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ABSTRACT 1 

This paper presents a general Monte Carlo full waveform inversion strategy that 2 

integrates a priori information described by geostatistical algorithms with Bayesian inverse 3 

problem theory. The extended Metropolis algorithm can be used to sample the a posteriori 4 

probability density of highly non-linear inverse problems, such as full waveform inversion. 5 

Sequential Gibbs sampling is a method that allows efficient sampling of a priori probability 6 

densities described by geostatistical algorithms based on either 2-point (e.g. Gaussian) or multiple-7 

point statistics. In this paper we outline the theoretical framework for a full waveform inversion 8 

strategy that integrates the extended Metropolis algorithm with sequential Gibbs sampling such that 9 

arbitrary complex geostatistically defined a priori information can be included. At the same time 10 

we show how temporally and/or spatially correlated data uncertainties can be taken into account 11 

during the inversion. The suggested inversion strategy is tested on synthetic tomographic crosshole 12 

ground penetrating radar full waveform data using multiple-point based a priori information. This 13 

is, to our knowledge, the first example of obtaining a posteriori realizations of a full waveform 14 

inverse problem. Benefits of the proposed methodology compared to deterministic inversion 15 

approaches include: 1) The a posteriori model variability reflects the states of information provided 16 

by the data uncertainties and a priori information, which provides a means of obtaining resolution 17 

analysis. 2) Based on a posteriori realizations, complicated statistical questions can be answered, 18 

such as the probability of connectivity across a layer. 3) Complex a priori information can be 19 

included through geostatistical algorithms. These benefits, however, require more computing 20 

resources than traditional methods. Moreover, an adequate knowledge of data uncertainties and a 21 

priori information is required in order to obtain meaningful uncertainty estimates. The latter may be 22 

a key challenge when considering field experiments, which will not be addressed here.  23 
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Abbreviations: GPR, Ground penetrating radar; Snesim, Single normal equation simulation; 1 

FDTD, Finite-difference time-domain.  2 
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INTRODUCTION 1 

Albert Tarantola was one of the pioneers of seismic full waveform inversion (see 2 

Tarantola, 1984, 1986, 1988). Using a steepest descent algorithm, the update gradient was in each 3 

iteration obtained by correlating a forward propagated wave field with the residual wave field 4 

propagated backwards in time from the receiver positions. This approach has later been referred to 5 

as the adjoint method (Talagrand and Courtier, 1987). The first numerical tests based on finite-6 

difference simulations of the seismic signal showed promising results (Gauthier et al., 1986). Since 7 

then, several full waveform inversion algorithms, based on Tarantola’s pioneering work, have been 8 

developed and applied to seismic data (e.g.; Mora, 1987; Crase et al., 1990; Pica et al., 1990; 9 

Djikpéssé and Tarantola, 1999). 10 

Ground penetrating radar (GPR) crosshole tomography is a popular method used to 11 

obtain tomographic images of near-surface geological structures and geophysical parameters. The 12 

crosshole GPR experiment involves a transmitting radar antenna (20 MHz – 1 GHz, (see Reynolds, 13 

1997)) lowered into a borehole and a receiving antenna placed in an adjacent borehole. The 14 

boreholes are typically separated by a distance of 5 m – 20 m and are 5 m – 100 m deep (e.g. Looms 15 

et al., 2008; Ernst et al., 2007a). An antenna is kept fixed in one borehole, while the other antenna is 16 

moved between multiple locations in the opposite borehole. The fixed antenna is moved to a new 17 

position and the procedure is repeated. At each combination of antennae positions a signal is 18 

transmitted between the antennae. In this way an arbitrary dense tomographic data set that covers 19 

the inter-borehole region can be obtained (Peterson, 2001).   20 

Ernst et al. (2007a, b) introduced and applied the adjoint-based optimization algorithm 21 

for inversion of tomographic crosshole GPR full waveform data. They demonstrate that sub-22 

wavelength features can be resolved when the full waveform information of the GPR signal is 23 

accounted for during the inversion, which was a considerable improvement, compared to traditional 24 
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ray-based inversion strategies. The inversion scheme by Ernst et al. (2007b) was later adopted for 1 

inversion of seismic waveform data by Belina et al. (2009). Recently, the algorithm by Ernst et al. 2 

(2007b) has been improved such that it exploits the full vector field of the electromagnetic wave 3 

propagation and allows for arbitrary antennae geometry (Meles et al., 2010). Klotzsche et al. (2010) 4 

demonstrate an application of the improved code to crosshole GPR waveform data acquired in a 5 

gravel aquifer. Lately, Meles et al. (2011) demonstrated that the adjoint-based method of Ernst et al. 6 

(2007b) becomes less sensitive to the starting model when the inversion is conditioned to the long 7 

wavelengths of the signal in the initial part of the inversion and higher frequencies are gradually 8 

incorporated.  9 

The adjoint-based approach is desirable because, in relatively few iterations, it is able 10 

to obtain a model of geophysical parameters that minimize a misfit (i.e. objective) function between 11 

the observed and modeled waveforms. However, this inversion strategy has some limitations: 12 

Firstly, the method is based on linearization of the inverse problem and, therefore, it cannot be 13 

guaranteed that the global minimum is found (e.g. Tarantola, 2005). Secondly, the convergence 14 

criterion is chosen somehow subjectively, which may adversely result in noise propagating into the 15 

model estimate (e.g. Ernst et al., 2007b). Finally, the method is based on a linear assumption of the 16 

forward relation and is limited to Gaussian data uncertainty and a priori information, which results 17 

in a Gaussian approximation of the a posteriori uncertainty estimate (Tarantola, 1984; Pratt and 18 

Worthington, 1990). Here we propose an algorithm that naturally deals with these limitations. 19 

In a Bayesian formulation the solution to the inverse problem is given as an a 20 

posteriori probability density (Tarantola and Valette, 1982). The a posteriori probability is based on 21 

the independent states of information provided by the data (related to the model parameters through 22 

a physical law), an associated data uncertainty  model (that takes into account data noise and data 23 

simulation inadequacies) and the a priori information on the model. The combined states of 24 
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information contained in the a posteriori probability density are reflected in the model variability of 1 

the a posteriori sample. Hence, data uncertainties will not cause artifacts in the solution, but rather 2 

influence the degree of a posteriori model variability if the nature of the uncertainties is 3 

appropriately accounted for in the uncertainty model. Resolution analysis is naturally obtained from 4 

the a posteriori model variability. One may simply be interested in calculating the covariance of the 5 

a posteriori model parameters, but more sophisticated questions, such as the probability of 6 

geological connectivity or the residence time of a fluid, may also be answered by the a posteriori 7 

statistics (Mosegaard, 1998).  8 

The extended Metropolis algorithm (Mosegaard and Tarantola, 1995) can be used to 9 

sample the a posteriori probability density, even for highly nonlinear inverse problems. This 10 

algorithm does not need a closed form mathematical expression of the a priori information, but a 11 

“black box” algorithm that is able to sample the a priori probability density is sufficient. Hansen et 12 

al. (2008; accepted) suggested a method that provides a means of controlling the perturbation step-13 

size and efficiency when sampling a priori information defined through any geostatistical 14 

algorithms that are based on sequential simulation (e.g. Gomez-Hernandez and Journel, 1993). This 15 

method is referred to as Sequential Gibbs sampling (Hansen et al., accepted). They demonstrate that 16 

this method could serve as a “black box” algorithm in the extended Metropolis algorithm. 17 

