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Abstract

The results in this thesis are part of the work carried out during the author’s doctoral stud-
ies. The PhD project has been funded partly by the Danish National Research Foundation
(grant no. 74) through the Center for Fluid Dynamics, and partly by the Department of
Micro- and Nanotechnology at the Technical University of Denmark. The overall title for
the PhD project is Osmotically driven flow in microfluidic systems and their relation to
sugar transport in plants. The work has consisted of several smaller projects focusing on
theory, and to some extend experiments, with osmotically driven flows as the predominant
theme. This thesis contains selected parts of the results obtained. Other parts of the work
have been published in peer-reviewed journals or presented at conferences, see Sec.

The study of osmotically driven flows is motivated by phenomena observed in plants
which have highly efficient vascular system that facilitates the transport of fluid and nutri-
ents between distal parts of the organism. In this PhD project the author and co-workers'
have studied one of these vascular system, the phloem, which is responsible for the distri-
bution of sugar produced by photosynthesis and signaling molecules secreted in response to
external or internal stimuli between distal parts of the plant. The phloem can be broadly
comparable to a combination of the blood circulatory- and nervous systems found in an-
imals, and it has long been debated which mechanism drives the translocation process.
Since Ernst Miinch’s work in the 1930s it has been known that osmosis plays a very im-
portant role, but it is still largely unknown whether this mechanism can account for the
rates of translocation observed in plants.

To get a fundamental understanding of osmotically driven flows, we have conducted
a thorough theoretical study of these. This, coupled with a series of simple experiments,
has allowed us to gain a new, quantitative, understanding of the transport process that
occur in plants. The experiments were carried out in a microfluidic system. To mimic
the situation in plants where the osmotic interaction occurs across cell membranes, we
used a system where two channels (2.7 cm long, 200 um wide and 50 — 200 pm deep)
were separated by a cellulose membrane. One channel was filled half way with an aqueous
sugar solution, while the other channel was completely filled with water. Due to osmosis
water moves from the water filled channel into the sugar-filled region and thereby pushes
the sugar forwards. We have shown that the experiments, within a reasonable degree of
accuracy, follow the predictions of the Miinch theory.

With the understanding obtained from the above mentioned experiments, we have
studied the main topic of this thesis: Theoretical aspects of osmotically driven flows.
Although the basic equations have been known for at least half a century, there is a
surprisingly poor understanding of the correlation between, say, a tree’s height and the
speed at which sugar is moving in phloem due to the osmotic flow process. To answer

!See the list of publications, Sec. [[2] and the introduction to each chapter.
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this and related questions, we have studied fundamental properties of osmotically driven
flows, and have developed a simple model which we believe provides a reasonably accurate
quantitative description of the transport process in the phloem. The model provides a
basic understanding of the flow as a function of the parameters in the problem and is able
to reproduce experimental data from #n vivo measurements made on plants.

An interesting prediction of the model is that the osmotically driven Miinch flow mech-
anism has a maximum in translocation velocity for a special value of the radius. The
existence of such a maximum is quite easy to understand: the osmotic flow takes place
across the cell surface and is therefore more effective in terms of the axial velocity for thin-
ner tubes where the surface-to-volume ratio is larger. Very thin tubes, on the other hand,
offer high viscous resistance to the flow, and thus there is an optimum radius where the
osmotic pump is effective and the resistance not too large. We have derived an analytical
expression for this radius which takes the form of an allometric scaling law relating the
optimum radius of the phloem cells a. to the length of the stem and the size of the leaf .
We thus find that at the radius ai’ o l1l9, the osmotic flow mechanism yields the fastest
possible translocation velocity. We have compared this prediction to plant data and have
found good agreement between observations and our result for a group of plants varying
several orders of magnitude in size. This finding suggests that the physical constraints
imposed by the optimality of the Miinch flow mechanism has played a significant role in
the evolution of the phloem vascular system of plants.
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Resumé

Resultaterne i denne afhandling er udarbejdet i lgbet af forfatterens ph.d.-studier. Ph.d.-
projektet er dels financieret af et af Danmarks Grundforskningsfond stgttet projekt, Center
for Fluid Dynamik (bevilling no. 74), og dels af Institut for Mikro- og Nanoteknologi ved
Danmarks Tekniske Universitet. Den overordnede titel for ph.d.-projektet er Osmotisk
drevne stromninger ¢ mikrofluide systemer og deres relation til sukkertransport i planter.
Arbejdet har bestaet af flere mindre projekter med fokus pa teori, og i nogen grad eksperi-
menter, med osmotisk drevne strgmninger som det gennemgaende tema. I den foreliggende
athandling gennemgés dele af de i lgbet af projektet opnaede resultater. Andre dele af ar-
bejdet er blevet publiceret i fagfaellebedgmte tidskrifter eller praesenteret ved konferencer,
se afsnit

Studiet af osmotisk drevne strgmninger er motiveret af feenomener observeret i planter,
der har meget effektive karsystemer, som sgrger for at transportere veeske, signal- og
naeringsstoffer. I dette ph.d.-projekt har forfatteren og samarbejdspartnere? studeret det
ene af disse karsystemer, det sdkaldte phloem, som sgrger for at bringe signalstoffer og
det sukker, der produceres gennem bladenes fotosyntese ned til rgdderne eller ud til nye
skud. Phloemet kan i store track sammenlignes med en kombination af dyrs blodkredslgbs-
og nervesystem, og det har laenge vaeret debatteret, hvad der driver sddanne strgmninger.
Siden Ernst Miinchs arbejde i 1930’erne har det veeret kendt, at osmotiske trykforskelle
spiller en meget vigtig rolle, men man ved stadig ikke, hvor stor en del af strgmningerne,
som kan forklares pa denne made. For at fi en grundlaenggende forstaelse af osmotisk
drevne strgmninger har vi foretaget et grundigt teoretisk studie af disse. Det har, sam-
men med en raekke simple eksperimenter, givet os en ny forstaelse for transportprocessen
i planter.

Eksperimenterne er foretaget pa mikrofluide systemer. For at efterligne situationen
i planter, hvor den osmotiske vekselvirkning sker over cellemenbraner, har vi brugt et
system, hvor to kanaler (2.7 cm lange, 200 pm bredde og 50 — 200 wm dybe) er adskilt
af en cellulosemembran. Den ene kanal fyldes halvt med en vandig sukkeroplgsning, halvt
med vand og den anden helt op med vand. Pga. osmose traenger vand fra den ene kanal ind
i den anden og skubber séledes sukkeroplgsningen fremad. Vi har vist, at eksperimenterne
med rimelig ngjagtighed fglger Miinch-teoriens forudsigelser.

Med disse eksperimenter i bagagen har vi studeret hovedemnet i denne afhandling:
Teoretiske aspekter af osmotisk drevne strgmninger. Selv om de grundlaeggende ligninger
har veeret kendt i mere end et halvt &rhundrede, er der en forbavsende ringe forstaelse
for sammenhaengen mellem f.eks. et traes hgjde og den hastighed, hvormed sukkerstoffer
bevaeger sig i phloemet. For at besvare dette og relaterede spgrgsmal har vi studeret de
fundamentale egenskaber ved osmotisk drevne strgmninger. Vi har séledes udviklet en sim-

2Se publikationslisten, afsnit [L2] samt introduktionen til de enkelte kapitler.
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pel model, som beskriver transportprocessen i phloemet. Modellen giver en grundleggende
forstaelse af strgmningerne som funktion af de relevante parametre, og den er i stand til
at reproducere eksperimentelle data fra in-vivo malinger pa planter.

Modellen kommer desuden med mange interessante forudsigelser. En af dem er, at den
osmotisk drevne strgmningsmekanisme har den hgjeste effektivitet for en speciel radius
af phloem-karene. Grunden til dette et, at den osmotiske strgmning foregar via karenes
overflade, og at den derfor er mere effektiv, jo mindre radius i karene er. P4 den anden side
bliver den viskgse strgmningsmodstand meget stor for sma kar, og altsa er der en serlig
karradius, hvor disse to effekter er i balance, og hastigheden er stgrst mulig. Vi har udledt et
analytisk udtryk for denne radius, der relaterer cellernes radius a. til bladest storrelse i1 og
stammens laengde lo: a2 oc l1l5. Vi finder god overensstemmelse mellem denne forudsigelse
og data fra en stor gruppe planter, der varierer i leengde over flere stgrrelsesordener. Dette
resultat tyder pa, at de fysiske begraensninger i Miinch-mekanismen har spillet en vaesentlig
rolle i udviklingen af planters phloem-kar system.
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Chapter 1

Introduction

Osmosis is the passage of water from a region of high water concentration to a region of
low water concentration through a semipermeable membrane. Scientific interest in the
subject started in the middle of the eighteenth century with the discovery of osmosis by
Abbé Jean-Antoine Nollet. It was soon realized that osmosis plays an important role in
the transport of water in and out cells, and with the theoretical framework put in place
by van’t Hoff in the 1880s, the fundamental understanding of the phenomena was greatly
improved [69)].

One area of biology where osmotically driven flows turned out to be of particular im-
portance is in plants. At the beginning of the twentieth century Ernst Miinch published
his now famous monograph “Die Stoffbewegungen in der Pflanze” [49]. He proposed that
long-distance transport of sugar in plants is driven by osmosis and that it occurs in a
microfluidic pipe network of cells spanning the entire length of the plant. His work re-
vealed a wealth of phenomena of unanticipated complexity related to the fluid mechanics
of osmotically driven flows that continue to pose intriguing questions today.

Miinch’s idea, illustrated in Fig. [T was simple: In the leaves, sugar produced by
photosynthesis is secreted into a network of cylindrical cells known as the phloem. Due to
osmosis, the high concentration of sugar inside the phloem creates a flow of water across the
semipermeable cell membrane. This in turn displace the liquid and sugar already present
forwards, thereby creating a bulk flow of sugar from source to sink. At the sugar sink, e.g.
the root, a fruit or other places of growth and storage, removal of sugar from the phloem
causes the water to leave the cells since the osmotic driving force is no longer present.

The fundamental questions that arise from this hypothesis are e.g. how much sugar can
be transported in this way? How fast can it move? What controls the rate of transport?
How does the osmotic mechanism affect the structure of the plant? Is osmosis sufficient
to account for the rates of translocation observed in plants? Ultimately these questions
are all related to plant growth and are therefore of great both fundamental and practical
importance.

The main focus in this thesis is put on a theoretical analysis of the fluid mechanics
of osmotically driven flows, aimed at answering some of the questions posed above. To
put the theoretical results in a biological context, the author has worked closely with
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Figure 1.1: Schematic sketch of sugar translocation in plants according to the Miinch hy-
pothesis. In the source leaves, sugar (black dots) produced by photosynthesis is secreted
into a network of cylindrical cells known as the phloem. Due to osmosis, the high con-
centration of sugar creates a flow of water across the semipermeable cell membrane from
the surrounding tissue (solid arrows) into the phloem. This in turn displace the water
and sugar (dashed arrows) already present forwards, thereby creating a bulk flow from
sugar source to sugar sink. At the sink, e.g. the root, a fruit or other places of growth
and storage, removal of sugar from the phloem causes the water to leave the cells since
the osmotic driving force is no longer present. The loading and unloading processes are
indicated by curved arrows. Adapted from [29)], Fig. 1.



Outline of the thesis 3

researchers performing in-vivo experiments on plants. This, together with a series of simple,
biomimicking microfluidic experiments, have enabled us to gain a new understanding of
the translocation processes that occur in plants.

1.1 Outline of the thesis

This thesis consists of 9 chapters. The bulk of the material presented has been published in
the papers listed in Sec. At the beginning of each chapter, a brief overview highlighting
the contributions made by the author of the present thesis is given along with a list of
relevant collaborators.

A list of the titles and a brief outline of the subjects treated is given below.

e Chapter 2: Osmotically driven flows in living and artificial systems This
chapter provides an introduction to osmotically driven flows in artificial and living
systems. Since the motivation for studying these flows comes primarily from phe-
nomena observed in the phloem vascular system of plants, the basic principles of
plant vascular biology are summarized. We discuss a number of experimental studies
have been made on osmotically driven flows in artificial systems, some of which have
significant technological applications.

e Chapter 3: Fluid mechanics of osmotically driven flows We introduce the
basic concepts of osmosis and the relevant equations of motion for liquid and solute
transport in osmotically driven flows. From these we derive an analytical solution for
the osmotic flow and concentration problem in a cylindrical tube which leads directly
to the one-dimensional equations of motion commonly used in the phloem transport
literature. We discuss how these equations are applied in the literature to model
transport processes in plants, and consider some of the characteristic properties of
the models. Finally, we discuss some of the necessary assumptions for the equations
of motion to be applicable.

e Chapter 4: Hydraulic resistance of sieve plates In chapter Bl we derived one-
dimensional equations of motion for osmotically driven flows in cylindrical tubes with
semipermeable walls. The translocation pathway found in plants does not, however,
simply constitute one, long, continuous cylindrical tube. Rather, it consists of indi-
vidual cells separated by sieve plates the presence which may contribute significantly
to the overall hydraulic resistance of the translocation pathway. In this chapter we
thus consider the effect of sieve plates on the flow inside the phloem sieve tubes. We
show that the presence of the plates impose a significant amount of additional drag
on the flow.

e Chapter 5: Mathematical analysis of the equations of motion In this chap-
ter we study analytical and numerical solutions to the steady-state one-dimensional
equations of motion derived in chapter Bl The equations are analyzed in a model
consisting of 3 zones: a loading zone, a translocation zone and an unloading zone
each representing different parts of the plant. We solve the equations of motion using
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first a simple hydraulic resistor model and second a full analytical solution valid in
the limit of very small and very large tube radii.

e Chapter 6: Optimality of the Miinch mechanism In this chapter we apply the
results of the 3-zone model introduced chapter [l to translocation in plants. We begin
by showing that the model is likely to be a concise representation of the processes
that occur in plants by comparing experimental data to the predictions of the model.
Then, we consider an interesting consequence of our results: The osmotic pumping
mechanism has a maximum in translocation velocity for a special, optimal, value of
the phloem sieve tube radius a.. We derive an expression for a. which takes the
form of an allometric scaling law. At this particular value of the radius the Miinch
mechanism is optimized for rapid translocation of sugars in the phloem. We show
that a large group of plants follow the predictions of the scaling law.

e Chapter 7: Microfluidic experiments Inspired by the biomimicking experiments
of Miinch, Eschrich et al., and Lang discussed in chapter 2l the author and co-workers
decided to design and fabricate microfluidic devices capable of biomimicking the
processes that occur in the phloem vascular system of plants using channel dimension
that approach those found in plants. This chapter is a description of the experiments,
presented in the form of unabridged version of the paper [2§].

e Chapter 8: Self-consistent unstirred layers in osmotically driven flows The
one-dimensional equations of motion analyzed in chapters BHE were derived under
the assumption that the concentration is well-mixed across the cross-section of the
tube. This approximation is valid if the radial transport of solute molecules due to
diffusion is much faster than the transport due to advection. In this chapter we study
exactly when this condition is fulfilled in an idealized system.

e Chapter 9: Conclusion and outlook We present concluding remarks on our work
on osmotically driven flows and give some directions for future research.

1.2 Publications during the PhD project

Papers in peer reviewed journals

1. K. H. Jensen, J. Lee, T. Bohr, H. Bruus, N. M. Holbrook and M. A. Zwieniecki
Optimality of the Miinch mechanism for translocation of sugars in plants

Journal of The Royal Society Interface
DOTI: 10.1098/rsif.2010.0578 (2011) [29] (0 citations as of 31 January 2011).

2. K. H. Jensen, T. Bohr, and H. Bruus
Self-consistent unstirred layers in osmotically driven flows
Journal of Fluid Mechanics, Volume 662, p. 197-208 (2010) [27] (0 citations).

3. K. H. Jensen, E. Rio, R. Hansen, C. Clanet and T. Bohr
Osmotically driven pipe flows and their relation to sugar transport in plants
Journal of Fluid Mechanics, Volume 636, p. 371-396 (2009) [30] (2 citations).
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4. K. H. Jensen, J. Lee, T. Bohr, and H. Bruus
Osmotically driven flows in microchannels separated by a semipermeable membrane
Lab Chip 9, 2093-2099 (2009) [28] (4 citations).

5. K. H. Jensen, M.N. Alam, B. Scherer, A. Lambrecht and N.A. Mortensen
Slow-light enhanced light-matter interactions with applications to gas sensing
Optics Communications, Volume 281, Issue 21, p. 5335-5339 (2008) [31] (5 citations)

First author conference contributions

1. K.H. Jensen, J. Lee, T. Bohr, J. Lee, N. M. Holbrook, M. Zwieniecki, Optimality of
the Miinch hypothesis for translocation of sugars in plants, International Conference
on Plant Vascular Biology 2010, Colombus, USA. (2010)

2. K.H. Jensen, T. Bohr and H. Bruus, Concentration boundary layers in osmotic mem-
brane transport processes, Annual Meeting of the APS Division of Fluid Dynamics,
Minneapolis, USA, Paper MF.00002. Bull. Amer. Phys. Soc. 54 (19) (2009).

3. K.H. Jensen, T. Bohr and H. Bruus, Osmotically driven flows in microchannels and
their relation to sugar transport in plants, 1st Nordic Meeting in Physics, Copen-
hagen, Paper BF.4 (2009).
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Chapter 2

Osmotically driven flows in living
and artificial systems

The present chapter provides an introduction to osmotically driven flows in artificial and
living systems. Since the motivation for studying these flows comes primarily from phe-
nomena observed in the phloem sugar transport system of plants, the basic principles of
plant vascular biology are summarized. The introduced concepts are thoroughly described
in the literature (see e.g. [12}, 5] 73] [79, 23] 36]) and constitute the motivation for the
work presented in this thesis. The subject will be presented as seen through the eyes of a
physicist, and is not intended to be a complete review of the research field of plant vas-
cular biology. What follows should however be a sufficiently complete description of the
processes that takes place in plants to allow for a simple quantitative description of the
process.

We end by discussing a number of experimental studies have been made on osmotically
driven flows in artificial systems, some of which have significant technological applications.

For the biologically inclined reader it will be useful to know that throughout this thesis
we are mainly concerned with transport processes that occur in angiosperms and that
many of the geometric and hydraulic consideration are made with this class of plants in
mind. This is of special importance in the discussion of sieve pores which are assumed to be
open [37, [48]. This is not the case in gymnosperms ! where the sieve pores are occluded by
endoplasmic reticulum membrane complexes [68], and consequently the hydraulic resistance
may be significantly higher.

2.1 Osmotically driven flows in living systems

Flows driven by osmosis are abundant in nature, the prime example being the flow of water
across cell walls in virtually all living creatures. Here, osmosis facilitates the transport of

!Gymnosperms are characterized by having naked seeds, while the seeds of angiosperms are enclosed
during pollination. The most abundant group of gymnosperms are conifers (e.g. pine trees) while an-
giosperms include all flowering plants. [73]
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water across the plasma membrane either directly across the lipid bi-layer, or via membrane
transport proteins such as aquaporins [17, [64].

While flow in and out of single cells have been studied extensively in the literature,
the most interesting example, from a fluid mechanist’s’ point of view, of an osmotically
driven flow is found in plants. Here, a network of cylindrical cells, known as the phloem,
are responsible for transporting sugar from the leaves to places of growth or storage. In
these cells, it is believed, osmosis creates a bulk flow of water, sugars, hormones, and
signaling molecules over many tens of meters directed from source to sink in accordance
with the basic needs of the plant [73]. This process, however, is not well understood on
the quantitative level since direct measurements of translocation rates and driving forces
are extremely difficult to make [53, [37, [36].

2.2 Vascular transport in plants

Terrestrial plants faces serious challenges if they are to survive on land. The key to survival
and successful reproduction is the ability to acquire and retain a sufficient amount of water
and nutrients for the plant to grow. In response to this, plants have developed roots and
leaves. Roots provide mechanical stability and absorb water and nutrients from the soil
while leaves absorb light and exchange gases with the atmosphere. As the plant grows,
these two organs become increasingly separated in space and hence the time for responses
to environmental stimuli to propagate is increased. This makes the distribution of water,
nutrients, photosynthetic products and signaling molecules by passive means difficult. It
is in response to this challenge that plants have developed long-distance vascular transport
systems that allow the shoot and the root to exchange material and information in an
elaborate and highly efficient way.

The vascular system of plants is made up of two parts: The phloem? and the xylem3.
Both the phloem and the xylem are made up of cylindrical cells lying end-to-end in a
microfluidic network spanning the entire length of the plant. The elements of phloem
and xylem run in parallel to each other and are almost always found in close proximity,
separated only by a few cells, as shown in Figs. 2] and The two tissue types are
discussed in detail below, and characteristic physical parameters are listed in table 211

2.2.1 The xylem

The primary role of the xylem is to conduct water and nutrients from the roots to the rest
of the plant [5I]. The xylem consists of water-filled, cylindrical cells typically 100 pm in
radius and with lengths ranging from 1 mm to several cm [85]. The cells are joined together
at the ends to form a network running along the entire length of the plant. The mechanism
driving flow in the xylem is believed to be evaporation from the leaves through stomata
pores which open and close in response to changing conditions, such as light intensity,
humidity, and COg concentration in the atmosphere [73, 88]. This mechanism drives a

2The word phloem is derived the classical Greek word for bark, phloios.
3The word xylem is derived from the classical Greek word for wood, zylon.
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Figure 2.1: Schematic sketch of the phloem and xylem vascular systems found in plants.
(a) In the leaf, the vascular tissue consisting of the phloem (dark gray) and xylem (light
gray) is found in veins running parallel to the leaf surface located near the center of the
cross section. (b-c) In the stem and roots, the vascular tissue is found close to the surface
in either a continuous ring or in bundles. The xylem typically lies closer to the interior of
the stem than the phloem as shown in (bl). Between the xylem and phloem is a meristem
called the vascular cambium. This tissue divides off cells that will be become additional
xylem and phloem as the plant grows. The cylindrical nature of the cells is illustrated in
(b2), see also Fig. The translocation pattern is indicated by the arrows. Water (solid
arrows) is absorbed from the ground and moves towards the leaves driven by evaporation.
Sugar (dashed arrows) is produced in the leaves and moves to places of growth or storage
e.g. immature leaves, fruits or roots.
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(b)

N

Sieve tube elements

Figure 2.2: Scanning electron microscope (SEM) images of the phloem tissue of Curcubita
mazima (squash), a plant which has very large (50 um in diameter) but otherwise repre-
sentative phloem sieve tube elements. (a) Horizontal cross-section of the vascular tissue
(see Fig. 2I[(b1)) showing the phloem and xylem tissues. The position of a few of the
sieve tube elements is indicated by the arrows. (b) Vertical cross section the phloem tissue
showing the cylindrical nature of the sieve tube elements lying end to end. Individual sieve
tubes are separated by sieve plates indicated by the arrows. (c) Frontal view of a sieve
plate. About 50% of the plate are is covered by open sieve pores. (d) Side view of a sieve
plate. SEM images courtesy of M. Knoblauch and D. L. Mullendore [48]. Reproduced with
permission.
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Table 2.1: Characteristic physical parameters relevant to vascular translocation processes
in plants. Cell sizes refer to phloem sieve tube elements and xylem vessel elements.

Parameter Phloem (P) Xylem (X) Reference

Cell radius 10 pm 100 pm [48, 29](P), [85](X)
Cell length 100 pm — 1 mm 1 mm—1cm [48](P), [85](X)
Flow velocity 1m/h=028mm/s 10m/h=28mm/s [48, 29](P) [85](X)
Pressure 1 MPa —1 MPa [82] (P) [85](X)
Sugar concentration 0.1M—-1M ~0M 73, 82] (P), [85](X)
Dry weight sugar transport 2.8 x 1073 kg/(s m?) [12] (P)

Liquid viscosity 2x 1073 Pas 1x1073 Pas [79] (P), [73] (X)
Membrane permeability 5 x 107 m/(s Pa) [79] (P)

flow with speeds of the order 10 m/h = 2.8 mm/s and the evaporation from the leaves
causes the water column in the xylem to be under tension, with induced negative pressures
of the order —1 MPa [85].

2.2.2 The phloem

The phloem is responsible for translocating the products of photosynthesis (i.e. sugars)
from places of production, such as mature leaves, to places of growth or storage, such as
immature leaves, fruits or roots. Besides sugar, signaling molecules are also transported in
the phloem.

The phloem consists of several different types of cells: Sieve tube elements, in which
the translocation of sugar takes place, companion cells that helps to regulate the metabolic
activities of the sieve tube elements, phloem fibres that gives the plant mechanical strength,
and phloem parenchyma which acts as storage [73]. As shown in Fig.[2Z2(b), the sieve tube
elements are cylindrical cells typically measuring 10 pm in radius and about 100 pum in
length [80), 48]. They cover about 20 % of the area of the phloem [I2] and contain a
highly concentrated sugar solution (0.1 M — 1 M) as well as smaller amounts of signaling
molecules, amino acids, proteins and a number of minerals [73]. The high sugar content
means that the cells are under positive pressure, sometimes as high as 2.5 MPa [82].

The sieve tube elements are joined together end-to-end forming a network running
along the entire length of the plant. During early stages of sieve tube element development,
plasmodesmata in the end walls of adjacent immature sieve tube elements are converted
into sieve pores usually a few ~ 1 um in diameter as shown in Fig. 22(c)-(d). When the
sieve elements reaches maturity, these pores cover ~ 50% of the end wall area and form
what is known as a sieve plate. The pores allow the translocation stream to pass relatively
freely between adjacent sieve elements, making the sieve tube a continuous pathway [48].
The primary role of the sieve plates is believed to be a defensive mechanism, sealing off
the sieve elements by clogging the pores if the cell is mechanically damaged or heated.
Thereby the plant prevents the valuable sugary content of the sieve elements from leaking

[37].
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As we shall see in chapter [, the presence of sieve pores significantly increases the
hydraulic resistance of the phloem sieve tube translocation pathway.

2.3 Translocation in the phloem

Long-distance transport of sugar in the phloem sieve tubes is an experimentally established
fact [36]. The process, however, is not well understood on the quantitative level since direct
measurements of translocation rates and driving forces are extremely difficult to make
[53], 87, [36]. The fundamental problem is that the phloem is very sensitive to disturbances,
ceasing flow when subjected to slight mechanical or thermal perturbations [37].

Early measurements of the rate of sugar transport in the phloem was conducted by
weighing fruits at different instances in time. Using this technique, dry weight mass transfer
rate of the order 1 g/(h cm?) = 2.8 x 1072 kg/s per m? of phloem area was found [12].
The problem with this type of experiment is that the only reliably measured quantity is
the increase in dry weight per unit time. To get the actual translocation velocity one must
make assumptions regarding the concentration of the sugar solution and the area fraction
of the phloem in which the transport is taking place. To resolve this problem, more
accurate measurement techniques using radioactive dye tracers emerged have since been
used extensively, see [12] and references therein. More recently, nuclear magnetic resonance
imaging has been used to measure phloem flow velocities [48], [89] although both dye and
radioactive tracers remain in use to this day [37, 29]. All the above mentioned techniques
find typical flow velocity in the sieve tube elements of the order 1 m/h = 0.28 mm/s, an
order of magnitude slower than in the xylem. This velocity, with a sugar concentration of
1 M, gives a dry weight transfer rate of 0.1 kg/s of m? phloem sieve tube area, consistent
with largest observed rate (5 g/(h cm?) = 0.014 kg/s per m? of total phloem area [12])
since the sieve tubes cover only about 20% of the total phloem area.

2.3.1 Mechanisms driving the flow

To account for the rates of transport observed in the phloem, several different driving
mechanisms have been proposed. We will discuss molecular diffusion and osmosis in detail
below, but for a thorough analysis of other mechanisms which has been proposed, e.g.
actin filament driven streaming and electro osmosis, see the review by MacRobbie [44].

Molecular diffusion

One of the first mechanisms suggest to be responsible for transport in the phloem was
molecular diffusion. This hypothesis had many supporters, among them Julius Sachs, one
of the leading plant physiologists of the 19th century [26]. The supporters of this theory
envisaged that the transport of sugar was driven by a diffusive flux set up by the gradient in
concentration between the sugar loading and unloading regions in the plant. Quantitative
calculations by De Vries published in 1885 showed, however, that this process is much too
slow to account for the observed rates of transport [35].
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Following De Vries’s calculations, Miinch argues in [49] that the mass transfer due to
diffusion can be estimated in the following way: In steady state the mass of sugar diffusing
dm

per unit time <3 due to a difference in concentration Ac between two ends of a pipe of

cross section area A and length [ is

1 dm Ac

——— =MD— 2.1

A dt l’ (2.1)
where M is the molar mass and D is the diffusion constant. For a sucrose solution with
M = 0.342 kg/mol, Ac = 1M, D =5 x 1071 m?/s [4] and a pipe of length [ = 1 m we
find that

1 dm
- =1.7x107"k 2 2.2
(F5) =170 ke ), (2.2

which is four orders of magnitude smaller than the observed rate of mass transport. This
calculation shows that diffusion alone cannot account for the observed long distance trans-

port of sugar in plants [49] [12].

Osmosis

The most widely accepted explanation of translocation in the phloem dates back to the
1920s where the German scientist Ernst Miinch proposed that the flow is passive and is
driven by differences in osmotic pressure between sugar sources and sinks [49] 36]. Osmosis
is the tendency of water to move across a semipermeable membrane from a region low
solute concentration to a region of high concentration (see Sec. and App. [C). The
osmotic pressure II said to be driving the flow is directly proportional to the difference in
concentration Ac across the membrane

Il = RTAc, (2.3)

where R is the gas constant and T is the temperature. With the sugar concentrations listed
in table 2.1 we find IT = 0.2 — 2 MPa.

Miinch envisaged a mass flow in the phloem sieve elements driven by an osmotic pressure
gradient set up in the channel by the secretion (loading) of sugar into the sieve elements at
the source leaves and the removal (unloading) of sugar in the source tissue, e.g. roots, fruits
or other regions of growth and storage as illustrated in Fig. [[.LTl The high concentration
of sugar in the source region would create a flow across a semipermeable membrane into
the phloem cells driven by osmosis. This would in turn displace the liquid already present
downwards, thereby creating a bulk flow from source to sink. At the sink, removal of
sugar from the phloem tissue would cause the water to leave the cells since the osmotic
driving force is no longer present. The Miinch hypothesis is also known as the pressure
flow hypothesis [13] while the resulting flow is known as an osmotically driven pressure
flow [80], an osmotically driven volume flow [16] or simply an osmotically driven flow.

A simple quantitative analysis of the Miinch mechanism to estimate the flow velocities
one would expect to find can be made in the following way. Consider the cylindrical sieve
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tube elements lying end to end inside the plant. If they have a total length [ and radius a,
the volume @ flowing across the membrane surface per unit time is

Q = 2malL,1T = 2mal L,RTAc, (2:4)

where L, is the permeability of the membrane. The cross section area of the tube is

A = ma?, so the characteristic osmotic velocity ugsm inside the tube is
Q 2
Uosm =~ = EleR']I'Ac = olL,RTAc. (2.5)

Here, o is the surface to volume ratio of the tube

S 2mal 2

Z_s2f_Z 2.6
A wa?l o’ (2:6)

o =
a crucial parameter in determining the flow velocity inside the tube. When o is large, i.e.
when the radius a is small, the flow velocities can become very large. Using the parameter
values

I=1m, a=10""m, L,=5x 107 m/(s Pa), and RTAc=1MPa,

we find that
Ugpsm = 1072 m/s. (2.7)

This number is two orders of magnitude larger than the observed flow velocity (2.8 x
10~% m/s), but not unreasonable since the analysis does not take into account the viscous
resistance of the fluid moving inside the narrow tube. We will derive a formula taking
the viscosity into account in chapter B, and show in chapter [l that it agrees well with
experimental data.

2.3.2 Interaction between the translocation processes in the phloem and
the xylem

In the Miinch hypothesis, the water entering the phloem due to osmosis comes from the
surrounding tissue and thus ultimately from the xylem. Since the two tissues are separated
only by a few cells and the hydrostatic pressure difference between them is measured in
MPa (see Tab. ZT]), it is an open question how important the direct interaction between
the flow in the phloem and the xylem is [24]. In a recent experiment, Windt et al. set
out to investigate this by simultaneously measuring flow velocities in phloem and xylem
of four different species under alternating day and night conditions [89]. As shown in
Fig. 23] they demonstrated that the flow in the two tissues are largely independent, and
that while the flow in the xylem exhibited large diurnal variations, the flow in the phloem
is approximately constant throughout the day. Since large variations in xylem flow velocity
implies large variations in pressure, we conclude on the basis of these experiments that the
direct coupling between the flow in the phloem and in the xylem is in general weak, and
that we therefore may treat the two systems separately.
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Figure 2.3: Translocation velocities measured as a function of time in the xylem (left
column) and the phloem (right column) of four different species as indicated above the
plots. The volume flow (closed symbols) and average linear velocity (open symbols) were
measured using MRI over the course of 2 to 4 days. Black and white bars on the ordinate
axis indicate day and night conditions. The translocation velocities measured in the xylem
shows a strong dependence on these conditions, with high velocities observed during the
day and low velocities during the night. Except for poplar, the velocities observed in the
phloem are largely independent of the day/night conditions. From [89], Figs. 6 and 9.

Reproduced with permission.
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(a)  Munch (1920s) (b) Eschrich/Lang (1970s) (c) Jensen (2000s)
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Figure 2.4: Schematics of three generations of biomimicking phloem transport experiments.
(a) Ernst Miinch [49], (b) Eschrich et al. and Lang [16], [40], and (c) the author of the present
thesis, Jensen [28]. See Sec. 2.4l for a description each individual experimental setup.

2.4 Osmotically driven flows in artificial systems

Motivated primarily by osmotically driven flow in the phloem vascular system of plants,
a number of experimental studies have been conducted using artificial “phloem cells” to
study the fundamental physical processes [49] [16], 40, 55, B0}, 28], 29]. These experiments,
illustrated in Fig. 2.4l fall into three categories, historically and conceptually.

1920s: The work of Ernst Miinch

Some of the first osmotic experiments related to translocation in plants were conducted
by Ernst Miinch in the 1920s [49] . His setup, shown in Fig. 2.4)(a), consisted of two
round-bottom flasks connected by a tube. Part of the surface of the flasks was covered by
a semipermeable membrane. As he introduced sugar solutions of different concentration
into the two flask and submerged them in a water bath, he observed a flow from the flask
of high concentration to the flask of low concentration. He then went on to argue that,
physically speaking, the plant constitutes a network of such connected osmotic parts, from
which it would follows that osmotic flow also occurs since “same causes have same effects”
([49], p. 37, translation by Knoblauch & Peters [36]).

1970s: The work of Walter Eschrich et al. and Alexander Lang

A serious shortcoming of Miinch’s experiments is that the osmotic interaction takes place
only in what corresponds to the loading and unloading regions, and not along the transloca-
tion region (i.e. the stem) as is the case in plants. In an attempt to investigate osmotically
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driven flows in the translocation region, Eschrich et al. build experiments in the early
1970s to investigate the transient dynamics of a moving sugar front inside a cylindrical
membrane tube [16]. Their setup, shown in Fig.[Z4|(b), consisted of a long membrane tube
~ 1 cm in diameter fitted inside a water-filled glass tube. At the beginning of the experi-
ment, a sugar solution was introduced into one end of the tube, which was then closed at
both ends. The movement of the sugar front was subsequently observed for different sugar
concentrations. They observed that the more concentrated the sucrose solution, the faster
the front traveled. They also found that the velocity of the sugar front decayed exponen-
tially in time as the front approached the far end of the tube. These experiments were
later refined by the author of the present thesis during his master studies [30](See App. [E],
p. 31 for details) to allow for a better quantitative comparison between experiment and
theory.

