-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Expressing Model Constraints Visually with VMQL

Storrle, Harald

Published in:
2011 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Link to article, DOI:
10.1109/VLHCC.2011.6070399

Publication date:
2011

Link back to DTU Orbit

Citation (APA):

Storrle, H. (2011). Expressing Model Constraints Visually with VMQL. In 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) (pp. 195-202). IEEE. (IEEE Symposium on Visual
Languages and Human-Centric Computing. Proceedings). DOI: 10.1109/VLHCC.2011.6070399

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13778087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/VLHCC.2011.6070399
http://orbit.dtu.dk/en/publications/expressing-model-constraints-visually-with-vmql(66e983a3-6b93-4fdd-980d-534cc7410cf6).html

Expressing Model Constraints Visually with VMQL

Harald Storrle
Department of Informatics and Mathematical Modeling,
Technical University of Denmark
Richard Petersens Plads, 2800 Lyngby, Denmark
hsto@imm.dtu.dk

Abstract—OCL is the de facto standard language for ex-
pressing constraints and queries on UML models. However,
OCL expressions are very difficult to create, understand, and
maintain, even with the sophisticated tool support now available.
In this paper, we propose to use the Visual Model Query
Language (VMQL) for specifying constraints on UML models.
We examine VMQL’s usability by controlled experiments and
its expressiveness by a representative sample. We conclude that
VMQL is less expressive than OCL, although expressive enough
for most of the constraints in the sample. In terms of usability,
however, VMQL is superior to OCL, although the experimental
evidence we present here is not as compelling as the one we
presented when comparing VMQL and OCL on model querying.

I. INTRODUCTION

While the Unified Modeling Language (UML) has been
the “lingua franca of software engineering” for a long time
now, uptake of the Object Constraint Language (OCL) ac-
companying UML has been very limited or even downright
disappointing, when looking at industrial applications. Even
in the UML standard itself, only slightly more than half of
all constraints are expressed in OCL, even though there is
now excellent tool support for OCL. Previous work (cf. [18])
indicated that there are three reasons for this: the poor usability
of OCL as a language, the media gap between the all textual
OCL and the mainly visual UML, and the inadequate level of
abstraction provided by OCL. VMQL has been introduced to
overcome these shortcomings for the task of model querying.
In this paper we apply VMQL to the task of expressing model
constraints which requires some extensions to VMQL.

The work reported in this paper starts with the observation
that queries and constraints are just two sides of the same
coin. Assume that ap; : ME — bool is a property of model
elements me of the domain ME of model elements, where
models are just sets of model elements. Then, aj; may serve
as a constraint on M, because asking for the (hopefully empty)
set of model elements that violate the constraint expressed by
ay means to compute the set {me € M|—ays(me)}.

But oy may also serve as a query on M, because asking for
the (hopefully non-empty) set of all model elements satisfying
the query expressed by ajs just means to compute {me €
Mlap(me)}, ie., the dual of the constraint in M: indeed
the other side of the same coin in a very strict sense. So, we
tried to find out whether the Visual Model Query Language
(VMQL, see [17], [18]) would serve as a constraint language

as well, and if so, how it would compare to OCL, the de facto
standard for expressing constraints on UML-like models today.

The most important qualities of model constraint languages
like OCL and VMQL are expressiveness and usability, that is,
the set of expressions (of whatever kind) that may be expressed
in the respective language, and the ease with which a language
may be learned and applied, both actively and passively
(i.e., reading and writing). Other qualities like genericity and
practicality (including tool support) can not be discussed in
this paper due to a lack of space (see [18] for an in-depth
treatment). In the next section, we introduce VMQL, and then
go on to compare it with OCL regarding expressiveness and
usability, respectively.

II. THE VISUAL MODEL QUERY LANGUAGE

Application domain experts often lack a computer science
or engineering background, yet are key modelers in model-
based development projects. Participating in two very large
scale industrial projects of this type, the author realized that
current model querying facilities were not suitable for being
used by application domain experts. As a consequence, the
Visual Model Query Language (VMQL, see [17], [18]) was
created as an easy-to-use visual model querying facility. Since
it is based on concrete rather than abstract syntax, it is easy to
transfer to another language, from the users’s point of view.

Basically, a VMQL query is a model fragment in the
modeling language used in the project, annotated by con-
straints. Fig. 1 shows some introductory examples that will
be discussed shortly. Basically, all annotations are comments
with the <vmgql>> stereotype that are translated into predi-
cates evaluated during query execution. Table I presents those
VMQL constraints used in this paper; see [18] for a more
complete language definition, its implementation, and the
technical details of query processing, and see [16], [15] for
the underlying technology.

Now consider the examples of Fig. 1 in greater detail.
Query 1a simply looks for a concrete class named “Foo”
contained in a package called “Bar”. Query 1b does the same
for abstract classes, and Query 1c¢ takes the transitive closure
of the containment relationship into account. One might also
interpret these queries as looking for a package named “Bar”
that contains the class “Foo”, or as looking for a containment
relationship between the two: all VMQL query elements have
the same weight per se.