Sequential Gibbs sampling can be used to sample a priori models based on either relatively simple 18 

2-point based statistical models, such as Gaussian based a priori models, or more complex 19 

multiple-point based statistical models. This provides a means of using complex a priori statistical 20 

models that allow reproduction of geologically plausible structures, such as channels and tortuosity. 21 

Such complex patterns (i.e. spatial autocorrelation) can be learned from so-called training images 22 

and reproduced by simulation algorithms based on multiple-point statistics (e.g. Strebelle, 2002). 23 

Multiple-point algorithms offer the flexibility of simulating realizations with high entropy (e.g. 24 
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Gaussian distributions) as well as low entropy (i.e. a few facies) structures or a combination of both 1 

(Journel and Zhang, 2006). See for example Remy et al. (2008) for different examples of such 2 

complex statistical models. In this way, the extended Metropolis algorithm becomes very flexible 3 

with regards to the choice of a priori model.  4 

Since his seminal work on the full waveform inverse problem, Albert Tarantola had 5 

the vision that realistic a priori information for inversion could be learned from a large collection of 6 

'training images' of the subsurface (Mosegaard, 2011). In this paper we demonstrate how this is 7 

made possible by using the extended Metropolis algorithm in conjunction with a priori information 8 

defined by a geostatistical algorithm using sequential Gibbs sampling. Introductory, the theoretical 9 

background for this inversion strategy is outlined. Subsequently, the theory is applied to a 10 

tomographic crosshole GPR full waveform inverse problem in which the a priori information is 11 

inferred (i.e. learned) from a training image and realized through the geostatistical algorithm Single 12 

Normal Equation SIMulation (Snesim) (Strebelle, 2002). Full waveform data traces are often 13 

contaminated by noise and are, in addition, subject to uncertainties related to inadequacies in the 14 

data simulation algorithm. These components of data uncertainty do often exhibit some degree of 15 

temporal correlation. In this study, we consider Gaussian distributed data uncertainty component 16 

with a temporal autocorrelation. We show how this uncertainty is accounted for in the inversion 17 

through the data uncertainty model. 18 

Tarantola (2005) was a proponent of the movie strategy, in which “movies” of 19 

multiple realizations from the a priori and a posteriori probability densities are compared in order 20 

to understand the additional information provided by the data compared to the a priori information. 21 

Features that occur frequently in the a posteriori movie are regarded as well resolved. We show that 22 

the movie strategy provides a means of obtaining resolution analysis of the full waveform inverse 23 

problem. Moreover, we demonstrate how a posteriori realizations can be used to quantify the 24 
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probability of lithological connectivity. The term resolution is, in this paper, used such that high a 1 

posteriori model variability refers to low resolution and vice versa (Mosegaard, 1998). To our 2 

knowledge this is the first example of sampling the a posteriori probability density of a 3 

tomographic full waveform inverse problem. Resolution analysis of the problem reveals that the 4 

combined states of information from the full waveform data and the a priori information provides a 5 

high resolution subsurface image, even in the case of considerably sparse data coverage. Finally, we 6 

demonstrate how the geostatistically formulated a priori information serves as a guide in the initial 7 

burn-in part of the inversion procedure. In this way, convergence of the suggested full waveform 8 

inversion algorithm becomes independent of the initial model. 9 

The present method is completely explicit with regard to the data uncertainty model 10 

and a priori information. Establishment of an adequate a priori information and data uncertainty 11 

model (comprising data noise and modeling inadequacies) demands effort from the user in order to 12 

obtain trustworthy a posteriori probability density. These issues are far from being trivial when 13 

considering field experiments and are beyond the scope of this work.  14 

 15 

METHODOLGY 16 

Consider that the subsurface can be represented by a discrete set of model parameters, 17 

m , (referred to as the model) and that a data set, d , of indirect observations of the model 18 

parameters is provided. The model parameters describe some physical properties of the subsurface 19 

that influence the data. Hence, the forward relation between the model and the data can be 20 

expressed as the relation (e.g. Tarantola, 2005): 21 

( )g=d m ,      (1) 22 

where g  is a linear or non-linear mapping operator that often relies on a physical law. In this 23 

particular study the model represents a tomographic image of dielectric permittivity of the 24 
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subsurface material, and data are waveforms of the vertical electrical component of electromagnetic 1 

waves propagated across the model between two boreholes. The forward relation in equation 1 is 2 

given as a finite-difference time-domain (FDTD) solution of Maxwell’s equations (Ernst et al., 3 

2007b). However, any numerical wave propagation modeling strategy (for GPR or seismic signals) 4 

can be applied. The inverse problem is to infer information about the model parameters based on a 5 

set of data (and their uncertainties), a priori information about the model, and the forward relation 6 

between the model and the data. 7 

In a Bayesian formulation the solution to the inverse problem is given as an a 8 

posteriori probability density, which can be formulated as (e.g. Tarantola, 2005): 9 

( ) ( ) ( )M Mc Lσ ρ=m m m ,      (2) 10 

where c is a normalization constant, ( )Mρ m  is the a priori probability density, and ( )L m  is the 11 

likelihood function. ( )Mρ m  describes the probability that the model satisfies the a priori 12 

information. ( )L m  describes how well the modeled (i.e. simulated) data explains the observed data, 13 

given a statistical description of the data noise and modeling inadequacies (from here on referred to 14 

as the data uncertainty model). Hence, the a posteriori probability density describes the resulting 15 

state of information on the model parameters provided by the independent states of information 16 

given by the data (related to the model through the forward relation) and an a priori state of 17 

information on the model parameters. An appropriate specification of the data uncertainty model 18 

(through the likelihood function) and the a priori information is crucial in order to ensure a correct 19 

a posteriori state of information (i.e. solution of the inverse problem).  20 

 21 

Sampling the a posteriori probability density 22 

A highly nonlinear inverse problem refers to the case where the a priori probability 23 

density is far from being Gaussian or the likelihood function is highly non-Gaussian (typically) due 24 
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to the nonlinear forward relation between model and data. According to equation 2 the product of 1 

these non-Gaussian probability densities signify a highly non-Gaussian a posteriori probability 2 

density. In the case of full waveform inversion, the forward relation is expected to be highly 3 

nonlinear. Moreover, realistic a priori information, as we introduce here, is typically far from being 4 

Gaussian.  5 

The extended Metropolis algorithm is a versatile tool which, in particular, is useful to 6 

sample the a posteriori probability density of non-linear inverse problems using arbitrarily complex 7 

a priori information. This algorithm is convenient in that it does not need an explicit expression of 8 

the a priori probability density. A “black box” algorithm that is able to perform a random walk in 9 

the a priori probability density is sufficient (Mosegaard and Tarantola, 1995). In this study we use 10 

sequential Gibbs sampling, which will be described below, as the “black box” algorithm to sample 11 

the a priori probability density.  12 

The extended Metropolis Algorithm consists of two randomized steps: 13 

1) Exploration; propose a candidate model, proposem , which is a perturbation of a current model, 14 

currentm , and at the same time is a realization of the a priori probability density. 15 

2) Exploitation; decide if the proposed model should be accepted or rejected. The proposed model is 16 

accepted with the Metropolis acceptance probability (referred to as the Metropolis rule): 17 

