-bution of sugar produ
ed by photosynthesis and signaling mole
ules se
reted in response toexternal or internal stimuli between distal parts of the plant. The phloem 
an be broadly
omparable to a 
ombination of the blood 
ir
ulatory- and nervous systems found in an-imals, and it has long been debated whi
h me
hanism drives the translo
ation pro
ess.Sin
e Ernst Mün
h's work in the 1930s it has been known that osmosis plays a very im-portant role, but it is still largely unknown whether this me
hanism 
an a

ount for therates of translo
ation observed in plants.To get a fundamental understanding of osmoti
ally driven �ows, we have 
ondu
teda thorough theoreti
al study of these. This, 
oupled with a series of simple experiments,has allowed us to gain a new, quantitative, understanding of the transport pro
ess thato

ur in plants. The experiments were 
arried out in a mi
ro�uidi
 system. To mimi
the situation in plants where the osmoti
 intera
tion o

urs a
ross 
ell membranes, weused a system where two 
hannels (2.7 cm long, 200 µm wide and 50 − 200 µm deep)were separated by a 
ellulose membrane. One 
hannel was �lled half way with an aqueoussugar solution, while the other 
hannel was 
ompletely �lled with water. Due to osmosiswater moves from the water �lled 
hannel into the sugar-�lled region and thereby pushesthe sugar forwards. We have shown that the experiments, within a reasonable degree ofa

ura
y, follow the predi
tions of the Mün
h theory.With the understanding obtained from the above mentioned experiments, we havestudied the main topi
 of this thesis: Theoreti
al aspe
ts of osmoti
ally driven �ows.Although the basi
 equations have been known for at least half a 
entury, there is asurprisingly poor understanding of the 
orrelation between, say, a tree's height and thespeed at whi
h sugar is moving in phloem due to the osmoti
 �ow pro
ess. To answer1See the list of publi
ations, Se
. 1.2, and the introdu
tion to ea
h 
hapter.



iithis and related questions, we have studied fundamental properties of osmoti
ally driven�ows, and have developed a simple model whi
h we believe provides a reasonably a

uratequantitative des
ription of the transport pro
ess in the phloem. The model provides abasi
 understanding of the �ow as a fun
tion of the parameters in the problem and is ableto reprodu
e experimental data from in vivo measurements made on plants.An interesting predi
tion of the model is that the osmoti
ally driven Mün
h �ow me
h-anism has a maximum in translo
ation velo
ity for a spe
ial value of the radius. Theexisten
e of su
h a maximum is quite easy to understand: the osmoti
 �ow takes pla
ea
ross the 
ell surfa
e and is therefore more e�e
tive in terms of the axial velo
ity for thin-ner tubes where the surfa
e-to-volume ratio is larger. Very thin tubes, on the other hand,o�er high vis
ous resistan
e to the �ow, and thus there is an optimum radius where theosmoti
 pump is e�e
tive and the resistan
e not too large. We have derived an analyti
alexpression for this radius whi
h takes the form of an allometri
 s
aling law relating theoptimum radius of the phloem 
ells ac to the length of the stem and the size of the leaf l1.We thus �nd that at the radius a3c ∝ l1l2, the osmoti
 �ow me
hanism yields the fastestpossible translo
ation velo
ity. We have 
ompared this predi
tion to plant data and havefound good agreement between observations and our result for a group of plants varyingseveral orders of magnitude in size. This �nding suggests that the physi
al 
onstraintsimposed by the optimality of the Mün
h �ow me
hanism has played a signi�
ant role inthe evolution of the phloem vas
ular system of plants.



iiiResumé
Resultaterne i denne afhandling er udarbejdet i løbet af forfatterens ph.d.-studier. Ph.d.-projektet er dels �nan
ieret af et af Danmarks Grundforskningsfond støttet projekt, Centerfor Fluid Dynamik (bevilling no. 74), og dels af Institut for Mikro- og Nanoteknologi vedDanmarks Tekniske Universitet. Den overordnede titel for ph.d.-projektet er Osmotiskdrevne strømninger i mikro�uide systemer og deres relation til sukkertransport i planter.Arbejdet har bestået af �ere mindre projekter med fokus på teori, og i nogen grad eksperi-menter, med osmotisk drevne strømninger som det gennemgående tema. I den foreliggendeafhandling gennemgås dele af de i løbet af projektet opnåede resultater. Andre dele af ar-bejdet er blevet publi
eret i fagfællebedømte tidskrifter eller præsenteret ved konferen
er,se afsnit 1.2.Studiet af osmotisk drevne strømninger er motiveret af fænomener observeret i planter,der har meget e�ektive karsystemer, som sørger for at transportere væske, signal- ognæringssto�er. I dette ph.d.-projekt har forfatteren og samarbejdspartnere2 studeret detene af disse karsystemer, det såkaldte phloem, som sørger for at bringe signalsto�er ogdet sukker, der produ
eres gennem bladenes fotosyntese ned til rødderne eller ud til nyeskud. Phloemet kan i store træk sammenlignes med en kombination af dyrs blodkredsløbs-og nervesystem, og det har længe været debatteret, hvad der driver sådanne strømninger.Siden Ernst Mün
hs arbejde i 1930'erne har det været kendt, at osmotiske trykforskellespiller en meget vigtig rolle, men man ved stadig ikke, hvor stor en del af strømningerne,som kan forklares på denne måde. For at få en grundlænggende forståelse af osmotiskdrevne strømninger har vi foretaget et grundigt teoretisk studie af disse. Det har, sam-men med en række simple eksperimenter, givet os en ny forståelse for transportpro
esseni planter.Eksperimenterne er foretaget på mikro�uide systemer. For at efterligne situationeni planter, hvor den osmotiske vekselvirkning sker over 
ellemenbraner, har vi brugt etsystem, hvor to kanaler (2.7 cm lange, 200 µm bredde og 50 − 200 µm dybe) er adskiltaf en 
ellulosemembran. Den ene kanal fyldes halvt med en vandig sukkeropløsning, halvtmed vand og den anden helt op med vand. Pga. osmose trænger vand fra den ene kanal indi den anden og skubber således sukkeropløsningen fremad. Vi har vist, at eksperimenternemed rimelig nøjagtighed følger Mün
h-teoriens forudsigelser.Med disse eksperimenter i bagagen har vi studeret hovedemnet i denne afhandling:Teoretiske aspekter af osmotisk drevne strømninger. Selv om de grundlæggende ligningerhar været kendt i mere end et halvt århundrede, er der en forbavsende ringe forståelsefor sammenhængen mellem f.eks. et træs højde og den hastighed, hvormed sukkersto�erbevæger sig i phloemet. For at besvare dette og relaterede spørgsmål har vi studeret defundamentale egenskaber ved osmotisk drevne strømninger. Vi har således udviklet en sim-2Se publikationslisten, afsnit 1.2, samt introduktionen til de enkelte kapitler.



ivpel model, som beskriver transportpro
essen i phloemet. Modellen giver en grundlæggendeforståelse af strømningerne som funktion af de relevante parametre, og den er i stand tilat reprodu
ere eksperimentelle data fra in-vivo målinger på planter.Modellen kommer desuden med mange interessante forudsigelser. En af dem er, at denosmotisk drevne strømningsmekanisme har den højeste e�ektivitet for en spe
iel radiusaf phloem-karene. Grunden til dette et, at den osmotiske strømning foregår via karenesover�ade, og at den derfor er mere e�ektiv, jo mindre radius i karene er. På den anden sidebliver den viskøse strømningsmodstand meget stor for små kar, og altså er der en særligkarradius, hvor disse to e�ekter er i balan
e, og hastigheden er størst mulig. Vi har udledt etanalytisk udtryk for denne radius, der relaterer 
ellernes radius ac til bladest størrelse l1 ogstammens længde l2: a3c ∝ l1l2. Vi �nder god overensstemmelse mellem denne forudsigelseog data fra en stor gruppe planter, der varierer i længde over �ere størrelsesordener. Detteresultat tyder på, at de fysiske begrænsninger i Mün
h-mekanismen har spillet en væsentligrolle i udviklingen af planters phloem-kar system.
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Chapter 1Introdu
tionOsmosis is the passage of water from a region of high water 
on
entration to a region oflow water 
on
entration through a semipermeable membrane. S
ienti�
 interest in thesubje
t started in the middle of the eighteenth 
entury with the dis
overy of osmosis byAbbé Jean-Antoine Nollet. It was soon realized that osmosis plays an important role inthe transport of water in and out 
ells, and with the theoreti
al framework put in pla
eby van't Ho� in the 1880s, the fundamental understanding of the phenomena was greatlyimproved [69℄.One area of biology where osmoti
ally driven �ows turned out to be of parti
ular im-portan
e is in plants. At the beginning of the twentieth 
entury Ernst Mün
h publishedhis now famous monograph �Die Sto�bewegungen in der P�anze� [49℄. He proposed thatlong-distan
e transport of sugar in plants is driven by osmosis and that it o

urs in ami
ro�uidi
 pipe network of 
ells spanning the entire length of the plant. His work re-vealed a wealth of phenomena of unanti
ipated 
omplexity related to the �uid me
hani
sof osmoti
ally driven �ows that 
ontinue to pose intriguing questions today.Mün
h's idea, illustrated in Fig. 1.1, was simple: In the leaves, sugar produ
ed byphotosynthesis is se
reted into a network of 
ylindri
al 
ells known as the phloem. Due toosmosis, the high 
on
entration of sugar inside the phloem 
reates a �ow of water a
ross thesemipermeable 
ell membrane. This in turn displa
e the liquid and sugar already presentforwards, thereby 
reating a bulk �ow of sugar from sour
e to sink. At the sugar sink, e.g.the root, a fruit or other pla
es of growth and storage, removal of sugar from the phloem
auses the water to leave the 
ells sin
e the osmoti
 driving for
e is no longer present.The fundamental questions that arise from this hypothesis are e.g. how mu
h sugar 
anbe transported in this way? How fast 
an it move? What 
ontrols the rate of transport?How does the osmoti
 me
hanism a�e
t the stru
ture of the plant? Is osmosis su�
ientto a

ount for the rates of translo
ation observed in plants? Ultimately these questionsare all related to plant growth and are therefore of great both fundamental and pra
ti
alimportan
e.The main fo
us in this thesis is put on a theoreti
al analysis of the �uid me
hani
sof osmoti
ally driven �ows, aimed at answering some of the questions posed above. Toput the theoreti
al results in a biologi
al 
ontext, the author has worked 
losely with1



2 Introdu
tion
Source

Sink

Water
Sugar

Phloem

Water

Figure 1.1: S
hemati
 sket
h of sugar translo
ation in plants a

ording to the Mün
h hy-pothesis. In the sour
e leaves, sugar (bla
k dots) produ
ed by photosynthesis is se
retedinto a network of 
ylindri
al 
ells known as the phloem. Due to osmosis, the high 
on-
entration of sugar 
reates a �ow of water a
ross the semipermeable 
ell membrane fromthe surrounding tissue (solid arrows) into the phloem. This in turn displa
e the waterand sugar (dashed arrows) already present forwards, thereby 
reating a bulk �ow fromsugar sour
e to sugar sink. At the sink, e.g. the root, a fruit or other pla
es of growthand storage, removal of sugar from the phloem 
auses the water to leave the 
ells sin
ethe osmoti
 driving for
e is no longer present. The loading and unloading pro
esses areindi
ated by 
urved arrows. Adapted from [29℄, Fig. 1.



Outline of the thesis 3resear
hers performing in-vivo experiments on plants. This, together with a series of simple,biomimi
king mi
ro�uidi
 experiments, have enabled us to gain a new understanding ofthe translo
ation pro
esses that o

ur in plants.1.1 Outline of the thesisThis thesis 
onsists of 9 
hapters. The bulk of the material presented has been published inthe papers listed in Se
. 1.2. At the beginning of ea
h 
hapter, a brief overview highlightingthe 
ontributions made by the author of the present thesis is given along with a list ofrelevant 
ollaborators.A list of the titles and a brief outline of the subje
ts treated is given below.
• Chapter 2: Osmoti
ally driven �ows in living and arti�
ial systems This
hapter provides an introdu
tion to osmoti
ally driven �ows in arti�
ial and livingsystems. Sin
e the motivation for studying these �ows 
omes primarily from phe-nomena observed in the phloem vas
ular system of plants, the basi
 prin
iples ofplant vas
ular biology are summarized. We dis
uss a number of experimental studieshave been made on osmoti
ally driven �ows in arti�
ial systems, some of whi
h havesigni�
ant te
hnologi
al appli
ations.
• Chapter 3: Fluid me
hani
s of osmoti
ally driven �ows We introdu
e thebasi
 
on
epts of osmosis and the relevant equations of motion for liquid and solutetransport in osmoti
ally driven �ows. From these we derive an analyti
al solution forthe osmoti
 �ow and 
on
entration problem in a 
ylindri
al tube whi
h leads dire
tlyto the one-dimensional equations of motion 
ommonly used in the phloem transportliterature. We dis
uss how these equations are applied in the literature to modeltransport pro
esses in plants, and 
onsider some of the 
hara
teristi
 properties ofthe models. Finally, we dis
uss some of the ne
essary assumptions for the equationsof motion to be appli
able.
• Chapter 4: Hydrauli
 resistan
e of sieve plates In 
hapter 3 we derived one-dimensional equations of motion for osmoti
ally driven �ows in 
ylindri
al tubes withsemipermeable walls. The translo
ation pathway found in plants does not, however,simply 
onstitute one, long, 
ontinuous 
ylindri
al tube. Rather, it 
onsists of indi-vidual 
ells separated by sieve plates the presen
e whi
h may 
ontribute signi�
antlyto the overall hydrauli
 resistan
e of the translo
ation pathway. In this 
hapter wethus 
onsider the e�e
t of sieve plates on the �ow inside the phloem sieve tubes. Weshow that the presen
e of the plates impose a signi�
ant amount of additional dragon the �ow.
• Chapter 5: Mathemati
al analysis of the equations of motion In this 
hap-ter we study analyti
al and numeri
al solutions to the steady-state one-dimensionalequations of motion derived in 
hapter 3. The equations are analyzed in a model
onsisting of 3 zones: a loading zone, a translo
ation zone and an unloading zoneea
h representing di�erent parts of the plant. We solve the equations of motion using



4 Introdu
tion�rst a simple hydrauli
 resistor model and se
ond a full analyti
al solution valid inthe limit of very small and very large tube radii.
• Chapter 6: Optimality of the Mün
h me
hanism In this 
hapter we apply theresults of the 3-zone model introdu
ed 
hapter 5 to translo
ation in plants. We beginby showing that the model is likely to be a 
on
ise representation of the pro
essesthat o

ur in plants by 
omparing experimental data to the predi
tions of the model.Then, we 
onsider an interesting 
onsequen
e of our results: The osmoti
 pumpingme
hanism has a maximum in translo
ation velo
ity for a spe
ial, optimal, value ofthe phloem sieve tube radius ac. We derive an expression for ac whi
h takes theform of an allometri
 s
aling law. At this parti
ular value of the radius the Mün
hme
hanism is optimized for rapid translo
ation of sugars in the phloem. We showthat a large group of plants follow the predi
tions of the s
aling law.
• Chapter 7: Mi
ro�uidi
 experiments Inspired by the biomimi
king experimentsof Mün
h, Es
hri
h et al., and Lang dis
ussed in 
hapter 2 the author and 
o-workersde
ided to design and fabri
ate mi
ro�uidi
 devi
es 
apable of biomimi
king thepro
esses that o

ur in the phloem vas
ular system of plants using 
hannel dimensionthat approa
h those found in plants. This 
hapter is a des
ription of the experiments,presented in the form of unabridged version of the paper [28℄.
• Chapter 8: Self-
onsistent unstirred layers in osmoti
ally driven �ows Theone-dimensional equations of motion analyzed in 
hapters 3�6 were derived underthe assumption that the 
on
entration is well-mixed a
ross the 
ross-se
tion of thetube. This approximation is valid if the radial transport of solute mole
ules due todi�usion is mu
h faster than the transport due to adve
tion. In this 
hapter we studyexa
tly when this 
ondition is ful�lled in an idealized system.
• Chapter 9: Con
lusion and outlookWe present 
on
luding remarks on our workon osmoti
ally driven �ows and give some dire
tions for future resear
h.1.2 Publi
ations during the PhD proje
tPapers in peer reviewed journals1. K. H. Jensen, J. Lee, T. Bohr, H. Bruus, N. M. Holbrook and M. A. Zwienie
kiOptimality of the Mün
h me
hanism for translo
ation of sugars in plantsJournal of The Royal So
iety Interfa
eDOI: 10.1098/rsif.2010.0578 (2011) [29℄ (0 
itations as of 31 January 2011).2. K. H. Jensen, T. Bohr, and H. BruusSelf-
onsistent unstirred layers in osmoti
ally driven �owsJournal of Fluid Me
hani
s, Volume 662, p. 197-208 (2010) [27℄ (0 
itations).3. K. H. Jensen, E. Rio, R. Hansen, C. Clanet and T. BohrOsmoti
ally driven pipe �ows and their relation to sugar transport in plantsJournal of Fluid Me
hani
s, Volume 636, p. 371-396 (2009) [30℄ (2 
itations).



Publi
ations during the PhD proje
t 54. K. H. Jensen, J. Lee, T. Bohr, and H. BruusOsmoti
ally driven �ows in mi
ro
hannels separated by a semipermeable membraneLab Chip 9, 2093-2099 (2009) [28℄ (4 
itations).5. K. H. Jensen, M.N. Alam, B. S
herer, A. Lambre
ht and N.A. MortensenSlow-light enhan
ed light-matter intera
tions with appli
ations to gas sensingOpti
s Communi
ations, Volume 281, Issue 21, p. 5335-5339 (2008) [31℄ (5 
itations)First author 
onferen
e 
ontributions1. K.H. Jensen, J. Lee, T. Bohr, J. Lee, N. M. Holbrook, M. Zwienie
ki, Optimality ofthe Mün
h hypothesis for translo
ation of sugars in plants, International Conferen
eon Plant Vas
ular Biology 2010, Colombus, USA. (2010)2. K.H. Jensen, T. Bohr and H. Bruus, Con
entration boundary layers in osmoti
 mem-brane transport pro
esses, Annual Meeting of the APS Division of Fluid Dynami
s,Minneapolis, USA, Paper MF.00002. Bull. Amer. Phys. So
. 54 (19) (2009).3. K.H. Jensen, T. Bohr and H. Bruus, Osmoti
ally driven �ows in mi
ro
hannels andtheir relation to sugar transport in plants, 1st Nordi
 Meeting in Physi
s, Copen-hagen, Paper BF.4 (2009).
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Chapter 2Osmoti
ally driven �ows in livingand arti�
ial systemsThe present 
hapter provides an introdu
tion to osmoti
ally driven �ows in arti�
ial andliving systems. Sin
e the motivation for studying these �ows 
omes primarily from phe-nomena observed in the phloem sugar transport system of plants, the basi
 prin
iples ofplant vas
ular biology are summarized. The introdu
ed 
on
epts are thoroughly des
ribedin the literature (see e.g. [12, 85, 73, 79, 23, 36℄) and 
onstitute the motivation for thework presented in this thesis. The subje
t will be presented as seen through the eyes of aphysi
ist, and is not intended to be a 
omplete review of the resear
h �eld of plant vas-
ular biology. What follows should however be a su�
iently 
omplete des
ription of thepro
esses that takes pla
e in plants to allow for a simple quantitative des
ription of thepro
ess.We end by dis
ussing a number of experimental studies have been made on osmoti
allydriven �ows in arti�
ial systems, some of whi
h have signi�
ant te
hnologi
al appli
ations.For the biologi
ally in
lined reader it will be useful to know that throughout this thesiswe are mainly 
on
erned with transport pro
esses that o

ur in angiosperms and thatmany of the geometri
 and hydrauli
 
onsideration are made with this 
lass of plants inmind. This is of spe
ial importan
e in the dis
ussion of sieve pores whi
h are assumed to beopen [37, 48℄. This is not the 
ase in gymnosperms 1 where the sieve pores are o

luded byendoplasmi
 reti
ulum membrane 
omplexes [68℄, and 
onsequently the hydrauli
 resistan
emay be signi�
antly higher.2.1 Osmoti
ally driven �ows in living systemsFlows driven by osmosis are abundant in nature, the prime example being the �ow of watera
ross 
ell walls in virtually all living 
reatures. Here, osmosis fa
ilitates the transport of1Gymnosperms are 
hara
terized by having naked seeds, while the seeds of angiosperms are en
losedduring pollination. The most abundant group of gymnosperms are 
onifers (e.g. pine trees) while an-giosperms in
lude all �owering plants. [73℄ 7



8 Osmoti
ally driven �ows in living and arti�
ial systemswater a
ross the plasma membrane either dire
tly a
ross the lipid bi-layer, or via membranetransport proteins su
h as aquaporins [17, 64℄.While �ow in and out of single 
ells have been studied extensively in the literature,the most interesting example, from a �uid me
hanist's' point of view, of an osmoti
allydriven �ow is found in plants. Here, a network of 
ylindri
al 
ells, known as the phloem,are responsible for transporting sugar from the leaves to pla
es of growth or storage. Inthese 
ells, it is believed, osmosis 
reates a bulk �ow of water, sugars, hormones, andsignaling mole
ules over many tens of meters dire
ted from sour
e to sink in a

ordan
ewith the basi
 needs of the plant [73℄. This pro
ess, however, is not well understood onthe quantitative level sin
e dire
t measurements of translo
ation rates and driving for
esare extremely di�
ult to make [53, 37, 36℄.2.2 Vas
ular transport in plantsTerrestrial plants fa
es serious 
hallenges if they are to survive on land. The key to survivaland su

essful reprodu
tion is the ability to a
quire and retain a su�
ient amount of waterand nutrients for the plant to grow. In response to this, plants have developed roots andleaves. Roots provide me
hani
al stability and absorb water and nutrients from the soilwhile leaves absorb light and ex
hange gases with the atmosphere. As the plant grows,these two organs be
ome in
reasingly separated in spa
e and hen
e the time for responsesto environmental stimuli to propagate is in
reased. This makes the distribution of water,nutrients, photosyntheti
 produ
ts and signaling mole
ules by passive means di�
ult. Itis in response to this 
hallenge that plants have developed long-distan
e vas
ular transportsystems that allow the shoot and the root to ex
hange material and information in anelaborate and highly e�
ient way.The vas
ular system of plants is made up of two parts: The phloem2 and the xylem3.Both the phloem and the xylem are made up of 
ylindri
al 
ells lying end-to-end in ami
ro�uidi
 network spanning the entire length of the plant. The elements of phloemand xylem run in parallel to ea
h other and are almost always found in 
lose proximity,separated only by a few 
ells, as shown in Figs. 2.1 and 2.2. The two tissue types aredis
ussed in detail below, and 
hara
teristi
 physi
al parameters are listed in table 2.1.2.2.1 The xylemThe primary role of the xylem is to 
ondu
t water and nutrients from the roots to the restof the plant [51℄. The xylem 
onsists of water-�lled, 
ylindri
al 
ells typi
ally 100 µm inradius and with lengths ranging from 1 mm to several cm [85℄. The 
ells are joined togetherat the ends to form a network running along the entire length of the plant. The me
hanismdriving �ow in the xylem is believed to be evaporation from the leaves through stomatapores whi
h open and 
lose in response to 
hanging 
onditions, su
h as light intensity,humidity, and CO2 
on
entration in the atmosphere [73, 88℄. This me
hanism drives a2The word phloem is derived the 
lassi
al Greek word for bark, phloios.3The word xylem is derived from the 
lassi
al Greek word for wood, xylon.
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(b2)
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Figure 2.1: S
hemati
 sket
h of the phloem and xylem vas
ular systems found in plants.(a) In the leaf, the vas
ular tissue 
onsisting of the phloem (dark gray) and xylem (lightgray) is found in veins running parallel to the leaf surfa
e lo
ated near the 
enter of the
ross se
tion. (b-
) In the stem and roots, the vas
ular tissue is found 
lose to the surfa
ein either a 
ontinuous ring or in bundles. The xylem typi
ally lies 
loser to the interior ofthe stem than the phloem as shown in (b1). Between the xylem and phloem is a meristem
alled the vas
ular 
ambium. This tissue divides o� 
ells that will be be
ome additionalxylem and phloem as the plant grows. The 
ylindri
al nature of the 
ells is illustrated in(b2), see also Fig. 2.2. The translo
ation pattern is indi
ated by the arrows. Water (solidarrows) is absorbed from the ground and moves towards the leaves driven by evaporation.Sugar (dashed arrows) is produ
ed in the leaves and moves to pla
es of growth or storagee.g. immature leaves, fruits or roots.
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(a) (b)

(c) (d)

500 µm 220 µm

20 µm 20 µm

Xylem

Phloem

Sieve tube elements

Sieve plate

Sieve
pore

Figure 2.2: S
anning ele
tron mi
ros
ope (SEM) images of the phloem tissue of Cur
ubitamaxima (squash), a plant whi
h has very large (50 µm in diameter) but otherwise repre-sentative phloem sieve tube elements. (a) Horizontal 
ross-se
tion of the vas
ular tissue(see Fig. 2.1(b1)) showing the phloem and xylem tissues. The position of a few of thesieve tube elements is indi
ated by the arrows. (b) Verti
al 
ross se
tion the phloem tissueshowing the 
ylindri
al nature of the sieve tube elements lying end to end. Individual sievetubes are separated by sieve plates indi
ated by the arrows. (
) Frontal view of a sieveplate. About 50% of the plate are is 
overed by open sieve pores. (d) Side view of a sieveplate. SEM images 
ourtesy of M. Knoblau
h and D. L. Mullendore [48℄. Reprodu
ed withpermission.



Vas
ular transport in plants 11Table 2.1: Chara
teristi
 physi
al parameters relevant to vas
ular translo
ation pro
essesin plants. Cell sizes refer to phloem sieve tube elements and xylem vessel elements.Parameter Phloem (P) Xylem (X) Referen
eCell radius 10 µm 100 µm [48, 29℄(P), [85℄(X)Cell length 100 µm− 1 mm 1 mm− 1 cm [48℄(P), [85℄(X)Flow velo
ity 1 m/h = 0.28 mm/s 10 m/h = 2.8 mm/s [48, 29℄(P) [85℄(X)Pressure 1 MPa −1 MPa [82℄ (P) [85℄(X)Sugar 
on
entration 0.1 M− 1 M ∼ 0 M [73, 82℄ (P), [85℄(X)Dry weight sugar transport 2.8× 10−3 kg/(s m2) [12℄ (P)Liquid vis
osity 2× 10−3 Pa s 1× 10−3 Pa s [79℄ (P), [73℄ (X)Membrane permeability 5× 10−14 m/(s Pa) [79℄ (P)�ow with speeds of the order 10 m/h = 2.8 mm/s and the evaporation from the leaves
auses the water 
olumn in the xylem to be under tension, with indu
ed negative pressuresof the order −1 MPa [85℄.2.2.2 The phloemThe phloem is responsible for translo
ating the produ
ts of photosynthesis (i.e. sugars)from pla
es of produ
tion, su
h as mature leaves, to pla
es of growth or storage, su
h asimmature leaves, fruits or roots. Besides sugar, signaling mole
ules are also transported inthe phloem.The phloem 
onsists of several di�erent types of 
ells: Sieve tube elements, in whi
hthe translo
ation of sugar takes pla
e, 
ompanion 
ells that helps to regulate the metaboli
a
tivities of the sieve tube elements, phloem �bres that gives the plant me
hani
al strength,and phloem paren
hyma whi
h a
ts as storage [73℄. As shown in Fig. 2.2(b), the sieve tubeelements are 
ylindri
al 
ells typi
ally measuring 10 µm in radius and about 100 µm inlength [80, 48℄. They 
over about 20 % of the area of the phloem [12℄ and 
ontain ahighly 
on
entrated sugar solution (0.1 M− 1 M) as well as smaller amounts of signalingmole
ules, amino a
ids, proteins and a number of minerals [73℄. The high sugar 
ontentmeans that the 
ells are under positive pressure, sometimes as high as 2.5 MPa [82℄.The sieve tube elements are joined together end-to-end forming a network runningalong the entire length of the plant. During early stages of sieve tube element development,plasmodesmata in the end walls of adja
ent immature sieve tube elements are 
onvertedinto sieve pores usually a few ∼ 1 µm in diameter as shown in Fig. 2.2(
)-(d). When thesieve elements rea
hes maturity, these pores 
over ∼ 50% of the end wall area and formwhat is known as a sieve plate. The pores allow the translo
ation stream to pass relativelyfreely between adja
ent sieve elements, making the sieve tube a 
ontinuous pathway [48℄.The primary role of the sieve plates is believed to be a defensive me
hanism, sealing o�the sieve elements by 
logging the pores if the 
ell is me
hani
ally damaged or heated.Thereby the plant prevents the valuable sugary 
ontent of the sieve elements from leaking[37℄.



12 Osmoti
ally driven �ows in living and arti�
ial systemsAs we shall see in 
hapter 4, the presen
e of sieve pores signi�
antly in
reases thehydrauli
 resistan
e of the phloem sieve tube translo
ation pathway.2.3 Translo
ation in the phloemLong-distan
e transport of sugar in the phloem sieve tubes is an experimentally establishedfa
t [36℄. The pro
ess, however, is not well understood on the quantitative level sin
e dire
tmeasurements of translo
ation rates and driving for
es are extremely di�
ult to make[53, 37, 36℄. The fundamental problem is that the phloem is very sensitive to disturban
es,
easing �ow when subje
ted to slight me
hani
al or thermal perturbations [37℄.Early measurements of the rate of sugar transport in the phloem was 
ondu
ted byweighing fruits at di�erent instan
es in time. Using this te
hnique, dry weight mass transferrate of the order 1 g/(h cm2) = 2.8 × 10−3 kg/s per m2 of phloem area was found [12℄.The problem with this type of experiment is that the only reliably measured quantity isthe in
rease in dry weight per unit time. To get the a
tual translo
ation velo
ity one mustmake assumptions regarding the 
on
entration of the sugar solution and the area fra
tionof the phloem in whi
h the transport is taking pla
e. To resolve this problem, morea

urate measurement te
hniques using radioa
tive dye tra
ers emerged have sin
e beenused extensively, see [12℄ and referen
es therein. More re
ently, nu
lear magneti
 resonan
eimaging has been used to measure phloem �ow velo
ities [48, 89℄ although both dye andradioa
tive tra
ers remain in use to this day [37, 29℄. All the above mentioned te
hniques�nd typi
al �ow velo
ity in the sieve tube elements of the order 1 m/h = 0.28 mm/s, anorder of magnitude slower than in the xylem. This velo
ity, with a sugar 
on
entration of
1 M, gives a dry weight transfer rate of 0.1 kg/s of m2 phloem sieve tube area, 
onsistentwith largest observed rate (5 g/(h cm2) = 0.014 kg/s per m2 of total phloem area [12℄)sin
e the sieve tubes 
over only about 20% of the total phloem area.2.3.1 Me
hanisms driving the �owTo a

ount for the rates of transport observed in the phloem, several di�erent drivingme
hanisms have been proposed. We will dis
uss mole
ular di�usion and osmosis in detailbelow, but for a thorough analysis of other me
hanisms whi
h has been proposed, e.g.a
tin �lament driven streaming and ele
tro osmosis, see the review by Ma
Robbie [44℄.Mole
ular di�usionOne of the �rst me
hanisms suggest to be responsible for transport in the phloem wasmole
ular di�usion. This hypothesis had many supporters, among them Julius Sa
hs, oneof the leading plant physiologists of the 19th 
entury [26℄. The supporters of this theoryenvisaged that the transport of sugar was driven by a di�usive �ux set up by the gradient in
on
entration between the sugar loading and unloading regions in the plant. Quantitative
al
ulations by De Vries published in 1885 showed, however, that this pro
ess is mu
h tooslow to a

ount for the observed rates of transport [35℄.
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ation in the phloem 13Following De Vries's 
al
ulations, Mün
h argues in [49℄ that the mass transfer due todi�usion 
an be estimated in the following way: In steady state the mass of sugar di�usingper unit time dm
dt due to a di�eren
e in 
on
entration ∆c between two ends of a pipe of
ross se
tion area A and length l is

1

A

dm

dt
= MD

∆c

l
, (2.1)where M is the molar mass and D is the di�usion 
onstant. For a su
rose solution with

M = 0.342 kg/mol, ∆c = 1 M, D = 5 × 10−10 m2/s [4℄ and a pipe of length l = 1 m we�nd that
(

1

A

dm

dt

)

Diff

= 1.7 × 10−7 kg/(m2 s), (2.2)whi
h is four orders of magnitude smaller than the observed rate of mass transport. This
al
ulation shows that di�usion alone 
annot a

ount for the observed long distan
e trans-port of sugar in plants [49, 12℄.OsmosisThe most widely a

epted explanation of translo
ation in the phloem dates ba
k to the1920s where the German s
ientist Ernst Mün
h proposed that the �ow is passive and isdriven by di�eren
es in osmoti
 pressure between sugar sour
es and sinks [49, 36℄. Osmosisis the tenden
y of water to move a
ross a semipermeable membrane from a region lowsolute 
on
entration to a region of high 
on
entration (see Se
. 3.2 and App. C). Theosmoti
 pressure Π said to be driving the �ow is dire
tly proportional to the di�eren
e in
on
entration ∆c a
ross the membrane
Π = RT∆c, (2.3)where R is the gas 
onstant and T is the temperature. With the sugar 
on
entrations listedin table 2.1, we �nd Π = 0.2− 2 MPa.Mün
h envisaged a mass �ow in the phloem sieve elements driven by an osmoti
 pressuregradient set up in the 
hannel by the se
retion (loading) of sugar into the sieve elements atthe sour
e leaves and the removal (unloading) of sugar in the sour
e tissue, e.g. roots, fruitsor other regions of growth and storage as illustrated in Fig. 1.1. The high 
on
entrationof sugar in the sour
e region would 
reate a �ow a
ross a semipermeable membrane intothe phloem 
ells driven by osmosis. This would in turn displa
e the liquid already presentdownwards, thereby 
reating a bulk �ow from sour
e to sink. At the sink, removal ofsugar from the phloem tissue would 
ause the water to leave the 
ells sin
e the osmoti
driving for
e is no longer present. The Mün
h hypothesis is also known as the pressure�ow hypothesis [13℄ while the resulting �ow is known as an osmoti
ally driven pressure�ow [80℄, an osmoti
ally driven volume �ow [16℄ or simply an osmoti
ally driven �ow.A simple quantitative analysis of the Mün
h me
hanism to estimate the �ow velo
itiesone would expe
t to �nd 
an be made in the following way. Consider the 
ylindri
al sieve
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ally driven �ows in living and arti�
ial systemstube elements lying end to end inside the plant. If they have a total length l and radius a,the volume Q �owing a
ross the membrane surfa
e per unit time is
Q = 2πalLpΠ = 2πalLpRT∆c, (2.4)where Lp is the permeability of the membrane. The 
ross se
tion area of the tube is

A = πa2, so the 
hara
teristi
 osmoti
 velo
ity uosm inside the tube is
uosm =

Q

A
=

2

a
lLpRT∆c = σlLpRT∆c. (2.5)Here, σ is the surfa
e to volume ratio of the tube

σ =
S

A
=

2πal

πa2l
=

2

a
, (2.6)a 
ru
ial parameter in determining the �ow velo
ity inside the tube. When σ is large, i.e.when the radius a is small, the �ow velo
ities 
an be
ome very large. Using the parametervalues

l = 1 m, a = 10−5 m, Lp = 5× 10−14 m/(s Pa), and RT∆c = 1 MPa,we �nd that
uosm = 10−2 m/s. (2.7)This number is two orders of magnitude larger than the observed �ow velo
ity (2.8 ×

10−4 m/s), but not unreasonable sin
e the analysis does not take into a

ount the vis
ousresistan
e of the �uid moving inside the narrow tube. We will derive a formula takingthe vis
osity into a

ount in 
hapter 5, and show in 
hapter 6 that it agrees well withexperimental data.2.3.2 Intera
tion between the translo
ation pro
esses in the phloem andthe xylemIn the Mün
h hypothesis, the water entering the phloem due to osmosis 
omes from thesurrounding tissue and thus ultimately from the xylem. Sin
e the two tissues are separatedonly by a few 
ells and the hydrostati
 pressure di�eren
e between them is measured in
MPa (see Tab. 2.1), it is an open question how important the dire
t intera
tion betweenthe �ow in the phloem and the xylem is [24℄. In a re
ent experiment, Windt et al. setout to investigate this by simultaneously measuring �ow velo
ities in phloem and xylemof four di�erent spe
ies under alternating day and night 
onditions [89℄. As shown inFig. 2.3, they demonstrated that the �ow in the two tissues are largely independent, andthat while the �ow in the xylem exhibited large diurnal variations, the �ow in the phloemis approximately 
onstant throughout the day. Sin
e large variations in xylem �ow velo
ityimplies large variations in pressure, we 
on
lude on the basis of these experiments that thedire
t 
oupling between the �ow in the phloem and in the xylem is in general weak, andthat we therefore may treat the two systems separately.
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Figure 2.3: Translo
ation velo
ities measured as a fun
tion of time in the xylem (left
olumn) and the phloem (right 
olumn) of four di�erent spe
ies as indi
ated above theplots. The volume �ow (
losed symbols) and average linear velo
ity (open symbols) weremeasured using MRI over the 
ourse of 2 to 4 days. Bla
k and white bars on the ordinateaxis indi
ate day and night 
onditions. The translo
ation velo
ities measured in the xylemshows a strong dependen
e on these 
onditions, with high velo
ities observed during theday and low velo
ities during the night. Ex
ept for poplar, the velo
ities observed in thephloem are largely independent of the day/night 
onditions. From [89℄, Figs. 6 and 9.Reprodu
ed with permission.
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ally driven �ows in living and arti�
ial systems
(a) (b) (c)Munch (1920s) Eschrich/Lang (1970s) Jensen (2000s)

