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Abstract. An experimental investigation of the dynamics of 

double layers is presented. The experiments are performed in a 

Q-machine plasma and the double layers are generated by apply­

ing a positive step potential to a cold collector plate ter­

minating the plasma column. The double layer is created at the 

grounded plasma source just after the pulse is applied and it 

propagates towards the collector with a speed around the ion 

acoustic speed. When the collector is biased positively, large 

oscillations are obserced in the plasma current. These oscil­

lations are found to be related to a recurring formation and 

propagation of a double layer. The period of the oscillations 

is determined by the propagation length of the double layer. 

The current is limited during the propagation of the double 

layer by a growing negative potential barrier formed on the low 
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potential tail. Similar phenomena appear when a potential dif­

ference is applied between two plasmas in a Q-machine with two 

sources. In this case a stationary double layer forms in the 

plasma column, but the low potential tail is subject to "back 

and forth" oscillations leading to large amplitude current 

oscillations. 
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1. INTRODUCTION 

Double layers (DLs)1'2) in plasmas have found increasing 

interest in recent years. They consist of localized potential 

jumps which cause acceleration and reflection of charged par­

ticles. Many experiments in various types of laboratory plasmas 

have clearly shown the existence of DLs (see e.g. Sato3) and 

references therein). In our previous work4) we created a 

stationary DL in a magenetized plasma by applying a potential 

difference between two collisionless plasmas produced by surface 

ionization on hot plates in a Q-machine. The DL can attain an 

extremely large potential difference i.e. eA+/Te - 2xio
3, where 

A+ is the applied potential. Similar results were obtained by 

Torvén^) in an experiment where the potential difference was 

applied betw. n two discharge plasma sources. These were separated 

from the main plasma chamber by apertures in order to avoid 

ionization in the plasma by keeping the background pressure low. 

Strong DLs (eA+/Te>1) can also be produced by injecting an 

electron beam into a plasma6'9) due to the space charge effects 

of the beam. Furthermore, DLs were observed in discharge plasmas, 

where they were found to form from the anode sheath 1 0 - 1 1). How­

ever, in discharge plasmas with internal ionizations the DL po­

tential is limited by the ionization potential of the background 

gas4,12). i>he formation of DLs were also investigated in several 

computer simulations (see e.g. Smith13) and references tlerein). 

Most of the previous investigations have focussed on station­

ary DLs and comparatively few investigations were reported on 

their dynamics. The random generation of weak DLs with eA$/Te£l, 
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socalled ion acoustic DLs, in current carrying plasmas causes 

an effective electron scattering and gives rise to an anomalous 

resistivity as clearly demonstrated in recent computer simula­

tions 1* - 1^. Such structures seem to have been observed recently 

in the auroral plasma16) and are thought to cause the acceleration 

of the precipitating electrons. Oscillating DLs were also proposed 

as a candidate for causing flickering auroras17). Furthermore, 

recent observations of counterstreaming electron beams at an 

altitude of few earth radia above the auroral zone were explained 

in terms of fluctuating DLs 1 8). Finall* it was found exper­

imentally that the disruptions of DLs >.eld energetic tails in 

the ion distribution function and this is one of the important 

mechanisms for ion heating19). Therefore it is of importance to 

investigate the details of the stability and the dynamics of the 

DLs. 

Propagating DLs were observed in the positive column in connec­

tion with current limitations20). However, bec»:se of ionization of 

the background gas these DLs were disrupted and created randomly 

inhibiting a detailed study of the evolution. Moving DLs were also 

investigated in quiescent plasmas (e.g. Refs. 7, 21). In the exper­

iment of Coakley and Hershkowitz21) the stationary DL was made to 

propagate by abruptly increasing the plasma density in the region 

of the DL. The DL propagated from the region of high potential to 

the region of low potential with a velocity up to 3.S Cs 

(Cs is the ion acoustic velocity) depending on the potential 

jump, and the evolution corresponds to that of a finite ampli­

tude laminar electrostatic shock22). Leung et al.7) excited 

the moving DL by injecting a pulsed electron beam into the 
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plasma and the DL propagated from the low potential region 

towards the high potential region with a velocity around Cs. 

They explained the propagation of the DL by the fact that only 

in the frame of reference moving with the DL the ion velocity 

did satisfy the requirements needed for the formation of a 

stationary DL. Somewhat similar arguments were advanced by 

Bergeron and Wright23) and Singh24). In the results of Leung 

et al.7) we notice a broad negative potential well on the low 

potential side of the DL, which moves together with the DL. 

The moving DL is also related to oscillations in the electron 

current, however, no detailed investigations of this relation­

ship were presented. Singh and Schunk25) have performed a 

detailed investigation of moving DLs using a numerical simu­

lation and their results compare well with the observations of 

Leung et al.7) In particular they also find that the moving DL 

is accompanied by a negative potential well on the low potential 

tail of the DL. 

The dynamics of moving DLs are also important for the formation 

of stationary DLs. Iizuka et al.8) investigated the formation of 

a DL by injecting a pulsed electron beam. The DL evolved from 

the Pierce instability26) generated at the beam inlet and moved 

towards the plasma center as it saturated. The stationary DL then 

appeared as the saturated state of the Pierce instability (see 

also Ref. 27). Note that this behaviour contrasts the observa­

tions of Leung et al.7) where a stationary DL was not formed 

when the electron beam was pulsed. In the experiments by Sato et 

al.*) the formation process of the stationary DL was investigated 

by applying a potential pulse to one of the two plasma sources. 
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The DL was initially formed near the grounded source but subse­

quently it moved towards the high potential plasma and eventually 

stepped forming the stationary DL. The results of these investi­

gations also suggested the existence of a small potential barrier 

formed on the low potential side of the moving DL limiting the 

current through the system. The stationary DLs were accompanied 

by lo«r frequency potential oscillations localized on the low 

potential tail of the DLs. These fluctuations were responsible 

for an apparent broadening of the DL profile as obtained from 

time averaged measurements and were especially pronounced ior 

lower DL-potentials (£. 80 V). Similar fluctuations in the DL 

profile were also found in other experiments (e.g. Ref. 10-11). 

The present paper reports experimental investigations of the 

dynamical features of strong double layers in a nondischarge 

magnetized Q-machine plasma. The experiments are a continuation 

of the work on stationary DL formation reported in Ref. 4. Brief 

accounts of the results were reported previously28,29). we have 

clarified some feature of moving DLs as appearing in our exper­

iment by performing time resolved measurements30) 0f the evolution 

of the plasma potential, the ion and electron saturation currents. 

Our investigations are devided into two main parts: 

(i) Evolution of the DL when the Q-machine is operated with 

one source (single-ended) resembling the set up in Ref. 28. 

(ii) Evolution of the DL when the Q-machine is operated with 

two sources (double-ended) resembling the set up in Ref. 4. 

In the first case the plasma column is terminated by a cold 

collector plate of variable bias. When a positive potential pulse 
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is applied to the collector a DL is generated in front of the 

source and propagates towards the collector. The moving DL is 

accompanied by a negative potential barrier on the low potential 

tail which limits the current through the system. When a positive 

d.c. bias is applied to the collector it is known31) that there 

appears an instability which shows many features of a standing 

ion acoustic wave. We clarify the mechanism of this instability 

and find that it is caused by the dynamics of the negative poten­

tial barrier formed on the tail of the moving DL and an unstable 

sheath in front of the collector. 

