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Abstract—Practical experience suggests that use and under-
standing of UML diagrams is greatly affected by the quality
of their layout. However, existing experimental evidence for this
effect is been weak and inconclusive. In this paper, we explore
two explanations. Firstly, we observe that the visual qualities of
diagrams are more prominent in earlier life cycle phases so that
the impact of layout quality should be more apparent in models
and diagram types used there, an aspect not studied in previous
research. Secondly, in practice, good layouts use many different
heuristics simultaneously whereas previous research considered
them in isolation only. In this paper, we report the results of
a series of controlled experiments using compound layouts on
requirements analysis models. With very high significance, we
find a notable impact of the layout quality measured by different
aspects of cognitive load.

I. INTRODUCTION

The Unified Modeling Language (UML) has been the
“lingua franca of software engineering” for a long time now. It
is a generally help belief that visual languages are somehow
superior to textual languages (“a picture says more than a
1000 words”), and that this is also true for the UML. In
fact, many people connect the success of UML with the fact
that it is primarily visual. However, there are actually few
research results to support this belief. There is a large body
of experimental results on the layout of UML class diagram
and how it affects human understanding and problem solving,
but the findings are ambiguous, and sometimes unintuitive. In
particular, only very small effects have been found in vitro.
For instance, Eichelberger and Schmid note that “We could
not identify [...] a significant impact [by diagram quality].”
(cf. [10, p. 1696]). On the other hand, practical experience in
industrial software projects suggests a much higher impact of
good or bad layout. We offer two explanations for this.

Firstly, different parts of UML are used during different
phases of the software development life cycle. Dobing &
Parsons [4] show that the two most commonly used UML
diagram types used for technical purposes (i.e., late life cycle
phases) are class and sequence diagrams, while the two most
commonly used digram types for requirements analysis (i.e.,
earlier life cycle phases) are use case and activity diagrams.
However, previous layout research has very much focused
on class diagrams. Based on our own industrial experience,
we hypothesize that inter-personal communication is more

prominent and extensive in earlier life cycle phases. Therefore,
the quality of a diagram layout should have a larger impact
for the model types used there, and thus we should expect to
see less impact of diagram layout in previous work which did
not focus on such models and diagrams. Instead, researchers
have previously focused on class diagrams which are more
often used for technical tasks of later life cycle phases (cf.
[4]). Therefore, in this paper, we study models created in
requirements analysis projects. In particular, we study the use
case and activity diagrams most important for that purpose.
We also study analysis-level class diagrams as a benchmark.

Secondly, previous work has been preoccupied with creating
results suitable to feed into the development of diagram layout
algorithms. Thus, empirical research has identified the various
individual quality criteria, formally defined them as layout
quality metrics, and studied them in isolation. Such criteria
may be the number of line crossings and bends, the joining and
placing of arcs of certain types, and so on. This is doubtlessly
a great contribution to creating better automatic layouts, but
such knowledge is no effective help for human modelers
trying to create “good” diagrams. In the workplace, modelers
are quite content (and effective) to apply informal and even
vague guidelines, when instructed to do so. Therefore, in a
“good” realistic diagram, many layout heuristics are applied
simultaneously in a more or less consistent way. On the other
hand, in a “bad” realistic diagram, we will find little or no care
for diagram layout, resulting in close to random scattering
of notational elements on the diagram pane. Examples of
this latter type of “layout” are readily found in the diagrams
of novice modelers (e.g., freshmen) as well as in articles
published in academic and industrial publications by respected
professionals. Since we are more interested in the practice
of diagram layout than in the development of algorithms, in
this paper, we study the compound effect of many heuristics
applied together to create “good” diagrams. Using a series
of controlled experiments with 77 subjects, we find a notable
impact of the layout quality measured by different aspects of
cognitive load. Our results are highly significant.