( )
( )

min 1, propose
accept

current

L
P

L

 
 =
 
 

m
m

,    (3) 18 

where ( ) ( )/propose currentL Lm m  is the ratio between the likelihood evaluated in the proposed and the 19 

current model, respectively. If accepted, the proposed model becomes the current model and is a 20 

realization of the a posteriori probability density. Otherwise the proposed model is rejected and the 21 

current model counts again. Thus, in each iteration, the sample size of the a posteriori probability 22 

density increases.  23 
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The exploration step constitutes the strategy by which proposed models are drawn 1 

from the a priori probability density. For small exploration steps the proposed model will be 2 

relatively highly correlated with the current model, compared to large exploration steps. Thus, 3 

according to equation 3, small exploration steps will result in a high acceptance probability and vice 4 

versa. Recall that each evaluation of the likelihood function involves a computationally expensive 5 

(FDTD) forward calculation. It is, therefore, important to choose an appropriate exploration step-6 

size that does not explore the a posteriori probability density too slowly, but on the other hand does 7 

not waste too many expensive evaluations of the likelihood that are very unlikely to be accepted. In 8 

particular, the exploration strategy becomes very important when dealing with high dimensional 9 

probability densities, since traditional sampling strategies may lead to a very inefficient exploration 10 

strategy (Hansen et al., 2008; accepted). Recently, Hansen et al. (2008; accepted) introduced a 11 

flexible sampling strategy to sample high dimensional a priori probability densities defined by 12 

geostatistical algorithms. This sampling strategy provides a means of using a variable exploration 13 

step-size when sampling such high dimensional probability densities. This method is briefly 14 

outlined in the following. 15 

 16 

Sampling geostatistically defined a priori information 17 

Hansen et al. (accepted) suggest a strategy referred to as sequential Gibbs sampling, 18 

which is a method that is capable of sampling probability densities defined by geostatistical 19 

algorithms based on sequential simulation. Originally, sequential simulation was used to generate 20 

realizations of 2-point based statistical models, such as Gaussian models (e.g. Gomez-Hernandez 21 

and Journel, 1993). 2-point statistical models are limited to specify the spatial variability between 22 

pairs of data (hence the name 2-point statistics) defined by a covariance model. 2-point statistics 23 

does not provide enough information to model plausible geological structures, such as channels and 24 
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tortuosity. This can be overcome by using a model based on multiple-point statistics, as suggested 1 

by Guardiano and Srivastava (1993). In multiple-point based statistical models, the a priori 2 

information is learned from a training image. The training image is scanned by a template that 3 

jointly consider spatial variability between a number of (larger than two) pixel values in the image 4 

in order to obtain a joint probability distribution that hold information about these spatial 5 

correlations. The model parameter values are subsequently sequentially simulated from conditional 6 

probabilities based on the jointly considered pixel values (e.g. Strebelle, 2002). The algorithm 7 

suggested by Guardiano and Srivastava (1993) was, however, computationally unfeasible. It was 8 

not until an efficient way of storing multiple-point statistics in machine memory was proposed that 9 

the use of multiple-point based models became computationally feasible (Strebelle, 2002). See e.g. 10 

Remy et al. (2008) for numerous examples of the application of sequential simulation from both 2-11 

point and multiple-point based a priori models. 12 

In this study sequential Gibbs sampling serves as the “black box” algorithm that 13 

samples the a priori probability density ( )Mρ m , described by a geostatistical simulation algorithm, 14 

with a controllable exploration step-size. The flow of the sequential Gibbs sampling is as follows:  15 

1) An initial unconditional realization of the a priori probability density, currentm , defined in a 2-16 

dimensional regular grid of model parameters is provided.  17 

2) A square subarea, corresponding to model parameters subaream , with side-length stepE (exploration 18 

step-size) of the current model currentm  is randomly chosen.  19 

3) A realization of the conditional probability density ( | )M subarea currentρ m m  is obtained using 20 

sequential simulation. currentm  are the current model parameters outside the subarea. ( )Mρ m  is an a 21 

priori probability density that may be described by either 2- or multiple-point statistics. This step is 22 

an application of the Gibbs sampler where sequential simulation is used to efficiently generate a 23 
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realization from the conditional probability density (hence the name sequential Gibbs sampling). In 1 

practice this is performed simply by running the sequential simulation algorithm conditional to the 2 

model parameters outside the subarea. In this way a new, perturbed model, proposem  is obtained. 3 

4) The proposed model becomes the current model and steps 2 and 3 are repeated in order to obtain 4 

multiple realizations of the a priori probability density.  5 

Recall that, when applying sequential Gibbs sampling as an a priori model sampler in 6 

the extended Metropolis algorithm, the current model currentm  is reused if the proposed model 7 

proposem  is rejected by the Metropolis rule. Moreover, the resemblance (i.e. correlation) between the 8 

current and proposed model, and thus the average Metropolis acceptance probability (cf. the 9 

Metropolis rule), can be controlled by the explorations step-side stepE  (i.e. the side-length of the 10 

resimulated area).  11 

 12 

The likelihood function and correlated data errors 13 

GPR or seismic full waveform data are often contaminated with temporally correlated 14 

uncertainties along the individual waveform traces or spatially correlated (i.e. static) errors among 15 

data related to certain transmitter (source) or receiver positions. The probabilistic formulation of the 16 

inverse problem allows for an arbitrary data uncertainty model and it is, therefore, possible to 17 

account for these correlations in the data uncertainties. In the present study we consider that data 18 

uncertainties are Gaussian distributed with a temporal correlation along the individual waveform 19 

traces, but uncorrelated among the individual traces. This type of uncertainty influences the state of 20 

information on the model parameters provided by the data and is, therefore, accounted for through 21 

the likelihood function. This particular likelihood function takes on the following form: 22 

( ) ( )1

1

1( ) exp ( ) ( )
2

K Tk k k k
obs D obs

k
L c g g−

=

 = − − − 
 

∏m m d C m d ,  (4) 23 
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where ( )kg m   and k
obsd  are vectors that contain the simulated and observed waveform traces related 1 

to the k’th transmitter-receiver pair. K is total number of waveform traces (i.e. transmitter-receiver 2 

pairs). c is a normalization constant. DC  is the data covariance matrix that defines the variances and 3 

covariances of the data uncertainties. The temporal correlation of the data uncertainties is described 4 

by an exponential correlation function (e.g. Goovaerts, 1997): 5 

3 ( , )( , ) expD
s i ji j c
a

− =  
 

C ,    (5) 6 

where c is the sill (i.e. variance) and a the range (i.e. correlation length) of the uncertainties. ( , )s i j  7 

is the temporal distance between the i’th  and j’th sample point along the waveforms. DC  is a 8 

symmetric NxN matrix, where N is the number of samples in the individual waveform traces.  9 

Cordua et al. (2009) quantified the influence of static-like errors in crosshole GPR 10 

experiments, which are data uncertainties that are spatially correlated among data related to the 11 

individual transmitter and receiver positions. This kind of data uncertainty may also be accounted 12 

for through the data covariance matrix, but this is not considered here. For a description of how to 13 

set up a data covariance matrix that accounts for static (i.e. spatially correlated) errors, see Cordua 14 

et al. (2008). 15 

 16 

The burn-in period 17 

If the probability that a sampling algorithm, at any time, enters an infinitesimal 18 

neighborhood Nj, that surrounds the model mj, is equal to the probability that is leaves this 19 

neighborhood, the algorithm is said to satisfy microscopic reversibility (e.g. Mosegaard and 20 