In the second case we investigate the details of the DL forma­

tion when one of the sources is pulsed4). The behaviour is similar 

to the one in the first case except that the DL, which originally 

forms at the grounded source and propagates towards the biased 

source, stops a finite distance from that source. We further examine 

the low frequency oscillations on the low potential tail of the 

stationary DL as found in Ref. 4. We find that these oscillations 

appear as a "back and forth" motion of the low potential foot point 

of the DL. Like in the single ended case the evolution of the DL is 

closely related to the dynamics of a negative potential barrier. 

The plan of the paper is as follows: In Sec. 2 we describe 

the experimental set-up and the methods. The experimental results 

are presented in Sec. 3 both for the case with only one plasma 

source (3.1) and for the case with two plasma sources (3.2). 

Section 4 contains the discussions of the results and their rela­

tion to other works. 
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2. EXPERIMENTAL SET-UP AND METHODS 

The experiments were performed in the Risø Q-machine which 

was operated in either the double-ended or the single-ended 

mode 32). The set-up is shown schematically in Fig. 1. The plasma 

column is contained in a stainless steel vacuum vessel of 15 cm 

diameter. When the machine is operated double-ended the plasma 

is produced by surface ionization of cesium on two 3 cm - diameter 

hot tantalum plates (source 1 (Sj) at x=0 and scarce 2 (S2) at 

x=d=125 cm). In the single-ended operation Sj is replaced by a 

cold collector plate C (4 cm - diamater tantalum plate). In that 

case the length of the plasma column can be varied (10 cm < d < 

120 cm). The plasma is radially confined by a homogeneous magnetic 

field B = 0.4 T. In all cases the machine is operated in the 

electron rich condition^). The plasma density is 10? - 10^ cm~3, 

the electron and ion temperatures T^ » Te =• 0.2 eV, and the 

neutral background pressure is 10~4 Pa approximately. The mean 

free paths for collisions between charged particles and neutrals 

are much longer than d, and collisions are negligible. The plasma 

parameters are measured by an axial movable probe which functions 

as a usual Langmuir probe for measuring electron and ion satu­

ration currents or as an electron emissive probe for measuring 

the plasma potential. The probe consists of an 8 mm long loop 

of 0.1 mm diameter tungsten wire. In the emissive operation the 

probe is heated either by a direct current or by a pulsed current 

which is off during the measuring time^O). The floating potential 

of the emissive probe is used for determining the plasma potential. 

To measure this potential accurately the probe resistance must be 
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sufficiently large, i.e. much larger than the dynamical plasma im­

pedance. This method has, however, a limited time resolution due 

to the stray capacitances and the cable capacitances. We emphasize 

that it is the dynamical plasma resistance we have to use in deter­

mining the time resolution and not the probe resistance as er­

roneously stated in Ref. 30. The plasma resistance is given by the 

slope of the probe characteristic at the floating potential. For 

the present case with relatively low density we found it to be 

around 100 kQ giving a time resolution of around 0.1-1 msec. 

We therefore developed a method where the zero crossings of the 

probe currents, sampled at a given time, are detected. Then a com­

paratively low input resistance of IkQ can be used. This enables 

us to obtain a time response of the emissive probe system better 

than a couple of us, which is fast enough to measure the DL-dy-

namics. Time resolved measurements are performed by means of a 

usual box-car sampling technique. This method and the emissive 

probe are described in details in Ref. 30. Instead of using the 

analog zero-point detection as described in Ref. 30 the sampled 

probe signal is measured by an A/D-converter and monitored by a 

computer, which via a D/A-converter sweeps the probe voltage 

around the floating potential in order to keep track of the zero-

crossing all the time. "Time-averaged" potential profiles are ob­

tained by feeding the emissive probe signal directly into a xy-

recorder through a large resistance (100 MQ). 

To investigate the DL-dynamics we use three types of exper­

imental set-ups which are shown in Fig. 1. In the first set­

up the machine is operated in the single-ended mode with the 

source S2 grounded together with the vacuum chamber. The plasma 
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column is terminated by the cold collector plate C with variable 

potential, 0 V < Vc x, 100 V. The collector is heated to around 

700 K to prevent cesium coating, which changes the contact poten­

tial. First we measure the developments of the plasma potential, 

the electron, and ion saturation currents simultaneously, when a 

positive voltage pulse of short risetime (<< 1 |is) is applied to 

C at t=0. Next we applied a positive d.c. potential to C which 

gives rise to strong oscillations in the plasma potential and 

density. Simultaneous measurement of the plasma potential, the 

electron and ion saturation currents are performed during a 

period of the oscillations using the collector current as the 

triggering signal, and we clarified that the oscillations were 

related to the dynamics of a moving DL28*. 

In the second set-up we investigate the expansion of a plasma 

into the region between the grid G and the positively biased 

collector C. The grid G (Fig. 1) of 4 cm diameter, made of stain­

less steel wires is inserted into the plasma column at a distance 

of 50 cm from S2 (x=d-50 cm). We chop the plasma flow into the 

region between the G and C by applying a pulse to G rising from 

a negative bias, sufficient to reflect the plasma electron: from 

S2 and thereby stopping the plasma, to approximately the plasma 

potential. The plasma potential, the electron and ion saturation 

currents are measured during the plasma expansion. 

In the third set-up the machine is operated in the double-

ended mode and C is replaced by the hot plate Sj. The plasma 

densities from S^ and S2 can be varied independently. We 

investigate the dynamics of DLs between two plasmas of dif-
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ferent potentials. This set-up is similar to the one used in 

Ref. 4. Quasi-stationary DLs are easily generated when a d.c-

bias VSi is applied to S1 with respect to the grounded *>2*̂  * 

Here we are interested in the dynamics of such quasi-stationary 

DLs. The measurements are performed in the same manner as in the 

cases of experiments in the single-ended mode. 

3. EXPERIMENTAL RESULTS 

3.1. Single-ended operation 

We first investigate the DL-dynamics when the machine is 

operated with only one plasma source S2 (at x=d) and the plasma 

column is terminated by the cold collector C (at x=0) (Fig. 1). 

When a pulse with an amplitude of Vc=30 V and a width of 700 us 

is applied to C at t=0 (Fig. 2a) the plasma potential <t> evolves 

as shown in Fig. 2b. Juat after t=0, the potential $ increases 

almost simultaneously in the whole column attaining a value 

almost equal to Vc. This is accompanied by an increase in the 

current to the collector Ic (see Fig. 2c). (Immediately after t*0 

the current is dominated by the effects of system stray capacities; 

this part is shown by a broken line). Then, proceeding from S2 

towards C the potential • begins to drop to zero, while I c starts 

decreasing. Figure 3b shows the temporal evolution of the spatial 

potential profile. For t i 75 us we observe a localized po­

tential gradient of width less than 10 cm where nearly the entire 

potential drop is located. This potential profile has a DL-like 

form and is formed in front of source S2. It moves towards the 
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collector, C, with a speed of around 1.5xl05 cm/s, which is 

almost equal to 3 Cs, where C s = /2T0/M is the sound speed. In 

the same period the current I c decreases (Pig. 2c). As the DL 

approaches the collector C the potential jump and the electric 

field in the DL-region decreases. When it reaches the collector 

it becomes an ordinary sheath. The current Ic then starts to 

increase again. By applying a shorter pulse (width < 500 (is) 

we find that when the pulse is shut off the DL continues to move 

with the same velocity with gradually decreasing potential jump 

and eventually disappearing while also the current Ic vanishes. 