II. RELATED WORK

The layout of graphs (in the mathematical sense) has been
a longstanding research challenge, both with respect to auto-



matic layout and to various aspects of usability, e.g., diagram
comprehension, user preferences, and diagramatic inference.
Based on the rich knowledge on general graphs, research on
the layout of UML has started with those of UML’s notations
that are closest to graphs, namely, class diagrams (cf. [24],
[8], [11], [31], [18]), and, to a lesser extent, communication
diagrams (see e.g. [17], [21] who use UML 1 terminology).
Other types of UML diagrams, in contrast, have only attracted
little interest so far (e.g. use case diagrams [9], or sequence
diagrams (cf. [1], [30]). While there is some work on the
Business Process Modeling Notation (BPMN, see [6]), there
seems to be no empirical work whatsoever on UML activity
diagrams. Arguably, however, the two notations are similar
enough to transfer insights from one to the other.

Research on UML class diagrams has mostly focused on
the isolated impact of individual and minor layout criteria
such as line bends, crossings, and length. Unsurprisingly, each
of these individual criteria has little or no impact. The more
elusive higher levels like applying layout patterns, respecting
the diagram flow, and the correspondence between the diagram
and the message it is supposed to convey seem to have not
yet been studied empirically at all.

The main focus of previous work on UML diagram types
and their layout has been with one of four aspects: diagram
comprehension (cf. [26], [27], [20], [21] and/or user preference
(cf. [18], [29]), automatic layout (cf. [8], [11], [16], [9], [5]),
or one of a variety of diagram inference tasks, e.g., program
understanding based on visualizations (cf. [30]), or the role of
design patterns in understanding (cf. [27], [28]).

Most research uses controlled experiments for their research
and evaluate user performance using paper questionnaires,
or online surveys. Only a few contributions have used other
methods, most notably eye tracking (see [2], [31], [27]). After
using both methods for essentially the same experiment, Sharif
et al. have concluded that these two methods are mostly
complementary wrt. comprehension tasks (cf. [25]). Thus,
eye tracking is only favorable for a tightly restricted set of
research questions, in particular when taking into account the
considerable cost and effort involved. Having said that, most
questionnaire-based approaches employ only very few subjects
in their experiments, typically in the range of 15 to 30, with
the notable exceptions of [26], [19] and [1] involving 45, 55
and 78 subjects, respectively.

III. “GOOD” LAYOUT OF UML DIAGRAMS

In this section, we will briefly review the knowledge on
aesthetic criteria for the layout of UML diagrams. A detailed
discussion of aesthetic criteria for class diagrams is found in
[8, p. 54–65], a recent survey of empirical results on layout
criteria is found in [10]. Wong and Sun [30] provide an
overview of these criteria from a cognitive psychology point
of view, along with an evaluation of how well these principles
are realized in several UML CASE tools. Purchase et al.
discuss aesthetic criteria with a view to the layout of UML
class and communication diagrams (cf. [18], [17]) and also
provide sources to justify and explain these criteria (cf. [20]).

Eichelberger [7] also discusses these criteria at length, and
shows how they can be used in the automatic layout of UML
class diagrams.

The layout of UML diagrams is governed by four levels of
design principles. First of all, there are the general principles
of graphical design and visualization that apply to all kinds of
diagrams, and probably any kind of visualization. For instance,
in a good layout, elements should not obscure each other, the
Gestalt principles should be respected, text should be shown in
a readable size, elements should be aligned (e.g., on a grid),
and there should be sparing and careful use of colors, and
different fonts or styles. The “Physics of Notation” could be
used to organize these factors (cf. [13]).

Second, there are layout principles applying to all structures
that can be considered as a graph, mathematically speaking.
Thus, good layouts should avoid or minimize crossings, bends,
and length of lines. Most of the empirical research on UML
diagrams focuses on principles from this level, e.g., [24], [8],
[11], [31], [18].

Third, there are layout principles that apply mostly only to
the notations like those found in UML. For instance, diagrams
with some inherent ordering of elements should maintain and
highlight that ordering as visual flow. Visual clutter should be
reduced by introducing symmetry when possible. For instance,
similar edges should be joined, similar elements should be
aligned and grouped, and so on. In UML, this means that
if a class has several subclasses, it might be helpful to
group and align the subclasses and join the arcs indicating
the inheritance-relationship. Another application is found in
activity diagrams, where several consequences of a decision
could be aligned and grouped.

Fourth, there is the level of pragmatics, that is, support
for underlining the purpose of a diagram in order to better
address the audience. Items may be highlighted by color, size,
or position to guide and direct the attention of spectators.
On this level, rules and guidelines from lower levels may be
put aside to better serve the paramount purpose of conveying
the message and telling whatever story the diagram designer
intends to tell.