Sambridge, 2002). It can be shown that if a sampling algorithm satisfies microscopic reversibility, 21 

then the a posteriori probability density is the only equilibrium distribution for the algorithm, and 22 

the algorithm will converge toward this equilibrium distribution independently of the starting model 23 
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(e.g. Kaipio et al., 2000). This property is satisfied by the extended Metropolis algorithm (see 1 

Mosegaard and Sambridge (2002) for a detailed description of the Metropolis algorithm). In 2 

practice, the extended Metropolis algorithm has reached the equilibrium distribution when the 3 

likelihood values starts to fluctuate around a constant level (referred to as the equilibrium level) and 4 

the data are fitted within their uncertainties. When this phase is reached the algorithm is said to be 5 

burned-in. In case of a non-linear full waveform inverse problem the structure of the a posteriori 6 

probability density is completely unknown. If this distribution is multimodal, several modes may 7 

exist that fit data with the uncertainty. Hence, no guarantee can be given, no matter the choice of 8 

sample strategy, that the a posteriori probability density is appropriately represented (i.e. all modes 9 

are represented) by a finite sample size.     10 

The a posteriori probability density is defined over a high dimensional space and 11 

leaves only small areas of significant probability. Therefore, the burn-in period may be long 12 

because the algorithm during this period randomly walks across large parts of this high dimensional 13 

space searching for a small area of significant probability. As a consequence, we suggest to 14 

performing large exploration steps in the initial part of the burn-in period and then gradually 15 

decreasing the exploration step-size as the algorithm approaches the equilibrium level. In this way, 16 

the large scale structures of the model are relatively quickly established in the initial part of the 17 

burn-in period, after which the algorithm gradually establishes the smaller-scale structures. 18 

However, microscopic reversibility cannot be guaranteed when the exploration step-size is not kept 19 

constant while running the algorithm. Therefore, the algorithm is stopped when “apparent” burn-in 20 

has been reached and the exploration step-size is subsequently set to a constant value.  21 

The algorithm is started in an unconditional realization of the a priori model, which is 22 

expected to be far away from volumes of significant a posteriori probability density. We suggest 23 

adaptively adjusting the exploration step-size during the burn-in period such that the Metropolis 24 
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acceptance probability (equation 3) controls the exploration step-size. This is controlled by updating 1 

the exploration step-size after each M successive exploration steps of the Metropolis algorithm. The 2 

exploration step-size update is performed just after the exploitation step (step 1) of the algorithm. 3 

Consider that the algorithm is at iteration number K, where K is a multiple of M. Then the 4 

exploration step-size 1i
stepE +  during iteration number K+1 to K+M+1 (i.e. the next M iterations) is 5 

given as: 6 

average1i i
step step

control

P
E E

P
+ = ,     (6) 7 

where i
stepE  is the exploration step-size during iteration number K-M to K (i.e. the M preceding 8 

iterations). averageP  is the average Metropolis acceptance probability (equation 3) during iteration 9 

number K-M to K and controlP  is a subjectively chosen constant acceptance ratio that the algorithm 10 

tries to adhere to by adjusting the exploration step-size according to equation 6. For larger values of 11 

controlP , the exploration steps-size decreases faster and converges to a lower level, than for smaller 12 

values. The minimum possible exploration step-size involves resimulation of one model parameter, 13 

whereas the maximum step-size is an (unconditional) simulation of all the model parameters that 14 

are statistically independent of the previous model.  15 

 16 

A SYNTHETIC CROSSHOLE GPR FULL WAVEFORM INVERSE PROBLEM 17 

The methodology outlined above is tested on a synthetic tomographic crosshole GPR 18 

full waveform data set. Wave field simulations of the GPR signals (i.e. the forward relation) are 19 

obtained using FDTD calculations of Maxwell’s equations in transverse electric mode (Ernst et al., 20 

2007b). This FDTD method provides grid-based time-domain calculations of the electromagnetic 21 

wave field propagation. The transmitting and receiving antennae are simulated as vertically 22 

orientated dipole-type antennae and are aligned parallel with the vertical boreholes. Transmitted and 23 
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received signals concern the vertical component of the electrical field (Holliger and Bergmann, 1 

2002). The FDTD algorithm by Ernst et al. (2007b) yields second order accuracy in both time and 2 

space, and performs the calculations in 2D Cartesian coordinates. The edges of the FDTD grid are 3 

surrounded by a generalized perfectly matched layer (GPML) in order to absorb artificial boundary 4 

reflections.  5 

The a priori information of the inverse problem is provided by the Snesim algorithm. 6 

Snesim is a fast geostatistical simulation algorithm that produces realizations (conditional or 7 

unconditional to point data) from a high dimensional probability density that contains the spatial 8 

relations (i.e. patterns) learned from a training image for a relatively low number of categorical 9 

values (Strebelle, 2002). Figure 1 shows a training image that mimics a matrix of unconsolidated 10 

sand with embedded channels of gravel situated in an unsaturated environment. The geological 11 

information contained in the training image may have been obtained from outcrops in a nearby 12 

gravel pit and/or a natural cliff. The training image applied here does not necessarily represent a 13 

realistic near surface environment, but is rather used to demonstrate the principle that geologically 14 

realistic features, such as complex channel structures, can be represented by a multiple-point based 15 

a priori model in the inversion procedure. Electromagnetic signals in the near surface sediments are 16 

sensitive to the dielectric permittivity, the electrical conductivity, and the magnetic permeability of 17 

the materials. In this study we limit ourselves to considering only the influence of the dielectric 18 

permittivity, which is primarily governing the phase velocity of the signal. The relative dielectric 19 

permittivity of the sand and the gravel channel is set to rε =  4.0 (0.150 m/ns) and rε = 3.0 (0.173 20 

m/ns), respectively (e.g. Ernst et al., 2006). The relative dielectric permittivity is given as 0/rε ε ε=21 

, where ε  is the absolute dielectric permittivity and 0ε is the dielectric permittivity of free space. 22 

Figure 2 shows the synthetic reference model to be considered and is, at the same 23 

time, an unconditional realization of the training image obtained using Snesim. The electrical 24 
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conductivity is set to a constant value of 3 mS/m and in the following it is assumed known. Near 1 

surface materials are considered non-magnetic and the magnetic permeability is set to the magnetic 2 

permeability of free space (e.g. Davis and Annan, 1989). 3 

A full waveform synthetic data set is calculated using the FDTD algorithm. A Ricker 4 

wavelet with a central frequency of 100 MHz is used as the source pulse. The source pulse is 5 

assumed known during the inversion. The recorded synthetic GPR full waveform data are the 6 

vertical component of the electrical field. The experiment is conditioned by data from four 7 

transmitters (two in each borehole) at depths of 3 m and 9 m. The receivers are equidistantly 8 

distributed in the two boreholes with a separation distance of 1.5 m. Data acquired with a 9 

transmitter-receiver angle larger than 45 degrees from horizontal are omitted since, in practice, 10 

these data are violated by effects of wave guiding in the boreholes (e.g. Peterson, 2001) and travel 11 

paths between the antenna tips instead of the center of the antennae (Irving and Knight, 2005). 12 