Following Eschrich et al., Alexander Lang [40] build experiments to study steady-state
osmotically driven flows. His setup, consisted again of a long, cm-sized, membrane tube
submerged in a water bath. At one end a sucrose solution was introduced at a steady
rate, and at the other end the tube was open at atmospheric pressure. At regular intervals
along the membrane tube, several measurement stations were placed that enabled him to
measure the local sugar concentration and pressure. He demonstrated that osmosis could
create considerable bulk flows in narrow tubes, consistent with the Miinch hypothesis.

2000s: Jensen et al.

While the experiments of Eschrich et al. and Lang were a major step forward in under-
standing the processes that drive translocation in plants, they still have the fundamental
problem that the characteristic length-scale (i.e. tube diameter) are many orders of mag-
nitude larger than what is observed in plants. Since osmosis is a surface phenomena in
nature, this means that the ratio of surface to volume o (cf. Eq. (2.8])) which controls the
axial flow velocity is much smaller in plants than in the experiments. Experiments with
channel radii in the relevant pm range have been possible since the early 2000s with the
advent of modern microfluidic fabrication techniques [10].

In 2009-2011 the author and co-workers conducted a systematic survey of osmotically
driven flows at the micrometre scale with osmotic interaction along the whole length of
the microfluidic channel [28] 29]. The experiments, which are sketched in Fig. 2:4)(c) and
described in greater detail in chapter [7] studied osmotically driven flows in 200 wm wide
and 50 — 200 um deep microchannels, thus approaching the length-scales found in plants.

2.5 Technological applications of osmotically driven flows

Osmotically driven flows have found numerous technological applications that falls into
two categories: liquid handling and energy production.

In the 1970s, Theeuwes pioneered a pill-based osmotic delivery system for drugs [76].
In its simplest form, the system is constructed by coating an osmotically active solid drug
with a semipermeable membrane. This membrane contains an orifice through which the
dissolved drug is dispensed once the pill is submerged in water. The rate of delivery is
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controlled by the water permeation characteristics of the semipermeable membrane sur-
rounding the drug and the osmotic properties of the drug [76].

In 2009, the worlds first osmotic power plant began operations near Oslo, Norway. The
power plant is located near the mouth of a river and uses the osmotic pressure difference
between freshwater and the salty seawater to generate an osmotic pressure which drives
a turbine. The plant is capable of producing 3 W per m? membrane area, a number
which is continually increasing. The global potential of osmotic power is estimated to be
1500 T W h, equivalent to 50% of the total power production in the European Union [72].

2.6 Conclusion

In this chapter we have given an introduction to the motivation behind the topic studied
in the present PhD thesis: translocation of sugars and signaling molecules in the phloem
vascular system of plants.

In the following chapters, we will try to get an fundamental understanding of how these
osmotically driven flows work. We will then attempt to answer fundamental questions such
as how fast the sugar can move in plants using the osmotic pump? What controls the rate
of transport? How does the osmotic mechanism affect the structure of the plant? Is osmosis
sufficient to account for the rates of translocation observed in plants?



Chapter 3

Fluid mechanics of osmotically
driven flows

From the processes occurring in plants, we now move on to a physical description of
osmotically driven flows. In this chapter we thus first introduce the basic concepts of
osmosis and the relevant equations of motion for liquid and solute transport. From these we
derive an analytical solution for the osmotic flow and concentration problem in a cylindrical
tube which leads directly to the one-dimensional transport equations commonly used in
the phloem transport literature [79]. We finally discuss how these equations are applied to
sugar transport in plants.

Most of the material presented can be found in the fluid mechanics and phloem translo-
cation literature, but the derivation of the one-dimensional equation of motion for fluid
transport in osmotically driven flows directly from an analytical solution to the Navier-
Stokes equation is due to the author and has yet to be published. This also applies to the
derivation of the one-dimensional equation of motion for sugar transport. The discussion
of the characteristic properties of zone models given in Sec. B8 and Fig. Bl is due to
the author. It was instrumental in obtaining the analytical solution to the equations of
motion published in [29] and derived in Chapter Bl The term “Miinch number” for the
non-dimensional number M (see Sec. B.5.5]) was first introduced in [30] and was coined by
the author and Tomas Bohr.

3.1 Background

With the advent of radioactive tracer experiments, the need for a quantitative description
of the osmotically driven flow described by the Miinch hypothesis became apparent in
the 1950s (see [25] and references therein). One of the first to formulate the equations
of motion in form of differential equations was Horwitz [25], who in 1958 investigated the
theoretical background of radioactive tracer propagation observed in plants. His derivation
(see Appendix[B]) rested on simple conservation principles and contains no detailed analysis
of the fluid mechanics of osmotically driven flows.

In the present chapter, we will derive Horwitz’s equations of motion based on the ther-
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Figure 3.1: Sketch of the osmotic flow process. A semipermeable membrane (dashed line)
separates two regions which contains aqueous solutions of a solute at concentrations c¢;
and ¢y (proportional to the density of the black dots) and hydrostatic pressures p; and po
respectively. Osmosis and hydrostatic pressure drives a flow of water (arrows) across the
membrane at a rate j,, given by Eq. (B.6).

[10]

modynamics of osmosis, the Navier-Stokes equation for fluid motion, and the convection-
diffusion equation for solute transport.

3.2 Osmosis

Osmosis is the movement of water across a semipermeable membrane driven by a difference
in chemical potential. It is important in many biological systems since virtually all biolog-
ical membranes are semipermeable. In many cases these membranes are impermeable to
large molecules, such as sugars, while permeable to water and small uncharged solutes [4].

3.2.1 Non-equilibrium thermodynamics

The process of osmosis can best be described by the formalism of non-equilibrium thermo-
dynamics [67]. As discussed in Appendix [Cl we thus consider a linear phenomenological
relation between a thermodynamic flux j/, and the corresponding conjugate force &,

Jr = Lpn&n. (3.1)

Here, L, is a proportionality constant with the unit of conductance. The driving force &,
is related to the difference in chemical potential Au, of the substance n between different
regions of the system

En = Aﬂn- (32)
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Eqns. 31)-([B2) are valid close to equilibrium and Ohm’s law of current flow, Fourier’s
law of heat flow, and Fick’s law of diffusion are all familiar examples of Eq. (B.1]).

It can be shown that the relation between the rate of internal entropy production 0s,
the absolute temperature T, and the forces and fluxes is given by

To;s = jién. (33)

The quantity Td:s is known as the power dissipation function and is a measure of the
tendency of the non-equilibrium process to proceed.

3.2.2 Osmotically driven flow across a semipermeable membrane

In the present discussion we consider the situation sketched in Fig. Bl An ideal semiperme-
able membrane separates two regions at pressures p; and ps which contains dilute aqueous
solutions of a solute at concentrations ¢; and cy. The membrane is permeable to water,
but not to the solute. If the concentrations are low, the difference in chemical potential of
the water Apu,, across the membrane is given by

Ay = Uy (p2 — p1) — 1 RT (c2 — 1), (3.4)

where Uy, is the molar volume of water. We then have from Eq. (8I)) that the flux of water
molecules j!, is

Juw = Luwwbuw (RT (c1 — ¢2) — (p1 — p2)) - (3.5)
The volume of water j,, flowing across the membrane per unit area is then
g o
. iy
Ju =0 = Ly (RT (c1 = e2) = (p1 = p2)). (3.6)

—2
where A is the area of the membrane and L, = L’”:flvw is the permeability of the membrane,

a material parameter that depends on the thickness of the membrane, the pore size, and
the viscosity of the liquid. The general case where the membrane is permeable to the solute
is discussed in Appendix [C] but will not be treated in the main text.

Osmotic pressure

If the system is is equilibrium, i.e. if j,, = 0, we find that the difference in pressure between
the two sides of the membrane is

p1—p2=RT(c1 —¢c2) =11 (3.7)

where IT = RT(c; — ¢2) is know as the osmotic pressure.

Entropy production and viscous power dissipation

The volume flux driven by osmotic and hydrostatic pressures is directly related to the
entropy production through Eq. (B.3])

Tdss = juéw = ALy (RT (c1 = c2) — (01 — p2))* (3.8)

We immediately recognize this expression as the rate at which power is dissipated by the
flow due to viscous friction inside the membrane.
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3.3 Equations of motion for osmotically driven flows

Inspired by the geometry of the sieve tube elements discussed in Chapter 2], we now consider
the motion of water and a solute (sugar) inside a long cylindrical tube of radius a as shown
in Fig. B3l The tube is submerged in a reservoir of water at constant pressure py and
constant concentration co. For simplicity, we assume that the flow and concentration fields
are rotationally symmetric such that the velocity u(r,z) and solute concentration c;(r, x)
does not depend on the azimuthal position. The solute is moving due to the motion of
the liquid and molecular diffusion. The wall of the tube is made from a semipermeable
material (a membrane) of permeability L, that allows water but not the solute to pass.
Sugar is loaded /removed from the tube at a rate v by an active mechanism decoupled from
the osmotic pumping. For simplicity, we assume that v is a function of the axial coordinate
x only.

3.3.1 Boundary conditions imposed by osmosis

The presence of the membrane facilitates a flow of water driven by osmotic and hydrostatic
pressure differences across the wall. This occurs at a rate given by Eq. (8.6]) which imposes
a boundary condition on the normal velocity component n-u at the membrane interface

n-u=j, = L,(RTec—p), for r=a. (3.9)

Here we have used the notation p = p; —p9, and ¢ = ¢; — ¢, and assume that n is a normal
vector pointing into the tube. Additionally, the tangential velocity component is subject
to the no-slip condition at the membrane interface

u—(n-uyn=0, for r=a. (3.10)
Finally, we require that no solute molecules move across the membrane
n- (—DVc+cu)=0, for r=a, (3.11)

where D is the diffusivity of the solute.

3.3.2 Equations of motion governing fluid flow

The motion of an incompressible Newtonian liquid is governed by the Navier-Stokes equa-
tion [10]
p(Oru+ (u-V)u) = —Vp +nV3u, (3.12)

where t is time, p is the liquid density, 7 is the liquid viscosity, and the effect of gravity is
included in the pressure. Since the liquid is incompressible, conservation of volume requires
the solution to fulfill the continuity equation

V-u=0. (3.13)
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Figure 3.2: Sketch of the geometry used when deriving the equations of motion for osmot-
ically driven flows. (a) An incompressible liquid (e.g. water) is moving inside a cylindrical
tube of radius a with velocity u (arrows). The tube is submerged in a reservoir of water
at constant pressure po and constant concentration c;. A solute of concentration c¢p is
dissolved in the liquid and is moving due to the motion of the liquid and molecular diffu-
sion. The tube is submerged in a large reservoir (gray region) and has a walls made from
a semipermeable membrane (dashed line) with permeability L, that allow the liquid but
not the solute to pass. (b) Closeup of the situation at the membrane (dashed line). The
presence of the membrane facilitates a flow of water driven by osmotic and hydrostatic
pressure differences across the wall. This occurs at a rate j,, given by Eq. (8.8]), indicated
by the solid arrow at the membrane interface (See Fig.[3]). Sugar is loaded /removed from
the tube at a rate v by a mechanism decoupled from the osmotic pumping indicated by
the dashed arrow. The osmotically driven flow across the membrane accelerates the liquid
as it moves along the tube as indicated by the growing size of the arrows in (a).
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In cylindrical coordinates these equations are

0
p (Oyuy + upOpuy + ugdpuy) = —0wp+1n <3§u$ -+ TTU:D + 83%) , (3.14)
2 Oruy 2 Uy
p (Owuy + upOpuy + upOpuy) = —0pp+n| Ozur + - + OZuy — 2 (3.15)
Dyt + “7 O, = 0, (3.16)

where the velocity u = (u,, u,). The boundary conditions are

u, = —jyp for r=a, (3.17)
u, = 0 for r=a. (3.18)

3.3.3 Equations of motion governing solute transport
The equation of motion for solute transport is the convection-diffusion equation [10)]

dic +u-Ve = DVZe+ . (3.19)

In cylindrical coordinates this is

1
O + u,pOpc + uyOpc = D <;8r (rorc) + 8%0) + . (3.20)

The osmotic boundary condition given in Eq. (811 is

— DOrc+cu, =0 for r=a. (3.21)

3.4 Solution of the coupled concentration-flow problem

In order to obtain a full understanding of the coupled motion of water and the solute
one needs to solve Eqns. (8.12) (B13), and ([B.19) with the appropriate osmotic boundary
condition in Eqns. (B9)-(@BII). Due to the coupling of the flow and concentration fields
through the boundary conditions this is a formidable mathematical problem which has
only been tackled analytically in a few special cases [59] [60], 56], 57, 58| B, 27]. We we will
discuss this in detail in Chapter 8, but for now we proceed by putting the equations of
motion on non-dimensional form and applying the conditions relevant to plants.

3.5 Non-dimensional formulation of the equations of motion

To simplify the mathematical treatment of the equations of motion we use non-dimensional
variables. Since the osmotically driven flow contains two characteristic velocity scales, the
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axial velocity ), and the radial velocity w;, and two characteristic length scales, the tube
length [ and the tube radius a, we will non-dimensionalize in the following way

c = ', (3.22)
l
Up = u;UX:2Lp]R']I‘C*EUX, (3.23)
Uy = u:UR:2LpRTc*UR:%u;UR, (3.24)
l a
b= = TRt (8.25)
r = IX, (3.26)
r = aR, (3.27)
p = p*P=RTcP, (3.28)
2L,RTc*
v o= c*pic’f, (3.29)
a
jo = 2L,RTc"J,. (3.30)

Here, ¢* is the characteristic concentration found in the tube.

3.5.1 Non-dimensional equations of motion for fluid motion

Using these variables, the equations of motion for the fluid motion are

orU
H; (8TUX + UrOrRUx + Uxaxe) = —H30xP+ <8§(UX + Hy RZX + H48}2%Ux> ,
(3.31)
1 orU U
Hy (0rUr + UrOrURr + UxOrURr) = —H30rP + (F(')?(UR + R L 92U — R_}; ;
4
(3.32)
Ur
OxUx + R +0rUr = 0. (3.33)
Here the four non-dimensional groups are
* 2pL,RTc*]
n Ui
* 2pL,RTc*
Hy, = @ _Z2Pmpnicd (3.35)
n n
Hy = -2 (3.36)
3 — ) .
2L,m
1\ 2
Hy, = <—> . (3.37)
a

H; and Hy are the axial and radial Reynolds numbers which determine the relative im-
portance of viscous and inertial forces. The importance of Hg and the aspect ratio H4 will
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become clear in Sec. 355 Using the characteristic values relevant to plants [79]

L=1m, a=10"°m, L, = 5x107 m/(s Pa), n=2x10"3Pas,

p=103kg/m® and RTc¢* = 1MPa
we find that
H, = 5x1072 (3.38)
Hy = 5x1077, (3.39)
Hs = 5x10%, (3.40)
H, = 1x10'. (3.41)
In this limit, the equations of motion simplify to
2Lp77l2 OrUx 9
oxP = 3 R +0grUx |, (3.42)
orP = 0, (3.43)
U
OxUx + ER +0rUrp = 0. (3.44)
The flow boundary conditions are
Up = —Jw, for R=1, (3.45)
Ux = 0, for R=1, (3.46)
while the membrane transport equation is
1
Ju(X) = 3 (C(X,1)—P). (3.47)

We note that the system of equations (3.42)-(3.44)) corresponds to the Stokes equations in
the lubrication limit [3] [3].
3.5.2 Non-dimensional equation of motion for solute transport

In non-dimensional variables, the equation of motion for solute transport is
1 1
BTCI + URaRCI + UXBXC’ = Hj (EGR (RBRCI) + F3§(C’I> + 7. (3.48)
4

H, is the aspect ratio given in Eq. (3:37) and Hj is an inverse Péclet number

D D

H = -
b ura  2L,RTc*a

=5 x 10% (3.49)

with D = 5 x 10710 m?/s (Sucrose, [4]). At this point it is tempting to follow Aldis [3]
and keep only terms of order Hj in Eq. (348

%aR (RORC") = 0. (3.50)
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This must imply that C’ = C{(X) if we require that C'(R = 0) is finite. Upon reinsertion
in Eq. (3:48]), this however yields that

H
rC' + UxdxC' = Ff’agfc +T (3.51)
4

where that the radial diffusion term has now vanished and is clearly not the determining
factor.

A more proper way of treating Eq. (3.48]) is to consider the radial average of the
transport equation, which is relevant since we are primarily interested in the axial transport
of solute. Using the bracket notation

(f(X)) = 2/01 f(X,R)RdR, (3.52)
for the radial average of f we find from Eq. (3.48) that
or(C") + 0x ((C'Ux)) = %a?dcs + 7. (3.53)
Here we have used the osmotic boundary condition

—H58RCI+CIUR=O, for R=1, (3.54)

and the divergence equation (3.44)) to cancel the radial diffusion terms. Note that (Y) =T
since the loading rate is independent of R by assumption. Since % =5 x 1078 we can
safely disregard axial diffusion. Additionally, as we shall see in Chapter [ the radial
concentration distribution is nearly uniform at these low Péclet numbers. This allows us

to write (C'Ux) = (C")(Ux) such that

or(C"y+ 0x ((C")(Ux)) = T. (3.55)
With the notation C' = (C’) and U = (Ux) this becomes
orC +0x (CU) =1T. (3.56)

3.5.3 Summary of the non-dimensional equations of motion

In summary, the non-dimensional equations of motion are

OxP = 2L§;7l2 (aRRUX +8§UX>, (3.57)
orP = 0, (3.58)
oxUx + % +0rUr = 0, (3.59)
orC +0x(CU) = 7T, (3.60)
The boundary conditions are
Up = —Jw:—%(C—P), for R=1, (3.61)

Ux = 0, for R=1. (3.62)
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3.5.4 Analytical solution of the flow problem

Following Aldis [3] we notice that the flow problem can be solved using a squeeze flow
profile

Ux(X,R) = 2(1-R?»0O(X), (3.63)
Ur(X,R) = Ju(X)(R®-2R), (3.64)

as illustrated in Fig. B3l Here, the quantity ©(X) is given by

X
O(X) = Oy + 2 / Ju(X)dX' = (Uyx) = U(X), (3.65)
Xo
and can be though of as an osmotic piston velocity. The constant ©y and the lower limit
X on the integral takes into account the situation where only part of the tube is covered
by the membrane which starts at X = Xy with a flow profile Uy (X, R) = 2(1 — R?)0y.
The velocity field given by Eqns. (8:63) and (3.64]) fulfills the boundary conditions, the
continuity equation and the pressure compatibility condition

VxVU = 0, (3.66)
which since the flow is rotationally symmetric corresponds to
OxOrP — OrOx P = 0. (3.67)

Note that the solution given in Eqns. (3.63) and (3.64]) does not in general fulfill the full
Navier-Stokes equation (Eqns. [B:31)-(332))) or even the Stokes equation (Eqns. (3:3T)-
B32) with the left hand side put equal to zero).

We are now able to calculate the relation between the axial pressure gradient dx P and
the radially averaged axial flow velocity U(X)

16L,ni>
a3

UX) = —8—H4U(X) = Mi U(X). (3.68)

OxP = —
X s

The formula is completely analogous to that found in conventional pipe flows, except for
the fact that the axial flow velocity U(X) is a function of the axial coordinate X. The
non-dimensional Miinch number M given by

_ 16Lynl?
=—

Mii , (3.69)

is discussed in Sec. 3.5.5] below.

3.5.5 The Miinch number

The non-dimensional number Mi in Eq. (8.68) is known as the Miinch number [30} 29].
It that characterizes the relative importance of hydraulic resistance along the tube to the
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Figure 3.3: Characteristic properties of the osmotically driven pipe flow solution given in
Eqns. (3.63) and (3.64]). (a) Cross section plot in a vertical plane showing the velocity field
U(X,R) = (Ux,Ug) (arrows) at various position along the tube in arbitrary units. (b)
Same as in (a), but showing a closeup of the flow near the membrane interface (dashed
line). (c) Axial flow velocity Ux plotted as a function of radius R at the axial positions
X indicated below the graphs. (d) Radial flow velocity Ugr plotted as a function of radius
R. In (c) and (d), Xo = ©¢9 = 0 and Jy(X) = 1. Note that since J,, does not depend
on X, the radial velocity Ug shown in (c) is constant as we move along the tube. This is
generally not the case.
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resistance across the membrane:

. . 8nl
Mi - 8H, _ Axial flow resnstz.mce _ W—% (3.70)
Hs Membrane flow resistance — 5—-—
matLp
16L,ni?
— s (3.71)

The Miinch number is a function of the length of the tube [, the tube radius a, the
membrane permeability L,, and the liquid viscosity 7. The product of the two latter
parameters itself set a new length scale related to the properties of the membrane as
discussed below. Using the values [ = 1 m, a = 10 um, L, = 5 x 107! m/(Pa s), and
n = 2 x 1073 Pas we find that Mi = 1.6. The magnitude of the Miinch number varies
greatly among different plant species with typical values between 1 and 103 [29].

The length-scale L,n

The product L,n present in e.g. Eq. (B7I]) has the dimension of length. Using the repre-
sentative values given above, we find that it is of the order

Lyn =107 m. (3.72)

A possible physical interpretation of this length is that it is related to the pore size in the
semipermeable membrane. If we consider N pores of hydrodynamic radius s and length
€ in a membrane of area A the volume flow () across a membrane subjected to a pressure
difference Ap is

4
TK
= —NAp. 3.73
Q sy VAP (3.73)
The number of pores NV is taken to be proportional to %
A
N =¢—, (3.74)
TK

where ¢ is the covering fraction. Using Eq. (8.74]) we can write
Q= A¢—/€2 A
= ) 3.75
8ne P ( )

From this formula, we identify the number gb;—ni as the permeability L,. This means that
the product L,n is related to the microscopic length scales in the following way

I{Q
Ly = b (3.76)

At present, the author has no exact knowledge of the magnitude the parameters ¢, x and
€ for the membranes found in phloem cells. If, however, we assume that the hydrodynamic
pore size is, say, K = 0.1 nm, the thickness of the membrane is ¢ = 100 nm, and that the
pores cover 1% of the surface area of the membrane, we find that gb’g—j =13x10"%m, a
value consistent with Eq. (3.72).
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3.6 One-dimensional formulation of the equations of motion

With the results derived in the previous sections, we can now present equations of motion
for the average axial velocity U, the average pressure P, and the average concentration C.
If we differentiate both sides of Eq. (3.65) we find that

oxU =C—-P. (3.77)
With the result derived in Eq. ([B.68) that dx P = —Mqi U, this can be written as
0%U = 0,C + Mii U, (3.78)
The equation of motion for the solute is
orC+90x(CU) =7 (3.79)

Eqns. (B.78]) and ([B.79) constitutes the phloem transport equations used in the literature
(see e.g. [79]). As we have seen in Sec.[3.5.4] they represent exact solutions to the equations
of motion under appropriate assumptions. In dimensional units, they are
Pu = 2Ly (RT@xc—l— 8—Zu> , (3.80)
a a
Oc+ 0y (cu) = v, (3.81)

which, as shown in Appendix [Bl are the same equations that Horwitz derived in his 1958
paper [25].

3.7 Application of the equations of motion to translocation
processes in plants

We now move on to a discussion of how the equations of motion derived in the previous
sections are applied to the processes that occur in plants as discussed in Chapter 21

The equations of motion given in Eqns. (B78)-(3.79) have been applied to translocation
in the phloem and further analyzed by a large number of workers. Due to the complexity
of the equation system, the general approach has been to use numerical methods to solve
the problem for a specific set of parameters. For a very thorough review see Thompson
and Holbrook [79] and related work in [80), 80, 81, [77, 23] [78]. It is, however, beyond the
scope of this thesis to cover all aspect of these models in detail. Instead, we shall proceed
by discussing some of the characteristic properties of the models.

3.7.1 An introduction to zone models

Common to the majority of models found in the literature is that they consider the plant as
being split into a number of zones each representing different parts of the plant. Typically,
three zones are used: A loading zone (the leaf), a translocation zone (the stem), and
an unloading zone (the root) as sketched in Fig. B4l In the loading zone sugar is first



32 Fluid mechanics of osmotically driven flows

‘
0 &
) / I
Loading

Translocation

Figure 3.4: Sketch of a zone model for translocation in the phloem. In zone models, we
think of the plant as being split into a number of zones representing different parts of the
plant. In this case 3 zones are used: A loading zone (the leaf, 0 < z < x1), a translocation
zone (the stem, 1 < x < x3), and an unloading zone (the root, zo < z < x3). In
the loading zone sugar is first secreted into the phloem tube. Driven by the osmotically
generated flow, it then enters the translocation zone where no transport of sugar across
the membrane takes place. Finally, it reaches the unloading zone where it is removed from
the phloem. See also Fig. [T p.[2 Adapted from [29], Fig. 1.

secreted into the phloem tube by a loading mechanism. Pushed forward by the osmotically
generated flow, it then enters the translocation zone where no transport of sugar across
the membrane takes place. Finally, it reaches the unloading zone where it is removed from
the phloem. Between the different zones boundary conditions requiring continuity of the
relevant physical quantities: velocity, concentration and pressure etc. are imposed.

In the literature, the translocation zone is always represented by a semipermeable mem-
brane tube covering, say, the interval 21 < 2 < x5 as shown in Fig. B4l The mathematical
representation of the loading and unloading zones are found in two fundamentally differ-
ent forms. The first, and most common, introduced by Christy and Ferrier [13], uses a
loading zone covering the interval 0 < x < x; an and unloading zone covering the interval
zo < z < x3 as shown in Fig. B4l The length of the loading and unloading zones are
usually equal and at = 0 and x = x3, the velocity is zero In each of the zones the loading
function v is chosen appropriately among a number of different candidates (see Sec. [B.2.1],
p. 2T for examples). The second formulation, used by e.g. Pickard and Abraham-Shrauner
[61] and Thompson and Holbrook [80], uses point sources/sinks located at the entrance
(x = x1) and exit (x = x2) of the translocation zone. At these points, the injection rate of
the concentration ¢ and the velocity u are specified.



Application of the equations of motion to translocation processes in plants 33

(a) (b)

L e e

Unloading

Loading
Translocation
Unloading

ol R e

[an)
an}
8|
-
S
N
8
o
[an)
(e}
8|
ok
S
[\V]
8
9

Figure 3.5: Characteristics properties of the velocity w and concentration ¢ derived from
numerical solution of zone models. (a) Velocity u (solid line) plotted as a function of axial
position z. The characteristic average translocation velocity in the translocation zone u is
indicated by the dashed line. (b) Concentration ¢ (solid line) plotted as a function of axial
position x. The concentrations in the loading zone ¢*, at the end of the translocation zone
¢5 and at the end of the unloading zone cj are indicated by dashed lines. See details in

Sec. B2l

3.7.2 Characteristics properties of zone models

Having discussed the different mathematical models used to describe phloem transport is
useful to step back and consider a few qualitative properties of the solutions that emerge
from these models. Due to the complexity of the equations of motion given in Eqns. (3.80)-
(B81)) coupled with the loading function v, these are typically solved using numerical
methods in steady state (i.e. d,c = 0) [79]. Largely independent of the choice of loading
function v, the concentration ¢ follows the pattern shown in Fig.B5(b). In the loading zone
¢ is nearly constant at a level, say, ¢ = ¢*. In the translocation zone, the concentration is
lowered as we move along the z-axis. This happens because the sugar solution is continually
diluted by the influx of water across the membrane due to osmosis. In the unloading zone
the concentration decays from an initial level ¢35, determined by the flow in the translocation
zone, to a level ¢§ much smaller than both ¢} and c¢* at the end of the unloading zone.
The functional form of the decay depends on the dynamics of the flow problem, but in
many cases it approximately linear [84] [70, [79]. In the loading and unloading zones, we
can therefore approximate the concentration by

c* in the loading zone (0 < z < zy1),
(3.82)

s (1 - Ix;—”;f?) in the unloading zone (x9 < x < x3).
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The velocity follows the pattern shown in Fig. B5[a). In the loading zone, it rapidly
increases due to the osmotic influx across the cell surface in the leaf. As we move along
the translocation zone the velocity continues to increase as more and more water enter
the translocation stream, although at a much slower pace than in the loading zone. We
denote the characteristic velocity in the translocation zone «. In the unloading zone, water
gradually exits the cells before the velocity reaches zero at the end of the unloading zone.

From numerical solutions such as the one sketched in Fig. B35 quantitative information
about the translocation process for a specific set of parameters (e.g. tube radius a, viscosity
7, loading function v etc.) can be derived. One can, e.g., deduce how fast and how much
sugar can be transported from one end of the plant to the other for a specific set of
parameters. Due to the very large number of parameters in the problem, however, one
cannot in general determine the dependence of, say, the mean translocation speed, on the
parameters in the without performing a very large set of simulations.

In Chapter Bl we take advantage of the simple form of the concentration profile given
in Eq. to determine analytical solutions that provide a thorough understanding of the
dependence of the flow pattern on the parameters in the problem.

3.7.3 Common assumptions used in mathematical phloem transport
models

In the previous sections, we have presented the zone model framework in which Horwitz’s
equation of motion (Eqns. (B.80)-(3.81])) are applied to translocation processes in plants.
It is a widely debated issue whether this representation is at all meaningful in the sense
that it provides an accurate description of the processes that occur in plants. In a recent
review paper, Knoblauch and Peters [36] writes that

While there is no shortage of mathematical formalizations of various aspects
of phloem transport..., the question remains whether any such theoretical
description mirrors physical reality in a biologically meaningful way can only
be decided empirically. ([36], p. 1442)

At this point it is therefore useful to consider the assumptions necessary for the Horwitz
zone model framework to be an accurate representation of the processes that occur in
plant. A few of the most widely used assumptions are listed below (in italic) along with a
discussion of their applicability.

1. The membrane is permeable to water but perfectly impermeable to sugar. The as-
sumption that the membrane is ideal is generally regarded as valid [51], [73], although
allowing for a sugar-permeable membrane does affect the flow, see Appendix[Cl As we
will discuss in Chapter Bl the concentration and flow patterns close to the membrane
are, even in the impermeable case, very complicated. See e.g. [15].

2. The membrane is rigid. The assumption that the membrane is rigid implies that the
radius a of the cells are constant and thus independent of the intracellular pressure
p. Thompson and Holbrook investigated the effect of including this by allowing the
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10.

radius to vary as a o« agexp(p — pg). They found that it was of “little biological
significance” ([79], p. 435).

The osmotic pressure is a linear function of the concentration. At low concentrations,
the osmotic pressure of sucrose is proportional to the concentration [47]. At higher
concentrations, one must take into account the non-linearity of the osmotic pressure.
At ¢ =1 M, this corresponds to a ~ 10% increase in the osmotic pressure [79].

The viscosity of the liquid does not depend on the sugar concentration. At low concen-
trations, the viscosity of the liquid is approximately linear in the sugar concentration
and the typical viscosity is ~ 2 x 1073 Pas. At higher concentration, the viscosity
increases exponentially, significantly increasing the hydraulic resistance |7, [79].

The volume of the sugar dissolved in water is negligible. The partial molar volume
of sucrose dissolved in water is 2.2 x 10~* m?/mol. A 1 M aqueous solution will thus
have a volume ~ 20% larger than if the volume of the sucrose were neglected. Not
including this effect leads to an underestimation of the flow velocity [79].

The velocity field, the concentration, and the pressure are essentially one-dimensional
and can each be modelled using a single component. These assumptions were dis-
cussed in Sec. 3.0, and are widely regarded as being valid [79].

There is no interaction between the phloem and the xylem. As discussed in Sec. [2.3.2]
experiments have shown that in many species the interaction between the flow in the
phloem and in the xylem does not appear to be significant [89]. Several theoretical
workers, however, have claimed otherwise. See e.g. [24].

The concentration of sugar in the tissue surrounding the phloem does not depend
on the azial position This is equivalent to stating that the concentration co in the
reservoir surrounding the phloem (Fig. B)) is constant. Generally, the argument for
the validity of this assumption is that the sugar concentration in the xylem is very
low [38]. Other adjacent cells may, however, contain significant amounts of sugar
[73] something which may also lead to a change in the pressure inside the sieve tubes

I52].

The presence of sieve plates does not affect the flow. Sieve plates are perforated
structures that separate adjacent phloem sieve tube elements. Since only ~ 50% of
their area is open they are bound to impose drag on the flow. It has been speculated
that the drag is in fact very large [80], but a thorough analysis of the fluid mechanics
of this problem has not been undertaken so far. In Chapter @ we study this problem
in detail.

The phloem can be modeled as a collection of individual phloem tubes spanning the
entire length of the plant. There is no interaction between two parallel phloem tubes.
This assumption is almost certainly not valid, since it is well known that flow be-
tween adjacent sieve tube elements can occur [73]. On the other hand, the difficulty



36 Fluid mechanics of osmotically driven flows

in evaluating the quantitative importance of this assumption is that the network
structure of the phloem is still largely unknown [36].

It is far from obvious that the assumptions listed above will not have a significant
influence on the applicability of the results predicted by the models. Some attempts have
been made to resolve this by studying models that take some of the effects described above
into account, see e.g. [13, [84], 79, 24]. It is, however, still very difficult to asses which
assumptions have the greatest influence on the flow.

To resolve this, one must take one small step at a time. In the following chapter,
we thus investigate the effect of the presence of sieve plates on the flow. We do this not
because it is necessarily the most important assumption, but because it amenable to a
simple physical analysis.

We end by noting that all the above mentioned assumptions pose questions for future
research. Among them, the author finds that assumption 10 is of particular interest since
the network structure of the phloem and its influence on the flow has not yet been fully
understood [36].

3.8 Conclusion

In this chapter, we have studied the fluid mechanics of osmotically driven flows. We have
seen that the motion of a solution of water and sugar moving inside the a cylindrical tube
with semipermeable walls can be described by two non-dimensional partial differential
equations for the average axial velocity U and concentration C":

o¥U = 0,C+ MiiU, (3.83)
orC + ax(CU) = 7. (3.84)

The equations depends on a single non-dimensional number M

i — L6Lpnl”
a3

: (3.85)

which characterizes the relative importance of hydraulic resistance along the tube to resis-
tance across the membrane. These equations were derived directly from an approximated
analytical solution of the Navier-Stokes equation. The validity of this solution depends
on the relative size of the non-dimensional groups Hy, Ho, Hs, H4 and Hsy as discussed in
Sec. B.5.1] and B.5.21

We have further discussed how the equations of motion for osmotically driven flows are
applied to phloem transport in the literature. We have presented some of the character-
istic results that come out of these models, and have found that many of these models,
although quantitatively different, display many of the same qualitative features. Of par-
ticular importance is the realization that most models yields concentration and velocity
profiles similar to those shown in Fig. B4l This permits us to describe the concentration in
a very simple manner in the loading and unloading zones, cf. Eq. (8.82), thus simplifying
the mathematical treatment of the equations of motion significantly.
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Further, we have discussed some of the necessary assumptions for the equations of
motion to be a relevant physical representation of the processes that occur in plants. The
qualitative and quantitative effects of many of these on the translocation process are still
unresolved, and pose significant questions for future research in the field.
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Chapter 4

The effect of sieve plates on the
hydraulic resistance of the phloem
translocation pathway

In Chapter Bl we derived one-dimensional equations of motion for osmotically driven flows
in cylindrical semipermeable tubes. By looking at Fig. [Z2|(b)-(d) on page [0 it quickly
becomes apparent that the phloem sieve tube elements put together do not simply consti-
tute one, long, continuous cylindrical tube. Rather, it consists of individual cells separated
by sieve plates the presence of which may contribute significantly to the overall hydraulic
resistance of the translocation pathway

No proper fluid mechanical analysis of this problem has been published so far, in part
due to the lack of reliable anatomical data on the structure of the sieve plates. Such data
has been made available recently by Mullendore et al. [48] and the author is in great depth
to Daniel Mullendore and Michale Knoblauch (Washington State University) for making
these available to the present study. In this chapter we thus consider the effect of sieve
plates on the flow inside the phloem sieve tubes. We show that the presence of the plates
impose a significant amount of additional drag on the liquid.

