-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

A Time-predictable Object Cache

Schoeberl, Martin

Published in:

Proceedings of the 14th IEEE International Symposium on Object/component/service-oriented Real-time
distributed Computing (ISORC 2011)

Link to article, DOI:
10.1109/ISORC.2011.22

Publication date:
2011

Document Version _
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Schoeberl, M. (2011). A Time-predictable Object Cache. In Proceedings of the 14th IEEE International

Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2011) DOI:
10.1109/ISORC.2011.22

DTU Library
Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13778256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ISORC.2011.22
http://orbit.dtu.dk/en/publications/a-timepredictable-object-cache(857dbb78-70b9-4b52-98b2-e448e8b3bbb9).html

A Time-predictable Object Cache

Martin Schoeberl
Department of Informatics and Mathematical Modeling
Technical University of Denmark
Email: masca@imm.dtu.dk

Abstract—Static cache analysis for data allocated on the
heap is practically impossible for standard data caches. We
propose a distinct object cache for heap allocated data. The
cache is highly associative to track symbolic object addresses
in the static analysis. Cache lines are organized to hold
single objects and individual fields are loaded on a miss.
This cache organization is statically analyzable and improves
the performance. In this paper we present the design and
implementation of the object cache in a uniprocessor and chip-
multiprocessor version of the Java processor JOP.

Keywords-real-time systems; time-predictable computer ar-
chitecture; worst-case execution time analysis

I. INTRODUCTION

One of the big challenges in worst-case execution time
(WCET) analysis are are hit and miss predictions of data
caches. Access to program data, cached in data caches, is
harder to predict than instruction cache hits. The addresses
of the data, which are mandatory for classic cache analysis,
are not always know statically. Especially for object-oriented
programing languages most of of the data is allocated during
runtime on the heap. The addresses of those objects are not
known statically. Therefore, a single access to such an object
destroys the abstract cache state of one way of the cache in
classic cache analysis.

To solve this analysis issue for object-oriented languages
we propose a dedicated cache for heap allocated objects.
This cache has two advantages:

1) Access to heap allocated objects do not disturb the
cache analysis of stack allocated or static data.

2) The object cache can be organized to allow WCET
analysis by symbolic tracking of object field accesses.

The proposed object cache is organized to cache single
objects in a cache line. The cache is highly associative to
track object field accesses via the symbolic reference instead
of the actual address.

Object-oriented programming is considered problematic
for WCET analysis. The analysis of a C++ virtual function
dispatch with the WCET tool aiT resulted in cache miss
predictions (about 40 cycle on a PowerPC 755 for each
miss) of two dependent memory loads.! The first memory
reference goes into the heap to determine the object type
and the second into the virtual function dispatch table. On

!Private communication with Reinhard Wilhelm

a standard data cache the address of the first access is
unknown and destroys the abstract cache state of one way.
The second access is type dependent and to determine the
address, the WCET tool needs exact knowledge how the
compiler organizes virtual function dispatch tables.

Our approach is to enable tight WCET analysis of ob-
ject oriented programs by designing a cache architecture
that avoids the former described issues on standard cache
organizations. The proposed object cache is one example
of a computer architecture that is optimized for real-time
systems.

The paper is organized as follows: in the following
Section proposals of object caches are reviewed. Section III
describes the design of the proposed object cache. In Sec-
tion IV the benefits for the WCET analysis of the object
cache is described. In Section V the object cache is eval-
uated in the context of the Java processor JOP. Section VI
concludes the paper.

II. RELATED WORK

One of the first proposals of an object cache [14] appeared
within the Mushroom project [15]. The Mushroom project
investigated hardware support for Smalltalk-like object ori-
ented systems. The cache is indexed by a combination of
the object identifier (the reference in the Java world) and
the field offset. Different combinations, including xoring of
the two fields, are explored to optimize the hit rate. The most
effective generation of the hash function for the cache index
was the xor of the upper offset bits (the lower bits are used
to select the word in the cache line) with the lower object
identifier bits. Considering only the hit rate, caches with a
block size of 32 and 64 bytes perform best. However, under
the assumption of realistic miss penalties caches with 16
and 32 bytes lines size result in lower average access times
per field access. This result is a strong argument against just
comparing hit rates.