Water reservoir

Membrane

Sugar

Water flux

Membrane
tube

Microfluidic chip

Figure 2.4: S
hemati
s of three generations of biomimi
king phloem transport experiments.(a) Ernst Mün
h [49℄, (b) Es
hri
h et al. and Lang [16, 40℄, and (
) the author of the presentthesis, Jensen [28℄. See Se
. 2.4 for a des
ription ea
h individual experimental setup.2.4 Osmoti
ally driven �ows in arti�
ial systemsMotivated primarily by osmoti
ally driven �ow in the phloem vas
ular system of plants,a number of experimental studies have been 
ondu
ted using arti�
ial �phloem 
ells� tostudy the fundamental physi
al pro
esses [49, 16, 40, 55, 30, 28, 29℄. These experiments,illustrated in Fig. 2.4 fall into three 
ategories, histori
ally and 
on
eptually.1920s: The work of Ernst Mün
hSome of the �rst osmoti
 experiments related to translo
ation in plants were 
ondu
tedby Ernst Mün
h in the 1920s [49℄ . His setup, shown in Fig. 2.4(a), 
onsisted of tworound-bottom �asks 
onne
ted by a tube. Part of the surfa
e of the �asks was 
overed bya semipermeable membrane. As he introdu
ed sugar solutions of di�erent 
on
entrationinto the two �ask and submerged them in a water bath, he observed a �ow from the �askof high 
on
entration to the �ask of low 
on
entration. He then went on to argue that,physi
ally speaking, the plant 
onstitutes a network of su
h 
onne
ted osmoti
 parts, fromwhi
h it would follows that osmoti
 �ow also o

urs sin
e �same 
auses have same e�e
ts�([49℄, p. 37, translation by Knoblau
h & Peters [36℄).1970s: The work of Walter Es
hri
h et al. and Alexander LangA serious short
oming of Mün
h's experiments is that the osmoti
 intera
tion takes pla
eonly in what 
orresponds to the loading and unloading regions, and not along the translo
a-tion region (i.e. the stem) as is the 
ase in plants. In an attempt to investigate osmoti
ally
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hnologi
al appli
ations of osmoti
ally driven �ows 17driven �ows in the translo
ation region, Es
hri
h et al. build experiments in the early1970s to investigate the transient dynami
s of a moving sugar front inside a 
ylindri
almembrane tube [16℄. Their setup, shown in Fig. 2.4(b), 
onsisted of a long membrane tube
∼ 1 cm in diameter �tted inside a water-�lled glass tube. At the beginning of the experi-ment, a sugar solution was introdu
ed into one end of the tube, whi
h was then 
losed atboth ends. The movement of the sugar front was subsequently observed for di�erent sugar
on
entrations. They observed that the more 
on
entrated the su
rose solution, the fasterthe front traveled. They also found that the velo
ity of the sugar front de
ayed exponen-tially in time as the front approa
hed the far end of the tube. These experiments werelater re�ned by the author of the present thesis during his master studies [30℄(See App. E,p. 131 for details) to allow for a better quantitative 
omparison between experiment andtheory.Following Es
hri
h et al., Alexander Lang [40℄ build experiments to study steady-stateosmoti
ally driven �ows. His setup, 
onsisted again of a long, cm-sized, membrane tubesubmerged in a water bath. At one end a su
rose solution was introdu
ed at a steadyrate, and at the other end the tube was open at atmospheri
 pressure. At regular intervalsalong the membrane tube, several measurement stations were pla
ed that enabled him tomeasure the lo
al sugar 
on
entration and pressure. He demonstrated that osmosis 
ould
reate 
onsiderable bulk �ows in narrow tubes, 
onsistent with the Mün
h hypothesis.2000s: Jensen et al.While the experiments of Es
hri
h et al. and Lang were a major step forward in under-standing the pro
esses that drive translo
ation in plants, they still have the fundamentalproblem that the 
hara
teristi
 length-s
ale (i.e. tube diameter) are many orders of mag-nitude larger than what is observed in plants. Sin
e osmosis is a surfa
e phenomena innature, this means that the ratio of surfa
e to volume σ (
f. Eq. (2.6)) whi
h 
ontrols theaxial �ow velo
ity is mu
h smaller in plants than in the experiments. Experiments with
hannel radii in the relevant µm range have been possible sin
e the early 2000s with theadvent of modern mi
ro�uidi
 fabri
ation te
hniques [10℄.In 2009-2011 the author and 
o-workers 
ondu
ted a systemati
 survey of osmoti
allydriven �ows at the mi
rometre s
ale with osmoti
 intera
tion along the whole length ofthe mi
ro�uidi
 
hannel [28, 29℄. The experiments, whi
h are sket
hed in Fig. 2.4(
) anddes
ribed in greater detail in 
hapter 7, studied osmoti
ally driven �ows in 200 µm wideand 50− 200 µm deep mi
ro
hannels, thus approa
hing the length-s
ales found in plants.2.5 Te
hnologi
al appli
ations of osmoti
ally driven �owsOsmoti
ally driven �ows have found numerous te
hnologi
al appli
ations that falls intotwo 
ategories: liquid handling and energy produ
tion.In the 1970s, Theeuwes pioneered a pill-based osmoti
 delivery system for drugs [76℄.In its simplest form, the system is 
onstru
ted by 
oating an osmoti
ally a
tive solid drugwith a semipermeable membrane. This membrane 
ontains an ori�
e through whi
h thedissolved drug is dispensed on
e the pill is submerged in water. The rate of delivery is
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ontrolled by the water permeation 
hara
teristi
s of the semipermeable membrane sur-rounding the drug and the osmoti
 properties of the drug [76℄.In 2009, the worlds �rst osmoti
 power plant began operations near Oslo, Norway. Thepower plant is lo
ated near the mouth of a river and uses the osmoti
 pressure di�eren
ebetween freshwater and the salty seawater to generate an osmoti
 pressure whi
h drivesa turbine. The plant is 
apable of produ
ing 3 W per m2 membrane area, a numberwhi
h is 
ontinually in
reasing. The global potential of osmoti
 power is estimated to be
1500 T W h, equivalent to 50% of the total power produ
tion in the European Union [72℄.2.6 Con
lusionIn this 
hapter we have given an introdu
tion to the motivation behind the topi
 studiedin the present PhD thesis: translo
ation of sugars and signaling mole
ules in the phloemvas
ular system of plants.In the following 
hapters, we will try to get an fundamental understanding of how theseosmoti
ally driven �ows work. We will then attempt to answer fundamental questions su
has how fast the sugar 
an move in plants using the osmoti
 pump? What 
ontrols the rateof transport? How does the osmoti
 me
hanism a�e
t the stru
ture of the plant? Is osmosissu�
ient to a

ount for the rates of translo
ation observed in plants?



Chapter 3Fluid me
hani
s of osmoti
allydriven �owsFrom the pro
esses o

urring in plants, we now move on to a physi
al des
ription ofosmoti
ally driven �ows. In this 
hapter we thus �rst introdu
e the basi
 
on
epts ofosmosis and the relevant equations of motion for liquid and solute transport. From these wederive an analyti
al solution for the osmoti
 �ow and 
on
entration problem in a 
ylindri
altube whi
h leads dire
tly to the one-dimensional transport equations 
ommonly used inthe phloem transport literature [79℄. We �nally dis
uss how these equations are applied tosugar transport in plants.Most of the material presented 
an be found in the �uid me
hani
s and phloem translo-
ation literature, but the derivation of the one-dimensional equation of motion for �uidtransport in osmoti
ally driven �ows dire
tly from an analyti
al solution to the Navier-Stokes equation is due to the author and has yet to be published. This also applies to thederivation of the one-dimensional equation of motion for sugar transport. The dis
ussionof the 
hara
teristi
 properties of zone models given in Se
. 3.8 and Fig. 3.5 is due tothe author. It was instrumental in obtaining the analyti
al solution to the equations ofmotion published in [29℄ and derived in Chapter 5. The term �Mün
h number� for thenon-dimensional number Mü (see Se
. 3.5.5) was �rst introdu
ed in [30℄ and was 
oined bythe author and Tomas Bohr.3.1 Ba
kgroundWith the advent of radioa
tive tra
er experiments, the need for a quantitative des
riptionof the osmoti
ally driven �ow des
ribed by the Mün
h hypothesis be
ame apparent inthe 1950s (see [25℄ and referen
es therein). One of the �rst to formulate the equationsof motion in form of di�erential equations was Horwitz [25℄, who in 1958 investigated thetheoreti
al ba
kground of radioa
tive tra
er propagation observed in plants. His derivation(see Appendix B) rested on simple 
onservation prin
iples and 
ontains no detailed analysisof the �uid me
hani
s of osmoti
ally driven �ows.In the present 
hapter, we will derive Horwitz's equations of motion based on the ther-19
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ally driven �ows
Region 2 Region 1

Membrane

c = c2
p = p2

c = c1
p = p1jw

Figure 3.1: Sket
h of the osmoti
 �ow pro
ess. A semipermeable membrane (dashed line)separates two regions whi
h 
ontains aqueous solutions of a solute at 
on
entrations c1and c2 (proportional to the density of the bla
k dots) and hydrostati
 pressures p1 and p2respe
tively. Osmosis and hydrostati
 pressure drives a �ow of water (arrows) a
ross themembrane at a rate jw given by Eq. (3.6).[10℄modynami
s of osmosis, the Navier-Stokes equation for �uid motion, and the 
onve
tion-di�usion equation for solute transport.3.2 OsmosisOsmosis is the movement of water a
ross a semipermeable membrane driven by a di�eren
ein 
hemi
al potential. It is important in many biologi
al systems sin
e virtually all biolog-i
al membranes are semipermeable. In many 
ases these membranes are impermeable tolarge mole
ules, su
h as sugars, while permeable to water and small un
harged solutes [4℄.3.2.1 Non-equilibrium thermodynami
sThe pro
ess of osmosis 
an best be des
ribed by the formalism of non-equilibrium thermo-dynami
s [67℄. As dis
ussed in Appendix C, we thus 
onsider a linear phenomenologi
alrelation between a thermodynami
 �ux j′n and the 
orresponding 
onjugate for
e ξn

j′n = Lnnξn. (3.1)Here, Lnn is a proportionality 
onstant with the unit of 
ondu
tan
e. The driving for
e ξnis related to the di�eren
e in 
hemi
al potential ∆µn of the substan
e n between di�erentregions of the system
ξn = ∆µn. (3.2)



Osmosis 21Eqns. (3.1)-(3.2) are valid 
lose to equilibrium and Ohm's law of 
urrent �ow, Fourier'slaw of heat �ow, and Fi
k's law of di�usion are all familiar examples of Eq. (3.1).It 
an be shown that the relation between the rate of internal entropy produ
tion ∂ts,the absolute temperature T, and the for
es and �uxes is given by
T∂ts = j′nξn. (3.3)The quantity T∂ts is known as the power dissipation fun
tion and is a measure of thetenden
y of the non-equilibrium pro
ess to pro
eed.3.2.2 Osmoti
ally driven �ow a
ross a semipermeable membraneIn the present dis
ussion we 
onsider the situation sket
hed in Fig. 3.1. An ideal semiperme-able membrane separates two regions at pressures p1 and p2 whi
h 
ontains dilute aqueoussolutions of a solute at 
on
entrations c1 and c2. The membrane is permeable to water,but not to the solute. If the 
on
entrations are low, the di�eren
e in 
hemi
al potential ofthe water ∆µw a
ross the membrane is given by

∆µw = v̄w (p2 − p1)− v̄wRT (c2 − c1) , (3.4)where v̄w is the molar volume of water. We then have from Eq. (3.1) that the �ux of watermole
ules j′w is
j′w = Lwwv̄w (RT (c1 − c2)− (p1 − p2)) . (3.5)The volume of water jw �owing a
ross the membrane per unit area is then

jw =
j′wv̄w
A = Lp (RT (c1 − c2)− (p1 − p2)) , (3.6)where A is the area of the membrane and Lp =

Lww v̄2w
A is the permeability of the membrane,a material parameter that depends on the thi
kness of the membrane, the pore size, andthe vis
osity of the liquid. The general 
ase where the membrane is permeable to the soluteis dis
ussed in Appendix C but will not be treated in the main text.Osmoti
 pressureIf the system is is equilibrium, i.e. if jw = 0, we �nd that the di�eren
e in pressure betweenthe two sides of the membrane is

p1 − p2 = RT(c1 − c2) = Π (3.7)where Π = RT(c1 − c2) is know as the osmoti
 pressure.Entropy produ
tion and vis
ous power dissipationThe volume �ux driven by osmoti
 and hydrostati
 pressures is dire
tly related to theentropy produ
tion through Eq. (3.3)
T∂ts = j′wξw = ALp (RT (c1 − c2)− (p1 − p2))

2 , (3.8)We immediately re
ognize this expression as the rate at whi
h power is dissipated by the�ow due to vis
ous fri
tion inside the membrane.
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hani
s of osmoti
ally driven �ows3.3 Equations of motion for osmoti
ally driven �owsInspired by the geometry of the sieve tube elements dis
ussed in Chapter 2, we now 
onsiderthe motion of water and a solute (sugar) inside a long 
ylindri
al tube of radius a as shownin Fig. 3.3. The tube is submerged in a reservoir of water at 
onstant pressure p2 and
onstant 
on
entration c2. For simpli
ity, we assume that the �ow and 
on
entration �eldsare rotationally symmetri
 su
h that the velo
ity u(r, x) and solute 
on
entration c1(r, x)does not depend on the azimuthal position. The solute is moving due to the motion ofthe liquid and mole
ular di�usion. The wall of the tube is made from a semipermeablematerial (a membrane) of permeability Lp that allows water but not the solute to pass.Sugar is loaded/removed from the tube at a rate υ by an a
tive me
hanism de
oupled fromthe osmoti
 pumping. For simpli
ity, we assume that υ is a fun
tion of the axial 
oordinate
x only.3.3.1 Boundary 
onditions imposed by osmosisThe presen
e of the membrane fa
ilitates a �ow of water driven by osmoti
 and hydrostati
pressure di�eren
es a
ross the wall. This o

urs at a rate given by Eq. (3.6) whi
h imposesa boundary 
ondition on the normal velo
ity 
omponent n ·u at the membrane interfa
e

n ·u = jw = Lp(RTc− p), for r = a. (3.9)Here we have used the notation p = p1−p2, and c = c1−c2, and assume that n is a normalve
tor pointing into the tube. Additionally, the tangential velo
ity 
omponent is subje
tto the no-slip 
ondition at the membrane interfa
e
u− (n ·u)n = 0, for r = a. (3.10)Finally, we require that no solute mole
ules move a
ross the membrane

n · (−D∇c+ cu) = 0, for r = a, (3.11)where D is the di�usivity of the solute.3.3.2 Equations of motion governing �uid �owThe motion of an in
ompressible Newtonian liquid is governed by the Navier-Stokes equa-tion [10℄
ρ (∂tu+ (u · ∇)u) = −∇p+ η∇2u, (3.12)where t is time, ρ is the liquid density, η is the liquid vis
osity, and the e�e
t of gravity isin
luded in the pressure. Sin
e the liquid is in
ompressible, 
onservation of volume requiresthe solution to ful�ll the 
ontinuity equation

∇ ·u = 0. (3.13)
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r
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r = a

Membrane of
permeability Lp

Velocity u(x, r)

Concentration c1(x, r)
Pressure p1(x, r)

Water flux jwSugar flux υ

Reservoir
c2 p2

(a)

(b)

Figure 3.2: Sket
h of the geometry used when deriving the equations of motion for osmot-i
ally driven �ows. (a) An in
ompressible liquid (e.g. water) is moving inside a 
ylindri
altube of radius a with velo
ity u (arrows). The tube is submerged in a reservoir of waterat 
onstant pressure p2 and 
onstant 
on
entration c2. A solute of 
on
entration c1 isdissolved in the liquid and is moving due to the motion of the liquid and mole
ular di�u-sion. The tube is submerged in a large reservoir (gray region) and has a walls made froma semipermeable membrane (dashed line) with permeability Lp that allow the liquid butnot the solute to pass. (b) Closeup of the situation at the membrane (dashed line). Thepresen
e of the membrane fa
ilitates a �ow of water driven by osmoti
 and hydrostati
pressure di�eren
es a
ross the wall. This o

urs at a rate jw, given by Eq. (3.6), indi
atedby the solid arrow at the membrane interfa
e (See Fig. 3.1). Sugar is loaded/removed fromthe tube at a rate υ by a me
hanism de
oupled from the osmoti
 pumping indi
ated bythe dashed arrow. The osmoti
ally driven �ow a
ross the membrane a

elerates the liquidas it moves along the tube as indi
ated by the growing size of the arrows in (a).



24 Fluid me
hani
s of osmoti
ally driven �owsIn 
ylindri
al 
oordinates these equations are
ρ (∂tux + ur∂rux + ux∂xux) = −∂xp+ η

(

∂2
xux +

∂rux
r

+ ∂2
rux

)

, (3.14)
ρ (∂tur + ur∂rur + ux∂xur) = −∂rp+ η

(

∂2
xur +

∂rur
r

+ ∂2
rur −

ur
r2

)

, (3.15)
∂xux +

ur
r

+ ∂rur = 0, (3.16)where the velo
ity u = (ux, ur). The boundary 
onditions are
ur = −jw for r = a, (3.17)
ux = 0 for r = a. (3.18)3.3.3 Equations of motion governing solute transportThe equation of motion for solute transport is the 
onve
tion-di�usion equation [10℄
∂tc+ u · ∇c = D∇2c+ υ. (3.19)In 
ylindri
al 
oordinates this is

∂tc+ ur∂rc+ ux∂xc = D

(

1

r
∂r (r∂rc) + ∂2

xc

)

+ υ. (3.20)The osmoti
 boundary 
ondition given in Eq. (3.11) is
−D∂rc+ cur = 0 for r = a. (3.21)3.4 Solution of the 
oupled 
on
entration-�ow problemIn order to obtain a full understanding of the 
oupled motion of water and the soluteone needs to solve Eqns. (3.12) (3.13), and (3.19) with the appropriate osmoti
 boundary
ondition in Eqns. (3.9)-(3.11). Due to the 
oupling of the �ow and 
on
entration �eldsthrough the boundary 
onditions this is a formidable mathemati
al problem whi
h hasonly been ta
kled analyti
ally in a few spe
ial 
ases [59, 60, 56, 57, 58, 3, 27℄. We we willdis
uss this in detail in Chapter 8, but for now we pro
eed by putting the equations ofmotion on non-dimensional form and applying the 
onditions relevant to plants.3.5 Non-dimensional formulation of the equations of motionTo simplify the mathemati
al treatment of the equations of motion we use non-dimensionalvariables. Sin
e the osmoti
ally driven �ow 
ontains two 
hara
teristi
 velo
ity s
ales, the
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ity u∗x and the radial velo
ity u∗r , and two 
hara
teristi
 length s
ales, the tubelength l and the tube radius a, we will non-dimensionalize in the following way
c = c∗C ′, (3.22)

ux = u∗xUX = 2LpRTc
∗ l

a
UX , (3.23)

ur = u∗rUR = 2LpRTc
∗UR =

a

L
u∗xUR, (3.24)

t = t∗T =
l

u∗x
T =

a

2LpRTc∗
T, (3.25)

x = lX, (3.26)
r = aR, (3.27)
p = p∗P = RTc∗P, (3.28)
υ = c∗

2LpRTc
∗

a
Υ, (3.29)

jw = 2LpRTc
∗Jw. (3.30)Here, c∗ is the 
hara
teristi
 
on
entration found in the tube.3.5.1 Non-dimensional equations of motion for �uid motionUsing these variables, the equations of motion for the �uid motion are

H1 (∂TUX + UR∂RUX + UX∂XUX) = −H3∂XP +

(

∂2
XUX +H4

∂RUX

R
+H4∂

2
RUX

)

, (3.31)
H2 (∂TUR + UR∂RUR + UX∂RUR) = −H3∂RP +

(

1

H4
∂2
XUR +

∂RUR

R
+ ∂2

RUR − UR

R2

)

,(3.32)
∂XUX +

UR

R
+ ∂RUR = 0. (3.33)Here the four non-dimensional groups are
H1 =

ρu∗xa

η
=

2ρLpRTc
∗l

η
, (3.34)

H2 =
ρu∗ra

η
=

2ρLpRTc
∗a

η
, (3.35)

H3 =
a

2Lpη
, (3.36)

H4 =

(

l

a

)2

. (3.37)
H1 and H2 are the axial and radial Reynolds numbers whi
h determine the relative im-portan
e of vis
ous and inertial for
es. The importan
e of H3 and the aspe
t ratio H4 will
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hani
s of osmoti
ally driven �owsbe
ome 
lear in Se
. 3.5.5. Using the 
hara
teristi
 values relevant to plants [79℄
L = 1 m, a = 10−5 m, Lp = 5× 10−14 m/(s Pa), η = 2× 10−3 Pa s,

ρ = 103 kg/m3 and RTc∗ = 1 MPawe �nd that
H1 = 5× 10−2, (3.38)
H2 = 5× 10−7, (3.39)
H3 = 5× 1010, (3.40)
H4 = 1× 1010. (3.41)In this limit, the equations of motion simplify to

∂XP =
2Lpηl

2

a3

(

∂RUX

R
+ ∂2

RUX

)

, (3.42)
∂RP = 0, (3.43)

∂XUX +
UR

R
+ ∂RUR = 0. (3.44)The �ow boundary 
onditions are
UR = −JW , for R = 1, (3.45)
UX = 0, for R = 1, (3.46)while the membrane transport equation is
Jw(X) =

1

2
(C(X, 1)− P ) . (3.47)We note that the system of equations (3.42)-(3.44) 
orresponds to the Stokes equations inthe lubri
ation limit [5, 3℄.3.5.2 Non-dimensional equation of motion for solute transportIn non-dimensional variables, the equation of motion for solute transport is

∂TC
′ + UR∂RC

′ + UX∂XC ′ = H5

(

1

R
∂R
(

R∂RC
′)+

1

H4
∂2
XC ′

)

+Υ. (3.48)
H4 is the aspe
t ratio given in Eq. (3.37) and H5 is an inverse Pé
let number

H5 =
D

u∗ra
=

D

2LpRTc∗a
= 5× 102, (3.49)with D = 5 × 10−10 m2/s (Su
rose, [4℄). At this point it is tempting to follow Aldis [3℄and keep only terms of order H5 in Eq. (3.48)

1

R
∂R
(

R∂RC
′) = 0. (3.50)



Non-dimensional formulation of the equations of motion 27This must imply that C ′ = C ′
0(X) if we require that C ′(R = 0) is �nite. Upon reinsertionin Eq. (3.48), this however yields that
∂TC

′ + UX∂XC ′ =
H5

H4
∂2
XC +Υ (3.51)where that the radial di�usion term has now vanished and is 
learly not the determiningfa
tor.A more proper way of treating Eq. (3.48) is to 
onsider the radial average of thetransport equation, whi
h is relevant sin
e we are primarily interested in the axial transportof solute. Using the bra
ket notation

〈f(X)〉 = 2

∫ 1

0
f(X,R)R dR, (3.52)for the radial average of f we �nd from Eq. (3.48) that

∂T 〈C ′〉+ ∂X
(

〈C ′UX〉
)

=
H5

H4
∂2
X〈C ′〉+Υ. (3.53)Here we have used the osmoti
 boundary 
ondition

−H5∂RC
′ + C ′UR = 0, for R = 1, (3.54)and the divergen
e equation (3.44) to 
an
el the radial di�usion terms. Note that 〈Υ〉 = Υsin
e the loading rate is independent of R by assumption. Sin
e H5

H4
= 5 × 10−8 we 
ansafely disregard axial di�usion. Additionally, as we shall see in Chapter 8, the radial
on
entration distribution is nearly uniform at these low Pé
let numbers. This allows usto write 〈C ′UX〉 = 〈C ′〉〈UX〉 su
h that

∂T 〈C ′〉+ ∂X
(

〈C ′〉〈UX〉
)

= Υ. (3.55)With the notation C = 〈C ′〉 and U = 〈UX〉 this be
omes
∂TC + ∂X (CU) = Υ. (3.56)3.5.3 Summary of the non-dimensional equations of motionIn summary, the non-dimensional equations of motion are
∂XP =

2Lpηl
2

a3

(

∂RUX

R
+ ∂2

RUX

)

, (3.57)
∂RP = 0, (3.58)

∂XUX +
UR

R
+ ∂RUR = 0, (3.59)

∂TC + ∂X(CU) = Υ, (3.60)The boundary 
onditions are
UR = −Jw = −1

2
(C − P ) , for R = 1, (3.61)

UX = 0, for R = 1. (3.62)
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hani
s of osmoti
ally driven �ows3.5.4 Analyti
al solution of the �ow problemFollowing Aldis [3℄ we noti
e that the �ow problem 
an be solved using a squeeze �owpro�le
UX(X,R) = 2(1−R2)Θ(X), (3.63)
UR(X,R) = Jw(X)

(

R3 − 2R
)

, (3.64)as illustrated in Fig. 3.3. Here, the quantity Θ(X) is given by
Θ(X) = Θ0 + 2

∫ X

X0

Jw(X
′) dX ′ = 〈UX〉 = U(X), (3.65)and 
an be though of as an osmoti
 piston velo
ity. The 
onstant Θ0 and the lower limit

X0 on the integral takes into a

ount the situation where only part of the tube is 
overedby the membrane whi
h starts at X = X0 with a �ow pro�le UX(X0, R) = 2(1 − R2)Θ0.The velo
ity �eld given by Eqns. (3.63) and (3.64) ful�lls the boundary 
onditions, the
ontinuity equation and the pressure 
ompatibility 
ondition
∇×∇2U = 0, (3.66)whi
h sin
e the �ow is rotationally symmetri
 
orresponds to

∂X∂RP − ∂R∂XP = 0. (3.67)Note that the solution given in Eqns. (3.63) and (3.64) does not in general ful�ll the fullNavier-Stokes equation (Eqns. (3.31)-(3.32)) or even the Stokes equation (Eqns. (3.31)-(3.32) with the left hand side put equal to zero).We are now able to 
al
ulate the relation between the axial pressure gradient ∂XP andthe radially averaged axial �ow velo
ity U(X)

∂XP = −16Lpηl
2

a3
U(X) = −8H4

H3
U(X) = Mü U(X). (3.68)The formula is 
ompletely analogous to that found in 
onventional pipe �ows, ex
ept forthe fa
t that the axial �ow velo
ity U(X) is a fun
tion of the axial 
oordinate X. Thenon-dimensional Mün
h number Mü given byMü =

16Lpηl
2

a3
, (3.69)is dis
ussed in Se
. 3.5.5 below.3.5.5 The Mün
h numberThe non-dimensional number Mü in Eq. (3.68) is known as the Mün
h number [30, 29℄.It that 
hara
terizes the relative importan
e of hydrauli
 resistan
e along the tube to the
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Figure 3.3: Chara
teristi
 properties of the osmoti
ally driven pipe �ow solution given inEqns. (3.63) and (3.64). (a) Cross se
tion plot in a verti
al plane showing the velo
ity �eld
U(X,R) = (UX , UR) (arrows) at various position along the tube in arbitrary units. (b)Same as in (a), but showing a 
loseup of the �ow near the membrane interfa
e (dashedline). (
) Axial �ow velo
ity UX plotted as a fun
tion of radius R at the axial positions
X indi
ated below the graphs. (d) Radial �ow velo
ity UR plotted as a fun
tion of radius
R. In (
) and (d), X0 = Θ0 = 0 and JW (X) = 1. Note that sin
e Jw does not dependon X, the radial velo
ity UR shown in (
) is 
onstant as we move along the tube. This isgenerally not the 
ase.
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hani
s of osmoti
ally driven �owsresistan
e a
ross the membrane:Mü =
8H4

H3
=

Axial �ow resistan
eMembrane �ow resistan
e =
8ηl
πa4

1
2πalLp

(3.70)
=

16Lpηl
2

a3
. (3.71)The Mün
h number is a fun
tion of the length of the tube l, the tube radius a, themembrane permeability Lp, and the liquid vis
osity η. The produ
t of the two latterparameters itself set a new length s
ale related to the properties of the membrane asdis
ussed below. Using the values l = 1 m, a = 10 µm, Lp = 5 × 10−14 m/(Pa s), and

η = 2 × 10−3 Pas we �nd that Mü = 1.6. The magnitude of the Mün
h number variesgreatly among di�erent plant spe
ies with typi
al values between 1 and 103 [29℄.The length-s
ale LpηThe produ
t Lpη present in e.g. Eq. (3.71) has the dimension of length. Using the repre-sentative values given above, we �nd that it is of the order
Lpη = 10−16 m. (3.72)A possible physi
al interpretation of this length is that it is related to the pore size in thesemipermeable membrane. If we 
onsider N pores of hydrodynami
 radius κ and length

ǫ in a membrane of area A the volume �ow Q a
ross a membrane subje
ted to a pressuredi�eren
e ∆p is
Q =

πκ4

8ηǫ
N∆p. (3.73)The number of pores N is taken to be proportional to A

πκ2

N = φ
A

πκ2
, (3.74)where φ is the 
overing fra
tion. Using Eq. (3.74) we 
an write

Q = Aφ
κ2

8ηǫ
∆p. (3.75)From this formula, we identify the number φ κ2

8ηǫ as the permeability Lp. This means thatthe produ
t Lpη is related to the mi
ros
opi
 length s
ales in the following way
Lpη = φ

κ2

8ǫ
. (3.76)At present, the author has no exa
t knowledge of the magnitude the parameters φ, κ and

ǫ for the membranes found in phloem 
ells. If, however, we assume that the hydrodynami
pore size is, say, κ = 0.1 nm, the thi
kness of the membrane is ǫ = 100 nm, and that thepores 
over 1% of the surfa
e area of the membrane, we �nd that φκ2

8ǫ = 1.3 × 10−16 m, avalue 
onsistent with Eq. (3.72).



One-dimensional formulation of the equations of motion 313.6 One-dimensional formulation of the equations of motionWith the results derived in the previous se
tions, we 
an now present equations of motionfor the average axial velo
ity U , the average pressure P , and the average 
on
entration C.If we di�erentiate both sides of Eq. (3.65) we �nd that
∂XU = C − P. (3.77)With the result derived in Eq. (3.68) that ∂XP = −Mü U , this 
an be written as

∂2
XU = ∂xC +Mü U, (3.78)The equation of motion for the solute is
∂TC + ∂X(CU) = Υ (3.79)Eqns. (3.78) and (3.79) 
onstitutes the phloem transport equations used in the literature(see e.g. [79℄). As we have seen in Se
. 3.5.4, they represent exa
t solutions to the equationsof motion under appropriate assumptions. In dimensional units, they are

∂2
xu =

2Lp

a

(

RT∂xc+
8η

a2
u

)

, (3.80)
∂tc+ ∂x (cu) = υ, (3.81)whi
h, as shown in Appendix B, are the same equations that Horwitz derived in his 1958paper [25℄.3.7 Appli
ation of the equations of motion to translo
ationpro
esses in plantsWe now move on to a dis
ussion of how the equations of motion derived in the previousse
tions are applied to the pro
esses that o

ur in plants as dis
ussed in Chapter 2.The equations of motion given in Eqns. (3.78)-(3.79) have been applied to translo
ationin the phloem and further analyzed by a large number of workers. Due to the 
omplexityof the equation system, the general approa
h has been to use numeri
al methods to solvethe problem for a spe
i�
 set of parameters. For a very thorough review see Thompsonand Holbrook [79℄ and related work in [80, 80, 81, 77, 23, 78℄. It is, however, beyond thes
ope of this thesis to 
over all aspe
t of these models in detail. Instead, we shall pro
eedby dis
ussing some of the 
hara
teristi
 properties of the models.3.7.1 An introdu
tion to zone modelsCommon to the majority of models found in the literature is that they 
onsider the plant asbeing split into a number of zones ea
h representing di�erent parts of the plant. Typi
ally,three zones are used: A loading zone (the leaf), a translo
ation zone (the stem), andan unloading zone (the root) as sket
hed in Fig. 3.4. In the loading zone sugar is �rst
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Figure 3.4: Sket
h of a zone model for translo
ation in the phloem. In zone models, wethink of the plant as being split into a number of zones representing di�erent parts of theplant. In this 
ase 3 zones are used: A loading zone (the leaf, 0 < x < x1), a translo
ationzone (the stem, x1 < x < x2), and an unloading zone (the root, x2 < x < x3). Inthe loading zone sugar is �rst se
reted into the phloem tube. Driven by the osmoti
allygenerated �ow, it then enters the translo
ation zone where no transport of sugar a
rossthe membrane takes pla
e. Finally, it rea
hes the unloading zone where it is removed fromthe phloem. See also Fig. 1.1, p. 2. Adapted from [29℄, Fig. 1.se
reted into the phloem tube by a loading me
hanism. Pushed forward by the osmoti
allygenerated �ow, it then enters the translo
ation zone where no transport of sugar a
rossthe membrane takes pla
e. Finally, it rea
hes the unloading zone where it is removed fromthe phloem. Between the di�erent zones boundary 
onditions requiring 
ontinuity of therelevant physi
al quantities: velo
ity, 
on
entration and pressure et
. are imposed.In the literature, the translo
ation zone is always represented by a semipermeable mem-brane tube 
overing, say, the interval x1 ≤ x ≤ x2 as shown in Fig. 3.4. The mathemati
alrepresentation of the loading and unloading zones are found in two fundamentally di�er-ent forms. The �rst, and most 
ommon, introdu
ed by Christy and Ferrier [13℄, uses aloading zone 
overing the interval 0 ≤ x ≤ x1 an and unloading zone 
overing the interval
x2 ≤ x ≤ x3 as shown in Fig. 3.4. The length of the loading and unloading zones areusually equal and at x = 0 and x = x3, the velo
ity is zero In ea
h of the zones the loadingfun
tion υ is 
hosen appropriately among a number of di�erent 
andidates (see Se
. B.2.1 ,p. 121 for examples). The se
ond formulation, used by e.g. Pi
kard and Abraham-Shrauner[61℄ and Thompson and Holbrook [80℄, uses point sour
es/sinks lo
ated at the entran
e(x = x1) and exit (x = x2) of the translo
ation zone. At these points, the inje
tion rate ofthe 
on
entration c and the velo
ity u are spe
i�ed.
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Figure 3.5: Chara
teristi
s properties of the velo
ity u and 
on
entration c derived fromnumeri
al solution of zone models. (a) Velo
ity u (solid line) plotted as a fun
tion of axialposition x. The 
hara
teristi
 average translo
ation velo
ity in the translo
ation zone ū isindi
ated by the dashed line. (b) Con
entration c (solid line) plotted as a fun
tion of axialposition x. The 
on
entrations in the loading zone c∗, at the end of the translo
ation zone
c∗2 and at the end of the unloading zone c∗3 are indi
ated by dashed lines. See details inSe
. 3.7.2.3.7.2 Chara
teristi
s properties of zone modelsHaving dis
ussed the di�erent mathemati
al models used to des
ribe phloem transport isuseful to step ba
k and 
onsider a few qualitative properties of the solutions that emergefrom these models. Due to the 
omplexity of the equations of motion given in Eqns. (3.80)-(3.81) 
oupled with the loading fun
tion υ, these are typi
ally solved using numeri
almethods in steady state (i.e. ∂tc = 0) [79℄. Largely independent of the 
hoi
e of loadingfun
tion υ, the 
on
entration c follows the pattern shown in Fig. 3.5(b). In the loading zone
c is nearly 
onstant at a level, say, c = c∗. In the translo
ation zone, the 
on
entration islowered as we move along the x-axis. This happens be
ause the sugar solution is 
ontinuallydiluted by the in�ux of water a
ross the membrane due to osmosis. In the unloading zonethe 
on
entration de
ays from an initial level c∗2, determined by the �ow in the translo
ationzone, to a level c∗3 mu
h smaller than both c∗2 and c∗ at the end of the unloading zone.The fun
tional form of the de
ay depends on the dynami
s of the �ow problem, but inmany 
ases it approximately linear [84, 70, 79℄. In the loading and unloading zones, we
an therefore approximate the 
on
entration by

c(x) ≃
{

c∗ in the loading zone (0 ≤ x ≤ x1),
c∗2

(

1− x−x2
x3−x2

) in the unloading zone (x2 ≤ x ≤ x3). (3.82)