These effects are, among several other sources of uncertainty, a result of inadequate forward 13 

modeling which has to be seriously considered in field experiments. Such effects either have to be 14 

handled through a refined forward modeling approach, or accounted for in the likelihood function 15 

through a statistical description of the data uncertainties imposed by both data noise and modeling 16 

inadequacies. See the discussion for a further treatment of these issues. The data geometry leads to a 17 

total of 20 recorded waveform traces. The resulting transmitter-receiver positions are connected 18 

with dotted lines in Figure 3.  19 

Gaussian distributed data uncertainties with a temporal autocorrelation described by 20 

the exponential correlation function in equation 5 are added to the waveform data. The temporal 21 

correlation length a  (i.e. the range) is set to 12.7 ns. Figure 4 shows the five waveform traces 22 

related to the uppermost transmitter position in the left borehole (see Figure 2), which are related to 23 

the transmitter-receiver pairs marked by the numbers 1 to 5 in Figure 3. The noise free simulated 24 
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waveforms are plotted as a dotted blue curves and the uncertain waveforms (noisy waveforms) are 1 

plotted as the red curves. The 20 uncertain waveform traces are used as observed data in this study 2 

and have an average signal-to-noise ratio of 13.6. The uncertainty imposed on the “noise free” data 3 

mimic the total contribution of data noise and modeling inadequacies. In the next section, full 4 

waveform inversion will be performed on the uncertain waveform data with a priori information 5 

based on a geostatistical model inferred from the training image in Figure 1.  6 

 7 

RESULTS 8 

Burn-in 9 

In the present example the algorithm is started in a realization of the multiple-point a 10 

priori model learned from the training image, unconditional to any information from the data. In 11 

this way the starting model is independent of data and relies only on the a priori information. The 12 

initial exploration step-size has a side-length of stepE = 12 m, which corresponds to the maximum 13 

dimension of the model size. Hence, the exploration step-size cannot exceed this side-length and at 14 

this point the algorithm produces statistically independent realizations. The control acceptance, 15 

controlP , is set to 10 % in order to obtain a relatively large exploration step-size during the burn-in 16 

period. The exploration step-size is evaluated after each 20th iteration (i.e. M = 20) according to 17 

equation 6. The evolution of the adaptive exploration step-size during the first 1000 iterations is 18 

seen in Figure 5. It is observed that the exploration step-size is constant and high in the very first 19 

part, after which it gradually decreases and stabilizes at a constant level of approximately stepE = 2 20 

m. The associated development of the model is demonstrated in Figure 6. It is seen that the large 21 

scale structures are very quickly brought into place, whereupon only fine-scale features of the 22 

model are accepted by the Metropolis rule (equation 3). After approximately 17000 iterations the 23 

likelihood values start to fluctuate around an equilibrium level and the data residuals resemble a 24 
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normal distribution with approximately the same standard deviation as the distribution of the noise. 1 

At this stage it is assumed that the algorithm has reached burn-in and produces representative 2 

realizations of the a posteriori probability density.  3 

 4 

A posteriori statistics 5 

The last model accepted by the Metropolis rule in the burn-in period is used as the 6 

starting model when the Metropolis algorithm is subsequently restarted with a constant exploration 7 

step-size of 1 m. The results obtained in this study demonstrate that the equilibrium level does not 8 

change after the Metropolis algorithm is restarted with a constant exploration step-size. In addition 9 

the data residuals of this period resembles a normal distribution with a standard deviation of 10 

42.17 10−⋅ . As a comparison the standard deviation of the normal distributed noise is 42.24 10−⋅ , 11 

which demonstrates that the data are fitted within the data uncertainties. Hence, this shows that the 12 

algorithm has reached burn-in and that the adaptive exploration step-size may be appropriate when 13 

the step-size converges towards a constant level (which is the case in our study). This burn-in 14 

strategy may serve as an approximate way of determining which exploration step-size should be 15 

used in order to obtain a certain average acceptance probability. See Gelman et al. (1996) for an 16 

investigation on the choice of acceptance probability.  17 

After 300000 iterations the algorithm was stopped. During the sample period the 18 

algorithm had an average acceptance probability of 40%. Figure 7 shows the autocorrelation 19 

between the first model after burn-in and its correlation to the first 150000 realizations obtained 20 

from the a posteriori probability density. These models are not statistically independent because 21 

any proposed model in the Metropolis algorithm is a perturbation of a current model or when a 22 

proposed model is rejected the current model counts again. Therefore, the autocorrelation analysis 23 

of the a posteriori sample shows some correlation length between successive models. In the 24 
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example shown in Figure 7, statistical independence is obtained after approximately 5800 iterations. 1 

This point is approximated as the point at which the autocorrelation curve intercepts the average 2 

level of the correlation curve after it has converged to a constant level. The average is shown as a 3 

dotted line in Figure 7 and is calculated as the average correlation coefficient between iteration 4 

20000 and 300000. A similar analysis is performed on 10 models picked at different iteration 5 

numbers, equally distributed across the a posteriori sample, which gives an average of 6745 6 

iterations of separation in order to obtain statistically independent realizations from the a posteriori 7 

sample.  8 

In a probabilistic formulation, the solution to the inverse problem is not a single model 9 

estimate, but a sample of multiple model realizations drawn from the a posteriori probability 10 

density. Each realization is a tomographic image of the subsurface. Displaying multiple images 11 

together corresponds to a movie. The strategy of displaying and studying the solution to the inverse 12 

problem using such movies is referred to as the movie strategy (Tarantola, 2005). Roughly 13 

speaking, the a priori probability density is filtered by the likelihood function which results in the a 14 

posteriori probability density. Hence, displaying a “movie” of a priori realizations together with a 15 

“movie” of a posteriori realizations helps to understand the characteristics of the a priori 16 

information imposed on the inverse problem and to understand the state of information provided by 17 

the data (and their uncertainties). In particular, when the a priori information is provided through a 18 

“black box” algorithm, and no closed form mathematical expression of the a priori probability 19 

density exists, an a priori movie may be important in order to understand if the state of information 20 

provided by the a priori probability density is commensurate with the a priori expectation of the 21 

user. See Koren et al. (1991) for a seminal example of using the movie strategy for a seismic 22 

inverse problem. 23 
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Figure 8 shows eight statistically independent realizations drawn from the a priori 1 

probability density (i.e. an a priori movie). This “movie” shows the state of information provided 2 

by the a priori probability density inferred from the training image by the Snesim algorithm. This 3 

movie shows a reproduction of the channel structures inferred from the training image, but with no 4 

resemblance between the location of the channels in individual realizations, as these models are 5 

unconditioned by any data. Figure 9 shows eight statistically independent realizations from the a 6 

posteriori probability density. The result clearly demonstrates a high degree of resemblance 7 

between the individual a posteriori realizations as a result of the conditioning to the full waveform 8 

data. The high resemblance reveals that the data provides a high resolution of the inverse problem, 9 

despite sparse data coverage (see Figure 3). Moreover, the individual realizations only slightly 10 

deviate from the reference model (see Figure 2), which confirms the good resolution provided by 11 

the full waveform data, their uncertainties, and the training image. The a posteriori realizations in 12 

Figure 9 shows some isolated small scale features, which are not seen in the training image. These 13 

non-continuous effects are caused by the Snesim simulation technique, because the algorithm 14 

occasionally reduces the number of conditioning data events (i.e. pixel values) in order to avoid 15 

singularities during calculation of the conditional probabilities. A total of 45 statistically 16 

independent realizations are obtained from the 300000 a posteriori realizations based on the model 17 

autocorrelation analysis (see Figure 7). These realizations can be used to ask higher order statistical 18 

questions such as; what is the probability of connectivity between a channel observed in the left 19 

borehole and a channel observed in the right borehole? Figures 9 d, f, and h show some examples of 20 

missing connectivity between the boreholes marked by black circles. For example it is found that in 21 

five out of the 45 realizations there is no connection between the points A and B as marked in 22 