In order to develop algorithms for creating automatic layouts
that are perceived as being helpful (or “good”) by human mod-
elers, detailed knowledge about the individual criteria, their
relative and absolute impact, and their formalization is needed.
So, it is not surprising that most of the empirical research
on UML diagrams has so far focused on studying individual
principles, with an emphasis on the second group (cf. [24],
[8], [11], [31], [18]). For instance, work by Purchase et al. has
shown that there are many such criteria with varying degrees
of impact (see [18], [17], [20]), though all of them seem have
a rather small impact with findings that are not or not highly
statistically significant. Also, the ranking and contribution of
these criteria may vary across different diagram types. Even
between class and communication diagrams, which are rather
close relatives as far as concrete syntax is concerned, [18,
pp. 246] shows notable differences in the ordering and impact
of layout criteria. Thus, other notations that share even less



commonalities with class diagrams (e.g., activity, use case, or
sequence diagrams) may need a completely different set of
criteria.

For humans creating diagram layouts, on the other hand, a
set of comparatively vague guidelines together with some in-
struction is often good enough for practical purposes. Humans
may (and will) mix and match criteria from all three levels as
appropriate and create what they and their peers perceive as
high quality UML diagrams. Of course, there is still a large
degree of subjectivity in this definition, but it does capture
the intuition.1 Therefore, in the remainder of this paper, we
will thus call a diagram (layout) good, if it mostly adheres to
the criteria from all these levels, and bad if it mostly violates
them. Unfortunately, elaborating or quantifying the notions of
“good” and “bad” layout are beyond the scope of this paper.
Generally speaking, in terms of the four levels of layout rules
described above, if a diagram layout does not (significantly)
violate any of the rules on the first two levels but adopts the
rules described in the latter two levels we call it a “good”
layout.

In contrast, “bad” layouts will violate some or all of
the rules given on the first two layers. Since all diagrams
have been created with the same tool, a minimum level of
quality is maintained anyway, e.g.consistent coloring, font
sizes, alignment and so on. Also, “bad” layouts ignore rules
from the latter two levels. That does not necessarily mean
that these rules are not partially respected, but they are
not consistently followed. Some examples are provided in
Appendix A, a sample questionaire can be found online at
www.imm.dtu.dk/∼hsto/vl4/q1.

IV. EXPERIMENTAL SETUP

We used [15] as a guideline for our experimental setup.
We presented subjects with paper questionnaires showing one
UML diagram and ten questions on the diagram, recording
four categories of answers (right, wrong, ”don’t know”, and
no answer), time used, personal preference, and subjective
assessment of layout quality. The dependent variables are
accuracy and speed of comprehension, and preference. The
independent variables are the experience level of the partici-
pants (beginner/advanced), the diagram type (class, use case,
activity), the diagram size (small/large), and, of course, the lay-
out quality (good/bad). Altogether, we ran three experiments
with 78 participants. The main purpose of the first experiment
was to validate the experimental setup, the questionnaires, and
the instructions, to estimate the time required, and to explore
learning and carry-over effects. Minor adjustments have been
made to the setup for the second and the third experiment.
In the remainder, we will focus on the setup of the second
and third experiment. The details of the setup are discussed
below; a summary of the experimental setup and study design
is shown in Fig. 1.

1This will also be confirmed by the empirical results we discuss below:
they exhibit both a wide variance in subjective assessment of quality and, on
average, a strong preference for “good” diagrams, cf. Fig. 2 (c, d).

A. Model population

The models used in the experiments have been created
by students as part of their coursework in a requirements
engineering course taught by the author. These models be-
longed to one of three case studies and have been prepared by
teams of 4-7 students over a period of twelve weeks with an
approximate effort of 600-800 working hours for each model.
For each case study, two or three teams worked in parallel; for
each case study, the model of the team achieving the highest
grade was selected.2 This procedure ensured several desirable
properties.