With an indirection based access to an object two data
structures needs to be cached: the actual object and the
indirection to that object. In the paper a common cache
for both data structures and a split cache is investigated.
As the handle indirection cache is only accessed when the
object cache results in a miss, a medium hit rate on the
handle indirection cache is sufficient. Therefore, the best

configuration is a large object cache and a small handle
indirection cache.

A dedicated cache for heap allocated data is proposed in
[13]. Similar to our proposed object cache, the object layout
is handle based. The object reference with the field index is
used to address the cache — it is called virtual address object
cache. Cache configurations are evaluated with a simulation
in a Java interpreter and the assumption of 10 ns cycle time
of the Java processor and a memory latency of 70 ns. For
different cache configurations (up to 32 KB) average case
field access times between 1.5 and 5 cycles are reported. For
most benchmarks the optimal block size was found to be 64
bytes, which is quite high for the medium latency (7 cycles)
of the memory system. The proposed object cache is also
used to cache arrays, whereas our object cache is intended
for normal objects only. Therefore, the array accesses favor
a larger block size to benefit from spatial locality. Object
access and array access are quite different from the WCET
analysis point of view. The field index for an object access
is statically known, whereas the array index usually depends
on the loop iteration count.

Wright et al. propose a cache that can be used as object
cache and as conventional data cache [17]. To support the
object cache mode, the instruction set is extended with a few
object oriented instructions such as load and store of object
fields. The object layout is handle based and the cache line is
addressed with a combination of the object reference (called
object id) and part of the offset within the object. The main
motivation of the object cache mode is in-cache garbage
collection of the youngest generation [16].

All proposed object caches are optimized for average case
performance. It is common to use a hash function by xoring
part of the object identifier with the field offset in order to
equally distribute object within the cache. However, this hash
function defeats WCET analysis of the cache content. In
contrast, our proposed object cache is designed to maximize
the ability to track the cache state in the WCET analysis [3].

III. OBJECT CACHE DESIGN

The proposed object cache is based on the idea that the
data cache shall be split to cache different data areas within
their own caches [8]. These caches can be optimized for the
typical access patterns and for the WCET analysis.

A. Split Data Cache

In the first RISC processors the cache was split into an
instruction cache and a data cache to decouple the instruction
fetch in the first pipeline stage from the data load and
store in a later pipeline stage. All current processors have
a split cache at the first level in the cache hierarchy. This
splitting of the cache enabled independent cache analysis for
instructions and data. Instruction caches are relative easy to
analyze as the fetch addresses are statically know. Access to
static data and the caching of those data is also analyzable.

However, the data cache serves for several quite different
data areas: static data (scalars and arrays), stack allocated
data (local variables and stack allocate objects), constants,
method dispatch tables, and heap allocated data (objects
and arrays). All those different data areas have different
properties with respect to WCET analysis: e.g., loads of
constants are simple to predict, whereas access to heap
allocated data is hard to predict. Furthermore, different data
areas benefit from different cache organizations: many data
areas are sensible to accesses that conflict in the cache block
placement, where access to stack allocated data is practically
immune to those conflicts. The former data areas benefit
from a higher associativity, whereas stack allocated data is
served well from a direct mapped cache.

Considering these differences in data access patterns and
also different WCET analysis properties we argue that the
data cache shall also be split for different memory areas [8].
Each data area has its own cache. The distinction between
the different accesses is easy on a Java processor as the
JVM bytecodes contain more semantic information than
loads and stores on a standard processor. On a standard
processor the differentiation between different memory areas
needs cooperation between the compiler and the memory
management unit (MMU). Different accesses have to be
mapped to different (virtual) addresses and the MMU needs
to be configured with this address mapping to correctly
redirect the accesses to the different caches.

With chip-multiprocessing (CMP) cache organization be-
comes further complicated. With a shared memory system
core local caches need to be hold consistent with the other
cores and the main memory. A cache coherence protocol is
responsible for the coherent and consistent view of the global
state in the main memory for all cores. This cache coherence
protocol is also the major limiting factor for CMP scaling.
However, not all data areas need a cache coherent view of
the main memory: constants are read only and are implicit
coherent; stack data is usually thread local® and needs no
cache coherence protocol.