Figure 8a. Hence, this gives an approximate a posteriori probability of connectivity between points 23 

A and B of (45-5)/45 = 89%.  24 
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Figure 10 shows the mean and variance calculated from the a posteriori sample. It 1 

should be noted that the mean model is no longer a realization of the a posteriori probability 2 

density, but is only a statistical representation of the sample. The mean tells, in this particular case, 3 

the relative a posteriori probability of the presence of a channel at a certain position in the 4 

subsurface. The variance reveals that the uncertainty of the spatial location of the channels increases 5 

towards the edges of the channels and declines significantly when moving away from the edges. 6 

Waveform data associated with the 45 statistically independent realizations from the a 7 

posteriori probability density are calculated for the receiver related to the uppermost transmitter 8 

position in the left borehole (see transmitter-receiver pairs marked by the numbers 1 – 5 in Figure 9 

3). This data variability associated to the model a posteriori variability is plotted in Figure 11a (blue 10 

curves) together with the observed data (red curve). The (a posteriori) simulated waveforms show a 11 

high degree of similarity and appear in the plot almost as a single fat curve, but are in fact 12 

composed of 45 independent waveform curves. Hence, the a posteriori data variability 13 

demonstrates that the model a posteriori variability is only associated with very little variability in 14 

the waveforms. Moreover, Figure 11a shows that the simulated waveforms fit the observed data 15 

very well. Figure 11b shows the data residuals (blue curves) of the simulated waveform data 16 

together with the uncertainty component of the observed data (red curve). This plot reveals that the 17 

residuals (i.e. misfits) approximately fluctuate around the uncertainty component and resemble the 18 

noise statistics (variance and temporal autocorrelation) satisfactorily. 19 

  20 

DISCUSSION 21 

Hansen et al. (2006) demonstrated that linear inverse Gaussian theory and simple 22 

kriging (i.e. 2-point statistics) can be merged into one single theory. The method of sequential 23 

Gibbs sampling used with the extended Metropolis algorithm has provided a further step towards 24 
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bridging probabilistic inverse problem theory and the field of geostatistics, even for highly 1 

nonlinear and non-Gaussian inverse problems (Hansen et al., 2008; accepted). Hansen et al. (2009; 2 

accepted) discussed how the complexity of inverse problems (i.e. the time needed to obtain an a 3 

posteriori sample) is reduced when a statistical a priori model with some degree of spatial 4 

correlation between the model parameters is considered. They showed that the effective dimension 5 

of the solution space of the inverse problem, using 2-point based a priori models, is considerably 6 

decreased when the a priori expected range of spatial correlation is increased. On the other hand, 7 

when no spatial correlation was considered, the high-dimensional inverse problem became 8 

unsolvable. Further, it was seen that whether the model parameters take values from a set of real or 9 

binary numbers had insignificant influence on the effective dimension as compared to the degree of 10 

correlation between the model parameters. Hence, we consider the reduction of the effective 11 

dimension due to a priori defined spatial autocorrelation to be one of the keystones that makes 12 

Monte Carlo inversion of a computationally hard, full waveform inverse problem feasible, even 13 

with thousands of (here 6240) model parameters. 14 

In this study we wish to demonstrate that we are able to freely choose multiple-point 15 

based a priori information, defined by, e.g., the Snesim algorithm, for Monte Carlo based inversion. 16 

We considered a model with categorical parameters only, but this choice of using a multiple-point 17 

based a priori model was a first step away from using simplified a priori models like the Gaussian 18 

model. We believe that such models are often chosen out of mathematical convenience rather than 19 

for the sake of geophysical and geological based a priori expectations.  20 

Based on the studies of Hansen et al. (2009) we believe that the solution space of the 21 

full waveform inverse problem (i.e. the complexity of the inverse problem), considered in this 22 

study, is primarily reduced due to the multiple-point based spatial correlations, and not significantly 23 

due to the binary model parameters. Accordingly, full waveform inversion may also be tractable 24 
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when making use of 2-point-based statistical a priori models with both continuous and categorical 1 

model parameter values as long as some degree of spatial correlation can be considered a priori. 2 

This is also confirmed by our preliminary studies on this topic. The above discussion is encouraging 3 

with regard to the possibility of using a priori models based on either 2-point statistics, multiple-4 

point statistics, or a combinations of both, as long as the chosen a priori model imposes some 5 

degree of spatial autocorrelation of the model parameters (See Journel and Zhang (2006) and further 6 

discussions at the end of this section). This provides a flexible tool for defining an appropriate a 7 

priori model that actually captures our a priori expectations.  8 

The suggested inversion strategy is very general and may be equally applicable for 9 

tomographic inversion of any kind of data (e.g. GPR, seismic, x-ray, or electroencephalography 10 

(EEG) data) or for reflection seismic inversion. In the example presented here the algorithm only 11 

inverts for the dielectric permittivity, while the electrical conductivity is kept fixed. The method 12 

could, however, be extended to invert for both parameters by introducing a step, just before the 13 

exploration step, that randomly chose in which of the two fields that the exploration should be 14 

performed.  15 

A pseudo full waveform inversion approach for tomographic GPR data was proposed 16 

by Gloaguen et al. (2007). In their approach, multiple model realizations were obtained using a 17 

stochastic ray-based inversion strategy. Full waveform simulations were subsequently calculated in 18 

these multiple models. Models related to waveform data that showed the best fit to the observed 19 

data were regarded as estimates of the waveform inversion. However, their approach does not 20 

guarantee a data fit within the uncertainties and the accepted models are not realizations from an a 21 

posteriori probability density function.  22 

In this study the sequential Gibbs sampler is applied such that a continuous block of 23 

model parameters are resimulated in each step. Irving and Singha (2010) also used a type of 24 
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sequential Gibbs sampling, but considered to resimulate a subset of model parameters scattered 1 

randomly across the model. Note that sequential Gibbs sampling will correctly sample the a priori 2 

probability density function regardless of how that subset of model parameters to be resimulated is 3 

chosen (Hansen et al., accepted). Whether the continuous or scattered exploration strategy should be 4 

used is still to be investigated, as such a choice may affect the computational efficiency when the 5 

sequential Gibbs sampler is used with the Metropolis algorithm. In order to understand exploration 6 

strategies of high dimensional spaces, more analytical approaches are required.     7 

Ray-based inversion experiments on the same scale as the setup used in this study 8 

typically involve in the order of 700 to 1600 transmitter – receiver pairs in order to obtain a 9 

reasonable resolution (e.g. Looms et al., 2008; Nielsen et al., 2010; Tronicke and Holliger, 2005). In 10 

this study a high degree of resolution was obtained with as few as 20 transmitter – receiver pairs. 11 