Firstly, by using models created by students undergoing
the same course and being awarded the same grade, very
similar levels of modeler capability and model quality may be
assumed. Furthermore, the models used exhibit a large degree
of methodological homogeneity in that they are very similar
in terms of model structure and size, model and diagram
usage, and frequency distribution of diagram types. Also, in
the models used in our experiments, model elements had their
original, semantic-bearing names, whereas in some previous
experiments this vital aspect seems to have been deliberately
eliminated by giving meaningless synthetic names to model
elements (cf. [10, p. 1697]).

Secondly, due to the project oriented nature of the course,
the evaluation criteria, and the fact that the evaluation is carried
out by practitioners rather than academics, we can assert that
the models underlying our experiment are realistic in the sense
that their size, quality, and purpose is very close to industrial
reality. Finally, all of these models used exist at the same stage
of the software life cycle, namely requirements analysis.

In contrast, all earlier works seem to have used only a single
case study and model, and most work has been carried out on
models at the design or implementation level. Also, there is
no indication in previous work as to how close to the reality
of practical software development the underlying models are.

B. Diagram samples and questions

From each of the three models selected from the model
population, we chose one large and one small example of class,
activity, and use case diagrams with particularly good or bad
layout. The size of a diagram was measured by the number of
graphemes in the diagram. The quality of layout is measured
by the adherence or non-adherence to a number of layout rules
discussed below in detail. This step yielded three models (one
from each case study) for each of the six buckets, that is, the
categories of small/large diagrams of types class/activity/use
case. So we arrived at 18 diagrams altogether which were then
trimmed to have approximately the same size in each of the
categories. We then derived two variants from each diagram
exhibiting good and bad layout (i.e., two different treatments),
respectively, yielding 36 different diagrams. Some examples
are provided in Appendix A, a sample questionaire can be
found online at www.imm.dtu.dk/∼hsto/vl4/q1.

2The grades were awarded by an external censor, not the teacher.



Fig. 1. The experimental setup and study design.

A catalog of ten questions was developed for each of the
three diagram types. These catalogs have then been adjusted
to the other five diagrams of the same type, e.g., changed
the model element names used in the diagrams, changed the
expected answer to questions, or adjusted to the diagram size.
These 18 sets of similar questions were then combined with the
36 diagrams to form 36 different sheets with one diagram and
ten questions each. For each of the 18 models, there are two
sheets with the same questions on the same model appearing
once in a good, and once in a bad layout.

For the first experiment, different permutations of five differ-
ent sheets were created to validate the questionnaires, estimate
the time required, and to explore learning and carry-over
effects. For the second and third experiment, four systematic
permutations of nine sheets each were created such that each
participant had at most five good or bad layouts, five small or
large models, and exactly three models of each of the three
types. No participant of any of our experiments was asked to
answer two sheets with different layout of the same model.

C. Participants and completion rates

The participants for our experiments were recruited among
students from different computer science classes at the Danish
Technical University in Lyngby. All students participated
voluntarily with no reward or threat and under complete
anonymity, i.e., it was clear to students that their performance
had no influence whatsoever on their grades, for instance. For
the first two experiments, participants came from two parallel
1st year Computer Science BSc. courses on OO software
development using UML. From now on, we will refer to this
group of students as “novices”. The experiments were run
towards the end of the term. There were 21, and 22 participants
in the first two experimental groups, respectively. Immediately
before the experiment, all participants received a ten-minute
introduction to those parts of the UML that were covered in
the experiment.

For the third experiment, participants came from a Com-
puter Science MSc. course. All participants had just completed

TABLE I
DEMOGRAPHIC DATA ON THE PARTICIPANTS OF THE THREE EXPERIMENT.

completion rate
male female all (core questions)

novices 40 3 43 80.0 %
experts 30 4 34 84.4 %

all 70 7 77 81.9 %

a course on requirements engineering using UML worth 10
ECTS points. There were 34 students in this group, which we
will refer to as “experts” in the remainder. Altogether, 6290
questions were asked, 6153 of which were answered, and 5487
of them with an answer other than ”don’t know”, which is
a completion rate of 97.8% for any answers and 89.2% for
answers other than ”don’t know”. When looking at comple-
tion rates of the core questions (i.e., without demographic,
assessment, and time), the completion rate is somewhat lower
(see Table I). Half of the participants worked between 20 and
40 minutes on the second and third experiment (durations for
the first experiment are not comparable).