34 Fluid me
hani
s of osmoti
ally driven �owsThe velo
ity follows the pattern shown in Fig. 3.5(a). In the loading zone, it rapidlyin
reases due to the osmoti
 in�ux a
ross the 
ell surfa
e in the leaf. As we move alongthe translo
ation zone the velo
ity 
ontinues to in
rease as more and more water enterthe translo
ation stream, although at a mu
h slower pa
e than in the loading zone. Wedenote the 
hara
teristi
 velo
ity in the translo
ation zone ū. In the unloading zone, watergradually exits the 
ells before the velo
ity rea
hes zero at the end of the unloading zone.From numeri
al solutions su
h as the one sket
hed in Fig. 3.5, quantitative informationabout the translo
ation pro
ess for a spe
i�
 set of parameters (e.g. tube radius a, vis
osity
η, loading fun
tion υ et
.) 
an be derived. One 
an, e.g., dedu
e how fast and how mu
hsugar 
an be transported from one end of the plant to the other for a spe
i�
 set ofparameters. Due to the very large number of parameters in the problem, however, one
annot in general determine the dependen
e of, say, the mean translo
ation speed, on theparameters in the without performing a very large set of simulations.In Chapter 5 we take advantage of the simple form of the 
on
entration pro�le givenin Eq. 3.82 to determine analyti
al solutions that provide a thorough understanding of thedependen
e of the �ow pattern on the parameters in the problem.3.7.3 Common assumptions used in mathemati
al phloem transportmodelsIn the previous se
tions, we have presented the zone model framework in whi
h Horwitz'sequation of motion (Eqns. (3.80)-(3.81)) are applied to translo
ation pro
esses in plants.It is a widely debated issue whether this representation is at all meaningful in the sensethat it provides an a

urate des
ription of the pro
esses that o

ur in plants. In a re
entreview paper, Knoblau
h and Peters [36℄ writes thatWhile there is no shortage of mathemati
al formalizations of various aspe
tsof phloem transport. . . , the question remains whether any su
h theoreti
aldes
ription mirrors physi
al reality in a biologi
ally meaningful way 
an onlybe de
ided empiri
ally. ([36℄, p. 1442)At this point it is therefore useful to 
onsider the assumptions ne
essary for the Horwitzzone model framework to be an a

urate representation of the pro
esses that o

ur inplant. A few of the most widely used assumptions are listed below (in itali
) along with adis
ussion of their appli
ability.1. The membrane is permeable to water but perfe
tly impermeable to sugar. The as-sumption that the membrane is ideal is generally regarded as valid [51, 73℄, althoughallowing for a sugar-permeable membrane does a�e
t the �ow, see Appendix C. As wewill dis
uss in Chapter 8, the 
on
entration and �ow patterns 
lose to the membraneare, even in the impermeable 
ase, very 
ompli
ated. See e.g. [15℄.2. The membrane is rigid. The assumption that the membrane is rigid implies that theradius a of the 
ells are 
onstant and thus independent of the intra
ellular pressure

p. Thompson and Holbrook investigated the e�e
t of in
luding this by allowing the
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ation of the equations of motion to translo
ation pro
esses in plants 35radius to vary as a ∝ a0 exp(p − p0). They found that it was of � little biologi
alsigni�
an
e� ([79℄, p. 435).3. The osmoti
 pressure is a linear fun
tion of the 
on
entration. At low 
on
entrations,the osmoti
 pressure of su
rose is proportional to the 
on
entration [47℄. At higher
on
entrations, one must take into a

ount the non-linearity of the osmoti
 pressure.At c = 1 M, this 
orresponds to a ∼ 10% in
rease in the osmoti
 pressure [79℄.4. The vis
osity of the liquid does not depend on the sugar 
on
entration. At low 
on
en-trations, the vis
osity of the liquid is approximately linear in the sugar 
on
entrationand the typi
al vis
osity is ∼ 2 × 10−3 Pas. At higher 
on
entration, the vis
osityin
reases exponentially, signi�
antly in
reasing the hydrauli
 resistan
e [7, 79℄.5. The volume of the sugar dissolved in water is negligible. The partial molar volumeof su
rose dissolved in water is 2.2× 10−4 m3/mol. A 1 M aqueous solution will thushave a volume ∼ 20% larger than if the volume of the su
rose were negle
ted. Notin
luding this e�e
t leads to an underestimation of the �ow velo
ity [79℄.6. The velo
ity �eld, the 
on
entration, and the pressure are essentially one-dimensionaland 
an ea
h be modelled using a single 
omponent. These assumptions were dis-
ussed in Se
. 3.5, and are widely regarded as being valid [79℄.7. There is no intera
tion between the phloem and the xylem. As dis
ussed in Se
. 2.3.2,experiments have shown that in many spe
ies the intera
tion between the �ow in thephloem and in the xylem does not appear to be signi�
ant [89℄. Several theoreti
alworkers, however, have 
laimed otherwise. See e.g. [24℄.8. The 
on
entration of sugar in the tissue surrounding the phloem does not dependon the axial position This is equivalent to stating that the 
on
entration c2 in thereservoir surrounding the phloem (Fig. 3.1) is 
onstant. Generally, the argument forthe validity of this assumption is that the sugar 
on
entration in the xylem is verylow [38℄. Other adja
ent 
ells may, however, 
ontain signi�
ant amounts of sugar[73℄ something whi
h may also lead to a 
hange in the pressure inside the sieve tubes[82℄.9. The presen
e of sieve plates does not a�e
t the �ow. Sieve plates are perforatedstru
tures that separate adja
ent phloem sieve tube elements. Sin
e only ∼ 50% oftheir area is open they are bound to impose drag on the �ow. It has been spe
ulatedthat the drag is in fa
t very large [80℄, but a thorough analysis of the �uid me
hani
sof this problem has not been undertaken so far. In Chapter 4 we study this problemin detail.10. The phloem 
an be modeled as a 
olle
tion of individual phloem tubes spanning theentire length of the plant. There is no intera
tion between two parallel phloem tubes.This assumption is almost 
ertainly not valid, sin
e it is well known that �ow be-tween adja
ent sieve tube elements 
an o

ur [73℄. On the other hand, the di�
ulty



36 Fluid me
hani
s of osmoti
ally driven �owsin evaluating the quantitative importan
e of this assumption is that the networkstru
ture of the phloem is still largely unknown [36℄.It is far from obvious that the assumptions listed above will not have a signi�
antin�uen
e on the appli
ability of the results predi
ted by the models. Some attempts havebeen made to resolve this by studying models that take some of the e�e
ts des
ribed aboveinto a

ount, see e.g. [13, 84, 79, 24℄. It is, however, still very di�
ult to asses whi
hassumptions have the greatest in�uen
e on the �ow.To resolve this, one must take one small step at a time. In the following 
hapter,we thus investigate the e�e
t of the presen
e of sieve plates on the �ow. We do this notbe
ause it is ne
essarily the most important assumption, but be
ause it amenable to asimple physi
al analysis.We end by noting that all the above mentioned assumptions pose questions for futureresear
h. Among them, the author �nds that assumption 10 is of parti
ular interest sin
ethe network stru
ture of the phloem and its in�uen
e on the �ow has not yet been fullyunderstood [36℄.3.8 Con
lusionIn this 
hapter, we have studied the �uid me
hani
s of osmoti
ally driven �ows. We haveseen that the motion of a solution of water and sugar moving inside the a 
ylindri
al tubewith semipermeable walls 
an be des
ribed by two non-dimensional partial di�erentialequations for the average axial velo
ity U and 
on
entration C:
∂2
XU = ∂xC +Mü U, (3.83)

∂TC + ∂X(CU) = Υ. (3.84)The equations depends on a single non-dimensional number MüMü =
16Lpηl

2

a3
, (3.85)whi
h 
hara
terizes the relative importan
e of hydrauli
 resistan
e along the tube to resis-tan
e a
ross the membrane. These equations were derived dire
tly from an approximatedanalyti
al solution of the Navier-Stokes equation. The validity of this solution dependson the relative size of the non-dimensional groups H1, H2, H3, H4 and H5 as dis
ussed inSe
. 3.5.1 and 3.5.2.We have further dis
ussed how the equations of motion for osmoti
ally driven �ows areapplied to phloem transport in the literature. We have presented some of the 
hara
ter-isti
 results that 
ome out of these models, and have found that many of these models,although quantitatively di�erent, display many of the same qualitative features. Of par-ti
ular importan
e is the realization that most models yields 
on
entration and velo
itypro�les similar to those shown in Fig. 3.4. This permits us to des
ribe the 
on
entration ina very simple manner in the loading and unloading zones, 
f. Eq. (3.82), thus simplifyingthe mathemati
al treatment of the equations of motion signi�
antly.
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lusion 37Further, we have dis
ussed some of the ne
essary assumptions for the equations ofmotion to be a relevant physi
al representation of the pro
esses that o

ur in plants. Thequalitative and quantitative e�e
ts of many of these on the translo
ation pro
ess are stillunresolved, and pose signi�
ant questions for future resear
h in the �eld.
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Chapter 4The e�e
t of sieve plates on thehydrauli
 resistan
e of the phloemtranslo
ation pathwayIn Chapter 3 we derived one-dimensional equations of motion for osmoti
ally driven �owsin 
ylindri
al semipermeable tubes. By looking at Fig. 2.2(b)-(d) on page 10 it qui
klybe
omes apparent that the phloem sieve tube elements put together do not simply 
onsti-tute one, long, 
ontinuous 
ylindri
al tube. Rather, it 
onsists of individual 
ells separatedby sieve plates the presen
e of whi
h may 
ontribute signi�
antly to the overall hydrauli
resistan
e of the translo
ation pathwayNo proper �uid me
hani
al analysis of this problem has been published so far, in partdue to the la
k of reliable anatomi
al data on the stru
ture of the sieve plates. Su
h datahas been made available re
ently by Mullendore et al. [48℄ and the author is in great depthto Daniel Mullendore and Mi
hale Knoblau
h (Washington State University) for makingthese available to the present study. In this 
hapter we thus 
onsider the e�e
t of sieveplates on the �ow inside the phloem sieve tubes. We show that the presen
e of the platesimpose a signi�
ant amount of additional drag on the liquid.The analysis of the hydrauli
 resistan
e of sieve plates presented in this 
hapter is dueto the author and 
onstitutes work in progress. A manus
ript written in 
ollaboration withDaniel Mullendore, Mi
hael Knoblau
h, Noel Mi
hele Holbrook, Tomas Bohr and HenrikBruus is 
urrently under preparation for submission to a peer-reviewed journal.4.1 Introdu
tion to sieve platesIn the previous 
hapter, we saw that the equations of motion for the �ow of water andsugar through the phloem depends on the non-dimensional Mün
h number MüMü =
Axial �ow resistan
eMembrane �ow resistan
e =

R
RM

=
16Lpηl

2

a3
, (4.1)39
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Figure 4.1: Sket
h of the phloem sieve tube element geometry. (a) Adja
ent sieve tubeelements of length ℓ and radius a are separated by thin sieve plates of length ℓp perforatedby small holes with radius ap known as sieve pores. (b) End view of a sieve plate. SeeFig. 4.2 for examples of sieve plate stru
tures found in plants.where R is the axial and RM is the membrane hydrauli
 resistan
e of the phloem respe
-tively.As sket
hed in Fig. 4.1, adja
ent phloem 
ells are separated by thin sieve plates perfo-rated by small holes known as sieve pores. The plates are believed to impose a signi�
antamount of drag [80℄ thus leading to an in
rease in R and Mü. Using a novel visualizationmethod Mullendore et al. [48℄ re
ently investigated the detailed stru
ture of 
ell walls andsieve plates using s
anning ele
tron mi
ros
opy as shown in Fig. 4.2. Using their data, weare able to quantify this in
rease in resistan
e.4.2 Chara
teristi
 properties of the �ow inside sieve tube el-ementsThe data given in Table 4.1, 
olle
ted by Mullendore et al. [48℄ and Thompson andHolbrook [80℄, shows that the sieve tube elements has a radius a of about 10 µm and alength ℓ of 0.1− 1 mm. Ea
h sieve plate has 50− 400 approximately 
ir
ular pores evenlydistributed to 
over ∼ 50% of the plate area. The mean radius of the pores āp vary from
0.1−2.5 µm and the radii of the individual pores are normally distributed with a standarddeviation σp of about 0.25āp. The thi
kness of the plate ℓp is 
omparable in size to theradius of the pores.To 
hara
terize the �ow inside the sieve tube element, we 
onsider �rst the situationin the sieve tube lumen, i.e. far away from the sieve plate. The lumen Reynolds number
Rel is given by

Rel =
ρula

η
, (4.2)where ul is the 
hara
teristi
 �ow velo
ity inside the 
ell lumen. From Table 2.1, p. 11, we�nd that ul ≃ 2.8 × 10−4 m/s. With a = 10−5 m, η = 2 × 10−3 and ρ = 103 kg/m3 wehave that

Rel = 1.4 × 10−3. (4.3)
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Figure 4.2: S
anning ele
tron mi
ros
ope (SEM) images of sieve plates. (a) Cur
ubitamaxima (Squash). (b) Phyllosta
hys nuda (Bamboo). (
) Phaseolus vulgaris (Green bean).(d) Ri
inus 
ommunis (Castor bean). On average, about 50% of the sieve plate area is
overed by open pores. SEM images 
ourtesy of M. Knoblau
h and D. L. Mullendore [48℄.Reprodu
ed with permission.



42 Hydrauli
 resistan
e of sieve platesTable 4.1: Sieve tube element data from [48℄(1-5) and [80℄(6-19). Sieve tube radius a, sievetube element length ℓ average pore radius āp, pore thi
kness ℓp, and number of pores perplate Np.No. Spe
ies a [µm] ℓ [µm] āp [µm] ℓp [µm] Np1 Cu
urbita maxima 25.65 ± 2.97 341± 77 2.54± 0.86 1.27 ± 0.29 54.8 ± 11.92 Phaseolus vulgaris 10.13 ± 1.13 140± 38 0.73± 0.24 0.43 ± 0.11 95.4 ± 31.73 Solanum ly
opersi
um 10.70 ± 1.40 130± 90 0.61± 0.15 0.52 ± 0.12 121.3 ± 30.04 Ri
inus 
ommunis 16.22 ± 1.60 255± 122 0.52± 0.14 0.24 ± 0.05 371.9 ± 79.05 Phyllosta
hys nuda 11.60 ± 1.00 1052± 244 0.61± 0.13 0.39 ± 0.10 105.6 ± 12.76 Pinus strobus 10.9 1580 0.35 2.5 7207 Festu
a arundina
ea 3 100 0.3 0.5 338 Beta vulgaris 5 200 0.1 0.4 12509 Gly
ine max (petiole) 4.2 125 0.35 1.1 5810 Gly
ine max (stem) 6.6 156 0.6 1.2 8111 Gly
ine max (root) 5.1 137 0.5 1.0 6012 Gossypium barbadense 11 210 0.5 1.0 16013 Sabal palmetto 18 700 0.95 0.5 28714 Yu

a �a

ida 10 460 0.26 0.4 174615 Robinia pseudoa
a
ia 10 180 1.25 0.5 2116 Tilia ameri
ana 15 350 0.6 0.8 62517 Ulmus ameri
ana 18 190 2.0 1.0 5018 Cu
urbita melopepo 40 250 2.4 0.5 12019 Vitis vinifera 18 500 0.7 3.5 661For the �ow 
lose to a sieve plate we use the plate Reynolds number Rep

Rep =
ρupap
η

. (4.4)Here, ap is the radius of the pores and up is the �ow velo
ity inside the pores. If the pores
over 50% of the plate area, up is twi
e as large as the lumen velo
ity, i.e. up = 2ul. Ifthe pore radius ap is, say, 10 times smaller than the 
ell radius a, we �nd that the poreReynolds number Rep is
Rep = 2.8 × 10−4. (4.5)Both Reynolds numbers Rel and Rep are su�
iently small that we may treat the �ow insidethe 
ells as Stokes �ow. This 
orresponds to ignoring the left-hand side of the Navier-StokesEqns. (3.14)-(3.15), an approximation whi
h simpli�es the problem 
onsiderably.4.2.1 Previous work on Stokes �ow through small poresA large number of workers have studied Stokes �ow through small pores both experimen-tally and theoreti
ally. Using an elegant experiment, Johansen [34℄ found that for Rep ≤ 30the �ow 
lose to a pore is left-right symmetri
 and laminar1. He also found that the lengthof the region upstream a�e
ted by the presen
e of the pore is very short, and roughly equalto the pore diameter 2ap.1In fa
t, it remains laminar until Rep ≃ 103 but symmetry is broken above Rep = 30.
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 resistan
e of sieve tubes 43Theoreti
ally, low Reynolds number �ow through pores have been studied extensivelyfor very short pores [66, 65, 20, 33, 86℄ and for pores of �nite length [14℄. Most relevantto the present dis
ussion is the work of Dagan et al. who showed in [14℄ that to within ana

ura
y of 1% the resistan
e of a single pore Rp,1 of �nite length ℓp in an in�nite planeis given by
Rp,1 =

8ηℓp
πa4p

+
3η

a3p
. (4.6)The �rst term on the right-hand side is the well-know formula for the resistan
e of a
ylindri
al pipe. The se
ond term represents the resistan
e of a pore in an in�nitely thinplate and was �rst derived for a 
ir
ular pore by Sampson [66℄ and later generalized toother shapes by Ros
oe [65℄ and Hasimoto [20℄.In plants, the sieve plate and pores are embedded in a larger 
ir
ular tube. The e�e
tof the surrounding pipe walls on the resistan
e of the pore was studied by Jeong [33℄and shown to be negligible as long as ap

a ≤ 0.3. The e�e
t of neighboring pores wasinvestigated semi-analyti
ally by Wang [86℄ who showed that the resistan
e di�ered onlyby a few per
ent from that found in Eq. (4.6) for 
overing fra
tions less than ≤ 50%.4.2.2 Numeri
al simulation of the �ow 
lose to a sieve platesTo test the appli
ability of the results found in the literature we have 
ondu
ted numeri
alsimulations of the �ow through sieve plates. Using 
omsol 3.5a, a 
ommer
ial 
omputa-tional �uid dynami
s software pa
kage, we have 
al
ulated numeri
al approximations tothe �ow in the Stokes �ow approximation using a 3-D version of the �nite-element solverused in [27℄, see Chapter 8. The pro
edure for importing the a
tual sieve plate stru
turesinto the simulation workspa
e is shown in Fig. 4.3. After a 
areful meshing pro
edure anda thorough 
onvergen
e analysis we �nd �ow patterns similar to those shown in Fig. 4.4.An important qualitative feature of the �ow is that it is relatively undisturbed until a veryshort distan
e from the plate. This distan
e is of the order 2āp, the mean diameter of thepores, in good agreement with the results found by Johansen [34℄. Close to the plate the�ow is disturbed by the presen
e of the plate and the �uid must 
hange dire
tion in orderto pass through the pores. This phenomena gives rise to the Sampson-term 3η
a3p

in Eq. (4.6).4.3 Hydrauli
 resistan
e of sieve tubesWe shall now pro
eed to 
al
ulate the hydrauli
 resistan
e of a single sieve tube elementwhi
h 
onsists of two parts: A 
ell lumen and a sieve plate as shown in Fig. 4.1. When
al
ulating the hydrauli
 resistan
e of the tube Rt, we thus 
onsider two resistan
es a
tingin series
Rt = Rl +Rp, (4.7)where Rl is the resistan
e of the 
ell lumen and Rp is the resistan
e of the sieve plate.
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Figure 4.3: Pro
edure for preparing numeri
al simulations of �ow through sieve plates. In(a), a SEM image of a sieve plate found in Cur
ubita maxima is shown. From [48℄, s
alebar 20µm. In (b), a front view of the extra
ted pore stru
ture is shown. In (
), the platehas been pla
e inside a 3-D 
ylindri
al tube, ready for use in 
omsol 3.5a. The results ofthe simulation 
an be found in Fig. 4.4.4.3.1 Hydrauli
 resistan
e of the 
ell lumenFor a 
ylindri
al 
ell of length ℓ and radius r, the hydrauli
 resistan
e is given by [10℄
Rl =

8ηℓ

πr4
. (4.8)4.3.2 Hydrauli
 resistan
e of the sieve plateIn the literature, several di�erent methods for 
al
ulating the resistan
e of a sieve plateshave been proposed [80, 48℄. Generally, the idea is to 
onsider the plate as a 
olle
tion ofindividual pores a
ting in parallel. This gives a hydrauli
 resistan
e of

Rp =





Np
∑

i=1

R−1
P,i





−1

, (4.9)where RP,i is the hydrauli
 resistan
e of ea
h individual pore. Thompson and Holbrook[80℄ suggests that one uses
RT

p,i =
8ηℓp
πā4p

+
3η

ā3p
. (4.10)This takes into a

ount both terms found by Dagan et al. in Eq. (4.6) but uses themean value of the pore radius āp rather than taking the sum over the individual pores, anapproa
h used, presumably be
ause only the mean value of pore radii was not known atthe time.Having measured the sizes of 104 individual pores, the summation approa
h was usedre
ently by Mullendore [48℄ who suggested that the resistan
e of ea
h individual pore RP,i
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(
) x = −0.36 (d) x = −0.13

(e) x = −0.07 (f) x = 0.025

Figure 4.4: Numeri
al simulation of �ow 
lose to a Cur
ubita maxima sieve plate. Theliquid is moving from left to right. (a)-(f) Contour plot of the magnitude of the �owvelo
ity (red fast, blue slow in arbitrary units) at the positions indi
ated above the plots.The pores start at x = 0 and have a typi
al diameter of 0.1 in these units. The �ow pro�lein (a) and (b) is the well known paraboli
 pro�le found in pressure driven pipe �ows. Closeto the sieve plate (
)-(f), the �ow is disturbed by the presen
e of the plate and the �uidmust 
hange dire
tion in order to pass through the pores (f).
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ould be written as
RM

p,i =
8ηℓp
πa4p,i

(4.11)su
h that the sum in Eq. (4.9) is taken over the individual pores of di�ering radii. Comparedto Eq. (4.6) this, however, only takes into a

ount the �rst term in Dagans formula.Taking both e�e
ts into a

ount, we propose that a more a

urate way of 
al
ulating
RP,i is to use

Rp,i =
8ηℓp
πa4p,i

+
3η

a3p,i
. (4.12)To get an idea of the quantitative di�eren
e between Eqns. (4.10), (4.11) and (4.12) we
onsider the data given in Appendix D. Here the radii of the pores from the Cur
ubitamaxima sieve plate shown in Fig. 4.2(a) are given. We �nd that

RT
p = 6.14 × 1012 Pa s/m3, (4.13)

RM
p = 7.49 × 1011 Pa s/m3, (4.14)
Rp = 4.21 × 1012 Pa s/m3, (4.15)
al
ulated with η = 2× 10−3 Pa s. We observe that both RT

p and RM
p di�er signi�
antlyfrom Rp, being that they are 1.5 times larger and 5 times smaller than Rp respe
tively.4.3.3 Hydrauli
 resistan
e of the sieve tube systemWith the results derived in Eqns. (4.8) and (4.12) we have for the total tube resistan
e Rtthat

Rt =
8ηℓ

πa4
+





Np
∑

i=1

(

8ηℓp
πa4p,i

+
3η

a3p,i

)−1




−1

. (4.16)An important observation is that with the knowledge that the pore radii are normallydistributed with mean āp and standard deviation σp we 
an approximated this by
Rt ≃

8ηl

πa4
+

(

Np

∫ ∞

0
p(ap)

(

8ηlp
πa4p

+
3η

a3p

)−1

dap

)−1

, (4.17)where p(ap) is normal probability density fun
tion
p(ap) =

1
√

2πσ2
p

exp

(

−(āp − ap)
2

2σ2
p

)

. (4.18)For the data given in Appendix D, the expression in Eq. (4.17) gives Rp = 4.12 ×
1012 Pa s/m3, very 
lose to the value in Eq. (4.15).
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e 474.4 On the relationship between lumen and plate resistan
eHaving established Eq. (4.17) as an approximate expression for the resistan
e of the sievetube, we 
an now apply it to the data in Table 4.1. To best interpret the results, we
al
ulate the lumen and plate parts separately and 
ompare their magnitudes. In Fig. 4.5,the sieve plate resistan
e Rp is plotted as a fun
tion of the lumen resistan
e Rl. Bothwere 
al
ulated from Eq. (4.17) using data from table 4.1 and under the assumption that
η = 2× 10−3 Pa s. For data points 6�19 we assume that σp = 0.25āp.By looking at the plot, we observe what appears to be a linear relation between thetwo, i.e. Rp ∝ Rl. A least squares regression [75℄ gives

RP = (2.54 ± 0.42)RL, (4.19)with a 
orrelation 
oe�
ient of rc = 0.78While the trend of the plot in Fig. 4.5 is 
lear, it isobvious that many e�e
ts are in�uen
ing the relation between plate and lumen resistan
e.As an example it is interesting to 
onsider, say, plant no. 13 whi
h is Sabal palmetto, apalm tree that lies some distan
e from the RP = 2.54RL line. In this plant the sieve tubesare found inside the stem, rather than right under the bark whi
h is usually the 
ase intrees, and are thus me
hani
ally prote
ted against inse
ts and other predators [22℄. Thismay in part explain why it has su
h a relatively low plate resistan
e.One may, however, spe
ulate that Eq. (4.19) points in the dire
tion of the existen
e ofa general allometri
 s
aling law for the sieve plate resistan
e. Su
h a law is known to existfor the xylem, where stru
tures similar to sieve plates also separate adja
ent vas
ular 
ells.Sperry et al. found that RP ≃ RL [71℄. The reasoning behind this is, in simple terms thatthe relation RP ≃ RL minimizes the hydrauli
 resistan
e of the xylem. At present, thistype of argument does not seem to be appli
able to the phloem.4.4.1 E�e
tive hydrauli
 resistan
eAs a 
onsequen
e of Eq. (4.19) we 
on
lude that the hydrauli
 resistan
e of the phloemtranslo
ation pathway is signi�
antly in
reased by the presen
e of the sieve plates. Onaverage, the resistan
e is 3.5 times higher than the lumen resistan
e.
Rt = RL +RP = 3.5RL = 3.5

8ηℓ

πa4
. (4.20)We 
an thus think of the vis
osity as being 3.5 times higher due to the presen
e of thesieve plates. Writing ηeff = 3.5η we �nd that

Rt =
8ηeffℓ

πa4
. (4.21)This in
rease in e�e
tive vis
osity means that the Mün
h number given in Eq. (4.1) ise�e
tively 3.5 times larger sin
e it should in
lude the e�e
t of the added vis
osity. Fromnow on we thus write Mü =

16LpηeffL
2

a3
. (4.22)
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Figure 4.5: Comparative analysis of end wall resistivity in phloem sieve tubes. The sieveplate resistan
e RP is plotted as a fun
tion of the lumen resistan
e RL 
al
ulated fromEq. (4.17) using the data in Table 4.1. For data points 6−19, we assume that σp = 0.25āp.A least squares regression gives RP = (2.54 ± 0.42)RL with rc = 0.78.



Con
lusion 494.5 Con
lusionI this 
hapter, we have studied the e�e
t of sieve plates on the hydrauli
 resistan
e of thephloem translo
ation pathway. We have derived an analyti
al expression for the resistan
ebased on fa
t that the �ow o

urs at low Reynolds numbers and that the pore radii arenormally distributed.Using published data on the stru
ture of sieve plates, we have found an approximatelylinear relationship between the plate Rp and lumen Rl resistan
e: RP = (2.54± 0.42)RL.This implies that the presen
e of sieve plates in
reases the hydrauli
 resistan
e of the entiresieve tube element by a fa
tor of ∼ 3.5. In the 
ontext of the one-dimensional equationsof motion derived in Chap. 3 we in
lude this e�e
t by introdu
ing an e�e
tive vis
osity
ηeff = 3.5η into the Mün
h number 
f. Eq. (4.22).
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Chapter 5Mathemati
al analysis of theequations of motionIn this 
hapter we study analyti
al and numeri
al solutions to the steady-state one-dimensional equations of motion derived in Chapter 3. The equations are analyzed ina zone model using �rst a simple hydrauli
 resistor model and se
ond a full analyti
alsolution in the limits Mü ≪ 1 and Mü ≫ 1. The dependen
e of the average axialtranslo
ation velo
ity Ū on the parameters in the problem is determined in the form of anapproximate analyti
al expression for the full range of Mü numbers.The solutions to the equations of motion was derived by the author in 
ollaborationwith Tomas Bohr and Henrik Bruus. A 
ondensed version of the derivation was publishedin [29℄. Additional te
hni
al details of the analyti
al solution pro
edure 
an be found inAppendix A.A detailed treatment of time dependent osmoti
 �ows was published in [30℄ (see Ap-pendix E) and will not be 
overed in the main text.5.1 The 3�zone model5.1.1 Formulation of the 3�zone modelIn this 
hapter we think of the plant as being split into three zones as shown in Fig. 3.4,p. 32. Spe
i�
ally we use a loading zone (zone 1, 0 < x < x1) of length l1, a translo
ationzone (zone 2, x1 < x < x2) of length l2 and an unloading zone (zone 3, x2 < x < x3) oflength l3. We use the boundary 
onditions u(0) = u(x3) = 0 and require that the velo
ityand its �rst derivative with respe
t to x is 
ontinuous a
ross all internal boundaries. ByEq. (3.77), p. 31, this assumption implies that the pressure p and 
on
entration c is also
ontinuous a
ross the internal boundaries. Further, we assume that the 
on
entration c
an be written as
c(x) ≃

{

c∗ in zone 1 (0 < x < x1),
c∗2

(

1− x−x2
x3−x2

) in zone 3 (x2 < x < x3), (5.1)51



52 Mathemati
al analysis of the equations of motionwhere c∗ is the 
hara
teristi
 
on
entration found in the loading zone and c∗2 is the 
on-
entration at the entran
e to the unloading zone. The equations of motion were derivedin Chapter 3 and are give by
∂2
xu =

2Lp

a

(

RT∂xc+
8ηeff
a2

u

)

, (5.2)
∂x(cu) = υ (5.3)The loading υ rate is not expli
itly spe
i�ed, but assumed to lead to 
on
entration pro�lesof the form given in Eq. (5.1). Note that we now use the e�e
tive vis
osity ηeff introdu
edin Chapter 4 to take the e�e
t of sieve plates into a

ount.To be able to 
ompare the results of this model to velo
ity measurements made onplants we de�ne the average translo
ation velo
ity ū to be the mean value of the velo
ityin the translo
ation zone as

ū =
1

x2 − x1

∫ x2

x1

u(x) dx. (5.4)The goal of the following mathemati
al analysis will be to determine this velo
ity as afun
tion of the parameters in the problem.5.1.2 A simpli�ed mathemati
al treatmentBefore we move on to a rigorous mathemati
al treatment of the model, we will try todes
ribed the �ow in a simple manner, so as to get an idea of what kind of results weshould expe
t from the full model. Let us therefore 
onsider the phloem translo
ationpathway as a series of hydrauli
 resistan
es (see e.g. [10℄) that the water has to over
omein order to move from sour
e to sink. The three resistan
es are
R1 =

1

2πal1Lp
+

8ηeff l1
πa4

≃ 1

2πal1Lp
, (5.5)

R2 =
8ηeff l2
πa4

, (5.6)
R3 =

1

2πal3Lp
+

8ηeff l3
πa4

≃ 1

2πal3Lp
. (5.7)Here, we approximate the resistan
e in the loading and unloading zones R1 and R3 bythe hydrauli
 resistan
e asso
iated with moving a
ross the membrane and disregard theresistan
e of the �ow along the tube1. If we assume for simpli
ity that l1 = l3, the totalresistan
e is simply the sum of the three resistan
es (5.5)�(5.7)

R = R1 +R2 +R3 =
1

πal1Lp
+

8ηeff l2
πa4

(5.8)1The resistan
e along the (un)loading zone is typi
ally two orders of magnitude smaller than the resis-tan
e a
ross the membrane



The 3�zone model 53The �ow is driven by the osmoti
 pressure RTc∗ so the average �ow velo
ity ū 
an bewritten as
ū =

1

πa2
RTc∗

R (5.9)
=

1

πa2

(

1

πal1Lp
+

8ηeff l2
πa4

)−1

RTc∗ (5.10)
=

(

a2l1Lp

a3 + 8ηeffLpl1l2

)

RTc∗ (5.11)As a qui
k 
he
k, we 
an 
ompare this velo
ity to the one found in Eq. (2.7) (p. 14) whi
hwas 
al
ulated without taking the vis
ous resistan
e (Eq. 5.6) into a

ount. There, wefound a 
hara
teristi
 osmoti
 velo
ity of 10−2 m/s, two orders of magnitude larger thanthe observed velo
ity of 2.8× 10−4 m/s. Using the parameters
l1 = 0.1 m, l2 = 1 m, a = 10−5 m, Lp = 5× 10−14 m/(s Pa), and RTc∗ = 1 MPa,we �nd from Eq. (5.11) that

ū = 3.9 × 10−4 m/s, (5.12)in good agreement with the experiments. In non-dimensional units (see Se
. 3.5, p. 24)with the axial length s
ale l 
hosen to be the length of the translo
ation zone i.e. l = l2we �nd that the average axial velo
ity Ū 
an be written as
Ū =

(

1
2
L1

+Mü ) , (5.13)su
h that for large values of Mü
Ū ≃ 1Mü , (5.14)while for small values of Mü,
Ū ≃ L1

2
. (5.15)5.1.3 Non-dimensional formulation of the equations of motionTo simplify the mathemati
al treatment of the full model, we use non-dimensional variables.As outlined above, we employ the s
aling used in Se
. 3.5 with the axial length s
ale

L 
hosen to be the length of the translo
ation zone l = l2. In these units we have aloading zone (zone 1, 0 < X < X1) of length L1 = l1/l2, a translo
ation zone (zone 2,
X1 < X < X2) of length L2 = l2/l2 = 1 and an unloading zone (zone 3, X2 < X < X3) oflength L3 = l3/l2. Sin
e the equations of motion are di�erent in ea
h of the zones, we willuse subs
ripts. The velo
ity in the loading zone is denoted U1, in the translo
ation zone
U2 and in the unloading zone U3. Similar subs
ripts are used for the 
on
entration C.In steady state, the governing equation for the velo
ity U in all three zones is

∂2
XUi = ∂xCi +Mü Ui, (5.16)
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al analysis of the equations of motionwhere i = 1, 2, 3. The 
on
entration C is governed by
C1 = 1 (5.17)

∂x (U2C2) = 0 (5.18)
C3 = C2(X2)

(

1− X −X2

X3 −X2

)

. (5.19)The boundary 
onditions require 
ontinuity of the velo
ity U and its �rst derivative withrespe
t to X

U1(0) = 0, (5.20)
U2(X1) = U1(X1), (5.21)

∂XU2(X1) = ∂XU1(X1), (5.22)
U3(X2) = U2(X2), (5.23)

∂XU3(X2) = ∂XU2(X2), (5.24)
U3(X3) = 0. (5.25)The 
onservation equation (5.18) implies that for any two positions in the translo
ationzone interval Xa,Xb ∈ [X1,X2] we have that

U2(Xa)C2(Xa) = U2(Xb)C2(Xb). (5.26)In parti
ular, sin
e C2(X1) = C1(X1) = 1, we have that
U2(X2)C2(X2) = U2(X1). (5.27)This means that we 
an eliminate C from the equations of motion entirely and get

∂2
XU1 = Mü U1, (5.28)

∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (5.29)
∂2
XU3 = − U2(X1)

U2(X2)(X3 −X2)
+Mü U3, (5.30)To determine C upon solving this system of equations, we simply use Eqns. (5.17), (5.26)and (5.19). In non-dimensional units, the mean velo
ity in the translo
ation zone is

Ū =

∫ X2

X1

U2 dX, (5.31)sin
e X2 −X1 = 1.



Analyti
al solution of the 3�zone model 555.2 Analyti
al solution of the 3�zone modelA general, 
losed form solution of Eqns. (5.28)-(5.30) is not 
urrently available. It is,however, possible to solve the problem analyti
ally in the in the limits Mü ≪ 1 andMü ≫ 1. In the following, we will give a brief summary of the solutions whi
h dependon the Mün
h number Mü, the size of the loading zone L1 and the ratio ω = L3
L1
. Theproblem is solved for all ω, but with spe
ial emphasis on the 
ase ω = 1 
ommonly used inthe literature. Please refer to Appendix A for a thorough analysis the solution pro
edure.5.2.1 Solution for Mü ≪ 1In the limit Mü ≪ 1 the equations of motion are

∂2
XU1 = 0, (5.32)

∂2
XU2 = −U1(X1)

U2
2

∂XU2, (5.33)
∂2
XU3 = − U2(X1)

U2(X2)(X3 −X2)
. (5.34)We write the solution in domains 1 and 3 as

U1(X) = B1X +B2, (5.35)
U3(X) = −1

2

U2(X1)

U2(X2)

1

(X3 −X2)
(X −X3)

2 +B3(X −X3) +B4. (5.36)For U2, only the inverse fun
tion X(U2) is available expli
itly
X(U2) =

U1(X1)

B5

[

U2

U1(X1)
− 1

B5
log

(

1 + B5U2
U1(X1)

1 +B5

)]

+B6. (5.37)To ful�ll the boundary 
onditions we �nd that the 
onstants B1, B2, . . . , B6 are given by
B1 =

1

ω

(

1 + ω −
√
1 + 2ω

)

, (5.38)
B2 = 0, (5.39)
B3 =

1

ω

(

1−
√
1 + 2ω

)

, (5.40)
B4 = 0, (5.41)
B5 =

1

ω

(

1−
√
1 + 2ω

)

, (5.42)
B6 =

L1ω√
1 + 2ω − 1

, (5.43)and that U2(X2) = 1
2L1(1 − B1)ω. We 
ompare this analyti
al solution to numeri
alsolutions of the full equation system in Se
. 5.4.