The analysis of the hydraulic resistance of sieve plates presented in this chapter is due
to the author and constitutes work in progress. A manuscript written in collaboration with
Daniel Mullendore, Michael Knoblauch, Noel Michele Holbrook, Tomas Bohr and Henrik
Bruus is currently under preparation for submission to a peer-reviewed journal.

4.1 Introduction to sieve plates

In the previous chapter, we saw that the equations of motion for the flow of water and
sugar through the phloem depends on the non-dimensional Miinch number M

Axial flow resistance R 16Lp77l2

Mii , (4.1)

Membrane flow resistance Ry, a3
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Figure 4.1: Sketch of the phloem sieve tube element geometry. (a) Adjacent sieve tube
elements of length ¢ and radius a are separated by thin sieve plates of length ¢, perforated
by small holes with radius a, known as sieve pores. (b) End view of a sieve plate. See
Fig. for examples of sieve plate structures found in plants.

where R is the axial and Rjs is the membrane hydraulic resistance of the phloem respec-
tively.

As sketched in Fig. [41] adjacent phloem cells are separated by thin sieve plates perfo-
rated by small holes known as sieve pores. The plates are believed to impose a significant
amount of drag [80] thus leading to an increase in R and Mi. Using a novel visualization
method Mullendore et al. [48] recently investigated the detailed structure of cell walls and
sieve plates using scanning electron microscopy as shown in Fig. 2] Using their data, we
are able to quantify this increase in resistance.

4.2 Characteristic properties of the flow inside sieve tube el-
ements

The data given in Table 1] collected by Mullendore et al. [48] and Thompson and
Holbrook [80], shows that the sieve tube elements has a radius a of about 10 um and a
length £ of 0.1 — 1 mm. Each sieve plate has 50 — 400 approximately circular pores evenly
distributed to cover ~ 50% of the plate area. The mean radius of the pores a, vary from
0.1 —2.5 um and the radii of the individual pores are normally distributed with a standard
deviation o}, of about 0.25a,. The thickness of the plate ¢, is comparable in size to the
radius of the pores.

To characterize the flow inside the sieve tube element, we consider first the situation
in the sieve tube lumen, i.e. far away from the sieve plate. The lumen Reynolds number
Re; is given by

pua

n
where u; is the characteristic flow velocity inside the cell lumen. From Table 2.1], p. [T, we
find that u; ~ 2.8 x 107* m/s. With a = 107° m, n = 2 x 1073 and p = 103 kg/m3 we

have that
Rey=1.4 x 1073, (4.3)
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Figure 4.2: Scanning electron microscope (SEM) images of sieve plates. (a) Curcubita
mazima (Squash). (b) Phyllostachys nuda (Bamboo). (c¢) Phaseolus vulgaris (Green bean).
(d) Ricinus communis (Castor bean). On average, about 50% of the sieve plate area is
covered by open pores. SEM images courtesy of M. Knoblauch and D. L. Mullendore [48].
Reproduced with permission.
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Table 4.1: Sieve tube element data from [48](1-5) and [80](6-19). Sieve tube radius a, sieve
tube element length ¢ average pore radius @, pore thickness ¢,, and number of pores per
plate N,,.

No. Species a [wm)] £ [pm] ap [pm] £p [wm)] Np
1 Cucurbita mazima 25.65 £+ 2.97 341 + 77 2.544+0.86 1.27+029 54.8+11.9
2 Phaseolus vulgaris 10.13 £1.13 140 + 38 0.73+£0.24 043 +0.11 95.4 £ 31.7
3 Solanum lycopersicum 10.70 + 1.40 130 + 90 0.61+0.15 0.524+0.12 121.34+30.0
4 Ricinus communis 16.22 +£1.60 255+122 0.524+0.14 0.24+0.05 371.9+79.0
5  Phyllostachys nuda 11.60 £1.00 10524244 0.61£0.13 0.39£0.10 105.6 £12.7
6  Pinus strobus 10.9 1580 0.35 2.5 720
7  Festuca arundinacea 3 100 0.3 0.5 33
8  Beta vulgaris 5 200 0.1 0.4 1250
9  Glycine maz (petiole) 4.2 125 0.35 1.1 58
10  Glycine maz (stem) 6.6 156 0.6 1.2 81
11 Glycine maz (root) 5.1 137 0.5 1.0 60
12 Gossypium barbadense 11 210 0.5 1.0 160
13 Sabal palmetto 18 700 0.95 0.5 287
14 Yucca flaccida 10 460 0.26 0.4 1746
15  Robinia pseudoacacia 10 180 1.25 0.5 21
16  Tilia americana 15 350 0.6 0.8 625
17 Ulmus americana 18 190 2.0 1.0 50
18  Cucurbita melopepo 40 250 24 0.5 120
19 Vitis vinifera 18 500 0.7 3.5 661

For the flow close to a sieve plate we use the plate Reynolds number Re,

Re, = 22% (4.4)
n
Here, a, is the radius of the pores and wu,, is the flow velocity inside the pores. If the pores
cover 50% of the plate area, u, is twice as large as the lumen velocity, i.e. u, = 2u;. If
the pore radius a, is, say, 10 times smaller than the cell radius a, we find that the pore
Reynolds number Re, is
Re, =28 x 1074, (4.5)

Both Reynolds numbers Re; and Re,, are sufficiently small that we may treat the flow inside
the cells as Stokes flow. This corresponds to ignoring the left-hand side of the Navier-Stokes
Eqns. (3.14)-(3I5), an approximation which simplifies the problem considerably.

4.2.1 Previous work on Stokes flow through small pores

A large number of workers have studied Stokes flow through small pores both experimen-
tally and theoretically. Using an elegant experiment, Johansen [34] found that for Re, < 30
the flow close to a pore is left-right symmetric and laminar!'. He also found that the length
of the region upstream affected by the presence of the pore is very short, and roughly equal
to the pore diameter 2a,,.

'In fact, it remains laminar until Re, ~ 10® but symmetry is broken above Re, = 30.
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Theoretically, low Reynolds number flow through pores have been studied extensively
for very short pores [66}, 65, 20) [33] 86] and for pores of finite length [14]. Most relevant
to the present discussion is the work of Dagan et al. who showed in [14] that to within an
accuracy of 1% the resistance of a single pore R, of finite length ¢, in an infinite plane
is given by

Snlp, 3
Rp1 = % a—g (4.6)
p p

The first term on the right-hand side is the well-know formula for the resistance of a
cylindrical pipe. The second term represents the resistance of a pore in an infinitely thin
plate and was first derived for a circular pore by Sampson [66] and later generalized to
other shapes by Roscoe [65] and Hasimoto [20)].

In plants, the sieve plate and pores are embedded in a larger circular tube. The effect
of the surrounding pipe walls on the resistance of the pore was studied by Jeong [33]
and shown to be negligible as long as %P < 0.3. The effect of neighboring pores was
investigated semi-analytically by Wang [86] who showed that the resistance differed only
by a few percent from that found in Eq. (4£8) for covering fractions less than < 50%.

4.2.2 Numerical simulation of the flow close to a sieve plates

To test the applicability of the results found in the literature we have conducted numerical
simulations of the flow through sieve plates. Using COMSOL 3.5a, a commercial computa-
tional fluid dynamics software package, we have calculated numerical approximations to
the flow in the Stokes flow approximation using a 3-D version of the finite-element solver
used in [27], see Chapter Bl The procedure for importing the actual sieve plate structures
into the simulation workspace is shown in Fig. 43l After a careful meshing procedure and
a thorough convergence analysis we find flow patterns similar to those shown in Fig. 4.4l
An important qualitative feature of the flow is that it is relatively undisturbed until a very
short distance from the plate. This distance is of the order 2a,, the mean diameter of the
pores, in good agreement with the results found by Johansen [34]. Close to the plate the
flow is disturbed by the presence of the plate and the fluid must change direction in order
to pass through the pores. This phenomena gives rise to the Sampson-term Z—g in Eq. (£6)).

4.3 Hydraulic resistance of sieve tubes

We shall now proceed to calculate the hydraulic resistance of a single sieve tube element
which consists of two parts: A cell lumen and a sieve plate as shown in Fig. 1 When
calculating the hydraulic resistance of the tube R;, we thus consider two resistances acting
in series

Ri=TRi+ Ry, (4.7)

where R; is the resistance of the cell lumen and R, is the resistance of the sieve plate.



44 Hydraulic resistance of sieve plates

Figure 4.3: Procedure for preparing numerical simulations of flow through sieve plates. In
(a), a SEM image of a sieve plate found in Curcubita mazima is shown. From [48], scale
bar 20 um. In (b), a front view of the extracted pore structure is shown. In (c), the plate
has been place inside a 3-D cylindrical tube, ready for use in coMsoL 3.5a. The results of
the simulation can be found in Fig. [4.4]

4.3.1 Hydraulic resistance of the cell lumen
For a cylindrical cell of length ¢ and radius r, the hydraulic resistance is given by [10]

8l
ot

Ry (4.8)

4.3.2 Hydraulic resistance of the sieve plate

In the literature, several different methods for calculating the resistance of a sieve plates
have been proposed [80), 48]. Generally, the idea is to consider the plate as a collection of
individual pores acting in parallel. This gives a hydraulic resistance of

-1

Np
Rp=|Y_Rpi| . (4.9)
=1

where Rp; is the hydraulic resistance of each individual pore. Thompson and Holbrook
[80] suggests that one uses

8nl. 3n
7TCLp CLp

This takes into account both terms found by Dagan et al. in Eq. (£8) but uses the
mean value of the pore radius @, rather than taking the sum over the individual pores, an
approach used, presumably because only the mean value of pore radii was not known at
the time.

Having measured the sizes of 10* individual pores, the summation approach was used
recently by Mullendore [48] who suggested that the resistance of each individual pore Rp;



Hydraulic resistance of sieve tubes 45

Figure 4.4: Numerical simulation of flow close to a Curcubita mazima sieve plate. The
liquid is moving from left to right. (a)-(f) Contour plot of the magnitude of the flow
velocity (red fast, blue slow in arbitrary units) at the positions indicated above the plots.
The pores start at £ = 0 and have a typical diameter of 0.1 in these units. The flow profile
in (a) and (b) is the well known parabolic profile found in pressure driven pipe flows. Close
to the sieve plate (c)-(f), the flow is disturbed by the presence of the plate and the fluid
must change direction in order to pass through the pores (f).
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could be written as

8nt
M= 2T (4.11)
p7/[/

such that the sum in Eq. (£9)) is taken over the individual pores of differing radii. Compared
to Eq. (£8) this, however, only takes into account the first term in Dagans formula.

Taking both effects into account, we propose that a more accurate way of calculating
Rp; is to use

8nt 3n
Rpi= Waf 3 (4.12)
p7z p?l

To get an idea of the quantitative difference between Eqns. ([LI0), (£I1) and (EI2) we
consider the data given in Appendix [Dl Here the radii of the pores from the Curcubita
mazima sieve plate shown in Fig. L2)(a) are given. We find that

R) = 6.14 x 10" Pas/m?, (4.13)
Ry = 7.49 x 10" Pas/m?®, (4.14)
R, = 4.21 x 10'? Pas/m?, (4.15)

calculated with n = 2 x 1073 Pa s. We observe that both R;;F and Ré” differ significantly
from R,, being that they are 1.5 times larger and 5 times smaller than R, respectively.

4.3.3 Hydraulic resistance of the sieve tube system

With the results derived in Eqns. (£8) and (4£.12) we have for the total tube resistance R;

that
1

N, -1
8t ~(8nt, 3
I D . (4.16)
Ta i=1 Ty Ap,i

An important observation is that with the knowledge that the pore radii are normally
distributed with mean @, and standard deviation o, we can approximated this by

-1
877l 8nlp,  3n -1
Ry =~ d 4.17
"7 rat ( / bl <7Ta4 a;’; “r ’ (4.17)
where p(ap) is normal probability density function

p(ay) = ——— exp (-“‘1’2_72@7’)2) . (4.18)

2770'12, Op

For the data given in Appendix [D] the expression in Eq. ([@IT) gives R, = 4.12 x
10'2 Pa s/m3, very close to the value in Eq. (#I5).



On the relationship between lumen and plate resistance 47

4.4 On the relationship between lumen and plate resistance

Having established Eq. (£I7) as an approximate expression for the resistance of the sieve
tube, we can now apply it to the data in Table LIl To best interpret the results, we
calculate the lumen and plate parts separately and compare their magnitudes. In Fig. @3]
the sieve plate resistance R, is plotted as a function of the lumen resistance R;. Both
were calculated from Eq. (4I7) using data from table L1l and under the assumption that
n =2 x 1073 Pas. For data points 6-19 we assume that o, = 0.25a,,.

By looking at the plot, we observe what appears to be a linear relation between the
two, i.e. R, < R;. A least squares regression [75] gives

Rp = (254 £ 042)R, (4.19)

with a correlation coefficient of r. = 0.78 While the trend of the plot in Fig.[£Hlis clear, it is
obvious that many effects are influencing the relation between plate and lumen resistance.
As an example it is interesting to consider, say, plant no. 13 which is Sabal palmetto, a
palm tree that lies some distance from the Rp = 2.54R, line. In this plant the sieve tubes
are found inside the stem, rather than right under the bark which is usually the case in
trees, and are thus mechanically protected against insects and other predators [22]. This
may in part explain why it has such a relatively low plate resistance.

One may, however, speculate that Eq. (£I9) points in the direction of the existence of
a general allometric scaling law for the sieve plate resistance. Such a law is known to exist
for the xylem, where structures similar to sieve plates also separate adjacent vascular cells.
Sperry et al. found that Rp ~ Ry, [T1]. The reasoning behind this is, in simple terms that
the relation Rp ~ Ry minimizes the hydraulic resistance of the xylem. At present, this
type of argument does not seem to be applicable to the phloem.

4.4.1 Effective hydraulic resistance

As a consequence of Eq. ([£I9) we conclude that the hydraulic resistance of the phloem
translocation pathway is significantly increased by the presence of the sieve plates. On
average, the resistance is 3.5 times higher than the lumen resistance.

snt
mat’

Ri=Rr+Rp=35R;, =35 (4.20)

We can thus think of the viscosity as being 3.5 times higher due to the presence of the
sieve plates. Writing n.g = 3.517 we find that

_ 877er
mat

Rt (4.21)
This increase in effective viscosity means that the Miinch number given in Eq. ([@I]) is
effectively 3.5 times larger since it should include the effect of the added viscosity. From
now on we thus write

_ 16Lpne L?

a3

Mii (4.22)
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Figure 4.5: Comparative analysis of end wall resistivity in phloem sieve tubes. The sieve
plate resistance Rp is plotted as a function of the lumen resistance R calculated from
Eq. (&I7) using the data in Table Il For data points 6 — 19, we assume that o, = 0.25a,.
A least squares regression gives Rp = (2.54 + 0.42) Ry, with r. = 0.78.
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4.5 Conclusion

I this chapter, we have studied the effect of sieve plates on the hydraulic resistance of the
phloem translocation pathway. We have derived an analytical expression for the resistance
based on fact that the flow occurs at low Reynolds numbers and that the pore radii are
normally distributed.

Using published data on the structure of sieve plates, we have found an approximately
linear relationship between the plate R, and lumen R; resistance: Rp = (2.54 +0.42)R,.
This implies that the presence of sieve plates increases the hydraulic resistance of the entire
sieve tube element by a factor of ~ 3.5. In the context of the one-dimensional equations
of motion derived in Chap. Bl we include this effect by introducing an effective viscosity
Net = 3.5 into the Miinch number cf. Eq. (£22]).
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Chapter 5

Mathematical analysis of the
equations of motion

In this chapter we study analytical and numerical solutions to the steady-state one-
dimensional equations of motion derived in Chapter Bl The equations are analyzed in
a zone model using first a simple hydraulic resistor model and second a full analytical
solution in the limits Md < 1 and Mi > 1. The dependence of the average axial
translocation velocity U on the parameters in the problem is determined in the form of an
approximate analytical expression for the full range of M+ numbers.

The solutions to the equations of motion was derived by the author in collaboration
with Tomas Bohr and Henrik Bruus. A condensed version of the derivation was published
in [29]. Additional technical details of the analytical solution procedure can be found in
Appendix [A]

A detailed treatment of time dependent osmotic flows was published in [30] (see Ap-
pendix [E]) and will not be covered in the main text.

5.1 The 3—zone model

5.1.1 Formulation of the 3—zone model

In this chapter we think of the plant as being split into three zones as shown in Fig. B.4]
p. Specifically we use a loading zone (zone 1, 0 < z < x1) of length [;, a translocation
zone (zone 2, 1 < = < x2) of length Il and an unloading zone (zone 3, o < x < x3) of
length l3. We use the boundary conditions u(0) = u(z3) = 0 and require that the velocity
and its first derivative with respect to x is continuous across all internal boundaries. By
Eq. (B71), p. BIl this assumption implies that the pressure p and concentration c¢ is also
continuous across the internal boundaries. Further, we assume that the concentration c
can be written as

c* in zone 1 (0 < z < x1),
(5.1)

ch (1 - M) in zone 3 (z2 < z < x3),

T3—T2

ol
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where c¢* is the characteristic concentration found in the loading zone and c3 is the con-
centration at the entrance to the unloading zone. The equations of motion were derived
in Chapter B and are give by

2L
Pu = 2 <R1razc+8”6ff > (5.2)

U
a a?

Op(cu) = v (5.3)

The loading v rate is not explicitly specified, but assumed to lead to concentration profiles
of the form given in Eq. (5.)). Note that we now use the effective viscosity 7eg introduced
in Chapter [ to take the effect of sieve plates into account.

To be able to compare the results of this model to velocity measurements made on
plants we define the average translocation velocity u to be the mean value of the velocity
in the translocation zone as

PR /mu(x)dx. (5.4)

T2 — I x1

The goal of the following mathematical analysis will be to determine this velocity as a
function of the parameters in the problem.

5.1.2 A simplified mathematical treatment

Before we move on to a rigorous mathematical treatment of the model, we will try to
described the flow in a simple manner, so as to get an idea of what kind of results we
should expect from the full model. Let us therefore consider the phloem translocation
pathway as a series of hydraulic resistances (see e.g. [10]) that the water has to overcome
in order to move from source to sink. The three resistances are

1 Snerl 1

! 2maly Ly, + Tat 2raly Ly’ (5:5)
87763[2
R, = 5.6
, = b (5:5)
1 81eitls 1
Rs = ~ . 5.7
K omalsL, = ma'  2malsL, (5.7)

Here, we approximate the resistance in the loading and unloading zones R; and R3 by
the hydraulic resistance associated with moving across the membrane and disregard the
resistance of the flow along the tubel. If we assume for simplicity that I; = I3, the total
resistance is simply the sum of the three resistances (5.5)—(5.7)

1 8776ffl2
mali L, rat

R=Ri+Ro+Rg= (58)

!The resistance along the (un)loading zone is typically two orders of magnitude smaller than the resis-
tance across the membrane
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The flow is driven by the osmotic pressure RTc* so the average flow velocity @ can be
written as

1 RTc*

u = — 5.9

“ ma? R (5.9)
L Sl

= RT 5.10

ma? <7Tal1Lp i ¢ (5.10)

azlle
= RTc* 5.11
<a3 + 8nefprlllQ> ( )

As a quick check, we can compare this velocity to the one found in Eq. (Z7) (p.[I4) which
was calculated without taking the viscous resistance (Eq. [5.6]) into account. There, we
found a characteristic osmotic velocity of 1072 m/s, two orders of magnitude larger than
the observed velocity of 2.8 x 10™* m/s. Using the parameters

Ih=01lm, lb=1m, a=10"m, L,=5x10"m/(sPa), and RTc¢* =1MPa,

we find from Eq. (5.I1) that
7 =3.9x 10" m/s, (5.12)

in good agreement with the experiments. In non-dimensional units (see Sec. 3.3 p. 24)
with the axial length scale [ chosen to be the length of the translocation zone i.e. [ = I
we find that the average axial velocity U can be written as

= 1

(5.14)

such that for large values of Mii

i
12
5=

while for small values of Mui,
U

12

Ly
—. 1
: (5.15)

5.1.3 Non-dimensional formulation of the equations of motion

To simplify the mathematical treatment of the full model, we use non-dimensional variables.
As outlined above, we employ the scaling used in Sec. with the axial length scale
L chosen to be the length of the translocation zone [ = ls. In these units we have a
loading zone (zone 1, 0 < X < Xj) of length L; = [1/ls, a translocation zone (zone 2,
X1 < X < X3) of length Ly = l3/ls = 1 and an unloading zone (zone 3, Xy < X < X3) of
length L3 = I3/l5. Since the equations of motion are different in each of the zones, we will
use subscripts. The velocity in the loading zone is denoted Uj, in the translocation zone
U, and in the unloading zone Us. Similar subscripts are used for the concentration C.
In steady state, the governing equation for the velocity U in all three zones is

0% U; = 0,C; + Mi U, (5.16)
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where ¢ = 1,2,3. The concentration C' is governed by

C, =1 (5.17)
9y (UnCy) = 0 (5.18)
e~ (1 X252, 510

The boundary conditions require continuity of the velocity U and its first derivative with
respect to X

U1(0) = 0, (5.20)
U2(X1) = Ui(X), (5.21)
OxUs(X1) = 0OxUi(Xy), (5.22)
Us(X2) = Ua(X2), (5.23)
OxUs(X2) = 0xUsx(Xa), (5.24)
Us(X3) = 0. (5.25)

The conservation equation (B.I8]) implies that for any two positions in the translocation
zone interval X,, X;, € [X1, Xo| we have that

Us(X4)C2(X4) = Ua(Xp)Cao(Xp). (5.26)
In particular, since Cy(X;) = C1(X1) = 1, we have that
Us(X2)Co(X2) = Ua(X1). (5.27)

This means that we can eliminate C' from the equations of motion entirely and get

oxU, = MiUy, (5.28)
Uy (X
8§(U2 = — 1(821)8)(UQ+M’[I:U2, (5.29)
2
Us(X
RU; = — 2(X1) + Mii Us, (5.30)

Uz (X2)(X3 — X2)

To determine C' upon solving this system of equations, we simply use Eqns. (5.17)), (5.26])
and (519). In non-dimensional units, the mean velocity in the translocation zone is

_ X2
U= / Uy dX, (5.31)
X1

since X9 — X7 = 1.
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5.2 Analytical solution of the 3—zone model

A general, closed form solution of Eqns. (0.28)-(5.30) is not currently available. It is,
however, possible to solve the problem analytically in the in the limits M@ < 1 and
Mi > 1. In the following, we will give a brief summary of the solutions which depend
on the Miinch number M, the size of the loading zone L; and the ratio w = f—i’ The
problem is solved for all w, but with special emphasis on the case w = 1 commonly used in

the literature. Please refer to Appendix [Al for a thorough analysis the solution procedure.

5.2.1 Solution for Mi < 1

In the limit M4 < 1 the equations of motion are

03U, = 0, (5.32)
XUz = —L((])Q(l)@x%, (5.33)
2
X
RU; = — X)) (5.34)

We write the solution in domains 1 and 3 as

Us(X) = —% gzg;; e i % (X — X3)? 4+ B3(X — X3) + By. (5.36)

For Us, only the inverse function X (Us) is available explicitly

By U:
U, L (1 + Ulﬁxf)>

Uy (X))
Bs

X(UQ) = + Bg. (537)

——1lo
U(X1) Bs 8\ 71+ B;

To fulfill the boundary conditions we find that the constants By, Bo, ..., Bg are given by

1

B = —(1+w—-v1+2w), (5.38)
w

By = 0, (5.39)
1

By = —(1-V1+2w), (5.40)
w

By = 0, (5.41)
1

Bs = —(1-V1+2w), (5.42)
w

Llw

By = —2 5.43

C T VTtw-1 (543)

and that Us(Xs) = $Li1(1 — Bi)w. We compare this analytical solution to numerical

solutions of the full equation system in Sec. 5.4l
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The mean translocation velocity in the translocation zone U is

7 4+6w—w2+\/1+2w(w2—4—2w)> 9

L. 5.44
— L (54

DN |

(m—le—(

In most cases the prefactor of second order term (in Lq) is very small. For w = 1 we find

that 3 3
— 3—-1 9—-5v3
U= 5 Ly — 3

It is often the case in plants that L; < 1, so we can safely use

V3-—1
2

L? ~0.36L; — 0.043L3. (5.45)

U~

Ly, (5.46)

as an estimate for U. Apart from a small numerical difference in the prefactor (v/3 — 1 ~
0.732 vs. 1), this is in good agreement with the result found in Eq. (5.I5]) using the resistor
model.

5.2.2 Solution for Mi > 1

In the limit Mi > 1 the equations of motion are

0xU, = MUy, (5.47)
Uy (X
iU, = — 1(UQI)8XU2+M11U2, (5.48)
2
X
RU; = () + Mii Us, (5.49)

o (X2) (X3 — X2)

In the loading and unloading zones the solutions are

Ui(X) = A;sinhvMiX + Ay cosh vV Mi X, (5.50)
K

Us(X) = Agsinh VM (X — Xo) + Ascosh VMii (X = Xo) + —) (5.51)
i

where K = % and As = 0 since U;(0) = 0. For Us, we have that

Ui(X1)

Ua(X) = V1 —2Mi Uy (X1)(X — X1)

(5.52)

With the solution given in Eq. (&.52), we can now determine the constants As and Ay
and K = % The only free parameter is A; which has to be determined such
that Us(X3) = 0. Using the computer algebra system MATHEMATICA 7.0.0, we do this as
explained in Appendix The expressions are generally complicated functions of Mii ,
X1, X9 and X3. For w =1, we e.g. find that Ay is given by

Mii (4+X1) coth[Mi*]—csch[Mii*] <4M1'i +csch[Mﬁ*}\/M1z 3/2 x| sinh[Mi*]2 (M* cosh[Mi*]2 —4 sinh[Mii*]+2 sinh[2M1’i*]))

A=

)

(5.53)

4Mi 2(2+X1) cosh[Mﬁ*]—2(4M1’i 24 M 3/2x, sinh[Mﬁ*])
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where Mii* = /MiX;. We compare this analytical solution to numerical solutions of the
full equation system in Sec. 5.4l
In spite of the complexity of the analytical expression for the A;’s, the mean translo-
cation velocity in the translocation zone U can be approximated by a simple function of
Mii. We thus find that )
U~ Wi (5.54)
as long as Mii (X3 — X32) > 1. Once again, this is in good agreement with the resistor
model result given in Eq. (G.14]).

5.3 Solution summary for w =1

In the special case w = 1 we have for the average translocation velocity U that

b {ﬁ’;lLl if Mi <1,

s if Mii > 1.

Inspired by Eq. (5.13]) we therefore write

_ 1
U~ 5 7R (5.55)
= + M1
or in dimensional units
2L
i | g RTc". (5.56)
51 T Snet Lplil

We compare this prediction to numerical solutions of the full equation system in Sec. 5.4l
The dependence of 4 on the parameters in the problem is discussed in detail in Sec. [6.3],
p. From Eq. (556]), we can further calculate the characteristic time ¢y it takes for a
sugar molecule to traverse the translocation zone

3
b (2 +SmenLphile)

to = .
0 a*l, L, RTc*

(5.57)

SIS

When [s becomes very large we recover the result obtained numerically by Thompson and
Holbrook [79] that to o< I2.

5.4 Comparison between numerical and analytical solutions

5.4.1 Numerical solutions of the 3—zone model

To evaluate the accuracy of the analytical solutions presented above, we have solved
Eqgns. (528)-(530) numerically. We have used MATLAB’s ode45-routine which uses a
Runge-Kutta (4,5) solver [63]. The equations are solved using a shooting method from
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Figure 5.1: Comparison between numerical and analytical solutions of the 3—zone model.
(a), (c), and (e): Numerical (circles) and analytical (lines) solutions for velocity U plotted

as a function of axial position X. (b), (d), and (f):

Numerical (circles) and analytical

(lines) solutions for concentration C' plotted as a function of axial position X. The values
of Miinch number Mi used are indicated next to the points. Parameters used are (a) and
(b): X1 =0.3, X5 = 1.3, and X3 = 1.6. (c) and (d): X; = 0.1, X5 = 1.1, and X35 = 1.4.
(e) and (f): X1 =1, X9 =2, and X3 = 3. Note the logarithmic coordinate axis in (e).
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Figure 5.2: Comparison between numerical and analytical solutions of the 3-zone model.
Numerically computed dimensional mean translocation velocities @ (points) plotted as a
function of radius a for a plant with a stem length I = 1 m. The leaf and root sizes
are [; = I3 = 0.05 m (circles), [; = 3 = 0.1 m (squares), and I} = I3 = 0.25 m (stars).
The solid lines shows the velocity predicted by Eq. (5:56]). Parameters used are L, =
5x 107" m/(Pas), RTc* = 1 MPa, and neg = 7 x 1073 Pas.

left to right with the initial conditions U;(0) = 0 and dxU;(0) =1 . To fulfill the bound-
ary condition at X3, the numerical procedure varies dxU;(0) until the solution fulfills the
condition Us(X3) = 0. After a thorough convergence test we obtain solutions similar to
those shown in Fig. 511

5.4.2 Comparison between numerical and analytical solutions

Using the numerical procedure outlined in Sec. [5.4.1] we have solved Eqns. (5.28])-(5.30)
numerically. The results are shown in Fig.[5.Jlwhere the numerical solutions for the velocity
U and concentration C' are compared with the analytical results obtained in the Mi <1
and M4 > 1 limits. We generally find very good agreement between the two. The reason
for the discrepancy between the analytical and numerical solution for the concentration C
for Mi = 100 is that the analytical solution for large Mi does not fulfill the condition
8)(U2(X1) = 8XU1(X1) exactly.

To evaluate the accuracy of the expression for the mean dimensional translocation ve-
locity u given in Eq. (5.50]), we have compared it to the results of the numerical simulation.
To obtain the dimensional velocity from the non-dimensional solutions we use

20y L,RTc* _

u=ullU= U, (5.58)

a

cf. the scaling procedure discussed in Sec. B3l p. Fig. shows the numerically
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computed dimensional mean translocation velocity @ plotted as a function of radius a for
a plant with a stem length [y = 1 m, and three different leaf/root sizes. We generally find
good qualitative and quantitative agreement between the numerical simulations and the
analytical result. The agreement is especially good (to within ~ 10%) when the leaf is
short compared to the stem, i.e. when L; = % is small. We find equally good agreement
between numerics and theory for plants with other stem lengths. We note the existence of a

maximum in the dimensional translocation velocity which we discuss in detail in Chapter [6l

5.5 Conclusion and Summary

In this chapter, we have studied analytical and numerical solutions of the one-dimensional
equations of motion in the 3-zone model. We have analysed the problem using first a
simple hydraulic resistor model and second a full analytical solution in the limits Mi < 1
and Mi > 1. The analytical solutions obtained gives a full understanding of the flow
and concentration profiles as a function of axial position in the two limits. The solutions
depend on three non-dimensional numbers: The Miinch number Mdi, the relative size of the
loading and translocation zone L1 = %, and the relative size of the loading and unloading
zohe w = f—i’ To evaluate the accuracy of the analytical solutions, we have solved the
equations of motion numerically. We have found good agreement between theory and
numerics. From the analytical solutions, we have derived an analytical expression for the
average axial translocation velocity @ as a functions of the parameters in the problem, cf.

Eq. (5.56]).



Chapter 6

Optimality of the Miinch mechanism

In this chapter we apply the results of the theoretical analysis of osmotically driven flows
obtained in Chapters Bl @ and Bl to translocation processes in plants. We begin by showing
that the 3-zone model is able to reproduce translocation velocity measurements made on
plants, and that it therefore gives us a basic understanding of how the velocity scales as
a functions of the parameters in the problem. We then consider an interesting prediction
of the model; that the osmotic Miinch flow mechanism has a maximum in translocation
velocity for a particular value of the phloem sieve tube radius a.. We derive an expression
for a. which takes the form of an allometric scaling law, and show that a large group
of plants follow this prediction. Finally, we discuss the implications for the Lang relay
hypothesis and for the feasibility of the osmotic flow mechanism for long distance transport
in plants. The author believes that the results presented in this chapter constitutes the most
significant contribution to the phloem translocation literature obtained over the course of
the PhD project.

The theoretical analysis of the optimality of the Miinch mechanism was made by the
author during and after a visit to the lab of Noel Michele Holbrook and Maciej Zwie-
niecki at Harvard University in 2008. It was published in [29]' (see Appendix [[) in a
paper written in collaboration with Tomas Bohr, Jinkee Lee, Henrik Bruus, Noel Michele
Holbrook and Maciej Zwieniecki. Maciej Zwieniecki performed the in-vivo phloem flow
velocity measurements referred to in the text.

6.1 Introduction to optimality and allometric scaling laws

Plants display a remarkable variety of different structures and vary by many order of
magnitude in size. Despite this incredible diversity and complexity, many fundamental
biological processes show a striking simplicity when viewed as a function of size, by what
is know as allometric scaling laws. The laws describe how biological parameters vary

!The scaling analysis presented here differs slightly from that given in [29]. To avoid lengthy mathemat-
ical discussions and the use of numerical solutions in the comparison with experimental data the author
has chosen Eq. (5I1), p. B3] as the starting point for the discussion. This means that the expression for
the critical radius a. derived here differs from that found in [29] by a factor 2'/3 which is easily absorbed
by the geometric factor G, cf. Eq. (671).

61
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with scale, regardless of the otherwise large qualitative differences among of the species
being considered. These scaling laws emerge from underlying physical mechanisms that
are independent of the specific species, but which impose certain constraints on the system
as a whole as a result of selection pressure for a specific property [87, [52].

As we have seen in Chapter 2] the phloem tissue of plants is responsible for the distri-
bution of sugar and hormonal and signaling molecules. On the biological motivation for
examining the optimality of the Miinch mechanism, the author and collaborators write in

[29] that

...phloem distributes hormonal and signaling molecules that allow for the in-
tegration of distal parts in lieu of a designated nervous system [43] 83]. This
additional signalling task could result in selection pressure to optimize translo-
cation velocity by providing plants with the ability to respond rapidly to envi-
ronmental perturbations [46]. ([29], p. 1)

The question we pose in the following is whether an allometric scaling analysis can be
applied to translocation in the phloem. If we assume that the flow inside plants is driven
according to the Miinch hypothesis, what consequences does it have for the relation be-
tween, say, the size of the leaf, the length of the stem and the radius of the phloem tubes
if we assume that plants are optimized for rapid translocation in the phloem?