The electron and ion saturation currents, j e and jj, respect­

ively, measured simultaneously with the potential measurements 

in Pigs. 2b and 3b are shown in Fig. 2d and 3a. We note that the 

saturation currents are not directly proportional to the plasma 

densities, since the beams in the plasma will contribute with a 

signal proportional to the beam flux and since the plasma poten­

tial is varying when the DL passes the probe. After t=0 ps both 

ie and ji increase rapidly and reach maxima at t * 50 \is (Pig. 

2d). Then they start decreasing gradually and after passing 

minima both currents increase rapidly again. Whereas the current 

maxima show almost no phase shift the time of the current minima 

shifts with x (see also Fig. 4). Figure 3a shows that the satu­

ration currents on the high potential side of the DL decrease as 

the DL propagates towards C. This is accompanied by a decrease 

in the collector current Ic (Fig. 2c). However, as seen by the 

increase of the saturation currents on the low potential side, 

"new" plasma of higher density follows the DL. Fig. 4 shows an 

x-t diagram of the DL and the saturation currents, i.e. the 
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position where the plasma potential is around zero just in front 

of the DL (broken lines), the positions of saturation current 

maxima obtained from Fig. 2d (full symbols), and the positions 

of saturation current minima obtained from both Figs. 2d and 3a 

(open symbols) versus time. We observe that the ion saturation 

current has its minimum closer to the collector than the minimum 

of the electron saturation current. This indicates that the elec­

trons are reflected at a position closer to the source than the 

ions, which suggests the existence of a negative potential dip on 

the low potential tail of the DL. The fact that j e is very small 

on the high potential side of the DL also indicates the existence 

of such a dip. The collector current Ic is mainly due to electrons 

that can overcome the dip, which thus acts as a current limiting 

mechanism. Note, however, that the potential of this dip is expected 

to be of the order of Te/e * 0.2 V and is therefore hardly visible 

in Fig. 3b. 

When a positive d.c. potential Vc is applied to the collector 

low frequency oscillations (1-10kHz) appears spontaneously in 

the plasma31). Figure 5a shows the d.c. component of collector 

current I c 0 versus Vc. By increasing Vc the current 1 ^ first in­

creases, then decreasees a little for Vc i 10 V and eventually 

saturates at an almost constant level for Vci 30 V. The fre­

quency spectrum of the a.c. component of the collector current 

T_ is shown in Fig. 5b. When Vc is a few volts a broad low 

amplitude spectrum is seen and Tc shows a random nonperiodic 

behaviour. The relative amplitude of these spikes in Ic is 

rather low, i.e., less than 10%. For higher biases (Vc x 10 V) 

the nonperiodic spikes evolve into regular coherent oscillations 
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with a fixed period giving rise to .« clear peak in the spectrin. 

This corresponds to the current decrease in Fig. 5a. The amplitude 

of these oscillations increases with Vc reaching more than 70% for 

Vc i, SO V- Also the frequency is found to increase with Vc. 

The threshold between the random and coherent oscillations 

increases for increasing plasma column length d and density33). 

The profiles of the d.c.-components of the saturation currents 

j e and ii are plotted in Fig. 6 together with the d.c.-component 

of the plasma potential ? for different values of Vc. The 

saturation currents decrease along the column and show an overall 

decrease with increasing V"c. ) becomes positive close to C 

and the region of positiv« f reaches further out in the plasma 

column as Vc increases, but in all cases ? << Vc except very 

close to C. For Vc X 0 we observe the usual electron rich 

sheath in front of C. 

In Figs. 7 and 8 we show typical time resolved measurements of 

the saturation currents and the plasma potential, when the col­

lector is biased positively (Vc = 72 V i.e. well within the 

region of coherent oscillations). The evolution is quite similar 

to the pulsed case (Figs. 2-3). A moving DL propagates during the 

phase of the current decrease (Figs. 8b and 7b) from the source S2 

to the collector C with the speed 2-3 Cs. When the DL reaches C 

it turns into a normal electron rich sheath, the current Ic 

increases to its maximum in a rather short time K 100 us), 

and the potential,*, rises almost simultaneously along the 

whole plasma column (Fig, 7a) reaching a maximum value of around 

30 V which is muc lower than Vc (» 72 V). Thereafter * begins 

to drop near S2, the DL-like form reappears and starts to move 

towards C, while the current Ic begins decreasing. This cycle 
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repeats. The large amplitude oscillations appear also in the 

saturation currents as seen in Pig. 7c. The amplitude near S2 

is much larger than that near C. nowever, in Fig. 8a, which 

shows the spatial profiles of j e and Ji, we observe that j e 

and ji increase behind the mc* ing DL, similarly as in the pulsed 

case Pig. 3. Therefore, the phase delay is caused by the expan­

sion of a low-potential dense plasma with 4 * 0 V produced at 

S2 into a low density high-potential plasma which exists in the 

whole column at the time of current maximum. The plasma poten­

tial on the high potential side gradually decreases during the 

propagation. Figure 9 shows an x-t-diagram of the DL-evolution, 

i.e. the position where the plasma potential is zero just in front 

of the DL, obtained from Figs. 7a and 8b, versus time. The DL pro­

pagates towards C with almost constant velocity * 1.5-105 cm/s 

- 3 C s as were also found in the pulsed case (Pig. 4). This is the 

typical velocity for the plasma expansion in our device^*). When 

the DL approaches C the velocity seems to increase. We note, how­

ever, that the DL-foot point is less well defined in this region. 

Close to the collector • does not become zero at all due to the 

formation of an ordinary electron rich sheath. The subsequent 

fast potential increase proceeds from C to S2 according to 

Pig. 9 with a speed higher than 2x1o6 cm/s. Thus the period of 

the oscillations is mainly determined by the time of flight of 

the DL towards C. We have performed similar measurements for 

different lengths d, densities and applied potentials obtaining 

essentially the same results. In Pig. 10 the frequency f of the 

oscillations is plotted versus inverse length 1/d showing that 

f is roughly proportional to 1/d. Neglecting the time of the 

potential increase we find an averaged speed of the moving DL 

around 1.2'105 cm/s (» (2-3)C8). 
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For low collector biases, Vc i, 10 V, where the instability 

evolveo as random spiky oscillations, it is not possible to 

perform time resolved measurements due to lack of coherence. 

However, simultaneous measurements with two probes at different 

axial positions indicate the same behaviour as for the coherent 

oscillations, i.e., each spike corresponds to one cycle of the 

coherent oscillation. 

The measurements of the plasma potential are verified by 

recording the full probe characteristics sampled at the given 

time for various positions. These measurements further indicate 

the existence of an electron beam on the high potential side of 

the DL, with a velocity determined by the potential jump. 