B. Object Cache Organization

In a modern object-oriented language, data (objects and
arrays) is allocated on the heap. The addresses for these
objects are only known at runtime. Therefore, static WCET
analysis cannot classify accesses to those object fields as hits
or misses. However, it is possible to statically analyze local
cache effects with unknown addresses for a set-associative
cache. For an n-way set associative cache the history for
n different addresses can be tracked symbolically. As the
addresses are unknown, a single access influences all sets

2The exception is leaking a reference to stack allocated data to a
concurrent thread. This violation of stack local data can be detected by
a compiler and the shared data can be allocated on a second stack that is
placed in the cache coherent data area.

of one way in the cache. The analysis reduces the effective
cache size to a single set.

The proposed object cache architecture is optimized for
WCET analysis instead of average case performance. To
track individual cache lines symbolically, the cache is fully
associative. Without knowing the address of an object, all
cache lines in one way map to a single line in the analysis.
Therefore, the object cache contains just a single line per
way. Instead of mapping blocks of the main memory to
those lines, whole objects are mapped to cache lines. For this
mapping the reference to the object, instead of the object’s
address, is used for the tag memory. This organization is
similar to a virtual memory cache. For a handle based object
layout, as it is the case on JOP, usage of the reference to
access the cache avoids the handle indirection on a cache
hit.

The index into the cache line is the field index. To
compensate for the resulting small cache size with one cache
line per way, we propose to use quite large cache lines. To
reduce the resulting large miss penalty, only the missed word
in the cache line is filled on a miss. To track which words of
a line contain a valid entry, one valid bit per word is added
to the tag memory.

As the object cache is organized to cache a whole object
per cache line, each cache line can only contain a single
object. Objects cannot cross cache lines. If the object is
bigger than the cache line, the fields at higher indexes are not
cached. While this might sound like a drastic restriction, it
is the only way to keep the cache content WCET analyzable
for data with statically unknown addresses. That this design
is still efficient is shown in the evaluation section.

Furthermore, the cache organization is optimized for the
object layout of JOP. The objects are accessed via an indirec-
tion called the handle. This indirection simplifies compaction
during garbage collection. The tag memory contains the
pointer to the handle (the Java reference) instead of the
effective address of the object in the memory. Furthermore,
the object cache reduces the overhead of using handles. If
an access is a hit, the cost for the indirection is zero — the
address translation has been already performed.

The effective address of an object can only be changed
by the garbage collection. For a coherent view of the object
graph between the mutator and the garbage collector, only
a cached address of an object needs to be updated or
invalidated after the move. The cached fields, however, are
not affected by changing the object’s address, and can stay
in the cache.

To simplify static WCET analysis the cache is organized
as write-through cache. Write back is harder to analyze
statically, as on each possible miss an additional write back
needs to be accounted for in the analysis. In a recent
paper [1] it has been explained that write-back caches are
handled as follows: on a cache miss it is assumed that the
cache line that needs to be loaded is dirty and needs to be

written back. Current WCET analysis tools do not track the
dirty bit of a cache line. Therefore, write-back caches add
considerable overhead — or conservatism — to the WCET
analysis. In [1] it is recommended to use write-through
caches. Furthermore, a write-through cache simplifies the
cache coherence protocol for a chip multiprocessor (CMP)
system [6].

As objects cannot cross cache lines, the number of words
per cache line is one important design decision. For a fully
associative cache the tag and comparator implementation
consumes considerable resources, whereas the data memory
can be implemented in on-chip memory, which is cheap.
Therefore, cache lines for 8, 16, or even 32 words are a
reasonable design. Furthermore, the layout of the fields in
the object can be optimized by the compiler to place often
accessed fields at lower indexes.

The object cache is only used for objects and not for
arrays. The access behavior for array data is quite different
as it explores spatial locality instead of temporal locality.
Therefore, we believe that a cache organized as a small set
of prefetch buffers is more adequate for array data. As arrays
use a different set of bytecodes and are thus distinguishable
from ordinary objects, access to arrays can be redirected
to their own cache. The details of a time-predictable cache
organization for array data is not considered in this paper.

C. Cache Coherence

Standard cache coherence and consistence protocols are
expensive to implement and limit the number of cores in a
multiprocessor system. The Java memory model (JMM) [2]
allows for a simple form of cache coherence protocol [6].
With a write-through cache, the caches can be held consis-
tent according to the rules of the JMM by invalidating the
cache on start of a synchronized block or method (bytecode
monitorenter) or a read from a volatile variable. In the
implementation within JOP we have added a microcode
instruction to invalidate the cache.