Query: CD [CONSTRAINT | MEANING]
match Restricts the name of the constrained model element
Bar by a wild card expression or regular expression, e.g.,
match pa?tern=*
distinct Enforces that a set of constrained model elements of
, the same type are pairwise distinct.
once Enforces that a solution occurs only once in the set
indirect of all solutions.
all, Aggregates all solutions for the constrained elements
M Query 3 all as into a single solution for the whole query, and builds
Foo TS PETTIESS set up collection variables indicated by terms initiated by
,,/ indirect [|| = t----- -| not, indirect $5. Adding the option as set removes duplicates.
’ <<vmaD>> steps Defines the length of a path between two connected
- name = $Target, <<vmgl>> model elements. Only one type of relationship may
name = $LostState occur on the path. Applicable values are integers
nelass o: Closs > 0 or = for arbitrary length > 0. Applicable
Fig. 1. Sample VMQL queries. to elements that are subclasses of Relationship,
e.g., steps = 3, steps < 3, steps = «,
steps = 2; 3,or steps > 1, steps < 4.
The user may single out individual elements by probing for indirect Defines a path of arbitrary length between two con-
some of their features, usually the name. This is demonstrated nected model elements; alias for steps = «.
by Query 2, which looks for all subclasses of “Foo” and mclass Allows the constrained elem.ent to be of a different
binds their name to the variable “Target”, the intended result Eiiﬁ};ﬁi&iﬂS?;lzl;ysslfcglfgég :hec%ﬁ;yc;fef't’
of the query. Observe that Query 2 looks for concrete as allows the annotated element to match with classes as
well as for abstract subclasses of “Foo”. This is achieved W'ellll aﬁ Componﬁ,ms’ m.chlais <b: ClaSISifierf
by the meta-model constraint mattr isAbstract = »* VCVIIaSSiaﬁ;)r\jV ;lzmmlgf aZISt :l . Slrlnatg;ﬁ:sa C“Zst;esalfy
which asserts that the meta attribute “isAbstract” may have meta-class.
any value (signified by the asterisk). Also, Query 2 finds not mattr Constrains the value 9f a meta attribute that has or
. . f the UML " 1 cl that satisfy th has not a representation in the concrete syntax. If
Just instances o € meta class Llass that salisly these given a value expression, the meta attribute’s value
conditions, it also finds instances of more specific meta classes, must conform to it. If given a variable (i. e. any
such as AssociationClass. This is achieved by the constraint expression starting with $), the value of the meta
attribute is bound to that variable if possible. Variable
mclass < Qlass. The commas between the three parts may be bound several times, but only once for any
mean conjunction. meta-attribute, e. g., mattr isRoot = true,
VMQL may equally well be used for other diagram types, mattr aggregationKind = composition;
Activity, Sequence, or State Machine diagrams. For none. mattr ishbstract = x, or
€.g. clivity, q ’ g : mattr name = SN.
instance, Query 3 looks for all Actions that are not connected name Alias for mattr name.
to the initial node. precision Reduces the precision level used in the model match-
ing to values below 1.
ITI. EXPRESSING CONSTRAINTS WITH VMQL strict Enforces that a query element must match exactly
. with a result element, i.e., the binding is bijective
. Let us now look at some examples of VMQL constraints (cf. rather than injective. g 18 o
Fig. 2). These examples are taken from an insurance example not Prevents that a result contains a match for the con-
created in an industrial project (see [17] for more details). strained model element of the query.
The first has been established as a means to prevent fraud. It | °Ptional Allows that a constrained model element of a query
. . L. . may or may not appear in the result.
is to be apphed to process descrlptlons. Ensuring that process either Allows a set of alternatives for a constrained model
instances follow their descriptions is the responsibility of the element of a query to appear in the result. Applicable
workflow execution system. The rule is, that two independent only to non-empty sets of model elements.
assessments of a claim are made before any money is actually in, sum, min, | The usual functions to be used on collection variables
X . X . not_in,... (similar to OCL).
paid out. In ord.er to 1mplement this rulf:, th.e con.str.alnt .asks for contoxt Anchors the VMQL exprossion (0 some eloment,
the “assess claim” action to occur twice in activity diagrams binding the element identifier as the result.
before the “award payment” occurs. In the VMQL model, thus, assert Report model elements of the given type only if they
do not satisfy the query (implies context).

there are two ‘“assess claim” actions that are connected by
ActivityEdge arrows to the same “award payment” action. In
order to make sure that the “assess claim” actions in the query
match with the same “assess claim” action in the constrained
model, they are constrained as being “distinct”, enforcing that
there are two independent claim assessements.

Observe that the rule is (and should be) unspecific about the
ordering of these two assessments. Whether they are carried
out in parallel, or in any order is irrelevant at the level of rules.
Also, we really do not care just when the assessments are done:
right at the start of the process, just before the payment, or at

TABLE I
OVERVIEW OF VQML CONSTRAINTS (SEE [18] FOR SEMANTICS).

any other time. So, we only state that the assessments need to
occur before the “award payment” action. This is implemented
by the two “indirect” constraints: as long as there is a path
from the assessments action to the payment action, the rule is
satisfied. Obviously, this rule in itself is not enough, as nothing
is said about the outcome of the assessment, but that is subject
to another business rule.

Evaluating this VMQL constraint on some model will try

Query: AD [
<<vmql>>
sldistinct
7/ \
(assess claim) (assess claim)
<<vmql>> - ~ - | <<vmql>>
indirect indirect parts
indlrec indlrec
award :SubContract
M <<vmgl>>
assert

premium = SSP_i
Claims must be assessed twice
before payments are made.

Query: OD (o)
:Contract _{assert
\premium = SP -

<<vmgl>>
all SSP_i = SP_all,
] $P <sum($P_all)

payment

The contract premium must not exceed
the sum of the sub-contract premiums.