More details of the fast build-up of the plasma potential, 

when a pulse is applied to the collector, are shown in Fig. 11, 

where the potential is obtained using the computer processing 

of the probe characteristics. Figure 11a shows the potential 

pulse, Vc, applied to C and the collector current Ic on differ­

ent time scales. In the lower figure with the expanded time scale 

we have subtracted the current pulse which is due to the stray 

capacities of the system. This is measured without plasma in the 

machine. The first part of the current trace is shown as a broken 

line to indicate the uncertainty of the real evolution. The current 

Ic reaches a maximum at around 2 us and is rather constant for 

around 10 us. The time of 3-4 us is approximately equal to the 

.transit time of a thermal electron, while the time of 10 us roughly 

corresponds to one ion plasma period (2x/wpi * 20-6 us for n • 

107-108 cm" 3). The plasma potential * builds up almost uniformly 
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along the column as shown in Fig. 11b. Possible oscillations and 

transients with a time scale shorter than a couple of ps may not 

be detected, since such signals may be hidden in the capacitively 

coupled signal of the collector current. The time it cakes before 

4 has become positive in the whole column (£ 5 \is corresponds to 

to the velocity of the fast build-up in the pulsed case as seen in 

Fig. 4. For the oscillatory case the build-up time of the potential 

seems to be somewhat longer - 30 us. But for this case the accuracy 

of the measurements is smaller than in the pulsed case because the 

triggering signal is less coherent. 

The measurements presented up to now show that the unstable 

oscillations are closely related to the dynamics of a moving 

OL followed by an expanding plasma. It is further indicated that 

the current Ic is limited by a negative potential dip on the low 

potential tail of the DL. We looked for this potential barrier 

in measurements similar to Fig. 8 by increasing the sensitivity. 

However, because the oscillations were not sufficiently coherent 

and the barrier was expected to be of the order Te/e * 0.2 V we 

could not find conclusive evidence for its existence. But to check 

our expectations, we performed an experimental simulation of the 

plasma expansion using the second set-up, i.e. the grid G is in­

serted into the plasma column at x » 50 cm (in this case d»100 cm) 

(see Fig. 1). With the collector biased positively (Vc » 50 V) the 

grid potential VG is pulsed from - 40 V to around zero at t*0 as 

shown in Fig. 12a together with the evolution of the collector 

current, Ic. Thus, the plasma confined between S2 and G for t £ 0 

begins to diffuse towards C at t«0. Figs. 12b and c show evolution 

of the plasma potential, $, and the saturation currents j e, j^, 
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respectively, in the region between G and C. In the first cycle 

t i. 400 ii£r where the plasma simply expands we observe a clear 

negative potential dip in front of the plasma flow. For t £ 200 *is 

the depth of the dip grows until it reaches a value of * -0.4 V and 

the current Ic is small. For t i 200 ps the depth decreases with 

the propagation and Ic starts to increase. The dip disappears for 

t - 350 lis when it reaches the collector and Ic attains its maximum. 

Then the potential builds up in the region between G and C and a 

cyclic behaviour as in Fig. 8 starts. The moving DL together with 

the potential dip also appears in the next cycle (400 ps <t< 800 ps). 

By comparing Figs. 12b and c we find that the negative potential 

dip is moving in front of the expanding plasma. Therefore, the 

negative potential dip is essential the same as the ambipolar 

potential in front of an expanding plasma. When the collector 

bias is negative no potential dip is observed and the potential 

decreases monotonically in the region between the plasma front 

and the collector. 

3.2. Double-ended operation 

Next, we investigate the dynamics of the DL when the machine is 

operated with two sources, S^ (replacing C) and Si (see Fig. 1). In 

this case the length d is fixed, d»125 cm. Double-layers are gener­

ated by applying a DC-potential Vgj » 0-100 V to Sf with respect 

to the grounded S2
4*. Figure 13 shows typical time averaged pro­

files of the plasma potential $ and the saturation currents JerJi 

for Vgi = 30 V. The potential drops in the sheaths in front of S) 

and S2 are relatively small (£ few volts) and almost the entire 

potential Vgj appears as the potential drop A$ in the DL-region 
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between the two plasmas. The currents j e and j^ attain minima in 

the DL-region and quite large gradients appear towards each plasaa 

source. We have noraalized - j e and Ji to the saae value at one end 

•arked with the circle. On the low potential side of the DL jj con­

sists of a part j^ D originating fron the ion beaa accelerated through 

the DL and a part ji2 coaing froa the ions created at S2 and re­

flected at the DL, i.e. ji * 3ib+3i2» whil« j # consists of the 

electrons created at S2 alone, j e * je2« Similar arguments can be 

applied on the high potential side of the DL. i.e. here ie * ieb + 

jei and ij - in- Since we have charge neutrality on both sides of 

the double layer i.e. nj * ne we should expect - j e > ij on the high 

potential side and Ji > - j e
 o n t h« 1°** potential side, because 

JirJe a r e measures of the fluxes. This is indeed also what is 

observed in Pig. 13. The strong gradients in jj and j e imply 

gradients in the plasma density towards each source. More details 

of the stationary DL are presented in Ref. 4. 

The dynamics of a propagating DL are investigated by applying 

a potential pulse to S-|(Vsi = 25 V). The results are shown in 

Pig. 14. Just after applying VSi at t«0 the plasma potential # 

increases up to Vgi almost simultaneously in the whole column 

(Piq. 14c) accompanied by an increase of the current Igj (Pig. 

14b). The potential drop is then located at the sheath in front 

of S2. After approximately 100 »is the potential drop detaches 

from S2 and a DL starts moving from S2 towards Sj simultaneously 

with a decrease in Isi» The evolution is quite similar to the 

observations in Pig. 3. Prom profiles of the saturation current 

it may be seen that also in the present case the moving DL is 

followed by an expanding plasma from Sj (confer also ref. 4). 
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However, the DL stops at soae position between Sj and S2. This 

is different fro« the evolution in the single-ended case {Pig. 3). 

That position shifts along the column depending on the density 

ratio N|/M2> where Nj and N2 correspond to the density produced 

by Si and S2, respectively. By increasing (decreasing) the ratio 

N1/N2 the final DL position MOVCS toward S 2 (Sj)*). After the stop 

the DL is, however, subject to a "back and forth" oscillation 

of the low potential tail which is correlated to oscillations 

in the current Tsi» »* seen in Pigs. 14b and c. The details of 

this evolution will be described in connection with Pig. 16. 

When the pulse is shut off at t * 1200 |is the current drops to 

zero but the DL starts propagating further towards Sj with 

decreasing potential drop. The characteristics of the evolution 

in Pig. 14 is independent of V$i. The initial evolution of the 

Moving DL in Pig. 14 was also observed in Ref. 4, where a pulsed 

bias on S^ was used for investigating the DL formation. 

Pigure 15 shows the details of the potential profile on the 

low potential tail of the aoving DL together with Isi (note that 

the conditions are not the sane as in Pig. 14, i.e. Vgj • 34 V). 

After the DL has detached fro« S2 * negative potential dip appears 

on the low potential side of the DL and follows it during the 

propagation. The dip grows t o é * - 0 . 4 V a t t £ 700 »s, 

while I51 decreases to almost zero. Thus, the li«itation of I51 

is caused by the potential dip the depth of which e*/Te * -2 is 

large enough to reflect most of the electrons fro« S2» The speed 

of the DL is almost constant (» 1.5*105 cm/s) during this phase. 