D. Cache Design

Figure 1 shows the design of the object cache. In this
example figure the associativity is two and each cache
line is four fields long. All tag memories are compared in
parallel with the object reference. Therefore, the tag memory
uses dedicated registers and cannot be built from on-chip
memory. Parallel to the tag comparison, the valid bits for the
individual fields are checked. The field index performs the
selection of the valid bit multiplexer. The output of the tag
comparisons and valid bit selection is fed into the encoder,
which delivers the selected cache line. The line index and
the field index are concatenated and build the address of the
data cache. This cache is built from on-chip memory. As
current FPGAs do not contain asynchronous memories, the
input of the data memory contains a register. Therefore, the
cache data is available one cycle later. The hit is detected in

I Reference I

I Index I

| Tag | Valid | Data
—> 4_
Enc —»
Tag | Valid |
—> 4_
Hit Data
Figure 1. Object cache with associativity two and four fields per object

the same cycle as reference and index are available in the
pipeline, the data is available one cycle later.

A cache line is allocated and the tag valid if at least one
valid bit is set (i.e., at least one field is in the cache). When
the tag is a hit, but the field is not (yet) in the cache it is
loaded from main memory, put into the data memory of the
cache, and the valid bit is set. This cache update is performed
on a missed getfield and on a missed putfield. If the tag
comparison is a miss, a new cache line is allocated on a
getfield, but not on a putfield. The rational for this difference
is as follows: The scare resource of cache ways (tags) is not
spent on a single write, when the object is not yet in the
cache. If the object has already an allocated tag, updating
the cache on a putfield is for free.

The cache lines (tags) are allocated in first-in first-out
(FIFO) order. FIFO allocation is simpler in hardware than
least recently used (LRU) order.

IV. WCET ANALYSIS

The WCET analysis of the object cache [3] is lexical
scope based. If all references to the objects and their fields
fit into the object cache a single miss for each access is
assumed. In case that the lexical scope contains a loop with
iteration count n, n — 1 accesses are classified as hits. If
not all accessed objects fit into the cache, all accesses are
classified as misses. The analysis starts with the innermost
scopes and enlarges the scopes until the maximum size with
hit classification is reached.

For this type of analysis the cache replacement can be
LRU or FIFO. It is important that no conflict misses can

happen. Therefore, we can choose to implement the cheaper
FIFO policy. This lexical scope based analysis is cheap and
still effective [3]. It has to be noted that this type of analysis
is only feasible for processors without cache related timing
anomalies [4], where a cache hit can result in a higher overall
WCET. As JOP is free from such types of timing anomalies,
we can use this compositional approach to WCET analysis
of caches.

In [3] we have integrated the object cache analysis in the
WCET analysis tool of JOP [11]. By analyzing the influence
of the object cache organization on the resulting predicted
miss cycles we where able to show that the object cache,
as it is proposed in this paper, is the most efficient solution.
We also evaluated the influence on the main memory system
(short latency with SRAM and longer latency, but high
bandwidth with SDRAM) on the resulting miss cycles per
field read. Even for a SDRAM memory loading single fields,
or a small number of fields, on a miss is more beneficial than
loading a full cache line. The main cache effect for object
field accesses comes from temporal locality; spatial locality
plays a marginal role.

The actual execution time of a getfield in the implementa-
tion of JOP depends on the main memory access time. For
a memory access time of n cycles a getfield with a cache
miss takes

tgetfield_miss = 0 + 2n

cycles. Two memory access times are needed, as the handle
indirection and the actual field value have to be read. If the

1.14
1.12
i o ——— —
8+ —— ——— ——— ——— ——— —
1.06
1.04

1.02 +——
1.00 - = Udplp

HKfl
Lift

Relative performance

0.98 B Matrix
0.96 -
0.94 -
0.92 -

noO$ 1way 2way 4way 8way 16 way32 way 64 way

Figure 2.
of 8 fields

Performance impact of different associativities with a line size

access is a cache hit, the execution time of getfield is
tyetficld_hit = O

cycles. Besides not accessing the main memory at all,
another cycle is saved that is needed between the handle
indirection and field read to move the data from the memory
read to the memory address. For a SRAM based main
memory with 2 cycles access time, as it is used in the
evaluation, a missed getfield consumes 10 cycles, double the
time as in the hit case.