56 Mathemati
al analysis of the equations of motionThe mean translo
ation velo
ity in the translo
ation zone Ū is
Ū =

1

2

(√
1 + 2ω − 1

)

L1 −
(

4 + 6ω − ω2 +
√
1 + 2ω

(

ω2 − 4− 2ω
)

8ω

)

L2
1. (5.44)In most 
ases the prefa
tor of se
ond order term (in L1) is very small. For ω = 1 we �ndthat

Ū =

√
3− 1

2
L1 −

9− 5
√
3

8
L2
1 ≃ 0.36L1 − 0.043L2

1. (5.45)It is often the 
ase in plants that L1 ≪ 1, so we 
an safely use
Ū ≃

√
3− 1

2
L1, (5.46)as an estimate for Ū . Apart from a small numeri
al di�eren
e in the prefa
tor (√3− 1 ≃

0.732 vs. 1), this is in good agreement with the result found in Eq. (5.15) using the resistormodel.5.2.2 Solution for Mü ≫ 1In the limit Mü ≫ 1 the equations of motion are
∂2
XU1 = Mü U1, (5.47)

∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (5.48)
∂2
XU3 = − U2(X1)

U2(X2)(X3 −X2)
+Mü U3, (5.49)In the loading and unloading zones the solutions are

U1(X) = A1 sinh
√Mü X +A2 cosh

√Mü X, (5.50)
U3(X) = A3 sinh

√Mü (X −X2) +A4 cosh
√Mü (X −X2) +

KMü , (5.51)where K = U2(X1)
U2(X2)(X3−X2)

and A2 = 0 sin
e U1(0) = 0. For U2, we have that
U2(X) =

U1(X1)
√

1− 2Mü U1(X1)(X −X1)
. (5.52)With the solution given in Eq. (5.52), we 
an now determine the 
onstants A3 and A4and K = U2(X1)

U2(X2)(X3−X2)
. The only free parameter is A1 whi
h has to be determined su
hthat U3(X3) = 0. Using the 
omputer algebra system Mathemati
a 7.0.0, we do this asexplained in Appendix A.2. The expressions are generally 
ompli
ated fun
tions of Mü ,

X1, X2 and X3. For ω = 1, we e.g. �nd that A1 is given by
A1=

Mü (4+X1) coth[Mü∗]−
s
h[Mü∗](4Mü +
s
h[Mü∗]√Mü 3/2X1 sinh[Mü∗]2(Mü∗ cosh[Mü∗]2−4 sinh[Mü∗]+2 sinh[2Mü∗]))
4Mü 2(2+X1) cosh[Mü∗]−2(4Mü 2+Mü 3/2X1 sinh[Mü∗]) ,(5.53)



Solution summary for ω = 1 57where Mü∗ =
√MüX1. We 
ompare this analyti
al solution to numeri
al solutions of thefull equation system in Se
. 5.4.In spite of the 
omplexity of the analyti
al expression for the Ai's, the mean translo-
ation velo
ity in the translo
ation zone Ū 
an be approximated by a simple fun
tion ofMü. We thus �nd that

Ū ≃ 1Mü (5.54)as long as Mü (X3 − X2) ≫ 1. On
e again, this is in good agreement with the resistormodel result given in Eq. (5.14).5.3 Solution summary for ω = 1In the spe
ial 
ase ω = 1 we have for the average translo
ation velo
ity Ū that
Ū =

{√
3−1
2 L1 if Mü ≪ 1,
1Mü if Mü ≫ 1.Inspired by Eq. (5.13) we therefore write

Ū ≃ 1
2

(
√
3−1)L1

+Mü , (5.55)or in dimensional units
ū ≃





a2l1Lp

a3√
3−1

+ 8ηeffLpl1l2



RTc∗. (5.56)We 
ompare this predi
tion to numeri
al solutions of the full equation system in Se
. 5.4.The dependen
e of ū on the parameters in the problem is dis
ussed in detail in Se
. 6.3,p. 64. From Eq. (5.56), we 
an further 
al
ulate the 
hara
teristi
 time t0 it takes for asugar mole
ule to traverse the translo
ation zone
t0 =

l2
ū

=
l2

(

a3√
3−1

+ 8ηeffLpl1l2

)

a2l1Lp

1

RTc∗
. (5.57)When l2 be
omes very large we re
over the result obtained numeri
ally by Thompson andHolbrook [79℄ that t0 ∝ l22.5.4 Comparison between numeri
al and analyti
al solutions5.4.1 Numeri
al solutions of the 3�zone modelTo evaluate the a

ura
y of the analyti
al solutions presented above, we have solvedEqns. (5.28)-(5.30) numeri
ally. We have used matlab's ode45-routine whi
h uses aRunge-Kutta (4,5) solver [63℄. The equations are solved using a shooting method from
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Figure 5.1: Comparison between numeri
al and analyti
al solutions of the 3�zone model.(a), (
), and (e): Numeri
al (
ir
les) and analyti
al (lines) solutions for velo
ity U plottedas a fun
tion of axial position X. (b), (d), and (f): Numeri
al (
ir
les) and analyti
al(lines) solutions for 
on
entration C plotted as a fun
tion of axial position X. The valuesof Mün
h number Mü used are indi
ated next to the points. Parameters used are (a) and(b): X1 = 0.3, X2 = 1.3, and X3 = 1.6. (
) and (d): X1 = 0.1, X2 = 1.1, and X3 = 1.4.(e) and (f): X1 = 1, X2 = 2, and X3 = 3. Note the logarithmi
 
oordinate axis in (e).
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Figure 5.2: Comparison between numeri
al and analyti
al solutions of the 3-zone model.Numeri
ally 
omputed dimensional mean translo
ation velo
ities ū (points) plotted as afun
tion of radius a for a plant with a stem length l2 = 1 m. The leaf and root sizesare l1 = l3 = 0.05 m (
ir
les), l1 = l3 = 0.1 m (squares), and l1 = l3 = 0.25 m (stars).The solid lines shows the velo
ity predi
ted by Eq. (5.56). Parameters used are Lp =
5× 10−14 m/(Pa s), RTc∗ = 1 MPa, and ηeff = 7× 10−3 Pa s.left to right with the initial 
onditions U1(0) = 0 and ∂XU1(0) = 1 . To ful�ll the bound-ary 
ondition at X3, the numeri
al pro
edure varies ∂XU1(0) until the solution ful�lls the
ondition U3(X3) = 0. After a thorough 
onvergen
e test we obtain solutions similar tothose shown in Fig. 5.1.5.4.2 Comparison between numeri
al and analyti
al solutionsUsing the numeri
al pro
edure outlined in Se
. 5.4.1, we have solved Eqns. (5.28)-(5.30)numeri
ally. The results are shown in Fig. 5.1 where the numeri
al solutions for the velo
ity
U and 
on
entration C are 
ompared with the analyti
al results obtained in the Mü ≪ 1and Mü ≫ 1 limits. We generally �nd very good agreement between the two. The reasonfor the dis
repan
y between the analyti
al and numeri
al solution for the 
on
entration Cfor Mü = 100 is that the analyti
al solution for large Mü does not ful�ll the 
ondition
∂XU2(X1) = ∂XU1(X1) exa
tly.To evaluate the a

ura
y of the expression for the mean dimensional translo
ation ve-lo
ity ū given in Eq. (5.56), we have 
ompared it to the results of the numeri
al simulation.To obtain the dimensional velo
ity from the non-dimensional solutions we use

ū = u∗xŪ =
2l2LpRTc

∗

a
Ū , (5.58)
f. the s
aling pro
edure dis
ussed in Se
. 3.5, p. 24. Fig. 5.2 shows the numeri
ally
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omputed dimensional mean translo
ation velo
ity ū plotted as a fun
tion of radius a fora plant with a stem length l2 = 1 m, and three di�erent leaf/root sizes. We generally �ndgood qualitative and quantitative agreement between the numeri
al simulations and theanalyti
al result. The agreement is espe
ially good (to within ∼ 10%) when the leaf isshort 
ompared to the stem, i.e. when L1 = l1
l2
is small. We �nd equally good agreementbetween numeri
s and theory for plants with other stem lengths. We note the existen
e of amaximum in the dimensional translo
ation velo
ity whi
h we dis
uss in detail in Chapter 6.5.5 Con
lusion and SummaryIn this 
hapter, we have studied analyti
al and numeri
al solutions of the one-dimensionalequations of motion in the 3-zone model. We have analysed the problem using �rst asimple hydrauli
 resistor model and se
ond a full analyti
al solution in the limits Mü ≪ 1and Mü ≫ 1. The analyti
al solutions obtained gives a full understanding of the �owand 
on
entration pro�les as a fun
tion of axial position in the two limits. The solutionsdepend on three non-dimensional numbers: The Mün
h number Mü, the relative size of theloading and translo
ation zone L1 =

l1
l2
, and the relative size of the loading and unloadingzone ω = l3

l1
. To evaluate the a

ura
y of the analyti
al solutions, we have solved theequations of motion numeri
ally. We have found good agreement between theory andnumeri
s. From the analyti
al solutions, we have derived an analyti
al expression for theaverage axial translo
ation velo
ity ū as a fun
tions of the parameters in the problem, 
f.Eq. (5.56).



Chapter 6Optimality of the Mün
h me
hanismIn this 
hapter we apply the results of the theoreti
al analysis of osmoti
ally driven �owsobtained in Chapters 3, 4 and 5 to translo
ation pro
esses in plants. We begin by showingthat the 3-zone model is able to reprodu
e translo
ation velo
ity measurements made onplants, and that it therefore gives us a basi
 understanding of how the velo
ity s
ales asa fun
tions of the parameters in the problem. We then 
onsider an interesting predi
tionof the model; that the osmoti
 Mün
h �ow me
hanism has a maximum in translo
ationvelo
ity for a parti
ular value of the phloem sieve tube radius ac. We derive an expressionfor ac whi
h takes the form of an allometri
 s
aling law, and show that a large groupof plants follow this predi
tion. Finally, we dis
uss the impli
ations for the Lang relayhypothesis and for the feasibility of the osmoti
 �ow me
hanism for long distan
e transportin plants. The author believes that the results presented in this 
hapter 
onstitutes the mostsigni�
ant 
ontribution to the phloem translo
ation literature obtained over the 
ourse ofthe PhD proje
t.The theoreti
al analysis of the optimality of the Mün
h me
hanism was made by theauthor during and after a visit to the lab of Noel Mi
hele Holbrook and Ma
iej Zwie-nie
ki at Harvard University in 2008. It was published in [29℄1 (see Appendix F) in apaper written in 
ollaboration with Tomas Bohr, Jinkee Lee, Henrik Bruus, Noel Mi
heleHolbrook and Ma
iej Zwienie
ki. Ma
iej Zwienie
ki performed the in-vivo phloem �owvelo
ity measurements referred to in the text.6.1 Introdu
tion to optimality and allometri
 s
aling lawsPlants display a remarkable variety of di�erent stru
tures and vary by many order ofmagnitude in size. Despite this in
redible diversity and 
omplexity, many fundamentalbiologi
al pro
esses show a striking simpli
ity when viewed as a fun
tion of size, by whatis know as allometri
 s
aling laws. The laws des
ribe how biologi
al parameters vary1The s
aling analysis presented here di�ers slightly from that given in [29℄. To avoid lengthy mathemat-i
al dis
ussions and the use of numeri
al solutions in the 
omparison with experimental data the authorhas 
hosen Eq. (5.11), p. 53, as the starting point for the dis
ussion. This means that the expression forthe 
riti
al radius ac derived here di�ers from that found in [29℄ by a fa
tor 21/3 whi
h is easily absorbedby the geometri
 fa
tor G, 
f. Eq. (6.7). 61
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h me
hani
smwith s
ale, regardless of the otherwise large qualitative di�eren
es among of the spe
iesbeing 
onsidered. These s
aling laws emerge from underlying physi
al me
hanisms thatare independent of the spe
i�
 spe
ies, but whi
h impose 
ertain 
onstraints on the systemas a whole as a result of sele
tion pressure for a spe
i�
 property [87, 52℄.As we have seen in Chapter 2, the phloem tissue of plants is responsible for the distri-bution of sugar and hormonal and signaling mole
ules. On the biologi
al motivation forexamining the optimality of the Mün
h me
hanism, the author and 
ollaborators write in[29℄ that...phloem distributes hormonal and signaling mole
ules that allow for the in-tegration of distal parts in lieu of a designated nervous system [43, 83℄. Thisadditional signalling task 
ould result in sele
tion pressure to optimize translo-
ation velo
ity by providing plants with the ability to respond rapidly to envi-ronmental perturbations [46℄. ([29℄, p. 1)The question we pose in the following is whether an allometri
 s
aling analysis 
an beapplied to translo
ation in the phloem. If we assume that the �ow inside plants is drivena

ording to the Mün
h hypothesis, what 
onsequen
es does it have for the relation be-tween, say, the size of the leaf, the length of the stem and the radius of the phloem tubesif we assume that plants are optimized for rapid translo
ation in the phloem?To make progress on this we will use the results derived in Chapter 5.6.2 Comparison between the 3-zone model and plant velo
itymeasurementsThe equations of motion derived in Chapter 3 and analyzed in Chapter 5 have been shownby several authors to a

urately des
ribe osmoti
ally driven �ows in arti�
ial systems[16, 40, 30, 28, 29℄, see also Chapter 7.To shown that they are a relevant des
ription of the pro
esses that o

ur in plants,we must make an assessment of to what extend the theory is able to reprodu
e empiri
aldata. Quoting on
e again Knoblau
h and Peters [36℄:While there is no shortage of mathemati
al formalizations of various aspe
tsof phloem transport. . . , the question remains whether any su
h theoreti
aldes
ription mirrors physi
al reality in a biologi
ally meaningful way 
an onlybe de
ided empiri
ally. ([36℄, p. 1442)One su
h empiri
al 
omparison 
an be made by 
onsidering the 
hara
teristi
 �ow velo
ity
ū for the 3-zone model derived in Chapter 5 (Eq. (5.11), p. 53). The expression for ū hasthe form

ū ≃





a2l1Lp

a3√
3−1

+ 8Lpηeff l1l2



Π (6.1)and thus relates the translo
ation velo
ity to 
hara
teristi
 physi
al properties of the plantand the available osmoti
 driving pressure RTc∗ = Π.
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Figure 6.1: Comparison between plant velo
ity measurements and theory. (a) Measured�ow velo
ity uexp (bla
k dots) plotted as a fun
tion of the sieve tube radius a for the 7di�erent spe
ies listed in Table 6.1. Also shown is the velo
ity ū predi
ted by Eq. (6.1)(open 
ir
les 
onne
ted by dashed lines) plotted for Π = 0.1 MPa− 0.5 MPa as indi
atedon the right. (b) Measured �ow velo
ity uexp (bla
k dots) plotted as a fun
tion of the stemlength l2. Also shown is the velo
ity ū predi
ted by Eq. (6.1) (open 
ir
les 
onne
ted bydashed lines) plotted for Π = 0.1 MPa − 0.5 MPa as indi
ated on the right. Throughout,
Lp = 5× 10−14 m/(Pa s) and ηeff = 7× 10−3 Pa s was used.
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h me
hani
smA data set whi
h allows for dire
t 
omparison with Eq. (6.1) is given in Table 6.1, p. 75.Here, experimental data obtained from in-vivo phloem �ow velo
ity measurements made on7 di�erent spe
ies are listed along with values of the relevant physi
al parameters2. When
omparing the experimental data to the predi
tion of Eq. (6.1), we will treat the membranepermeability Lp and the liquid vis
osity ηeff as 
onstants. We make this assumption basedon a thorough study by Thompson and Holbrook [79℄. They found that representativevalues are Lp = 5× 10−14 m/(Pa s) and η = 2× 10−3 Pa s, su
h that ηeff = 7× 10−3 Pa s.Chara
teristi
 values of the osmoti
 pressure are Π = 0.2 MPa − 2 MPa, obtained fromthe sugar 
on
entrations listed in Table 2.1, p. 11.A 
omparison between the velo
ity predi
ted by Eq. (6.1) and the measured valueslisted in Table 6.1 is shown in Fig. 6.2. In (a), the velo
ity is plotted as a fun
tion ofthe radius a of the sieve tubes, while (b) shows the velo
ity plotted as a fun
tion of thestem length l2. The predi
tion of the velo
ity ū given in Eq. (6.1) is shown as open
ir
les 
onne
ted by dashed lines as guides to the eye. We observe a good qualitative andquantitative agreement between the predi
tion of Eq. (6.1) and the experimental data forthe 
urves with Π = 0.1 MPa − 0.5 MPa. Although these value of the osmoti
 pressure
Π are at the low end of the spe
trum, we note that the fa
tor Π entering into Eq. (6.1)represents the di�eren
e in osmoti
 pressure between the root and the leaf, a numberwhi
h 
an be signi�
antly lower than the values found by simply 
onsidering the sugar
on
entration as pointed out by Turgeon [82℄.6.3 Optimality of the Mün
h me
hanismWe now move on to an allometri
 s
aling analysis of translo
ation in the phloem. Tomake progress on this, we must �rst 
onvin
e ourselves that a maximum in translo
ationvelo
ity is imposed by the Mün
h osmoti
 �ow me
hanism. We begin by 
onsidering thedependen
e of the translo
ation velo
ity ū given in Eq. (6.1) on the sieve tube radius a,the leaf size l1 and the stem size l2. With 2 of the 3 parameters kept 
onstant, ū behavesas illustrated in Fig. 6.2. The velo
ity grows asymptoti
ally as a fun
tion of the leaf size
l1 to the value

ū(l1 → ∞) =
a2

8ηl2
Π, (6.2)and de
ays as 1

l2
when the stem length be
omes very large. When the stem is very shortwe �nd that

ū(l2 → 0) =
(√

3− 1
) l1Lp

a
Π. (6.3)While the velo
ity ū has no maximum points as a fun
tion of l1 and l2 > 0, it does have anextrema as a fun
tion of the radius a, at the value a = ac as indi
ated in Fig. 6.2(
). Assket
hed in Fig. 6.3(a), the existen
e of su
h a maximum in translo
ation velo
ity is quite2We note that the stem length of these plants are l2 ∼ 1 m and that the values of the ratio L1 = l1

l2
liein the range 0.05− 0.25. We 
an therefore expe
t that Eq. (6.1) gives a reasonably a

urate estimate of ūfrom the 3-zone mode 
f. the dis
ussion in Se
. 5.4.2, p. 59. For plants with mu
h larger values of L1 oneneeds to solve the 3-zone model numeri
ally in ea
h individual 
ase. The author and 
o-workers used thisapproa
h in [29℄.
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ū
/
ū
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Figure 6.2: Plots showing the asymptoti
 behavior of the velo
ity ū given in Eq. (6.1) asa fun
tion of a, l1, and l2. (a) Plot of ū/ū(l1 → ∞) as a fun
tion of the leaf size l1 for
onstant a and l2. As l1 → ∞, ū approa
hes a2

8ηl2
Π. (b) Plot of ū/ū(l2 → 0) as a fun
tionof stem length l2 for 
onstant a and l2. As l2 → 0, ū approa
hes (√3− 1

) l1Lp

a Π. (
) Plotof ū as a fun
tion of radius a for 
onstant l1 and l2. At the 
riti
al radius a = ac, thevelo
ity ū has an maximum point (indi
ated by the bla
k dot) given by Eq. (6.5). Thevalue of a = ac at whi
h this o

urs is given in Eq. (6.4).
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Figure 6.3: Optimized velo
ity for osmoti
ally driven �ows. (a) Heuristi
 argument forexisten
e of a maximum in translo
ation velo
ity for osmoti
ally driven �ows. The �owvelo
ity ū (open 
ir
les) is plotted as a fun
tion of the tube radius a. The osmoti
 drivetakes pla
e a
ross the tube surfa
e and the velo
ity therefore grows as the the surfa
e-to-volume ratio σ = 2
a in
reases, i.e. when the radius de
reases. Very thin tubes, on the otherhand, o�er high vis
ous resistan
e to the �ow; and thus there is an optimum radius acand velo
ity ū(ac) at the interse
tion between the dashed lines, where the osmoti
 pump ismost e�e
tive and the resistan
e not too large. (b) Example of numeri
ally 
omputed meantranslo
ation velo
ity ū (dots) as a fun
tion of radius a 
al
ulated from the 3-zone modelshowing the existen
e of a maximum in translo
ation velo
ity. The solid line shows thevelo
ity predi
ted by Eq. (6.1). Close to the maximum of the solid 
urve, at a = 7.5 µm,the transition between the two types of �ow o

urs and the velo
ity is at a maximum. Thisis 
onsistent with the numeri
al simulations whi
h yields ac ≃ 8.0 µm as indi
ated on theordinate axis. Parameters used are Lp = 5 × 10−14 m/(Pa s), l1 = l3 = 0.1 m, l2 = 1 m,

Π = 1 MPa, and ηeff = 7× 10−3 Pa s. We also �nd good agreement between numeri
s andtheory for other values of l1 and l2.
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h me
hanism 67easy to understand: the osmoti
 �ow takes pla
e a
ross the 
ell surfa
e and is thereforemore e�e
tive in terms of the axial velo
ity for thinner tubes where the surfa
e-to-volumeratio σ = 2
a is larger. Very thin tubes, on the other hand, o�er high vis
ous resistan
e tothe �ow, and thus there is an optimum radius ac, where the osmoti
 pump is e�e
tive andthe resistan
e not too large.To estimate the radius at whi
h this maximum o

urs, we use the expression forthe mean translo
ation velo
ity ū given in Eq. (6.1) This velo
ity is plotted as a fun
-tion of the phloem sieve tube radius a in Fig. 6.3(b), along with the results of nu-meri
al simulation of the 3-zone model. In a

ordan
e with the numeri
al result, thesolid 
urve shows a maximum whi
h we 
an 
al
ulate by 
onsidering the nominator of

∂aū = 2al1Lp

(

a3√
3−1

+ 8ηLpl1l2

)

− 3√
3−1

a4l1Lp. The velo
ity has a maximum when this iszero, i.e. when
a3 = a3c = 16(

√
3− 1)Lpηeff l1l2. (6.4)As shown in Fig. 6.3(b) the numeri
ally determined value of the optimized radius (ac =

8 µm in this parti
ular example) lies very 
lose to that predi
ted by Eq. (6.4), ac = 7.5 µm.From Eqns. (6.1) and (6.4), we may further 
al
ulate the velo
ity ū(ac) at the 
riti
alradius
ū(ac) =

a2c
24ηeff l2

Π =

(

2−
√
3
)1/3

3

(Lpl1)
2/3

(ηeff l2)
1/3

Π. (6.5)Thus an in
rease in leaf size (with �xed stem size) will lead to an in
rease in the velo
ity
ū(ac), while an in
rease in stem size (with �xed leaf size) will lead to a de
rease. We thusassume that these external length s
ales are set by other biologi
al 
onstraints su
h as the
ost of building, supporting and maintaining photosyntheti
 surfa
es.It is also interesting to 
onsider the 
hara
teristi
 transit time t0(ac) for a sugar mole
uleto traverse the translo
ation zone

t0(ac) =
l2

ū(ac)
=

3
(

2−
√
3
)1/3

η
1/3
eff

(Lpl1)
2/3

l
4/3
2

Π
. (6.6)We observe that the transit time t0 at the 
riti
al radius grows as l4/32 , signi�
antly slowerthan the dependen
e t0 ∝ l22 found numeri
ally by Thompson and Holbrook [79℄ in thenon-optimized 
ase of very large l2.6.3.1 Allometri
 s
aling law for the optimality of the Mün
h me
hanismIn summary, we have that the expression for the 
riti
al radius ac given in Eq. (6.4) predi
tsa s
aling relation of the form

a3c = GLpηeff l1l2, (6.7)where G = 16(
√
3 − 1) ≃ 10 is a geometri
 fa
tor3. If plants are optimized for rapidtranslo
ation in the phloem, we expe
t to �nd that they have appropriate 
ombinations of3We noti
e that in terms of the non-dimensional parameters Mü and L1, the s
aling relation given inEq. (6.7) 
orresponds to Mü = 16

G
1
L1

.
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h me
hani
smthe four length s
ales: a, Lpηeff , l1, and l2. This predi
tion thus relates physi
s o

urringat length s
ales spanning more than 10 orders of magnitude: from the mole
ular s
ale� through the length s
ale Lpηeff whi
h is 
losely related to the hydrodynami
 pore-sizeof transport proteins � to the long-distan
e translo
ation s
ale whi
h spans many 10s ofmeters.6.4 Comparison with plant dataTable 6.2, p. 76, list values of phloem sieve tube radius a, leaf size l1 and stem length l2for 19 di�erent spe
ies from [29℄. The data is represented visually in Fig. 6.4, and showthe general trend that large plants tend to have large sieve tube and large leaves.To test the s
aling relation given in Eq. (6.7) the produ
t l1l2 is potted as a fun
tionof sieve tube radius a in Fig. 6.4(d) and again in Fig. 6.5 where the individual spe
iesare labeled by numbers referring to Table 6.2. A visual inspe
tion of Fig. 6.5 reveals thatthe data points lie 
lose to the predi
ted s
aling exponent of 3 (solid line). By methodof least squares �tting we will now determine the statisti
al estimate of the exponent andprefa
tor.6.4.1 Determining the s
aling exponentWhen examining the data given in Table 6.2 we 
onsider s
aling relations of the form
aα = βl1l2, (6.8)on
e again treating Lp and ηeff as 
onstants. To determine the 
onstants α and β =

GLpηeff , it is 
onvenient to 
onsider instead the logarithm of this equation
α log a = log β + log l1l2, (6.9)whi
h with ξ = log a, ζ = log l1l2 and B = − log β be
omes

ζ = αξ +B. (6.10)A least squares �t [75℄ yields
αls = 2.58 ± 0.25, (6.11)quite 
lose to the predi
ted s
aling α = 3 with a 
orrelation 
oe�
ient of rc = 0.93 asreported by the author and 
o-workers in [29℄. The standard least squares 
orrelationmethod, however, does not take into a

ount the un
ertainty on both sets of variables, i.e.the error on the radius a and on the produ
t l1l2. A more appropriate method is thereforea Model II least squares 
ubi
 regression analysis (see [52℄ p. 328 and [90℄ p. 1083). Usingthat te
hnique, we �nd
αls
 = 3.32 ± 0.37, (6.12)
onsistent with the α = 3 predi
tion. Generally, the least squares method obtains thelowest value for the s
aling exponent whereas Model II type regressions provides an upper
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Figure 6.4: Visual representation of the plant data given in Table 6.2. (a) Leaf length l1plotted as a fun
tion of sieve tube radius a. (b) Stem length l2 plotted as a fun
tion ofsieve tube radius a. (
) Stem length l2 plotted as a fun
tion of leaf length l1. (d) Produ
tof leaf and stem length l1l2 plotted as a fun
tion of sieve tube radius a.
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Figure 6.5: Comparison between the predi
ted s
aling law a3 ∝ l1l2 and the plant datagiven in Table 6.2. Log-log plot of measured l1l2 as a fun
tion of measured radius a (bla
kdots). The predi
tion of Eq. (6.7) (A, solid line, slope 3.00), Eq. (6.12) (B, dashed line,slope 3.32), and Eq. (6.11) (C, dotted line, slope 2.58) are also shown. The numbers nextto the points indi
ated the spe
ies as listed in Table 6.2.
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ussion 71limit on α [52℄. Figure 6.5 shows a 
omparison between the experimental data and theexponents derived from the regression analysis.In summary we �nd good agreement between the predi
ted s
aling relation and theexperimental data on plants ranging in sieve tube radius a from a = 1 µm (Trades
antiavirginiana, no. 12) to a = 40 µm (Cu
urbita malepo, no. 10) and stem length l2 from
l2 = 0.1 m (Trades
antia virginiana, no. 12) to l2 = 40 m (Robinia pseudoa
a
ia, no. 5).We note that a number of plants lie quite far from the predi
ted s
aling. Two su
h pointsare Cu
urbita malepo (no. 10), and Sabal palmetto (no. 3). The major di�eren
e betweenCu
urbita malepo the rest of the data set is presumably that it has very large sieve tubes,mu
h like the Cu
urbita maxima shown in Fig. 2.2, p. 10. On the other hand, the phloemof Sabal palmetto is lo
ated further inside the stem than what is usually the 
ase. Asdis
ussed in Chapter 4, this also makes a di�eren
e for the hydrauli
 resistan
e of the sieveplates.6.4.2 Determining the s
aling prefa
torData from the literature suggest that the s
aling prefa
tor β = GLpηeff ≃ 3.5 × 10−15 msin
e G ≃ 10, Lp = 5 × 10−14 m/(Pa s), and ηeff = 7 × 10−3 Pa s. It 
an be determinedfrom the data in Table 6.2 under the assumption that α = 3 by a least squares �t to
a3 = βl1l2. This yields

βls = (1.74 ± 1.30) × 10−15m, (6.13)whi
h is in the same order of magnitude as predi
ted by the literature data.6.5 Dis
ussionIn a dis
ussion of the s
aling analysis presented above the author and 
ollaborators writein [29℄ thatPlants, whi
h span tens of metres and proliferate in hundreds of 
ubi
 metresof soil and air, experien
e diverse and often rapid �u
tuations in environmental
onditions. To respond to su
h environmental heterogeneity requires the rapiddistribution of both energy and information in the form of 
hemi
al signalsto enhan
e plant produ
tivity and 
ompetitiveness. The phloem provides un-interrupted 
oupling between most distal parts of all plants and links plants'multibran
hed dendriti
 stru
ture into a single fun
tional mi
ro�uidi
 system[6℄. Con
ordan
e between our theoreti
al model, studies of osmoti
ally driven�ow in syntheti
 phloem, and measurements of �ow and geometri
 propertiesmade on real plants gives 
on�den
e in the Mün
h theory of phloem �ow andsuggests that plants are optimized for rapid translo
ation of sugar, therebygaining a 
ompetitive edge in terms of their ability to respond rapidly to en-vironmental stimuli. Our analysis provides a general s
aling law for phloemdimensions that maximizes translo
ation velo
ity, suggesting that evolutionarysele
tion on the e�
a
y of signal transdu
tion has shaped the stru
ture andfun
tion of this supra
ellular transport pathway. ([29℄, p. 7)
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h me
hani
smThe author thus believes that the physi
al 
onstraints imposed by the optimality of theMün
h me
hanism has played an important role in the evolution of the phloem vas
ularsystem of plants. If we a

ept this hypothesis, we are able to shed new light on a numberof 
onje
tures found in the phloem literature.6.5.1 Lang's relay hypothesisOne su
h 
onje
ture is known as Lang's Hypothesis. In 1979, Alexander Lang [41℄ proposedthat in order to maximize the rate of transport of sugar, the phloem translo
ation pathwaymight be split into a number of separate 
ompartments. He writes thatthe phloem is envisaged as 
omprising a series of `fun
tion units' of perhapsa few 
entimeters to several meters in length, ea
h unit 
onsisting of a �le ofsieve elements disposed end to end, the units having a short length of overlapbetween one and the next. ([41℄, p. 142)Lang 
ontinues to des
ribe how, in this short overlapping region, sugar is a
tively trans-ferred between the two fun
tional units whi
h are otherwise physi
ally separate, thus notallowing for a �ow of liquid from one unit to the next. This 
on
ept is illustrated in Fig.6.6, where the �ow is from top to bottom, and the number in ea
h box represents the sugar
on
entration. Lang estimates that about 2 % of the sugar is 
onsumed by the reloadingpro
ess at ea
h reloading zone, but that this 
an lead to an in
rease of a fa
tor of 10 in therate of transport and that is is thus worth the extra expense in terms of the sugar lost.There is, however, no 
lear experimental eviden
e for the existen
e of the relay zonesproposed by Lang (see e.g. [50℄). The hypothesis is none the less still widely 
ited as amethod that plants may use for a

elerating the rate of phloem transport [36℄. Using thes
aling analysis developed in the previous se
tions, we 
an evaluate the e�
ien
y of the�ow a

ording to Lang's hypothesis. If we let l2 be the length of the fun
tional unit and l1be the length of overlap between two adja
ent units, the situation is 
ompletely analogousto the 3-zone model. If the �ow is optimized a

ording to the Mün
h me
hanism, we thusexpe
t to �nd that the radius ac of the sieve tube in the fun
tional unit is
ac = (GLpηeff l2l1)

1/3. (6.14)Lang provides no estimates of the size of the unit other than those given in the quoteabove. For a tree we may take a unit length of l2 = 1 m and an overlapping region oflength, say, l1 = 0.05 m. This gives an optimum radius of
ac = 5.6 µm, (6.15)
al
ulated with G = 10, Lp = 5 × 10−14 m/(Pa s) and η = 7 × 10−3 Pas. Trees, however,typi
ally have radii in the range 10− 20 µm, 2-4 times larger than predi
ted by Eq. (6.15)(see Table 6.2). For ac to be equal to 10 µm, one must 
hoose the overlapping length

l1 = 0.35 m su
h that a total of 70% of adja
ent fun
tional units are overlapping. If su
hlarge overlapping regions exists they should be easy to observe.From this analysis we 
on
lude that we �nd no eviden
e in Fig. 6.5 to support Lang'srelay hypothesis.
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Figure 6.6: Lang's relay hypothesis. The phloem is envisaged as 
omprising a series offun
tion units (indi
ated by the X) of perhaps a few 
entimeters to several meters inlength, ea
h unit 
onsisting of a �le of sieve elements disposed end to end, the unitshaving a short length of over-lab between one and the next. In this short overlappingregion, sugar is a
tively transferred between the two fun
tional units whi
h are otherwisephysi
ally separate, thus not allowing for a �ow of liquid from one unit to the next. The�ow is from top to bottom, and the number in ea
h box represents the sugar 
on
entration.From [41℄, Fig. 1. Reprodu
ed with permission.
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h me
hani
sm6.5.2 Is osmosis adequate for translo
ation in tall trees?The question whether osmoti
ally driven translo
ation is adequate to a

ount for the ratesof transport observed in tall trees is still an open question. Without some form of a
tivelyaided transport (su
h as the Lang relay me
hanism dis
ussed above), there is generalagreement that osmosis is insu�
ient [82, 36℄. This view has been promoted by the authorof the present thesis himself in [30℄. The argument put forward is that the hydrauli
resistan
e of a 100 m tall tree is mu
h to large to over
ome for osmosis alone, and that �owrates would therefore be unreasonably slow. This is espe
ially pronoun
ed in gymnospermswhere the hydrauli
 resistan
e of the sieve plates may be mu
h larger than that found inthe angiosperms studied in Chapter 4, see e.g. [68℄.It is therefore somewhat surprising that the trees found in Table 6.2 (spe
ies 3, 4, 5,6, and 8) all fall reasonably 
lose to the a3 ∝ l1l2 line in Fig. 6.5. If we use Eq. (6.1) toestimate the velo
ity ū we �nd that they lie in the range from 16 × 10−6 m/s (Robiniapseudoa

a
ia) to 100×10−6 m/s (Sabal palmetto) and thus fall within the range of velo
i-ties measured on mu
h smaller plants, 
f. Table 6.1. The lone gymnosperm, Pinus strobus,has a predi
ted velo
ity of 40 × 10−6 m/s, although on must not forget that Eq. (6.1)was derived assuming that the sieve pores are open. These velo
ities were 
al
ulated with
Lp = 5× 10−14 m/(Pa s), ηeff = 7× 10−3 Pa s and RTc∗ = 0.5 MPa, the highest value ofthe osmoti
 pressure 
onsistent with our �ndings in Fig. 6.2.We further note that at the optimum radius, the 
hara
teristi
 transit time t0 s
alesas t0(ac) ∝ l

4/3
2 (
f. Eq. (6.6)) in 
ontrast to the non-optimized result t0 ∝ l22 found byThompson and Holbrook in [79℄. Tall trees may therefore have signi�
antly shorter osmoti
transit times than previously believed. For Sabal palmetto, we thus �nd from Eq. (6.6) that

t0(ac) ≃ 31 h, while for Robinia pseudoa

a
ia t0(ac) = 516 h. The very large t0 foundfor Robinia pseudoa

a
ia may re�e
t the fa
t that we have 
hosen the size of the lea�ets,whi
h are about 3 cm long, and not the size of the 
ompound leaf whi
h 
an grow up to,say, 25 cm in length. With l2 = 25 cm we �nd that t0(ac) ≃ 126 h whi
h still a signi�
antamount of time.From these observations it is still an open question whether the osmoti
 pumping issu�
ient to a

ount for phloem translo
ation in tall trees. More experimental data, and inparti
ular velo
ity measurements made in tall trees 
orrelated with measurements of leafand stem sizes, is needed.6.6 Con
lusionIn this 
hapter we have applied the results of the 3-zone model introdu
ed in Chapter 5to translo
ation in the phloem. We have shown that the model is a fair des
ription of thepro
esses that o

ur in plants by 
omparing experimental velo
ity data to the results ofthe model with good results. An interesting predi
tion of the model is that the osmoti
pumping me
hanism has a maximum in translo
ation velo
ity for a spe
ial, optimal, valueof the phloem sieve tube radius ac. The expression for ac has the form of an allometri
s
aling law
aα = GLpηeff l1l2. (6.16)
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lusion 75Table 6.1: Experimental data for phloem sieve tube radius a, leaf size l1, stem length
l2 and �ow velo
ity uexp. The un
ertainties indi
ate standard errors on measurements.Data from [29℄, see Appendix F. The measurement te
hnique used to obtain the velo
ityvalues is dis
ussed in said paper. Measurement (7-9) were made after the submission ofthe manus
ript and are not in
luded in [29℄.No. Spe
ies a [µm℄ l2 [m℄ l1 [m℄ uexp [µm/s℄1 Gly
ine max 3.7± 1.0 0.40 ± 0.08 0.10 ± 0.02 145 ± 462 Tradas
antia virginiana 1.2± 0.4 0.10 ± 0.02 0.020 ± 0.004 4.13 ± 1.643 Cu
umis sativus 6.3± 1.4 0.60 ± 0.12 0.10 ± 0.02 149 ± 544 Cu
urbita maxima 12.3 ± 2.7 4.0 ± 0.8 0.20 ± 0.04 62.9 ± 48.45 Cu
urbita maxima 16.6 ± 2.6 4.0 ± 0.8 0.20 ± 0.04 48.2 ± 29.36 Solanum ly
opersi
um 5.2± 0.8 0.40 ± 0.08 0.10 ± 0.02 162 ± 487 Populus balsamifera 1.8± 0.8 1.0 ± 0.5 0.10 ± 0.01 37.7 ± 24.58 Gnetum gnemon 2.1± 0.6 1.0 ± 0.5 0.10 ± 0.01 19.1 ± 6.99 Gossypium hirstum 1.5± 0.3 1.0 ± 0.5 0.10 ± 0.01 9.62 ± 4.70The s
aling exponent α has been determined from a statisti
al analysis of experimentaldata from 19 plant spe
ies by least squares regression αls = 2.58 ± 0.25 and least squares
ubi
 regression αls
 = 3.32 ± 0.37. Both values are 
lose to the exponent α = 3 derivedunder the assumption that the translo
ation velo
ity is at a maximum. This analysis thusprovides a general s
aling law for phloem dimensions that maximizes the translo
ationvelo
ity, suggesting that evolutionary sele
tion on e�
a
y of sugar transport and signaltransdu
tion has shaped the stru
ture and fun
tion of this transport pathway. This is aremarkable result, sin
e it relates stru
tures in plants spanning up to 10 orders of magnitudein size from the length of the stem l2, measured in meters, to the size of the pores in themembrane, measured in nanometers, through the length Lpηeff .
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Table 6.2: Experimental data for phloem sieve tube radius a, leaf size l1 and stem size
l2. The un
ertainties indi
ate standard errors on measurements. Data from [29℄, seeAppendix F.No. Spe
ies a [µm℄ l2 [m℄ l1 [m℄1 Beta vulgaris 5.0± 1.0 0.3 ± 0.06 0.10 ± 0.022 Yu

a �a

ida 10.0 ± 2.0 1.0 ± 0.2 0.5± 0.13 Sabal palmetto 16.5 ± 1.7 20± 4 0.5± 0.14 Tilia ameri
ana 15.0 ± 1.5 20± 4 0.10 ± 0.025 Robinia pseudoa

a
ia 10.0 ± 1.0 40± 8 0.030 ± 0.0066 Vitis vinifera 18.0 ± 4.0 20± 4 0.10 ± 0.027 Gossypium bardadense 11.0 ± 2.2 1.5 ± 0.3 0.15 ± 0.038 Pinus strobus 10.9 ± 1.0 20± 4 0.10 ± 0.029 Festu
a arundina
ea 3.0± 0.6 0.30 ± 0.06 0.05 ± 0.0110 Cu
urbita malepo 40.0 ± 8.0 7.0 ± 1.4 0.30 ± 0.0611 Gly
ine max 3.7± 1.0 0.40 ± 0.08 0.10 ± 0.0212 Tradas
antia virginiana 1.2± 0.4 0.10 ± 0.02 0.020 ± 0.00413 Cu
umis sativus 6.3± 1.4 0.60 ± 0.12 0.10 ± 0.0214 Cu
urbita maxima 12.3 ± 2.7 4.0 ± 0.8 0.20 ± 0.0415 Cu
urbita maxima 16.6 ± 2.6 4.0 ± 0.8 0.20 ± 0.0416 Solanum ly
opersi
um 5.2± 0.8 0.40 ± 0.08 0.10 ± 0.0217 Ana
y
lus purethrum 2.1± 0.6 0.30 ± 0.06 0.010 ± 0.00218 E
balium elaterium 15.0 ± 3.0 3.0 ± 0.6 0.20 ± 0.0419 Eragostis plana 3.0± 0.6 0.2 ± 0.04 0.10 ± 0.0220 Hera
leum mantegazzianum 9.0± 1.8 2.0 ± 0.4 0.20 ± 0.04