Por t * 700 »s the DL decelerates and eventually stops while 

the dip dissolves. Then the current Igj increases again and a 
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•stationary" DL is foræd with oscillations on the low potentia 

tail as observed in Pig. 14c. Similar oscillations appear when a 

d.c. potential VSi is applied to Si. These oscillations are 

correlated to oscillations in the piasaa current Igi« Figure 16 

shows an example of the evolution of the DL-profile within one 

period of the current oscillation which again is used as trig­

gering signal. The DL steepens during the current decrease, i.e. 

the low potential foot point moves towards Sj (see Pig. 16c), 

whereas the high potential edge is almost fixed. The maximum 

steepness is reached around the current minimum. At that instant 

the DL width is approximately 100 Xn» comparable with theoreti­

cal expectations. Thereafter the current increases within a rela­

tively short time and the potential becomes broad again. This cycle 

repeats. The velocity of the foot point in the steepening phase 

is v 2 1.7«105 cm/s (Pig. 16c). The broadening, on the other hand, 

takes place on a much faster time scale i.e. v > 10^ cm/s. The 

period of oscillations is almost determined by the transit time 

of the foot point in the steepening phase. Accordingly, we find 

that the frequency is inversely proportional to the distance 

betweeen S2 and the midpoint of the time averaged DL-profile, L, 

as shown in Pig. 16d. The evolution observed in Pig. 16 is quite 

similar to the single-ended case, if we consider the high potential 

plasma a virtual collector. 

Pigure 17 shows the periodic behaviour of the electron saturation 

current, j e together with the corresponding averaged potential pro­

file (for Vgi • 30 V). He observe a phase change along the column 

only in the region where the DL propagates, i.e. x i 85 cm. 

No phase change is detected on the high potential side of the DL 
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where j is in the phase with Isl- Thus, the phase delay again 

shows the expansion of the low potential plasma as was also ob­

served in the single-erded case. 

4. DISCUSSION AND CONCLUSIONS 

In the present work we investigated the dynamical features of 

moving DLs in a magnetized fully ionized plasma in a Q-machine. 

Results from both the case where the machine was operated with 

only one source and the case where the machine was operated with 

two sources were presented. The properties are essentially the 

same for the two cases and we shall only discuss the evolution 

in the single source case in detail using these results to explain 

the evolution in the double source case. 

Discussing the results obtained when the machine was operated 

with one source and a positively biased cold collector for termi­

nating the plasma column, we note that there are two phases in 

the evolution of the instability, namely the moving DL during a 

current limitation and the fast increase of the potential in the 

whole column, when the DL reaches the collector. Even though the 

interest in moving DLs has been strongly increasing recently and 

they have been observed both in experiments7'20'2') and in simu-

lations13*24,25) n o throughout theoretical explanation has been 

given of the dynamical evolution of strong DLs. Rather one has 

applied the stationary description in the frame of refeiance 

moving with the DL explaining the motion as being caused by 
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current imbalance (e.g. 23-25). In our experiment it is quite 

natural that a current imbalance would excist -across the DL if 

it was stationary, since the density of the high-potential resi­

dual plasma is much lower than the density of the lov potential 

plasma formed at the source. Thus the ion current Ii through the 

DL cannot balance the electron current in ? stationary state to 

satisfy the Langmuir condition Ie/
Xi * ^•i/a"e and the DL will 

move towards the collector. The velocity of the DL is found to 

be - 1.5*105 cm/s = 3CS, this is a typical flow velocity in the 

Q-machine34) where ions are accelerated through the electron 

rich sheath in front of the source. Prom Fig. 12 we see that 

the moving DL separates a high potential low density plasma from 

an expanding low potential high density plasma produced at the 

plasma source. During the DL propagation the current through the 

system is limited. This is caused by a negative potential dip 

that forms on the low potential tail of the DL. The depth of the 

dip grows to be on the order of the electron thermal energy and 

becomes an effective barrier decreasing the number of electrons 

passing through the system. Thus, the dip acts like a thermal 

barrier. The formation of the negative potential dip resembles 

the ambipolar potential formed in front of an expanding plasma. 

The potential dip can exist consistently only in the moving 

frame with a velocity larger than or comparable to the ion flow 

velocity. In a stationary frame the ions will cancel the negative 

space charge connected with the dip, because the potential of the 

adjacent DL is much larger than Te/e (see e.g. Ref. 35). Thus 

when the DL slows down and finally stops at the collector the dip 

is filled in with ions and a usual electron rich sheath forms. 

Then the electrons are free to flow and the current increases 

rapidly. 
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This is the start of phase two of the evolution. The rapid 

current increase is apparently connected with a sheath insta­

bility and the plasma potential rises in the whole column within 

a very short time as compared to the time of the OL propagation. 

The time of the potential build-up is so short that the ions have 

no time to react appreciably and the change of potential is caused 

by an electron rearrangement only. A tentative explanation of this 

sheath instability is proposed as follows: When the electron rich 

sheath is formed at C the electrons produced at S2 are not accel­

erated and they do not automatically satisfy the Bohm criterion1) 

when entering the sheath. Therefore, a presheath will form to 

accelerate the electrons to the necessary velocity. We point out 

that such a presheath cannot be expected to become stationary, 

but the edge of the presheath, separating it from the neutral 

plasma will propagate away from the main sheath with a velocity 

around the electron thermal velocity. Such a behaviour was found 

in connection with the evoloution of an ion rich sheath36)r where 

a quasi-neutral expansion region takes care of the self consistent 

ion acceleration. The expansion region, which corresponds to the 

presl'-'ath, propagates with the ion-acoustic speed. This evolution 

was recently confirmed in a numerical simulation 37)# in a semi-

infinite plasma the presheath will ultimately have an "infinite" 

extent and cannot be distinguished in the plasm« , But if the plasma 

is of finite extent the edge of the presheath will reach the bound­

ary and some electron rearrangements will take place. In the present 

case we thus expect the edge of the presheath to propagate towards 

S2 with a velocity around the electron thermal velocity. During 

the propagation the main sheath is stable since the electrons 
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entering it satisfy the Bohm criterion. When the presheath reaches 

the electron rich sheath in front of S2 this is modified and some 

electron rearrangements will take place which causes the current 

increase and may cause the disruption of the sheath. Although the 

time scales involved in these arguments are consistent with our 

observations, more investigations are necessary to clarify the 

role played by such a presheath evolution. 

Some details of this fast potential build-up may be gained 

from the initial evolution in the case where the collector bias 

is pulsed (see Figs. 2-4 and 11) suggesting the following evol­

ution (see also the related investigations in Refs. 38-40): Just 

after the pulse is applied the electrons are quickly drawn out of 

the plasma and the current increases to its maximum value within 

around 2 ^s. The ions will not respond so quickly thus the removal 

of the electrons will leave a positive space charge in the column 

and a positive plasma potential will build-up as seen in Fig. 11. 

We should stress here that the time resolution (= 1 \is) of our 

measuring system is just marginal for these investigations and 

possible oscillations with a shorter time scale will not be 

detected. Further due to this limitation the potential build-up 

might be somewhat faster than indicated in Fig. 11b. The new 

state with a positive plasma potential in the whole column 

cannot persist when the ions start to react after few ion plasma 

periods. They are returned to the source and the potential profile 

starts to relax from the source as the density of the high-poten­

tial plasma decreases. Consequently the current is observed to 

decrease after around 10 îs (»4u/u>pi) as seen in Fig. 11a. 
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Ultimately a DL detaches from the source and moves towards the 

collector. The cyclic behaviour is then started. 