To verify the design decisions we have also evaluated the
proposed object cache by executing large Java benchmarks
(DaCapo) with cross-profiling [9]. With a simulation of the
object cache we where able to compare the high-associative
organization with a standard cache organization. The results
are similar to the results from WCET based analysis: only
temporal locality effects are important for the cache and
single field loads are most efficient. The object cache is
almost as efficient as a direct mapped cache in the average
case, but is WCET analyzable.

V. EVALUATION

We have implemented the proposed object cache in the
Java processor JOP [7] and the CMP version of JOP [5]. In
the original JOP architecture instructions are cached in the
method cache and stack allocated data in the stack cache.
Access to heap allocated data, the constant pool, and the
method dispatch table go directly to the main memory. For
the evaluation the object cache has been added to JOP. The
other data areas are not cached. The results are based on
the implementation in an FPGA from Altera, the Cyclone
EP1C12.

The object cache is integrated in the memory management
unit (MMU) that is responsible for bytecodes that access the
main memory. The hit detection is performed in a single
cycle and on a hit the processor pipeline can continue
without a stall.

1.20
1.15
g
& 110 —
£ kA
£
g 105 Lift
2 B Udpl
; plp
B 100 -
K B Matrix
0.95 +
0.90 -
no0$ 1field 2fields 4fields 8fields 16 fields
Figure 3. Performance impact of different line sizes with an associative
of 4

For the evaluation we use several benchmarks from the
benchmark suit JemBench [10]. Kfl is a benchmark, derived
from a real-world application that tilts up a railway contact
wire. The application was written in a very conservative style
using mostly static data and static methods. Therefore, we do
not expect a performance improvement by caching objects.
Lift is derived from a real-world application that controls
an industrial lift. This application is programmed in a more
object oriented style. Although all data is preallocated at the
application start to avoid influence of the garbage collection,
objects are used at runtime. Udplp is is a benchmark derived
from the implementation of a simple UDP/IP stack. The
UDP/IP stack is in industrial use on a railway device.
The Matrix benchmark measures the performance of matrix
multiplication. It is an artificial benchmark to measure CMP
speedup.

We have synthesized several different configurations of
the object cache with a uniprocessor version and a CMP
version of JOP. The object cache has two configurable
parameters: 1.) the number of ways (cache lines) and 2.)
the number of cached fields in one cache line. We have
varied the number of ways between 1 and 64, and the
number of fields per cache line between 1 and 16. With
parameter values as power of two and uniprocessor vs.
CMP configuration of JOP this resulted in more than 50
configurations that have been benchmarked. In the following,
only the results of the most interesting configurations are
presented.

Figure 2 shows the relative performance improvement
compared to a non-caching version of JOP. The configura-
tion is with a line size of 8 fields (32 bytes) and the number
of lines (ways) is varied between 1 and 61. Figure 3 shows
the performance impact of the variation of the line size for
a 4 way cache configuration.

The Kfl benchmark was coded in a very conservative,
static style — almost no objects are used and all functions
are static. Therefore, the object cache has no impact for this

1.40

1.20

0.80 "kl

Lift
Hudplp
B Matrix

0.60

Relative performance

0.40

0.20

0.00 +

no0$ 1way, 8 1way, 2way,8 2way, 4way,8 4way, 8way,8 8way,
fields 16 fields fields 16 fields fields 16 fields fields 16 fields

Figure 4. Performance impact on a CMP system

benchmark. The other two benchmarks show performance
improvements. The Lift benchmark is faster by 12%. The
UdpIp benchmark spends most of the time in array access for
network package processing. Despite of this workload, there
is still a speedup of 2%. The Matrix benchmark improves
by 7%, even with a single cache line. For the benchmarks
under test, caches with a higher associativity than 4 show
no further performance improvement. In Figure 3 we can
see that even a single field cache line provides performance
improvement for Lift. The cache line sizes of 4 and 8 fields
perform similar for all benchmarks. Only the Lift benchmark
improves slightly (14%) with a line size of 16 fields.