To make progress on this we will use the results derived in Chapter [l

6.2 Comparison between the 3-zone model and plant velocity
measurements

The equations of motion derived in Chapter Bland analyzed in Chapter Bl have been shown
by several authors to accurately describe osmotically driven flows in artificial systems
[16], 40, [30) 28, 29], see also Chapter [1]

To shown that they are a relevant description of the processes that occur in plants,
we must make an assessment of to what extend the theory is able to reproduce empirical
data. Quoting once again Knoblauch and Peters [36]:

While there is no shortage of mathematical formalizations of various aspects
of phloem transport..., the question remains whether any such theoretical
description mirrors physical reality in a biologically meaningful way can only
be decided empirically. ([36], p. 1442)

One such empirical comparison can be made by considering the characteristic flow velocity
@ for the 3-zone model derived in Chapter Bl (Eq. (B.11]), p. B3]). The expression for @ has
the form

a2l1Lp

— (6.1)
ﬁ + 8Lpneffl1l2

N
12

and thus relates the translocation velocity to characteristic physical properties of the plant
and the available osmotic driving pressure RTc¢* = I1.
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Figure 6.1: Comparison between plant velocity measurements and theory. (a) Measured
flow velocity uexp (black dots) plotted as a function of the sieve tube radius a for the 7
different species listed in Table [l Also shown is the velocity u predicted by Eq. (6.1])
(open circles connected by dashed lines) plotted for IT = 0.1 MPa — 0.5 MPa as indicated
on the right. (b) Measured flow velocity uexp (black dots) plotted as a function of the stem
length 5. Also shown is the velocity @ predicted by Eq. (6.1)) (open circles connected by
dashed lines) plotted for IT = 0.1 MPa — 0.5 MPa as indicated on the right. Throughout,
L,=5x10"" m/(Pas) and neg = 7 x 1073 Pa s was used.
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A data set which allows for direct comparison with Eq. (6.I]) is given in Table[6.1] p.
Here, experimental data obtained from in-vivo phloem flow velocity measurements made on
7 different species are listed along with values of the relevant physical parameters?. When
comparing the experimental data to the prediction of Eq. (6.1]), we will treat the membrane
permeability L, and the liquid viscosity ne.g as constants. We make this assumption based
on a thorough study by Thompson and Holbrook [79]. They found that representative
values are L, =5 x 107* m/(Pas) and = 2 x 1073 Pa s, such that neg = 7 x 1072 Pas.
Characteristic values of the osmotic pressure are II = 0.2 MPa — 2 MPa, obtained from
the sugar concentrations listed in Table 211, p. [1}

A comparison between the velocity predicted by Eq. (6.) and the measured values
listed in Table is shown in Fig. In (a), the velocity is plotted as a function of
the radius a of the sieve tubes, while (b) shows the velocity plotted as a function of the
stem length ls. The prediction of the velocity 4 given in Eq. (6. is shown as open
circles connected by dashed lines as guides to the eye. We observe a good qualitative and
quantitative agreement between the prediction of Eq. (6.1) and the experimental data for
the curves with II = 0.1 MPa — 0.5 MPa. Although these value of the osmotic pressure
IT are at the low end of the spectrum, we note that the factor II entering into Eq. (6.1
represents the difference in osmotic pressure between the root and the leaf, a number
which can be significantly lower than the values found by simply considering the sugar
concentration as pointed out by Turgeon [82].

6.3 Optimality of the Miinch mechanism

We now move on to an allometric scaling analysis of translocation in the phloem. To
make progress on this, we must first convince ourselves that a maximum in translocation
velocity is imposed by the Miinch osmotic flow mechanism. We begin by considering the
dependence of the translocation velocity @ given in Eq. (6.I]) on the sieve tube radius a,
the leaf size [; and the stem size lo. With 2 of the 3 parameters kept constant, @ behaves
as illustrated in Fig. The velocity grows asymptotically as a function of the leaf size

1 to the value

a2

—1I,
877l2

and decays as % when the stem length becomes very large. When the stem is very short
we find that

a(ly — 00) = (6.2)

1L

a(ly — 0) = (\/5 - 1) ey, (6.3)
a

While the velocity @ has no maximum points as a function of /1 and Iy > 0, it does have an

extrema as a function of the radius a, at the value a = a. as indicated in Fig. [6.2(c). As

sketched in Fig. [6.3](a), the existence of such a maximum in translocation velocity is quite

2We note that the stem length of these plants are l2 ~ 1 m and that the values of the ratio L; = % lie
in the range 0.05 — 0.25. We can therefore expect that Eq. (6.1]) gives a reasonably accurate estimate of @
from the 3-zone mode cf. the discussion in Sec. 5.4.2] p. For plants with much larger values of L1 one
needs to solve the 3-zone model numerically in each individual case. The author and co-workers used this

approach in [29].
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Figure 6.2: Plots showing the asymptotic behavior of the velocity @ given in Eq. (€)) as
a function of a, Iy, and lp. (a) Plot of a/u(l; — o0) as a function of the leaf size [; for

constant a and ly. As l; — 0o, 4 approaches 8‘117—321'[. (b) Plot of a/u(ly — 0) as a function

of stem length [ for constant a and ls. As ls — 0, @ approaches (\/§ — 1) %H. (c) Plot
of w as a function of radius a for constant /1 and l5. At the critical radius a = a., the
velocity 4 has an maximum point (indicated by the black dot) given by Eq. (635). The
value of a = a. at which this occurs is given in Eq. (6.4]).
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Figure 6.3: Optimized velocity for osmotically driven flows. (a) Heuristic argument for
existence of a maximum in translocation velocity for osmotically driven flows. The flow
velocity @ (open circles) is plotted as a function of the tube radius a. The osmotic drive
takes place across the tube surface and the velocity therefore grows as the the surface-to-
volume ratio o = % increases, i.e. when the radius decreases. Very thin tubes, on the other
hand, offer high viscous resistance to the flow; and thus there is an optimum radius a.
and velocity u(a.) at the intersection between the dashed lines, where the osmotic pump is
most effective and the resistance not too large. (b) Example of numerically computed mean
translocation velocity @ (dots) as a function of radius a calculated from the 3-zone model
showing the existence of a maximum in translocation velocity. The solid line shows the
velocity predicted by Eq. (6.1)). Close to the maximum of the solid curve, at a = 7.5 um,
the transition between the two types of flow occurs and the velocity is at a maximum. This
is consistent with the numerical simulations which yields a. ~ 8.0 um as indicated on the
ordinate axis. Parameters used are L, = 5 x 1074 m/(Pas), [y =l3 = 0.1 m, I = 1 m,
II = 1 MPa, and neg = 7 x 1073 Pa's. We also find good agreement between numerics and
theory for other values of I; and Is.
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easy to understand: the osmotic flow takes place across the cell surface and is therefore
more effective in terms of the axial velocity for thinner tubes where the surface-to-volume
ratio o = % is larger. Very thin tubes, on the other hand, offer high viscous resistance to
the flow, and thus there is an optimum radius a., where the osmotic pump is effective and
the resistance not too large.

To estimate the radius at which this maximum occurs, we use the expression for
the mean translocation velocity @ given in Eq. (6.1) This velocity is plotted as a func-
tion of the phloem sieve tube radius a in Fig. [63(b), along with the results of nu-
merical simulation of the 3-zone model. In accordance with the numerical result, the

solid curve shows a maximum which we can calculate by considering the nominator of
Ot = 2aly L, (\/_3—3_1 + 877Lpl1l2) — ﬁa‘lllLP. The velocity has a maximum when this is

zero, i.e. when

a3 = a3 = 16(V3 — 1) Lyneglila. (6.4)

As shown in Fig. [63(b) the numerically determined value of the optimized radius (a. =
8 um in this particular example) lies very close to that predicted by Eq. (6.4)), a. = 7.5 pm.
From Eqns. (1)) and (6.4]), we may further calculate the velocity @(a.) at the critical

radius /3
N I R (AN
u(a.) = = Ll (6.5)
2477effl2 3 (’I’]eﬁ‘l2)

Thus an increase in leaf size (with fixed stem size) will lead to an increase in the velocity
u(a.), while an increase in stem size (with fixed leaf size) will lead to a decrease. We thus
assume that these external length scales are set by other biological constraints such as the
cost of building, supporting and maintaining photosynthetic surfaces.

It is also interesting to consider the characteristic transit time ¢o(a.) for a sugar molecule
to traverse the translocation zone

Iy 3 771 /3 l;/s

a.) = = eff ‘2 .
fo(ac) u(a) (2_\/5)1/3 (Ll)?° I (6.6)

We observe that the transit time ¢y at the critical radius grows as lg/ 3, significantly slower
than the dependence ty o< I3 found numerically by Thompson and Holbrook [79] in the
non-optimized case of very large ls.

6.3.1 Allometric scaling law for the optimality of the Miinch mechanism

In summary, we have that the expression for the critical radius a. given in Eq. (6.4)) predicts
a scaling relation of the form
ay = GLyneglila, (6.7)

where G = 16(v/3 — 1) ~ 10 is a geometric factor®. If plants are optimized for rapid
translocation in the phloem, we expect to find that they have appropriate combinations of

3We notice that in terms of the non-dimensional parameters M and L1, the scaling relation given in
Eq. (61) corresponds to Mi = 18

16 1
G I
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the four length scales: a, Lyneg, 11, and l. This prediction thus relates physics occurring
at length scales spanning more than 10 orders of magnitude: from the molecular scale
— through the length scale L,n.¢ which is closely related to the hydrodynamic pore-size
of transport proteins — to the long-distance translocation scale which spans many 10s of
meters.

6.4 Comparison with plant data

Table [6.2] p. [76], list values of phloem sieve tube radius a, leaf size I; and stem length [y
for 19 different species from [29]. The data is represented visually in Fig. 6.4 and show
the general trend that large plants tend to have large sieve tube and large leaves.

To test the scaling relation given in Eq. (6.7) the product 115 is potted as a function
of sieve tube radius a in Fig. 64(d) and again in Fig. where the individual species
are labeled by numbers referring to Table [6.2l A visual inspection of Fig. reveals that
the data points lie close to the predicted scaling exponent of 3 (solid line). By method
of least squares fitting we will now determine the statistical estimate of the exponent and
prefactor.

6.4.1 Determining the scaling exponent

When examining the data given in Table we consider scaling relations of the form
a® = Blly, (6.8)

once again treating L, and neg as constants. To determine the constants o and 3 =
GLpneg, it is convenient to consider instead the logarithm of this equation

aloga = log 8+ loglyls, (6.9)
which with & = loga, ( =loglils and B = —log 8 becomes
(=a§+B. (6.10)

A least squares fit [75] yields
ags = 2.58 = 0.25, (6.11)

quite close to the predicted scaling o = 3 with a correlation coefficient of r. = 0.93 as
reported by the author and co-workers in [29]. The standard least squares correlation
method, however, does not take into account the uncertainty on both sets of variables, i.e.
the error on the radius a and on the product l;l5. A more appropriate method is therefore
a Model IT least squares cubic regression analysis (see [52] p. 328 and [90] p. 1083). Using
that technique, we find

alge = 3.32 +0.37, (6.12)

consistent with the o = 3 prediction. Generally, the least squares method obtains the
lowest value for the scaling exponent whereas Model II type regressions provides an upper
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Figure 6.4: Visual representation of the plant data given in Table (a) Leaf length Iy
plotted as a function of sieve tube radius a. (b) Stem length ls plotted as a function of
sieve tube radius a. (c) Stem length I plotted as a function of leaf length ;. (d) Product
of leaf and stem length [l plotted as a function of sieve tube radius a.
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Figure 6.5: Comparison between the predicted scaling law a® o [;ly and the plant data
given in Table Log-log plot of measured I3 as a function of measured radius a (black
dots). The prediction of Eq. (67) (A, solid line, slope 3.00), Eq. (612]) (B, dashed line,
slope 3.32), and Eq. (6.11)) (C, dotted line, slope 2.58) are also shown. The numbers next
to the points indicated the species as listed in Table [6.2]
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limit on « [52]. Figure shows a comparison between the experimental data and the
exponents derived from the regression analysis.

In summary we find good agreement between the predicted scaling relation and the
experimental data on plants ranging in sieve tube radius a from a = 1 um (Tradescantia
virginiana, no. 12) to a = 40 um (Cucurbita malepo, no. 10) and stem length [y from
ly = 0.1 m (Tradescantia virginiana, no. 12) to lo = 40 m (Robinia pseudoacacia, no. 5).
We note that a number of plants lie quite far from the predicted scaling. Two such points
are Cucurbita malepo (no. 10), and Sabal palmetto (no. 3). The major difference between
Cucurbita malepo the rest of the data set is presumably that it has very large sieve tubes,
much like the Cucurbita mazima shown in Fig. 22 p. [Tl On the other hand, the phloem
of Sabal palmetto is located further inside the stem than what is usually the case. As
discussed in Chapter [, this also makes a difference for the hydraulic resistance of the sieve
plates.

6.4.2 Determining the scaling prefactor

Data from the literature suggest that the scaling prefactor 8 = GLpneg ~ 3.5 x 107 m
since G ~ 10, L, = 5 x 107 m/(Pa s), and neg = 7 x 1072 Pa s. It can be determined
from the data in Table under the assumption that a = 3 by a least squares fit to
a® = Blyly. This yields

Bis = (1.74 £1.30) x 10~ ¥m, (6.13)

which is in the same order of magnitude as predicted by the literature data.

6.5 Discussion

In a discussion of the scaling analysis presented above the author and collaborators write

in [29] that

Plants, which span tens of metres and proliferate in hundreds of cubic metres
of soil and air, experience diverse and often rapid fluctuations in environmental
conditions. To respond to such environmental heterogeneity requires the rapid
distribution of both energy and information in the form of chemical signals
to enhance plant productivity and competitiveness. The phloem provides un-
interrupted coupling between most distal parts of all plants and links plants’
multibranched dendritic structure into a single functional microfluidic system
[6]. Concordance between our theoretical model, studies of osmotically driven
flow in synthetic phloem, and measurements of flow and geometric properties
made on real plants gives confidence in the Miinch theory of phloem flow and
suggests that plants are optimized for rapid translocation of sugar, thereby
gaining a competitive edge in terms of their ability to respond rapidly to en-
vironmental stimuli. Our analysis provides a general scaling law for phloem
dimensions that maximizes translocation velocity, suggesting that evolutionary
selection on the efficacy of signal transduction has shaped the structure and
function of this supracellular transport pathway. ([29], p. 7)
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The author thus believes that the physical constraints imposed by the optimality of the
Miinch mechanism has played an important role in the evolution of the phloem vascular
system of plants. If we accept this hypothesis, we are able to shed new light on a number
of conjectures found in the phloem literature.

6.5.1 Lang’s relay hypothesis

One such conjecture is known as Lang’s Hypothesis. In 1979, Alexander Lang [41] proposed
that in order to maximize the rate of transport of sugar, the phloem translocation pathway
might be split into a number of separate compartments. He writes that

the phloem is envisaged as comprising a series of ‘function units’ of perhaps
a few centimeters to several meters in length, each unit consisting of a file of
sieve elements disposed end to end, the units having a short length of overlap
between one and the next. ([41], p. 142)

Lang continues to describe how, in this short overlapping region, sugar is actively trans-
ferred between the two functional units which are otherwise physically separate, thus not
allowing for a flow of liquid from one unit to the next. This concept is illustrated in Fig.
[6.6] where the flow is from top to bottom, and the number in each box represents the sugar
concentration. Lang estimates that about 2 % of the sugar is consumed by the reloading
process at each reloading zone, but that this can lead to an increase of a factor of 10 in the
rate of transport and that is is thus worth the extra expense in terms of the sugar lost.

There is, however, no clear experimental evidence for the existence of the relay zones
proposed by Lang (see e.g. [50]). The hypothesis is none the less still widely cited as a
method that plants may use for accelerating the rate of phloem transport [36]. Using the
scaling analysis developed in the previous sections, we can evaluate the efficiency of the
flow according to Lang’s hypothesis. If we let I be the length of the functional unit and Iy
be the length of overlap between two adjacent units, the situation is completely analogous
to the 3-zone model. If the flow is optimized according to the Miinch mechanism, we thus
expect to find that the radius a. of the sieve tube in the functional unit is

e = (GLyestlaly )2, (6.14)

Lang provides no estimates of the size of the unit other than those given in the quote
above. For a tree we may take a unit length of [, = 1 m and an overlapping region of
length, say, {1 = 0.05 m. This gives an optimum radius of

ac = 5.6 pm, (6.15)

calculated with G' = 10, L, = 5 x 10" m/(Pa s) and n = 7 x 1072 Pas. Trees, however,
typically have radii in the range 10 — 20 wm, 2-4 times larger than predicted by Eq. (6.15)
(see Table [6.2]). For a. to be equal to 10 wm, one must choose the overlapping length
1 = 0.35 m such that a total of 70% of adjacent functional units are overlapping. If such
large overlapping regions exists they should be easy to observe.

From this analysis we conclude that we find no evidence in Fig. to support Lang’s
relay hypothesis.
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Figure 6.6: Lang’s relay hypothesis. The phloem is envisaged as comprising a series of
function units (indicated by the X) of perhaps a few centimeters to several meters in
length, each unit consisting of a file of sieve elements disposed end to end, the units
having a short length of over-lab between one and the next. In this short overlapping
region, sugar is actively transferred between the two functional units which are otherwise
physically separate, thus not allowing for a flow of liquid from one unit to the next. The
flow is from top to bottom, and the number in each box represents the sugar concentration.
From [41], Fig. 1. Reproduced with permission.
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6.5.2 Is osmosis adequate for translocation in tall trees?

The question whether osmotically driven translocation is adequate to account for the rates
of transport observed in tall trees is still an open question. Without some form of actively
aided transport (such as the Lang relay mechanism discussed above), there is general
agreement that osmosis is insufficient [82],[36]. This view has been promoted by the author
of the present thesis himself in [30]. The argument put forward is that the hydraulic
resistance of a 100 m tall tree is much to large to overcome for osmosis alone, and that flow
rates would therefore be unreasonably slow. This is especially pronounced in gymnosperms
where the hydraulic resistance of the sieve plates may be much larger than that found in
the angiosperms studied in Chapter @] see e.g. [68].

It is therefore somewhat surprising that the trees found in Table (species 3, 4, 5,
6, and 8) all fall reasonably close to the a® o Il line in Fig. If we use Eq. (6.1) to
estimate the velocity @ we find that they lie in the range from 16 x 1075 m/s (Robinia
pseudoaccacia) to 100 x 107 m/s (Sabal palmetto) and thus fall within the range of veloci-
ties measured on much smaller plants, cf. Table The lone gymnosperm, Pinus strobus,
has a predicted velocity of 40 x 1076 m/s, although on must not forget that Eq. (6.1])
was derived assuming that the sieve pores are open. These velocities were calculated with
L,=5x10"" m/(Pas), neg = 7 x 1072 Pas and RT'c* = 0.5 MPa, the highest value of
the osmotic pressure consistent with our findings in Fig.

We further note that at the optimum radius, the characteristic transit time ¢ scales
as to(a.) x l;l/ 3 (cf. Eq. (68)) in contrast to the non-optimized result ¢y o I3 found by
Thompson and Holbrook in [79]. Tall trees may therefore have significantly shorter osmotic
transit times than previously believed. For Sabal palmetto, we thus find from Eq. (6.6]) that
to(ac) ~ 31 h, while for Robinia pseudoaccacia to(a.) = 516 h. The very large to found
for Robinia pseudoaccacia may reflect the fact that we have chosen the size of the leaflets,
which are about 3 cm long, and not the size of the compound leaf which can grow up to,
say, 25 cm in length. With lo = 25 cm we find that ¢y(a.) ~ 126 h which still a significant
amount of time.

From these observations it is still an open question whether the osmotic pumping is
sufficient to account for phloem translocation in tall trees. More experimental data, and in
particular velocity measurements made in tall trees correlated with measurements of leaf
and stem sizes, is needed.

6.6 Conclusion

In this chapter we have applied the results of the 3-zone model introduced in Chapter
to translocation in the phloem. We have shown that the model is a fair description of the
processes that occur in plants by comparing experimental velocity data to the results of
the model with good results. An interesting prediction of the model is that the osmotic
pumping mechanism has a maximum in translocation velocity for a special, optimal, value
of the phloem sieve tube radius a.. The expression for a. has the form of an allometric
scaling law

aa == GLpnefflll2- (616)
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Table 6.1: Experimental data for phloem sieve tube radius a, leaf size [;, stem length
lo and flow velocity uexp. The uncertainties indicate standard errors on measurements.
Data from [29], see Appendix [El The measurement technique used to obtain the velocity
values is discussed in said paper. Measurement (7-9) were made after the submission of
the manuscript and are not included in [29].

No. Species a [pum)| ly [m] 1 [m] Uexp [HM/S]
1 Glycine max 3.7+£1.0 0.404+0.08 0.10+0.02 145 + 46
2 Tradascantia virginiana 1.2+04 0.104+0.02 0.0204+0.004 4.13+1.64
3 Cucumis sativus 6.3+14 0.60£0.12 0.10£0.02 149 £+ 54
4 Cucurbita mazima 12.3+2.7 4.0+£0.8 0.20+£0.04 62.9+484
5  Cucurbita mazima 16.6 2.6 4.0£0.8 0.20 £+ 0.04 48.2 +£29.3
6 Solanum lycopersicum 52+0.8 0.40+0.08 0.10+0.02 162 4+ 48
7 Populus balsamifera 1.8+ 0.8 1.0+0.5 0.10 £ 0.01 37.7+24.5
8  Gnetum gnemon 214+006 1.0£0.5 0.10 £0.01 19.1+£6.9
9  Gossypium hirstum 1.54+0.3 1.0£0.5 0.10 £ 0.01 9.62 +4.70

The scaling exponent « has been determined from a statistical analysis of experimental
data from 19 plant species by least squares regression ajs = 2.58 + 0.25 and least squares
cubic regression ajsc = 3.32 + 0.37. Both values are close to the exponent o = 3 derived
under the assumption that the translocation velocity is at a maximum. This analysis thus
provides a general scaling law for phloem dimensions that maximizes the translocation
velocity, suggesting that evolutionary selection on efficacy of sugar transport and signal
transduction has shaped the structure and function of this transport pathway. This is a
remarkable result, since it relates structures in plants spanning up to 10 orders of magnitude
in size from the length of the stem ls, measured in meters, to the size of the pores in the
membrane, measured in nanometers, through the length L,neq.
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Table 6.2: Experimental data for phloem sieve tube radius a, leaf size [ and stem size

lo. The uncertainties indicate standard errors on measurements.

Data from [29], see

Appendix [E
No. Species a [pm]| ly m] 1 [m]

1 Beta vulgaris 50£1.0 0.3+£0.06 0.10 £ 0.02

2 Yucca flaccida 10.0+£2.0 1.04+0.2 0.5+0.1

3 Sabal palmetto 16.5 £ 1.7 204 0.5£0.1

4 Tilia americana 15.0 £ 1.5 20+4 0.10 £ 0.02

5 Robinia pseudoaccacia 10.0 £ 1.0 40 £ 8 0.030 £ 0.006

6 Vitis vinifera 18.0 +£ 4.0 20+ 4 0.10 £ 0.02

7 Gossypium bardadense 11.0£+£2.2 15£0.3 0.15+ 0.03

8  Pinus strobus 10.9+1.0 20+4 0.10 £ 0.02

9 Festuca arundinacea 3.0+06 030+£0.06 0.05£0.01
10 Cucurbita malepo 40.0+80 7.0+14 0.30 4+ 0.06
11 Glycine mazx 3710 040+£0.08 0.10+£0.02
12 Tradascantia virginiana 1.2+04 0.104+0.02 0.020 4+ 0.004
13 Cucumis sativus 6.3+14 060+0.12 0.10£0.02
14 Cucurbita mazima 12.3+£2.7 4.0%£038 0.20 £+ 0.04
15 Cucurbita mazxima 16.6 £2.6 4.0+0.8 0.20 +£0.04
16 Solanum lycopersicum 52+£08 0.40+0.08 0.10%0.02
17 Anacyclus purethrum 21+£06 0.30+0.06 0.010 =+ 0.002
18  Ecbalium elaterium 15.0£3.0 3.0£0.6 0.20 £+ 0.04
19  FEragostis plana 3.0+£0.6 0.2+£0.04 0.10 £ 0.02
20 Heracleum mantegazzianum 9.0+ 1.8 2.0£04 0.20 £ 0.04




Chapter 7

Microfluidic experiments

Throughout the PhD project, the author has found great sources of inspiration and insight
in the experiments conducted by Miinch, Eschrich et al., and Lang discussed in Sec. 2.4]
p- Realizing, however, the fundamental shortcoming of these experiments — that they
were conducted at length scales far from those found in plants — prompted the author and
advisors Henrik Bruus and Tomas Bohr to conduct experiments aimed at using channel
dimension that approached those found in the plants.

The following paper, [28], presented unabridged in Sec. 7.1-7.8 describes our experimen-
tal study of osmotically driven flows in microfluidic channels separated by a semipermeable
membrane. To stay true to the original manuscript the notation in the present chapter
differs slightly from that found in Chapters 1-6. Please refer to Table 7.1, p. @11 for a
list of symbols. The design, fabrication and testing of the microfluidic devices was carried
out by the author at the Technical University of Denmark. The experiments and part of
the theoretical analysis was conducted at Harvard University in collaboration with Jinkee
Lee during a visit in the lab of Noel Michele Holbrook. See further acknowledgements in
Sec. 7.8.

While it is difficult to determine the long-term impact of the results presented, the
paper has been well recieved in the plant vascular biology community. Knoblauch and
Peters [37] writes that

Phloem-inspired artificial microfluidics systems such as that of Jensen et al.
(2009) provide an extremely powerful approach to the empirical testing of
mathematical and other hypotheses of phloem transport. To date, the plant
transport community has not yet connected to the engineers in the lab-on-a-
chip field, but we expect that in the near future, “micro-Miinch-models” will
influence the way we think about the phloem on the conceptual level in a similar
way as Miinch’s original models did 80 years ago. ([36], p. 1442)

and ends their paper by stating that

We expect that over the next decade or so, artificial microfluidics systems,
designed as structural analogs of natural sieve tubes (Jensen et al. 2009), will
mature into indispensible and versatile tools in our efforts to make the phloem
less of a miracle and more of a mechanism. ([36], p. 1448)

7
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Start of paper

K. H. Jensen, J. Lee, T. Bohr and H. Bruus
Osmotically driven flows in microchannels separated by a semipermeable membrane
Lab on a Chip 9(14), pp. 2093-2099 (2009)

7.1 Abstract

We have fabricated lab-on-a-chip systems with microchannels separated by integrated
membranes allowing for osmotically driven microflows. We have investigated these flows
experimentally by studying the dynamics and structure of the front of a sugar solution
traveling in 200 pm wide and 50 — 200 um deep microchannels. We find that the sugar
front travels with constant speed, and that this speed is proportional to the concentration
of the sugar solution and inversely proportional to the depth of the channel. We propose a
theoretical model, which, in the limit of low axial flow resistance, predicts that the sugar
front indeed should travel with a constant velocity. The model also predicts an inverse
relationship between the depth of the channel and the speed, and a linear relation be-
tween the sugar concentration and the speed. We thus find good qualitative agreement
between the experimental results and the predictions of the model. Our motivation for
studying osmotically driven microflows is that they are believed to be responsible for the
translocation of sugar in plants through the phloem sieve element cells. Also, we sug-
gest that osmotic elements can act as on-chip integrated pumps with no movable parts in
lab-on-a-chip systems.

7.2 Introduction

Osmotically driven flows are believed to be responsible for the translocation of sugar in
plants, a process that takes place in the phloem sieve element cells [73]. These cells form
a micro-fluidic network which spans the entire length of the plant measuring from 10 um
in diameter in small plants to 100 pm in diameter in large trees [73]. The mechanism
driving these flows is believed to be the osmotic pressures that build up relative to the
neighboring water-filled tissue in response to loading and unloading of sugar into and
out of the phloem cells in different parts of the plant [73]. This mechanism, collectively
called the pressure-flow hypothesis, is much more efficient than diffusion, since the osmotic
pressure difference caused by a difference in sugar concentration creates a bulk flow directed
from large concentrations to small concentrations, in accordance with the basic needs of
the plant.

Experimental verification of flow rates in living plants is difficult [37], and the experi-
mental evidence from artificial systems backing the pressure-flow hypothesis is scarce and
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consists solely of results obtained with centimetric sized setups [16], 40, B30]. However,
many theoretical and numerical studies of the sugar translocation in plants have used the
pressure-flow hypothesis [79], 80, 24] with good results. To verify that these results are in-
deed valid, we believe that it is of fundamental importance to conduct a systematic survey
of osmotically driven flows at the micrometer scale. Finally, osmotic flows in microchannels
can act as migration enhancers [I] or as microscale on-chip pumps with no movable parts.
Examples of previous off-chip osmotic pumps are the device developed by by Park et al. [55]
and the osmotic pills developed by Shire Laboratories and pioneered by F. Theeuwes [76].
Also, there is a direct analogy between osmotically driven flows powered by concentration
gradients, and electroosmotically driven flows in electrolytes [9], [19] powered by electrical
potential gradients.

7.3 Experimental setup

7.3.1 Chip design and fabrication

To study osmotically driven flows in microchannels, we have designed and fabricated a
microfluidic system consisting of two layers of 1.5 mm thick polymethyl methacrylate
(PMMA) separated by a semipermeable membrane (Spectra/Por Biotech Cellulose Ester
dialysis membrane, MWCO 3.5 kDa, thickness ~ 40 um), as sketched in Fig. B2(a)-(d).
Channels of length 27 mm, width 200 ym and depth 50 — 200 yum were milled in the two
PMMA layers by use of a MiniMill /Pro3 milling machine [I8, [IT]. The top channel contains
partly the sugar solution, and partly pure water, while the bottom channel always contains
only pure water. To facilitate the production of a steep concentration gradient by cross-
flows, a 200 um wide cross-channel was milled in the upper PMMA layer perpendicular
to and bi-secting the main channel. Inlets were produced by drilling 800 pum diameter
holes through the wafer and inserting brass tubes into these. By removing the surrounding
material, the channel walls in both the top and bottom layers acquired a height of 100 um
and a width of 150 ym. After assembly, the two PMMA layers were positioned such that
the main channels in either layer were facing each other. Thus, when clamping the two
layers together using two 30 mm paper clamps, the membrane acted as a seal, stopping
any undesired leaks from the channels as long as the applied pressure did not exceed
approximately 1 bar.

7.3.2 Measurement setup and procedures

In our setup, the osmotic pressure pushes water from the lower channel, through the
membrane, and into the sugar-rich part of the upper channel. This displaces the solution
along the upper channel thus generating a flow there, as shown in Fig. To measure
this flow inside the upper channel, particle and dye tracking were used. In both cases inlets
1,2, 3 and 5 (see Fig. [R2]) were connected via silicone tubing (inner diameter 0.5 mm) to
disposable syringes. Syringes 2, 3 and 5 was filled with demineralised water and syringe 1
was filled with a solution of sugar (sucrose or dextran (mol. weight: 17.5 kDa, Sigma-
Aldrigde, type D4624)) and 5 % volume red dye (Flachsmann Scandinavia, Red Fruit
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Figure 7.1: (a) Picture of the top part (upside down) of the chip showing the elevated
channel and the four brass inlet tubes (pointing down). The crosses in the four corners were
used for alignment. (b) Schematics of the two PMMA layers (gray) showing the elevated
channels (white) facing each other. All six inlet positions (black dots) are marked, but
for clarity only two brass tubes are shown. (c) Picture of the fully assembled setup. (d)
Schematic cross-section closeup of the two PMMA layers (gray) clamped together with the
semipermeable membrane (dark gray) in between. The sugar in the upper channel (black
dots) and the water influx J from the lower channel (arrow) are also marked. (el)-(e4)
Valve settings (circles) and cross-flow flushing procedure (arrows) for creating a sharp front
in the top channel between the sugar/dye solution (dark gray) and the pure water (white).
See details in the text.
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Figure 7.2: A sketch of the osmotically driven flow. The osmotic pressure forces water from
the lower channel, through the membrane, and into the sugar-rich part (light gray region)
of the upper channel. The water flux J (curved arrows), which pushes the sugar front
forward, is related to the sugar concentration by Eq. (Z3). The resulting flow velocity u
is represented by the thick horizontal arrows.

Dye, type 123000) in the dye tracking experiments and 0.05 % volume sulfate modified
1 pm polystyrene beads (Sigma Aldrigde, L9650-1ML, density 1050kg/m?) in the particle
tracking experiments. Inlets 4 and 6 were connected to the same water bath to minimize
the hydrostatic pressure difference between the two sides of the membrane. The liquid
height in the water bath was carefully aligned to the top channel to avoid any difference in
liquid height that might have resulted in a flow in the opposite direction. When conducting
both dye tracking and particle tracking experiments, the initialization procedure shown in
Fig. B2(el)-(e4) was used: First (el), inlet valves 1, 2 and 3 were opened and all channels
were flushed thoroughly with pure water (white) to remove any air bubbles and other
impurities. Second (e2), after closing inlets 2 and 3 a sugar solution (dark gray) was
injected through inlet 1 filling the main channel in the upper layer. Third (e3), inlet 1 was
closed and water was carefully pumped through inlet 2 to produce a sharp concentration
front at the cross, as shown in Fig. B2(e4) and [T3(b).

Sugar front motion recorded by dye tracking

The motion of the sugar front in the upper channel was recorded by taking pictures of
the channel in 10 s intervals using a Leica MZ 16 microscope. This yielded images as
those displayed in Fig.[.3](a), clearly showing a front (marked by arrows) of the sugar/dye
solution moving along the channel. To obtain the position A(t) of the sugar front as a
function of time ¢, the distance from the initial front position Ay to the current position
A(t) was measured using Image]J software. The position of the sugar front was taken to be
at the end of the highly saturated dark region. In this way, the position of the front could
be measured at each time step with an accuracy of +£200 pm. As verified in earlier works
[16] 30], we assumed that the sugar and dye traveled together, which is reasonable since
the Péclet number is Pé ~ 10 (see Section [(.5]). Experiments with dye alone were carried
out. These showed, that the osmotic pumping due to the dye molecules was negligible. We
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Figure 7.3: (a): Images showing the sugar front moving in the 200 ymx200 gm channel.
The time between each image is 50 s. The arrows indicate the position of the sugar front
as it moves down along the channel. (b): Closeup of the cross junction just after a sharp
sugar /water interface has been created.

only applied the dye tracking method on the 200 pm deep channel, since the 100 ym and
50 pm deep channels were too shallow for sufficient scattering of red light by the solution
to get a clear view of the front.

Sugar front motion recorded by use of particle tracking

The flow velocity inside the upper channel was recorded by tracking the motion of 1 um
beads in the water 3 mm ahead of the initial sugar front position. Images were recorded
every 200— 1000 ms for up to 400 s using a Unibrain Fire-i400 1394 digital camera attached
to a Nikon Diaphot microscope with the focal plane at h/2 and a focal depth of approxi-
mately 10 pm. Sedimentation times for the particles were 1800 s for the 200 ym channel
and 450 s for the 50 pum channel. Since only the first 150 s were used when determining the
front velocity, this did not interfere with our measurements. At the point of observation,
well ahead of the front, the flow behaved as if it were pressure driven (see the insert in
Fig.[[5]) and the standard laminar flow profile [10] was used to determine the average flow
velocity.
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7.4 Experimental results

7.4.1 Dye tracking

Figure [[4] shows the position of the sugar front in the 200 ym deep channel as a function
of time obtained by dye tracking. The data sets correspond to different concentrations
of sucrose and dextran as indicated in the legends. Initially, the sugar front moves with
constant speed, but then it gradually decreases, more so for low than high concentrations.
The solid black lines are linear fits for the first 100 s giving the initial velocity of the
front. As a function of time the front smears out over a region of growing width w;. In
Fig. [[4l(c) wy is plotted vs. time for the 10.1 mM dextran experiment along with a fit to
wy = (2Dt)1/ 2 showing that the sugar front broadens by molecular diffusion. Here, D is
the molecular diffusion constant.