V. OBSERVATIONS

We present our observations for comprehension (accuracy,
response time), and preference. A summary is given in Fig. 2,
the exact figures are provided in Table II. Data analysis and
presentation was done using R [22].

Fig. 2 (a, b) shows box plots of the correct and
wrong/missing answers on good and bad layouts (indices +
and −), respectively. Obviously, there is a fairly large variance
between subjects, and there is a tendency of subjects giving
the right answer to questions. At first sight, Fig. 2 also seems
to show that the scores for correct and wrong/missing answers
are very close together for both good and bad layouts. This
would indicate that there is no (big) difference between the
comprehension of good and bad layouts as far as accuracy
is concerned. Keep in mind, however, that the bars in the
box plots represent medians rather than means. Thus, looking
more closely at the figures, we see that there is actually
a positive impact from good layout on the mean scores



Fig. 2. Summary of the measurements (left to right): density of treatment a; results for accuracy; results for preferences; results for response time. Indices
− and + to treatments a through f indicate bad and good layouts, respectively. The bars in the box plots indicate medians rather than means.

(see Table II, top). Obviously, the distributions for right vs.
wrong/missing answers are symmetric; we include the latter
only for presenting the benefit (last column).

Fig. 2 (c, d) also shows box plots of the subjective assess-
ment subjects offered for good and bad layouts. Clearly, the
variance is rather large, ranging over the complete spectrum in
the case of subjective quality of bad layouts (𝑐+). Still, of all
the aspects considered, these show by far the largest advantage
of good layouts (see Table II, middle).

Finally, Fig. 2 (e, f) shows box plots of the average time
subjects spent on answers and the average time subjects spent
on answer relative to the number of correct answers. Due to
the scaling, it is quite obvious that the response times for
good layouts are smaller (i.e., better) than for bad layouts,
although the size of this effect is not much larger than the
benefit yielded in terms of scores as discussed in the previous
section (see Table II, bottom).

To sum up, the impact of good layouts over bad lay-
outs shows up consistently across a variety of different
metrics: an increase in correct answers (+7%), a reduction
in wrong/missing answers (-13%), higher preference (ap-
prox. +30%), and lower response times per answer/correct
answer (-7% and -17%, respectively). The absolute size may
appear to be small at first sight, but compared to the miniscule
effects found for individual layout criteria (e.g. [20]), this was
to be expected.

VI. INFERENCES

Plotting the density function shows a highly skewed and
partly ragged distribution (see the density plot of treatment
a+/a− on the left of Fig. 2). Also, the Shapiro-Wilk test
showed very low p-values for scores on correct answers
(approximately 10−10) for both good and bad layouts. Thus
we conclude that our measurements cannot be considered

TABLE II
MEASUREMENT DETAILS OF THE BOX PLOTS PRESENTED IN FIG. 2.

Accuracy (a, b)
bad layout good layout benefit

answers 𝜇𝑏 𝜎 𝜇𝑔 𝜎 𝜇𝑔 − 𝜇𝑏

right 6.35 2.07 6.76 1.94 +6.5%
wrong/missing 3.65 2.07 3.24 1.94 -12.7%

Preference (c, d)
bad layout good layout benefit

rating 𝜇𝑏 𝜎 𝜇𝑔 𝜎 𝜇𝑔 − 𝜇𝑏

diagram quality 5.54 2.74 8.06 2.12 +31.3%
diagram clarity 5.61 2.74 7.81 2.27 +28.2%

Response time (e, f)
bad layout good layout benefit

s/answer 𝜇𝑏 𝜎 𝜇𝑔 𝜎 𝜇𝑔 − 𝜇𝑏

all answers 22.72 10.85 21.06 8.25 -7.3%
right answers 38.37 24.39 31.68 15.77 -17.4%

TABLE III
ANALYZING THE MEANS AND STANDARD DEVIATIONS FOR IMPACT OF

EXPERTISE LEVEL.