The investigations of Clark and Hamberger39) performed in a 

set-up similar to ours complements in some respect our investiga­

tions. They examined the very initial behaviour of the plasma 

parameters when a pulse, so short (2\is) that the ions were not 

appreciably affected, was applied to the collector. Their results 

indicate that electron plasma wave pulses are responsible for 

establishing the plasma current and building up the potential in 

the column. Furthermore they found that the current is saturated 

because of an anomalous resistivity due to the build-up of a two-

stream turbulence. They note that the current was found to decay 

rapidly after 3-4 }is if the applied pulse is prolonged, similarly 

to our observations (their density was somewhat higher than ours 

and they used potassium ions). Thus the current limitation due 

to the moving DL is far more effective than the limitation due 

to the anomalous resistivity of the two-stream turbulence. In 

the work by Schrittwieser and Rasmussen40) the potential pulse 

was applied to a grid collector in a single-ended Q-machine and 

the details of the plasma response were investigated by measur­

ing the ion saturation current. Four different successive 

pulses were observed initially. An electron plasma wave pulse 

followed by an ion burst which was overtaken by a highly super­

sonic positive ion pulse, all propagating from the grid to the 

source. Thereafter an ion rarefaction pulse propagated from the 

source towards the grid. The two latter signals correspond to 

the maxima and minima, respectively, of the saturation currents 

in Fig. 2d. The appearance of the burst with a velocity corre-
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sponding to the full amplitude cf the applied pulse was taken 

as an evidence that the potential did not rise in the whole 

column on a time scale too fast for the ions to follow. Rather 

it seemed that the burst, originating from ions initially 

trapped in the ion rich sheath around the grid (the potential 

pulse started from a negative potential), delayed the potential 

build-up. This build-up was assumed to be connected with the 

supersonic ion pulse. When the potential pulse started from OV, 

as in the present case, no burst was observed and the supersonic 

pulse was less delayed. The evolution of this pulse, and there­

by the potential build-up, was tentatively explained as a re­

sult of a transient Buneman instability giving a characteristic 

time for the build-up which is on order of what we have observed. 

This explanation is somewhat similar to the one used by Clark 

39) and Hamberger under unstable conditions. 

Our experimental set-up (in the single-ended case) has some 

similarities with the thermionic converter or the plasma diode 

which has been extensively investigated during the last two 

decades (see e.g. Ref. 41, references therin and Ref. 42). How­

ever, in this device the distance between the hot plasma source 

and the collector is in general very short (£ 100 Debye lengths) 

as compared to our set-up (further in the converter the plasma 

is usually not magnetized). When the collector is biased posi­

tively large-amplitude oscillations appear in the current through 

the device. Burger*3) investigated the mechanism of these 

current oscillations using a numerical simulation and the evol­

ution of the current and the plasma potential is indeed very 

similar to our results (e.g. Fig. 8), i.e. the current oscil­

lations are related to the dynamics of a potential dip limiting 
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the current and an unstable sheath. The mechanism of this in­

stability is also quite similar to the Gunn-diode oscillations, 

where the DL propagates in a semiconductor**). The electrons in 

the solid get energy from the electric field and are excited to 

a high energy level where the mobility of the electrons becomes 

small. The transition between the low and high energy levels 

causes a negative resistance in the system and the instability 

appears. The electrons with high and low mobilities in the Gunn-

diode correspond to the free beam electrons and those reflected 

from the barrier, respectively, in our case. 

Furthermore our results provide a detailed understanding of the 

mechanism of the current driven instability excited by a positively 

biased collector-grid or -plate. In the previous experiments in 

Q-machine plasmas^M this instability was considered to appear as 

a half standing ion acoustic wave without detailed investigations 

of its dynamics. Referring to our observations the instability 

should rather be termed a "potential relaxation instability". A 

somewhat similar explanation was previously suggested by Rynn45). 

This type of behaviour of an instability excited by the current 

drawn to a positively biased collector is not an artefact of our 

experimental apparatus, but has recently been observed also in a 

discharge plasma46) (a double plasma device with Te >> Tj). In 

that connectic we believe that the socalled instantaneous feedback 

mechanism invoked in explaining the behaviour of a standing wave 

47) instability excited by a current in similar experiments ' is 

explained by the fast potential build-up. It should also be 

mentioned that Buchelnikova and Salimov48) explained a similar 

instability in a Q-machine plasma as relaxation oscillations. 
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However, the fundamental instability excited in their experiment, 

where the current was drawn to a target consisting of small cir­

cular seqments isolated from one another, was the current driven 

ion cyclotron instability of relatively hiqh frequency. This 

instability caused an enhanced radial diffusion, which in turn 

was thought to quench the instability and then new plasma filled 

the machine. The observed low frequency instability was then 

explained as relaxation oscillations. We emphasize that we have 

not observed oscillations during the build-up phase, and in par­

ticular no oscillations with frequencies around the ion cyclotron 

frequency. This is in keeping with recent observations by 

Schrittwieser*9), who showed, using an anullar collector, that 

the ion cyclotron instability was only excited when the collector 

diameter was sufficiently small (£ a couple of ion Larmor 

radia), while a collector of larger diameter preferentially leads 

to the excitation of the low frequency "potential relaxation 

instability". 

In general the preceeding discussion shows that experimentally 

it seems hardly possible to obtain the equilibrium potential 

distribution 50) in a single-ended Q-machine with a positively 

biased collector, since it seems to be unstable. However, in a 

recent experiment Popa et al.51) succeeded in suppressing the 

instability when the applied bias exceeded a certain threshold 

valuta. The experiments were performed in a single-ended Q-machine 

with a very short plasma column (* 10 cm) and it was suggested 

that in the stabilized state the potential distribution is 

described by the equilibrium model 5") although the plasma 

potential was not measured explicitly (see also Ref. 52). The 
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results of Popa et al.51) are in qualitative agreement with 

the predictions of Kuxnetsov and Ender42), who have calculated 

the stability regimes of the plasma diode. Furthermore they 

have theoretically examined the evolution of the instability 

and found results qualitatively in agreement with our obser­

vations. He should emphasize, however, that for usual Q-machine 

operation with a plasma length of - 1 m the bias necessary for 

stable operation will be in the range of several kV as extra­

polated from the results of Ref. 42 and thus far outside the 

normal operation range. 

The evolution of the DLs in double-ended operation was quite 

similar to the behaviour in the single-ended case if we imagined 

the high potential edge of the stationary DL as a virtual collec­

tor. Note that this edge is fixed when a d.c. bias is applied to 

S^. The oscillations in the DL profile, which were observed to 

appear as "back and forth" motion of the low potential foot point 

of the DL (Pig. 16) are especially pronounced for relative small 

values of Vsl (£ 80 V ) 4 ' and they may to some extent be 

suppressed by adjusting the ratio of the densities supplied from 

the two sources4'. In the case shown in Pig. 16 we chose the 

parameters to maximize the fluctuation amplitude to facilitate 

the measurements. That the high potential edge of the DL really 

is fixed under almost all conditions may be related to the fact 

that the ions produced at Sj, are accelerated through the electron 

rich sheath and thus attain a drift velocity sufficient to 

satisfy the Bohm criterion1) when entering the DL. On the low 

potential side, however, we expect similar effects as in the 

single-ended case, thus the periodic disruption of the DL may 

be related to the dynamics of the presheath. 
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We investigated the formation of the stationaiy DL by applying 

a potential pulse to the source Si (Pigs. 14, 15). The evolution 

of the plasma potential is also here similar to the evolution in 

the single-ended case when the collector bias is pulsed (Figs. 