7.4.2 Particle tracking

Figure shows the velocity as a function of time obtained by particle tracking in a
200 yum x 200 pm channel. For the first 150 s the velocity is approximately constant after
which it starts decreasing as the sugar front passes the point of observation. We interpret
the mean value of the initial plateau of the velocity graph as the speed of the sugar
front. Figs. [[.6]a) and (b) shows the velocity of the sugar front as a function of dextran
concentration and of channel depth obtained in this way.

7.5 Theoretical analysis

When modeling the flow inside the channel, we use an approach similar to that of Eschrich
et al. [16]. They introduced a 1D model with no axial flow resistance and zero diffusivity
in a setting very similar to ours. To formalize this, we consider the two most important
non-dimensional numbers in the experiments: the Miinch number M [30] and the Péclet
number P¢ [10]. These numbers characterize the ratio of axial to membrane flow resistance
and axially convective to diffusive fluxes respectively. In our experiments

_ wLLyaRTc nL2L,

1;’]—fILISc)zRTc h3

~ 1079, (7.1)

and wpu
Pé=——~10. 7.2
= (7.2
Here 7 is the viscosity (typically 1.5 mPas), wy is the width of the sugar front (typically
500 pm), and D the molecular diffusivity of sugar (typically 107!° m?s~! for sucrose and
the dye and 107! m2?s~! for dextran)

7.5.1 Equation of motion

Since M < 1 and Pe > 1, we shall neglect the axial flow resistance and the diffusion of
the sugar in our analysis. In this way, let A\(¢) denote the position of the sugar/dye front



84 Microfluidic Experiments

10 T I
(a) Sucrose 0.327 M
, 00.163 M
8| & %0110 M ||

0 | |
0 100 200 300 400
t [s]
10 T 7 I
(b) Dextran % (%304 mM
.// 015.2 mM
8- 4 x10.1 mM |

7 1 © Dextrafl i HH““.
§'5<,?HH f

| |
0 100 200 300 400

Figure 7.4: Measured position A of the sugar front as a function of time ¢ in the
200 pmx 200 pm channel for various concentrations of (a) sucrose and (b) dextran. The
solid black lines are linear fits for 0 s < ¢ < 100s. The dashed lines are fits to Eq. (ZI3).
(c) The width wy of the sugar front as a function of time for the 10.1 mM dextran ex-
periment. The dashed black line is a fit to (2Dt)1/2 with D = 1.7 x 1079 m?s™1, 5 times
larger than the value given in Tabel [[.Il This, however, is in good agreement with Taylor
dispersion theory [74), [42], since Pé~ 15.
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Figure 7.5: The average flow velocity w in the 200 ym deep channel as a function of time
t measured 3 mm ahead of the initial front position. At ¢, ~ 150s (indicated by the
arrow), the sugar front begins to reach the observation point, and the velocity decreases
rapidly. For t > t., the velocity was not determined accurately. The insert shows a typical
velocity profile U(y, h/2) in the center plane across the 200 umx200 ym channel obtained
by particle tracking. The solid black line is a fit to the velocity profile for a rectangular
channel used when obtaining the average flow velocity.

in the upper channel, and let V' denote the volume behind the front. The flux J of water
across the membrane from the lower to the upper channel, see Fig. B2(d), is given by

J =L, (Ap+ All) ~ L,aRTc, (7.3)

where L,, is the membrane permeability, Ap the hydrostatic and AII the osmotic pressure
difference across the membrane. In our experiments Ap = 0, and from the van 't Hoff
relation follows AIl ~ aRT'c, where « is the osmotic non-ideality coefficient, R is the gas
constant, T is the absolute temperature, and c is the concentration of sugar molecules.
Since the concentration is independent of x behind the front and zero ahead of it, J is also
independent of z. By the conservation of sugar this allows us to a first approximation to
write the concentration as

dﬁw:{%%TmSAg’ (7.4)

Moreover, the rate of change of the expanding volume V behind the front can be related
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Figure 7.6: Front velocity u obtained by particle tracking. (a) The velocity u plotted
against dextran concentration cy. The dashed lines are fits to ¢ provided as guides to the
eye. (b) The velocity u plotted against channel depth h. The dashed lines are fits to 1/h
provided as guides to the eye.

to J as

dv L
il w/o J(x)dx

Y At)
= wLpaRTco—O / dx
0

A(t)
= wAoLpaRTcy. (7.5)
However, we also have that
dv dA(t)
FTinar (7.6)
which implies together with Eq. (Z3) that
At) = X+ %LpaRTcot = Ao + ut, (7.7)
where the velocity u of the front is given by

u= %LP(XRTCO. (7.8)
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Figure 7.7: The time evolution of the sugar concentration profile given by Eq. (T4). The
gray regions represents the sugar lost from the observed region by diffusion, see Eq. (.9)).

7.5.2 Corrections to the equation of motion

In the previous section, we considered the motion of a sharp sugar front, as given by
the stepwise concentration profile in Eq. (7.4]), and found that this moved with constant
velocity. However, as can be seen in Fig. [[4la,b) the front velocity gradually decreases.
To explain this, we consider two effects. First, we observe that in Fig. [[.3|(a) there exists a
region of growing size separating the sugar/dye-filled region from the region of pure water.
Even though the sugar and the dye diffuse at different rates, we shall assume that some of
the sugar also lies ahead of the visible front. Since the sugar in this region is located ahead
of the front, the osmotic pumping in the observed volume behind the front is lowered, thus
slowing down the motion of the observed front. Second, we note that sugar leaking across
the membrane also lowers the osmotic pumping behind the front. This effect should be
especially pronounced for sucrose, since its molecular weight is smaller than the cut-off of
the membrane. Common to these two effects is, however, that they are driven by diffusion.
In the first case, sugar diffuses from the pumping region to a region ahead of the front
and in the second it diffuses across the membrane. The nature of these two effects makes
them impossible to distinguish from one another. Lumping them together as one diffusion
process characterized by an effective diffusion constant J, we may rewrite Eq. (7.4) as

g < A1),

oz, t) = { N (7.9)

0 x > A(t).

where £ = (26t)!/2. Here § is a fitting parameter which has the dimension of a diffusion
coefficient and which includes both of the effects mentioned above. In this way, the amount
of sugar lost from the observed volume by diffusion is Ac ~ ¢ (2675)1/ 2 as indicated in
Fig. [T

Using Egs. (0) and (6] the time derivative of A\ becomes

Q N LpOéRTCo)\O A
dt h A+Ulp

(7.10)
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where we have introduced the global Péclet number related to the loss of sugar by diffusion,

Rescaling using A = sAg and ¢t = 722, we get that

_ 2MjLp,aRTcy %u

Pé, o == (7.12)

Given the experimental conditions, Pé, is typically of the order 10! — 10%. Thus, for
1/2
<PL69> < 1, Eq. (CI1) can be solved by an expansion,

s:so+7<1—3i%<PTég>l/2+O[<PTég>D. (7.13)

We have made numerical simulations of the full 1-D coupled velocity-concentration equa-
tion system for the special case of diffusion ahead of the front. Our results show, that
the simple model in Eq. (ZI3]) captures the essential dynamics of the motion of the sugar
front. The dashed lines in Figs. [[4(a) and (b) are fits to Eq. (Z.I3]), with values of ¢
varying between 2 x 107" m?s~! and 4 x 1072 m?s™!, showing good qualitative agreement
between theory and experiment. However, since we have not tracked the sugars directly,
these cannot immediately be compared with the values for sucrose (D = 4.6 x 10710 m? /s)
and dextran (D = 7.0 x 107 m?/s). To completely resolve this issue, experiments with
eg. fluorescently tagged sugar molecules where the concentration on both sides of the
membrane is measured are needed.

7.6 Discussion

7.6.1 Comparison of theory and experiment

To compare the experimental data with theory, we have in Fig. [[.8 plotted the empirically
obtained velocities ucx, against those predicted by Eq. (Z.8). For nearly all the dextran and
sucrose experiments we see a good agreement between experiment and theory, although
Eq. (Z.8)) systematically overestimates the expected velocities.

We interpret the quantitative disagreement as an indication of a decreasing sugar con-
centration in the top channel due to diffusion of sugar into the membrane as well as the
presence of a low-concentration boundary layer near the membrane, a so-called unstirred

layer [58].
7.6.2 Osmotic pumps in lab-on-a-chip systems

Depending on the specific application, flows in lab-on-a-chip systems are conventionally
driven by either syringe pumps or by using more advanced techniques such as off-chip
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Figure 7.8: The experimental values of the front velocity uex;, plotted against the theoretical
results Utheory from Eq. (Z8).

osmotic pumps [55], electronically controlled pressure devices, electro-osmotic pumps [2],
evaporation pumps [54], or capillary pumps [8]. Most of these techniques involves the in-
tegration of either movable parts or complicated electronics into the lab-on-a-chip device.
As an application of our design and fabrication method, we suggest the use of integrated
osmotic pumps in lab-on-a-chip systems. This could be done by integrating in the device
a region where the channel is in contact through a membrane with a large reservoir con-
taining an osmotically active agent. By using a sufficiently large reservoir, say 1cm?, and
a 100 umx 100 pum channel with a flow rate of 100 um/s it would take more than 10 days to
reduce the reservoir concentration by 50% and thus decreasing the pumping rate by 50%.
We emphasize that such osmotic pumping would be completely steady, even at very low
flow rates.

7.7 Conclusions

We have studied osmotically driven, transient flows in 200 pym wide and 50 — 200 pum
deep microchannels separated by a semipermeable membrane integrated in a microfluidic
PMMA chip. These flows are generated by the influx of water from the lower channel
containing pure water, through the semipermeable membrane, into the large sugar con-
centration placed in one end of the top channel. We have observed that the sugar front
in the top channel travels with constant speed, and that this speed is proportional to the
concentration of the sugar solution and inversely proportional to the depth of the channel.
We propose a theoretical model, which, in the limit of low axial flow resistance, predicts
that the sugar front should travel with a constant velocity. The model also predicts an
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inverse relationship between the depth of the channel and the speed and a linear relation
between the sugar concentration and the speed. We compare theory and experiment with
good qualitative agreement, although the detailed mechanism behind the deceleration of
the flow is still unknown. Finally, we suggest that on-chip osmotic elements can potentially
act as pumps with no movable parts in lab-on-a-chip systems.
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Table 7.1: List of parameters in alphabetic order after the symbol.

Parameter Symbol Value and/or unit
Sugar concentration c mol /L

Initial concentration o mol /L

Diffusive concentration loss Ac mol /L

Diffusion constant m? /s

Sucrose, see Ref. [4]
Dextran, see Ref. [30]
Dye, see Ref. [4]
Height of channel
Height of reservoir
Flux across membrane
Length of channel
Membrane permeability
Diffusion length
Miinch number
Hydrostatic pressure
Péclet number, local
Péclet number, global
Gas constant
Position of sugar front
Absolute temperature
Time
x-velocity of sugar front
Mean z-velocity of sugar front
Volume behind sugar front
Width of channel
Width of sugar front
Cartesian coordinates
Osmotic coefficients:
Dextran (7' = 293K)
Sucrose (T = 293K)
Fitting parameter
Viscosity
Position of sugar front
Position of initial sugar front
Osmotic pressure

8

Es <= Qw*ﬂm:ggg;gﬁ SISV ECECECES

=

HS >3 o2 9

z

4.6 x 10710 m? /s
7.0 x 1071t m? /s
3.4 x 10719 m?/s
50,100, 200 pym
200 pm

m/s

27 mm

1.8 pm/(Pas)

m

Pa

8310 Pa L/ (K mol)

K

s

m/s
m/s
m3

200 pm
m

m

41, see Ref. [30]
1, see Ref. [47]
m? /s

Pas

m

13.5 mm

Pa
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Chapter 8

Self-consistent unstirred layers in
osmotically driven flows

The one-dimensional equations of motion analyzed in Chapters where derived under
the assumption that the concentration is well-mixed across the cross-section of the tube.
This approximation is valid if the radial transport of solute molecules due to diffusion is
much faster than the transport due to advection. To quantify exactly when this condition
is fulfilled, one generally needs to solve the coupled concentration-osmotic flow problem.
Since this question is relevant to a number of industrial membrane transport problems
(such as desalination) it has been analyzed by a number of workers. One of the main
contributors is T. J. Pedley who in a series of papers published in the late 1970s and early
1980s solved the coupled problem in a number different geometries [59} [60, 56, 57, 58]. His
solutions quantify to what degree the solution is well-mixed, but only in situations where
the osmotic flow across the membrane is a small perturbation to a much larger, externally
driven, bulk velocity component. This situation is relevant to many industrial application,
where e.g. an external stirring mechanism is present, but not to plants where osmosis itself
drives the bulk flow.

The author, Tomas Bohr, and Henrik Bruus thus decided to look for analytical solutions
of the self-consistent problem i.e. the problem where osmosis itself is driving the bulk flow.
We studied the flow between parallel plates because the flow field was already known in
the literature, and thus allowed for a simple analysis of the concentration part of problem.
This change in geometry, of course, makes the applicability of our results to plants difficult
to access. However, since we show that all geometries behave nearly the same under a
proper rescaling, we believe that the low value of the radial Péclet number found in plants
(Pe ~ 0.01, cf. Eq. (3.49), p. 26) implies that the concentration is well mixed across the
tube cross-section.

The following paper, [27], presented unabridged in Sec. 8.1-8.7, describes our theoretical
analysis of parallel plate problem. The author conducted all of the numerical simulations
and most of the theoretical analysis. To stay true to the published manuscript the notation
differs slightly from that found in Chapters IH6l Please refer to Table B p.[I08] for a list
of parameters.

93
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Start of paper

K. H. Jensen, T. Bohr and H. Bruus
Self-consistent unstirred layers in osmotically driven flows
Journal of Fluid Mechanics 662, pp. 197-208 (2010)

8.1 Abstract

It has long been recognized, that the osmotic transport characteristics of membranes may
be strongly influenced by the presence of unstirred concentration boundary layers adjacent
to the membrane. Previous experimental as well as theoretical works have mainly focused
on the case where the solutions on both sides of the membrane remain well-mixed due
to an external stirring mechanism. We investigate the effects of concentration boundary
layers on the efficiency of osmotic pumping processes in the absence of external stirring
i.e. when all advection is provided by the osmosis itself. This case is relevant in the
study of intracellular flows, e.g. in plants. For such systems, we show that no well-defined
boundary layer thickness exists and that the reduction in concentration can be estimated
by a surprisingly simple mathematical relation across a wide range of geometries and Péclet
numbers. Osmosis, boundary layers, biological flows.

8.2 Introduction

Osmotic transport characteristics of membranes are strongly influenced by the presence of
unstirred concentration boundary layers adjacent to the membrane [58]. As first demon-
strated by Dainty [15], these boundary layers lead to a decrease in the efficiency of the
osmotic pumping process. To see this, consider an ideal semipermeable membrane (i.e. a
membrane permeable to solvent molecules but impermeable to solute molecules) separat-
ing two solutions of the same solute at different bulk concentrations, say zero and unity,
as shown in Fig. Bla). If there were no transport of solvent across the membrane, these
concentrations would persist all the way to the membrane. However, if there is a flux J
of solvent due to osmosis across the membrane from the region of low concentration (say
the left side) to the region of high concentration, the solutes will be pushed away from the
membrane on the high-concentration side of the membrane. As a result, the concentration
of solute in the vicinity of the membrane on the high-concentration side will be lower. The
concentration difference between the two sides of the membrane is thus decreased, and this
in turn reduces the magnitude of the osmotically driven flux J, which in the absence of
hydrostatic pressure differences across the membrane is given by

J =7, (8.1)
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Figure 8.1: (a) Sketch of solute concentration distributions on either side of a semiperme-
able membrane separating two well-stirred solutions of the same solute at different bulk
concentrations ¢ = 0 (left side) and ¢ = 1 (right side). Because of the transport of solvent
across the membrane due to osmosis (sketched by the arrows) from left to right, there will
be a tendency for the concentration 7 of solute in contact with the membrane to be lower
than unity just on the right side of the membrane. Since the flux of solvent J is propor-
tional to the difference in concentration, we have that J = ~. (b) Numerically computed
membrane concentration vy as a function of the Péclet number Pe for the parallel plate
geometry (circles) shown in Fig.[R2(a). Also shown are the expressions given by Eq. (810)
(solid) and Eq. (81I7) (dashed). See Sec. 3 for details.
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according to the standard equations of non-equilibrium thermodynamics [39]. Here, J is
the volume flux pr. area pr. unit time, - is the solute concentration immediately to the
right (high concentration side) of the membrane, and both quantities are non-dimensional
as described in Sec. B3l

A large number of papers has presented both experiments (see e.g. [62]) and theory (see
e.g. [59, 56, 57, 58] and [3]) for the situation described above. Most of these workers have
focused on the case where the solution on both sides of the membrane remain well-stirred
such that a well defined boundary layer exists. For a number of different geometries, the
thickness of the boundary layer has been determined as a function of systems parameters
and the functional dependence on the osmotic pumping efficiency v has be found.

A major limitation of the above theoretical and experimental work is, however, that
it is concerned only with situations in which the solutions on both sides of the membrane
remain well-mixed due to an external stirring mechanism. In nearly all cases, it is assumed
that the flow generated by osmosis through Eq. (81) is negligible in determining the bulk
flow, and only of significance close to the membrane.

The goal of the present work is to examine theoretically the situation in which the
advecting bulk flow is itself driven by Eq. (8] and no external stirring is present. An
important example, the one that inspired this work, is the flow in phloem cells of plants,
where the osmotic pressure differences are believed to be responsible for the flow of the
sugar solutions (the so-called Miinch mechanism, see e.g. [79], [30]). In the present paper,
we compute the concentration and flow profiles for various simple geometries. For these
systems, we will show that no localized boundary layer exists, and second that the drop in
concentration v can be calculated by a simple mathematical relation valid across a wide
range of geometries and Péclet numbers.

8.3 Governing equations and geometries

In the analysis of the problem describe above, we shall consider steady osmotically driven
flows confined between two infinite parallel plates at low Reynolds numbers. We thus con-
sider systems such as those sketched in Fig. B2(a)-(c), and explained further in Sec. 83.3]
in which a solute of concentration c is diffusing and being advected by a velocity field u,
arising due to an osmotic flow across a membrane (indicated by dashed lines).

8.3.1 Non-dimensional variables

To simplify the mathematical expressions we are using non-dimensional variables through-
out this paper. The explicit scalings are: Lengths are given by the plate-to-plate distance
h, concentrations are in units of the characteristic concentration cg, velocities are given
by the characteristic osmotic velocity ug = L,RT'co, where L, is the permeability of the
membrane, R is the molar gas constant, and 7' is the absolute temperature. Moreover,
pressure is given in terms of shear-stress pressure pg = nug/h.

The Reynolds number is given by Re = puph/n < 1, so we treat only Stokes flow in
this paper. The Péclet number is given by Pe = ugh/D, where D is the diffusivity of the
solute. In most cases we assume that Re < 1 while Pe is finite which implies that the
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Schmidt number Sc = piD is very large. This is consistent with the situation in plants
cells, where the Schmidt number is of order 10%.

8.3.2 Steady state equations of motion - Stokes flow

The equations of motion governing the velocity field u = (u,v) and pressure field p are the
Stokes equation and the continuity equation

Vp = V?u, (8.2)
V.u=0. (8.3)

The equation governing the concentration field is
L oo
-Ve=—V-c 8.4
u-Ve PeV c (8.4)

The velocity boundary condition at the membrane interface €2, is that the normal velocity
component n-u is given by

n-u(z,y) =c(x,y), for (z,y) € Q. (8.5)

The concentration boundary condition is that the normal component of the solute flux
across the membrane must be zero, ie.

1
P—n-Vc(x,y) —}—n-u(m,y)c(x,y) = 0? for (x’y) € . (86)
e
Solutions to Eqns. ([82)-(8.0]) for arbitrary geometries are not readily available. Thus in
Sec. B4l we study full numerical solutions to our problem, and from the observed behavior
of these we establish and verify approximate analytical solutions in Sec. B3l

8.3.3 Geometries

We consider the three geometries shown in Fig. Outside the indicated membranes a
solution of concentration ¢ = 0 is present. First, in (a), left-right symmetric flow between
two parallel plates separated a non-dimensional distance of 1 is analyzed. At the the upper
plate, a source region of length 2/, is kept at a constant concentration ¢ = 1. On the lower
plate, facing the constant concentration zone, is a membrane (indicated by the dashed line)
also of length 2¢,,. Second, in (b), up-down symmetric flow between two parallel plates
(separated by a distance 1) with a solid-wall source region (¢ = 1) at a right angle to the
membrane is considered. The length of the membrane zone is 65,5), and the distance from
the source region to the membrane region is H. Finally, in (c), left-right and up-down
symmetric flow around a solid cylinder of radius r is embedded exactly half way between
two plates (separated by a distance 1) is considered. At the surface of the cylinder is a

)

source region (¢ = 1). The length of the membrane zone is 6&2 . At the cylinder surface we
impose a no-slip boundary condition.
In the following, we will investigate geometry (a) analytically and numerically, while

geometries (b) and (c) will only be considered numerically.
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Figure 8.2: Sketch of the geometries considered. (a) Flow between parallel plates. On the
upper plate, a region is kept at a constant concentration ¢ = 1. On the lower plate, facing
the constant concentration zone at distance H = 1, is a membrane of length 2¢,, in this
case plotted for ¢,, = 1. By osmosis, liquid flows across the membrane, thereby diluting
the concentration near the membrane. (b) Flow between parallel plates with a membrane
of length 65,?) = 2 at a right angle to the concentration source. The distance between the
two zones are H = 2. (c) A cylinder of radius r = i, embedded exactly half way between
the two plates. At the surface of the cylinder the concentration is kept constant at ¢ = 1.
The length of the membrane zone is ) =2and H = 1. In (a)-(c), numerically computed
concentration contours (see (d)) are shown (Plotted for Pe’ = 10, see Sec. 5). The velocity
field is indicated by the arrows. (d) Contour scale bar for the concentration contour plots

in (a)-(c).
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8.4 Numerical results for the left-right symmetric parallel
plate problem

The steady-state behavior of the systems shown in Fig. was solved using the numerical
methods described in Appendix B8 The figure shows typical concentration and velocity
profiles obtained in this way. Varying the Péclet number Pe, a number of such simulations
were made and the following qualitative observations were made.

In geometry (a), for Pe < 1, the concentration in the membrane zone (0 < z < fy,)
hardly varies at all along the x-direction, and the variation along the y-direction is linear.
This is illustrated in Fig. R3]l which shows cross-sections taken along the y-direction at four
different = values. For x > ¢, the concentration is flat, having been smoothed by diffusion.
Near x = ¢, a transition takes place between the linear concentration gradient and the flat
concentration plateau near the outlet. This is illustrated in Fig. B4 where cross-sections
taken along the x direction are shown.

To quantify the efficiency of the osmotic pumping process, we calculate the mean con-
centration at the membrane v as a function of the Péclet number Pe, plotted in Fig. BII(b).
For small values of Pe, v tends to the inlet concentration ¢ = 1. This is reasonable since
any depletion of the membrane concentration would be counteracted by the strong diffu-
sion. For larger values of Pe, equilibrium between diffusive and advective forces leads to
values of v < 1 thus reducing the efficiency of the osmotic pump.

One further observation is, that as shown in Fig. B3| (e)-(f), the velocity field u = (u, v)
is well described by a squeeze flow [10)]

u(z,y) = 6zy(l —y)v, (8.7a)

v(z,y) = y*(2y — 3)7. (8.7b)

Despite of the richness found in the numerical solutions illustrated in Figs. B2 R3],
R4l and BII(b), the system can be described theoretically using a few simple assumptions
regarding the flow and velocity field at very low Péclet numbers. From there, the solutions
can be extended using perturbation methods to be valid across a wider range of parameter
values.

8.5 Theory for the left-right symmetric parallel plate prob-
lem

Inspired by the qualitative results discussed above, we will begin by modeling the concen-
tration profile of Fig. 82l(a) using that for Pe < 1 concentration profile is linear in the
membrane zone. Near the outlet, the concentration profile is flattened by diffusion and the
resulting concentration value is simply the mean of the values at the source region and at
the membrane:

1—(1—=7)y, forz<ly,

clw,y) = { %(1 +7), for x > fy,. (8.8)
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Figure 8.3: (a)-(d) Numerically computed concentration profiles ¢ (circles) plotted against
y for different values of z (as indicated above the plots) and the Péclet number Pe (as
indicated next to the data points). All plots were obtained for the geometry in Fig. [8.2(a)
with ¢, = 1. Also shown are the expressions given by Eq. (B8] (solid lines) and Eq. (816)
(dashed lines). (f)-(e) Numerically computed velocity profiles uy (circles) and vy (dots)
plotted against y for different values of the Péclet number Pe (as indicated next to the
data points). Also shown are the velocity profiles given by Eqns. (87al) and (8.7D]) for u
and v respectively The solid lines are plotted with 7 obtained from Eq. (8I0) while the
dashed lines uses v(!) from Eq. (8I7).
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Figure 8.4: Numerically computed concentration profiles ¢ (circles) plotted against x for
different values of y (as indicated next to the plots) and the Péclet number Pe (as indicated
above the plots). All plots were obtained with ¢;;, = 1. Also shown is the expressions given
by the solution to Eq. (8I8]) (solid lines).

To estimate the concentration at the membrane v we use the boundary condition (8.4,

1
anc = —’)’2. (89)
With Eq. (88) this leads to
VvV144Pe—1
7:__%E£__’ (8.10)
e

an expression which does not, except for the length scale h in the Péclet number, depend
on the specific geometry. Fig. BIl(b) shows the numerical results compared with Eqns.

(B8] and (B10).

8.5.1 A detailed look at the concentration profile for =z < /,,

For Pe > 1, the assumption of a linear concentration profile given in Eq. (88) is no longer
valid. To determine a more accurate concentration distribution in the membrane zone we
consider the equation governing the concentration field

O2c+ Ojc = Pe(udyc + vdyc). (8.11)

Starting with the result from Eq. (8.8]), we will expand the solution of Eq. (8.I1]) in powers
of Pe as ¢ = ¢ + Pec) 4 Pe?c® 4 . with

O =1—(1-7)y. (8.12)
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To first order in Pe the governing equation becomes
9%V 4 820(1) = 0y + 08,9 (8.13)

The boundary conditions are that ¢ = 1 on the top boundary and that ¢ = v on the
membrane. We will assume that the terms 92¢™") and ud,c(®) are small compared to (950(1)

and vﬁyc(o). We further use, that the velocity field u = (u,v) can be described by a squeeze
flow. Inserting ¢(©, we get that

0y = 09, = yy? (2 —3) [ - (1 — )]
= —ay?(2y - 3), (8.14a)
where a = (1 — ). Finally, ¢(!) becomes

o
M = =T (29° — 5y* + 3y) . (8.15)
Thus, to first order in Pe, the concentration distribution is
aPe
clw,y) =1 -1 =7y — =5 (25" = 5y" +3y). (8.16)

The corresponding correction to ~ calculated from the membrane boundary condition in

Eq. (B9) is

%P@Q%—%Pe—}—l—l—%Pe
13 ’
1—0P€

which is shown as the dashed line in Fig.BI(b) To compare Eqns. (816) and (8I7) with our

numerical simulations, Fig. B3] shows numerically obtained concentration profiles plotted
as a function of y along with Eq. (8I6]) for x = 0, 0.25, 0.5 and = = 1.

1 =

v (8.17)

8.5.2 A detailed look at the concentration profile for = > /7,

For x > ¢, we shall assume, that the flow is parallel to the z-axis, such that the equation
of motion is now

D2+ Bjc = Pe u0d,c, (8.18)

where u is a now parabolic velocity profile u = 6yy(1 — y)¢, and v = 0. As ¢ is even in
y we expand it in a cosine-series ¢(z,y) = ¢ + >y cn(z) cos(nmy) and the equation for
the coefficients ¢, (z) has the form 82¢,, —n’n?c, — > oo_; A"™0,cp, = 0, where the matrix
elements A™" are given in Appendix[R9l Truncating to the lowest two orders (n,m =1, 2)
we search for the exponentially decaying solutions ¢;(z) = ¢ exp(\;z) satisfying

(A2 — AN —7?)(\3 — A%2\y — 47?) =0, (8.19)

with negative values of A\; and A;. The most important eigenvalue is the one with the
smallest absolute value since it will determine the asymptotic decay. It seems likely that
this eigenvalue is associated to the lowest modes and thus it should be given as

s 1

A=

<A11 — /(AT ¢ 4772) . (8.20)
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In the limit Pe < 1, we find that A* ~ —z. Taking the first order result (8I7), we find

Pey(M) — 20/7 for Pe > 1, which implies that A = 2—70€m (1 —3/m?). As long as {p, is

not too large (i.e. when A < 27) we once again obtain \* ~ —x. If on the other hand
AY > 21 we find that A\* — 77%4,,/(20(72 — 3)) ~ —4.96(y,.

For ¢,, = 1 and Pe = (0.1, 1,10, 100) we find numerically among the first 10 eigenvalues

N = (—3.11,-2.93,-2.47, —1.88) while Eq. (820), with Eq. (817) used for calculating

v, gives \* = (=3.11, —2.95, —2.58, —2.38), only differing significantly at the fourth eigen-
value.

8.6 Results from other geometries

To test the validity of Eq. (RI0) for geometries other than Fig. B2|(a), for which it was
originally derived, we show in Fig. numerically obtained values of the mean membrane
concentration vy plotted against Pe for the geometries found in Fig. (b) and (c). In
Fig. B3la) vy is plotted against the usual Péclet number while in (b) it is plotted against
the rescaled Péclet number

N Hhuo

p /
& D s

(8.21)

where H is the minimum distance between the membrane and the constant concentration
zone in units of the plate-to-plate distance h, as indicated in Fig. (b) and (c). As
is clearly seen, the data collapse is significant when using Pe’. The result obtained in
Eq. (8I7), while only valid for geometry (a), is shown for comparison.

The fact the data collapse even for geometry (b) is surprising, since there the gradient
from the source region to the membrane region is along the z-direction and therefore
Eqns. (84)-(&6]), which even to lowest order in Pe constitute a highly nonlinear problem,
do not directly reduce to Eq. B9l We interpret the data collapse as being due to the fact
that the concentration gradient in the x-direction induces a gradient of equal size in a
direction normal to the membrane, in this case the y-direction. This can be seen directly
in Fig. where the concentration z-derivative d,c is constant (—0.33 in this case) in
the region separating the source and membrane zones, and equal to the y-derivative of the
concentration dyc at the membrane interface.

This shows that the relative orientation of the source and membrane regions does not
play a large role in determining the flow. This however is hardly surprising since one would
not expect e.g. a change in orientation of the membrane to strongly influence the inflow at
a given concentration, at least when the non-dimensional separation distance H is much
larger than unity. The mathematical reason is presumably that the concentration field to
lowest order in Pe satisfies the Laplace equation (Eq. (84) with v = 0) and thus that the
integral of (Ve)? over the domain is minimal, favouring solutions where the size of the
concentration gradient is nearly constant.
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Figure 8.5: (a) Numerically computed mean membrane concentration 7y as a function of
the Péclet number Pe = % for the three geometries of Fig. 2. For geometry {a} plot
of fy](\?) for H = 1 (circles); for geometry {b} plot of 'y](\l,)) for H between 1/2 and 5/2 and
& = 1/2 (squares); and for geometry {c} plot of fy](\?) for H = 1/4, 289 = 1/4, and
r = 1/4 (diamonds). The curves show the prediction given by Eq. (8I0) (solid curve) and
Eq. (8I7) (dashed curve). (b) As in panel (a) except now 7y is shown as a function of the
modified Péclet number Pe’ = H Pe = o,
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Figure 8.6: Flow and concentration field for geometry (b). (a) Cross-section plot of the
concentration ¢ (black circle) and the concentration z-derivative d,c¢ (open circles) plotted
along the solid white line shown in the inset for H = 2, E,(ﬁ) = % and Pe/ = 10. The
solid black line indicates d,¢c = —0.33 . The concentration source is at x = 0 and the
membrane starts at z = 2. (b) Cross-section plot of the concentration ¢ (black circles) and
the concentration y-derivative dyc¢ (open circles) plotted along the solid white line shown
in the inset for the same parameters as in (a). The solid black line indicates dyc = —0.33,
the value at the membrane (y = 0).

8.7 Conclusion

In this paper, we have studied new solutions to osmotically driven flow problems, where
the distribution and fluxes of solutes and liquid have generated self-consistent flow and
concentration patterns. We have presented a general analytical solution method, and
have applied this method to a specific example, obtaining detailed knowledge of the flow-
and concentration fields in the parallel plate geometry (c.f. Fig. B2[a)). This geometry
has also been studied numerically, and we find good agreement between our analytical
solution method and the numerics. Further, we have studied two topologically different
geometries numerically varying the governing parameter, the Péclet number, by eight orders
of magnitude. Using a scaled Péclet number, we obtain a data collapse over all eight orders
of magnitude. This shows, that the while the detailed nature of the solutions depend on
the geometry in question, cf. Fig. R2[a)-(c), the osmotic pumping efficiency is largely
independent of the geometry, as long as the correct length scale for the problem is chosen.

This work was supported by the Danish National Research Foundation, Grant No. 74.

8.8 Numerical methods

The problem posed by Eqns. (82)-(8.6) was solved using the commercial finite element
(FEM) software package COMSOL Multiphysics 3.4. See e.g. [32] for a detailed discussion
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Figure 8.7: Comparison between our numerical method and Pedley’s analytical solution
for a shear flow above a membrane as shown in (a). To the left, a solution of concentra-
tion ¢ = 1 is entering the computational with a velocity profile (u,v) = (ky,0). As the
solution passes above the membrane, the flow and concentration profiles are perturbed,
creating a characteristic boundary layer. (a) also shows concentration contours (scale bar
in Fig. B3l(c)) and velocity arrow plot for k& = 25 and Pe = 10. (b) Plot of the numerically
computed concentration at the lower wall y(z) as a function of position x (open circles at
the membrane, and solid circles on the wall). The solid line represents Pedley’s analytical

solution [57].

of applying the FEM method to solve Stokes flow problems. To validate our numerical code,
we used the analytical solution provided by [57] for a shear flow above a membrane. Fig.[R.1
shows a comparison between our numerical method and Pedley’s analytical solution.

8.9 Solution of the diffusion-advection eigenvalue problem

The matrix elements A™ in Sec. [R.5.2] are

(1+(_1)m+n) (m2+n2)

-283 (2 )i for n # m,

1
AV = 25/ cos(nmy) cos(mmy)y(l —y) dy =
0 %(1—%) for n = m,

12
(8.22)
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where 8 = 6Pe /. Note, that A™" = 0 for odd values of n+m. The eigenvalue problem
becomes the diagonalization of the matrix

0 1 0 0 0 0
1272 A% 0 0 0 AB
0 0 0 1 0 0
M — 0 0 2227 A% 0 0 - | (8.23)
0 0 0 0 0 1 .-
0 A3 0 0 32x2 433

from which the coefficients ¢, can be determined to obtain the solution to Eq. (BIS).
Fig. B4l shows the results for N = 20, Pe = 0.1 and Pe = 100 plotted together with
the corresponding numerical solutions. Across the whole range of Pe values, we find good
agreement with the numerical results.

. ________________________________________________________________________________|

End of paper

K. H. Jensen, T. Bohr and H. Bruus
Self-consistent unstirred layers in osmotically driven flows
Journal of Fluid Mechanics 662, pp. 197-208 (2010)
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Table 8.1: List of parameters in alphabetic order after the symbol.