Fig. 2. Sample VMQL constraints.

to find model elements matching those in the VMQL model.
Any match that satisfies this rule violates the business rule and
should be reported. This is achieved by the “assert” constraint
which collects as the result set all matches containing a match
for the constrained elements but failing to satisfy the overall
query.

The second constraint in Fig. 2 expresses another business
rule, this time expressed on an object diagram. A contract may
consist of several subcontracts, each of which may have a spe-
cific premium. However, the premium of the overall contract
must not exceed the sum of the individual premiums. In order
to implement this rule, the constraint “all” collects all bindings
of the constrained elements that are compatible for each single
binding of all the unconstrained elements. Note that variables
preceded by $$ rather than $ are container variables, that is,
they collect arbitrarily many values. Container variables may
be aggregated by special purpose functions like “sum”, “for
all”, “map” and so on. Thus, the function “sum” sums up the
elements in P_1 as P_sum. The “assert” constraint allows us,
as before, to express the constraint without a negation, which
would put additional cognitive load on the modeler. It also
implies a “context” constraint which ensures that the result
set is composed of matches of the constrained elements rather
than other parts of the constraint.

Again, the rule is as unspecific as possible: obviously, some
kind of iteration is necessary although the order is really
absolutely irrelevant. More than that, we do not even require
the collection of all subcontracts to be a set, say, let alone
whether it is ordered. All of these details are not specified on
the constraint, but would be in an OCL constraint analogous
to this one. As we can see from these examples, expressing a
constraint in VMQL means to specify a counter example (or
violation) of the constraint and then look for it.

While translating OCL constraints to VMQL, it became
obvious that there are two very different classes of constraints.
The first class expresses a constraint for a meta classes with a
visual concrete syntax representation, for instance, UseCase or
State. For these constraints, expressing VMQL constraints is
straightforward indeed. Fig. 2 and Fig. 3 show some examples.
More than 90% of the OCL expressions in the sample were
of this type.

The second class of OCL expressions (less than 10% in
our sample) are constraints on meta classes that can not be
displayed with reference to the concrete syntax. The reason for
this might be that these constrained elements have no concrete

Constraint Al: UseCase 16.3.6#4 in UML standard

A use case cannot include use cases that directly or indirectly include it. The query
allIncludedUseCases() returns the transitive closure of all use cases (directly or

indirectly) included by this use case.
[e NSV U[e o W Cyclic include
context UseCase: vmal>>
eomee
4
C_ =,

not self.allIncludedUseCases()
N -7
fwmfﬂ” 7 T <«<includes>>
indirect

->includes(self)
15.3.8#2 in UML standard

UseCase::
allIncludedUseCases() : Set(UseCase)
allIncludedUseCases = self.include->
union(self.include->
collect(in : in.allIncludedUseCases()))

Constraint A2: PseudoState
History vertices can have at most one outgoing transition.

oCL [o[I14VARY W Clear start
=~ < | <<vmql>>
4 2 context
\ /
<<vmgql>>
distinct

7.3.44#4 in UML standard

context PseudoState:
(self.kind = #shallowHistory) implies
(self.outgoing->size <= 1)

Constraint A3: Property
A redefined property must be inherited from a more general classifier containing
the redefining property.

[o [T YA M Based redefinition

context Property:
if (redefinedProperty->notEmpty()) then
(redefinitionContext->notEmpty() and $Property A
redefinedProperty->forAll(rp| —

((redefinitionContext->collect(fc| <<vmgl>>
fc.allParents()))-»assSet())-> || [~° 777 indirect
collect(c| c.allFeatures())->asSet()
<<vmgl>>

->includes(rp))
{redefines

$Property_A} <<vmql>>
~——=l-|assert

Fig. 3. Some constraints taken from the UML standard expressed in different
ways: prose (top), OCL (left), and VMQL (right).

Classifier::allFeatures(): Set(Feature);
allFeatures = member->
select(oclIsKindOf(Feature))

syntax representation at all (e.g., Classifier), they have only a
textual representation (e.g., Feature), or an ambiguous repre-
sentation (e.g., most subclasses of Action look like Action).
Expressing these OCL constraints with VMQL is possible by
expressing it as an annotated object diagram at the M2 meta
level. but one cannot take advantage of a visual concrete syntax
doing so. Instead, constraints have to be expressed as object
diagrams showing instances of the meta model. Fig. 4 shows
some examples.

Intuitively, these examples are not as convincing as those
shown in Fig. 3, but should still be much easier to understand
than their OCL counterparts. Unfortunately, our experimental
data do not contain enough queries of this type to allow a
statistically significant interpretation of the results.

IV. CONSTRAINT-EXTENSIONS TO VMQL

While examining the OCL constraints in [12], it became
clear that VMQL as defined in [18] did need some mod-
ifications and extensions to be able to express constraints
elegantly and concisely. See Table I for a complete list of the
annotations VMQL features now. There are four extensions
over the previous version of VMQL we found useful for
expressing constraints elegantly.

First, we introduced the “all” constraint together with col-
lection variables and some special functions like “sum”, “map”

and so on. This extension actually extends the expressiveness

Constraint B1: LinkAction 11.3.21#2 in UML standard
The association ends of the link end data must not be static.