However, in field experiments modeling inadequacies may lead to considerably more uncertainty in 12 

the data than considered in this study, which in turn leads to a lower resolution. In crosshole GPR 13 

full waveform inversion the long spatial wavelengths of the model are typically used as a starting 14 

model. This model is obtained through ray-based inversion of first arrival travel times and 15 

amplitudes of the waveform data (Ernst et al., 2007a; Meles et al., 2010). The data set considered in 16 

our study is expected to be too sparse to provide any useful information for a ray-based starting 17 

model. We, therefore, choose to start the full waveform inversion in an unconditional realization of 18 

the a priori probability density and burn-in is obtained anyway. Hence, the role of the a priori 19 

model is more than simply finding a posteriori model realizations that jointly honor data and the a 20 

priori model. It turns out that the use of a consistent a priori model acts as a guide in the burn-in 21 

process that allows the initial model to be far away from the true solution. The successful 22 

convergence from the data independent starting model observed in the present study may be 23 

explained as a reduction of the complexity of the problem through the informative a priori 24 
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information defined though the geostatistical algorithm (see Hansen et al., 2009; accepted). This 1 

encouraging observation suggests that future effort should be towards incorporating complex 2 

statistical a priori information into (adjoint) optimization based inversion approaches.  3 

The most commonly used method for full waveform inversion today is based on 4 

adjoint methods, as suggested by Tarantola (1984). This approach has some limitations: 1) 5 

Uncertainty estimates may theoretically be obtained through an a posteriori covariance for a linear 6 

approximation of the forward relation limited to a Gaussian description of the data uncertainty and 7 

a priori model (Tarantola, 1984). 2) The method is based on simple Gaussian a priori information 8 

(if any at all), and 3) it relies on a subjective convergence criterion that may adversely result in data 9 

uncertainties propagating into the model estimate. The method we propose overcomes many of the 10 

limitations of using the adjoint-based approach: 1) It allows for arbitrary data geometry and density. 11 

2) Complex a priori inversion can be included using any geostatistical algorithm that can be used 12 

for sequential simulation or any other probabilistic defined a priori information (see Mosegaard and 13 

Tarantola, 1995). 3) The full uncertainty of the inverse problem can be quantified by analyzing the 14 

a posteriori sample. 4) There are no complications related to the incorporation of refined and 15 

complex forward algorithms.  5) Temporally and spatially correlated data uncertainties can be 16 

accounted for either through the data covariance matrix or any other mathematical description of the 17 

uncertainties (Cordua et al., 2008, 2009).  6) Finally, if the correct data uncertainty model is known 18 

there is no risk of uncertainties propagation into a single model estimate, but data uncertainties are 19 

instead reflected in the a posteriori model variability. 20 

The adjoint-based approach has some benefits that the presented method lacks: In case 21 

of dense data coverage, full waveform inversion based on the adjoint-based approach may not need 22 

any a priori model at all, as the data itself are sufficient to allow inference of a solution (Tarantola, 23 

1984). The adjoint-based method has been successfully tested on field data (Ernst et al., 2007a; 24 
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Klotzsche et al., 2010). In addition the suggested probabilistic inversion strategy needs substantially 1 

more (computationally expensive) forward calculations than compared to the traditional adjoint-2 

based approach.  3 

In the synthetic test performed here each iteration involves: 1) A model perturbation 4 

using Snesim which takes approximately 0.5 s. 2) A forward calculation of the four transmitter 5 

positions, which is run in parallel (the number of parallel computations equals the number of 6 

transmitter positions). Each forward calculation takes approximately 12.5 s on a standard desktop 7 

computer with an Intel Core i7 processor. Thus, the total computation time of 300000 iterations 8 

becomes approximately 45 days. As a comparison, the adjoint-based method needs approximately 9 

20 iterations in order to converge to a solution estimate (Ernst et al., 2007a), which involves 20 10 

FDTD forward calculations (for comparison with observed data), 20 backward (in time) 11 

calculations (for update direction), and 20 forward calculations (for step length) (Ernst et al., 12 

2007b). Hence, obtaining one estimate using the adjoint-based method is approximately 5000 times 13 

faster than compared to the time needed to obtain 45 independent realizations from the a posteriori 14 

probability density using the Monte Carlo method. However, the adjoint-based method and the 15 

Monte Carlo strategy are not directly comparable: The adjoint method is an optimization method 16 

that searches for one (in some sense) optimal solution. Additionally, the adjoint method assumes the 17 

full waveform inverse problem to be a global optimization problem and, therefore, the method is 18 

always in risk of getting trapped in a local minimum. The Monte Carlo strategy, on the other hand, 19 

aims at characterizing the a posteriori probability density. Moreover, it can, mathematically, be 20 

shown that the Metropolis algorithm will converge towards the correct equilibrium distribution 21 

independent of the complexity of the data uncertainty and a priori model (e.g. Mosegaard, 1998). 22 

Roughly speaking, the adjoint-based method serves as a fast way of obtaining an approximate 23 

maximum a posteriori estimate based on a limited data uncertainty and a priori model. The strategy 24 
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suggested here could subsequently be started in this estimate in order to obtain a characterization of 1 

the correct a posteriori probability density (i.e. resolution analysis) based on a realistic data 2 

uncertainty and a priori model and the full non-linearity of the forward relation. The significant 3 

time expense of the Monte Carlo strategy may in the future be mitigated through parallelization of 4 

the individual FDTD calculation on e.g. clusters or graphical processing units (GPU) and by 5 

running several algorithms in parallel.  6 

In this study the suggested algorithm was applied on a synthetic test case with a 7 

simple reference model. Perfect knowledge about the data uncertainty model, the a priori 8 

information, and the source pulse was assumed. Moreover, the electrical conductivity was assumed 9 

known. Hence, the robustness of the algorithm has to be further tested by considering more 10 

complex synthetic models of both the dielectric permittivity and electrical conductivity and larger 11 

data sets. According to equation 2, knowledge about the statistical properties of the data 12 

uncertainties and the a priori information evenly influences the a posteriori probability density 13 

function. Hence, in order to ensure a trustworthy a posteriori probability density the user needs to 14 

specify a realistic statistical description of the data uncertainties and the a priori information. This 15 

may, however, be a very challenging task when dealing with field experiments. On the other hand, 16 

if one do not chose the a priori information the inversion algorithm will implicitly make this choice. 17 

For example, least-squares and adjoint-based inversion algorithms implicitly consider a Gaussian a 18 

priori and data uncertainty model. In the method that we propose here, one is free to choose a 19 

Gaussian description of the a priori and data uncertainty model, but the user has the flexibility to 20 

choose other more complex descriptions.  21 

In field experiments the list of sources of uncertainties involves both a background 22 

noise component and (typically) a major component related to modeling errors (i.e. discrepancies 23 

between observed data and simulated data due to shortcomings of the forward relation) such as: 1) 24 
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Source pulse uncertainty: 2) 2D assumption: 3) Local antennae coupling effects: 4) Effects of 1 

discretization: 5) Small-scale near borehole heterogeneities: 6) Numerical attenuation: 7) Media 2 

dispersion: 8) Point-dipole antenna assumption: 9) Effects of high angle travel paths due to wave 3 

guiding and antennae spread: 10) Unknown antennae positions.  4 

Some of the above mentioned modeling inadequacies can be accounted for though 5 

more sophisticated FDTD algorithms (see e.g. Bergmann et al., 1998; Ernst et al., 2006; Holliger 6 

and Bergmann, 2002; Irving and Knight, 2006). Alternatively, these modeling uncertainties should 7 

be accounted for through the data uncertainty  model (although it results in higher a posteriori 8 

model variability). Forward modeling inadequacies may lead to a combination of correlated and 9 

uncorrelated data uncertainties that may be accounted for through a data covariance matrix (e.g. 10 

Cordua et al., 2008, 2009) or a more complex description. See e.g. Peterson (2001), Cordua et al. 11 