The speedup of a few percent is remarkable for the
minimal resources invested for the object cache. Especially
when considering the quite fast main memory, which is
based on an SRAM with a latency of 2 clock cycles.

In a CMP setting the demand on the memory bandwidth
is high and with a time-division multiple access (TDMA)
based memory arbitration the access latency increases linear
with the number of cores. Therefore, even a small hit rate
results in a considerable performance enhancement. The
memory interface to the shared main memory is usually the
bottleneck. In Figure 4 the speedup on a 3 core CMP system
(with a TDMA based memory arbitration) with the object
cache is shown. Due to resource limitations in the FPGA
(12000 LCs) the maximum associativity of the 3 object
caches for the CMP system is 8. Due to the high pressure on
the memory bandwidth the performance improvement with
an object cache is higher than on the uniprocessor version.
The improvement is up to 23% for the Lift benchmark and
up to 30% for the Matrix benchmark.

A. Resource Consumption

The object cache consumes considerable logic cells for
the implementation of the tag memory and the parallel
comparators. The data memory can be implemented in on-
chip memory. In the FPGA that was used for the evaluation
the size of an on-chip memory block is 4 KBit. Depending
on the size of the data memory, the synthesize tool uses

Table I
RESOURCE CONSUMPTION OF DIFFERENT CONFIGURATIONS OF THE
OBJECT CACHE

Configuration Resources

Ways Fields Logic (LC) Memory (Bit)
2 4 431 0

2 8 147 512

2 16 182 1024

4 4 181 512

4 8 218 1024

4 16 273 2048

8 4 331 1024

8 8 390 2048

8 16 492 4096

16 4 617 2048
16 8 745 4096

16 16 960 8192
32 4 1216 4096
32 8 1443 8192
32 16 1875 16384
64 4 2438 8192
64 8 2946 16384
64 16 3761 32768

logic cells for small memories instead of an on-chip memory
block. Table I shows the resource consumption in logic cells
(LC) and memory bits for different cache configurations.

B. Discussion

The evaluation of the object cache in hardware shows
a considerable average case speedup even for small cache
configurations. From the evaluation we draw the conclusion
that a configuration of 4 ways and a line size of 16 fields
is a good tradeoff between performance improvement and
resource consumption.

The results are in line with the evaluation of the object
cache based on static WCET analysis [3] and cache simula-
tion based on cross-profiling [9]. The improvement scales to
some extent with larger object caches. However, as we have
seen with the cross-profiling based simulation, useful object
caches sizes are up to a few KB. This result is verified by
the presented benchmarks. For further speedup, especially
on CMP systems, other data areas, such a constant pool or
the method dispatch table, need their own cache. The address
for constants and the class information is known statically.
Therefore, for those areas a standard cache organization can
be used.

The object cache is a good fit for Java processors. It
would also be a good enhancement of the Java processors
jamuth [12] and SHAP [18], which are similar to JOP. How-
ever, even standard processor architectures can be enhanced
by a cache for heap allocated data. Either typed load and
store instructions are added to the instruction set or the
different memory areas can be distinguished by the address
mapping for the virtual memory. With typed load/store

instructions one can even imagine to have m caches or
scratchpad memories and let the compiler decide which data
is cached by which cache unit. This approach is language
agnostic and could also enhance time predictability of C
programs.

VI. CONCLUSION

In this paper we presented a time-predictable solution
to cache heap allocated objects. As the addresses of heap
allocated data are not known for static WCET analysis, the
object cache is highly associative. The associativity allows
WCET analysis to track heap access via symbolic references.
As the architectures of JOP is time compositional, the object
cache can be analyzed with a static, scoped based analysis.
If all heap accesses within a program scope fit into the object
cache, the miss penalty for the WCET analysis is a single
miss of each distinct field access. The implementation of
the object cache provides a speedup of a several percent for
object oriented applications at a minimum hardware cost.

The proposed object cache is one example for a time-
predictable driven computer architecture. We believe that
future real-time systems need a new design paradigm for the
processor architecture to deliver a time-predictable platform.

ACKNOWLEDGEMENT

I would like to thank Benedikt Huber for the implementa-
tion of the WCET analysis for the object cache that verified
that the idea of a special cache for heap allocated data
for time-predictable architectures is sound. Furthermore, I
would like to thank Wolfgang Puffitsch for the implementa-
tion of various data caches for JOP to evaluate the split-cache
idea.