2-4) except that the density of the high potential plasma is not 

decreasing4) and the potential jump of the moving DL is constant, 

almost equal to the applied voltage. The DL is expected to move 

because of a current imballance, thus the DL will stop when 

there is current balance, i.e. when the currents through the DL 

satisfy the Langmuir condition Ie/Ii = /mi/me. In order that this 

condition is satisfied at one point in the plasma column, we have 

to assume small radial losses, which will cause slight gradients 

in the densities N^ and N2 of the plasmas produced at Sj and S2» 

respectively. If N-| and N2 were constant outside the DL-region 

the Langmuir condition would either be satisfied at every point 

in the column or not at all. Such an axial variation of N1 and 

N2 also explains that the position of the stationary DL can be 

shifted towards Sj(S2) by increasing N2/N1(N1/N2). Similar argu­

ments were used by Torvén5) in explaining the position of the DL 

in his experiment. 

In comparing our results with other investigations of moving 

DLs we first note that our observations in the single-ended 

case are in close agreement with the results of Leung et al?) 

in spite of the apparent differences in experimental set-ups, 

and plasma parameters. In particular they also found a negative 

potential barrier accompanying the moving DL and limiting the 

current. They further observed recurring formation of the DL 

and the frequency of this recurring formation was determined 
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by the travelling time of the moving DL. However, they did not 

investigate the evolution of the density during the DL propa­

gation as was attempted in the present work by measuring the 

saturation currents to a Langmuir probe. Although these currents 

are not directly a measure of the plasma density as pointed out 

in connection with Pigs. 2a and 3a, some conclusions concerning 

the density variation can be drawn from them. For instance it 

is evident from figures like 2, 3, 7, 8, that the DL moves along 

with a strong density depression, and that the DL on the low 

potential side is followed by an expanding plasma front. These 

observations also hold true for the double-ended case. The exper­

iment of the Coakley and Hershkowitz21), on the other hand, con­

cerns a quite different problem in that the DL here was moving 

towards the low potential side and thus takes form of a com-

pressional shock. In the positive column20) a moving DL forming 

at a density discontinuity was responsible for a strong current 

limitation. An even more drastic effect connected with the for­

mation of DLs in current carrying discharge plasmas was observed 

in the turbulent heating experiments of Kalinin et al.53). Here 

a rapid decrease and redistribution of the plasma current was 

accompanied by the formation of a DL-like potential structure 

and a termination of the heating. In these experiments?0'^) 

it was not possible to study the details of the DL-formation 

because DLs were formed and disrupted randomly due to the 

effects of internal ionization. 

Many features of moving DLs have been clarified by using 

numerical simulations (see e.q. 13, 24, 25, 54). The results 

of Singh and Schunk25) showed that the picture of the DL motion 
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based on the current imbalance *s discussed above is only a 

part of a much nore coaplex picture involving such processes as 

plasna heating, evacuation of the plasna froa the high potential 

side forming of a density gradient across the DL, the propagation 

of a density front with nearly the ion acoustic speed following 

the low potential tail of the DL, and the formation of a negative 

potential dip limiting the current. They observed a periodical 

formation and notion of the DL associated with a recurring inter­

ruption of the electron and ion currents through the systea. The 

tine period of these recurring formations were propotional to 

the systen length as also found in our experinent. However, nany 

of these features and their inter-relations still need theoretical 

clarification. Me note that although the sinulation of Singh and 

Schunk25) do not nodel the details of our set-up especially with 

respect to boundary conditions our results conpare renarkably 

well with the sinulation results. In the sinulation nodel a fixed 

potential was applied across the systen, as in our case, but the 

electrons and ions were injected fron the low and high potential 

side, respectively, with prescribed velocities, whereas in our 

experinent these velocities are deternined self-consistently by 

the sheaths in front of the sources. These differences seen at 

least to qive rise to a somewhat different fornation nechanisn 

when the DL is reforned near the source. In the simulations 

(Sinqh25') it seens that a positive potential pulse with the 

qualitative features of an "electron hole"55) plays a decisive 

role in the initial phase of the DL formation, which was also 

seen in other simulations5*'. This pulse is forned near the low 

potential boundary and moves in the direction of the electron 

drift. It is formed because electrons accelerated in the applied 
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electric field are removed faster than they can be supplied by 

the plasma reservoir at that boundary and because the ions will 

not react on this time scale5*)- He do not observe such a pulse 

in our experiment maybe because our time resolution is too low. 

However, the mechanism we discussed in connection with the fast 

potential rise was based on somewhat simular arguments. As also 

concluded in Ref. 25 (see also Ref. 13 for a thorough discussion) 

the boundary conditions have a large influence on the detailed 

dynamics of DLs. while the overall picture of the DL motion as 

observed in this work and in Refs. 7, 20, 24 and 25 seems to be 

quite general. In understanding all the features observed in 

this work it would be desirable to perform a simulation using 

the physical boundary conditions as attempted by Burger4", and 

a system length comparable to the physical system. In particular 

it could be of great interest to see how such features as the 

formation and evolution of presheaths would influence the OL 

formation and stability. 

Recently Silevitch17) (see also Ref. 56) examined the stability 

of a DL with special attention to the auroral DL. He was guided 

by the model of current oscillations in the plasma diode based 

on the result« of Burger*3' to suqgest a mechanism for the per­

iodic disruptions of DLs similar to our observations. He showed 

by applying a variational method that a realistic analytical model 

for a DL behave like a negative dynamical resistance on a fast 

time scale of the electron motion. The effects of the negative 

resistance would lead to periodic disruptions of the DL with a 

frequency of around 10 Hz for the auroral DL-case, and the fluc­

tuating DL was proposed as a candidate for flickering auroras17). 
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This frequency was determined by the ion transit time throuqh the 

DL-reqion. 

Finally we will briefly discuss our findings in connection with 

the observations of ion-acoustic DLs in computer simulations15). It 

has been suggested in many independent works57-60) that the exist­

ence of a negative potential dip in the fora of a solitary structure 

in a current carrying plasaa leads to the formation of the ion-

acoustic double layers observed in the simulations13'**'15. These 

DLs are very weak with a potential iump A« £ T^/e. The negative 

potential dip observed in our experiaent accoapanying the propa-

qating strong DL, At >> Te/e, acts in a similar way as the above-

mentioned solitary structure with respect to current limitation. 

But we should emphasize that it is of different origin. In our 

case the dip is formed on the low potential tail of the moving DL 

in front of an expanding plasma. Me argued that this dip cannot 

exist in a stationary frame because it accompanies a strong OL 

A# >> Te/e, and will be cancelled by inflowing ions when it stops. 

The potential dip connected with the ion acoustic DL is believed 

to be created by the ion acoustic turbulence in the current 

carrying plasma15,58-60) f a n () can exist in a stationary frame 

where ion trapping results in the formation of an ion hole58,61). 