(2008, 2009) and Irving and Knight (2005) for descriptions and quantifications of some of these 12 

uncertainties.  13 

Statistics of the background noise component could be calculated in the signal 14 

recorded before the first arriving signal at the receiver. In this period only noise is recorded at the 15 

receiver. This may be obtained by performing an experimental covariance analysis of this part of 16 

the signal and then subsequently fit an analytic covariance model to the experimental covariance. 17 

The analytic covariance model can then be used to set up an appropriate likelihood function that 18 

accounts for the inferred noise component. For more details on how to determine an experimental 19 

covariance model (i.e. semivariogram) and how to fit an analytic covariance model see e.g. Journel 20 

and Huijbregts (1978) or Goovaerts (1997).  21 

Ernst et al. (2007a) suggested a method based on deconvolution for source pulse 22 

estimation, which may also be applied together with our inversion strategy. Then uncertainty related 23 

to this process needs to be quantified or a Bayesian formulation of the source pulse determination 24 



 31 

could be an integral part of the inversion (see Buland and Omre (2003) for an example of Bayesian 1 

wavelet estimation).  2 

Modeling error statistics related to the 2D assumption may be determined through 3 

simulation. Consider that a 3D a priori model is established: Forward simulations from say 100 4 

realizations of the 3D a priori model could be compared with forward simulation obtained in the 5 

associated 2D profile in the transmitter-receiver plane of the 3D model. By subtracting 3D- and 2D-6 

simulations an estimate of the modeling error statistics associated to the 2D assumptions could be 7 

obtained. In the same way modeling error statistics related to other inadequacies in the forward 8 

algorithms may be simulated by comparing the results from simple algorithms with more adequate 9 

algorithms. In this way adequate computational expensive forward calculations can (in principle) be 10 

substituted with an appropriate noise model and a faster approximate forward simulation. 11 

While the use of training images to describe a priori information allows complex a 12 

priori information to be quantified, the establishment of a priori information through a training 13 

image for field data experiments may be challenging. The training image represents a concept of the 14 

patterns expected a priori independent of the observed data. These expectations may be based on 15 

previous studies in the area based on e.g. kriging and inversion conditional to soft (e.g. seismic) and 16 

hard (borehole) data and/or studies of outcrops (e.g. Zhang, 2008). In order to compromise with the 17 

distinct facies (i.e low entropy) seen in the training image applied here, the a priori model could 18 

constitute a combination of information from a training image and a high entropy (e.g. two-point 19 

statistical) based a priori model. In any case, we suggest that the movie strategy should be used in 20 

order to ensure that the algorithm or mathematical expression (or a combination of both) that 21 

describes the a priori information also reflects the a priori expectations of the user. See Zhang 22 

(2008) for a description of how to convert geological information into training images that can be 23 

used with multiple-point statistical simulation algorithms. Journel and Zhang (2006) demonstrated 24 
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that even for a training image with combined high and low entropy information that only 1 

approximately captures the complex low entropy structures of the true model, a better conditional 2 

modeling result was obtained than for a pure high entropy Gaussian a priori model.  3 

In order to apply the proposed full waveform inversion strategy to field data, the 4 

major challenge concerning a way of handling modeling uncertainties (probably through a 5 

combination of a statistical description and a more adequate modeling algorithm) and to obtain 6 

realistic a priori information that involves training images (from previous studies) still needs to be 7 

addressed. Finally, challenges regarding mitigating the computational expense of the Monte Carlo 8 

strategy are left for future research.   9 

 10 

CONCLUSION 11 

We have outlined the theoretical background for a Monte Carlo based full waveform 12 

inversion strategy based on the extended Metropolis algorithm in conjunction with complex 13 

geostatistical based a priori information. The use of geostatistical algorithms for the description of 14 

a priori information can be accomplished in an efficient way through the method of sequential 15 

Gibbs sampling, which allows for inclusion of a priori information described by any geostatistical 16 

algorithm based on sequential simulation. This, in turn, provides a means of using a priori 17 

information described by both 2-point and multiple-point statistical a priori models. Inclusion of 18 

such statistical a priori information reduces the complexity of the inverse problem, which is a 19 

keystone in the feasibility of performing Monte Carlo sampling of the, computationally hard, full 20 

waveform inverse problem. We have demonstrated the potential of this inversion strategy by 21 

sampling the a posteriori probability density of a tomographic full waveform inverse problem using 22 

complex a priori information inferred from a training image using the geostatistical algorithm 23 

Snesim. The methodology provides a means of evaluating the a posteriori uncertainty, which is not 24 
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provided using traditional adjoint-based optimization strategies for full waveform inversion. 1 

However, it should be noted that, if the goal is a single inverse estimate based on pure Gaussian 2 

statistics, the adjoint-based optimization approach for inversion of full waveform data is 3 

computationally considerably faster than the suggested inversion strategy. Establishment of 4 

adequate (e.g. a multiple-point based) a priori information and a data uncertainty model for field 5 

data are critical in order to obtain meaningful a posteriori uncertainty estimates. Moreover, the 6 

major computational expenses of the Monte Carlo strategy have to be mitigated, which are all 7 

challenging tasks that need future research.  8 
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FIGURE CAPTIONS 8 

Figure 1. Training image containing geological information of the environment at which the 9 

crosshole GPR experiment is conducted. This information is used as a priori information in the 10 

waveform inversion.  11 

 12 

Figure 2. Synthetic reference model. Green asterisks show transmitter positions and the red dots 13 

show receiver positions. 14 

 15 

Figure 3. The transmitter-receiver positions connected by dotted lines on top of the 2D grid of (120 16 

X 52 = 6240) unknown model parameters. The lines marked by the numbers 1 to 5 are related to the 17 

waveform data shown in Figure 4.  18 

 19 

Figure 4. 5 waveform traces with and without added noise. The signal-to-noise ratio of the plotted 20 

waveform traces are (from the top) 15.4, 20.8, 8.8, 41.3, and 22.2, respectively.  The waveforms are 21 

related to the transmitter-receiver pairs marked by the numbers 1 – 5 in Figure 3. 22 

 23 



 42 

Figure 5. Evolution of the adaptive exploration step-size during the first 1000 iterations of the burn-1 

in period.  2 

 3 

Figure 6. Development of the model during the first 1000 iterations. In this period the relatively 4 

large scale structures of the model are established. Compare with the reference model in Figure 2. 5 

Iteration no. 1 (It. no. 1) is the starting model, which is an unconditional realization of the multiple-6 

point based a priori model. 7 

 8 

Figure 7. Autocorrelation analysis of the a posteriori sample in order to determine the number of 9 

iterations needed to obtain statistically independent realizations.  10 

 11 

Figure 8. Eight statistically independent realizations of the a priori probability density (a priori 12 

movie).  13 

 14 

Figure 9. Eight statistically independent realizations of the a posteriori probability density (a 15 

posteriori movie).  16 

 17 

Figure 10. The mean and variance of the model parameters calculated on the basis of the a 18 

posteriori sample.  19 

 20 

Figure 11. a) A posteriori data variability. Blue curves: Simulated waveforms calculated for 45 21 

statistically independent a posteriori models. Red curve: The observed waveform data. b) Data 22 

residuals. Blue curves: The data residuals for 45 statistically independent a posteriori models. Red 23 



 43 

curve: The uncertainty component of the observed data. The waveforms are associated with the 1 

transmitter-receiver pairs indicated by the numbers 1 – 5 in Figure 3. 2 
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