Chapter 7Mi
ro�uidi
 experimentsThroughout the PhD proje
t, the author has found great sour
es of inspiration and insightin the experiments 
ondu
ted by Mün
h, Es
hri
h et al., and Lang dis
ussed in Se
. 2.4,p. 16. Realizing, however, the fundamental short
oming of these experiments � that theywere 
ondu
ted at length s
ales far from those found in plants � prompted the author andadvisors Henrik Bruus and Tomas Bohr to 
ondu
t experiments aimed at using 
hanneldimension that approa
hed those found in the plants.The following paper, [28℄, presented unabridged in Se
. 7.1�7.8 des
ribes our experimen-tal study of osmoti
ally driven �ows in mi
ro�uidi
 
hannels separated by a semipermeablemembrane. To stay true to the original manus
ript the notation in the present 
hapterdi�ers slightly from that found in Chapters 1-6. Please refer to Table 7.1, p. 91, for alist of symbols. The design, fabri
ation and testing of the mi
ro�uidi
 devi
es was 
arriedout by the author at the Te
hni
al University of Denmark. The experiments and part ofthe theoreti
al analysis was 
ondu
ted at Harvard University in 
ollaboration with JinkeeLee during a visit in the lab of Noel Mi
hele Holbrook. See further a
knowledgements inSe
. 7.8.While it is di�
ult to determine the long-term impa
t of the results presented, thepaper has been well re
ieved in the plant vas
ular biology 
ommunity. Knoblau
h andPeters [37℄ writes thatPhloem-inspired arti�
ial mi
ro�uidi
s systems su
h as that of Jensen et al.(2009) provide an extremely powerful approa
h to the empiri
al testing ofmathemati
al and other hypotheses of phloem transport. To date, the planttransport 
ommunity has not yet 
onne
ted to the engineers in the lab-on-a-
hip �eld, but we expe
t that in the near future, �mi
ro-Mün
h-models� willin�uen
e the way we think about the phloem on the 
on
eptual level in a similarway as Mün
h's original models did 80 years ago. ([36℄, p. 1442)and ends their paper by stating thatWe expe
t that over the next de
ade or so, arti�
ial mi
ro�uidi
s systems,designed as stru
tural analogs of natural sieve tubes (Jensen et al. 2009), willmature into indispensible and versatile tools in our e�orts to make the phloemless of a mira
le and more of a me
hanism. ([36℄, p. 1448)77



78 Mi
ro�uidi
 ExperimentsStart of paperK. H. Jensen, J. Lee, T. Bohr and H. BruusOsmoti
ally driven �ows in mi
ro
hannels separated by a semipermeable membraneLab on a Chip 9(14), pp. 2093�2099 (2009)7.1 Abstra
tWe have fabri
ated lab-on-a-
hip systems with mi
ro
hannels separated by integratedmembranes allowing for osmoti
ally driven mi
ro�ows. We have investigated these �owsexperimentally by studying the dynami
s and stru
ture of the front of a sugar solutiontraveling in 200µm wide and 50 − 200µm deep mi
ro
hannels. We �nd that the sugarfront travels with 
onstant speed, and that this speed is proportional to the 
on
entrationof the sugar solution and inversely proportional to the depth of the 
hannel. We propose atheoreti
al model, whi
h, in the limit of low axial �ow resistan
e, predi
ts that the sugarfront indeed should travel with a 
onstant velo
ity. The model also predi
ts an inverserelationship between the depth of the 
hannel and the speed, and a linear relation be-tween the sugar 
on
entration and the speed. We thus �nd good qualitative agreementbetween the experimental results and the predi
tions of the model. Our motivation forstudying osmoti
ally driven mi
ro�ows is that they are believed to be responsible for thetranslo
ation of sugar in plants through the phloem sieve element 
ells. Also, we sug-gest that osmoti
 elements 
an a
t as on-
hip integrated pumps with no movable parts inlab-on-a-
hip systems.7.2 Introdu
tionOsmoti
ally driven �ows are believed to be responsible for the translo
ation of sugar inplants, a pro
ess that takes pla
e in the phloem sieve element 
ells [73℄. These 
ells forma mi
ro-�uidi
 network whi
h spans the entire length of the plant measuring from 10 µmin diameter in small plants to 100 µm in diameter in large trees [73℄. The me
hanismdriving these �ows is believed to be the osmoti
 pressures that build up relative to theneighboring water-�lled tissue in response to loading and unloading of sugar into andout of the phloem 
ells in di�erent parts of the plant [73℄. This me
hanism, 
olle
tively
alled the pressure-�ow hypothesis, is mu
h more e�
ient than di�usion, sin
e the osmoti
pressure di�eren
e 
aused by a di�eren
e in sugar 
on
entration 
reates a bulk �ow dire
tedfrom large 
on
entrations to small 
on
entrations, in a

ordan
e with the basi
 needs ofthe plant.Experimental veri�
ation of �ow rates in living plants is di�
ult [37℄, and the experi-mental eviden
e from arti�
ial systems ba
king the pressure-�ow hypothesis is s
ar
e and
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onsists solely of results obtained with 
entimetri
 sized setups [16, 40, 30℄. However,many theoreti
al and numeri
al studies of the sugar translo
ation in plants have used thepressure-�ow hypothesis [79, 80, 24℄ with good results. To verify that these results are in-deed valid, we believe that it is of fundamental importan
e to 
ondu
t a systemati
 surveyof osmoti
ally driven �ows at the mi
rometer s
ale. Finally, osmoti
 �ows in mi
ro
hannels
an a
t as migration enhan
ers [1℄ or as mi
ros
ale on-
hip pumps with no movable parts.Examples of previous o�-
hip osmoti
 pumps are the devi
e developed by by Park et al. [55℄and the osmoti
 pills developed by Shire Laboratories and pioneered by F. Theeuwes [76℄.Also, there is a dire
t analogy between osmoti
ally driven �ows powered by 
on
entrationgradients, and ele
troosmoti
ally driven �ows in ele
trolytes [9, 19℄ powered by ele
tri
alpotential gradients.7.3 Experimental setup7.3.1 Chip design and fabri
ationTo study osmoti
ally driven �ows in mi
ro
hannels, we have designed and fabri
ated ami
ro�uidi
 system 
onsisting of two layers of 1.5 mm thi
k polymethyl metha
rylate(PMMA) separated by a semipermeable membrane (Spe
tra/Por Biote
h Cellulose Esterdialysis membrane, MWCO 3.5 kDa, thi
kness ∼ 40µm), as sket
hed in Fig. 8.2(a)-(d).Channels of length 27 mm, width 200 µm and depth 50 − 200µm were milled in the twoPMMA layers by use of a MiniMill/Pro3 milling ma
hine [18, 11℄. The top 
hannel 
ontainspartly the sugar solution, and partly pure water, while the bottom 
hannel always 
ontainsonly pure water. To fa
ilitate the produ
tion of a steep 
on
entration gradient by 
ross-�ows, a 200 µm wide 
ross-
hannel was milled in the upper PMMA layer perpendi
ularto and bi-se
ting the main 
hannel. Inlets were produ
ed by drilling 800 µm diameterholes through the wafer and inserting brass tubes into these. By removing the surroundingmaterial, the 
hannel walls in both the top and bottom layers a
quired a height of 100µmand a width of 150µm. After assembly, the two PMMA layers were positioned su
h thatthe main 
hannels in either layer were fa
ing ea
h other. Thus, when 
lamping the twolayers together using two 30mm paper 
lamps, the membrane a
ted as a seal, stoppingany undesired leaks from the 
hannels as long as the applied pressure did not ex
eedapproximately 1 bar.7.3.2 Measurement setup and pro
eduresIn our setup, the osmoti
 pressure pushes water from the lower 
hannel, through themembrane, and into the sugar-ri
h part of the upper 
hannel. This displa
es the solutionalong the upper 
hannel thus generating a �ow there, as shown in Fig. 7.2. To measurethis �ow inside the upper 
hannel, parti
le and dye tra
king were used. In both 
ases inlets1, 2, 3 and 5 (see Fig. 8.2) were 
onne
ted via sili
one tubing (inner diameter 0.5 mm) todisposable syringes. Syringes 2, 3 and 5 was �lled with demineralised water and syringe 1was �lled with a solution of sugar (su
rose or dextran (mol. weight: 17.5 kDa, Sigma-Aldrigde, type D4624)) and 5 % volume red dye (Fla
hsmann S
andinavia, Red Fruit
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Figure 7.1: (a) Pi
ture of the top part (upside down) of the 
hip showing the elevated
hannel and the four brass inlet tubes (pointing down). The 
rosses in the four 
orners wereused for alignment. (b) S
hemati
s of the two PMMA layers (gray) showing the elevated
hannels (white) fa
ing ea
h other. All six inlet positions (bla
k dots) are marked, butfor 
larity only two brass tubes are shown. (
) Pi
ture of the fully assembled setup. (d)S
hemati
 
ross-se
tion 
loseup of the two PMMA layers (gray) 
lamped together with thesemipermeable membrane (dark gray) in between. The sugar in the upper 
hannel (bla
kdots) and the water in�ux J from the lower 
hannel (arrow) are also marked. (e1)-(e4)Valve settings (
ir
les) and 
ross-�ow �ushing pro
edure (arrows) for 
reating a sharp frontin the top 
hannel between the sugar/dye solution (dark gray) and the pure water (white).See details in the text.
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Figure 7.2: A sket
h of the osmoti
ally driven �ow. The osmoti
 pressure for
es water fromthe lower 
hannel, through the membrane, and into the sugar-ri
h part (light gray region)of the upper 
hannel. The water �ux J (
urved arrows), whi
h pushes the sugar frontforward, is related to the sugar 
on
entration by Eq. (7.3). The resulting �ow velo
ity uis represented by the thi
k horizontal arrows.Dye, type 123000) in the dye tra
king experiments and 0.05 % volume sulfate modi�ed
1 µm polystyrene beads (Sigma Aldrigde, L9650-1ML, density 1050 kg/m3) in the parti
letra
king experiments. Inlets 4 and 6 were 
onne
ted to the same water bath to minimizethe hydrostati
 pressure di�eren
e between the two sides of the membrane. The liquidheight in the water bath was 
arefully aligned to the top 
hannel to avoid any di�eren
e inliquid height that might have resulted in a �ow in the opposite dire
tion. When 
ondu
tingboth dye tra
king and parti
le tra
king experiments, the initialization pro
edure shown inFig. 8.2(e1)-(e4) was used: First (e1), inlet valves 1, 2 and 3 were opened and all 
hannelswere �ushed thoroughly with pure water (white) to remove any air bubbles and otherimpurities. Se
ond (e2), after 
losing inlets 2 and 3 a sugar solution (dark gray) wasinje
ted through inlet 1 �lling the main 
hannel in the upper layer. Third (e3), inlet 1 was
losed and water was 
arefully pumped through inlet 2 to produ
e a sharp 
on
entrationfront at the 
ross, as shown in Fig. 8.2(e4) and 7.3(b).Sugar front motion re
orded by dye tra
kingThe motion of the sugar front in the upper 
hannel was re
orded by taking pi
tures ofthe 
hannel in 10 s intervals using a Lei
a MZ 16 mi
ros
ope. This yielded images asthose displayed in Fig. 7.3(a), 
learly showing a front (marked by arrows) of the sugar/dyesolution moving along the 
hannel. To obtain the position λ(t) of the sugar front as afun
tion of time t, the distan
e from the initial front position λ0 to the 
urrent position
λ(t) was measured using ImageJ software. The position of the sugar front was taken to beat the end of the highly saturated dark region. In this way, the position of the front 
ouldbe measured at ea
h time step with an a

ura
y of ±200 µm. As veri�ed in earlier works[16, 30℄, we assumed that the sugar and dye traveled together, whi
h is reasonable sin
ethe Pé
let number is P é ∼ 10 (see Se
tion 7.5). Experiments with dye alone were 
arriedout. These showed, that the osmoti
 pumping due to the dye mole
ules was negligible. We
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Figure 7.3: (a): Images showing the sugar front moving in the 200µm×200µm 
hannel.The time between ea
h image is 50 s. The arrows indi
ate the position of the sugar frontas it moves down along the 
hannel. (b): Closeup of the 
ross jun
tion just after a sharpsugar/water interfa
e has been 
reated.only applied the dye tra
king method on the 200 µm deep 
hannel, sin
e the 100 µm and
50 µm deep 
hannels were too shallow for su�
ient s
attering of red light by the solutionto get a 
lear view of the front.Sugar front motion re
orded by use of parti
le tra
kingThe �ow velo
ity inside the upper 
hannel was re
orded by tra
king the motion of 1 µmbeads in the water 3 mm ahead of the initial sugar front position. Images were re
ordedevery 200−1000 ms for up to 400 s using a Unibrain Fire-i400 1394 digital 
amera atta
hedto a Nikon Diaphot mi
ros
ope with the fo
al plane at h/2 and a fo
al depth of approxi-mately 10 µm. Sedimentation times for the parti
les were 1800 s for the 200 µm 
hanneland 450 s for the 50 µm 
hannel. Sin
e only the �rst 150 s were used when determining thefront velo
ity, this did not interfere with our measurements. At the point of observation,well ahead of the front, the �ow behaved as if it were pressure driven (see the insert inFig. 7.5) and the standard laminar �ow pro�le [10℄ was used to determine the average �owvelo
ity.



Experimental results 837.4 Experimental results7.4.1 Dye tra
kingFigure 7.4 shows the position of the sugar front in the 200 µm deep 
hannel as a fun
tionof time obtained by dye tra
king. The data sets 
orrespond to di�erent 
on
entrationsof su
rose and dextran as indi
ated in the legends. Initially, the sugar front moves with
onstant speed, but then it gradually de
reases, more so for low than high 
on
entrations.The solid bla
k lines are linear �ts for the �rst 100 s giving the initial velo
ity of thefront. As a fun
tion of time the front smears out over a region of growing width wf . InFig. 7.4(
) wf is plotted vs. time for the 10.1 mM dextran experiment along with a �t to
wf = (2Dt)1/2 showing that the sugar front broadens by mole
ular di�usion. Here, D isthe mole
ular di�usion 
onstant.7.4.2 Parti
le tra
kingFigure 7.5 shows the velo
ity as a fun
tion of time obtained by parti
le tra
king in a
200µm×200µm 
hannel. For the �rst 150 s the velo
ity is approximately 
onstant afterwhi
h it starts de
reasing as the sugar front passes the point of observation. We interpretthe mean value of the initial plateau of the velo
ity graph as the speed of the sugarfront. Figs. 7.6(a) and (b) shows the velo
ity of the sugar front as a fun
tion of dextran
on
entration and of 
hannel depth obtained in this way.7.5 Theoreti
al analysisWhen modeling the �ow inside the 
hannel, we use an approa
h similar to that of Es
hri
het al. [16℄. They introdu
ed a 1D model with no axial �ow resistan
e and zero di�usivityin a setting very similar to ours. To formalize this, we 
onsider the two most importantnon-dimensional numbers in the experiments: the Mün
h number M [30℄ and the Pé
letnumber P é [10℄. These numbers 
hara
terize the ratio of axial to membrane �ow resistan
eand axially 
onve
tive to di�usive �uxes respe
tively. In our experiments

M =
wLLpαRTc
wh3

ηL αRTc
=

ηL2Lp

h3
∼ 10−6, (7.1)and

P é =
wfu

D
∼ 10. (7.2)Here η is the vis
osity (typi
ally 1.5 mPa s), wf is the width of the sugar front (typi
ally

500 µm), and D the mole
ular di�usivity of sugar (typi
ally 10−10 m2s−1 for su
rose andthe dye and 10−11 m2s−1 for dextran)7.5.1 Equation of motionSin
e M ≪ 1 and Pe ≫ 1, we shall negle
t the axial �ow resistan
e and the di�usion ofthe sugar in our analysis. In this way, let λ(t) denote the position of the sugar/dye front
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Figure 7.4: Measured position λ of the sugar front as a fun
tion of time t in the
200µm×200µm 
hannel for various 
on
entrations of (a) su
rose and (b) dextran. Thesolid bla
k lines are linear �ts for 0 s< t < 100 s. The dashed lines are �ts to Eq. (7.13).(
) The width wf of the sugar front as a fun
tion of time for the 10.1 mM dextran ex-periment. The dashed bla
k line is a �t to (2Dt)1/2 with D = 1.7 × 10−9m2 s−1, 5 timeslarger than the value given in Tabel 7.1. This, however, is in good agreement with Taylordispersion theory [74, 42℄, sin
e Pé≃ 15.
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Figure 7.5: The average �ow velo
ity u in the 200 µm deep 
hannel as a fun
tion of time
t measured 3 mm ahead of the initial front position. At tc ≃ 150 s (indi
ated by thearrow), the sugar front begins to rea
h the observation point, and the velo
ity de
reasesrapidly. For t > tc, the velo
ity was not determined a

urately. The insert shows a typi
alvelo
ity pro�le U(y, h/2) in the 
enter plane a
ross the 200µm×200µm 
hannel obtainedby parti
le tra
king. The solid bla
k line is a �t to the velo
ity pro�le for a re
tangular
hannel used when obtaining the average �ow velo
ity.in the upper 
hannel, and let V denote the volume behind the front. The �ux J of watera
ross the membrane from the lower to the upper 
hannel, see Fig. 8.2(d), is given by

J = Lp (∆p+∆Π) ≃ LpαRTc, (7.3)where Lp is the membrane permeability, ∆p the hydrostati
 and ∆Π the osmoti
 pressuredi�eren
e a
ross the membrane. In our experiments ∆p = 0, and from the van 't Ho�relation follows ∆Π ≃ αRTc, where α is the osmoti
 non-ideality 
oe�
ient, R is the gas
onstant, T is the absolute temperature, and c is the 
on
entration of sugar mole
ules.Sin
e the 
on
entration is independent of x behind the front and zero ahead of it, J is alsoindependent of x. By the 
onservation of sugar this allows us to a �rst approximation towrite the 
on
entration as
c(x, t) =

{

c0
λ0
λ(t) x ≤ λ(t),

0 x ≥ λ(t).
(7.4)Moreover, the rate of 
hange of the expanding volume V behind the front 
an be related
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Figure 7.6: Front velo
ity u obtained by parti
le tra
king. (a) The velo
ity u plottedagainst dextran 
on
entration c0. The dashed lines are �ts to c provided as guides to theeye. (b) The velo
ity u plotted against 
hannel depth h. The dashed lines are �ts to 1/hprovided as guides to the eye.to J as
dV

dt
= w

∫ L

0
J(x)dx

= wLpαRTc0
λ0

λ(t)

∫ λ(t)

0
dx

= wλ0LpαRTc0. (7.5)However, we also have that
dV

dt
= hw

dλ(t)

dt
, (7.6)whi
h implies together with Eq. (7.5) that

λ(t) = λ0 +
λ0

h
LpαRTc0t = λ0 + ut, (7.7)where the velo
ity u of the front is given by

u =
λ0

h
LpαRTc0. (7.8)
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0Figure 7.7: The time evolution of the sugar 
on
entration pro�le given by Eq. (7.4). Thegray regions represents the sugar lost from the observed region by di�usion, see Eq. (7.9).7.5.2 Corre
tions to the equation of motionIn the previous se
tion, we 
onsidered the motion of a sharp sugar front, as given bythe stepwise 
on
entration pro�le in Eq. (7.4), and found that this moved with 
onstantvelo
ity. However, as 
an be seen in Fig. 7.4(a,b) the front velo
ity gradually de
reases.To explain this, we 
onsider two e�e
ts. First, we observe that in Fig. 7.3(a) there exists aregion of growing size separating the sugar/dye-�lled region from the region of pure water.Even though the sugar and the dye di�use at di�erent rates, we shall assume that some ofthe sugar also lies ahead of the visible front. Sin
e the sugar in this region is lo
ated aheadof the front, the osmoti
 pumping in the observed volume behind the front is lowered, thusslowing down the motion of the observed front. Se
ond, we note that sugar leaking a
rossthe membrane also lowers the osmoti
 pumping behind the front. This e�e
t should beespe
ially pronoun
ed for su
rose, sin
e its mole
ular weight is smaller than the 
ut-o� ofthe membrane. Common to these two e�e
ts is, however, that they are driven by di�usion.In the �rst 
ase, sugar di�uses from the pumping region to a region ahead of the frontand in the se
ond it di�uses a
ross the membrane. The nature of these two e�e
ts makesthem impossible to distinguish from one another. Lumping them together as one di�usionpro
ess 
hara
terized by an e�e
tive di�usion 
onstant δ, we may rewrite Eq. (7.4) as

c(x, t) =

{

c0
λ0

λ(t)+ℓD
x ≤ λ(t),

0 x ≥ λ(t).
(7.9)where ℓD = (2δt)1/2. Here δ is a �tting parameter whi
h has the dimension of a di�usion
oe�
ient and whi
h in
ludes both of the e�e
ts mentioned above. In this way, the amountof sugar lost from the observed volume by di�usion is ∆c ≃ c0 (2δt)

1/2, as indi
ated inFig. 7.7.Using Eqs. (7.5) and (7.6) the time derivative of λ be
omes
dλ

dt
=

LpαRTc0λ0

h

λ

λ+ ℓD
. (7.10)
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aling using λ = sλ0 and t = τ λ0
u , we get that
ds

dτ
=

s

s+
(

τ
P ég

)1/2
, (7.11)where we have introdu
ed the global Pé
let number related to the loss of sugar by di�usion,

P ég =
2λ2

0LpαRTc0
δh

=
2λ0

δ
u. (7.12)Given the experimental 
onditions, P ég is typi
ally of the order 101 − 102. Thus, for

(

τ
P ég

)1/2
≪ 1, Eq. (7.11) 
an be solved by an expansion,

s = s0 + τ

(

1− 2

3s0

(

τ

P ég

)1/2

+O
[(

τ

P ég

)]

)

. (7.13)We have made numeri
al simulations of the full 1-D 
oupled velo
ity-
on
entration equa-tion system for the spe
ial 
ase of di�usion ahead of the front. Our results show, thatthe simple model in Eq. (7.13) 
aptures the essential dynami
s of the motion of the sugarfront. The dashed lines in Figs. 7.4(a) and (b) are �ts to Eq. (7.13), with values of δvarying between 2× 10−7 m2 s−1 and 4× 10−9 m2 s−1, showing good qualitative agreementbetween theory and experiment. However, sin
e we have not tra
ked the sugars dire
tly,these 
annot immediately be 
ompared with the values for su
rose (D = 4.6×10−10 m2/s)and dextran (D = 7.0 × 10−11 m2/s). To 
ompletely resolve this issue, experiments witheg. �uores
ently tagged sugar mole
ules where the 
on
entration on both sides of themembrane is measured are needed.7.6 Dis
ussion7.6.1 Comparison of theory and experimentTo 
ompare the experimental data with theory, we have in Fig. 7.8 plotted the empiri
allyobtained velo
ities uexp against those predi
ted by Eq. (7.8). For nearly all the dextran andsu
rose experiments we see a good agreement between experiment and theory, althoughEq. (7.8) systemati
ally overestimates the expe
ted velo
ities.We interpret the quantitative disagreement as an indi
ation of a de
reasing sugar 
on-
entration in the top 
hannel due to di�usion of sugar into the membrane as well as thepresen
e of a low-
on
entration boundary layer near the membrane, a so-
alled unstirredlayer [58℄.7.6.2 Osmoti
 pumps in lab-on-a-
hip systemsDepending on the spe
i�
 appli
ation, �ows in lab-on-a-
hip systems are 
onventionallydriven by either syringe pumps or by using more advan
ed te
hniques su
h as o�-
hip
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Figure 7.8: The experimental values of the front velo
ity uexp plotted against the theoreti
alresults utheory from Eq. (7.8).osmoti
 pumps [55℄, ele
troni
ally 
ontrolled pressure devi
es, ele
tro-osmoti
 pumps [2℄,evaporation pumps [54℄, or 
apillary pumps [8℄. Most of these te
hniques involves the in-tegration of either movable parts or 
ompli
ated ele
troni
s into the lab-on-a-
hip devi
e.As an appli
ation of our design and fabri
ation method, we suggest the use of integratedosmoti
 pumps in lab-on-a-
hip systems. This 
ould be done by integrating in the devi
ea region where the 
hannel is in 
onta
t through a membrane with a large reservoir 
on-taining an osmoti
ally a
tive agent. By using a su�
iently large reservoir, say 1 
m3, anda 100µm×100µm 
hannel with a �ow rate of 100µm/s it would take more than 10 days toredu
e the reservoir 
on
entration by 50% and thus de
reasing the pumping rate by 50%.We emphasize that su
h osmoti
 pumping would be 
ompletely steady, even at very low�ow rates.7.7 Con
lusionsWe have studied osmoti
ally driven, transient �ows in 200 µm wide and 50 − 200 µmdeep mi
ro
hannels separated by a semipermeable membrane integrated in a mi
ro�uidi
PMMA 
hip. These �ows are generated by the in�ux of water from the lower 
hannel
ontaining pure water, through the semipermeable membrane, into the large sugar 
on-
entration pla
ed in one end of the top 
hannel. We have observed that the sugar frontin the top 
hannel travels with 
onstant speed, and that this speed is proportional to the
on
entration of the sugar solution and inversely proportional to the depth of the 
hannel.We propose a theoreti
al model, whi
h, in the limit of low axial �ow resistan
e, predi
tsthat the sugar front should travel with a 
onstant velo
ity. The model also predi
ts an
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hannel and the speed and a linear relationbetween the sugar 
on
entration and the speed. We 
ompare theory and experiment withgood qualitative agreement, although the detailed me
hanism behind the de
eleration ofthe �ow is still unknown. Finally, we suggest that on-
hip osmoti
 elements 
an potentiallya
t as pumps with no movable parts in lab-on-a-
hip systems.7.8 A
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Table 7.1: List of parameters in alphabeti
 order after the symbol.Parameter Symbol Value and/or unitSugar 
on
entration c mol/LInitial 
on
entration c0 mol/LDi�usive 
on
entration loss ∆c mol/LDi�usion 
onstant D m2/sSu
rose, see Ref. [4℄ D 4.6× 10−10 m2/sDextran, see Ref. [30℄ D 7.0× 10−11 m2/sDye, see Ref. [4℄ D 3.4× 10−10 m2/sHeight of 
hannel h 50, 100, 200 µmHeight of reservoir hr 200 µmFlux a
ross membrane J m/sLength of 
hannel L 27 mmMembrane permeability Lp 1.8 pm/(Pa s)Di�usion length lD mMün
h number MHydrostati
 pressure p PaPé
let number, lo
al PéPé
let number, global PégGas 
onstant R 8310PaL/(Kmol)Position of sugar front sAbsolute temperature T KTime t s
x-velo
ity of sugar front U m/sMean x-velo
ity of sugar front u m/sVolume behind sugar front V m3Width of 
hannel w 200 µmWidth of sugar front wf mCartesian 
oordinates x, y, z mOsmoti
 
oe�
ients:Dextran (T = 293K) α 41, see Ref. [30℄Su
rose (T = 293K) α 1, see Ref. [47℄Fitting parameter δ m2/sVis
osity η Pa sPosition of sugar front λ mPosition of initial sugar front λ0 13.5 mmOsmoti
 pressure Π Pa
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Chapter 8Self-
onsistent unstirred layers inosmoti
ally driven �owsThe one-dimensional equations of motion analyzed in Chapters 3-6 where derived underthe assumption that the 
on
entration is well-mixed a
ross the 
ross-se
tion of the tube.This approximation is valid if the radial transport of solute mole
ules due to di�usion ismu
h faster than the transport due to adve
tion. To quantify exa
tly when this 
onditionis ful�lled, one generally needs to solve the 
oupled 
on
entration-osmoti
 �ow problem.Sin
e this question is relevant to a number of industrial membrane transport problems(su
h as desalination) it has been analyzed by a number of workers. One of the main
ontributors is T. J. Pedley who in a series of papers published in the late 1970s and early1980s solved the 
oupled problem in a number di�erent geometries [59, 60, 56, 57, 58℄. Hissolutions quantify to what degree the solution is well-mixed, but only in situations wherethe osmoti
 �ow a
ross the membrane is a small perturbation to a mu
h larger, externallydriven, bulk velo
ity 
omponent. This situation is relevant to many industrial appli
ation,where e.g. an external stirring me
hanism is present, but not to plants where osmosis itselfdrives the bulk �ow.The author, Tomas Bohr, and Henrik Bruus thus de
ided to look for analyti
al solutionsof the self-
onsistent problem i.e. the problem where osmosis itself is driving the bulk �ow.We studied the �ow between parallel plates be
ause the �ow �eld was already known inthe literature, and thus allowed for a simple analysis of the 
on
entration part of problem.This 
hange in geometry, of 
ourse, makes the appli
ability of our results to plants di�
ultto a

ess. However, sin
e we show that all geometries behave nearly the same under aproper res
aling, we believe that the low value of the radial Pé
let number found in plants(Pe ≃ 0.01, 
f. Eq. (3.49), p. 26) implies that the 
on
entration is well mixed a
ross thetube 
ross-se
tion.The following paper, [27℄, presented unabridged in Se
. 8.1�8.7, des
ribes our theoreti
alanalysis of parallel plate problem. The author 
ondu
ted all of the numeri
al simulationsand most of the theoreti
al analysis. To stay true to the published manus
ript the notationdi�ers slightly from that found in Chapters 1�6. Please refer to Table 8.1, p. 108, for a listof parameters. 93



94 Self-
onsistent unstirred layers in osmoti
ally driven �owsStart of paperK. H. Jensen, T. Bohr and H. BruusSelf-
onsistent unstirred layers in osmoti
ally driven �owsJournal of Fluid Me
hani
s 662, pp. 197�208 (2010)8.1 Abstra
tIt has long been re
ognized, that the osmoti
 transport 
hara
teristi
s of membranes maybe strongly in�uen
ed by the presen
e of unstirred 
on
entration boundary layers adja
entto the membrane. Previous experimental as well as theoreti
al works have mainly fo
usedon the 
ase where the solutions on both sides of the membrane remain well-mixed dueto an external stirring me
hanism. We investigate the e�e
ts of 
on
entration boundarylayers on the e�
ien
y of osmoti
 pumping pro
esses in the absen
e of external stirringi.e. when all adve
tion is provided by the osmosis itself. This 
ase is relevant in thestudy of intra
ellular �ows, e.g. in plants. For su
h systems, we show that no well-de�nedboundary layer thi
kness exists and that the redu
tion in 
on
entration 
an be estimatedby a surprisingly simple mathemati
al relation a
ross a wide range of geometries and Pé
letnumbers. Osmosis, boundary layers, biologi
al �ows.8.2 Introdu
tionOsmoti
 transport 
hara
teristi
s of membranes are strongly in�uen
ed by the presen
e ofunstirred 
on
entration boundary layers adja
ent to the membrane [58℄. As �rst demon-strated by Dainty [15℄, these boundary layers lead to a de
rease in the e�
ien
y of theosmoti
 pumping pro
ess. To see this, 
onsider an ideal semipermeable membrane (i.e. amembrane permeable to solvent mole
ules but impermeable to solute mole
ules) separat-ing two solutions of the same solute at di�erent bulk 
on
entrations, say zero and unity,as shown in Fig. 8.1(a). If there were no transport of solvent a
ross the membrane, these
on
entrations would persist all the way to the membrane. However, if there is a �ux Jof solvent due to osmosis a
ross the membrane from the region of low 
on
entration (saythe left side) to the region of high 
on
entration, the solutes will be pushed away from themembrane on the high-
on
entration side of the membrane. As a result, the 
on
entrationof solute in the vi
inity of the membrane on the high-
on
entration side will be lower. The
on
entration di�eren
e between the two sides of the membrane is thus de
reased, and thisin turn redu
es the magnitude of the osmoti
ally driven �ux J , whi
h in the absen
e ofhydrostati
 pressure di�eren
es a
ross the membrane is given by
J = γ, (8.1)
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Figure 8.1: (a) Sket
h of solute 
on
entration distributions on either side of a semiperme-able membrane separating two well-stirred solutions of the same solute at di�erent bulk
on
entrations c = 0 (left side) and c = 1 (right side). Be
ause of the transport of solventa
ross the membrane due to osmosis (sket
hed by the arrows) from left to right, there willbe a tenden
y for the 
on
entration γ of solute in 
onta
t with the membrane to be lowerthan unity just on the right side of the membrane. Sin
e the �ux of solvent J is propor-tional to the di�eren
e in 
on
entration, we have that J = γ. (b) Numeri
ally 
omputedmembrane 
on
entration γN as a fun
tion of the Pé
let number Pe for the parallel plategeometry (
ir
les) shown in Fig. 8.2(a). Also shown are the expressions given by Eq. (8.10)(solid) and Eq. (8.17) (dashed). See Se
. 3 for details.
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onsistent unstirred layers in osmoti
ally driven �owsa

ording to the standard equations of non-equilibrium thermodynami
s [39℄. Here, J isthe volume �ux pr. area pr. unit time, γ is the solute 
on
entration immediately to theright (high 
on
entration side) of the membrane, and both quantities are non-dimensionalas des
ribed in Se
. 8.3.1.A large number of papers has presented both experiments (see e.g. [62℄) and theory (seee.g. [59, 56, 57, 58℄ and [3℄) for the situation des
ribed above. Most of these workers havefo
used on the 
ase where the solution on both sides of the membrane remain well-stirredsu
h that a well de�ned boundary layer exists. For a number of di�erent geometries, thethi
kness of the boundary layer has been determined as a fun
tion of systems parametersand the fun
tional dependen
e on the osmoti
 pumping e�
ien
y γ has be found.A major limitation of the above theoreti
al and experimental work is, however, thatit is 
on
erned only with situations in whi
h the solutions on both sides of the membraneremain well-mixed due to an external stirring me
hanism. In nearly all 
ases, it is assumedthat the �ow generated by osmosis through Eq. (8.1) is negligible in determining the bulk�ow, and only of signi�
an
e 
lose to the membrane.The goal of the present work is to examine theoreti
ally the situation in whi
h theadve
ting bulk �ow is itself driven by Eq. (8.1) and no external stirring is present. Animportant example, the one that inspired this work, is the �ow in phloem 
ells of plants,where the osmoti
 pressure di�eren
es are believed to be responsible for the �ow of thesugar solutions (the so-
alled Mün
h me
hanism, see e.g. [79℄, [30℄). In the present paper,we 
ompute the 
on
entration and �ow pro�les for various simple geometries. For thesesystems, we will show that no lo
alized boundary layer exists, and se
ond that the drop in
on
entration γ 
an be 
al
ulated by a simple mathemati
al relation valid a
ross a widerange of geometries and Pé
let numbers.8.3 Governing equations and geometriesIn the analysis of the problem des
ribe above, we shall 
onsider steady osmoti
ally driven�ows 
on�ned between two in�nite parallel plates at low Reynolds numbers. We thus 
on-sider systems su
h as those sket
hed in Fig. 8.2(a)-(
), and explained further in Se
. 8.3.3,in whi
h a solute of 
on
entration c is di�using and being adve
ted by a velo
ity �eld u,arising due to an osmoti
 �ow a
ross a membrane (indi
ated by dashed lines).8.3.1 Non-dimensional variablesTo simplify the mathemati
al expressions we are using non-dimensional variables through-out this paper. The expli
it s
alings are: Lengths are given by the plate-to-plate distan
e
h, 
on
entrations are in units of the 
hara
teristi
 
on
entration c0, velo
ities are givenby the 
hara
teristi
 osmoti
 velo
ity u0 = LpRTc0, where Lp is the permeability of themembrane, R is the molar gas 
onstant, and T is the absolute temperature. Moreover,pressure is given in terms of shear-stress pressure p0 = ηu0/h.The Reynolds number is given by Re = ρu0h/η ≪ 1, so we treat only Stokes �ow inthis paper. The Pé
let number is given by Pe = u0h/D, where D is the di�usivity of thesolute. In most 
ases we assume that Re ≪ 1 while Pe is �nite whi
h implies that the



Governing equations and geometries 97S
hmidt number Sc = η
ρD is very large. This is 
onsistent with the situation in plants
ells, where the S
hmidt number is of order 104.8.3.2 Steady state equations of motion - Stokes �owThe equations of motion governing the velo
ity �eld u = (u, v) and pressure �eld p are theStokes equation and the 
ontinuity equation

∇p = ∇2u, (8.2)
∇ ·u = 0. (8.3)The equation governing the 
on
entration �eld is

u · ∇c =
1Pe∇2c. (8.4)The velo
ity boundary 
ondition at the membrane interfa
e Ω, is that the normal velo
ity
omponent n ·u is given by

n ·u(x, y) = c(x, y), for (x, y) ∈ Ω. (8.5)The 
on
entration boundary 
ondition is that the normal 
omponent of the solute �uxa
ross the membrane must be zero, ie.
1Pen · ∇c(x, y) + n ·u(x, y)c(x, y) = 0, for (x, y) ∈ Ω. (8.6)Solutions to Eqns. (8.2)-(8.6) for arbitrary geometries are not readily available. Thus inSe
. 8.4 we study full numeri
al solutions to our problem, and from the observed behaviorof these we establish and verify approximate analyti
al solutions in Se
. 8.5.8.3.3 GeometriesWe 
onsider the three geometries shown in Fig. 8.2. Outside the indi
ated membranes asolution of 
on
entration c = 0 is present. First, in (a), left-right symmetri
 �ow betweentwo parallel plates separated a non-dimensional distan
e of 1 is analyzed. At the the upperplate, a sour
e region of length 2ℓm is kept at a 
onstant 
on
entration c = 1. On the lowerplate, fa
ing the 
onstant 
on
entration zone, is a membrane (indi
ated by the dashed line)also of length 2ℓm. Se
ond, in (b), up-down symmetri
 �ow between two parallel plates(separated by a distan
e 1) with a solid-wall sour
e region (c = 1) at a right angle to themembrane is 
onsidered. The length of the membrane zone is ℓ(b)m , and the distan
e fromthe sour
e region to the membrane region is H. Finally, in (
), left-right and up-downsymmetri
 �ow around a solid 
ylinder of radius r is embedded exa
tly half way betweentwo plates (separated by a distan
e 1) is 
onsidered. At the surfa
e of the 
ylinder is asour
e region (c = 1). The length of the membrane zone is ℓ(c)m . At the 
ylinder surfa
e weimpose a no-slip boundary 
ondition.In the following, we will investigate geometry (a) analyti
ally and numeri
ally, whilegeometries (b) and (
) will only be 
onsidered numeri
ally.
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h of the geometries 
onsidered. (a) Flow between parallel plates. On theupper plate, a region is kept at a 
onstant 
on
entration c = 1. On the lower plate, fa
ingthe 
onstant 
on
entration zone at distan
e H = 1, is a membrane of length 2ℓm in this
ase plotted for ℓm = 1. By osmosis, liquid �ows a
ross the membrane, thereby dilutingthe 
on
entration near the membrane. (b) Flow between parallel plates with a membraneof length ℓ

(b)
m = 2 at a right angle to the 
on
entration sour
e. The distan
e between thetwo zones are H = 2. (
) A 
ylinder of radius r = 1

4 , embedded exa
tly half way betweenthe two plates. At the surfa
e of the 
ylinder the 
on
entration is kept 
onstant at c = 1.The length of the membrane zone is ℓ(c)m = 2 and H = 1
4 . In (a)-(
), numeri
ally 
omputed
on
entration 
ontours (see (d)) are shown (Plotted for Pe′ = 10, see Se
. 5). The velo
ity�eld is indi
ated by the arrows. (d) Contour s
ale bar for the 
on
entration 
ontour plotsin (a)-(
).
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al results for the left-right symmetri
 parallelplate problemThe steady-state behavior of the systems shown in Fig. 8.2 was solved using the numeri
almethods des
ribed in Appendix 8.8. The �gure shows typi
al 
on
entration and velo
itypro�les obtained in this way. Varying the Pé
let number Pe , a number of su
h simulationswere made and the following qualitative observations were made.In geometry (a), for Pe ≪ 1, the 
on
entration in the membrane zone (0 < x < ℓm)hardly varies at all along the x-dire
tion, and the variation along the y-dire
tion is linear.This is illustrated in Fig. 8.3 whi
h shows 
ross-se
tions taken along the y-dire
tion at fourdi�erent x values. For x > ℓm the 
on
entration is �at, having been smoothed by di�usion.Near x = ℓm a transition takes pla
e between the linear 
on
entration gradient and the �at
on
entration plateau near the outlet. This is illustrated in Fig. 8.4 where 
ross-se
tionstaken along the x dire
tion are shown.To quantify the e�
ien
y of the osmoti
 pumping pro
ess, we 
al
ulate the mean 
on-
entration at the membrane γ as a fun
tion of the Pé
let number Pe, plotted in Fig. 8.1(b).For small values of Pe , γ tends to the inlet 
on
entration c = 1. This is reasonable sin
eany depletion of the membrane 
on
entration would be 
ountera
ted by the strong di�u-sion. For larger values of Pe, equilibrium between di�usive and adve
tive for
es leads tovalues of γ < 1 thus redu
ing the e�
ien
y of the osmoti
 pump.One further observation is, that as shown in Fig. 8.3 (e)-(f), the velo
ity �eld u = (u, v)is well des
ribed by a squeeze �ow [10℄
u(x, y) = 6xy(1− y)γ, (8.7a)
v(x, y) = y2(2y − 3)γ. (8.7b)Despite of the ri
hness found in the numeri
al solutions illustrated in Figs. 8.2, 8.3,8.4 and 8.1(b), the system 
an be des
ribed theoreti
ally using a few simple assumptionsregarding the �ow and velo
ity �eld at very low Pé
let numbers. From there, the solutions
an be extended using perturbation methods to be valid a
ross a wider range of parametervalues.8.5 Theory for the left-right symmetri
 parallel plate prob-lemInspired by the qualitative results dis
ussed above, we will begin by modeling the 
on
en-tration pro�le of Fig. 8.2(a) using that for Pe ≪ 1 
on
entration pro�le is linear in themembrane zone. Near the outlet, the 
on
entration pro�le is �attened by di�usion and theresulting 
on
entration value is simply the mean of the values at the sour
e region and atthe membrane:

c(x, y) =

{

1− (1− γ)y, for x < ℓm,
1
2(1 + γ), for x > ℓm.