Parameter Symbol  Value and/or unit
Matrix element Amm
Concentration ¢

Characteristic concentration o mol/L
Diffusivity D m? /s
Mini. dist. from membrane to constant conc. zone H

Plate-to-plate distance h m
Membrane permeability L, m/(Pas)
Length of membrane zone b,

Normal vector n

Pressure P

Peclet number Pe

Gas constant R 8.31 J/(K mol) [4]
Radius of cylinder r

Reynolds number Re

Schmidt number Sc

Temperature T K
Osmotic velocity uo m/s
Velocity field u = (u,v)

Cartesian coordinates T,y
Concentration at membrane interface 0%

Viscosity n Pas
Matrix eigenvalue An

Density kg/m3

Membrane interface



Chapter 9

Conclusion and outlook

Conclusion

The present thesis has been devoted to a theoretical investigation of osmotically driven
flows in microfluidic systems and their relation to sugar transport in plants. We have
analyzed the fluid mechanics of these flows to shed new light on the quantitative and
qualitative properties of the translocation process that occur in the phloem vascular system
of plants.

Using a simple model framework, where we think of the plant as consisting of a leaf, a
stem and a root zone, we have found new analytical solutions to the equations of motion.
These allow us to fully characterize the dependence of the flow speed on the parameters
of the problem such as leaf size, stem length, and phloem sieve tube radius. We have
compared the results of the model to in-vivo measurements made on 7 different plant
species with good results.

An interesting prediction of the model is that the osmotically driven Miinch flow mech-
anism has a maximum in translocation velocity for a special value of the radius a = a..
The existence of such a maximum is quite easy to understand: the osmotic flow takes
place across the cell surface and is therefore more effective in terms of the axial velocity
for thinner tubes where the surface-to-volume ratio is larger. Very thin tubes, on the other
hand, offer high viscous resistance to the flow, and thus there is an optimum radius a.,
where the osmotic pump is effective and the resistance not too large. We have derived an
analytical expression for a. which takes the form of an allometric scaling law relating the
radius of the sieve tube a. to the length of the stem [y and the size of the leaf [1; ag x l1ly.
We have compared this prediction to plant data and have found good agreement between
observations and our result for plants varying several orders of magnitude in size. This
suggests that the physical constraints imposed by the optimality of the Miinch mechanism
have played a significant role in the evolution of the phloem vascular system of plants.

We have studied several aspects of the flow process in detail. First, we have tried to
quantify the effect of the perforated sieve plates that separate adjacent phloem cells on
the hydraulic resistance of the phloem translocation pathway. Our findings suggest that
the presence of sieve plate contributes significantly to the total hydraulic resistance, and
that one needs to take this into account when modeling long-distance transport in plants.

109
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Second, we have studied the effect of unstirred concentration boundary layers on the flow
in order to quantify how well-mixed the concentration field is. We have found that at the
Péclet numbers relevant to plants the concentration is nearly uniformly distributed across
the tube.

Finally, we have designed, fabricated and conducted osmotic experiments using a new
type of biomimicking microfluidic devices with channels approaching the dimensions found
in plants. We have found that the experiments follow the Miinch theory with reasonable
accuracy.

Outlook

The equations of motion analyzed in the present thesis were derived under a number of
assumptions that identifies which physical effects are believed to be most significant. These
approximations are not due to the author, but are widely used throughout the phloem
transport literature.

The applicability of a number of these assumptions are, however, not well established
and needs to be tested empirically. It is therefore an important task for future research in
this field to analyze and identify the quantitative effect that each of these approximations
has on the flow. The analytical results relating the translocation velocity to the character-
istic sizes of the plant organs derived in the present thesis can act as a starting point for
this type of analysis. By studying deviations from the predictions of the model, one can
identify plants that have behaviors very far from the predictions and thereby learn of the
qualitative and quantitative features which makes the assumption valid or invalid.

The author would like, mainly out of personal interest, to highlight the fact that most
current phloem models completely neglect the branched structure of the phloem transport
network. These networks are present on many scales in plants and are known to play a
significant role in the structure of translocation networks in virtually all living creatures
from the largest animals to the smallest microbes [87]. This is most likely also the case for
the phloem network.

Finally, the author believes that future research should also focus on gymnosperms.
For this group of plants, some of which are very tall trees, the feasibility of the Miinch
mechanism for long distance transport is even more controversial than for the angiosperms
studied in the present thesis. A first step in this direction would be to study the hydraulic
resistance of sieve plates and optimized Miinch scaling behavior in gymnosperms.



Appendix A

Analytical solution of the 3-zone

model

In this appendix we provide analytical solution to Eqns. (5.28)-(5.30])

03U, = MiUy,
X
3§(UQ = —U1(21)3xU2+M’[iUQ,
Us
Us(X
RU; = — 2(X1) + Mii Us,

with the set of boundary conditions

Us(X2)(X5 — Xo)

Ui (X1),
0, U1 (X1),
Uz (X2),
OxUs(X2),
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It is immediately apparent that Eqns. (Al and (A.3) can be solved directly for all values
of Mii:

Ui(X) = A;ysinhv/Mi X + Aj cosh v/ Mii X, (A.14)
B . - - Uz(X1) 1

Us(X) = AgsinhvV Mi (X — Xo) + Agcosh vV Mi (X — Xa) + 05(X5) (X5 — Xy) Mii -

(A.15)

At present time, solutions of Eq. (A.2)) are only avaliable as numerical approximations. In
the limits Mi > 1 and Mi < 1, the system can, however, be solved analytically.

A.1 Solution for Mi <1

In the limit Mii < 1 the equations of motion ([A])-([A3]) become

oxU, = 0, (A.16)
X

RU, = _U1(21)8XU2, (A.17)
U2
X 1

O%Us = a(X1) (A.18)

a Us(X2) (X3 — Xa)
We can write the solutions in domains 1 and 3 as

Ui(X) = B1X + Bo, (A.19)

Us(X) = —%gzg;; % i %) (X — X3)> + Bs(X — X3) + By,  (A.20)

In domain 2, we can integrate once

Ui(X
oy, = XD g (A.21)
Us
As long as Ox Uy # 0, this means that
1 Ui(X1) >
O X =—(1- , A.22
U2 Bs ( Ul(Xl) + BsUs ( )
which has the solution
BsUs
Ui(X1) Us 1 I+ 7
X(Us) = ——1 —— | | + Bs. A.23
(C2) Bs |Ui(X1) Bs o8 ( 1+ Bs 0 (4.23)
In the limit OxUs = 0, we find
X
b, — &) (A.24)
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The derivatives of the solutions Uy, Us and Us are

oxUy = B, (A.25)
oxUs = M+B5, (A.26)
Us
X)) X5 —X
oyUs = ) XX o (A.27)

Usz(X2) X3 — Xo

A.1.1 Calculation of the constants By, Bs, ..., Bg

The calculations determining the constants By, Bo, ..., Bg

1

B = —(1+w—-v1+2w), (A.28)
w

By = 0, (A.29)
1

By = —(1-V1+2w), (A.30)
w

By = 0, (A.31)
1

Bs = —(1-V1+2w), (A.32)
w

Llw
By = ——. A.33
0 VI+2w—1 (4.33)

are given below. They are found using the boundary conditions in Eqns. (A4)-(A9]).

Calculation of By

It is clear from Eq. (A4) (U;(0) = 0) that

By =0 (A.34)

Calculation of B,

Similarly, we find from Eq. (A9) (Us(X3) = 0) that

By =0 (A.35)

Calculation of Bs

To determine Bs we use Eq. (A6)) (OxU2(X1) = 0xUi(X1)) and Eq. (AL) (U2(X;) =
U1(X1)) and find that

Ur(X1)
Us(X1)

1= + B5 =14+ B5. (A36)

Thus
Bs=B; -1 (A.37)



114 Analytical solution of the 3-zone model

Calculation of Bj

To determine Bz we use Eq. (Ag) (OxUs(X32) = 0xUz(X2)) and find that
Uy(X71) ~ Ui(Xy)

+ Br = + Bs, A.38
such that
By =Bs =By — 1. (A.39)
Calculation of B,
To determine B; consider Eq. (A7)
1 U2(X1) 1 B1L1L3
Ux(Xo) =Us(Xo) = —= Ls — B3Ly = —= — (B —1)Ls. A 40
2(X2) = Us(X2) 2 To(X,) 8~ Dol 2 Th(Xa) (B1—1)L3 (A.40)
This leads to a second order equation for Us(Xs)
1
Us(X2)% 4 (By — 1)L3Us(X>) + 3 Bi1l1Ls =0, (A.41)

which has the solution

(1—By)Ls £+/(B1 — 1)2L% — 2B, L, L3

Uz(X2) = 2 (A.42)
Using w = f—i’ this becomes
1— By))w=++/(B; —1)%w? — 2B
Uy(X) = L, L= BU V(B - D Sl (A.43)

2

For Us(X32) to be real, positive and unique, we require that the term in the square root
vanishes

(B; — 1)2w? — 2Bjw = 0. (A.44)
This is illustrated for w = 1 in Fig. [A], and implies that B; must be given by
1
Bi=—(1+w—-vV1+2w), (A.45)
w

where we have chosen the “—” solution of Eq. (A.44)) to ensure that Us(X>) is positive.

Calculation of By

From Eq. (A.23)) it follows that

BsUz(X1)
Ui(X1) |Ua(Xy) 1 O
X = X(Uy(X = ——1 - Bg (A.46
By
= B A4
B5 + 69 ( 7)
such that

Bs = L, (1 - —> . (A.48)
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Figure A.1: Plot of Ux(X32) as a function of By for w =1 and L; = 0.2 from Eq. (A43).
The real and imaginary part of the two solutions (+ and —, as indicated in the legend)
to Eq. (A43)) are shown. For the solution to be physical, we require that Us(X3) is real,
positive and unique. This happens when B = % (1 +w—+1+ Qw) =2 — /3 ~0.268.

A.1.2 Additional results

For the calculation of the mean translocation velocity, the ratio x = Us(X2)/U1(X1) is

useful. We have that

L
Ui(X1) = BiL1 = Ul (1+w—V1+2w),
and
1
UQ(XQ) = §L1 (1 - Bl)w.
Thus
Us(X2) 1
= =-(1+v1+2w).
X Ur(Xy) 2 ( )

A.1.3 Calculation of U for Mi < 1

The mean velocity in the translocation zone is

_ 1 X3
Uzi/ Us(X)dX,
X3 —Xo Jx, 2(X)

(A.49)

(A.50)

(A.51)

(A.52)

This quantity can be found from Eq. (A.23)). If we define Iy, I, I3, I, as the area of the

regions shown in Fig. [A2] we have that
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Figure A.2: Plot of X (solid line above I,) as a function of UU12((XX1)) from Eq. (A23). The

four domains Iy, I, I3 and I used in the calculation of U are indicated.

Iy=h+L+I3+11y = X, (A.53)
I, = 1, (A.54)
Is = Iy, (A.55)
o) ()
I, = X d . A.56
! /1 (Ul(Xl) U1(X1) (4.56)
We shall now evaluate I, using along the way that lim, ¢ xlogx = 0
BsUs>
X (U (Xy) Us 1 L+ 7z < Us >
Iy, = ——1 — ||+ B¢ | d A.57
! /1 ( B, |Ui(X1) B, °\ 1+B; o)\ Ty )@
1
= ng (w—=24(2+w)V1+2w). (A.58)
The mean velocity U can then be calculated from
U = U(X1)(I1+ Iy), (A.59)
= Ui(X1)Jo— I3 — 1y) (A.60)
1 446w —w?+v1+2w(w?—4-2
_ 5(\/1—{—2(4)—1)[/1—( T 8+ @ w w)>L§.(A.61)
w

In most cases, the second order term (in L) is very small. The function f(w) = & (v/1+ 2w — 1)

-2
showing the importance of the relative size of L and L3 is shown in Fig. [A.3l For the
special case w = 1,we find that
— 3-1 9 —5vV3
Uw=1) = \fz Ly —— fo (A.62)
~ 0.36L; —0.043L3. (A.63)
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Figure A.3: The function f(w) = % (\/1 + 2w — 1) plotted as a function of w = L3/L4
showing the importance of the relative size of Ly and L in Eq. (A61]).

A.2 Solution for Mu > 1

In the limit M4 > 1 the equations of motion (A.])-(A.3]) are

03U, = MiUy, (A.64)
RU, = — Uléfl)axzfg + Mii Us, (A.65)
03Us = —K +2Mu' Us, (A.66)
where K = % The equations in domains 1 and 3 can be readily solved
U (X) = AjsinhVMi X + Ay cosh V' Mii X, (A.67)
Us(X) = AsgsinhvMii (X — Xo) 4+ Ay cosh VMii (X — X5) + % (A.68)

Here, Ay = 0 because of the boundary condition at X = 0, while A3 and A4 are determined
by the continuity condition on U and dxU at X = X5.

1

Ay = OxUs(X>), A.69
K

A = Up(Xa) = (A.70)

In the translocation zone, we shall solve the equation

Ui(X1)

Oz Us = — i
2

OxUs + Mii Us, (A71)
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/
by assuming that Us; can be written as Uy = %, where U} is of the order 1. Inserting
this, and keeping only terms of order Mii and M?, we get that

Mi Uy (X1)0x Uy = UB. (A.72)
Since we require that Uy(X1) = U;(X7) this implies that

U1(X1)
V1-=2Mi Uy (X1)(X — Xy)

Us(X) = (A.73)

Please note that this solution does not fulfill the condition dxUs(X1) = dxUi(X1) exactly.
This is due to the fact that we have ignored the term 3§(U2. This, however, turns out to
play very little role when comparing the analytical solution to the numerical results.
With the solution given in Eq. (A.73), we can now determine the constants Az and Ay
and K = % The only free parameter is A; which has to be determined such
that Us(X3) = 0. Using MATHEMATICA 7.0.0, we can then determine the A’s using the

code

The expressions are generally very complicated functions of M, X;, X5 and X3. For
w =1, we e.g. find that A; is given by

Mii (44X ) coth[Mii*]—csch [ Mii*] (4M.'z +esch[Mii*] \/M.'z 3/2x sinh[Mii*])2( Mii* cosh[Mii*]2 —4 sinh [ Mii*] 42 sinh[2M1’i*])>

A(w=1)= 4AMii 2(24+X1) cosh[Mt’i*]—2(4Mﬁ 24 mq 3/2x, sinh[M.z*]) ’
(A.74)
where Mu* = v/ Mi X;.
Calculating the mean velocity in the translocation zone for Mu > 1
From the solution in Eq. (A.73])) we can now calculate the mean velocity
_ 1 X5 1—/1—2Mi Uy (Xy)
U= —— Usy(X)dX = . A.T5
X?,—Xz/x2 2(X) Mii (A.75)
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Despite of the complexity of the expression for A;, we find that as long as the product
Mii (X3 — X5) is large, the product M1 Uy (X7) is nearly constant and equal approximately

equal to 0.5. This implies that

— 1
U= (A.76)

To see why this is so, consider the equation for Us

Ug(X) = Assinh vV Mii (X — X2) + Ay cosh v Mii (X — X2) + Mi (A77)
u

It is clear that K < ﬁ Thus, since Us(X3) = 0, and if (X3 — Xo)Mi is sufficiently
large we must have that

K
0 = Agsinh v/Mii (Xa—Xo)+ Ay cosh Vi (Xa—Xo)0 = (Ag+As) exp (\/Mii (X5 — XQ)) .

(A.78)
This implies that A3 = —A,. Eqns. (A.69)-(A.70) then leads to
1
i IxUa(X2) = —Uz(X2) (A.79)
or
VMi U (X1) Ur(Xy)
— =— i : (A.80)
(1—2Mu Ul(Xl))3/2 (1—2Mu Ul(Xl))1/2
since Xo — X1 = 1. Rewriting, we get that
VMiU (X)) =2Mi Uy (Xy) — 1, (A.81)
or ) )
Ui(X1) = ~ . (A.82)

2Mi — v/ Mii 2 M
In this way, Mii Uy(X7) ~ 1/2 as found above.
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Appendix B

Horwitz’s derivation of the equations
of motion

Following Horwitz [25], we consider a tube with cross section area A and perimeter S
submerged in a large water reservoir as shown in Fig. Bl The tube is filled with a
solution of sugar and water with concentration ¢, flow velocity u and hydrostatic pressure
p. Both ¢ = ¢(z), u = u(x), and p = p(x) are one-dimensional variables that does not
depend on the radial position. The walls are made of a semipermeable membrane with
permeability L, that allows water, but not sugar, to flow across driven by osmotic and
hydrostatic pressure differences at a rate j, = L,(RTc — p). Here, R is the gas constant
and T is the temperature. Sugar is added/removed from the tube at a rate v by some
active mechanism decoupled from the osmotic pumping.

B.1 Conservation of volume

Consider now a small section of the tube from zg to xg + Az. Taking into account the
advective flow of water along the tube and the radial influx due to osmosis, the conservation
equation for volume is

SjwAz + A(u(z) — u(xo + Az)) = 0. (B.1)
Letting Az — 0 we find that
Do = T = S Ly(RTe(z) ~ p()) (B.)
U= —Jp = — c(x) — p(x)). :
T A]w inti D
For a cylindrical tube with radius a, this is simply
2L
Opu = —2(RTc — p). (B.3)
a
This can be further reduced by using Hagen-Pouiseuille relation between pressure gradient
and flow velocity in a cylindrical tube O,p = —i—gu such that
2L 8
92y = 272 (R’]I‘Bxc n —Zu> . (B.4)
a a
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(a)

Perimeter S

Velocity u(x)
Pressure p(x)
Concentration c(z)

Membrane of 7 -_-"""""""I%-e;e;r:f(-)ir
permeability L, c=0,p=0
(b)
Sugar flux v Water flux j,,

Figure B.1: Sketch of the geometry used in Horwitz’s deriviation of the transport equations.
(a) An incompressible liquid is moving inside a tube with cross section area A and perimeter
S with mean velocity u (arrows). A solute of concentration c is dissolved in the liquid and
is moving due to the motion of the liquid and molecular diffusion. The tube is submerged
in a large reservoir (gray region) and has a walls made from a semipermeable membrane
(dashed line) with permeability L, that allow the liquid but not the solute to pass. (b)
Closeup of the situation at the membrane (dashed line). The presence of the membrane
facilitates a flow of water driven by osmotic and hydrostatic pressure differences across
the wall. This occurs at a rate j, = L, (RTc — p) indicated by the solid arrow at the
membrane interface (See Fig. B.I)). Sugar is added to/removed from the tube at a rate v
by an active mechanism decoupled from the osmotic pumping as indicated by the dashed
arrow. The osmotically driven flow across the membrane accelerates the liquid as it moves
along the tube as indicated by the growing size of the arrows in (a).



Conservation of sugar 123

B.2 Conservation of sugar

Consider again a small section of the tube of length Az. Taking into account the advective
and diffusive flow of sugar along the tube and the radial influx due to loading and unloading,
the conservation equation is

0 = OicAzA
— A(u(z)e(x) — u(xg + Ax)e(x + Ax))
+ AD (0yc(x) — Opc(zo + Ax))
— AAuzv, (B.5)

where D is the diffusion coefficient of the sugar and v is the loading/unloading rate. Letting
Ax — 0, this reduces to the familiar advection-diffusion equation

Orc + Oy (cu) = DI2c+v. (B.6)

B.2.1 Mathematical formulation of the loading/unloading processes

The form of the trans-membrane loading function v in Eq. (B.f]) varies depending on
whether one considers loading or unloading. Several mathematical formulation has been
used in the literature to approximate the quantitative properties of the loading processes.
The most widely used formulations are

ko, (a) constant loading [13], 84],
ki + ko, (b) linear loading [70],
ksc, (c) concentration dependent loading [79],
Y=\ (kaz + ks)c, (d) concentration dependent linear loading [70],
kg(cr —¢), (e) concentration dependent loading with target concentration cp [38],
k]Z7+Cc’ (f) Michaelis-Menten loading [45].

(B.7)
The k’s are loading constants which can be determined experimentally (see e.g. [45]).
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Appendix C

Themodynamics of osmosis

In this appendix we consider the thermodynamics of osmosis. We derive transport equa-
tions for flow of water and solute across a membrane which is permeable to both substances.
The derivation is due to Schultz [67] and Heimburg [21].

C.1 Non-equlibrium thermodynamics

The process of osmosis can best be described by the formalism of non-equlibrium thermody-
namics [67]. We thus consider a linear phenomenological relation between a thermodynamic
flux j;, and the corresponding conjugate force &,

J1I1 = Lnngna (C-l)

which is valid if the system is close to equilibrium. Here, L, is a proportionality constant
with the unit of conductance. The driving force &, is related to the difference in chemical
potential of the substance n between different regions of the system

fn = Aﬂn (02)

Ohm’s law of current flow, Fourier’s law of heat flow, Fick’s law of diffusion and the
Poiseuille’s equation describing volume flow are all examples of Eq. (3]). If the system is
characterized by several forces and fluxes (e.g. if the membrane is non-ideal) there may be
interactions between fluxes and non-conjugate forces

m#n

where according to the Onsager relations Ly, = Lpm,. The flux of particles as a conse-
quence of temperature gradients (the Soret effect) and the flux of heat due to concentration
gradients (the Dufour effect) are well known examples of Eq. (C3). It can be shown that
the relation between the rate of internal entropy production ds, the absolute temperature
T, and the forces and fluxes is given by

Tos = Y _ jnén- (C4)
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The quantity Td;s is known as the dissipation function and is a measure of the tendency
of the non-equilibrium process to proceed.

C.2 Osmotically driven flow across non-ideal membranes

In the present discussion we consider a membrane separating two chambers at pressures
p1 and po. The chambers contain a dilute aqueous solutions of a solute at concentrations
c1 and c¢y. The chemical potentials of the water p,, in the two compartments are

n
pwg = = (fw,1)y + Vwp1 + RT log <$> ; (C.5)
N, 1 + N1
n
fw2 = = (fw2) + Vwp2 + RT log <$> ; (C.6)
N2 + Mg 2

(C.7)

where v, is the partial molar volume of water, (ji,), are reference values, and n,, and n;
are the number of water and solvent molecules respectively. Since the solutions are dilute,
the logarithmic term can be expanded

log <7nw ) = —log (1 + E) ~ s —UyC (C.8)
Ny + N N zn

where ¢ is the concentration of the solute. The difference in chemical potential Ay, is
thus

Ay = hp,2 — flw1 = Uy (P2 — P1) — 0uRT (e2 — ¢1) = U Ap — U, AIL (C.9)

For the solute, the chemical potentials are

ps1 = = (is1)y+ Vsp1 + RTlog (ﬁ) , (C.10)

Hs2 = = (N’s,?)o + Usp2 + RT 10g <L> ) (C'll)
Nw,2 + Ng,2

(C.12)

In this case we cannot generally get rid of the logarithm since its argument is not close to
one. If the concentrations are of similar magnitude, we can however write!

cog—c¢ AIl
A/’[/S = /’1/872 — /,[/571 ~ /DS (p2 —pl) +RT < 2 01 1) = ’DSAp—i- c—l (013)

The dissipation equation (C.4]) is

Tos = j., (VwAp — D AIL) + 5. <USAp — ﬂ) . (C.14)

C1

!See [67] for a detailed treatment of the expansion of the logarithmic term.
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Upon rearrangement this becomes

-/

T s = (ji,0w + JsUs) Ap + <Z—S — z‘;wj;,> AIL (C.15)
1

where j! = (jl, Uy + jiUs) is simply the volume flow and j}, = % — Uy, the difference
between the velocities of the oppositely directed flows of solute and water. In this notation
we have that

Tos = j, Ap + jpAlL (C.16)

We can now write the phenomenological equations (C.3])

Jo = LppAp+ LypAlL (C.17)
]b = LDpAp—i-LDDAH, (018)
where L,p = Lp, from the Onsager relation. Using the notation o, = —%Tz the volume

flux j! given in Eq. (CI7) can be written as
gu = Lpp (Ap — 0, AT, (C.19)

The quantity o is know as a reflection coefficient, and is a measure of the degree to which
a membrane is permeable to the solute. If o5 = 1 it is perfectly impermeable, at we obtain
the ideal membrane transport Eq. (B.3]), p. 2I. If on the other hand o3 = 0 the membrane
is equally permeable to solute and water. The solute flux j. is given by

ij =(1- Us)clj:; + wsAll (C.20)

LypLpp—L2 ),

where ws = 1 T
pp
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Appendix D

Sieve plate data

This appendix contains data for the Curcubita maxima sieve plate shown in Fig. [£2[(a),
p. A1l The data was kindly provided by M. Knoblauch and D. L. Mullendore. See [48] for
details on how the measurements were made.

Sieve tube element length = 154.3%1le-6 m
Sieve tube element radius = 29.005%1le-6 m
Sieve plate thickness = 0.966%1le-6 m
Sieve pore radii = le-6 mx[
.6217562188

.535683898

.4759094422

.4217524916

.4092803846

.3677122045

.2630274694

.1897320191

.0190780657

.0004081138

.949318219

.8845114525

.8100328702

.7462617435

.6640493165

.6027107679

.4075444176

.3399556362

.3347985877

.2392481984

.1734984532

.1716001618

.1506399347

W W WWwWwwWwwwwwwwwdhdrdbdbdrbd bbb
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.1418881591
.1069116639
.0930327149
.0704154025
.0041217282
.9721574733
.866337958
.8470601859
.7970542884
. 76487436
.5305560114
.4114607257
.2080530822
.1395724912
.0323186401
.0041789728
.9136916469
.7785203023
.6526258
.597558372
.5867494774
.2926936506
.2208011857
.9684655618
.887807481
.8276143905
.7478736748
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In plants, osmotically driven flows are believed to be responsible for translocation of
sugar in the pipe-like phloem cell network, spanning the entire length of the plant — the
so-called Miinch mechanism. In this paper, we present an experimental and theoretical
study of transient osmotically driven flows through pipes with semi-permeable walls.
Our aim is to understand the dynamics and structure of a ‘sugar front’, i.e. the
transport and decay of a sudden loading of sugar in a water-filled pipe which is
closed in both ends. In the limit of low axial resistance (valid in our experiments
as well as in many cases in plants) we show that the equations of motion for the
sugar concentration and the water velocity can be solved exactly by the method of
characteristics, yielding the entire flow and concentration profile along the tube. The
concentration front decays exponentially in agreement with the results of Eschrich,
Evert & Young (Planta (Berl.), vol. 107, 1972, p. 279). In the opposite case of very
narrow channels, we obtain an asymptotic solution for intermediate times showing
a decay of the front velocity as M~'/3+—2/3 with time ¢ and dimensionless number
M ~ nik L?r— for tubes of length L, radius r, permeability « and fluid viscosity n. The
experiments (which are in the small M regime) are in good quantitative agreement
with the theory. The applicability of our results to plants is discussed and it is shown
that it is probable that the Miinch mechanism can account only for the short distance
transport of sugar in plants.

1. Introduction

The translocation of sugar in plants, which takes place in the phloem sieve tubes, is
not well understood on the quantitative level. The current belief, called the pressure-
flow hypothesis (Nobel 1999), is based on the pioneering work of Ernst Miinch in the
1920s (Miinch 1930). It states, that the motion in the phloem is purely passive, due to
the osmotic pressures that build up relative to the neighbouring xylem in response to

1 Email address for correspondence: tbohr@fysik.dtu.dk
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FiGURe 1. In plants, two separate pipe-like systems are responsible for the transport of water
and sugar. The xylem conducts water from the roots to the shoot while the phloem conducts
sugar and other nutrients from places of production to places of growth and storage. The
mechanism believed to be responsible for sugar translocation in the phloem, called the Miinch
mechanism or the pressure-flow hypothesis (Nobel 1999), states the following: As sugar is
produced via photosynthesis in sources it is actively loaded into the tubular phloem cells. As
it enters the phloem, the chemical potential of the water inside is lowered compared to the
surrounding tissue, thereby creating a net flux of water into the phloem cells. This influx of
water in turn creates a bulk flow of sugar and water towards the sugar sink shown in (b),
where active unloading takes place. As the sugar is removed, the chemical potential of the
water inside the phloem is raised resulting in a flow of water out of the sieve element.

loading and unloading of sugar in different parts of the plant, as shown in figure 1.
This mechanism is much more effective than diffusion, since the osmotic pressure
differences caused by different sugar concentrations in the phloem create a bulk flow
directed from large concentrations to small concentrations, in accordance with the
basic need of the plant. Such flows are often called osmotically driven pressure flows
(Thompson & Holbrook 2003), or osmotically driven volume flows (Eschrich, Evert &
Young 1972).

To study the osmotically driven flows, Eschrich et al. (1972) conducted simple model
experiments. Their set-up consisted of a semi-permeable membrane tube submerged
in a water reservoir, modelling a phloem sieve element and the surrounding water-
filled tissue. At one end of the tube a solution of sugar, water and dye was introduced
to mimic the sudden loading of sugar into a phloem sieve element. In the case of
the closed tube, they found that the sugar front velocity decayed exponentially in
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time as it approached the far end of the tube. Also, they found the initial velocity of
the sugar front to be proportional to concentration of the sugar solution. Through
simple conservation arguments, they showed that for a flow driven according to the
pressure-flow hypothesis, the velocity of the sugar front is given by

r

— 1.1
STl (1.1)

L t
Uy = —exp (——) where 1) =
lo lo
where ¢ is time, L is the length of the sieve element and r its radius, « is the
permeability of the membrane and IT is the osmotic pressure of the sugar solution.
For dilute solutions, I7T ~ RT ¢ (Landau & Lifshitz 1980), where R is the gas constant,
T the absolute temperature and ¢ the concentration in moles per volume. The
conservation argument for (1.1) is the following: for incompressible flow in a wide
rigid semi-permeable tube of length L imbedded in water, we imagine part of the tube
initially filled with sugar solution and the rest with pure water. For a wide tube with
slow flow, viscous effects and thus the pressure gradient along the tube is negligible
and the pressure is simply equal to the osmotic pressure /7 averaged over the tube,
1.e. RTc where ¢ i1s the constant average sugar concentration. The water (volume)
flux through the part of the tube ahead of the sugar front x, (where there is no
osmosis) is —2nrk RT¢(L — x ), where « 1s the permeability of the tube and the flow
1s negative since water flows out. This will be equal to the rate of change of volume
ahead of x; and thus, due to incompressibility, is equal to —mr?dx;/dz. Putting these
two expressions together we get

dx; 2L,RT¢
dr

leading to u, =dx,/dt given by (1.1).

In the experiments performed by Eschrich et al. (1972) good qualitative agreement
with (1.1) was obtained, but on the quantitative level the agreement was rather poor.
We thus chose to perform independent experiments along the same lines. Eschrich et
al. (1972) used dye to track the sugar, and in one of our set-ups we can check this
method by directly following the sugar without using dye. Also, we make independent
measurements of the membrane properties, which then allow detailed comparison with
the predictions showing good quantitative agreement.

Simultaneously with the experiments, we develop the theory for osmotic flows. The
above derivation of the front propagation is simplified by the lack of viscosity and
diffusion and, indeed, by the very assumption that a well-defined sugar front exists. To
go beyond this we must use the coupled equations for the velocity and concentration
fields as they vary along the tubes and in time. Here we follow the footsteps of a large
number of authors, as discussed later. Our main contribution is the analysis of the
decay of an initially localized sugar concentration in a channel closed in both ends
described by (4.9) and (4.10). Here we point out that the main dimensionless number
(termed as Miinch number) can be chosen as

16nL%k
3

(L=xp)= (L= x) (12)

M =

: (1.3)

where 7 is the fluid viscosity. We show how to simplify the equations and obtain exact
solutions in the regimes M < 1 (the regime of the experiments in this paper and of
those of Eschrich et al.) and asymptotic solutions for M > 1. Both regimes are found
in plants and we propose an effective way for numerical integration of the equations
in the general case using Green’s functions. In the regime M < 1 the solubility of the
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Quantity Magnitude Reference
Radius (pm) 4.5 (Fava bean), 4 (Winter ~ Knoblauch & van Bel (1998),
squash), 6-25 Taiz & Zeiger (2002),

Nobel (1999)

Length (mm) 0.09 (Fava bean), 0.1-3 Knoblauch & van Bel (1998),
Nobel (1999)

Flow velocity (mh™!) 0.5-1, 0.2-2 Knoblauch & van Bel (1998),
Nobel (1999)

Elastic modulus (MPa) 17, 5.6-7.4 (Ash) Thompson & Holbrook (2003a),

Niklas (1992)

Permeability (107" ms™! Pa~!)  5,1.1 (Zitella translucence) =~ Thompson & Holbrook (2003a),
Eschrich et al. (1972)

Sucrose concentration (M)] 0.3-0.9 Taiz & Zeiger (2002)

TaBLE 1. Characteristic properties of phloem sieve elements.

equations is shown by mapping them to a damped Burgers equation (5.6), which can
be solved by the method of characteristics. An analogous relation was pointed out
earlier by Frisch (1976), but for a different boundary condition (open in one end)
where the damping term disappears. Some results for M < 1 were also given by Weir
(1981), but the lack of generality of his approach to the time-dependent problem
makes his results hard to extend.

In table 1 we show characteristic data for single sieve elements, which build up the
phloem conducts in plants. If one naively applies these results to the flow inside such
sieve elements, taking L =1mm, r=10pm, « =10"""ms~' Pa~' and concentration
¢=0.5M, one gets a characteristic velocity from (1.1) of 9mh ™', almost an order
of magnitude larger than the range of velocities given in the table. Here one has
to remember that the characteristic velocity from (1.1) is valid for a transient flow
caused by an initial sudden sugar loading, whereas the velocities quoted in the
table are characteristic for the normal steady-state operation of the plants. For large
distances (e.g. those occurring in tall trees), the viscous effects embodied in (1.3)
become large. Thus the value of M for the single sieve element considered above
is M ~1.6 x 10~* whereas the value for a phloem tube spanning a distance of 10m
would be greater by a factor 108, i.e. M ~ 1.6 x 10* (see also table 3 for characteristic
values for M). In this regime (1.1) is no longer valid and, in fact, as seen in §5.2 (5.46),
the characteristic velocity will be reduced by a factor M~'/3, now making it an order
of magnitude smaller than the velocities quoted in the table. This seems to indicate
that large distance transport in trees cannot rely solely on the Miinch mechanism
and indeed the sieve elements are living cells and active transport may play a key role
(see, e.g. Taiz & Zeiger 2002). For future studies in this direction it is important to
be able to separate these effects clearly and thus to understand the passive osmotic
component as clearly and simply as possible, which is the aim of the present paper.

The layout of the paper is as follows: §§2 and 3 describe our experimental set-ups
and the experimental results obtained. In §4, the flow equations are developed and
in §5 we present solutions for the cases M <1 and M > 1. Finally, §6 contains
a detailed comparison between theory and experiments. After the conclusions (§7),
two appendices follow. Appendix A provides information about the experimental
materials used and appendix B discusses the numerical methods (based on Green’s
functions) used for solving the flow equations in the general case.
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FIGURE 2. Set-up T used to observe the movement of a sugar—dye solution (ss) inside a
semi-permeable membrane tube (spm). L: length of membrane tube; [: initial sugar front
height; ds: disposable syringe; gt: glass tube; rs: rubber stopper; sc: stopcock; wr: water
reservoir; bc: brass cylinder; pt: pressure transducer.

2. First experimental set-up
2.1. Set-up and methods

Set-up I is presented in figure 2. It is based on the design by Eschrich et al. with
the addition of a pressure transducer that allows us to measure the gauge pressure
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1 2 3 4 5
Mean sugar concentration, ¢ (mM) 1.54+03 2.104+0.03 24+0.2 42+0.7 6.8 +0.1
Osmotic pressure, IT (bar) 0.14+0.02 0154001 0314+0.03 0.394+0.01 0.68+0.02
Membrane tube length, L (cm) 28.5 20.8 28.5 28.5 20.6
Initial front height, / (cm) 4.9 3.7 6.6 6.5 4.8

TaBLE 2. Data for the experimental runs shown in figure 3.