(o [T VAo [R{\" AR Dynamic LikEnd

| :Navigableknd |

ocL

context LinkAction:
self.endData->
forall(
end.ocliskindOf(NavigableEnd)
implies
end.isStatic = #false)

[:inkAction |

endData
| :LinkEndData l—end :Property

<<vmql>> isStatic=#FALSE
not -

Constraint B3: State (should be StateMachine or PseudoState) 15.3.11#10 in UML std.
Only entry or exit pseudostates can serve as connection points.

ocL ConnectionPoint type
context StateMachine:

connectionPoint-> :StateMachine
forAll(cp |cp.kind = #entry N X
i connectionPoint

cp.kind = #exit) :PseudoState
kind = $K_ _ _ _|-_

<vmqL>>
$K not_in
{#entry, #exit}]

Fig. 4. More constraints from the UML standard (reference in top right
corner). They are expressed by the prose descriptions (top), and the OCL
expression (left) used in the UML standard, and as a VMQL diagram (right).

of VMQL, and is also very useful for querying purposes.
Second, extending the constraint expressions in several ways,
e.g. allowing value ranges for attributes (see e.g., [12, 15.3.11,
constraint 10]), inequalities rather than just equations, and
interval expressions for multiplicities does not extend the
expressiveness, but makes constraints much more compact.
Third, a special form of variable binding was introduced by
the context annotation. Fourth, the handling of negation
was improved by introducing the assert annotation which
indicates that only results of the VMQL query shall be
reported where the asserted element is not present. Observe,
that the first two of these changes are true extensions while
the second two are just syntactic sugar for existing features.
However, the empirical results reported below indicate that the
convenience of the last to modifications translates into a better
comprehension of VMQL expressions.

V. EXPRESSIVENESS OF VMQL

In [18] we have compared the expressiveness of VMQL and
OCL from a logical point of view and concluded that they are
incomparable. In particular, [11] and [3] have shown that pure
OCL 2.0 expressions represent the primitive recursive func-
tions. Adding the capability of custom-defined functions (i.e.
using the OCL keyword def) makes OCL Turing-complete.
Since VMQL currently lacks a facility to define recursion or
unbounded loops, it is certain that it is not Turing-complete. In
fact, it is easy to find primitive recursive functions that may not
be simulated in VMQL, so in the mathematical sense, VMQL
is less expressive than OCL.

However, the theoretical limits of expressiveness of lan-
guages are rarely encountered in practical applications. For
instance, many SQL implementations lag behind the current
SQL standard quite considerably, but that does not stop them
from being used quite successfully in practical applications.
Similarly, many UML tools lag behind the current UML
standard quite considerably. Again, this does not stop them
from being used for many practical purposes.

That means that that for many practical applications, the
theoretical expressiveness deficit of VMQL will not be an

issue, as long as it is capable of expressing the “right”
constraints, i.e., those that cover a large percentage of the
most important constraints. Of course, this would depend on
the application, maybe the modeling style, and quite possibly
also the modeling level (M, to M3, in OMG terminology). It
is thus difficult to argue which constraints are the right ones
to judge the expressiveness of a constraint language.

So, to evaluate the expressiveness of VMQL for modeling
constraints from a practical perspective, we looked at one of
the best known and most popular source of OCL constraints,
the UML standard itself [12]. This document contains 473
constraints, but only 249 of these (52.6%) are expressed
using OCL. Of these, 91 (approx. 40%) are very simple
constraints that are at most one line of OCL, without negation,
iteration, quantifiers, if-then-else, or function calls. These can
be translated to VMQL trivially. The remaining 158 constraint
are still too numerous to translate into VMQL manually. So we
took a random sample by selecting every third OCL constraint,
thus yielding 52 exemplars. Of these, 50 could be easily
translated into VMQL; only two presented problems: one OCL
constraint contained syntactical errors that made it impossible
to guess the intended meaning, and one was so convoluted (and
maybe also contained errors) that we could not understand the
OCL expression in the first place.

Since our sample was drawn randomly, we may look at
the process of translating random non-trivial OCL expressions
from the UML standard to VMQL as a stochastic variable X.
Since there is a fixed number of trials each of which has only
two outcomes, and the individual samples are stochastically
independent, X is binomial. The probability p of X indicates
the likelihood of being able to translate any OCL constraint
into VMQL. We will call this the translation coverage. Using
the standard procedure, we can compute the confidence inter-
val of X from a lower bound [to 1. For convenience, however,
we have used the approximative method implemented in R’s
binom. test which gives more conservative estimates.

So, for a confidence level of o = 0.95 we yield | = 0.9199
and a success probability p = 0.9807 for p-value smaller
than 10~!3. That is to say that from our sample we may
conclude that while we really expect a translation coverage in
excess of 98%, we can safely (that is, with confidence of 95%)
assume at least a 92% translation coverage. Observe, that this
is a very conservative estimate, because the reason for failing
to translate one OCL expression into VMQL comes from
OCL/UML, rather than VMQL. Also keep in mind that this
conversion rate only applies to those 60% of OCL-expressions
that are non-trivial; for the remaining 40%, the translation
coverage is 100%.' In total, thus, we expect a translation
coverage around 99% and can assert a translation coverage
of more than 95%.

So, assuming that the OCL-usage in the UML standard
is representative for the OCL-usage in general, we conclude

'Sampling another 27 constraints from the UML in an interest-directed
(i.e., a non-random) yielded another translation failure, which, again, could
be attributed to UML/OCL rather than VMQL.

that almost all if not all of the OCL expressions occurring in
practical modeling can be expressed as VMQL.