(8.8)
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Figure 8.3: (a)-(d) Numeri
ally 
omputed 
on
entration pro�les c (
ir
les) plotted against
y for di�erent values of x (as indi
ated above the plots) and the Pé
let number Pe (asindi
ated next to the data points). All plots were obtained for the geometry in Fig. 8.2(a)with ℓm = 1. Also shown are the expressions given by Eq. (8.8) (solid lines) and Eq. (8.16)(dashed lines). (f)-(e) Numeri
ally 
omputed velo
ity pro�les uN (
ir
les) and vN (dots)plotted against y for di�erent values of the Pé
let number Pe (as indi
ated next to thedata points). Also shown are the velo
ity pro�les given by Eqns. (8.7a) and (8.7b) for uand v respe
tively The solid lines are plotted with γ obtained from Eq. (8.10) while thedashed lines uses γ(1) from Eq. (8.17).
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Figure 8.4: Numeri
ally 
omputed 
on
entration pro�les c (
ir
les) plotted against x fordi�erent values of y (as indi
ated next to the plots) and the Pé
let number Pe (as indi
atedabove the plots). All plots were obtained with ℓm = 1. Also shown is the expressions givenby the solution to Eq. (8.18) (solid lines).To estimate the 
on
entration at the membrane γ we use the boundary 
ondition (8.6),
1Pe ∂yc = −γ2. (8.9)With Eq. (8.8) this leads to

γ =

√
1 + 4Pe− 1

2Pe
, (8.10)an expression whi
h does not, ex
ept for the length s
ale h in the Pé
let number, dependon the spe
i�
 geometry. Fig. 8.1(b) shows the numeri
al results 
ompared with Eqns.(8.8) and (8.10).8.5.1 A detailed look at the 
on
entration pro�le for x < ℓmFor Pe ≥ 1, the assumption of a linear 
on
entration pro�le given in Eq. (8.8) is no longervalid. To determine a more a

urate 
on
entration distribution in the membrane zone we
onsider the equation governing the 
on
entration �eld

∂2
xc+ ∂2

yc = Pe(u∂xc+ v∂yc
)

. (8.11)Starting with the result from Eq. (8.8), we will expand the solution of Eq. (8.11) in powersof Pe as c = c(0) + Pec(1) + Pe2c(2) + . . ., with
c(0) = 1− (1− γ)y. (8.12)
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onsistent unstirred layers in osmoti
ally driven �owsTo �rst order in Pe the governing equation be
omes
∂2
xc

(1) + ∂2
yc

(1) = u∂xc
(0) + v∂yc

(0). (8.13)The boundary 
onditions are that c = 1 on the top boundary and that c = γ on themembrane. We will assume that the terms ∂2
xc

(1) and u∂xc
(0) are small 
ompared to ∂2

yc
(1)and v∂yc

(0). We further use, that the velo
ity �eld u = (u, v) 
an be des
ribed by a squeeze�ow. Inserting c(0), we get that
∂2
yc

(1) = v∂yc
(0) = γy2 (2y − 3)

[

− (1− γ)
]

= −αy2(2y − 3), (8.14a)where α = γ(1− γ). Finally, c(1) be
omes
c(1) = − α

20

(

2y5 − 5y4 + 3y
)

. (8.15)Thus, to �rst order in Pe, the 
on
entration distribution is
c(x, y) = 1− (1− γ)y − αPe

20

(

2y5 − 5y4 + 3y
)

. (8.16)The 
orresponding 
orre
tion to γ 
al
ulated from the membrane boundary 
ondition inEq. (8.9) is
γ(1) =

√

49
400Pe2 + 33

10Pe + 1− 1− 7
20Pe

13
10Pe , (8.17)whi
h is shown as the dashed line in Fig. 8.1(b) To 
ompare Eqns. (8.16) and (8.17) with ournumeri
al simulations, Fig. 8.3 shows numeri
ally obtained 
on
entration pro�les plottedas a fun
tion of y along with Eq. (8.16) for x = 0, 0.25, 0.5 and x = 1.8.5.2 A detailed look at the 
on
entration pro�le for x > ℓmFor x > ℓm we shall assume, that the �ow is parallel to the x-axis, su
h that the equationof motion is now

∂2
xc+ ∂2

yc = Pe u∂xc, (8.18)where u is a now paraboli
 velo
ity pro�le u = 6γy(1 − y)ℓm and v = 0. As c is even in
y we expand it in a 
osine-series c(x, y) = c0 +

∑∞
n=1 cn(x) cos(nπy) and the equation forthe 
oe�
ients cn(x) has the form ∂2

xcn−n2π2cn−
∑∞

m=1A
nm∂xcm = 0, where the matrixelements Anm are given in Appendix 8.9. Trun
ating to the lowest two orders (n,m = 1, 2)we sear
h for the exponentially de
aying solutions ci(x) = c0i exp(λix) satisfying

(λ2
1 −A11λ1 − π2)(λ2

2 −A22λ2 − 4π2) = 0, (8.19)with negative values of λ1 and λ2. The most important eigenvalue is the one with thesmallest absolute value sin
e it will determine the asymptoti
 de
ay. It seems likely thatthis eigenvalue is asso
iated to the lowest modes and thus it should be given as
λ∗ =

1

2

(

A11 −
√

(A11)2 + 4π2
)

. (8.20)



Results from other geometries 103In the limit Pe ≪ 1, we �nd that λ∗ ≃ −π. Taking the �rst order result (8.17), we �nd
Peγ(1) → 20/7 for Pe ≫ 1, whi
h implies that A11 = 20

7 ℓm
(

1− 3/π2
). As long as ℓm isnot too large (i.e. when A11 ≪ 2π) we on
e again obtain λ∗ ≃ −π. If on the other hand

A11 ≫ 2π, we �nd that λ∗ → 7π4ℓm/(20(π
2 − 3)) ≈ −4.96ℓm.For ℓm = 1 and Pe = (0.1, 1, 10, 100) we �nd numeri
ally among the �rst 10 eigenvalues

λ∗
N = (−3.11,−2.93,−2.47,−1.88) while Eq. (8.20), with Eq. (8.17) used for 
al
ulating

γ, gives λ∗ = (−3.11,−2.95,−2.58,−2.38), only di�ering signi�
antly at the fourth eigen-value.8.6 Results from other geometriesTo test the validity of Eq. (8.10) for geometries other than Fig. 8.2(a), for whi
h it wasoriginally derived, we show in Fig. 8.5 numeri
ally obtained values of the mean membrane
on
entration γN plotted against Pe for the geometries found in Fig. 8.2 (b) and (
). InFig. 8.5(a) γN is plotted against the usual Pé
let number while in (b) it is plotted againstthe res
aled Pé
let number Pe ′ = Hhu0
D

, (8.21)where H is the minimum distan
e between the membrane and the 
onstant 
on
entrationzone in units of the plate-to-plate distan
e h, as indi
ated in Fig. 8.2 (b) and (
). Asis 
learly seen, the data 
ollapse is signi�
ant when using Pe′. The result obtained inEq. (8.17), while only valid for geometry (a), is shown for 
omparison.The fa
t the data 
ollapse even for geometry (b) is surprising, sin
e there the gradientfrom the sour
e region to the membrane region is along the x-dire
tion and thereforeEqns. (8.4)-(8.6), whi
h even to lowest order in Pe 
onstitute a highly nonlinear problem,do not dire
tly redu
e to Eq. 8.9. We interpret the data 
ollapse as being due to the fa
tthat the 
on
entration gradient in the x-dire
tion indu
es a gradient of equal size in adire
tion normal to the membrane, in this 
ase the y-dire
tion. This 
an be seen dire
tlyin Fig. 8.6 where the 
on
entration x-derivative ∂xc is 
onstant (−0.33 in this 
ase) inthe region separating the sour
e and membrane zones, and equal to the y-derivative of the
on
entration ∂yc at the membrane interfa
e.This shows that the relative orientation of the sour
e and membrane regions does notplay a large role in determining the �ow. This however is hardly surprising sin
e one wouldnot expe
t e.g. a 
hange in orientation of the membrane to strongly in�uen
e the in�ow ata given 
on
entration, at least when the non-dimensional separation distan
e H is mu
hlarger than unity. The mathemati
al reason is presumably that the 
on
entration �eld tolowest order in Pe satis�es the Lapla
e equation (Eq. (8.4) with u = 0) and thus that theintegral of (∇c)2 over the domain is minimal, favouring solutions where the size of the
on
entration gradient is nearly 
onstant.
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Figure 8.5: (a) Numeri
ally 
omputed mean membrane 
on
entration γN as a fun
tion ofthe Pé
let number Pe = hu0
D for the three geometries of Fig. 2. For geometry {a} plotof γ(a)N for H = 1 (
ir
les); for geometry {b} plot of γ(b)N for H between 1/2 and 5/2 and

ℓ
(b)
m = 1/2 (squares); and for geometry {
} plot of γ(c)N for H = 1/4, ℓ

(c)
m = 1/4, and

r = 1/4 (diamonds). The 
urves show the predi
tion given by Eq. (8.10) (solid 
urve) andEq. (8.17) (dashed 
urve). (b) As in panel (a) ex
ept now γN is shown as a fun
tion of themodi�ed Pé
let number Pe ′ = HPe = Hhu0
D .
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Figure 8.6: Flow and 
on
entration �eld for geometry (b). (a) Cross-se
tion plot of the
on
entration c (bla
k 
ir
le) and the 
on
entration x-derivative ∂xc (open 
ir
les) plottedalong the solid white line shown in the inset for H = 2, ℓ(b)m = 1
2 and Pe′ = 10. Thesolid bla
k line indi
ates ∂xc = −0.33 . The 
on
entration sour
e is at x = 0 and themembrane starts at x = 2. (b) Cross-se
tion plot of the 
on
entration c (bla
k 
ir
les) andthe 
on
entration y-derivative ∂yc (open 
ir
les) plotted along the solid white line shownin the inset for the same parameters as in (a). The solid bla
k line indi
ates ∂yc = −0.33,the value at the membrane (y = 0).8.7 Con
lusionIn this paper, we have studied new solutions to osmoti
ally driven �ow problems, wherethe distribution and �uxes of solutes and liquid have generated self-
onsistent �ow and
on
entration patterns. We have presented a general analyti
al solution method, andhave applied this method to a spe
i�
 example, obtaining detailed knowledge of the �ow-and 
on
entration �elds in the parallel plate geometry (
.f. Fig. 8.2(a)). This geometryhas also been studied numeri
ally, and we �nd good agreement between our analyti
alsolution method and the numeri
s. Further, we have studied two topologi
ally di�erentgeometries numeri
ally varying the governing parameter, the Pé
let number, by eight ordersof magnitude. Using a s
aled Pé
let number, we obtain a data 
ollapse over all eight ordersof magnitude. This shows, that the while the detailed nature of the solutions depend onthe geometry in question, 
f. Fig. 8.2(a)-(
), the osmoti
 pumping e�
ien
y is largelyindependent of the geometry, as long as the 
orre
t length s
ale for the problem is 
hosen.This work was supported by the Danish National Resear
h Foundation, Grant No. 74.8.8 Numeri
al methodsThe problem posed by Eqns. (8.2)-(8.6) was solved using the 
ommer
ial �nite element(FEM) software pa
kage COMSOLMultiphysi
s 3.4. See e.g. [32℄ for a detailed dis
ussion
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Figure 8.7: Comparison between our numeri
al method and Pedley's analyti
al solutionfor a shear �ow above a membrane as shown in (a). To the left, a solution of 
on
entra-tion c = 1 is entering the 
omputational with a velo
ity pro�le (u, v) = (ky, 0). As thesolution passes above the membrane, the �ow and 
on
entration pro�les are perturbed,
reating a 
hara
teristi
 boundary layer. (a) also shows 
on
entration 
ontours (s
ale barin Fig. 8.3(
)) and velo
ity arrow plot for k = 25 and Pe = 10. (b) Plot of the numeri
ally
omputed 
on
entration at the lower wall γ(x) as a fun
tion of position x (open 
ir
les atthe membrane, and solid 
ir
les on the wall). The solid line represents Pedley's analyti
alsolution [57℄.of applying the FEM method to solve Stokes �ow problems. To validate our numeri
al 
ode,we used the analyti
al solution provided by [57℄ for a shear �ow above a membrane. Fig. 8.7shows a 
omparison between our numeri
al method and Pedley's analyti
al solution.
8.9 Solution of the di�usion-adve
tion eigenvalue problemThe matrix elements Anm in Se
. 8.5.2 are
Anm = 2β

∫ 1

0
cos(nπy) cos(mπy)y(1 − y) dy =







−2β
(1+(−1)m+n)(m2+n2)

(m2−n2)2π2
for n 6= m,

2β
12

(

1− 3
n2π2

) for n = m,(8.22)



Solution of the di�usion-adve
tion eigenvalue problem 107where β = 6Pe γℓm. Note, that Anm = 0 for odd values of n+m. The eigenvalue problembe
omes the diagonalization of the matrix
M =























0 1 0 0 0 0 · · ·
12π2 A11 0 0 0 A13 · · ·
0 0 0 1 0 0 · · ·
0 0 22π2 A22 0 0 · · ·
0 0 0 0 0 1 · · ·
0 A31 0 0 32π2 A33 · · ·... ... ... ... ... ... . . .























, (8.23)
from whi
h the 
oe�
ients cn 
an be determined to obtain the solution to Eq. (8.18).Fig. 8.4 shows the results for N = 20, Pe = 0.1 and Pe = 100 plotted together withthe 
orresponding numeri
al solutions. A
ross the whole range of Pe values, we �nd goodagreement with the numeri
al results. End of paperK. H. Jensen, T. Bohr and H. BruusSelf-
onsistent unstirred layers in osmoti
ally driven �owsJournal of Fluid Me
hani
s 662, pp. 197�208 (2010)
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Table 8.1: List of parameters in alphabeti
 order after the symbol.Parameter Symbol Value and/or unitMatrix element AnmCon
entration 
Chara
teristi
 
on
entration c0 mol/LDi�usivity D m2/sMini. dist. from membrane to 
onstant 
on
. zone HPlate-to-plate distan
e h mMembrane permeability Lp m/(Pa s)Length of membrane zone ℓmNormal ve
tor nPressure pPe
let number PeGas 
onstant R 8.31 J/(K mol) [4℄Radius of 
ylinder rReynolds number ReS
hmidt number ScTemperature T KOsmoti
 velo
ity u0 m/sVelo
ity �eld u = (u, v)Cartesian 
oordinates x, yCon
entration at membrane interfa
e γVis
osity η Pa sMatrix eigenvalue λnDensity ρ kg/m3Membrane interfa
e Ω



Chapter 9Con
lusion and outlookCon
lusionThe present thesis has been devoted to a theoreti
al investigation of osmoti
ally driven�ows in mi
ro�uidi
 systems and their relation to sugar transport in plants. We haveanalyzed the �uid me
hani
s of these �ows to shed new light on the quantitative andqualitative properties of the translo
ation pro
ess that o

ur in the phloem vas
ular systemof plants.Using a simple model framework, where we think of the plant as 
onsisting of a leaf, astem and a root zone, we have found new analyti
al solutions to the equations of motion.These allow us to fully 
hara
terize the dependen
e of the �ow speed on the parametersof the problem su
h as leaf size, stem length, and phloem sieve tube radius. We have
ompared the results of the model to in-vivo measurements made on 7 di�erent plantspe
ies with good results.An interesting predi
tion of the model is that the osmoti
ally driven Mün
h �ow me
h-anism has a maximum in translo
ation velo
ity for a spe
ial value of the radius a = ac.The existen
e of su
h a maximum is quite easy to understand: the osmoti
 �ow takespla
e a
ross the 
ell surfa
e and is therefore more e�e
tive in terms of the axial velo
ityfor thinner tubes where the surfa
e-to-volume ratio is larger. Very thin tubes, on the otherhand, o�er high vis
ous resistan
e to the �ow, and thus there is an optimum radius ac,where the osmoti
 pump is e�e
tive and the resistan
e not too large. We have derived ananalyti
al expression for ac whi
h takes the form of an allometri
 s
aling law relating theradius of the sieve tube ac to the length of the stem l2 and the size of the leaf l1; a3c ∝ l1l2.We have 
ompared this predi
tion to plant data and have found good agreement betweenobservations and our result for plants varying several orders of magnitude in size. Thissuggests that the physi
al 
onstraints imposed by the optimality of the Mün
h me
hanismhave played a signi�
ant role in the evolution of the phloem vas
ular system of plants.We have studied several aspe
ts of the �ow pro
ess in detail. First, we have tried toquantify the e�e
t of the perforated sieve plates that separate adja
ent phloem 
ells onthe hydrauli
 resistan
e of the phloem translo
ation pathway. Our �ndings suggest thatthe presen
e of sieve plate 
ontributes signi�
antly to the total hydrauli
 resistan
e, andthat one needs to take this into a

ount when modeling long-distan
e transport in plants.109



110 Con
lusion and outlookSe
ond, we have studied the e�e
t of unstirred 
on
entration boundary layers on the �owin order to quantify how well-mixed the 
on
entration �eld is. We have found that at thePé
let numbers relevant to plants the 
on
entration is nearly uniformly distributed a
rossthe tube.Finally, we have designed, fabri
ated and 
ondu
ted osmoti
 experiments using a newtype of biomimi
king mi
ro�uidi
 devi
es with 
hannels approa
hing the dimensions foundin plants. We have found that the experiments follow the Mün
h theory with reasonablea

ura
y.OutlookThe equations of motion analyzed in the present thesis were derived under a number ofassumptions that identi�es whi
h physi
al e�e
ts are believed to be most signi�
ant.Theseapproximations are not due to the author, but are widely used throughout the phloemtransport literature.The appli
ability of a number of these assumptions are, however, not well establishedand needs to be tested empiri
ally. It is therefore an important task for future resear
h inthis �eld to analyze and identify the quantitative e�e
t that ea
h of these approximationshas on the �ow. The analyti
al results relating the translo
ation velo
ity to the 
hara
ter-isti
 sizes of the plant organs derived in the present thesis 
an a
t as a starting point forthis type of analysis. By studying deviations from the predi
tions of the model, one 
anidentify plants that have behaviors very far from the predi
tions and thereby learn of thequalitative and quantitative features whi
h makes the assumption valid or invalid.The author would like, mainly out of personal interest, to highlight the fa
t that most
urrent phloem models 
ompletely negle
t the bran
hed stru
ture of the phloem transportnetwork. These networks are present on many s
ales in plants and are known to play asigni�
ant role in the stru
ture of translo
ation networks in virtually all living 
reaturesfrom the largest animals to the smallest mi
robes [87℄. This is most likely also the 
ase forthe phloem network.Finally, the author believes that future resear
h should also fo
us on gymnosperms.For this group of plants, some of whi
h are very tall trees, the feasibility of the Mün
hme
hanism for long distan
e transport is even more 
ontroversial than for the angiospermsstudied in the present thesis. A �rst step in this dire
tion would be to study the hydrauli
resistan
e of sieve plates and optimized Mün
h s
aling behavior in gymnosperms.



Appendix AAnalyti
al solution of the 3-zonemodelIn this appendix we provide analyti
al solution to Eqns. (5.28)-(5.30)
∂2
XU1 = Mü U1, (A.1)

∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (A.2)
∂2
XU3 = − U2(X1)

U2(X2)(X3 −X2)
+Mü U3, (A.3)with the set of boundary 
onditions

U1(0) = 0, (A.4)
U2(X1) = U1(X1), (A.5)

∂XU2(X1) = ∂xU1(X1), (A.6)
U3(X2) = U2(X2), (A.7)

∂XU3(X2) = ∂XU2(X2), (A.8)
U3(X3) = 0. (A.9)Along the way, we will use the notation
L1 = X1, (A.10)
L2 = X2 −X1 = 1, (A.11)
L3 = X3 −X2, (A.12)
ω =

L3

L1
. (A.13)111



112 Analyti
al solution of the 3-zone modelIt is immediately apparent that Eqns. (A.1) and (A.3) 
an be solved dire
tly for all valuesof Mü:
U1(X) = A1 sinh

√Mü X +A2 cosh
√Mü X, (A.14)

U3(X) = A3 sinh
√Mü (X −X2) +A4 cosh

√Mü (X −X2) +
U2(X1)

U2(X2)(X3 −X2)

1Mü .(A.15)At present time, solutions of Eq. (A.2) are only avaliable as numeri
al approximations. Inthe limits Mü ≫ 1 and Mü ≪ 1, the system 
an, however, be solved analyti
ally.A.1 Solution for Mü ≪ 1In the limit Mü ≪ 1 the equations of motion (A.1)-(A.3) be
ome
∂2
XU1 = 0, (A.16)

∂2
XU2 = −U1(X1)

U2
2

∂XU2, (A.17)
∂2
XU3 = −U2(X1)

U2(X2)

1

(X3 −X2)
. (A.18)We 
an write the solutions in domains 1 and 3 as

U1(X) = B1X +B2, (A.19)
U3(X) = −1

2

U2(X1)

U2(X2)

1

(X3 −X2)
(X −X3)

2 +B3(X −X3) +B4, (A.20)In domain 2, we 
an integrate on
e
∂XU2 =

U1(X1)

U2
+B5. (A.21)As long as ∂XU2 6= 0, this means that

∂U2X =
1

B5

(

1− U1(X1)

U1(X1) +B5U2

)

, (A.22)whi
h has the solution
X(U2) =

U1(X1)

B5

[

U2

U1(X1)
− 1

B5
log

(

1 + B5U2
U1(X1)

1 +B5

)]

+B6. (A.23)In the limit ∂XU2 = 0, we �nd
U2 = −U1(X1)

B5
. (A.24)



Solution for Mü ≪ 1 113The derivatives of the solutions U1, U2 and U3 are
∂XU1 = B1, (A.25)
∂XU2 =

U1(X1)

U2
+B5, (A.26)

∂XU3 =
U2(X1)

U2(X2)

X3 −X

X3 −X2
+B3. (A.27)A.1.1 Cal
ulation of the 
onstants B1, B2, . . . , B6The 
al
ulations determining the 
onstants B1, B2, . . . , B6

B1 =
1

ω

(

1 + ω −
√
1 + 2ω

)

, (A.28)
B2 = 0, (A.29)
B3 =

1

ω

(

1−
√
1 + 2ω

)

, (A.30)
B4 = 0, (A.31)
B5 =

1

ω

(

1−
√
1 + 2ω

)

, (A.32)
B6 =

L1ω√
1 + 2ω − 1

. (A.33)are given below. They are found using the boundary 
onditions in Eqns. (A.4)-(A.9).Cal
ulation of B2It is 
lear from Eq. (A.4) (U1(0) = 0) that
B2 = 0 (A.34)Cal
ulation of B4Similarly, we �nd from Eq. (A.9) (U3(X3) = 0) that
B4 = 0 (A.35)Cal
ulation of B5To determine B5 we use Eq. (A.6) (∂XU2(X1) = ∂XU1(X1)) and Eq. (A.5) (U2(X1) =

U1(X1)) and �nd that
B1 =

U1(X1)

U2(X1)
+B5 = 1 +B5. (A.36)Thus

B5 = B1 − 1 (A.37)



114 Analyti
al solution of the 3-zone modelCal
ulation of B3To determine B3 we use Eq. (A.8) (∂XU3(X2) = ∂XU2(X2)) and �nd that
U1(X1)

U2(X2)
+B5 =

U1(X1)

U2(X2)
+B3, (A.38)su
h that

B3 = B5 = B1 − 1. (A.39)Cal
ulation of B1To determine B1 
onsider Eq. (A.7)
U2(X2) = U3(X2) = −1

2

U2(X1)

U2(X2)
L3 −B3L3 = −1

2

B1L1L3

U2(X2)
− (B1 − 1)L3. (A.40)This leads to a se
ond order equation for U2(X2)

U2(X2)
2 + (B1 − 1)L3U2(X2) +

1

2
B1L1L3 = 0, (A.41)whi
h has the solution

U2(X2) =
(1−B1)L3 ±

√

(B1 − 1)2L2
3 − 2B1L1L3

2
. (A.42)Using ω = L3

L1
this be
omes

U2(X2) = L1
(1−B1)ω ±

√

(B1 − 1)2ω2 − 2B1ω

2
. (A.43)For U2(X2) to be real, positive and unique, we require that the term in the square rootvanishes

(B1 − 1)2ω2 − 2B1ω = 0. (A.44)This is illustrated for ω = 1 in Fig. A.1, and implies that B1 must be given by
B1 =

1

ω

(

1 + ω −
√
1 + 2ω

)

, (A.45)where we have 
hosen the �−� solution of Eq. (A.44) to ensure that U2(X2) is positive.Cal
ulation of B6From Eq. (A.23) it follows that
X1 = X(U2(X1)) =

U1(X1)

B5





U2(X1)

U1(X1)
− 1

B5
log





1 + B5U2(X1)
U1(X1)

1 +B5







+B6 (A.46)
=

B1L1

B5
+B6, (A.47)su
h that

B6 = L1

(

1− B1

B5

)

. (A.48)
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Figure A.1: Plot of UX(X2) as a fun
tion of B1 for ω = 1 and L1 = 0.2 from Eq. (A.43).The real and imaginary part of the two solutions (+ and −, as indi
ated in the legend)to Eq. (A.43) are shown. For the solution to be physi
al, we require that U2(X2) is real,positive and unique. This happens when B1 =
1
ω

(

1 + ω −
√
1 + 2ω

)

= 2−
√
3 ≃ 0.268.A.1.2 Additional resultsFor the 
al
ulation of the mean translo
ation velo
ity, the ratio χ = U2(X2)/U1(X1) isuseful. We have that

U1(X1) = B1L1 =
L1

ω

(

1 + ω −
√
1 + 2ω

)

, (A.49)and
U2(X2) =

1

2
L1 (1−B1)ω. (A.50)Thus

χ =
U2(X2)

U1(X1)
=

1

2

(

1 +
√
1 + 2ω

)

. (A.51)A.1.3 Cal
ulation of Ū for Mü ≪ 1The mean velo
ity in the translo
ation zone is
Ū =

1

X3 −X2

∫ X3

X2

U2(X) dX, (A.52)This quantity 
an be found from Eq. (A.23). If we de�ne I1, I2, I3, I4 as the area of theregions shown in Fig. A.2, we have that
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I3 I4

I2 I1

0 1 χ

0

X1

X2

U2(X)/U1(X1)

X

Figure A.2: Plot of X (solid line above I4) as a fun
tion of U2(X)
U1(X1)

from Eq. (A.23). Thefour domains I1, I2, I3 and I4 used in the 
al
ulation of Ū are indi
ated.
I0 = I1 + I2 + I3 + I4 = X2χ, (A.53)

I2 = 1, (A.54)
I3 = L1, (A.55)
I4 =

∫ χ

1
X

(

U2

U1(X1)

)

d

(

U2

U1(X1)

)

. (A.56)We shall now evaluate I4, using along the way that limx→0 x log x = 0

I4 =

∫ χ

1

(

U1(X1)

B5

[

U2

U1(X1)
− 1

B5
log

(

1 + B5U2
U1(X1)

1 +B5

)]

+B6

)

d

(

U2

U1(X1)

)(A.57)
=

1

8
L1

(

ω − 2 + (2 + ω)
√
1 + 2ω

)

. (A.58)The mean velo
ity Ū 
an then be 
al
ulated from
Ū = U1(X1)(I1 + I2), (A.59)

= U1(X1)(I0 − I3 − I4) (A.60)
=

1

2

(√
1 + 2ω − 1

)

L1 −
(

4 + 6ω − ω2 +
√
1 + 2ω

(

ω2 − 4− 2ω
)

8ω

)

L2
1. (A.61)In most 
ases, the se
ond order term (in L1) is very small. The fun
tion f(ω) = 1

2

(√
1 + 2ω − 1

)showing the importan
e of the relative size of L1 and L3 is shown in Fig. A.3. For thespe
ial 
ase ω = 1,we �nd that
Ū(ω = 1) =

√
3− 1

2
L1 −

9− 5
√
3

8
L2
1 (A.62)

≃ 0.36L1 − 0.043L2
1. (A.63)
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Figure A.3: The fun
tion f(ω) = 1
2

(√
1 + 2ω − 1

) plotted as a fun
tion of ω = L3/L1showing the importan
e of the relative size of L1 and L3 in Eq. (A.61).A.2 Solution for Mü ≫ 1In the limit Mü ≫ 1 the equations of motion (A.1)-(A.3) are
∂2
XU1 = Mü U1, (A.64)

∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (A.65)
∂2
XU3 = −K +Mü U3, (A.66)where K = U2(X1)

U2(X2)(X3−X2)
. The equations in domains 1 and 3 
an be readily solved

U1(X) = A1 sinh
√Mü X +A2 cosh

√Mü X, (A.67)
U3(X) = A3 sinh

√Mü (X −X2) +A4 cosh
√Mü (X −X2) +

KMü . (A.68)Here, A2 = 0 be
ause of the boundary 
ondition at X = 0, while A3 and A4 are determinedby the 
ontinuity 
ondition on U and ∂XU at X = X2.
A3 =

1√Mü ∂XU2(X2), (A.69)
A4 = U2(X2)−

KMü . (A.70)In the translo
ation zone, we shall solve the equation
∂2
XU2 = −U1(X1)

U2
2

∂XU2 +Mü U2, (A.71)



118 Analyti
al solution of the 3-zone modelby assuming that U2 
an be written as U2 =
U ′

2Mü , where U ′
2 is of the order 1. Insertingthis, and keeping only terms of order Mü and M2, we get thatMü U1(X1)∂XU ′

2 = U ′3
2 . (A.72)Sin
e we require that U2(X1) = U1(X1) this implies that

U2(X) =
U1(X1)

√

1− 2Mü U1(X1)(X −X1)
(A.73)Please note that this solution does not ful�ll the 
ondition ∂XU2(X1) = ∂XU1(X1) exa
tly.This is due to the fa
t that we have ignored the term ∂2

XU2. This, however, turns out toplay very little role when 
omparing the analyti
al solution to the numeri
al results.With the solution given in Eq. (A.73), we 
an now determine the 
onstants A3 and A4and K = U2(X1)
U2(X2)(X3−X2)

. The only free parameter is A1 whi
h has to be determined su
hthat U3(X3) = 0. Using Mathemati
a 7.0.0, we 
an then determine the A's using the
ode1 Clear [A1 , A2 , A3 , A4 , X, X1 , X2 , X3 , M, v1 , v2 , v3 , K ℄ ;2 A2 = 0 ;3 X2 = X1 + 1 ;4 v1 [X_℄ = A1∗Sinh [ Sqrt [M℄∗X℄ + A2∗Cosh [ Sqrt [M℄∗X℄ ;5 v0 = v1 [X1 ℄ ;6 v2 [X_℄ = v0 /( Sqrt [ 1 − 2∗M∗v0 ∗(X − X1) ℄ ) ;7 K = v2 [X1℄ / v2 [X2℄∗1/ (X3 − X2) ;8 Dv2 [X_℄ = D[ v2 [X℄ , X ℄ ;9 A3 = 1/ Sqrt [M℄∗Dv2 [X2 ℄ ;10 A4 = v2 [X2 ℄ − K/M;11 v3 [X_℄ = A3∗Sinh [ Sqrt [M℄ ∗ (X − X2) ℄ + A4∗Cosh [ Sqrt [M℄ ∗ (X − X2) ℄ + K/M;12 v3 [X3 ℄ ;13 So lve [ v3 [X3 ℄ == 0 , A1 ℄ ;14 Fu l l S imp l i f y [%℄15 A316 A4The expressions are generally very 
ompli
ated fun
tions of Mü, X1, X2 and X3. For
ω = 1, we e.g. �nd that A1 is given by
A1(ω=1)=

Mü (4+X1) coth[Mü∗]−
s
h[Mü∗](4Mü +
s
h[Mü∗]√Mü 3/2X1 sinh[Mü∗]2(Mü∗ cosh[Mü∗]2−4 sinh[Mü∗]+2 sinh[2Mü∗]))
4Mü 2(2+X1) cosh[Mü∗]−2(4Mü 2+Mü 3/2X1 sinh[Mü∗]) ,(A.74)where Mü ∗ =

√Mü X1.Cal
ulating the mean velo
ity in the translo
ation zone for Mü ≫ 1From the solution in Eq. (A.73) we 
an now 
al
ulate the mean velo
ity
Ū =

1

X3 −X2

∫ X3

X2

U2(X) dX =
1−

√

1− 2Mü U1(X1)Mü . (A.75)



Solution for Mü ≫ 1 119Despite of the 
omplexity of the expression for A1, we �nd that as long as the produ
tMü (X3−X2) is large, the produ
t Mü U1(X1) is nearly 
onstant and equal approximatelyequal to 0.5. This implies that
Ū ≃ 1Mü . (A.76)To see why this is so, 
onsider the equation for U3

U3(X) = A3 sinh
√Mü (X −X2) +A4 cosh

√Mü (X −X2) +
KMü . (A.77)It is 
lear that K ≤ 1

X3−X2
. Thus, sin
e U3(X3) = 0, and if (X3 −X2)Mü is su�
ientlylarge we must have that

0 = A3 sinh
√Mü (X3−X2)+A4 cosh

√Mü (X3−X2)+
KMü ≃ (A3+A4) exp

(√Mü (X3 −X2)
)

.(A.78)This implies that A3 = −A4. Eqns. (A.69)-(A.70) then leads to
1√Mü ∂XU2(X2) = −U2(X2) (A.79)or √Mü U2

1 (X1)

(1− 2Mü U1(X1))3/2
= − U1(X1)

(1− 2Mü U1(X1))1/2
. (A.80)sin
e X2 −X1 = 1. Rewriting, we get that

√Mü U1(X1) = 2Mü U1(X1)− 1, (A.81)or
U1(X1) =

1

2Mü −
√Mü ≃ 1

2Mü . (A.82)In this way, Mü U1(X1) ≃ 1/2 as found above.
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Appendix BHorwitz's derivation of the equationsof motionFollowing Horwitz [25℄, we 
onsider a tube with 
ross se
tion area A and perimeter Ssubmerged in a large water reservoir as shown in Fig. B.1. The tube is �lled with asolution of sugar and water with 
on
entration c, �ow velo
ity u and hydrostati
 pressure
p. Both c = c(x), u = u(x), and p = p(x) are one-dimensional variables that does notdepend on the radial position. The walls are made of a semipermeable membrane withpermeability Lp that allows water, but not sugar, to �ow a
ross driven by osmoti
 andhydrostati
 pressure di�eren
es at a rate jw = Lp(RTc − p). Here, R is the gas 
onstantand T is the temperature. Sugar is added/removed from the tube at a rate υ by somea
tive me
hanism de
oupled from the osmoti
 pumping.B.1 Conservation of volumeConsider now a small se
tion of the tube from x0 to x0 + ∆x. Taking into a

ount theadve
tive �ow of water along the tube and the radial in�ux due to osmosis, the 
onservationequation for volume is

Sjw∆x+A(u(x0)− u(x0 +∆x)) = 0. (B.1)Letting ∆x → 0 we �nd that
∂xu =

S

A
jw =

S

A
Lp(RTc(x)− p(x)). (B.2)For a 
ylindri
al tube with radius a, this is simply

∂xu =
2Lp

a
(RTc− p). (B.3)This 
an be further redu
ed by using Hagen-Pouiseuille relation between pressure gradientand �ow velo
ity in a 
ylindri
al tube ∂xp = −8η

a2
u su
h that

∂2
xu =

2Lp

a

(

RT∂xc+
8η

a2
u

)

. (B.4)121
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x

Perimeter S

x0 x0 +∆x
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permeability Lp

Velocity u(x)

Concentration c(x)
Pressure p(x)

Water flux jwSugar flux υ

Reservoir
c = 0, p = 0

(a)

(b)

Figure B.1: Sket
h of the geometry used in Horwitz's deriviation of the transport equations.(a) An in
ompressible liquid is moving inside a tube with 
ross se
tion area A and perimeter
S with mean velo
ity u (arrows). A solute of 
on
entration c is dissolved in the liquid andis moving due to the motion of the liquid and mole
ular di�usion. The tube is submergedin a large reservoir (gray region) and has a walls made from a semipermeable membrane(dashed line) with permeability Lp that allow the liquid but not the solute to pass. (b)Closeup of the situation at the membrane (dashed line). The presen
e of the membranefa
ilitates a �ow of water driven by osmoti
 and hydrostati
 pressure di�eren
es a
rossthe wall. This o

urs at a rate jw = Lp (RTc− p) indi
ated by the solid arrow at themembrane interfa
e (See Fig. 3.1). Sugar is added to/removed from the tube at a rate υby an a
tive me
hanism de
oupled from the osmoti
 pumping as indi
ated by the dashedarrow. The osmoti
ally driven �ow a
ross the membrane a

elerates the liquid as it movesalong the tube as indi
ated by the growing size of the arrows in (a).