REFERENCES

[1] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard,
Daniel Grund, Claire Maiza, Jan Reineke, Benoit Triquet,
and Reinhard Wilhelm. Predictability considerations in the
design of multi-core embedded systems. In Proceedings of
Embedded Real Time Software and Systems, May 2010.

[2] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification, Third Edition. The Java Series.
Addison-Wesley Professional, Boston, Mass., 2005.

[3] Benedikt Huber, Wolfgang Puffitsch, and Martin Schoeberl.
WCET driven design space exploration of an object cache.
In Proceedings of the 8th International Workshop on Java
Technologies for Real-time and Embedded Systems (JTRES
2010), pages 26-35, New York, NY, USA, 2010. ACM.

[4] Thomas Lundqvist and Per Stenstrom. Timing anomalies in
dynamically scheduled microprocessors. In Proceedings of
the 20th IEEE Real-Time Systems Symposium (RTSS 1999),
pages 12-21, Washington, DC, USA, 1999. IEEE Computer
Society.

[5] Christof Pitter and Martin Schoeberl. A real-time Java
chip-multiprocessor. ACM Trans. Embed. Comput. Syst.,
10(1):9:1-34, 2010.

(6]

[7]

(8]

9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

Wolfgang Puffitsch. Data caching, garbage collection, and the
Java memory model. In Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES 2009), pages 90-99, New York, NY, USA,
2009. ACM.

Martin Schoeberl. A Java processor architecture for embed-
ded real-time systems. Journal of Systems Architecture, 54/1—
2:265-286, 2008.

Martin Schoeberl. Time-predictable cache organization. In
Proceedings of the First International Workshop on Software
Technologies for Future Dependable Distributed Systems
(STFSSD 2009), pages 11-16, Tokyo, Japan, March 2009.
IEEE Computer Society.

Martin Schoeberl, Walter Binder, and Alex Villazon. De-
sign space exploration of object caches with cross-profiling.
In Proceedings of the 14th IEEE International Symposium
on Object/component/service-oriented Real-time distributed
Computing (ISORC 2011), 2011.

Martin Schoeberl, Thomas B. Preusser, and Sascha Uhrig.
The embedded Java benchmark suite JemBench. In Proceed-
ings of the 8th International Workshop on Java Technologies
for Real-Time and Embedded Systems (JTRES 2010), pages
120-127, New York, NY, USA, August 2010. ACM.

Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Peder-
sen, and Benedikt Huber. Worst-case execution time analysis

for a Java processor. Software: Practice and Experience,
40/6:507-542, 2010.

Sascha Uhrig and Jorg Wiese. jamuth: an IP processor core
for embedded Java real-time systems. In Proceedings of the
Sth International Workshop on Java Technologies for Real-
time and Embedded Systems (JTRES 2007), pages 230-237,
New York, NY, USA, 2007. ACM Press.

N. Vijaykrishnan and N. Ranganathan. Supporting object ac-
cesses in a Java processor. Computers and Digital Techniques,
IEE Proceedings-, 147(6):435-443, 2000.

Ifor Williams and Mario Wolczko. An object-based memory
architecture. In Proceedings of the Fourth International Work-
shop on Persistent Object Systems, pages 114-130, Martha’s
Vineyard, MA (USA), September 1990.

Ifor W. Williams. Object-Based Memory Architecture.
PhD thesis, Department of Computer Science, University of
Manchester, 1989.

Greg Wright, Matthew L. Seidl, and Mario Wolczko. An
object-aware memory architecture. Technical Report SML—
TR-2005-143, Sun Microsystems Laboratories, February
2005.

Greg Wright, Matthew L. Seidl, and Mario Wolczko. An
object-aware memory architecture. Sci. Comput. Program,
62(2):145-163, 2006.

Martin Zabel, Thomas B. Preusser, Peter Reichel, and
Rainer G. Spallek. Secure, real-time and multi-threaded
general-purpose embedded Java microarchitecture. In Prceed-
ings of the 10th Euromicro Conference on Digital System
Design Architectures, Methods and Tools (DSD 2007), pages
59-62, Liibeck, Germany, Aug. 2007.