Accuracy (correct answers)
bad layout good layout benefit

right answers 𝜇𝑏 𝜎 𝜇𝑔 𝜎 𝜇𝑔 − 𝜇𝑏

novice modelers 5.94 1.98 6.34 2.03 +6.7%
advanced modelers 6.76 2.07 7.22 1.73 +6.8%

+13.8% +13.9%

normally distributed, so that we use the Wilcoxon-test rather
than the t-test for testing our hypotheses. Also, this rules
out a straightforward ANOVA analysis; given the complex
experimental setup, developing a suitable generalized linear
model is beyond the scope of this paper and has to be deferred
to future work.

Since previous empirical work has struggled to measure
effects of significant size attributable to layout improvements
by single quality criteria, we first check for the existence and



order of magnitude for the compound effect and formulate the
hypothesis H0,1: Modelers perform equally well on diagrams
with good and bad layouts. We break down the notion of
comprehension into accuracy and speed, and further into the
number of correct vs. wrong/missing answers for accuracy, and
time per answer vs. correct answer for speed and test the four
hypotheses that there is no difference between performance for
good and bad layouts for these aspects, respectively. We can
reject all of them with at least high significance (see Table IV).
We thus conclude that H0,1 can be rejected.

Another way of looking at the performance of users is to
ask them to assess the difficulty of the tasks subjectively. So
we formulate the hypothesis H0,2: Modelers show the same
preference for good and bad diagrams. We measured prefer-
ence with two independent questions asking for assessments of
layout quality and diagram clarity. Testing the two respective
hypotheses with the Wilcoxon test showed, that they may be
rejected with at least high significance (see Table IV). Thus,
we reject H0,2.

Previous work has found differences between experts and
novices. Generally speaking, experts perform better than
novices (cf. [3], [26]), and they seem to apply different strate-
gies to diagram understanding (cf. [31], [26], [27]). Based on
a literature survey and a discussion of the meaning of “ex-
pertise”, Schrepfer et al. [23] hypothesize that novices should
benefit more from good layouts than experts. So we formulate
the two hypotheses H0,3: Expert and novice modelers exhibit
the same performance for good and bad diagrams, respectively
and H0,4: Novice performance increases more than expert
performance from good diagrams as opposed to bad diagrams.

We computed the individual benefits in scores of
right/wrong answers (see Table III). The individual benefit
from good layout is almost identical for both groups of
students (≈ 7%), and the distance between novices and experts
is the same for both kinds of layouts (≈ 14%). Observe that
the effect of experience appears to be twice as big as the
effect of layout quality. Using the Wilcoxon test as before, we
can reject H0,3 with very high significance, but we do not
have sufficient evidence to reject H0,4 (see Table IV). One
explanation for this surprising finding is that the advanced
students that we tested in the “expert” group did actually not
satisfy the definition of an expert, i.e., the experience levels
of the two student groups were not different enough to show
the expected effect.

A. Discussion

We draw three main conclusions from our experiments.
First, we could measure a notable effect of “good” layout
on cognitive load, in particular when using subjective assess-
ments. The effect we found seems to be strictly larger than the
one found in previous experiments. We believe this is caused
by using all available heuristics whenever applicable instead
of trying to isolate effects of individual criteria. Another ex-
planations has been offered by Eichelberger and Schmid who
have attributed the absence of findings in their experiments to a
small number of subjects. While Purchase et al. (who also find

TABLE IV
TESTING DIFFERENT ASPECTS OF COGNITIVE LOAD, WE REJECT THE

HYPOTHESIS THAT GOOD LAYOUTS DO NOT IMPROVE USER

PERFORMANCE AND ASSESSMENT.

HYPOTHESIS P-VALUE SIGNIFICANCE

H0,1: same user performance for good/bad layouts wrt.
. . . correct answers 0.003 **
. . . wrong answers 0.002 **
. . . time per answer 0.061 *
. . . time per correct answer < 0.001 ***

H0,2:same user assessment of good/bad layouts wrt.
. . . layout quality < 10−15 ***
. . . diagram clarity < 10−15 ***

H0,3 same performance for good/bad layouts by experts/novices wrt.
. . . correct answers < 0.0001 ***
. . . wrong answers < 0.0001 ***

H0,4: novices benefit more than experts from good layouts
. . . correct answers 0.39 -
. . . wrong answers 0.24 -

little to no effect) report population sizes similar to those in
our experiments, they only measure individual layout criteria,
and they seem to ask their subjects many fewer questions than
we do.