Conservation of sugar 123B.2 Conservation of sugarConsider again a small se
tion of the tube of length ∆x. Taking into a

ount the adve
tiveand di�usive �ow of sugar along the tube and the radial in�ux due to loading and unloading,the 
onservation equation is
0 = ∂tc∆xA

− A (u(x)c(x) − u(x0 +∆x)c(x+∆x))

+ AD (∂xc(x)− ∂xc(x0 +∆x))

− A∆xυ, (B.5)where D is the di�usion 
oe�
ient of the sugar and υ is the loading/unloading rate. Letting
∆x → 0, this redu
es to the familiar adve
tion-di�usion equation

∂tc+ ∂x(cu) = D∂2
xc+ υ. (B.6)B.2.1 Mathemati
al formulation of the loading/unloading pro
essesThe form of the trans-membrane loading fun
tion υ in Eq. (B.6) varies depending onwhether one 
onsiders loading or unloading. Several mathemati
al formulation has beenused in the literature to approximate the quantitative properties of the loading pro
esses.The most widely used formulations are

υ =































k0, (a) 
onstant loading [13, 84℄,
k1x+ k2, (b) linear loading [70℄,
k3c, (
) 
on
entration dependent loading [79℄,
(k4x+ k5)c, (d) 
on
entration dependent linear loading [70℄,
k6(cT − c), (e) 
on
entration dependent loading with target 
on
entration cT [38℄,
k7c
k8+c , (f) Mi
haelis-Menten loading [45℄. (B.7)The k's are loading 
onstants whi
h 
an be determined experimentally (see e.g. [45℄).
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Appendix CThemodynami
s of osmosisIn this appendix we 
onsider the thermodynami
s of osmosis. We derive transport equa-tions for �ow of water and solute a
ross a membrane whi
h is permeable to both substan
es.The derivation is due to S
hultz [67℄ and Heimburg [21℄.C.1 Non-equlibrium thermodynami
sThe pro
ess of osmosis 
an best be des
ribed by the formalism of non-equlibrium thermody-nami
s [67℄. We thus 
onsider a linear phenomenologi
al relation between a thermodynami
�ux j′n and the 
orresponding 
onjugate for
e ξn

j′n = Lnnξn, (C.1)whi
h is valid if the system is 
lose to equilibrium. Here, Lnn is a proportionality 
onstantwith the unit of 
ondu
tan
e. The driving for
e ξn is related to the di�eren
e in 
hemi
alpotential of the substan
e n between di�erent regions of the system
ξn = ∆µn (C.2)Ohm's law of 
urrent �ow, Fourier's law of heat �ow, Fi
k's law of di�usion and thePoiseuille's equation des
ribing volume �ow are all examples of Eq. (3.1). If the system is
hara
terized by several for
es and �uxes (e.g. if the membrane is non-ideal) there may beintera
tions between �uxes and non-
onjugate for
es

j′n = Lnnξn +
∑

m6=n

Lnmξm, (C.3)where a

ording to the Onsager relations Lnm = Lmn. The �ux of parti
les as a 
onse-quen
e of temperature gradients (the Soret e�e
t) and the �ux of heat due to 
on
entrationgradients (the Dufour e�e
t) are well known examples of Eq. (C.3). It 
an be shown thatthe relation between the rate of internal entropy produ
tion ∂ts, the absolute temperature
T, and the for
es and �uxes is given by

T∂ts =
∑

n

j′nξn. (C.4)125



126 Themodynami
s of osmosisThe quantity T∂ts is known as the dissipation fun
tion and is a measure of the tenden
yof the non-equilibrium pro
ess to pro
eed.C.2 Osmoti
ally driven �ow a
ross non-ideal membranesIn the present dis
ussion we 
onsider a membrane separating two 
hambers at pressures
p1 and p2. The 
hambers 
ontain a dilute aqueous solutions of a solute at 
on
entrations
c1 and c2. The 
hemi
al potentials of the water µw in the two 
ompartments are

µw,1 = = (µw,1)0 + v̄wp1 + RT log

(

nw,1

nw,1 + ns,1

)

, (C.5)
µw,2 = = (µw,2)0 + v̄wp2 + RT log

(

nw,2

nw,2 + ns,2

)

, (C.6)(C.7)where v̄w is the partial molar volume of water, (µw)0 are referen
e values, and nw and nsare the number of water and solvent mole
ules respe
tively. Sin
e the solutions are dilute,the logarithmi
 term 
an be expanded
log

(

nw

nw + ns

)

= − log

(

1 +
ns

nw

)

≃ − ns

nw
= −v̄wc (C.8)where c is the 
on
entration of the solute. The di�eren
e in 
hemi
al potential ∆µw isthus

∆µw = µw,2 − µw,1 ≃ v̄w (p2 − p1)− v̄wRT (c2 − c1) = v̄w∆p− v̄w∆Π. (C.9)For the solute, the 
hemi
al potentials are
µs,1 = = (µs,1)0 + v̄sp1 + RT log

(

ns,1

nw,1 + ns,1

)

, (C.10)
µs,2 = = (µs,2)0 + v̄sp2 + RT log

(

ns,2

nw,2 + ns,2

)

, (C.11)(C.12)In this 
ase we 
annot generally get rid of the logarithm sin
e its argument is not 
lose toone. If the 
on
entrations are of similar magnitude, we 
an however write1
∆µs = µs,2 − µs,1 ≃ v̄s (p2 − p1) + RT

(

c2 − c1
c1

)

= v̄s∆p+
∆Π

c1
(C.13)The dissipation equation (C.4) is

T∂ts = j′w (v̄w∆p− v̄w∆Π) + j′s

(

v̄s∆p− ∆Π

c1

)

. (C.14)1See [67℄ for a detailed treatment of the expansion of the logarithmi
 term.



Osmoti
ally driven �ow a
ross non-ideal membranes 127Upon rearrangement this be
omes
T∂ts =

(

j′wv̄w + j′sv̄s
)

∆p+

(

j′s
c1

− v̄wj
′
w

)

∆Π. (C.15)where j′v = (j′wv̄w + j′sv̄s) is simply the volume �ow and j′D = j′s
c1

− v̄wj
′
w the di�eren
ebetween the velo
ities of the oppositely dire
ted �ows of solute and water. In this notationwe have that

T∂ts = j′v∆p+ j′D∆Π. (C.16)We 
an now write the phenomenologi
al equations (C.3)
j′v = Lpp∆p+ LpD∆Π, (C.17)
j′D = LDp∆p+ LDD∆Π, (C.18)where LpD = LDp from the Onsager relation. Using the notation σs = −LpD

Lpp
the volume�ux j′v given in Eq. (C.17) 
an be written as

j′v = Lpp (∆p− σs∆Π) , (C.19)The quantity σs is know as a re�e
tion 
oe�
ient, and is a measure of the degree to whi
ha membrane is permeable to the solute. If σs = 1 it is perfe
tly impermeable, at we obtainthe ideal membrane transport Eq. (3.5), p. 21 . If on the other hand σs = 0 the membraneis equally permeable to solute and water. The solute �ux j′s is given by
j′s = (1− σs)c1j

′
v + ωs∆Π (C.20)where ωs = c1

LppLDD−L2
pD

Lpp
.
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Appendix DSieve plate dataThis appendix 
ontains data for the Cur
ubita maxima sieve plate shown in Fig. 4.2(a),p. 41. The data was kindly provided by M. Knoblau
h and D. L. Mullendore. See [48℄ fordetails on how the measurements were made.Sieve tube element length = 154.3*1e-6 mSieve tube element radius = 29.005*1e-6 mSieve plate thi
kness = 0.966*1e-6 mSieve pore radii = 1e-6 m*[4.62175621884.5356838984.47590944224.42175249164.40928038464.36771220454.26302746944.18973201914.01907806574.00040811383.9493182193.88451145253.81003287023.74626174353.66404931653.60271076793.40754441763.33995563623.33479858773.23924819843.17349845323.17160016183.1506399347 129



130 Sieve plate data3.14188815913.10691166393.09303271493.07041540253.00412172822.97215747332.8663379582.84706018592.79705428842.764874362.53055601142.41146072572.20805308222.13957249122.03231864012.00417897281.91369164691.77852030231.65262581.5975583721.58674947741.29269365061.22080118570.96846556180.8878074810.82761439050.7478736748℄
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Optimality of the Münch mechanism
for translocation of sugars in plants
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Plants require effective vascular systems for the transport of water and dissolved molecules
between distal regions. Their survival depends on the ability to transport sugars from the
leaves where they are produced to sites of active growth; a flow driven, according to the
Münch hypothesis, by osmotic gradients generated by differences in sugar concentration.
The length scales over which sugars are produced (Lleaf) and over which they are transported
(Lstem), as well as the radius r of the cylindrical phloem cells through which the transport
takes place, vary among species over several orders of magnitude; a major unsettled question
iswhether theMünch transportmechanism is effective over thiswide range of sizes.Optimization
of translocation speed predicts a scaling relation between radius r and the characteristic lengths
as r � (Lleaf Lstem)

1/3. Direct measurements using novel in vivo techniques and biomimicking
microfluidic devices support this scaling relation and provide the first quantitative support for
a unified mechanism of sugar translocation in plants spanning several orders of magnitude in
size. The existence of a general scaling law for phloem dimensions provides a new framework
for investigating the physical principles governing the morphological diversity of plants.

Keywords: phloem transport; sugar translocation; microfluidics; biomimetics;
osmotic pumping

1. INTRODUCTION

Vasculatures of plants and animals are among the most
elegant and complex of microfluidic systems. In plants,
xylem transports water from soil to leaves, while
phloem distributes the products of photosynthesis
throughout the plant. Flow generation in both systems
occurs in the absence of any mechanical pump. Xylem
flow is generated by evaporation and driven by tension
gradient in the vessels [1]. The physics of transport
under tension creates a safety–efficiency optimization
problem that constrains the design of xylem vessels [2].
The mechanism driving phloem transport is believed to
be the movement of water via osmosis in response to the
loading and unloading of sugar in different parts of the
plant and sustained along the tubes by continuous
maintenance of the osmotic gradient across the per-
imeter of the phloem tube, as shown in figure 1 [3,4].
Phloem operates under positive pressure and the
assumed mode of its generation results in the delivery
of sugars being controlled by their loading and unload-
ing rates [5,6], rather than by the velocity of the flow.

However, phloem distributes hormonal and signalling
molecules that allow for the integration of distal parts
in lieu of a designated nervous system [7,8]. This
additional signalling task could result in the selection
pressure to optimize translocation velocity by providing
plants with the ability to respond rapidly to environ-
mental perturbations [9]. Here we ask if phloem is
indeed optimized for speed. Further, we investigate if
a single scaling law can describe the design principles
of phloem tubes governing the speed of translocation
given the wide range of length scales existing in
nature. Phloem tube radii range from 1 to 40 mm,
their length from 0.01 to 100 m, with transport
velocities from 0.01 to 1 m h21 [10–12].

Studies of long-distance transport in plants are
inherently difficult because the fluxes are intracellular,
protected by physical barriers [13] or biological activity
(e.g. forisomes and p-proteins [14,15]), and occur under
large tensions or pressures [16]. In principle, these pro-
perties require in vivo approaches, which are prone to
methodological challenges. However, recent biomimetic
approaches have helped answer long-standing questions
regarding water transport in the xylem [17] and to
resolve optimization laws governing the placement of
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veins within leaves [18], both processes being part of the
transpiration stream [1]. Progress in the fabrication of
microfluidic devices has made it possible to mimic
phloem transport [19], providing a physical model to
test Münch theory [20]. Here, we use synthetic phloem
to resolve design properties underlying the delivery of
photoassimilate and chemical signals between distal
plant parts and to provide a mechanistic basis for the
implementation of our mathematical model of phloem
function.

Many of the published models of phloem transport
incorporate details of sugar loading and unloading (e.g.
[21–24]). In contrast, our goal was to study a simplified
model, which agrees with the general trends previously
reported, but which due to its simplicity lends itself to a
scaling analysis. To determine if real plants follow the
scaling relation predicted by our mathematical model,
we examined phloem dimensions and transport velocities
in real plants using a novel, non-invasive, dye-tracing
method that offers a significant improvement to the pre-
viously used techniques such as traditional dye tracing
[25], biomass accumulation [26] or tracing radioactive
carbon [27], while accommodating a broader range of
plant materials than magnetic resonance imaging [12].
We also compared published data on sieve tube radii
with the optimal radii calculated from our model.

2. MATERIAL AND METHODS

To study osmotically driven flows in microchannels, we
designed and fabricated a microfluidic system consisting
of two layers of 1.5 mm thick polymethyl methacrylate

(PMMA) separated by a semi-permeable membrane
(Spectra/Por Biotech cellulose ester dialysis membrane,
MWCO 3.5 kDa, thickness 40 mm), as shown in
figure 2a. Channels of length 27 mm, width 200 mm and
depth h ¼ 100–200 mm were milled in the two PMMA
layers using a MiniMill/Pro3 milling machine [19]. The
top channel contains partly the sugar solution and
partly pure water, while the bottom channel always con-
tains only pure water. Inlets were produced by drilling
800 mm diameter holes through the wafer and inserting
brass tubes into these. By removing the surrounding
material, the channel walls in both the top and bottom
layers acquired a height of 100 mm and a width of
150 mm. After assembly, the two PMMA layers were posi-
tioned such that the main channels in either layer were
facing each other. Thus, when clamping the two layers
together using four 10 mm paper clamps, the membrane
acted as a seal, stopping any undesired leaks from the
channels as long as the applied pressure did not exceed
approximately 100 kPa.

The top channel was connected at one end to a
syringe pump (NE-1000, New Era syringe pump, NY),
which continuously injected a solution of water, dextran
(17.5 kDa, Sigma-Aldrich) 1 mm polystyrene beads
(Sigma-Aldrich, L9650-1ML, density 1050 kg m23) into
the channel at flow velocities of 2–4 mm s21. At the
other end, the channel was left open with the outlet termi-
nating in an open reservoir. Both ends of the lower ‘pure
water’ channel were connected to this reservoir to mini-
mize the hydrostatic pressure difference across the
membrane and to prevent axial flow in this channel.
The flow velocity inside the upper channel was recorded
by tracking the motion of the beads. Image sequences
were recorded at different positions along the channel
using a Unibrain Fire-i400 1394 digital camera attached
to a Nikon Diaphot microscope with the focal plane at
h/2 and a focal depth of approximately 10 mm. The flow
behaved as if it were pressure-driven and the standard
laminar flow profile was used to determine the average
flow velocity [19].

To determine rates of phloem transport in vivo, an aqu-
eous solution (100 mg l21) of 5(6)-carboxyfluorescein
diacetate was placed onto gently abraded upper leaf
epidermis from where it was loaded into the phloem by
the plant (figure 2b) [28,29]. We tracked the dye, as
it moved in the phloem of petioles or stems, by photo-
bleaching flow velocity techniques that were previously
used in microfluidic systems [30,31]. However, these
single-detector techniques required modification to
accommodate measurements on living plant tissues (low
velocities, tissue light scattering and absorption, the
need to maintain favourable growth conditions). We
used two solid-state, high-gain photodiodes (SED033
used with IL1700 Research Radiometer, International
Light Technologies) separated by a known distance to
determine travel time of the photobleached pulse. The
photodiodes were connected to the stem/petiole via
bifurcated, 4 mm diameter optical fibres to obtain a suffi-
cient signal-to-noise ratio despite extremely low light
intensities. Excitation light was delivered via 490 nm
short-pass filters (Omega Optical, USA), while photo-
diodes were fitted with 510 nm long-pass filters (Omega
Optical). Excitation light was generated by narrow

0

(a) (b)

x1

x2
x3

l1

l2

l3
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x

phloem cell

membrane

water

sugar

Figure 1. (a) Schematic of a plant in which sugar and signal-
ling molecules travel from sources, e.g. leaves, to places of
storage and growth, e.g. fruits or roots. In our model, the
plant is divided into three zones, a source/loading zone of
length l1 (the leaf; 0 , x, x1), a translocation zone of
length l2 (the stem; x1 , x, x2) and a sink/unloading zone
of length l3 (the root; x2 , x, x3). (b) Diagram of how the
Münch flow mechanism is thought to drive sugar transloca-
tion in plants. The surfaces of the cylindrical phloem cells of
radius r are covered by a semi-permeable membrane. Sugar
loaded actively into the cells at the sugar source draws
water by osmosis from the surrounding tissue, thereby gener-
ating flow as the sugar solution is displaced downstream.
(Online version in colour.)
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band blue diodes (470 nm, Roithner LaserTechnik
GmbH, Switzerland). Fibres were attached to the plant
through custom-made, light-tight clips. A bleached
pulse was produced ahead of the detection system by a
20 mW laser of wavelength 473 nm (Dragon Laser,
China) as sketched in figure 2b. All filters and laser par-
ameters were chosen to accommodate properties of the
5(6)-carboxyfluorescein diacetate dye.
The set-up was tested by comparing flow velocity

determined by photodetection with values u ¼ Q/
(2pr2) obtained from volume flow rate Q as measured
by a microbalance (Sartorius 210DX +0.01 mg) and
the radius r of the capillary tube (figure 2c). We gener-
ated velocities from 20 to 1000 mm s21, similar to the
measured in vivo phloem velocities. The signal output
is Gaussian-shaped, figure 2d, due to the convolution
of the 4 mm wide detection window (set by the optical
fibre diameter) and the internal dispersion-widened
bleaching pulse combined with light scattering in the
plant tissues. Thus, the flow velocity u was determined
by measuring the traversal time between the two diodes
of a minimum intensity of fluorescence following the
photobleaching of the dye using a 30 s laser pulse.

The same procedure was used on the plants
(figure 2d). We note that the technique is independent
of dye loading rate and tissue light properties.

3. RESULTS

In plants, phloem transport initiates in the leaves,
where sugar is actively loaded into sieve tubes, and
ends in growth or storage zones, where sugar is
unloaded. We may think of the plant aligned with
x-axis as being divided into three zones: (i) a loading
zone (0, x , x1) of length l1 ¼ x1 (essentially
the length of the leaf); (ii) a translocation zone (x1 ,
x , x2) of length l2 ¼ x2 2 x1 (essentially the length
the plant, typically much larger than l1); and (iii) an
unloading zone (x2 , x , x3) of length l3 ¼ x3 2 x2,
where the sugar is consumed (figure 1; table 1). The
flow rate through a phloem tube depends on the osmo-
tic driving force, the radius r of the tube, its length l2
and the effective viscosity h of the fluid including the
effect of sieve plates [6,32]. The most important charac-
teristic of this relation is that, fixing all other parameters,
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Figure 2. (a) Microfluidic set-up. (i) Picture of the microfluidic device used to biomimic the phloem transport system. (ii,iii) Sche-
matic of the microfluidic device. Two microchannels are in osmotic contact through a semi-permeable membrane. One, the
bottom channel, remains filled with pure water while the other contains a sugar solution injected slowly at one end by a syringe
pump. (iv) Close-up showing the flow mechanism driving sugar translocation in the microfluidic system. (b) Sketch of the set-up
used to determine phloem flow rate in tomato petioles. (c) Comparison of flow velocities in a 1.19 mm diameter glass capillary
determined by our photobleaching technique and by a standard mass flow-rate technique (filled circles, measurements; thin line,
regression; dashed line, 95% confidence interval; thick line, one to one relation). (d) Two consecutive measurements of the relative
intensity I of the fluorescence versus time t detected by the two photodiodes shown in (b). The flow velocity u is determined by
measuring the traversal time between the two diodes, marked by arrows (A,B), of a minimum in I induced by photobleaching of
the dye using a short (less than 30 s) laser pulse. The inset shows @I/@t versus time; the intensity minima (indicated by arrows
(A,B)) are given by @I/@t ¼ 0 (black circles, sensor 1; grey circles, sensor 2). (Online version in colour.)
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it is non-monotonic in r giving maximal flow rate at a par-
ticular value denoted rc. This is easily understood since the
behaviour for large and small r is strongly dependent on
the ratio of the resistance of the flow in the channel to
the resistance (or the inverse of the permeability Lp)
across the semi-permeable membrane, a non-dimensional
quantity we call the Münch number Mü [33],

M €u ¼ 16
hLpl

2
2

r3
: ð3:1Þ

For wide tubes (Mü � 1) there is essentially no vis-
cous pressure gradient along the tube, but the efficacy
of the osmotic pump is small. On the other hand, for
narrow tubes (Mü � 1), where the osmotic driving
force is strong, the viscous pressure gradient in the
tube becomes important and the flow is impeded.

The water flow J across the membrane of the tube at
position x is determined by the local difference c(x) in
sugar concentration and in pressure p(x) across the
membrane. In a tube at temperature T,

JðxÞ ¼ Lp RTcðxÞ � pðxÞ½ � ð3:2aÞ

and together with conservation of fluid volume, this
leads to the Münch equation for the gradient of the
velocity u(x) in the translocation zone

@u

@x
¼

2Lp

r
RTc � pð Þ; for x1 , x , x2: ð3:2bÞ

Here, we assume ideality of the sugar solution, a
semi-permeable membrane with unity reflection

coefficient, and slow flow velocities relative to trans-
verse diffusion such that radial gradients are weak.
Also, we are assuming that the external pressure and
concentration do not vary—aside from hydrostatic
pressure differences owing to height variations. This is
clearly a strong simplification since of course the
phloem flow is not independent of the state of the
xylem. However, all of our phloem flow measurements
were conducted under low-light thus minimizing
transpiration-induced gradients in xylem pressure [12].
The neglect of external variations in the sugar concen-
tration is partly due to the way our model is
formulated, since the strong variations in concen-
trations between leaf and root are modelled as
internal variations in the tube.

The pressure gradient for such slow flows is given by
the Hagen–Poiseuille–Darcy relation

@p

@x
¼ �

8h

r2

� �

u ð3:2cÞ

valid even taking into account the radial, osmotic
inflow [34,35]. We verified (figure 3a) the description
(3.2a)–(3.2c) of osmotic transport by comparing
measurements of osmotically driven flows through
microfluidic channels (described in detail in [19])
with analytical solutions of the flow problem in the
limit Mü � 1 (see appendix A), under the boundary
conditions of a fixed concentration and velocity at x1

and a fixed pressure ( p ¼ 0) at x2, boundary con-
ditions used in previous experimental studies [36,37].
Fabrication of devices working in the limit Mü � 1
is difficult owing to the properties of currently avail-
able artificial membranes, channel lengths and
bonding burst pressures, and we have not been able
to realize this limit.

To examine how velocity scales with the full range
of radial and axial phloem dimensions found in plants
we formulated a simple model (see appendix A for
further details), which gives a complete overview of the
concentration and velocity profiles as a function of Mü

and the relative size of the loading, translocation and
unloading zones. In this analysis, the loading zone is
characterized by a constant sugar concentration c(x) ¼
c0, i.e. @c=@x ¼ 0, such that equation (3.2) becomes

@2u

@x2
¼ �

2Lp

r

@p

@x
¼

16hLp

r3
uðxÞ; for 0 , x , x1;

ð3:3Þ

with the boundary condition u(0) ¼ 0, i.e. a vanishing vel-
ocity at the beginning of the loading zone. Here, we have
taken the derivative of both sides of equation (3.2b) in
order to eliminate the pressure gradient using equation
(3.2c). In the translocation zone, the flux c(x)u(x) of sugar
is conserved and equal to c0u(x1), where c0 is the loading
concentration and u(x1) is the velocity at the entrance
of the translocation zone. This leads to an equation of
the form

@2u

@x2
¼ �

2LpRTc0

r

uðx1Þ

u2

@u

@x
þ

16hLp

r3
uðxÞ;

for x1 , x , x2: ð3:4Þ

Table 1. Nomenclature.

parameter symbol
value and/
or unit

length x m
viscosity h Pa s
membrane permeability Lp m s21 Pa21

length of leaf l1, Lleaf m
length of stem l2, Lstem m
length of root l3 m
radius of phloem tube r m
optimal radius rc m
water flow through tube wall J m s21

pressure p Pa
osmotic flow velocity scale U m s21

Münch number Mü dimensionless
leaf to stem length ratio a dimensionless
dimensionless sugar

concentration gradient
in root

b dimensionless

volume flux Q m3 s21

gas constant R m3 Pa K21 mol21

temperature T K
wall resistance Rw Pa m23 s
tube resistance Rt Pa m23 s
velocity u m s21

dimensionless velocity v dimensionless
dimensionless length j dimensionless
dimensionless concentration 6 dimensionless
height of channel h m
intensity of fluorescence I arb. units
time t s
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The unloading zone is characterized by a linear
decrease in the sugar concentration for x2 , x , x3,
such that both the sugar concentration and the velocity
vanish at the end of the tube, c(x3) ¼ 0 and u(x3) ¼ 0.
This introduces a coefficient b ; ðl2=c0Þð@c=@xÞ,
which can be determined only when we know the con-
centration cðx2Þ at the entry of the unloading zone.
It can also be expressed in terms of the velocities at
the entry of the translocation and unloading zones
(equations (A 8a) and (A 8b)). In the unloading zone,
equation (3.2) for u thus becomes

@2u

@x2
¼ � 2LpRTc0

rl2
bþ 16hLp

r3
uðxÞ;

for x2 , x , x3: ð3:5aÞ

Our analysis of these equations is carried out in
appendix A. An important simplification can be acheived
by non-dimensionalization, introducing a non-dimen-
sional length j (scaled by the length l2 of the plant) and
a non-dimensional velocity v scaled by the naive osmotic
velocity U ¼ ð2l2=rÞLpRTc0 and a non-dimensional
concentration 6 scaled by c0. This gives

@2
j v ¼ @j6þM €uv; ð3:5bÞ

where the dimensionless Münch number Mü is given by
equation (3.1).

This analysis gives us a complete overview of the
concentration and velocity profiles as a function of
Mü. Of special interest is the mean velocity ū2 in the
translocation zone, which sets the transit time from
one end of the plant to the other. In the limit of very
wide tubes, the bulk of the resistance lies in the trans-
port of water across the membrane in the loading and
unloading zone with a resistance Rw ¼ ð2prl1 LpÞ�1.
Writing the volume flux Q ¼ ūpr2 as Q ¼ Dp/Rw,
with Dp ¼ RTc0, we find that the average flow velocity
is �u � RTc0 Lpl1=r. A more thorough analysis of

the problem, assuming for simplicity that l3 ¼ l1,
shows that

�u ¼
ffiffiffi

3
p

� 1
� �RTc0 Lp

r
l1; for M €u � 1: ð3:6Þ

See appendix A for the full derivation, including a
discussion of the case l3 = l1. In the opposite limit of
very narrow tubes (Mü 	 1), we can argue in the fol-
lowing way: water moving in the system faces three
barriers. First, it must pass across the membrane in
the loading zone. Then, it has to move along the
length of the tube before finally escaping the tube
across the membrane in the unloading zone. The first
and last of these three resistances are proportional to
1/r, while the middle part scales as 1/r4. Thus, for
very small r, the resistance in the tube
Rt ¼ 8hl2ðpr4Þ�1 will dominate, giving Q ¼ RTc0pr

4/
(8hl2), and we find an average flow velocity

�u ¼ RTc0

8hl2
r2; for M €u 	 1: ð3:7Þ

Figure 3b shows the numerical simulations on the full
system of equations with the two expressions (3.6) and
(3.7) shown as dashed and full lines, respectively. The
radius (rc) yielding the maximum velocity can be esti-
mated as the intersection of these two curves, giving
M €u / l2=l1 or

rc ¼ 8
ffiffiffi

3
p

� 1
� �

hLp

h i 1=3
l

1=3
1 l

1=3
2 : ð3:8Þ

Under the assumption that swift translocation of the
phloem provides a competitive edge, it would thus be
desirable for plants to have sieve tube radii close to
the value rc predicted by equation (3.8).

To explore the design constraints facing the long-
distance transport in phloem, and to determine if real
plants follow the scaling relation described by equation
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Figure 3. (a) Flow velocity u(x) measured in 100 mm (white region) and 200 mm (grey region) deep and 200 mm wide micro-
channels. The dashed and solid lines are fits to equation (A 4). The sugar concentrations used are 21 mM (open circles) and 13
mM (filled circles). The horizontal error bars indicate the resolution of the microscope stage, while the vertical error bars were
obtained via least squares error propagation from the velocity profile. (b) Numerically computed mean velocity ū (dots connected
by lines) as a function of radius r assuming Lp ¼ 5 
 10214 m (Pa s)21, l1 ¼ (0.1, 0.25, 0.50) m, l2 ¼ 1 m, RTc0 ¼ 0.54 MPa, and
h ¼ 5 
 1023 Pa s. The solid and dashed lines show the scaling laws for u predicted by equations (3.6) and (3.7), respectively.
These clearly show that ū grows as r2 for small r while it decays as 1/r for large r. At the intersection between the two lines
given by equation (3.8) the transition between the two types of flow occurs and the velocity is at a maximum (filled circles with
solid lines, numerics; solid lines, Mü� 1; dashed lines, Mü	 1).
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(3.8), we examined phloem dimensions and transport
velocities in real plants in petioles or stems of six species
using our novel, non-invasive, dye-tracing method.
Results, figure 4a, show that phloem velocities vary as
much as a factor of 50, from 3 mm s21 (0.01 m h21) in
Tradescantia virginiana L. to 150 mm s21 (0.6 m h21)
in Solanum lycopersicum L., values consistent with the
range of velocities reported using other techniques
[10,12]. Comparison of velocities measured in plants
with the prediction of the proposed model, figure 4a
and equation (A 22), shows that the model reproduces
the observed velocities across a wide range of species
thus validating the proposed assumptions. The agree-
ment between in vivo measurements (figure 4a) and
theory derived from the analysis of osmotic-driven flow
in synthetic channels (figure 3a) suggests that phloem
flow rates are controlled by the same physical principles
in plants as in biomimicking devices—at least in the
low Mü limit, to which our microfluidic devices are so
far limited—despite the anatomical complexity present
in the living systems [38].

The proposed scaling law allows for the calculation of
a speed-optimized radius when both loading zone and
translocation length are known. Thus, we compared
published data on sieve tube radii with the optimal
radii calculated from equation (3.8) using leaf size as
the proxy for the loading and unloading zone (l1) and
plant length as the proxy for the translocation
length (l2). The plant selection consisted of a diverse
range of species, encompassed 2.5 orders of magnitude
in length, and included small rosettes, grasses, vines
and trees. We found good agreement between measured
radii and the scaling relationships of l1 and l2 predicted by
equation (3.8), indicating thewidespread optimization of
phloem dimensions for rate of translocation, figure 4b.
Further, we found that the scaling pre-factor in equation
(3.8) agrees well with the predicted optimum radii using
published values of the membrane permeability Lp and

the effective viscosity h. The effects of the increased
flow resistance owing to the flow through the sieve
plates are taken into account bymultiplying the viscosity
h ¼ 1.85 mPa s of a typical plant sugar solution [10] by a
so-called sieve plate factor, which typically is between 2
and 5 [6,29], for which we have assumed the value 2.7
thus arriving at the effective viscosity of 5 mPa s used
in our simulations.

4. DISCUSSION

Plants are reliant on efficient and robust distribution
systems made of microchannels to transport water,
energy and signals over distances that range from only
a few centimetres to many tens of metres. Building on
the basic physical laws for osmosis, we have developed
a simple, generic model for osmotically driven flow in
a phloem tube with semi-permeable membranes at the
wall. A single scaling law based on optimization for
this theoretical translocation speed predicts phloem
dimensions relative to the lengths of the loading (leaf)
and unloading (root) zones and the translocation
distance (stem). The existence of this optimization
underscores the role of the phloem as a major informa-
tional pathway for molecular signal transduction across
the plant body. It also explains why a smaller plant
with large leaves (e.g. Cucurbita) may have larger
diameter sieve tubes than found in many trees.

We have shown that our simple model for phloem
translocation in plants leads to an understanding
of the dependence between the speed of phloem flow
and the characteristic dimensions of the plant. The
assumption that plants have evolved to optimize
their phloem speed then led us to a scaling relation
between radius r and the characteristic lengths as
r � ðALleafLstemÞ

1=3, where the constant A (with dimen-
sions of length) is proportional to hLp, the product of
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Figure 4. (a) In vivo determined phloem flow rates (black dots) in petioles (one stem) of six species plotted as a function of
phloem radius as later determined on the same plant material. The velocities vary as much as 2.5 orders of magnitude, from
3 mm s21 (0.01 m h21) in T. virginiana to 150 mm s21 (0.6 m h21) in Solanum lycopersicum. The model predictions (grey dots)
calculated from equations (3.5)–(3.7) agree well with the observed data. The error bars indicate the mean and standard errors
of N ¼ 3–8 measurements. (b) Log–log plot of l1l2 versus measured radius r (black dots) for 20 plants of sizes ranging from r ¼

1 mm (T. virginiana) to r ¼ 40 mm (Cucurbita pepo) and l2 ¼ 0.1 m (T. virginiana) to l2 ¼ 40 m (Robinia pseudoacacia). The
prediction of equation (3.8) (thick black line) with parameters Lp ¼ 5 � 10214 m (Pa s)21 and h ¼ 5 � 1023 Pa s (kinematic
viscosity ¼ 1.85 � 1023, sieve plate factor ¼ 2.7) is plotted along with the best fit to the plant data (dashed line, slope
2.6+0.3), showing that the scaling relationship predicted by equation (3.8) falls within the 95% confidence interval
(dotted lines). The error bars indicate the standard error in the radius r and lengths l1 and l2. See table 2 for further details
on the species used.
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the viscosity of the flow and the permeability of
the membrane, a prediction which is supported by
field-data from plants. It should be noted that the
optimization over the radius is done while fixing the
lengths Lleaf and Lstem of the plant. The corresponding
optimal velocity can approximately be obtained by
inserting r ¼ rc, given by equation (3.8), into equation
(3.6) or (3.7), giving

uopt ¼ aRTc0 L
2=3
p h�1=3L

2=3
leafL

�1=3
stem ;

where a is a numerical constant. Thus an increase of
the leaf size (with fixed stem size) will lead to an
increase in the velocity, while an increase of the stem
size (with fixed leaf size) will lead to a decrease. We
thus assume that these external length scales are set
by other biological constraints such as the cost of
building, supporting and maintaining photosynthetic
surfaces.

The challenges faced by the phloem in moving
photo-assimilates over long distances led to the sugges-
tion that the axial pathway is compartmentalized into
‘relays’, such that solutes are actively reloaded at dis-
crete points [39]. Relays increase the rate of phloem
transport, but require additional inputs of energy.
Although no empirical evidence exists for relays, their
potential contribution to phloem transport has been
widely considered [32,40]. Our analysis, which uses the
length of the entire plant as proxy for l2, is not consist-
ent with the presence of relays, suggesting that axial
compartmentalization is not a necessary design feature
for efficient phloem transport.