(which is what we from now on will refer to as ‘pressure’) inside the membrane tube
continuously. More precisely, it consisted of a 30cm long, 30 mm wide glass tube in
which a semi-permeable membrane tube of equal length and a diameter of 10 mm was
inserted. At one end, the membrane tube was fitted over a glass stopcock equipped
with a rubber stopper. On the other end, the membrane tube was fitted over a brass
cylinder equipped with a holder to accommodate a pressure transducer for measuring
the pressure inside the membrane tube.

After filling the 30 mm wide glass tube with water, water was pressed into the
semi-permeable tube with a syringe. Care was taken so that no air bubbles were
stuck inside the tube. For introducing the sugar solution into the tube, a syringe was
filled with the solution and then attached to the lower end of the stopcock which was
kept closed. After fitting the syringe, the stopcock was opened and the syringe piston
was very slowly pressed in, until a suitable part of the tube had been filled with the
solution. Care was also taken to avoid any mixing between the sugar solution and
the water already present in the semi-permeable tube. The physical characteristics of
the membranes and of the sugar we used are discussed in appendix A. To track the
movement of the sugar solution it was mixed with a red dye and data was recorded
by taking pictures of the membrane tube at intervals of 15 min using a digital
camera.

2.2. Experimental results obtained with set-up I

An example of a set of data is shown in figure 3. In figure 3(a) are the raw images,
which after processing give figure 3(b) showing the position of the sugar front, x,
as a function of time. The error bars on x; are estimated to be £1 mm, but are too
small to be seen. Finally, figure 3(c) shows the pressure inside the tube as a function
of time. At first, a linear motion of the front is observed with a front velocity of
~1 cmh™!. This is then followed by a decrease in the front velocity as the front
approaches the end of the tube. The pressure is seen to rise rapidly during the first
hour before settling to a constant value, indicated by the dashed line. This constant
value is taken to be the osmotic pressure IT of the sugar solution. Looking at figure
3(a), one observes that diffusion has the effect of dispersing the front slightly as
time passes. Below the front, the concentration seems to be uniform throughout the
cross-section of the tube, and there is no indication of large boundary layers forming
near the membrane walls.

Similar experiments with different sugar concentrations were made and a plot of the
results can be seen in figure 3(d,e). The experimental conditions for the five different
sets of experiments are given in table 2. Qualitatively the motion of the front and the
pressure increase follows the same pattern. One notices that the speed with which the
fronts move is related to the mean sugar concentration inside the membrane tube,
with the high-concentration solutions moving faster than the low-concentration ones.
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FIGURE 3. Experimental results from set-up 1. (a) Time series of pictures taken in experiment
5. Time increases from left to right in steps of 30 min. See details of the sugar solutions used
in table 2. (b) Plot of the front position versus time obtained from the images above. (¢) Plot
of the gauge pressure inside the tube versus time. The dashed line is the osmotic pressure of
the solution, taken to be the average value of the pressure from 7 =2 h until the end of the
experiment. (d) Plots of the sugar front position versus time for different sugar concentrations,
as indicated in table 2. (¢) Plots of the pressure inside the membrane tube for different sugar
concentrations.
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FiGURre 4. Set-up II dedicated to the tracking of the sugar front via index of refraction changes.
It consists of a hollow isosceles glass prism and a Plexiglas cuboid in osmotic contact through
a membrane. A pressure transducer was attached to the top of the glass prism to measure the
pressure inside.

The reason why 2 is moving slower than 1 is that experiment 2 was conducted in a
slightly shorter membrane tube than the one used in experiment 1, thereby decreasing
the characteristic velocity as we shall see later.

3. Second experimental set-up
3.1. Set-up and methods

Set-up II is presented in figure 4. This set-up allows us to track the real front location,
without the use of colorant, directly via the variation of the index of refraction.
It consisted of a hollow isosceles glass prism and a Plexiglas cuboid in osmotic
contact through a membrane. To track the time evolution of the sugar front inside
the prism, we used the refraction of a laser sheet passing through it. The laser sheet
was generated by shining a laser beam, generated by a Melles Griot 3.1 mW laser,
through a glass rod. When passing through the prism, light would deviate depending
on the local index of refraction, producing a typical S shape as shown in figure 4.
The index of refraction varies linearly with sugar concentration and thus by looking
at the refracted laser sheet projected onto a screen, we were able to reconstruct the
concentration profile inside the prism. A camera recorded images of the screen at
regular intervals to track the moving concentration profile.
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FIGURE 5. Results from set-up II. In (a) the raw data images are shown. In (b) the
concentration profile extracted from (a) is shown. (¢) shows the front position extracted
from (b) by finding the maximum of the concentration gradient, shown in (d). Finally, (e, f)
show the pressure inside the prism.

3.2. Experimental results obtained with set-up 11
3.2.1. Effect of osmosis

Figure 5 shows the data collected using set-up II. In figure 5(a), a time series of
pictures is depicted showing the refracted laser-light projected onto a screen, the time
gap between each image being 1 day. Comparing the upper and lower parts of each
picture, one generally observes a deflection to the right at the bottom, corresponding
to a high sugar concentration at the bottom of the prism. In the intermediate region
one sees a dip in the refracted light, corresponding to a strong concentration gradient.
The dip gradually flattens while it advances upwards, representing a sugar front
which advances while it broadens. This process can be seen directly in figure 5(b),
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FIGURE 6. Results from a control experiment with set-up II, where concentration varies only
due to diffusion. (a) Time evolution of the concentration profile, (b) time evolution of the
profile of concentration gradient and (c¢) time evolution of the sugar front location.

which shows the time evolution of the sugar concentration obtained from the images.
Starting from a steep concentration profile, we see that the front moves upwards
while it flattens. In figure 5(d) the time evolution of the concentration gradient is
depicted, clearly showing a peak which broadens while it moves forward. Finally, in
figure 5(e, f), the position of the sugar front and the pressure inside the prism is
plotted as a function of time. The error bars on x; are +1 mm, as discussed below.

3.2.2. Effect of diffusion

To study the effect of diffusion on the dynamics of the sugar front separately, an
experiment was made with set-up II, in which the water reservoir was not filled. The
experiment was then conducted in the usual way, and the motion of the front was
recorded. The results of this are shown in figure 6. Starting from a steep concentration
gradient, we observe that the front flattens but otherwise does not move much.

Comparing figures 5 and 6 we observe, that while the front moves 2 cm due to
osmosis in 6 days, it does not seem to move at all in 6 days due to diffusion. Thus,
while diffusion has a flattening effect, it plays little role in the forward motion of the
front.

Since the front did not move due to diffusion, the fluctuations in the front position
seen in figure 6(c) gives a measure of the uncertainty of a single measurement of the
front position. Taking the standard deviation of the fluctuations gives an uncertainty
of +1 mm, shown as error bars in figure 5(c).

More details on this second experiment can be found in Jensen (2007).



Osmotically driven pipe flows and their relation to sugar transport in plants 381

Water reservoir ® Sugar
—>» Water flux
Semi-permeable membrane
| A
-Iv - /
_‘_> - _r—>
[ ]
“\ . f. o v ¥
| ¥
] I | 1 1 »
1 1 T T T »
v Yit i Xi1 L

FiGure 7. Sketch of the tube.

4. Theoretical analysis
4.1. Front propagation via flow equations

The equations of motion for osmotically driven flows have been derived and analysed
thoroughly several times in the literature (Weir 1981) and have been studied carefully
numerically (Henton 2002; Thompson & Holbrook 2003a, b). For the sake of
completeness, we shall include a short derivation of these.

We consider a tube of length L and radius r, as shown in figure 7. The tube
has a constant cross-section of area A =mr? and circumference S =2mr and its walls
are made of a semi-permeable membrane with permeability «. Inside the tube is a
solution of sugar in water with concentration c(x)=c(x, t). Throughout this paper,
we study the transient dynamics generated by an asymmetrical initial concentration
distribution, where the sugar is initially localized to one end of the tube with a
concentration level ¢o. The tube is surrounded by a water reservoir, modelling the
water surrounding the membrane tube in set-up 1.

We shall assume that L >r and that the radial component of the flow velocity
inside the tube is much smaller than the axial component, as is indeed the case
in the experiments. With these assumptions, we will model the flow in the spirit of
lubrication theory and consider only a single average axial velocity component u(x, t).
Also, we will assume that the concentration ¢ is independent of the radial position p
an assumption that can be verified experimentally in set-up II.

Let us now consider the equation for volume conservation by looking at a small
section of the tube between x; ; and x;. The volume flux into the section due to
advection is

A(I/t,',1 —M,'), (41)

where the axial flow velocities are taken to be u;_; and u; at x;_; and x;, respectively.
The volume flux inwards across the membrane due to osmosis (Schultz 1980) is

SAxk(RTc(x,t) — p(x,t)), (4.2)

where p is the local difference of pressure across the membrane and ¢ is the local
concentration. For clarity we use the van’t Hoff value IT= RTc¢ for the osmotic
pressure, which is valid only for dilute (ideal) solutions. In appendix A.3, we show that
the linear relation between IT and c is verified experimentally as 7 =(0.1 +0.01 bar
mM~!)c. Assuming conservation of volume, we get

A1 —u;)+ SAxk(RTc — p) =0. (4.3)
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Letting Ax — 0 and using that the cross-section to perimeter ratio reduces to r/2, this
becomes
rou
—— =k(RTc — p). 4.4
So = k(RTc— p) (44)
For these very slow and slowly varying flows, the time dependence of the Navier—
Stokes equation can be neglected and the velocity field is determined by the
instantaneous pressure gradient through the Poiscuille or Darcy relation (for a circular
tube)
2
0
w=—r 2 (4.5)
8n dx
where 1 is the dynamic viscosity of the solution, typically ~1.5x 10~*Pa s in our
experiments.
Differentiating (4.4) with respect to x and inserting the result from (4.5) we get for
the conservation of water that
dc r d’u 8y
grc_ rom Sn, 4.6
ox  2cox:  r2” (46)
The final equation expresses the conservation of sugar advected with velocity u and
diffusing with molecular diffusivity D

0 0 92
Ly _pil (4.7)
ot Ox dx?2
The set of equations (4.6) and (4.7) is equivalent to those of Thompson & Holbrook
(2003b) except for the fact that we have removed the pressure by substitution, and

that we do not consider elastic deformations of the tube.

4.1.1. Non-dimensionalization of the flow equations
To non-dimensionalize (4.6) and (4.7), we introduce the following scaling
c =¢C, u = uyU, x=LX, t=1yT,

L has been chosen such that the spatial domain is now of the unit interval X € [0, 1],
uo=L/ty and c¢( is the initial concentration level in one end of the tube. Choosing
further

r 16nL%*k - D Dr
n = s M = d D = = B 4.8
0 2k RT ¢y r3 an uoL  2RTcyL*k (48)
and inserting in (4.6) and (4.7), we get the non-dimensional flow equations
*U aC
— MU = —, 49
X2 X (49)
aC JUC - 0°C
a2 _p—=. 4.10
ot + X 0X?2 ( )

The parameter M corresponds to the ratio of axial to membrane flow resistance,
which we shall refer to as the Miinch number. This is identical to the parameter F in
Thompson & Holbrook (2003b). The second parameter D is the Peclet number. Thus,
the longer the tube the less important the diffusion becomes and the more important
the pressure gradient due to viscous effects becomes.

Values of the parameters M and D in different situations can be seen in table 3.
The typical magnitude of the parameters M and D in plants are found from the
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M D
Set-up 1 2x1078 6x 1073
Set-up II 10~° 2x 1072
Single sieve element (L =1 mm) 5x 10~ 5x 10~
Leaf (L=1 cm) 5%x1072 5% 1073
Branch (L =1 m) 5x10% 5x1077
Small tree (L =10 m) 5% 10* 5x 1078

TABLE 3. Values of the parameters M and D in various situations.

following values (also given in table 3):
r=10pm, 5n=15x1073Pas, wy=2mh™', x=2x10"m (Pas).

We observe, that M and D are small in both experiments, and that for short distance
transport in plants this is also the case. However, over length scales comparable to a
branch (L =1m) or a small tree (L =10m) M is large, so in this case the pressure
gradient is not negligible.

When deriving the equations for osmotically driven flows, we have assumed that
the concentration inside the tube was a function of x and r only. However, the real
concentration inside the tube will also depend on the radial position p in the form
of a concentration boundary layer near the membrane, in the literature called an
unstirred layer (Pedley 1983). Close to the membrane, the concentration ¢, is lowered
compared to the bulk value ¢, because sugar is advected away from the membrane
by the influx of water. This, in turn, results in a lower influx of water, ultimately
causing the axial flow inside the tube to be slower than expected. In our experiments
we see no signs of such boundary layers and apparently their width and their effect
on the bulk flow are very small.

5. Solutions of the flow equations

We will now analyse (4.9) and (4.10). We will show that they can be solved quite
generally for M =D =0 by the method of characteristics. For an arbitrary initial
condition, this method will generally yield an implicit solution.

For arbitrary values of M and D, we cannot solve the equations of motion
analytically and thus have to incorporate numerical methods. This topic has been the
focus of much work both in the steady-state case (Thompson & Holbrook 2003a)
and in the transient case (Henton 2002). However, no formulation fully exploiting the
partially linear character of the equations capable of handling all different boundary
conditions has so far been presented. Therefore, we show that using Green’s functions,
the equations of motion can be transformed into a single integro-differential equation,
which can be solved using standard numerical methods with very high precision. This
technical numerical part is detailed in appendix B.

5.1. Results for small Miinch number
In the limit M = D =0 the equations become

02U  aC
cr 9= 1
X2 X’ (3.1)
0C dUC
+ — =0. (5.2)

9t | 90X
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By integrating (5.1) with respect to X, we get

ou
Ix = C + F(7). (5.3)
If we choose U(0) = U(1)=0, F(tr) becomes
1
F(r) = —/ C dX = —C(7). (5.4)
0
Using (5.3) in (5.2) gives
a [oU WU - dC
a_Xl¥+U<8_X+C>]__E_O’ (5.5)

where the last equality follows from integrating X from O to 1, observing that all
terms in the square bracket vanish at the end points due to the boundary condition
u(X=0,7)=u(X=1,7)=0. Thus C is a constant in time since the tube is closed.
Integrating with respect to X and using the boundary conditions on U, this becomes

oU U ~

—+U—=—-CU. 5.6

at + X (56)
Equation (5.6) is a damped Burgers equation (Gurbatov, Malakhov & Saichev 1991),
which can be solved using Riemann’s method of characteristics. The characteristic
equations are

dU —

dx
e U. (5.8)
Equation (5.7) has the solution
U = Uy(&) exp(—Cr), (5.9)
where the parametrization £(X, t) of the initial velocity has to be found from
1 _
X =&+ ZUo(§)(1 —exp(=CT)), (5.10)

where € = X at t =0.

5.1.1. Exact solutions for simple initial conditions

An experimental condition close to that of our experiments is to use a Heaviside
step function as initial condition on C, making C initially constant in some interval
[0, 4]

C] for 0<X</1

5.11
0 for A< X <. ( )

CX,t=0=C/H/L—X) = {
Equation (5.3) now enables us to find the initial condition on the velocity

UX,7=0)= /0 X(C(X’, 0)—C)dX' = /0 X(C(X’, 0)—2C,)dx’  (5.12)

(5.13)

_Jc,—0)x for 0<X <A
| Cl—X) for A<X<I.
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From (5.13), we have

(C;—C)t for 0<E<A.
Up(§) =< - 5.14
o(é) {cu—g) for 4 <&<1. (5.14)
Then, solving for &£(X, ) in (5.10) gives
X for Xel
1+ (1/2)(1 — 2)(1 — exp(—Cr) v
E(X,7)= A (5.15)
X —1+exp(—Cr)
= for X € I,
exp(—Cr)
where the intervals I; and I, are defined by
I =1[0,1—(1—=2)exp(—Cr1)], (5.16)
L =[1—(1—2)exp(—Cr),1]. (5.17)
Finally, U(X, 7) is calculated from (5.9)
{CI — (5) exp(—Cr)){ for X eI,
U(X,7) =< (1/A)(1 = 2)(1 —exp(—C7)) (5.18)
C(1—X) for X €D,

which is equivalent to the result obtained by Weir (1981). The solution is plotted in
figure 8(a,b). We can now calculate the instantaneous sugar front position X, and
velocity Uy using the right boundary of /; from (5.16)

X,(r)=1—(1—2)exp(—Cr), (5.19)
Us(t) = % = C(1 — 2)exp(—Cr). (5.20)

Similarly, C(X, 7) is given by

C
1 —(1—2i)exp(—Crt)
Going back to dimensional variables, (5.19) and (5.20) become

C(X, 1) = H(X; — X). (5.21)

x/(t) =L — (L —I)exp (—;0) and (5.22)

fo

us(t) = %exp <—i) , (5.23)

where L is the length of the membrane tube, / is the initial front position and the
decay time 7, is in accordance with the simple argument given in § 1.

As noted earlier we can use the method of characteristics on arbitrary initial
conditions, including the more realistic case, where the initial jump in concentration
1s replaced by a continuous variation, say, a linear decrease from C; to O taking place
between 4; and /A, 1.c.

C[ for 0<X</11
,‘u - X
C(X, 7t =0)= c,jz = for 4 <X<ih (5.24)
D — A1
0 for AHh <X <1
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FIGURE 8. (a, b) Plot of the analytical solution for a piecewise constant initial concentration.
A=0.1, C;=1 and C=0.1. (¢, d) Plot of the analytical solution for a piecewise linear initial
concentration. 4; =0.05, 1,=0.15, C; =1 and C =0.1. Time increases from black to gray in
steps of one unit of time.

Using (5.3) yields the initial velocity

(CI—C)X for O<X<ll,
UX,t=0= A X>+BX+C, for /1 <X </, (5.25)
C(1—X) for 1, <X <1,

where C = C;(/, + 72)/2, and the constants are given by

C Ci/y ~ C o 5
Al=——+——, B = —C, Ci=Cji 142+ A7/2) . (5.26
1 = 71)’ el T ; 1 I 1+22—21 (122 +771/2) . (5.26)
Finding &£(X, 7) from (5.10) now gives
( X
_ for X €I,
14+ (1/4)(1 = A)(1 —exp(—CT)
E(X, 1) = { A5 + Bo&s + G for X e b, (5.27)
X1+ eXP(_CT) for X € L,
L exp(—Cr)
where

A= —ep(-Cr), B=1+ 2 —ew-Cr), =2 _exp(_(i?g')
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Here

£ = —B, 4+ /B3 — 4A,(C, — X)
2 24, )
where the plus solution has been chosen to ensure that £ — X as t — 0. Finally,

(5.29)

I = lo, o+ %(c, — C)(1 —exp(—C7))|, (5.30)
L= [;Ll + %‘(C, — C)(1 —exp(=C7)), 1 + (3 — Dexp(=C1)|,  (5.31)
L= [1+(a— lexp(—Cr), 1]. (5.32)

Plugging into (5.9) gives U(X, 7) as
(C[ — C) exp(—C’)X

_ for X €I,

+(1/2)(1 — 2)(1 —exp(—Cr) !
UX, ) = (A&} + B1&2 + Cy) exp(—Ct) for X € D, (5.33)

C(l—-X) for X € L,

as shown in figure 8 along with C found from (5.3), i.e.
aUu -

- — ) 5.34
C X +C (5.34)

Note that the interval I, does not shrink to 0 in time (I, — [4,C;/C, 1] for T — o0),
but the curvature around the right-hand end point grows without bound so that the
limiting shape of the concentration profile again becomes a discontinuous Heaviside
function.

5.2. Results for large Miinch number

In the limit of large M > 1 we cannot neglect the pressure gradient along the channel
and this term dominates the advective term in (4.9), i.e. the second derivative in U.
Thus

aC
— =—MU 5.35
e (5.35)
aC  ICU _ - 0d°C
— 4+ —=D— 5.36
atT + X X2 (5:36)
giving the nonlinear diffusion equation
aC 0 aC _92C
— =M"'—|C— D—. 5.37
Jt X [Caxl + 0X2 (537)

If we neglect molecular diffusion the resulting universal nonlinear diffusion equation
can be written as

€ _ i@ [o0C]

at X | 90X
This can be done as long as M~'C > D~107>. If M becomes even larger normal
diffusion will take over. Equation (5.38) belongs to a class of equations which have
been studied, e.g. in the context of intense thermal waves by Zeldovich et al. and flow
through porous media by Barenblatt (1996) in the 1950s. The Miinch number M can
be removed by rescaling the time according to T = M, so when M is large we get

(5.38)



388 K. H. Jensen, E. Rio, R. Hansen, C. Clanet and T. Bohr

very slow motion with a time scale growing linearly with M. Equation (5.38) admits
scaling solutions of the form

o B
cx.t) = () @@ with &=x () (5.39)
as long as « + 28 + 1=0. The total amount of sugar is, however, conserved. In our
rescaled units

1
/ C(X,7)dX = 2, (5.40)
0

where, as before, 4 is the fraction of the tube initially containing the sugar. We can
only hope to find a scaling solution in the intermediate time regime, where the precise
initial condition has been forgotten, but the far end (X =1) is not yet felt. Thus we
can replace integral (5.40) with

/ CX,t)dX =1 (5.41)
0
which implies that « =8 = — 1/3 and
T \—1/3 . T \—1/3
C(X, 1) = (M) @) with £€=X (M) . (5.42)

Inserting this form into (5.38), we obtain the differential equation for @

252
Lo 1dEe) _

4
2de? T3 de (5:43)
which can be integrated once to
do 1
@E + gSCD = constant. (5.44)

Due to the boundary condition dC/90X = 0 in the origin, the constant has to vanish
and we find the solution

P(E) = (&) (545)

which is valid only for & smaller than the constant b. For & > b, @ is identically 0.
The fact that the solution — in contrast to the linear diffusion equation — has compact
support, is an interesting characteristic of a large class of nonlinear diffusion equations
(Barenblatt 1996). The value of b is determined by conservation integral (5.41) giving
Jo” ®d& =1, and thus b=(91)'°.

The final solution thus has the form

M T\ 1/3
o) - —(X;(x)P = X?) for X<Xf(t):(9lﬁ> 546

0 for X > X¢(7)

which shows that the sugar front moves as X ;(z) ~ ' and the concentration at the
origin decays as C(0, )~ t~"/?. To check the validity of this solution, also when the
initial condition has support in a finite region near the origin, we plot (z/M)*C(X, 1)
against £ = X(t/M)~'/3 in figure 9(c). The corresponding solution for U is found from
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FIGURE 9. (a) Numerical simulation of (5.38) compared with (b) scaling solution (5.46) and
(¢) (5.45), which is shown as a dashed line. The initial condition has the form C(X,0)=
1 —[14+exp(—(X —2)/e)]"!, where 2=0.1 and € =2 x 10~2 and the curves are equidistant in
time. When 4 controlling the size of the region of non-zero initial sugar concentration becomes
larger, a more accurate scaling solution is found by letting T — 7 4+ 19 and treating 7y as an
unknown parameter. In (c¢), we have omitted the first curve (the initial condition).

(5.35) as

X
— for X < Xy(7)
UX,7)=4 37 (5.47)

0 for X > X /(1)
and 3°U/3X? =0 justifying the neglect of 92U /dX? in going from (4.9) to (5.35) for
large M. It is seen that the velocity of the sugar front X', (z)=(4/(3M))' =2/ is
identical to U(X (), t) from (5.47).

6. Comparison between theory and experiment

In §§2.2 and 3.2, we have presented experiments demonstrating the movement of a
sugar solution inside a membrane tube surrounded by a reservoir of water. We now
wish to consider whether the theory is in agreement with the experimental results.

6.1. Set-up I

The plot in figure 10 shows the relative front position, (L — x;)/(L —[), plotted
against time for five different experiments conducted with set-up I. The numbers 1-5
indicate the sugar concentrations used (cf. table 2). One clearly sees, that the relative
front position approaches zero faster for high concentrations than for low. Typical
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FiGUre 10. (a) Experimental (black dots) and fits to (5.22) for the relative front position
versus time, shown as dashed lines. (b) Semi-logarithmic version of (a).
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FiGURE 11. Our experimentally obtained values of #, plotted together with the results found
by Eschrich et al. (1972). Data points marked with an ‘a’ represent results from closed tube
experiments and points marked with a ‘b’ represent results from semi-closed experiments taken
from figures 8 and 9 of the original paper.

values of M and D are M ~10~% and D ~ 1073, so it is reasonable to assume that
we are in the domain where the analytical solution for M =D =0 is valid. To test
the result from (5.19) against the experimental data, the plot in figure 10 shows the
logarithm of the relative front position plotted against time. For long stretches of
time the curves are seen to approximately follow straight lines in good qualitative
agreement with theory. The dashed lines are fits to (5.19), and we interpret the
slopes as —1, the different values plotted in figure 11 against the theoretical values.

To
The theoretically and experimentally obtained values of 7, are in good quantitative
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FIGURE 12. (a) Experimental data obtained using set-up II showing the relative front position
(black dots) as a function of time. (b) Lin-log plot of the experimental data shown on the left.
The solid line is a fit to (5.22) with ro=1.6 x 10°s.

agreement, within 10 %-30 %. Generally, theory predicts somewhat smaller values
of fy than observed, implying that the observed motion of the sugar front is a little
slower than expected from the pressure-flow hypothesis. Nevertheless, as can be
seen in figure 11 these results are a considerable improvement to the previous results
obtained by Eschrich et al. as we find much better agreement between experiment and
theory.

6.2. Set-up 11

The plot in figure 12 shows the relative front position, (L — x7)/(L — I), plotted
against time for the experiment conducted with set-up I. On the semi-logarithmic
plot, the curves are seen to follow straight lines in good qualitative agreement with
the simple theory for M =D =0. As can be seen in figure 11, we also found very
good quantitative agreement between the experiment and theory for set-up II.

To test how well the motion of the sugar front observed in the experiments with set-
up II was reproduced by our model, we solved the equations of motion numerically
starting with the initial conditions from figure 5. For M = D =0, the results are shown
in figure 13(b). While the front positions are reproduced relatively well, the shape
of the front is not, so diffusion must play a role. This can be seen in figure 13(c)
which shows the result of simulation with M =107, D=6.9 x 10! m?s~!. Clearly,
the model which includes diffusion reproduces the experimental data significantly
better.

To study the shape of the front in greater detail, consider the plots in figure 13(d—f).
Here the gradient of the concentration curves on the left in figure 13 is shown. In
figure 13(d) we clearly see a peak moving from left to right while it gradually broadens
and flattens. In figure 13(e) also we see the peak advancing, but the flattening and
broadening is much less pronounced. In figure 13(f) we see that the model which
includes diffusion reproduces the gradual broadening and flattening of the front very
well.

7. Conclusion

In this paper we have studied osmotically driven transient pipe flows. The flows
are generated by concentration differences of sugar in closed tubes, fully or partly
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FiGURE 13. Results from set-up II showing the experimental data (a,d) and the numerical
model for M =D =0 (b, e) and for M=10"°, D=6.9 x 10~ m? s7! (c, f).

enclosed by semi-permeable membranes surrounded by pure water. The flows are
initiated by a large concentration in one end of the tube and we study the approach
to equilibrium, where the sugar is distributed evenly within the tube. Experimentally,
we have used two configurations: the first is an updated version of the set-up of
Eschrich et al. where the flow takes place in a dialysis tube and the sugar is followed
by introducing a dye. The advantage is the relatively rapid motion, due to the large
surface area. The disadvantage is that the sugar concentration cannot be inferred
accurately by this method and for this reason we have introduced our second set-up,
where the sugar concentration can be followed directly by refraction measurements.
On the theoretical side, we first re-derive the governing flow equations and introduce
the dimensionless Miinch number M. We then show that analytical solutions can be
obtained in the two important limits of very large and very small M. In the general
case we show how numerical methods based on Green’s functions are very effective.
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Finally, we compare theory and experiment with very good agreement. In particular
the results or the velocity of the front (as proposed by Eschrich et al.) can be verified
rather accurately.

Concerning the application to sap flow, the quantitative study we performed leads
to the following conclusions: for a large tree it seems improbable that sugar transport,
e.g. from leaf to root by this sole passive mechanism would be sufficiently efficient. In
this case active transport processes might play an important role. On the other hand,
transport over short distances, e.g. locally in leaves or from a leaf to a nearby shoot
might be more convincingly described by the pressure-flow hypothesis.

It is a pleasure to thank Francois Charru, Marie-Alice Goudeau-Boudeville, Herv
Cochard, Pierre Cruiziat, Alexander Schulz, N. Michele Holbrook and Vakhtang
Putkaradze for many useful discussions. Much appreciated technical assistance was
provided by Erik Hansen. This work was supported by the Danish National Research
Foundation, Grant No. 74.

Appendix A. Materials: sugar and membrane

A.l. Sugar
The sugar used was a dextran (Sigma-Aldrich, St Louis, MO, USA, type D4624)
with an average molecular weight of 17.5 kDa. The dye used was a red fruit dye
(Flachsmann Scandinavia, Red Frugtfarve, type 123000) consisting of an aqueous
mixture of the food additives E-124 and E-131 with molecular weights of 539 Da
and 1159 Da, respectively (PubChem-Database 2007). Even though the molecular
weights are below the MWCO of the membrane, the red dye was not observed to
leak through the membrane. This, however, was observed when using another type of
dye, Methylene blue, which has a molecular weight of 320 Da.

A.2. Membrane

The membrane used in both set-ups was a semi-permeable dialysis membrane tube
(Spectra/Por Biotech cellulose ester dialysis membrane) with a radius of 5mm,
a thickness of 60um and a MWCO (molecular weight cut off) of 3.5kDa. The
permeability L, was determined by applying a pressure and measuring the flow rate
across the membrane

L,=(1.8+0.2) x 10 *m (Pas) . (A1)

A.3. Osmotic strength of dextran
Figure 14(left) shows the relation between dextran concentration and osmotic pressure
found from the experiments shown in figure 3. A linear fit gives
IT = (0.1 +0.01 bar mM™')c (A2)

where IT has unit bar, and ¢ is measured in mM. This is in good agreement with
values given by Jonsson (1986).

Appendix B. Numerical methods for non-zero M and D
For non-zero values of M and D, the equations of motion,
32U aC
MU

- = _— B1
X2 X (B1)
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FiGURE 14. van’t Hoff relation for 17.5 kDa dextran.

and

aC 9dCU - 93*C
— 4+~ =D— B2
0T + X dX2 (B2)

cannot be solved analytically. However, they can be written as a single integro-
differential equation, which is straightforward to solve on a computer. If we choose
a set of linear boundary conditions, By [U] =a;, for (B 1), the solution can be written
as

! aC
U= /O G(X, g)gdg + U,. (B3)

Here, G(X, &) is the Green’s function for the differential operator 92/9X? — M with
boundary conditions Bx[U] =0 and U, fulfils the homogeneous version of (B 1) with
By [U] =a;. Plugging this into (B 2) yields

aC 9 ! aC _92C

For the closed tube, i.e. for the boundary conditions U(0, 7)=U(1,7)=0, G(X, §) is
given by
sinh(a(l — X))
~ asinha
sinhaX
~ asinha

and U,=0. To increase numerical accuracy, it is convenient to transform (B4) by
defining

sinhaé for & < X,

G(X,§) = (BS)

sinh(a(1 —&)) for & > X,

of . -
S =Cc-¢ (B6)

and choosing f(0)= f(1)=0 such that f(X)= fOX(C — C)dg. Inserting in (B4), we

get
of _ L 0f OK(X. ) of -
5= Py (0= [ e ) (Fre) @)
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FIGURE 15. Results of numerical simulation of (B4) using the boundary conditions U(0, 7) =
U(1, t)=0 for different values of M. D is kept constant at 10~>. The initial condition was
C(X,0)=1—1/(1 +exp(—(X — 1)/€)) where 1=0.2 and € =2 x 107,

where
sinh(a(l — X)) .
IK(X, &) _ — ‘ hsinha sinhagfor & <X, (B8)
& __sin aX . B
a= sinh(a(l —&)) for & > X.

To solve (B7) we used MATLARB’s built-in time solver ode23t which is based on an
explicit Runge-Kutta formula along with standard second-order schemes for the first-
and second-order derivatives. For the spatial integration, the trapezoidal rule was
used (Press 2001). Results of a numerical simulation for different values of M are
shown in figure 15.
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Plants require effective vascular systems for the transport of water and dissolved molecules
between distal regions. Their survival depends on the ability to transport sugars from the
leaves where they are produced to sites of active growth; a flow driven, according to the
Miinch hypothesis, by osmotic gradients generated by differences in sugar concentration.
The length scales over which sugars are produced (Lj..r) and over which they are transported
(Lgtem), as well as the radius r of the cylindrical phloem cells through which the transport
takes place, vary among species over several orders of magnitude; a major unsettled question
is whether the Miinch transport mechanism is effective over this wide range of sizes. Optimization
of translocation speed predicts a scaling relation between radius rand the characteristic lengths
as 7~ (Ljear Lstcm)l/ 3. Direct measurements using novel in vivo techniques and biomimicking
microfluidic devices support this scaling relation and provide the first quantitative support for
a unified mechanism of sugar translocation in plants spanning several orders of magnitude in
size. The existence of a general scaling law for phloem dimensions provides a new framework
for investigating the physical principles governing the morphological diversity of plants.

Keywords: phloem transport; sugar translocation; microfluidics; biomimetics;
osmotic pumping
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1. INTRODUCTION

Vasculatures of plants and animals are among the most
elegant and complex of microfluidic systems. In plants,
xylem transports water from soil to leaves, while
phloem distributes the products of photosynthesis
throughout the plant. Flow generation in both systems
occurs in the absence of any mechanical pump. Xylem
flow is generated by evaporation and driven by tension
gradient in the vessels [1]. The physics of transport
under tension creates a safety—efficiency optimization
problem that constrains the design of xylem vessels [2].
The mechanism driving phloem transport is believed to
be the movement of water via osmosis in response to the
loading and unloading of sugar in different parts of the
plant and sustained along the tubes by continuous
maintenance of the osmotic gradient across the per-
imeter of the phloem tube, as shown in figure 1 [3,4].
Phloem operates under positive pressure and the
assumed mode of its generation results in the delivery
of sugars being controlled by their loading and unload-
ing rates [5,6], rather than by the velocity of the flow.
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"These authors contributed equally to the study.

Received 20 October 2010
Accepted 21 December 2010

However, phloem distributes hormonal and signalling
molecules that allow for the integration of distal parts
in lieu of a designated nervous system [7,8]. This
additional signalling task could result in the selection
pressure to optimize translocation velocity by providing
plants with the ability to respond rapidly to environ-
mental perturbations [9]. Here we ask if phloem is
indeed optimized for speed. Further, we investigate if
a single scaling law can describe the design principles
of phloem tubes governing the speed of translocation
given the wide range of length scales existing in
nature. Phloem tube radii range from 1 to 40 pm,
their length from 0.01 to 100 m, with transport
velocities from 0.01 to 1 mh™" [10-12].