Second, we have taken four different measurements that can
all be understood as aspects of cognitive load (cf. [14]). While
all these measurements show similar effects, the size of the
effects found vary considerably. This is in line with previous
findings of low correlations between subjective cognitive load
and objective user performance (cf. [12]). Nevertheless, sub-
jective assessments of cognitive load have been found to be
very reliable indicators of the objective difficulty of a task.
That could imply that the tasks provided in our experiments
are so easy that they are well within the capabilities of
our subjects, or that subjects have compensation strategies.
Repeating the experiments with harder questions, under time
pressure, or with additional secondary tasks may shed light on
this question.

Third, novice modelers seem to benefit much more from
good layouts than expert modelers. Similar findings have been
made repeatedly in different contexts (see eġ. [23] or [31],
[26]), so this is no surprise. However, the magnitude of the
advantage experts have over novices may hold two interesting
implications. On the one hand, it may be possible to develop a
standardized test based on our experiments to assess the level
of UML capability, similar to standard IQ tests. This may be a
very helpful instrument in academic teaching and commercial
UML certifications. On the other hand, Yusuf et al. have found
characteristic differences in the strategies for understanding
UML class diagrams, as employed by experts and novices
(center-out vs. top-left to bottom-right, respectively, see [31]).

B. Threats to validity

a) Internal validity: Great care has been taken to provide
systematic permutations of diagrams, questions, and sequences
thereof to avoid bias by carry-over effects (“learning”). Any
such effects would occur similarly for all treatments and, thus,
would cancel each other out. Subjects have been assigned to
tasks randomly. We can also safely exclude bias through the



experimenter himself, since there were only written instruc-
tions that apply to all conditions identically.

b) External validity: The selection of the models and
diagrams may be a source of bias. However, we applied
objective and rational criteria to the selection, and compared to
previous similar studies, we used three different diagram types
(rather than just one or two), a competitively large number
of models, and very realistic models. The layouts for the
models were, to a large degree, used-as-found, that is, they
were created under realistic conditions by people unconnected
to these experiments. On top of that, our study is based on a
comparatively large number of subjects. So, the present study
is certainly among the best validated among studies of its kind
and we expect our results to be valid for UML models in
general, i.e., we expect a markedly higher degree of external
validity than previous contributions can claim.

VII. SUMMARY

In this paper we presented three controlled experiments on
the impact that the quality of layout has on the comprehension
and preference of UML use case, class, and activity diagrams.
In contrast to previous work, our approach focuses on human-
made layouts rather than layout metrics and algorithms: here,
we studied the combined impact of many of the layout
criteria that had repeatedly been studied in isolation before.
We observed a marked beneficial effect of “good” layouts
to several distinct aspects of cognitive load. In particular,
novice modelers benefited far more than advanced modelers.
Our experiments exhibited a high level of validity through
comparatively large numbers of subjects, models, diagrams,
and tasks. Also, the models underlying our study are realistic
in terms of their origin, size, structure, and so on. Finally,
while previous work had focused on design and implementa-
tion level diagrams (i.e., class and interaction diagrams), this
study focused on analysis level diagrams.

It seems likely that the results obtained here carry over in
a similar fashion to other software engineering diagram types
such as the remaining ten UML diagram types and SysML,
but also to completely unrelated notations such as BPMN, the
IDEF family, or the ARIS family of notations. However, this
requires further empirical studies that would also replicate our
experiments.
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APPENDIX

The following figures show some sample diagrams from our
questionnaires. The class and activity diagrams are considered
medium sized, the use case diagrams are considered small.
Diagrams Fig. 3, Fig. 5, and Fig. 7 show “good” layouts,
and diagrams Fig. 4, Fig. 6, and Fig. 8 show their respective
variants with “bad” layout.

Fig. 3. Small use case diagram with “good” layout.

Fig. 4. Same model as in Fig. 3 with “bad” layout.

Fig. 5. Medium class diagram with “good” layout.

Fig. 6. Same model as in Fig. 5 with “bad” layout.

Fig. 7. Medium activity diagram with “good” layout.

Fig. 8. Same model as in Fig. 7 with “bad” layout.