Plants, which span tens of metres and proliferate in
hundreds of cubic metres of soil and air, experience
diverse and often rapid fluctuations in environmental
conditions. To respond to such environmental hetero-
geneity requires the rapid distribution of both energy
and information in the form of chemical signals to
enhance plant productivity and competitiveness. The
phloem provides uninterrupted coupling between most
distal parts of all plants and links plants’ multi-
branched dendritic structure into a single functional
microfluidic system [41]. Concordance between our
theoretical model, studies of osmotically driven flow in
synthetic phloem, and measurements of flow and geo-
metric properties made on real plants gives confidence
in the Münch theory of phloem flow and suggests that
plants are optimized for rapid translocation of sugar,
thereby gaining a competitive edge in terms of their
ability to respond rapidly to environmental stimuli.
Our analysis provides a general scaling law for phloem
dimensions that maximizes translocation velocity,
suggesting that evolutionary selection on the efficacy
of signal transduction has shaped the structure and
function of this supracellular transport pathway.

We thank Howard Stone and Matthew Thompson for
comments on the manuscript. This work was supported by
the Danish National Research Foundation (grant no. 74),
the Andrew W. Mellon Foundation and the Materials
Research Science and Engineering Centre at Harvard
University.

APPENDIX A

Analysis of the Münch equation (3.2b) is facilitated by
making it dimensionless using the following rescaling
of length, velocity and concentration:

x ¼ j l2; u ¼ Uv ¼
2l2
r
LpRTc0

� �

v and c ¼ 6 c0;

ðA1Þ

whereby the non-dimensional Münch equation
becomes

@2
j v ¼ @j6þM€uv; for 0 , j , j3: ðA2Þ

The three zones are the loading zone
(0 , j , j1) of length l1 ¼ a ¼ l1=l2, the transloca-
tion zone (j1 , j , j2) of length l2 ¼ 1, and the
unloading zone (j2 , j , j3) of length
l3 ¼ a ¼ l1=l2.

The zero-end-pressure phloem transport model. In
the literature (see [6] and references therein), the
correct choice of boundary conditions remains unclear,
primarily due to lack of knowledge of the exact physio-
logical processes in the loading and unloading zones.
This has led to a large class of models all based on
equation (A 2), but with widely different boundary
conditions. The method applied by most workers
has been to either ignore the loading and unloading
zones by setting simple conditions at the edges of
the translocation zone or to use specific loading and
unloading functions. A special case of these models
examined by Hölttä et al. [40] is to set the pressure
at the end of the translocation zone to a fixed
value, say p ¼ 0. In the microfluidic experiments, we
have tested this limit experimentally, and we now
consider the solution to equation (A 2) under these
conditions.

In the microfluidic channel zone, here defined as 0 ,

j , 1, equation (A 2) becomes

@2v

@j2
¼ �

v0

v2

@v

@j
þM€uv; for 0 , j , 1; ðA3aÞ

with the boundary conditions

vð0Þ ¼ v0 ðA3bÞ

and

pð1Þ ¼ 0: ðA3cÞ

In the experiments Mü is very small, so combining
Mü ¼ 0 with equation (A 3b) yields

vðjÞ ¼ v
1=2
0 v0 þ 2jð Þ1=2; ðA4Þ

in good agreement with the experimetal results
(figure 3a).

The loading/unloading phloem transport model.
We now return to the more general three-zone
model of the phloem translocation pathway
(figure 1). We assume that the loading and unload-
ing zones are of equal size (l1 ¼ l3), that the
concentration c is constant and equal to c0 in the
loading zone and that the concentration profile is
linearly decreasing in the unloading zone. The quantity
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we wish to calculate is the mean flow velocity ū in the
translocation zone as a function of Mü and a ¼ l1/l2.
The boundary conditions on the velocity v is that it is
zero at the boundaries,

vð0Þ ¼ vðj3Þ ¼ 0: ðA5Þ

In the loading zone, the concentration 6 is assumed to be
constant and equal to unity,

61ðjÞ ¼ 1; for 0 , j , j1: ðA6Þ

In the translocation zone,we have sugar flux conservation,

v2ðjÞ62ðjÞ ¼ 63ðj2Þv3ðj2Þ ¼ v2ðj1Þ; for j1 , j , j2:

ðA7Þ

In the unloading zone, we assume that the concentration
profile is linear and of the form

63ðjÞ ¼ �bðj� j3Þ; for j2 , j , j3; ðA8aÞ

where b is determined from sugar conservation (A 6) and
(A 7) in the translocation zone,

b ¼ v2ðj1Þ
v2ðj2Þðj3 � j2Þ

: ðA8bÞ

The equations of motion are

@2
j v1 ¼ M €uv1; for 0 , j , j1; ðA9aÞ

@2
j v2 ¼ � v1ðj1Þ

v22
@jv2 þM €uv2; for j1 , j , j2;

ðA9bÞ

and @2
jv3 ¼ �bþM €uv3; for j2 , j , j3: ðA9cÞ

Here, the indices on v indicate the domain to
which it belongs. These equations cannot be solved
analytically for arbitrary values of Mü and a; how-
ever, analytical solutions can be found in the limits
Mü � 1 and Mü � 1. These analytical solutions
allow us to calculate the mean flow velocity ū as a
function of the parameters in the problem. Keeping,
say, l1 and l2 fixed while varying the tube radius r,
we find that the analytical solutions allow us to
determine the point in the parameter space
where the average translocation speed ū is at a
maximum.

Solution for Mü � 1. In this limit, the equations of
motion (A 9a)–(A 9c) are

@2
jv1 ¼ 0; for 0 , j , j1; ðA10aÞ

@2
jv2 ¼ � v1ðj1Þ

v22
@jv2; for j1 , j , j2; ðA10bÞ

and @2
jv3 ¼ �b; for j2 , j , j3; ðA10cÞ

with the boundary conditions v1(0) ¼ 0 and v3( j3) ¼ 0.
The solutions can be written as

v1ðjÞ ¼ C1jþ C2; ðA11aÞ

jðv2Þ¼
v1ðj1Þ
C5

v2

v1ðj1Þ
� 1

C5
log

1þðC5v2=v1ðj1ÞÞ
1þC5

� �� �

þC6

ðA11bÞ

and v3ðjÞ ¼ � 1

2

v2ðj1Þ
v2ðj2Þ

1

ðj3 � j2Þ
ðj� j3Þ2

þ C3ðj� j3Þ þ C4: ðA11cÞ

By demanding that the velocity and its derivative
should be continous at j ¼j1 and j ¼j2, and that
a� 1, we find the six C coefficients above to be

C1;C2;C3;C4;C5;C6ð Þ ¼
�

2�
ffiffiffi

3
p

; 0; 1�
ffiffiffi

3
p

; 0;

1�
ffiffiffi

3
p

; l1b1þ
ffiffiffi

3
p

c =2
�

:

ðA12Þ

The mean velocity �v is then

�v ¼
ffiffiffi

3
p

� 1

2
l1 �

9� 5
ffiffiffi

3
p

8
l21

� 0:366 l1 � 0:043 l21; ðA13Þ

which in dimensional units for small values of l1, i.e.
l1 � l2, becomes equation (3.6).

Solution for Mü � 1. The equations of motion are

@2
jv1 ¼ M €uv1; for 0 , j , j1; ðA14aÞ

@2
jv2 ¼ � v1ðj1Þ

v22
@jv2 þM €uv2; for j1 , j , j2

ðA14bÞ
and @2

j v3 ¼ �bþM €uv3; for j2 , j , j3; ðA14cÞ

with the boundary conditions v1(0) ¼ 0 and v1( j3) ¼ 0.
In zones 1 and 3, the solutions are

v1ðjÞ ¼ A1 sinh
ffiffiffiffiffiffiffiffi

M €u
p

jþ A2 cosh
ffiffiffiffiffiffiffiffi

M €u
p

j;

for 0 , j , j1 ðA15aÞ

and

v3ðjÞ ¼ A3 sinh
ffiffiffiffiffiffiffiffi

M €u
p

ðj� j2Þ

þA4 cosh
ffiffiffiffiffiffiffiffi

M €u
p

ðj� j2Þ þ
b

M €u
; for j2 , j, j3:

ðA15bÞ

Here, A2 ¼ 0 because of the boundary condition at
j ¼ 0, while A3 and A4 are determined by the continuity
condition on v and @jv at j ¼ j2:

A3 ¼
1
ffiffiffiffiffiffiffiffi

M €u
p @jv2ðj2Þ ðA15cÞ

and

A4 ¼ v2ðj2Þ �
b

M €u
: ðA15dÞ
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Figure 5. Comparison between analytical and numerical solutions of the non-dimensional phloem flow problem. (a) Numerically
computed velocity v (circles) as a function of position j for Mü ¼ 0, 1, 10, 100, j1 ¼ 0.3, j2 ¼ 1.3 and j3 ¼ 1.6. The analytical
solutions for the velocity (solid lines) given in equations (A 11a–c), (A 15a,b) and (A 18) are shown for comparison. (b) Numeri-
cally computed concentration 6 (circles) as a function of position j for the same parameters as in (a). The analytical solutions for
the concentration (solid lines) were found using the solutions for v given in equations (A 11a–c), (A 15a,b) and (A 18) and the
conditions given in equations (A 6), (A 7) and (A 8a,b). Open circles, numerics; solid lines, analytics.

Table 2. Plant data used in figure 4 for phloem type P (primary ¼ 1, secondary ¼ 2). Sieve lumen radius r, translocation zone
length l2 (plant length), loading zone length l1 (leaf size) and measured flow velocity are given with corresponding standard
deviations. The Münch number Mü and the ratio l1/l2 were calculated using Lp ¼ 5 � 10214 m s21 Pa21, h ¼ 5 � 1023 Pa s.
Estimates of l1 and l2 follow general knowledge of plants available at online databases (USDA plant database) and visits to the
Harvard University Herbaria. References are given in square brackets.

species habit P r (mm)
Dr

(mm)
l2
(m)

Dl2
(m)

l1
(m)

Dl1
(m)

u

(mm s21)
Du

(mm s21) Mü l1/l2

Beta vulgaris herbaceous
dicot

1 5.0
[42–44]

1.0 0.3 0.06 0.10 0.02 2.88 0.33

Yucca flaccida woody
monocot

1 10.0 [44] 2.0 1.0 0.2 0.5 0.1 4.00 0.50

Sabal palmetto tree
monocot

1 16.5 [44] 1.7 20 4 0.5 0.1 35.6 0.025

Tilia americana tree dicot 2 15.0 [44] 1.5 20 4 0.10 0.02 474 0.0050
Robinia pseudoacacia tree dicot 2 10.0 [44] 1.0 40 8 0.030 0.006 6400 0.00075
Vitis vinifera vine 2 18.0 [44] 4.0 20 4 0.10 0.02 274 0.0050
Gossypium

bardadense

herbaceous
dicot

1 11.0 [44] 2.2 1.5 0.3 0.15 0.03 6.76 0.10

Pinus strobus tree conifer 2 10.9 [45] 1.0 20 4 0.10 0.02 1240 0.0050
Festuca arundinacea herbaceous

monocot
1 3.0 [46] 0.6 0.30 0.06 0.05 0.01 13.3 0.17

Cucurbita pepo creeper
dicot

2 40.0 [47] 8.0 7.0 1.4 0.30 0.06 3.06 0.043

Glycine max herbaceous
dicot

1 3.7a 1.0 0.40 0.08 0.10 0.02 145 46 12.6 0.25

Tradescantia

virginiana

herbaceous
monocot

1 1.2a 0.4 0.10 0.02 0.020 0.004 4.13 1.64 23.1 0.20

Cucumis sativus creeper
dicot

1 6.3a 1.4 0.60 0.12 0.10 0.02 149 54 5.76 0.17

Cucurbita maxima creeper
dicot

1 12.3a 2.7 4.0 0.8 0.20 0.04 62.9 48.4 34.4 0.050

Cucurbita maxima creeper
dicot

2 16.6a 2.6 4.0 0.8 0.20 0.04 48.2 29.3 14.0 0.050

Solanum

lycopersicum

herbaceous
dicot

1 5.2a 0.8 0.40 0.08 0.10 0.02 162 48 4.55 0.25

Anacyclus purethrum herbaceous
dicot

1 2.1 [10] 0.6 0.30 0.06 0.010 0.002 38.9 0.033

Ecbalium elaterium creeper
dicot

1 15.0 [10] 3.0 3.0 0.6 0.20 0.04 10.7 0.067

Eragostis plana herbaceous
monocot

1 3.0 [48] 0.6 0.2 0.04 0.10 0.02 5.93 0.5

Heracleum

mantegazzianum

herbaceous
dicot

1 9.0 [49] 1.8 2.0 0.4 0.20 0.04 21.9 0.1

aRefers to our own measurements.
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In the translocation zone, we shall solve the equation

@2
j v2 ¼ � v1ðj1Þ

v22
@jv2 þ M €uv2; for j1 , j , j2;

ðA16Þ
by assuming that v2 can be written as v2 ¼ v0

2/Mü,
where v02 is of the order of unity. Inserting this, and
keeping only terms of order Mü and Mü2, we get that

M €uv1ðj1Þ@jv02 ¼ v302 : ðA17Þ

Since we must have that v2( j1) ¼ v1( j1), we get that

v2ðjÞ ¼
v1ðj1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M €uv1ðj1Þðj� j1Þ
p ;

for j1 , j , j2: ðA18Þ

Note that this solution does not fulfil the condition
@jv2ðj1Þ ¼ @jv1ðj1Þ. This is due to the fact that we
have ignored the term @2

jv2. However, this turns out
to play very little role when comparing the analytical
solution with the numerical solution of the full problem.
Using the continuity conditions at j ¼ j1 and j ¼ j2,
the mean translocation velocity �v in the translocation
zone is found to be

�v ¼ 1

M €u
; ðA19Þ

which in dimensional units becomes equation (3.7).
Representative examples of numerical solutions for the
dimensionless velocity and concentration fields together
with the analytical solutions for small and large Mü are
shown in figure 5.

Different sizes of the loading and unloading zone. If
l1 = l3, we find that for Mü � 1 the solution (A 19)
remains unchanged, while for Mü � 1 the mean
velocity instead of equation (A 13) now is given by

�v ¼ 1

2
l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2x
p

� 1
� �

; ðA20Þ

where x ¼ l3/l1. Thus the scaling relations are not sig-
nificantly affected as long as x is of the order of unity.

Optimal radius of the phloem tubes. To maximize
the flow velocity, a plant would presumably operate near
the maximum in the u–r diagram shown in figure 3b.
Equating the two expressions (3.6) and (3.7) for ū in the
limits Mü � 1 and Mü �1 gives the following estimate
for the optimal radius rc:

r3c ¼ 8ð
ffiffiffi

3
p

� 1ÞLphl1l2: ðA21Þ

Phloem translocation velocity. Figure 4a shows the
velocities �u measured experimentally (black circles)
using the method described in figure 2. To compare
our model with the experimental data, the non-
dimensional mean velocity �v depending on Mü and a
was first calculated numerically from equations (A 5)–
(A 9c) using the data for r and l2 shown in table 2.
Then, the dimensional mean velocity ū was found from

�uðM€u;aÞ ¼ 2l2

r
LpRTc0�vðM€u;aÞ; ðA22Þ

with Lp ¼ 5
 10214 m (Pa s)21 chosen as the representa-
tive value and RTc0 ¼ 0.54 MPa chosen to fit the model
to the experimental value forS. lycopersicum.Thesepredic-
ted values for ū (grey circles) are also plotted in figure 3b
showing good agreement between theory and experiment.
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40 Hölttä, T., Mencuccini, M. & Nikinmaa, E. 2009 Linking
phloem function to structure: analysis with a coupled
xylem–phloem transport model. J. Theor. Biol. 259,
325–337. (doi:10.1016/j.jtbi.2009.03.039)

41 van Bel, A. J. E. 2003 The phloem, a miracle of ingenuity.
Plant Cell Environ. 26, 125–149. (doi:10.1046/j.1365.
3040.2003.00963.x)

42 Geiger, D. & Cataldo, D. 1969 Leaf structure and trans-
location in sugar beet. Plant Physiol. 44, 45–54. (doi:10.
1104/pp.44.1.45)

43 Sokolova, S. 1968 Fine structure of petiole phloem cells of
Beta vulgaris L. Plant Physiol. (Russian) 15, 757–763.

44 Tyree, M. T., Christy, A. L. & Ferrier, J. M. 1974 A sim-
pler iterative steady state solution of Münch pressure-flow
systems applied to long and short translocation paths.
Plant Physiol. 54, 589–600. (doi:10.1104/pp.54.4.589)

45 Murmanis, L. & Evert, R. 1966 Some aspects of sieve
cell ultrastructure in Pinus strobus. Am. J. Bot. 53,
1065–1078. (doi:10.2307/2440687)

46 Sheehy, J., Mitchell, P., Durnand, J., Gastal, F. &
Woodward, F. 1995 Calculation of translocation coeffi-
cients from phloem anatomy for use in crop models.
Ann. Bot. 76, 263–269. (doi:10.1006/anbo.1995.1095)

47 Crafts, A. & Lorenz, O. 1944 Fruit growth and food trans-
port in cucurbits. Plant Physiol. 19, 131–138. (doi:10.
1104/pp.19.1.131)

48 Botha, C. 2005 Interaction of phloem and xylem during
phloem loading: functional sympalsmic roles for thin-
and thick-walled sieve tubes in monocotyledons. In
Vascular transport in plants (eds N. M. Holbrook &
M. A. Zwieniecki), pp. 115–130. San Diego, CA: Elsevier
Academic Press.

49 Fensom, D. 1975 Work with isolated phloem strands. In
Transport in plants I: phloem transport (eds M. H.
Zimmermann & J. A. Milburn), pp. 223–244. Berlin,
Germany: Springer.

Optimal translocation of sugar in plants K. H. Jensen et al. 11

J. R. Soc. Interface

 on January 23, 2011rsif.royalsocietypublishing.orgDownloaded from 



Bibliography[1℄ B. Abe
assis, C. Cottin-Bizonne, C. Ybert, A. Ajdari, and L. Bo
quet, Boosting mi-gration of large parti
les by solute 
ontrasts, Nature Materials 7 (2008), 785�789.[2℄ A. Ajdari, Pumping liquids using asymmetri
 ele
trode arrays, Phys. Rev. E 61 (2000),no. 1, R45�R48.[3℄ G. K. Aldis, The unstirred layer during osmoti
 �ow into a tubule, Bull. Math. Bio.50 (1988), no. 5, 531�545.[4℄ P. W. Atkins, Physi
al 
hemistry, Oxford University Press, 1978.[5℄ G. K. Bat
helor, An introdu
tion to �uid dynami
s, Cambridge University Press, 1967.[6℄ A. J. E. Van Bel, The phloem, a mira
le of ingenuity, Plant, Cell and Environment26 (2003), 125�149.[7℄ C. Bou
hard and B. P. A. Granjean, A neural network 
orrelation for the variationof vis
osity of su
rose aqueous solutions with temperature and 
on
entration, LWT -Food S
ien
e and Te
hnology 28 (1995), no. 1, 157 � 159.[8℄ S. Boudait, O. Hansen, H. Bruus, C. Berendsen, N. K. Bau-Madsen, P. Thomsen,A. Wol�, and J. Jonsmann, Surfa
e-dire
ted 
apillary system; theory, experimentsand appli
ations, Lab Chip 5 (2005), 827�836.[9℄ A. Brask, J. Kutter, and H. Bruus, Long-term stable ele
troosmoti
 pump with ionex
hange membranes, Lab Chip 5 (2005), 730�738.[10℄ H. Bruus, Theoreti
al mi
ro�uidi
s, Oxford University Press, 2008.[11℄ F. Bundgaard, G. Perozziello, and O. Ges
hke, Rapid prototyping tools and methods forall-topas 
y
li
 ole�n 
opolymer �uidi
 mi
rosystems, Pro
eedings of the Institutionof Me
hani
al Engineers Series C 220 (2007), no. 11, 1625�1632.[12℄ M. J. Canny, Phloem translo
ation, Cambridge University Press, 1973.[13℄ A. Lawren
e Christy and Ja
k M. Ferrier, A Mathemati
al Treatment of Mun
h'sPressure-Flow Hypothesis of Phloem Translo
ation, Plant Physiol. 52 (1973), no. 6,531�538. 171



172 Bibliography[14℄ Z. Dagan, S. Weinbaum, and R. Pfe�er, An in�nite-series solution for the 
reepingmotion through an ori�
e of �nite length, Journal of Fluid Me
hani
s 115 (1982),505�523.[15℄ J. Dainty, The polar permeability of plant 
ell membranes to water, Protoplasma 57(1963), 220�228.[16℄ W. Es
hri
h, R. F. Evert, and J. H. Young, Solution �ow in tubular semipermeablemembranes, Planta (Berl.) 107 (1972), 279�300.[17℄ Alberts et al., Essential 
ell biology, Garland S
ien
e, 2004.[18℄ O. Ges
hke, Mi
rosystem engineering of lab-on-a-
hip devi
es, Wiley-VCH, 2004.[19℄ M. M. Gregersen, L. H. Olesen, A. Brask, M. F. Hansen, and H. Bruus, Flow reversalat low voltage and low frequen
y in a mi
rofabri
ated a
 ele
trokineti
 pump, Phys.Rev. E 76 (2007), no. 5, 056305.[20℄ H. Hasimoto, On the �ow of a vis
ous �uid past a thin s
reen at small reynolds num-bers, Journal of the Physi
al So
iety of Japan 13 (1958), no. 6, 633�639.[21℄ T. Heimburg, Nonequlibrium thermodynami
s in biology, NBI press, 2006.[22℄ N. M. Holbrook, Personal 
ommuni
ation, 2011.[23℄ N. M. Holbrook and M. A. Zwienie
ki, Vas
ular transport in plants, A
ademi
 Press,2005.[24℄ T. Hölttä,Modeling xylem and phloem water �ows in trees a

ording to 
ohesion theoryand mün
h hypothesis, Trees - Stru
ture and Fun
tion 20 (2006), no. 1, 67�78.[25℄ L. Horwitz, Some Simpli�ed Mathemati
al Treatments of Translo
ation in Plants,Plant Physiol. 33 (1958), no. 2, 81�93.[26℄ B. Huber, Die saftströme der p�anzen, Springer-Verlag, 1956.[27℄ K. H. Jensen, T. Bohr, and H. Bruus, Self-
onsistent unstirred layers in osmoti
allydriven �ows, Journal of Fluid Me
hani
s 662 (2010), 197�208.[28℄ K. H. Jensen, J. Lee, T. Bohr, and H. Bruus, Osmoti
ally driven �ows in mi
ro
hannelsseparated by a semipermeable membrane, Lab on a Chip 9 (2009), no. 14, 2093�2099.[29℄ K. H. Jensen, J. Lee, T. Bohr, H. Bruus, N. M. Holbrook, and M. A. Zwienie
ki,Optimality of the Mün
h me
hanism for translo
ation of sugars in plants, Journal ofThe Royal So
iety Interfa
e (2011), DOI: 10.1098/rsif.2010.0578.[30℄ K. H. Jensen, E. Rio, R. Hansen, C. Clanet, and T. Bohr, Osmoti
ally driven pipe�ows and their relation to sugar transport in plants, Journal of Fluid Me
hani
s 636(2009), 371�396.



Bibliography 173[31℄ K.H. Jensen, M.N. Alam, B. S
herer, A. Lambre
ht, and N.A. Mortensen, Slow-lightenhan
ed light-matter intera
tions with appli
ations to gas sensing, Opti
s Communi-
ations 281 (2008), no. 21, 5335 � 5339.[32℄ M. J. Jensen, H. A. Stone, and H. Bruus, A numeri
al study of two-phase stokes �owin an axisymmetri
 �ow-fo
using devi
e, Physi
s of Fluids 18 (2006), no. 7, 077103.[33℄ J. Jeong and S. Choi, Axisymmetri
 stokes �ow through a 
ir
ular ori�
e in a tube,Physi
s of Fluids 17 (2005), no. 5, 053602.[34℄ F. C. Johansen, Flow through Pipe Ori�
es at Low Reynolds Numbers, Pro
eedings ofthe Royal So
iety of London. Series A 126 (1930), no. 801, 231�245.[35℄ R. P. C. Johnson, Histori
al Sket
hes 21, Journal of Experimental Botany 37 (1986),no. 9, 1429�1431.[36℄ M. Knoblau
h and W. S. Peters, Mün
h, morphology, mi
ro�uidi
s - our stru
turalproblem with the phloem., Plant Cell Environment 33 (2010), no. 9, 1439�1452.[37℄ M. Knoblau
h and A. J. E. van Bel, Sieve tubes in a
tion, The Plant Cell 10 (1998),35�50.[38℄ A. La
ointe and P. E. H. Min
hin, Modelling phloem and xylem transport within a
omplex ar
hite
ture, Fun
tional Plant Biology 35 (2008), no. 10, 772�780.[39℄ L. D. Landau and E. M. Lifshitz, Statisti
al physi
s, third ed., Pergamon Press, 1980.[40℄ A. Lang, A working model of a sieve tube, Journal of Experimental Botany 24 (1973),no. 82, 896�904.[41℄ , A relay me
hanism for phloem translo
ationa, Annals of Botany 44 (1979),no. 2, 141�146.[42℄ J. Lee, E. Kulla, A. Chauhan, and A. Tripathi, Taylor dispersion in polymerase 
hainrea
tion in a mi
ro
hannel, Phys. Fluids 20 (2008), 093601.[43℄ T. J. Lough and W. J. Lu
as, Integrative plant biology: role of phloem long-distan
ema
romole
ular tra�
king., Annual review of plant biology 57 (2006), 203�232.[44℄ A Ma
Robbie, Phloem translo
ation - fa
ts and me
hanisms - 
omparative survey,Biologi
al reviews of the Cambridge philosophi
al so
iety 46 (1971), no. 4, 429�481.[45℄ J. W. Maynard and W. J. Lu
as, A reanalysis of the two-
omponent phloem loadingsystem in beta vulgaris, Plant Physiol. 69 (1982), no. 3, 734�739.[46℄ M. Men
u

ini and T. Hölttä, On light bulbs and marbles. transfer times and tele
on-ne
tions in plant �uid transport systems., New Phytol 187 (2010), no. 4, 888�91.[47℄ B. E. Mi
hel, Solute potentials of su
rose solutions, Plant Physiol. 50 (1972), 196�198.



174 Bibliography[48℄ D. L. Mullendore, C. W. Windt, H. Van As, and M. Knoblau
h, Sieve Tube Geometryin Relation to Phloem Flow, Plant Cell 22 (2010), no. 3, 579�593.[49℄ E. Mün
h, Die sto�bewegung in der p�anze, Jena, Verlag von Gustav Fisher, 1930.[50℄ R. Murphy and D. P. Aikman, An Investigation of the Relay Hypothesis of PhloemTransport in Ri
inus 
ommunis L., Journal of Experimental Botany 40 (1989), no. 10,1079�1088.[51℄ K. J. Niklas, Plant biome
hani
s � an engineering approa
h to plant form and fun
tion,The University of Chi
ago Press, 1992.[52℄ , Plant allometry: the s
aling of form and pro
ess, University of Chi
ago Press,1994.[53℄ P. S. Nobel, Physi
o
hemi
al & environmental plant physiology, A
ademi
 press, 1999.[54℄ X. Noblin, L. Mahadevan, I. A. Coomaraswamy, D. A. Weitz, N. M. Holbrook, andM. A. Zwienie
ki, Optimal vein density in arti�
ial and real leaves, PNAS 105 (2008),no. 27, 9140�9144.[55℄ J. Y. Park, C. M. Hwang, S. H. Lee, and S. Lee, Gradient generation by an osmoti
pump and the behavior of human mesen
hymal stem 
ells under the fetal bovine serum
on
entration gradient, Lab on a 
hip 7 (2007), 1673�1680.[56℄ T. J. Pedley, The intera
tion between stirring and osmosis. part 1, Journal of FluidMe
hani
s 101 (1980), no. 4, 843�861.[57℄ , The intera
tion between stirring and osmosis. part 2, Journal of Fluid Me-
hani
s 107 (1980), 281�296.[58℄ , Cal
ulation of unstirred layer thi
kness in membrane transport experiments:a survey, Quarterly Review of Biophysi
s 16 (1983), no. 2, 115�150.[59℄ T. J. Pedley and J. Fis
hbarg, The development of osmoti
 �ow through an unstirredlayer, Journal of Theoreti
al Biology 70 (1978), no. 4, 427 � 447.[60℄ T. J. Pedley and J. Fis
hbarg, Unstirred layer e�e
ts in osmoti
 water �owa
ross gallbladder epithelium, Journal of Membrane Biology 54 (1980), 89�102,10.1007/BF01940563.[61℄ W. F. Pi
kard and B. Abraham-Shrauner, A simplest steady-state mun
h-like modelof phloem translo
ation, with sour
e and pathway and sink, Fun
tional Plant Biology36 (2009), no. 7, 629�644.[62℄ P. Pohl, The size of the unstirred layer as a fun
tion of the solute di�usion 
oe�
ient,Biophysi
al Journal 75 (1998), 1403�1409.[63℄ W. H. Press, Numeri
al re
ipes in fortran 77, volume 1, se
ond ed., Cambridge Uni-versity Press, 2001.



Bibliography 175[64℄ G. M. Preston, T. P. Carroll, W. B. Guggino, and P. Agre, Appearan
e of Water Chan-nels in Xenopus Oo
ytes Expressing Red Cell CHIP28 Protein, S
ien
e 256 (1992),no. 5055, 385�387.[65℄ R. Ros
oe, The �ow of vis
ous �uids round plane obsta
les, The Philosophi
al Maga-zine 40 (1941), 338�351.[66℄ R. A. Sampson, On Stokes's Current Fun
tion, Philosophi
al Transa
tions of the RoyalSo
iety of London. (A.) 182 (1891), 449�518.[67℄ S. G. S
hultz, Basi
 prin
iples of membrane transport, Cambridge University Press,1980.[68℄ A. S
hulz, Living sieve 
ells of 
onifers as visualized by 
onfo
al, laser-s
anning �uo-res
en
e mi
ros
opy, Protoplasma 166 (1992), 153�164, 10.1007/BF01322778.[69℄ H. W. Smith and H. W. Smith, I. theory of solutions: "a knowledge of the laws ofsolutions ...", Cir
ulation 21 (1960), no. 5, 808�817.[70℄ K. C. Smith, C. E. Magnuson, J. D. Goes
hl, and D. W. DeMi
hele, A time-dependentmathemati
al expression of the mün
h hypothesis of phloem transport, Journal of The-oreti
al Biology 86 (1980), no. 3, 493 � 505.[71℄ J. S. Sperry, U. G. Ha
ke, and J. K. Wheeler, Comparative analysis of end wallresistivity in xylem 
onduits, Plant, Cell & Environment 28 (2005), no. 4, 456�465.[72℄ Statkraft, Power produ
tion based on osmoti
 pressure, 2009, Presented by Statkraftat Waterpower XVI, Spokane, USA.[73℄ L. Taiz and E. Zeiger, Plant physiology, third ed., Sinauer Asso
iates, In
., 2002.[74℄ G. I. Taylor, Dispersion of soluble matter in solvent �owing slowly through a tube.,Pro
. Roy. So
. A 291 (1953), 186�203.[75℄ J. R. Taylor, An introdu
tion to error analysis, se
ond ed., University S
ien
e Books,1997.[76℄ F. Theeuwes, Elementary osmoti
 pump, J. Pharm. S
i. 64 (1975), 1987�1991.[77℄ M. V. Thompson, S
aling phloem transport: Elasti
ity and pressure-
on
entrationwaves, Journal of Theoreti
al Biology 236 (2005), no. 3, 229 � 241.[78℄ , Phloem: the long and the short of it, Trends in Plant S
ien
e 11 (2006), no. 1,26 � 32.[79℄ M. V. Thompson and N. M. Holbrook, Appli
ation of a single-solute non-steady-statephloem model to the study of long-distan
e assimilate transport, J Theo Biol 220(2003), no. 4, 419�455.



176 Bibliography[80℄ , S
aling phloem transport: water potential equilibrium and osmoregulatory�ow, Plant, Cell and Environment 26 (2003), 1561�1577.[81℄ , S
aling phloem transport: information transmission, Plant, Cell & Environ-ment 27 (2004), no. 4, 509�519.[82℄ R. Turgeon, The puzzle of phloem pressure, Plant Physiology 154 (2010), no. 2, 578�581.[83℄ R. Turgeon and S. Wolf, Phloem transport: 
ellular pathways and mole
ular tra�
k-ing., Annu Rev Plant Biol 60 (2009), 207�221.[84℄ M. T. Tyree, A. L. Christy, and J. M. Ferrier, A Simpler Iterative Steady State Solu-tion of Mun
h Pressure-Flow Systems Applied to Long and Short Translo
ation Paths,Plant Physiol. 54 (1974), no. 4, 589�600.[85℄ M. T. Tyree and M. H. Zimmermann, Xylem stru
ture and the as
ent of sap, Springer,1983.[86℄ C. Y. Wang, Stokes �ow through a thin s
reen with patterened holes, AIChE 40 (2004),no. 3, 419�423.[87℄ G. B. West and J. H. Brown, The origin of allometri
 s
aling laws in biology fromgenomes to e
osystems: towards a quantitative unifying theory of biologi
al stru
tureand organization, Journal of Experimental Bioliology 208 (2005), no. 9, 1575�1592.[88℄ T. D. Wheeler and A. D. Stroo
k, The transpiration of water at negative pressures ina syntheti
 tree, Nature 455 (2008), no. 7210, 208�212.[89℄ C. W. Windt, F. J. Vergeldt, P. De Jager, and H. Van As, MRI of long-distan
e watertransport: a 
omparison of the phloem and xylem �ow 
hara
teristi
s and dynami
s inpoplar, 
astor bean, tomato and toba

o, Plant, Cell & Environment 29 (2006), no. 9,1715�1729.[90℄ D. York, Least-squares �tting of a straight line, Canadian Journal of Physi
s 44 (1966),no. 5, 1079�1086.


	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Outline of the thesis
	Publications during the PhD project

	Osmotically driven flows in living and artificial systems
	Osmotically driven flows in living systems
	Vascular transport in plants
	The xylem
	The phloem

	Translocation in the phloem
	Mechanisms driving the flow
	Interaction between phloem and xylem

	Osmotically driven flows in artificial systems
	Technological applications of osmotically driven flows
	Conclusion

	Fluid mechanics of osmotically driven flows
	Background
	Osmosis
	Non-equilibrium thermodynamics
	Osmotically driven flow across a semipermeable membrane

	Equations of motion for osmotically driven flows
	Boundary conditions imposed by osmosis
	Equations of motion governing fluid flow
	Equations of motion governing solute transport

	Solution of the coupled concentration-flow problem
	Non-dimensional formulation of the equations of motion
	Non-dimensional equations of motion for fluid motion
	Non-dimensional equation of motion for solute transport
	Summary of the non-dimensional equations of motion
	Analytical solution of the flow problem
	The Münch number

	One-dimensional formulation of the equations of motion
	Application of the equations of motion to translocation processes in plants
	An introduction to zone models
	Characteristics properties of zone models
	Common assumptions used in mathematical phloem transport models

	Conclusion

	Hydraulic resistance of sieve plates
	Introduction to sieve plates
	Characteristic properties of the flow inside sieve tube elements
	Previous work on Stokes flow through small pores
	Numerical simulation of the flow close to a sieve plates

	Hydraulic resistance of sieve tubes
	Hydraulic resistance of the cell lumen
	Hydraulic resistance of the sieve plate
	Hydraulic resistance of the sieve tube system

	On the relationship between lumen and plate resistance
	Effective hydraulic resistance

	Conclusion

	Mathematical analysis of the equations of motion
	The 3–zone model
	Formulation of the 3–zone model
	A simplified mathematical treatment
	Non-dimensional formulation of the equations of motion

	Analytical solution of the 3–zone model
	Solution for Mü1
	Solution for Mü1

	Solution summary for =1
	Comparison between numerical and analytical solutions
	Numerical solutions of the 3–zone model
	Comparison between numerical and analytical solutions

	Conclusion and Summary

	Optimality of the Münch mechanicsm
	Introduction to optimality and allometric scaling laws
	Comparison between the 3-zone model and plant velocity measurements
	Optimality of the Münch mechanism
	Allometric scaling law for the optimality of the Münch mechanism

	Comparison with plant data
	Determining the scaling exponent
	Determining the scaling prefactor

	Discussion
	Lang's relay hypothesis
	Is osmosis adequate for translocation in tall trees?

	Conclusion

	Microfluidic Experiments
	Abstract
	Introduction
	Experimental setup
	Chip design and fabrication
	Measurement setup and procedures 

	Experimental results
	Dye tracking
	Particle tracking

	Theoretical analysis
	Equation of motion
	Corrections to the equation of motion

	Discussion
	Comparison of theory and experiment
	Osmotic pumps in lab-on-a-chip systems

	Conclusions
	Acknowledgements

	Self-consistent unstirred layers in osmotically driven flows
	Abstract
	Introduction
	Governing equations and geometries
	Non-dimensional variables
	Steady state equations of motion - Stokes flow
	Geometries

	Numerical results for the left-right symmetric parallel plate problem
	Theory for the left-right symmetric parallel plate problem
	A detailed look at the concentration profile for x<m
	A detailed look at the concentration profile for x>m

	Results from other geometries
	Conclusion
	Numerical methods
	Solution of the diffusion-advection eigenvalue problem

	Conclusion and outlook
	Analytical solution of the 3-zone model
	Solution for Mü1
	Calculation of the constants B1,B2,…,B6
	Additional results
	Calculation of  for Mü1

	Solution for Mü1

	Horwitz's derivation of the equations of motion
	Conservation of volume
	Conservation of sugar
	Mathematical formulation of the loading/unloading processes


	Themodynamics of osmosis
	Non-equlibrium thermodynamics
	Osmotically driven flow across non-ideal membranes

	Sieve plate data
	Paper published in the Journal of Fluid Mechanics (2009)
	Paper published in the Journal of the Royal Society Interface (2011)
	Bibliography