VI. USABILITY OF VMQL

Usability is understood to mean the ease with which a
language may be learned and applied actively and passively
(i.e., in reading and writing). Obviously, this quality can only
be evaluated empirically. Thus, we have designed and executed
two controlled experiments comparing individual performance
(accuracy and response times), personal preference, and cog-
nitive load when reading and writing model constraints using
VMQL and OCL, respectively. VisualOCL had to be excluded
from this comparison, for several reasons. Firstly, creating
valid VisualOCL is difficult given the available definitions
and tools—there are three different Eclipse plugins to create
VisualOCL expressions, but none of them is at the same time
usable enough, covers a sufficient amount of VisualOCL, and
produces adequate output. Also, VisualOCL expressions even
for small examples requires very much space area so that
we could not include them in our questionnaires, or in this
presentation here.

A. Method

In previous experiments on model queries (cf. [18]), we
could clearly show that subjects performed substantially better
when using VMQL than when using OCL for model querying.
While model querying and expressing model constraints are
dual in a technical sense as we have argued above, they are
substantially different from a user perspective. The languages
are used in a different way, and different parts of the language
are being used, as is underscored by the fact that we had to
enhanced VMQL before being able to use it to cover typical
UML constraints. So, we cannot simply assume that previous
results on the usability of VMQL for model querying will hold
for reading and writing model constraints, too. Therefore we
created a new controlled experiment the results of which we
report in this paper.

1) Standard demographic data (e.g., sex, age bucket, oc-
cupation, experience with UML and OCL, etc.) was
collected in both experiments.

2) In the first task, subjects were asked to consider a
model constraint in the respective language and select
the correct prose description out of three options given.
There were eight such constraints, all of which were
expressed both in VMQL and OCL. We recorded scores
for right/wrong answers and normalized scores to a scale
from O to 10. Subjects also recorded the total time taken
for all items using the same language

3) In the second task we asked subjects to read four prose
descriptions of model constraints and asked them to
translate it into VMQL and OCL, respectively. The same
constraints are used in the writing task, than in the
reading task, but the tasks are arranged intermittantly
(i.e., first reading and writing of one language, than the
other), and subjects can not look at previous pages of
the questionnaire. Thus, we can exclude that writing is

actually recall based on short term memory. We recorded
a score between 0 and 4 for the accuracy subjects
achieved in each expression, summed the score for all
items using the same language, and normalized scores
to a scale from O to 10. Subjects also recorded the total
time taken for all items using the same language.

4) In the third task, we measured subjective assessment of
the two languages using different instruments. In the first
experiment, we asked for preference (fun, confidence)
and cognitive load (effort, readability/writability). In the
second experiment, we asked only for cognitive load
(effort, difficulty) for reading/writing both languages.
Observe that subjective assessments have been found to
be very reliable indicators of objective load (cf. [6]).

There were two equally sized experimental groups that,
within each task, either presented the VMQL, or the OCL
tasks first. Subjects were randomly assigned to those groups.
The first experiment was run in May 2010 with 9 partici-
pants, including students, scientists, and practitioners. Detailed
analysis of this experiment revealed several issues with the
instructions and some of the questions, e.g., misunderstandings
due to double negation. We improved the experimental setup
accordingly. Also, the results from the preference task were
very similar to previous results on this issue (cf. [18]), so
we removed this set of questions and instead expanded the
cognitive load questions for increased reliability. A follow-up
experiment with these improvements was conducted in Febru-
ary/March 2011 with 7 participants all of which were Master’s
students at the time. All subjects participated voluntarily and
anonymously without reward. No oral instructions were given:
the questionnaire contained a brief instruction sheet as its
first page. The experiments were run in Munich, Berlin, and
Kongens Lyngby without the author being present. Results
based only on one of the experiments is explicitly marked
below.

B. Observations

The experimental data obtained were analyzed using R
[13]. Analysis of the first experiment showed that participants
performed better under the VMQL condition than under the
OCL condition, but to a much lesser degree than we were led
to expect from earlier experiments (cf. [18]). Detailed study of
the errors subjects made revealed issues with the instructions
and the questions that lead to an improved experimental setup,
as discussed above. More importantly, we also found two
notational shortcomings in VMQL as it was at the time being.

1) In most OCL constraints, the context : subexpression
identifies the focus of attention, while no such element
was present in the VMQL constraints. As a consequence,
some participants interpreted e.g. Constraint 2 (see
Fig. 3, top) as a constraint on includes-relationships
rather than on use cases.

20:nothing recognizable at all; 1: some elements of an answer; 2: major
errors; 3: minor errors; 4: exactly right answer

20 40 60 80 [%]
vmaL | First
— Experiment
ocCL
vmaL |
Second
OoCL] Experiment

| RIGHT ANSWERS [%] || VMQL | OCL || ADVANTAGE

|

EXPERIMENT 1 54.2 52.8 +2.6
EXPERIMENT 2 71.4 67.9 +5.3

| IMPROVEMENT [+319 [+286] \
Fig. 5. Improvements in reading accuracy between the two experiments.

2) There are two different styles of expressing constraints:
either, one might describe a wanted constellation and
declare it right, or one might declare an unwanted
constellation and declare it wrong. In the previous
version of VMQL, only the former could be expressed
conveniently. In order to express the latter style, the
VMQL constraints had to be expressed indirectly (e.g.,
by using additional negations not directly visible in the
prose description), which led to misinterpretations.