The scenario of the formation of an ion acoustice DL preceeded 

by the development of a solitary ion hole57~60) is clearly re­

vealed in the numerical simulations1*'15,59,60)m «rne ion acoustic 

DLs are not stationary beyond the ion inertia time scale and they 

are found to decay by emitting ion acoustic solitary waves (poten­

tial humps). In the simulations with long systems many DLs were 

found to form in series15), and the number increased with the 
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system length. The recent obsetvations of Temerin et al.16) 

suggests that many of these acoustic DLs in series form in the 

auroral plasma and that the precipitating electrons gain their 

energy of few kV by passing through this series of DLs all of 

which are relatively weak. 

Also experimentally it was observed that multiple double layers 

could form if the system was sufficiently long 6 2' 6 3). The DLs were 

generated by applying a potential difference between two plasma 

sources. It should be stressed that the observed DLs all have 

&# > Te/e and cannot be described as ion acoustic DLs. Chan and 

Herskowitz62) found a transition from a single DL to multiple DLs 

when the scale parameter c * ( VQ/I.) (L is the system length) was 

smaller than 10~*. Por the experiment of Hollenstein et al.63) 

c < 10"6. In our experiments we have not observed the formation 

of multiple DLs in any case even when extremely high DLs were 

formed A* =* 400 V 4 ) although e £ 10~6. Both the cited exper­

iment?62'63), however, were performed in plasmas with internal 

ionizations and it is guite probable that this is the main cause 

for the multiple DL structure since it seems that the multiple 

DLs are formed when the applied potential exceeds the ionization 

potential. 
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Fig. 1 Bxperimental set-up. In double-ended operation the 
plasma is generated at the two sources Si and S2; 
in single-ended operation S^ is replaced by the 
cold collector C. 
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Pig. 2 Plasma response when a potential pulse is applied to 
the collector, d * 75 cm. a) Applied pulse, Vc. 
b) Temporal evolutions of the plasma potential $ at 
different positions, c) Collector current measured 
through a 22 Q resistor. d) Temporal evolutions of 
the ion (jj) and electron saturation current (je) at 
different positions. 
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Fig. 3 Spatial evolutions of the saturation currents Ji and 
j c (a) and the plasma potential $ (b) at different 
times after the pulse is applied, 
in Fig. 2. 
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Fig, Trajectory of the low potential edge of the double 
layer (broken line), the maxima of the saturation 
currents (full symbols A:je, »sji) and the minima 
of the saturation currents (open symbols A:j e, °'-1i) 
obtained from Figs. 2 and 3. 
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The d.c. component of the collector current I c o versus 
the applied potential V c. b) Frequency spectrum of the 
oscillating part of the collector current T c for 
various applied potentials V c. d * 30 cm. Trie currents 
are measured through a 22 Q resistor. 
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Pig. 6 Spatial profiles of the time averaged saturation current 
Ji and Je (a) and plasma potential 5 (b) for 
various collector potentials Vc. d * 30 cm. 
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Pig. 7 Plasma response when a d.c. bias V c » 72 V is applied to 
the collector, a) Temporal evolution of the plasma poten­
tial * at different positions, b) The collector current, 
lc. c) Temporal evolutions of the saturations currents 
ji and j e at different positions, d * 75 cm. 
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Fig. 8 Spatial evolutions of the saturation currents j e and ji 
(a) and the plasma potential $ (b) at different times 
within one period of the oscillations in Ic (Fig. 7b). 
Same conditions as in Fig. 7. 
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Fig. 9 Trajectory of the low potential edge of the double layer, 
obtained from Figs. 7a and 8b. 
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Fig. 10 Frequency f of the oscillations versus the inverse length 
1/d of the plasma column Vc • 30 V. 
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Fig. 11 a) Potential Vc applied to the collector and the 
collector current lg on different time scales, b) 
initial evolution of the plasma potential •• 
d * 100 cm. 
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Pig. 12 Plasma expansion, a) The potential VQ applied to the 
grid at x » 50 cm and the collector current Ic. 
b) Evolution of the plasma potential $ in the region 
between the grid and the collector, c) Simultaneous 
evolution of the saturation currents ji and j e. 
d - 100 cm and Vc * 50 V. 



- 55 -

100 

Or 
c) 

r 

> O h 

^**s**'^» -fi 

200 

300 

400 

Ji J« 
J L 

20 40 
x (cml G 

Fig . 12 Continued. 
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13 The stationary double layer formed when the machine is 
operated in double-ended mode with the source S] biased, 
Vgi * 30 V. d * 125 cm. Time averaged profiles of the 
plasma potential * and the sautration currents ji and 
j e. The saturation currents are plotted in arbitrary 
units and normalized to the same value at the point 
marked with the circle. 
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Fig. 14 Development of the double layer when the bias on Si is 
pulsed, a) Applied potential VS1

 3 25 V. b) Current to 
Si, Igi. c) Spatial evolutions of the plasma potential 
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Fig. 15 Detailed evolution of the low potential side of the double 
layer and the variation of the current Igi when a pulse 
is applied to Sj. Vgi * 34 V. Note, not the same conditions 
as in Fig. 14. 
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Fig. 16 a) Evolution of the double layer profile within one 
period of the oscillation in the current Igj (b). 
Broken curve shows the time averaged profile. Vgi -
61 V. c) Trajectory of the low potential edge of the 
double layer, d) Frequency f of the oscillations in 
Isi versus the inverse distance 1/L between S2 and 
the midpoint of the time averaged double layer profile. 
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Fig. 16 Continued. 
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Fig. 17 Evolution of the electron saturation current j e together 
with the current Isi and the averaged double layer 
profile $ when a d.c. bias is applied to Si, Vgi » 
30 V. 



Ris* National Laboratory RI»-M-Eno 
T i t l e and author(s) 

XXJBLE LAYER DYNAMICS IN A COLLISIONLSSS 

1AGNET0PLASMA 

S a t o r u l i z u k a , P o u l M i c h e l s e n , J e n s J u u l Rasmusse: 

and Roman S c h r i t t w i e s e r 

and 

R i k i z o Hatakeyama, K o i c h i S a e k i , and N o r i y o s h i 

Croup's own reg i s trat ion 
m b * r ( s ) 

62 P*9«* • t a b l e s • | 7 i l l u s t r a t i o n s 

Date 
December 1983 

Depart mint or group 

Physics Dept. 

Abstract Copies to 

An experimental investigation of the dynamics 
:>f double layers is presented. The experiments an 
>erformed in a Q-machine plasma and the double 
Layers are generated by applying a positive step 
jotential to a cold collector plate terminating 
the plasma column. The double layer is created at 
the grounded plasma source just after the pulse 
is applied and it propagates towards the collec­
tor with a speed around the ion acoustic speed. 
then the collector is biased positively, large 
oscillations are observed in the plasma current, 
rhese oscillations are found to be related to a 
recurring formation and propagation of a double 
Layer. The period of the oscillations is deter-
nined by the propagation length of the double 
Layer. The current is limited during the propa­
gation of the double layer by a growing negative 
potential barrier formed on the low potential 
tail. Similar phenomena appear when a potential 
difference is applied between two plasmas in a Q-
nachine with two sources. In this case a station­
ary double layer forms in the plasma column, but 
the low potential tail is subject to "back and 
forth" oscillations leading to large amplitude 
urrent oscillations. 

Available on request from Ris# Library, Ris« National 
Laboratory (Ri*# Bibliotek), Forsegsanlag Ris«), 
DK-4O00 Roskilde, Denmark 
Telephone: (Oj) 37 12 12, ext. 2262. Telex: 43116 