Studies of long-distance transport in plants are
inherently difficult because the fluxes are intracellular,
protected by physical barriers [13] or biological activity
(e.g. forisomes and p-proteins [14,15]), and occur under
large tensions or pressures [16]. In principle, these pro-
perties require in vivo approaches, which are prone to
methodological challenges. However, recent biomimetic
approaches have helped answer long-standing questions
regarding water transport in the xylem [17] and to
resolve optimization laws governing the placement of

This journal is © 2011 The Royal Society
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Figure 1. (a) Schematic of a plant in which sugar and signal-
ling molecules travel from sources, e.g. leaves, to places of
storage and growth, e.g. fruits or roots. In our model, the
plant is divided into three zones, a source/loading zone of
length §; (the leaf; 0 <z< ), a translocation zone of
length & (the stem; 2; < < 1,) and a sink/unloading zone
of length & (the root; m < z < x3). (b) Diagram of how the
Miinch flow mechanism is thought to drive sugar transloca-
tion in plants. The surfaces of the cylindrical phloem cells of
radius r are covered by a semi-permeable membrane. Sugar
loaded actively into the cells at the sugar source draws
water by osmosis from the surrounding tissue, thereby gener-
ating flow as the sugar solution is displaced downstream.
(Online version in colour.)

veins within leaves [18], both processes being part of the
transpiration stream [1]. Progress in the fabrication of
microfluidic devices has made it possible to mimic
phloem transport [19], providing a physical model to
test Miinch theory [20]. Here, we use synthetic phloem
to resolve design properties underlying the delivery of
photoassimilate and chemical signals between distal
plant parts and to provide a mechanistic basis for the
implementation of our mathematical model of phloem
function.

Many of the published models of phloem transport
incorporate details of sugar loading and unloading (e.g.
[21-24]). In contrast, our goal was to study a simplified
model, which agrees with the general trends previously
reported, but which due to its simplicity lends itself to a
scaling analysis. To determine if real plants follow the
scaling relation predicted by our mathematical model,
we examined phloem dimensions and transport velocities
in real plants using a novel, non-invasive, dye-tracing
method that offers a significant improvement to the pre-
viously used techniques such as traditional dye tracing
[25], biomass accumulation [26] or tracing radioactive
carbon [27], while accommodating a broader range of
plant materials than magnetic resonance imaging [12].
We also compared published data on sieve tube radii
with the optimal radii calculated from our model.

2. MATERIAL AND METHODS

To study osmotically driven flows in microchannels, we
designed and fabricated a microfluidic system consisting
of two layers of 1.5 mm thick polymethyl methacrylate
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(PMMA) separated by a semi-permeable membrane
(Spectra/Por Biotech cellulose ester dialysis membrane,
MWCO 3.5kDa, thickness 40 wm), as shown in
figure 2a. Channels of length 27 mm, width 200 pwm and
depth h=100-200 pm were milled in the two PMMA
layers using a MiniMill/Pro3 milling machine [19]. The
top channel contains partly the sugar solution and
partly pure water, while the bottom channel always con-
tains only pure water. Inlets were produced by drilling
800 wm diameter holes through the wafer and inserting
brass tubes into these. By removing the surrounding
material, the channel walls in both the top and bottom
layers acquired a height of 100 wm and a width of
150 pm. After assembly, the two PMMA layers were posi-
tioned such that the main channels in either layer were
facing each other. Thus, when clamping the two layers
together using four 10 mm paper clamps, the membrane
acted as a seal, stopping any undesired leaks from the
channels as long as the applied pressure did not exceed
approximately 100 kPa.

The top channel was connected at one end to a
syringe pump (NE-1000, New Era syringe pump, NY),
which continuously injected a solution of water, dextran
(17.5kDa, Sigma-Aldrich) 1 pm polystyrene beads
(Sigma-Aldrich, L9650-1ML, density 1050 kg m %) into
the channel at flow velocities of 2—4 wms™'. At the
other end, the channel was left open with the outlet termi-
nating in an open reservoir. Both ends of the lower ‘pure
water’ channel were connected to this reservoir to mini-
mize the hydrostatic pressure difference across the
membrane and to prevent axial flow in this channel.
The flow velocity inside the upper channel was recorded
by tracking the motion of the beads. Image sequences
were recorded at different positions along the channel
using a Unibrain Fire-i400 1394 digital camera attached
to a Nikon Diaphot microscope with the focal plane at
h/2 and a focal depth of approximately 10 wm. The flow
behaved as if it were pressure-driven and the standard
laminar flow profile was used to determine the average
flow velocity [19].

To determine rates of phloem transport in vivo, an aqu-
eous solution (100mgl™") of 5(6)-carboxyfluorescein
diacetate was placed onto gently abraded upper leaf
epidermis from where it was loaded into the phloem by
the plant (figure 2b) [28,29]. We tracked the dye, as
it moved in the phloem of petioles or stems, by photo-
bleaching flow velocity techniques that were previously
used in microfluidic systems [30,31]. However, these
single-detector techniques required modification to
accommodate measurements on living plant tissues (low
velocities, tissue light scattering and absorption, the
need to maintain favourable growth conditions). We
used two solid-state, high-gain photodiodes (SED033
used with IL1700 Research Radiometer, International
Light Technologies) separated by a known distance to
determine travel time of the photobleached pulse. The
photodiodes were connected to the stem/petiole via
bifurcated, 4 mm diameter optical fibres to obtain a suffi-
cient signal-to-noise ratio despite extremely low light
intensities. Excitation light was delivered via 490 nm
short-pass filters (Omega Optical, USA), while photo-
diodes were fitted with 510 nm long-pass filters (Omega
Optical). Excitation light was generated by narrow
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Figure 2. (a) Microfluidic set-up. (i) Picture of the microfluidic device used to biomimic the phloem transport system. (ii,iii) Sche-
matic of the microfluidic device. Two microchannels are in osmotic contact through a semi-permeable membrane. One, the
bottom channel, remains filled with pure water while the other contains a sugar solution injected slowly at one end by a syringe
pump. (iv) Close-up showing the flow mechanism driving sugar translocation in the microfluidic system. (b) Sketch of the set-up
used to determine phloem flow rate in tomato petioles. (¢) Comparison of flow velocities in a 1.19 mm diameter glass capillary
determined by our photobleaching technique and by a standard mass flow-rate technique (filled circles, measurements; thin line,
regression; dashed line, 95% confidence interval; thick line, one to one relation). (d) Two consecutive measurements of the relative
intensity I of the fluorescence versus time ¢ detected by the two photodiodes shown in (b). The flow velocity u is determined by
measuring the traversal time between the two diodes, marked by arrows (A,B), of a minimum in / induced by photobleaching of
the dye using a short (less than 30 s) laser pulse. The inset shows 01/9t versus time; the intensity minima (indicated by arrows
(A,B)) are given by 91/0t = 0 (black circles, sensor 1; grey circles, sensor 2). (Online version in colour.)

band blue diodes (470 nm, Roithner LaserTechnik
GmbH, Switzerland). Fibres were attached to the plant
through custom-made, light-tight clips. A bleached
pulse was produced ahead of the detection system by a
20 mW laser of wavelength 473 nm (Dragon Laser,
China) as sketched in figure 2b. All filters and laser par-
ameters were chosen to accommodate properties of the
5(6)-carboxyfluorescein diacetate dye.

The set-up was tested by comparing flow velocity
determined by photodetection with values u= Q/
(27r%) obtained from volume flow rate @ as measured
by a microbalance (Sartorius 210DX +0.01 mg) and
the radius r of the capillary tube (figure 2¢). We gener-
ated velocities from 20 to 1000 pms ™', similar to the
measured in vivo phloem velocities. The signal output
is Gaussian-shaped, figure 2d, due to the convolution
of the 4 mm wide detection window (set by the optical
fibre diameter) and the internal dispersion-widened
bleaching pulse combined with light scattering in the
plant tissues. Thus, the flow velocity u was determined
by measuring the traversal time between the two diodes
of a minimum intensity of fluorescence following the
photobleaching of the dye using a 30s laser pulse.

J. R. Soc. Interface

The same procedure was used on the plants
(figure 2d). We note that the technique is independent
of dye loading rate and tissue light properties.

3. RESULTS

In plants, phloem transport initiates in the leaves,
where sugar is actively loaded into sieve tubes, and
ends in growth or storage zones, where sugar is
unloaded. We may think of the plant aligned with
r-axis as being divided into three zones: (i) a loading
zone (0<z<uz) of length =z (essentially
the length of the leaf); (ii) a translocation zone (z; <
z< 1) of length L=z, — z; (essentially the length
the plant, typically much larger than ); and (iii) an
unloading zone (1, <z <a3) of length 3= 123 — 2,
where the sugar is consumed (figure 1; table 1). The
flow rate through a phloem tube depends on the osmo-
tic driving force, the radius r of the tube, its length
and the effective viscosity m of the fluid including the
effect of sieve plates [6,32]. The most important charac-
teristic of this relation is that, fixing all other parameters,
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Table 1. Nomenclature.

value and/

parameter symbol  or unit
length z m
viscosity n Pas
membrane permeability L, ms ' Pa”!
length of leaf Ly Lieat m
length of stem b, Lgem m
length of root A m
radius of phloem tube r m
optimal radius Te m
water flow through tube wall J ms
pressure P Pa
osmotic flow velocity scale U ms
Miinch number Mii dimensionless
leaf to stem length ratio @ dimensionless
dimensionless sugar B dimensionless
concentration gradient
in root
volume flux Q m?s™!
gas constant R m*PaK ' mol ™’
temperature T K
wall resistance Ry Pam ®s
tube resistance Ry Pam *s
velocity u ms '
dimensionless velocity v dimensionless
dimensionless length ¢ dimensionless
dimensionless concentration s dimensionless
height of channel h m
intensity of fluorescence 1 arb. units
time t S

it is non-monotonic in r giving maximal flow rate at a par-
ticular value denoted ... This is easily understood since the
behaviour for large and small r is strongly dependent on
the ratio of the resistance of the flow in the channel to
the resistance (or the inverse of the permeability L)
across the semi-permeable membrane, a non-dimensional
quantity we call the Miinch number Mii [33],

1Ly, 5
3

Mii =16 : (3.1)
For wide tubes (Mii < 1) there is essentially no vis-
cous pressure gradient along the tube, but the efficacy
of the osmotic pump is small. On the other hand, for
narrow tubes (Mi>> 1), where the osmotic driving
force is strong, the viscous pressure gradient in the
tube becomes important and the flow is impeded.

The water flow .J across the membrane of the tube at
position z is determined by the local difference ¢(z) in
sugar concentration and in pressure p(z) across the
membrane. In a tube at temperature 7,

J(z) = Ly[RTe(x) — p(z)] (3:2a)

and together with conservation of fluid volume, this
leads to the Miinch equation for the gradient of the
velocity u(z) in the translocation zone

Ju 2L,

% r for m; <z < ay. (3.2b)

Here, we assume ideality of the sugar solution, a
semi-permeable membrane with unity reflection
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coefficient, and slow flow velocities relative to trans-
verse diffusion such that radial gradients are weak.
Also, we are assuming that the external pressure and
concentration do mnot vary—aside from hydrostatic
pressure differences owing to height variations. This is
clearly a strong simplification since of course the
phloem flow is not independent of the state of the
xylem. However, all of our phloem flow measurements
were conducted under low-light thus minimizing
transpiration-induced gradients in xylem pressure [12].
The neglect of external variations in the sugar concen-
tration is partly due to the way our model is
formulated, since the strong variations in concen-
trations between leaf and root are modelled as
internal variations in the tube.

The pressure gradient for such slow flows is given by
the Hagen—Poiseuille—Darcy relation

dp 81

Jr (rz) "
valid even taking into account the radial, osmotic
inflow [34,35]. We verified (figure 3a) the description
(3.2a)—(3.2¢) of osmotic transport by comparing
measurements of osmotically driven flows through
microfluidic channels (described in detail in [19])
with analytical solutions of the flow problem in the
limit Mi < 1 (see appendix A), under the boundary
conditions of a fixed concentration and velocity at z;
and a fixed pressure (p=0) at 2», boundary con-
ditions used in previous experimental studies [36,37].
Fabrication of devices working in the limit Mi > 1
is difficult owing to the properties of currently avail-
able artificial membranes, channel lengths and
bonding burst pressures, and we have not been able
to realize this limit.

To examine how velocity scales with the full range
of radial and axial phloem dimensions found in plants
we formulated a simple model (see appendix A for
further details), which gives a complete overview of the
concentration and velocity profiles as a function of M
and the relative size of the loading, translocation and
unloading zones. In this analysis, the loading zone is
characterized by a constant sugar concentration c(z) =
Cop, 1.e. Oc/Ox = 0, such that equation (3.2) becomes

(3.2¢)

ou_ 2L,0p 16nL,
o2

u(z),

i for 0 < z < mx,
r Ox T

(3-3)

with the boundary condition u(0) = 0, i.e. a vanishing vel-
ocity at the beginning of the loading zone. Here, we have
taken the derivative of both sides of equation (3.2b) in
order to eliminate the pressure gradient using equation
(3.2¢). In the translocation zone, the flux ¢(z)u(z) of sugar
is conserved and equal to cyu(z;), where ¢ is the loading
concentration and u(x;) is the velocity at the entrance
of the translocation zone. This leads to an equation of
the form

82 r u? Oz r (@),

for 1 < z < m.

0*u 2L,RTeyu(m) Ou  16mL,
- —-— u

(3.4)
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Figure 3. (a) Flow velocity u(z) measured in 100 wm (white region) and 200 pm (grey region) deep and 200 wm wide micro-
channels. The dashed and solid lines are fits to equation (A 4). The sugar concentrations used are 21 mM (open circles) and 13
mM (filled circles). The horizontal error bars indicate the resolution of the microscope stage, while the vertical error bars were
obtained via least squares error propagation from the velocity profile. (b) Numerically computed mean velocity @ (dots connected
by lines) as a function of radius r assuming L, =5 X 107" m (Pas)™!, 4 = (0.1, 0.25, 0.50) m, b= 1m, RTe, = 0.54 MPa, and
n="5x 107? Pas. The solid and dashed lines show the scaling laws for u predicted by equations (3.6) and (3.7), respectively.
These clearly show that @ grows as 72 for small 7 while it decays as 1/r for large 7. At the intersection between the two lines
given by equation (3.8) the transition between the two types of flow occurs and the velocity is at a maximum (filled circles with

solid lines, numerics; solid lines, M < 1; dashed lines, M > 1).

The unloading zone is characterized by a linear
decrease in the sugar concentration for x, <z < 3,
such that both the sugar concentration and the velocity
vanish at the end of the tube, ¢(1z3) =0 and u(z3) = 0.
This introduces a coefficient B = (k/c)(dc/0x),
which can be determined only when we know the con-
centration c¢(2,) at the entry of the unloading zone.
It can also be expressed in terms of the velocities at
the entry of the translocation and unloading zones
(equations (A 8a) and (A 8b)). In the unloading zone,
equation (3.2) for u thus becomes

o*u 2L,RTcy ,  16mL,
2= P )

for 2 < z < 3. (3.50)

Our analysis of these equations is carried out in
appendix A. An important simplification can be acheived
by non-dimensionalization, introducing a non-dimen-
sional length & (scaled by the length l of the plant) and
a non-dimensional velocity v scaled by the naive osmotic
velocity U = (2h/r)L,RTcy and a non-dimensional
concentration s scaled by cy. This gives

OFv = Ogs + Miiv, (3.5b)

where the dimensionless Miinch number M is given by
equation (3.1).

This analysis gives us a complete overview of the
concentration and velocity profiles as a function of
Mii. Of special interest is the mean velocity @ in the
translocation zone, which sets the transit time from
one end of the plant to the other. In the limit of very
wide tubes, the bulk of the resistance lies in the trans-
port of water across the membrane in the loading and
unloading zone with a resistance Ry = (277l L,) .
Writing the volume flux Q= am® as Q= Ap/R,,
with Ap = RTcy, we find that the average flow velocity
is w~ RTcyLyli/r. A more thorough analysis of
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the problem, assuming for simplicity that =1,
shows that

Teo L
az(ﬁ—ﬁ%h, for Mii < 1. (3.6)

See appendix A for the full derivation, including a
discussion of the case I3 # [;. In the opposite limit of
very narrow tubes (Mii>> 1), we can argue in the fol-
lowing way: water moving in the system faces three
barriers. First, it must pass across the membrane in
the loading zone. Then, it has to move along the
length of the tube before finally escaping the tube
across the membrane in the unloading zone. The first
and last of these three resistances are proportional to
1/r, while the middle part scales as 1/r*. Thus, for
very small 7, the resistance in the tube
Ry = 8l (") ™! will dominate, giving @ = RTcomr/
(8ml), and we find an average flow velocity

%r2, for M > 1.
87][2

U= (3.7)

Figure 3b shows the numerical simulations on the full
system of equations with the two expressions (3.6) and
(3.7) shown as dashed and full lines, respectively. The
radius (r.) yielding the maximum velocity can be esti-
mated as the intersection of these two curves, giving
M oc lg / l] or

o= [8(v3-1) i) Ppegs. @)

Under the assumption that swift translocation of the
phloem provides a competitive edge, it would thus be
desirable for plants to have sieve tube radii close to
the value 7. predicted by equation (3.8).

To explore the design constraints facing the long-
distance transport in phloem, and to determine if real
plants follow the scaling relation described by equation
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Figure 4. (a) In vivo determined phloem flow rates (black dots) in petioles (one stem) of six species plotted as a function of
phloem radius as later determined on the same plant material. The velocities vary as much as 2.5 orders of magnitude, from
3pms ' (0.0l mh™Y) in T wirginiana to 150 pms~" (0.6 mh™") in Solanum lycopersicum. The model predictions (grey dots)
calculated from equations (3.5)—(3.7) agree well with the observed data. The error bars indicate the mean and standard errors
of N= 3-8 measurements. (b) Log—log plot of };, versus measured radius r (black dots) for 20 plants of sizes ranging from r=
1 pm (7. virginiana) to r= 40 pm (Cucurbita pepo) and b = 0.1 m (1. virginiana) to b =40 m (Robinia pseudoacacia). The
prediction of equation (3.8) (thick black line) with parameters L, =5 x 10~ m (Pas) ' and =5 x 10"* Pas (kinematic
viscosity = 1.85 x 10~ *, sieve plate factor = 2.7) is plotted along with the best fit to the plant data (dashed line, slope
2.6 +0.3), showing that the scaling relationship predicted by equation (3.8) falls within the 95% confidence interval
(dotted lines). The error bars indicate the standard error in the radius r and lengths [; and k. See table 2 for further details

on the species used.

(3.8), we examined phloem dimensions and transport
velocities in real plants in petioles or stems of six species
using our novel, non-invasive, dye-tracing method.
Results, figure 4a, show that phloem velocities vary as
much as a factor of 50, from 3 pms~" (0.0l mh™ ") in
Tradescantia virginiana L. to 150 pms™ (0.6 mh™)
in Solanum lycopersicum L., values consistent with the
range of velocities reported using other techniques
[10,12]. Comparison of velocities measured in plants
with the prediction of the proposed model, figure 4a
and equation (A 22), shows that the model reproduces
the observed velocities across a wide range of species
thus validating the proposed assumptions. The agree-
ment between in vivo measurements (figure 4a) and
theory derived from the analysis of osmotic-driven flow
in synthetic channels (figure 3a) suggests that phloem
flow rates are controlled by the same physical principles
in plants as in biomimicking devices—at least in the
low Mq4i limit, to which our microfluidic devices are so
far limited—despite the anatomical complexity present
in the living systems [38].

The proposed scaling law allows for the calculation of
a speed-optimized radius when both loading zone and
translocation length are known. Thus, we compared
published data on sieve tube radii with the optimal
radii calculated from equation (3.8) using leaf size as
the proxy for the loading and unloading zone (/) and
plant length as the proxy for the translocation
length (k). The plant selection consisted of a diverse
range of species, encompassed 2.5 orders of magnitude
in length, and included small rosettes, grasses, vines
and trees. We found good agreement between measured
radii and the scaling relationships of /; and /, predicted by
equation (3.8), indicating the widespread optimization of
phloem dimensions for rate of translocation, figure 4b.
Further, we found that the scaling pre-factor in equation
(3.8) agrees well with the predicted optimum radii using
published values of the membrane permeability L, and

J. R. Soc. Interface

the effective viscosity m. The effects of the increased
flow resistance owing to the flow through the sieve
plates are taken into account by multiplying the viscosity
1 = 1.85 mPas of a typical plant sugar solution [10] by a
so-called sieve plate factor, which typically is between 2
and 5 [6,29], for which we have assumed the value 2.7
thus arriving at the effective viscosity of 5 mPas used
in our simulations.

4. DISCUSSION

Plants are reliant on efficient and robust distribution
systems made of microchannels to transport water,
energy and signals over distances that range from only
a few centimetres to many tens of metres. Building on
the basic physical laws for osmosis, we have developed
a simple, generic model for osmotically driven flow in
a phloem tube with semi-permeable membranes at the
wall. A single scaling law based on optimization for
this theoretical translocation speed predicts phloem
dimensions relative to the lengths of the loading (leaf)
and unloading (root) zones and the translocation
distance (stem). The existence of this optimization
underscores the role of the phloem as a major informa-
tional pathway for molecular signal transduction across
the plant body. It also explains why a smaller plant
with large leaves (e.g. Cucurbita) may have larger
diameter sieve tubes than found in many trees.

We have shown that our simple model for phloem
translocation in plants leads to an understanding
of the dependence between the speed of phloem flow
and the characteristic dimensions of the plant. The
assumption that plants have evolved to optimize
their phloem speed then led us to a scaling relation
between radius r and the characteristic lengths as
ra (ALleafLstem)l/ 3 where the constant A (with dimen-
sions of length) is proportional to nL;, the product of
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the viscosity of the flow and the permeability of
the membrane, a prediction which is supported by
field-data from plants. It should be noted that the
optimization over the radius is done while fixing the
lengths Ligas and Lgem of the plant. The corresponding
optimal velocity can approximately be obtained by
inserting r = r., given by equation (3.8), into equation
(3.6) or (3.7), giving

Uopt = aR Ty L?)/Sqrfl/‘n’LQ/SLfl/3

leaf ~stem »

where a is a numerical constant. Thus an increase of
the leaf size (with fixed stem size) will lead to an
increase in the velocity, while an increase of the stem
size (with fixed leaf size) will lead to a decrease. We
thus assume that these external length scales are set
by other biological constraints such as the cost of
building, supporting and maintaining photosynthetic
surfaces.

The challenges faced by the phloem in moving
photo-assimilates over long distances led to the sugges-
tion that the axial pathway is compartmentalized into
‘relays’, such that solutes are actively reloaded at dis-
crete points [39]. Relays increase the rate of phloem
transport, but require additional inputs of energy.
Although no empirical evidence exists for relays, their
potential contribution to phloem transport has been
widely considered [32,40]. Our analysis, which uses the
length of the entire plant as proxy for b, is not consist-
ent with the presence of relays, suggesting that axial
compartmentalization is not a necessary design feature
for efficient phloem transport.

Plants, which span tens of metres and proliferate in
hundreds of cubic metres of soil and air, experience
diverse and often rapid fluctuations in environmental
conditions. To respond to such environmental hetero-
geneity requires the rapid distribution of both energy
and information in the form of chemical signals to
enhance plant productivity and competitiveness. The
phloem provides uninterrupted coupling between most
distal parts of all plants and links plants’ multi-
branched dendritic structure into a single functional
microfluidic system [41]. Concordance between our
theoretical model, studies of osmotically driven flow in
synthetic phloem, and measurements of flow and geo-
metric properties made on real plants gives confidence
in the Miinch theory of phloem flow and suggests that
plants are optimized for rapid translocation of sugar,
thereby gaining a competitive edge in terms of their
ability to respond rapidly to environmental stimuli.
Our analysis provides a general scaling law for phloem
dimensions that maximizes translocation velocity,
suggesting that evolutionary selection on the efficacy
of signal transduction has shaped the structure and
function of this supracellular transport pathway.

We thank Howard Stone and Matthew Thompson for
comments on the manuscript. This work was supported by
the Danish National Research Foundation (grant no. 74),
the Andrew W. Mellon Foundation and the Materials
Research Science and Engineering Centre at Harvard
University.
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APPENDIX A

Analysis of the Miinch equation (3.2b) is facilitated by
making it dimensionless using the following rescaling
of length, velocity and concentration:

2
= £EDb, u:Uvz(TprRTCO)v and ¢ =sq,

(A1)
whereby the non-dimensional Miinch equation
becomes

8§v:8§g+M{w, for 0 < £< §&. (A2)
The three zones are the loading zone

(0<€&< &) of length Ay = a=1/h, the transloca-
tion zone (& < ¢< &) of length Ay =1, and the
unloading zone (L <E< &) of length
/\3 = o= ll/ b

The zero-end-pressure phloem transport model. In
the literature (see [6] and references therein), the
correct choice of boundary conditions remains unclear,
primarily due to lack of knowledge of the exact physio-
logical processes in the loading and unloading zones.
This has led to a large class of models all based on
equation (A 2), but with widely different boundary
conditions. The method applied by most workers
has been to either ignore the loading and unloading
zones by setting simple conditions at the edges of
the translocation zone or to use specific loading and
unloading functions. A special case of these models
examined by Holttd et al. [40] is to set the pressure
at the end of the translocation zone to a fixed
value, say p=0. In the microfluidic experiments, we
have tested this limit experimentally, and we now
consider the solution to equation (A 2) under these
conditions.

In the microfluidic channel zone, here defined as 0 <
£ <1, equation (A 2) becomes

%:ﬂ—gg—?mv, for0<é<1, (A3a)
with the boundary conditions
v(0) = v (A3b)
and
p(1) =0. (A3c)

In the experiments Mii is very small, so combining
Mii= 0 with equation (A 3b) yields

w(&) = u/*(w + 29",

in good agreement with
(figure 3a).

The loading/unloading phloem transport model.
We now return to the more general three-zone
model of the phloem translocation pathway
(figure 1). We assume that the loading and unload-
ing zones are of equal size (I, =1I), that the
concentration ¢ is constant and equal to ¢, in the
loading zone and that the concentration profile is
linearly decreasing in the unloading zone. The quantity

(A4)

the experimetal results
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we wish to calculate is the mean flow velocity @ in the
translocation zone as a function of Mi and a=1/b.
The boundary conditions on the velocity v is that it is
zero at the boundaries,

o(0) = v(&) = 0. (A5)
In the loading zone, the concentration s is assumed to be
constant and equal to unity,

for 0 < &< §.

si(é) =1, (A6)

In the translocation zone, we have sugar flux conservation,

n(89(8) = s3(&)u(&) = w(éy), for & <E<é.

(AT)

In the unloading zone, we assume that the concentration
profile is linear and of the form

s3(8) = —B(é—- &), (A8a)

for § < &< &,

where B is determined from sugar conservation (A 6) and
(A7) in the translocation zone,

1)2(51)

== A8b
P& -8 (A0
The equations of motion are
82111 = Mijvy, for0<¢&<§, (A9a)
Bgvg = 7%8@2 + Miivy, for & < < &,
>

(A 9b)
and  Ofvs = —B+ Miivs, for & <&<§&. (A90)

Here, the indices on v indicate the domain to
which it belongs. These equations cannot be solved
analytically for arbitrary values of Mi and «; how-
ever, analytical solutions can be found in the limits
Mi<1 and Mi> 1. These analytical solutions
allow us to calculate the mean flow velocity @ as a
function of the parameters in the problem. Keeping,
say, l; and b fixed while varying the tube radius 7,
we find that the analytical solutions allow us to
determine the point in the parameter space
where the average translocation speed @ is at a
maximum.

Solution for Mii < 1. In this limit, the equations of
motion (A 9a)—(A 9c) are

Gu =0, for0<é<g, (A10a)
(9?11 = —vll()fl)(?gvz, for § < €< &, (A 100)
2
and Qs =—B, for & <é<g, (A10c)

J. R. Soc. Interface

with the boundary conditions v;(0) = 0 and vs( &) = 0.
The solutions can be written as

v1(§) = le-l- 02, (A lla)

Cu(E) w1 1+ (Gsw/u(§))
fm)="¢; L}l(a)*csbg( Evoa )%Cﬁ
(A11b)
nd (6=~ (€6

By demanding that the velocity and its derivative
should be continous at & =& and & =&, and that
a < 1, we find the six C coefficients above to be

(Cr, o, Gy, €y, s, Gy) = (2= V3, 0,1 =3, 0,

1-v3, /\1L1+\/§J/2).

(A12)
The mean velocity v is then
3-1 9—5V3 .
g V3oL, OfAf
2 8
~ 0.366 A; — 0.043 A%, (A13)

which in dimensional units for small values of Ay, i.e.
l; < b, becomes equation (3.6).
Solution for Mii>> 1. The equations of motion are

3?1)1 = Miiv,, for 0 < §&<§, (A lda)

82112 =— ”‘gl)am + Miivy, for & < <&
5
(A 140)
and 8203 = —B+ Miivs, for & < <&, (Alde)

with the boundary conditions v;(0) = 0 and v;( &) = 0.
In zones 1 and 3, the solutions are

v (§) = Ay sinhv Miié + Ay coshV Miig,
for 0 < €< ¢ (Alba)
and

v3(€) = Az sinhv/Mii(€ — &)

+ Ay coshV/Mii(¢— &) +%7 for § < €< §;.
(A 15b)

Here, A, =0 because of the boundary condition at
&= 0, while A3 and A, are determined by the continuity
condition on v and Jgv at &= &:

1
Az = m&f%(&) (A15¢)
and
_ B
A4 = Uz(fz) 7MU (A 15d)
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Figure 5. Comparison between analytical and numerical solutions of the non-dimensional phloem flow problem. (a) Numerically
computed velocity v (circles) as a function of position & for Mi =0, 1, 10, 100, & = 0.3, & = 1.3 and & = 1.6. The analytical
solutions for the velocity (solid lines) given in equations (A 11a—c), (A 15a,b) and (A 18) are shown for comparison. (b) Numeri-
cally computed concentration s (circles) as a function of position ¢ for the same parameters as in (a). The analytical solutions for
the concentration (solid lines) were found using the solutions for v given in equations (A 11a—c), (A 15a,b) and (A 18) and the
conditions given in equations (A 6), (A7) and (A 8a,b). Open circles, numerics; solid lines, analytics.

Table 2. Plant data used in figure 4 for phloem type P (primary = 1, secondary = 2). Sieve lumen radius r, translocation zone
length & (plant length), loading zone length [, (leaf size) and measured flow velocity are given with corresponding standard
deviations. The Miinch number Mi and the ratio //l were calculated using L, =5 X 107" ms 'Pa”!, n=5x10"% Pas.
Estimates of /; and [k, follow general knowledge of plants available at online databases (USDA plant database) and visits to the
Harvard University Herbaria. References are given in square brackets.

Ar b Al Al u Au
species habit P r(wm) (pm) (m) (m) (m) (m) (pms Y (wms™') Mi L/b
Beta vulgaris herbaceous 1 5.0 1.0 0.3 0.06 0.10 0.02 2.88 0.33
dicot [42-44]
Yucca flaccida woody 1 10.0[44] 2.0 1.0 02 05 0.1 4.00 0.50
monocot
Sabal palmetto tree 1 16.5[44] 1.7 20 4 0.5 0.1 35.6  0.025
monocot
Tilia americana tree dicot 2 15.0 [44] 1.5 20 4 0.10  0.02 474 0.0050
Robinia pseudoacacia tree dicot 2 10.0 [44] 1.0 40 8 0.030 0.006 6400 0.00075
Vitis vinifera vine 2 18.0[44] 4.0 20 4 0.10  0.02 274 0.0050
Gossypium herbaceous 1 11.0 [44] 2.2 1.5 03 015 0.03 6.76  0.10
bardadense dicot
Pinus strobus tree conifer 2 10.9 [45] 1.0 20 4 0.10  0.02 1240 0.0050
Festuca arundinacea  herbaceous 1 3.0 [46] 0.6 0.30 0.06 0.05 0.01 13.3  0.17
monocot
Cucurbita pepo creeper 2 40.0 [47] 8.0 70 14 030 0.06 3.06 0.043
dicot
Glycine mazx herbaceous 1 3.7% 1.0 040 0.08 0.10 0.02 145 46 12.6  0.25
dicot
Tradescantia herbaceous 1 1.2% 0.4 0.10 0.02 0.020 0.004 4.13 1.64 23.1  0.20
VIrgIniana monocot
Cucumis sativus creeper 1 6.3 14 0.60 0.12 0.10 0.02 149 54 5.76  0.17
dicot
Cucurbita mazima creeper 1 12.3% 2.7 4.0 0.8 020 0.04 629 48.4 34.4  0.050
dicot
Cucurbita mazima creeper 2 16.6" 2.6 4.0 0.8 020 0.04 482 29.3 14.0  0.050
dicot
Solanum herbaceous 1 5.2% 0.8 0.40 0.08 0.10 0.02 162 48 4.55 0.25
lycopersicum dicot
Anacyclus purethrum — herbaceous 1 2.1 [10] 0.6 0.30 0.06 0.010 0.002 38.9  0.033
dicot
Ecbalium elaterium creeper 1 15.0([10] 3.0 30 06 020 0.04 10.7  0.067
dicot
FEragostis plana herbaceous 1 3.0 [48] 0.6 0.2 0.04 0.10 0.02 593 0.5
monocot
Heracleum herbaceous 1 9.0 [49] 1.8 20 04 020 0.04 219 0.1
mantegazzianum dicot

“Refers to our own measurements.

J. R. Soc. Interface
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In the translocation zone, we shall solve the equation

821)2 _ Ulf}fl)
2

O0zvy + Miivy, for & < < &,

(A 16)

by assuming that v, can be written as v, = v/5/ Mii,
where vy is of the order of unity. Inserting this, and
keeping only terms of order Mii and Mii®, we get that

Miivy (&)0gvh = ). (A17)

Since we must have that v ( &) = v, (&), we get that

o v (&)
2(£) V1= 2Miv (§)(E- &)’

for § < E< §,.

Note that this solution does not fulfil the condition
Ozva(é)) = Ogu1(€&;). This is due to the fact that we
have ignored the term 8?1}2, However, this turns out
to play very little role when comparing the analytical
solution with the numerical solution of the full problem.
Using the continuity conditions at é= & and &= &,
the mean translocation velocity v in the translocation
zone is found to be

(A18)

1
V=g (A19)
which in dimensional units becomes equation (3.7).
Representative examples of numerical solutions for the
dimensionless velocity and concentration fields together
with the analytical solutions for small and large M7 are
shown in figure 5.
Different sizes of the loading and unloading zone. If
i # by, we find that for Mii> 1 the solution (A 19)
remains unchanged, while for Mi <1 the mean
velocity instead of equation (A 13) now is given by
@:%,\1( 1+2x—1), (A 20)
where y = A3/A;. Thus the scaling relations are not sig-
nificantly affected as long as y is of the order of unity.
Optimal radius of the phloem tubes. To maximize
the flow velocity, a plant would presumably operate near
the maximum in the u—r diagram shown in figure 3b.
Equating the two expressions (3.6) and (3.7) for @ in the
limits Mi < 1 and Mii>>1 gives the following estimate
for the optimal radius 7.:

75 =8(vV3 = 1) Lynhb. (A21)

Phloem translocation velocity. Figure 4a shows the
velocities @ measured experimentally (black circles)
using the method described in figure 2. To compare
our model with the experimental data, the non-
dimensional mean velocity v depending on M7 and «
was first calculated numerically from equations (A 5)—
(A 9¢) using the data for r and L shown in table 2.
Then, the dimensional mean velocity @ was found from

w(Mi, a) = Z—rl?LpRTc{ﬁ)(Mil, a), (A22)

J. R. Soc. Interface

with L, =5 x 10~ m (Pas) ™" chosen as the representa-
tive value and RT¢y = 0.54 MPa chosen to fit the model
to the experimental value for S. lycopersicum. These predic-
ted values for @ (grey circles) are also plotted in figure 3b
showing good agreement between theory and experiment.
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