In order to address these issues we enhanced VMQL by
the context and assert annotations (cf. the last two lines
in Table I), updated the experimental conditions accordingly,
upgraded the cognitive load measurement in the third task,
and repeated the experiment. Fig. 5 shows the differences
in results between the two experiments. Clearly, improving
the instructions and questions had a marked effect on both
conditions, VMQL and OCL. Also, the advantage of VMQL
more than doubled in the second experiments, i.e., with the
new assert and context annotations. Nevertheless, the
difference between the results for VMQL and OCL are still
much smaller than what we expected after the first usability
experiments on VMQL (cf. [18]).

Looking more closely at the accuracy results from both
experiments together (see Fig. 6, a), it becomes apparent that
there is a wide variance for all indicators. While relatively little
difference between accuracy for different languages is found,
there obviously is substantial difference in the writing tasks.
The exact data (see Table II) confirm this. Using a one-sided
Wilcoxon test, we find no significant difference for reading
accuracy (p = 0.47), but a highly significant difference in favor
of VMQL for writing accuracy (p = 0.0013). Looking at the
response times (see Fig. 6, b, and Table II, b), we find slightly
larger, but still small differences in favor of reading VMQL,
but against VMQL for writing (both, again, without statistical
significance: p = 0.57 and p = 0.82, respectively). When
relating the reading response time with the reading accuracy,
we find a much large difference in the increase, but it is still
not statistically significant (p = 0.74).

We now turn to subjective assessment of load and prefer-
ence. We asked several questions capturing different aspects
but they turned out very similar, i.e., scores for fun, confidence,
effort, readability/writability, or difficulty showed very similar

a) Accuracy

b) Response Time

. - . e correct
_ reading writing _ reading writing reading
o £
5 — [¢]
2 o
ol
<
— s
o — :
| o - !
! &1 + © !
—— -- — ! I
| s 1 !
1 1 !
| o | X
o | S+ X
— : — ! - :
X ! —_ —l Il
1 ! !
— | o]
| 71
| S p—
1 (Vo] 1 1
(S I
B [
1 1 -
| I : 8_ : D _:_ |
~ o | s+ . L
1 1 1 [¢] v !
1 1 1 1 1 1
oL . Nl
| o !
o -+ = -
L ‘o b o b 9 h, Q
2, ©C 71, < T, C 1, C 1, ¢
) 94) 4 Q 4 (0% 4 (0% <

Fig. 6. Summary of experimental results wrt. subject performance measured
by accuracy and response time (data from both experiments).

results. Since this task was considerably changed from the
first to the second experiment, we ignore here those questions
that have been asked in only one of the experiments and
focus on the classic “effort” question that were asked in both
experiments. We have normalized the different scales used in
both experiments to a common range of 0...10 in Table II
c). Remarkably, the results we obtained here are much more
in favor of VMQL than OCL, both for reading and writing.
However, a divergence between objective performance (i.e.,
accuracy) and preference/cognitive load seems to be a common
phenomenon (cf. [6, p. 521]).

C. Interpretation

The wide individual variance we observed throughout our
experiments is very likely a consequence of the small sam-
ple size, and the differences between the two experiments.
However, there also seem to be unrelated factors like personal
taste and drawing skills. For instance, in follow up interviews
or free form comments, several subjects commented on the
usage of pen and paper as inappropriate (“can’t write OCL
without syntax completion” or “creating a drawing is always
more difficult because it takes up more space”).

We attribute the generally better performance in the second
experiment to the improvements we made to VMQL. There
is a notable advantage of VMQL over OCL in the writing
task. Since the constraints we have asked subjects to write
have been shown before in the reading task, this is really a
recall task. Better performance for VMQL through its visual

TABLE I
MEASUREMENT DETAILS OF THE BOX PLOTS PRESENTED IN FIG. 6:
ACCURACY IN TERMS OF CORRECT ANSWERS FOR READING WRITING
(TOP), RESPONSE TIME FOR READING, WRITING, AND READING RELATIVE
TO THE NUMBER OF CORRECT ANSWERS (MIDDLE), AND COGNITIVE
LOAD ASSESSMENTS (BOTTOM; THESE MEASUREMENTS WERE TAKEN
ONLY IN THE SECOND EXPERIMENT).

A) ACCURACY [SCORE: 1..8]

CORRECT OCL VMOQL ADVANTAGE
ANSWERS po | o P Mo — po
READING 471 1.83 4.76 2.36 +1.3%
WRITING 3.56 3.27 9.06 5.19 +154.5%
B) RESPONSE TIME [S]

TIME OCL VMOQL ADVANTAGE
PER ITEM po | o po | o Iy — o
READING 725.14 | 201.88 776.62 | 317.74 +7.1%
WRITING 452.25 | 320.05 || 408.25 57.20 -9.7%
CORRECT 168.19 69.77 217.90 | 137.58 +29.6%
READING

C) COGNITIVE LOAD [SCORE: 1..10]

SUBJECTIVE OCL VMQL BENEFIT
EFFORT bo | @ b | o Lo — o
READ 2.59 0.91 2.21 0.97 -17.2%
WRITE 3.19 0.96 2.23 0.96 -43.0%

notation, however, cannot be attributed to visual short term
memory since the experimental setup placed either the OCL
reading task or the OCL writing task between them. So, there
was an average of more than 11 minutes between reading the
VMQL constraint and recalling it.

This leaves us with two phenomena to be explained: (1) the
unexpectedly small margin in reading performance, and (2)
the unexpectedly large margin in writing performance.

Concerning the smaller margin in reading tasks (1) we
have two explanations. Firstly, we really did expect that
the performance on the constraint-related tasks tested in this
experiment would be worse than for the query-related tasks
tested in previous experiments. After all, OCL was designed
specifically for expressing constraints, while VMQL was de-
signed for expressing queries. So, the nature of the tasks in
this experiment ought to favor OCL, as it would have favored
VMQL in our earlier experiments.

Secondly, in comparing the relative performance, we have
to take into the account prior knowledge of the participants.
On average, participants rated themselves to have a higher
competence in OCL and Logics than in VMQL (0.8 and 2.4
compared to 0.2 on a 5-point Likert scale from 0 “don’t know
language” to 4 “expert knowledge™). This explanation was
further confirmed by comments made by study participants
during follow-up interviews, such as: “I really felt I didn’t
even have the knowledge for an educated guess [in the VMQL
tasks]”.

Together, these factors certainly would explain the unex-
pectedly small margin in the comprehension task, but not the
unexpectedly good performance in production task (2). Our
follow-up interviews hinted at a possible explanation: “the
graphics [VMQL] are really good for getting an overview, but
most constraints were so small this was not essential”’, as one

participant put it. In fact, the tasks presented here were much
simpler and quicker (about half the duration) to complete than
those in previous experiments, which might be a bias towards
OCL. Consequently, we will have to study the influence of
expression complexity to subject performance in the future.

Having said all that, even as they are the experiments
confirmed again that VMQL is superior in terms of motivating
people to actually write or read constraints, which is certainly
a good basis for further investigation and improvement.

D. Threats to validity

The number of participants is sufficient to derive valid con-
clusions, but the number and selection of different constraints
used in the tasks might bias the outcome. We have tried to
prove a representative set of constraints covering the whole
range of different styles and applications, but that is of course
a subjective judgment. However, the results are plausible, and
completely in line with the subjective assessment by the study
participants who unanimously preferred VMQL over OCL in
terms of fun, a judgment that would be very hard to bias by
the choice of constraints.

Another bias might come from the formulation of the prose
descriptions. In order to avoid such bias, the prose descriptions
were drawn verbatim from the UML standard for those six out
of eight constraints we took from the UML. So if there is a
bias, it is present in the field, not in our experiments.

Since we use the same queries for both languages, the order
of the languages participants work on may create a learning
effect and thus bias the results. In order to avoid this, half
of the participants worked on VMQL first, and the other half
worked on OCL first. If there is a learning effect it would
equally affect the results of both languages, thus not skew the
relative scores.

VII. RELATED WORK

While there is an abundance of work on consistency
checking of models using formal methods (see [10]), much
less attention has been paid to actually specifying model
constraints and queries. There are three major approaches to
visually specifying properties for UML models.

Constraint Diagrams have been proposed by [9]. In con-
junction with a Z-like framework, they are a powerful visual
language for expressing constraints, although they seem to be
restriced to UML class diagrams or similare structures. Also,
there seems to be no evaluation of their practical value in a
realistic setting (cf., however, [7], [8]).

Visual OCL have been proposed by [2] not as a language in
its own right but as a visualization on top of OCL (cf. [1], [4]).
This approach has the advantage that the “back end” (that is,
OCL) can be used as a black box, including formal semantics,
tools and so on, and VisualOCL can be applied to any existing
body of OCL constraints. The translation between OCL and
Visual OCL is rigorously defined, and so, together with formal
semantics for OCL, VisualOCL is formally defined. Visu-
alOCL covers almost the entire OCL, thus warranting almost
the same expressiveness as OCL (though for a deprecated

version only). There is also tool support for VisualOCL, albeit
only academic prototypes. [5] compares Constraint Diagrams
and VisualOCL and suggests that VisualOCL diagrams are
easier to understand than Constraint Diagrams for simple
OCL expressions. There is no evaluation of the usability of
VisualOCL, in particular not in comparison with OCL. Recall,
however, that the prohibitive space consumption of VisualOCL
prevented it being included in this study.

Query Models have been proposed by Stein et al. (see
[14] and subsequent works). This approach is certainly the
one closest to VMQL. Like Constraint Diagrams and VMQL,
Query Models use a variant of the host language (UML)
to express additional constraints. Like VisualOCL, Query
Models are supposed to be translated into OCL, although
this translation is undefined, and it is not at all clear how
this could be done (there is no generic definition and only a
handful of examples). There is no tool support for executing
Query Models (read: checking constraints expressed as Query
Models), and no evaluation of their usability or expressiveness.

VIII. DISCUSSION

The Visual Model Query Language (VMQL) has first been
proposed in [17] and elaborated in [18]. Originally intended
as a vehicle for end users to issue ad-hoc queries to (large)
models, it soon became apparent, that it might also be used
for expressing constraints, for queries and constraints are just
two different usages of predicates on model elements. While
VMQL is less expressive as OCL (e.g., functional abstraction),
this seems to be a theoretical rather than a practical limitation,
as we were able to translate almost all OCL constraints from
a significant sample of all the OCL constraints in the UML
standard. Also, VMQL is highly generic (cf. [18]) and may
be applied to many other visual languages, including future
DSLs or legacy languages beyond MOF-based languages, and
thus outside the reach of OCL. Additionally, VMQL surpasses
OCL in terms of usability, as is indicated by the findings of
controlled experiments we conducted as part of this work, and
previous work. The reliability of our findings is somewhat
limited by the small number of experiment participants and
the small set of tasks they worked on. On the other hand, no
other competing approach (most notably, QueryModels and
VisualOCL) has ever even tried to demonstrate its usability.

The process of applying VMQL to constraints rather than
queries, its original domain, exhibited a number of shortcom-
ings and deficits of VMQL as it was at the time. Most of these
were quite easy to fix and resulted in an improved and ex-
tended VMQL as presented in this paper. The question remains
whether it is possible to increase the expressiveness of VMQL
to completely match that of OCL (i.e., not just practically,
but also theoretically), and how this may be achieved. Simply
embedding OCL into VMQL would of course sidestep this
issue altogether, but this option comes at the price of loosing
the usability advantage VMQL has over OCL. Thus, adding
a capability for functional abstraction and recursion might be
a better option, but it is not clear how this could be achieved

without deteriorating understandability. We hope to address
this issue with our future work.

Other ongoing work focuses on strengthening the tool sup-
port, extending the empirical results (including industrial case
studies, and more experimental evidence), and understanding
better just why VMQL affords superior usability than OCL
in the first place. The answer to this question will allow us
to further improve VMQL, but it might also help to improve
OCL, or provide better OCL tool support.

REFERENCES

[1] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer, “Consistency
Checking and Visualization of OCL Constraints,” in Proc. 37 Inil.
Conf. Unified Modeling Language (<KUML>>"00), ser. LNCS, B. Selic,
S. Kent, and A. Evans, Eds., no. 1939. Springer Verlag, 2000, pp.
294-308.

[2] ——, “A Visualisation of OCL using Collaborations,” in Proc. 4th
Intl. Conf. Unified Modeling Language (<KUML>>01), ser. LNCS,
M. Gogolla and C. Kobryn, Eds., no. 2185. Springer Verlag, 2001,
pp- 257-271.

[3] M. Cengarle and A. Knapp, “OCL 1.4/5 vs. 2.0 expressions formal
semantics and expressiveness,” Software and Systems Modeling, vol. 3,
no. 1, pp. 9-30, 2004.

[4] K. Ehrig and J. Winkelmann, “Model Transformation from VisualOCL
to OCL Using Graph Transformation,” Electron. Notes Theor. Comput.
Sci., vol. 152, pp. 23-37, 2006.

[5] A. Fish, J. Howse, G. Taentzer, and J. Winkelmann, “Two Visualizations
of OCL: A Comparison,” Univ. of Brighton, Tech. Rep. VMG.05.1,
2005.

[6] D. Gopher and R. Braune, “On the psychophysics of workload: Why
bother with subjective measures?” Human Factors, vol. 26, no. 5, pp.
519-532, 1984.

[7]1 J. Howse and S. Schuman, “Precise Visual Modeling: A Case-Study,”
Software and Systems Modeling, vol. 4, no. 3, pp. 310-325, 2005.

[8] J. Howse, S. Schuman, G. Stapleton, and I. Oliver, “Diagrammatic
Formal Specification of a Configuration Control Platform,” Electronic
Notes in Theoretical Computer Science, vol. 259, pp. 87-104, 2009.

[9] S. Kent, “Constraint Diagrams: Visualizing Invariants in Object-Oriented

Models,” in Proc. Intl. Conf. Object-Oriented Programming, Systems,

and Languages (OOPSLA97). ACM Press, 1997, pp. 327-341.

F. J. Lucas, F. Molina, and A. Toval, “A systematic review of UML

model consistency management,” Inf. Softw. Technol., vol. 51, no. 12,

pp. 1631-1645, December 2009.

L. Mandel and M. V. Cengarle, “On the Expressive Power of OCL,” in

Intl. Conf. Formal Methods (FM’99), ser. LNCS, vol. 1708. Springer

Verlag, 1999.

OMG, “OMG Unified Modeling Language (OMG UML), Superstruc-

ture, V2.2 (formal/2009-02-02),” Object Management Group, Tech.

Rep., Feb. 2009.

R Development Core Team, R: A Language and Environment for

Statistical Computing, R Foundation for Statistical Computing, Vienna,

Austria, 2011. [Online]. Available: http://www.R-project.org

D. Stein, S. Hanenberg, and R. Unland, “Query Models,” in Proc.

70 Intl. Conf. Unified Modeling Language (< UML>>’04), ser. LNCS,

T. Baar, A. Strohmeier, A. Moreira, and S. J. Mellor, Eds., no. 3273.

Springer Verlag, 2004, pp. 98-112.

H. Storrle, “A PROLOG-based Approach to Representing and Querying

UML Models,” in Intl. Ws. Visual Languages and Logic (VLL’07), ser.

CEUR-WS, P. Cox, A. Fish, and J. Howse, Eds., vol. 274. CEUR,

2007, pp. 71-84.

, “A logical model query interface,” in Intl. Ws. Visual Languages

and Logic (VLL’09), P. Cox, A. Fish, and J. Howse, Eds., vol. 510.

CEUR, 2009, pp. 18-36.

——, “VMQL: A Generic Visual Model Query Language,” in Proc.

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC’09), M. Erwig, R. DeLine, and M. Minas, Eds. IEEE

Computer Society, 2009, pp. 199-206.

, “VMQL: A Visual Language for Ad-Hoc Model Querying,” J.

Visual Languages and Computing, vol. 22, no. 1, Feb. 2011.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

