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Summary

Optics and photonics are exciting, rapidly developing fields building their suc-
cess largely on use of more and more elaborate artificially made, nanostructured
materials. To further advance our understanding of light-matter interactions in
these complicated artificial media, numerical modeling is often indispensable.
This thesis presents the development of rigorous finite-difference method, a very
general tool to solve Maxwell’s equations in arbitrary geometries in three di-
mensions, with an emphasis on the frequency-domain formulation. Enhanced
performance of the perfectly matched layers is obtained through free space
squeezing technique, and nonuniform orthogonal grids are built to greatly im-
prove the accuracy of simulations of highly heterogeneous nanostructures. Ex-
amples of the use of the finite-difference frequency-domain method in this thesis
range from simulating localized modes in a three-dimensional photonic-crystal
membrane-based cavity, a quasi-one-dimensional nanobeam cavity and arrays
of side-coupled nanobeam cavities, to modeling light propagation through metal
films with single or periodically arranged multiple subwavelength slits.





Resumé

Optik og fotonik er spændende og dynamiske forskningsomr̊ader i en rivende
udvikling, der i høj grad baserer sig p̊a mere og mere komplicerede nanos-
trukturerede materialer. Numeriske beregninger er ofte uundvrlige for at øge
forst̊aelsen af lys-stof vekselvirkning i s̊adanne kunstige materialer. Denne
afhandling præsenterer udviklingen af en rigoristisk finite-difference-metode til
løsning af Maxwells ligninger i vilk̊arlige geometrier i tre dimensioner med
fokus p̊a frekvensdomæne-formuleringen. Gennem en metode til at presse
det tomme rum opn̊as en forbedret virkning af perfekt tilpassede lag (Per-
fectly Matched Layers), og ikke-uniforme ortogonale net benyttes til at øge
nøjagtigheden af beregninger for stærkt heterogene strukturer. Eksempler
p̊a udregninger med den tre-dimensionelle finite-difference-metode i frekvens-
domænet i denne afhandling strækker sig fra lokaliserede tilstande i kaviteter
i fotoniske krystal-membraner, kvasi-en-dimensionelle nanobjælke-kaviteter og
rkker af side-koblede nanobjælke-kaviteter til modellering af lysudbredelse gen-
nem metalfilm med sprækker der er mindre end bølgelængden.
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Chapter 1

Introduction

Just half a century ago manipulating light at the micro- and nanoscale was
hardly possible or even imaginable. By now progress in fabrication techniques
and our understanding of light-matter interactions have turned optics into one
of the most dynamic, rapidly developing and promising fields of mesoscopic
physics; even the new term, photonics, was invented and widely accepted to
emphasize numerous new developments and directions such as image resolution
below diffraction limit [1–4] and superfocusing [5–7]; optical cloaking [8–11]; ul-
trafast photonic chips [12–16]; lossless, nonlinear and gain materials [17–19]; op-
tical modulators [20,21], couplers [22,23], switches [24,25] and light sources on
nanoscale [26–29]. This is naturally followed by a multitude of applications to
technology [30], biophysics [31,32], energy harvesting [33–35], lightning [36,37],
and medical science [38–40]. And like fifty years ago it was hard to envisage
the perspectives of semiconductor transistor in building computers and all of
that today’s electronic equipment, it is in the same way unpredictable what
current research activity in nanophotonics will lead to. What we can say with
confidence yet is that in order to utilize the tremendous potential of classical
and quantum optics phenomena in real-life applications, a systematic under-
standing and deep intuition for the behavior of light in various nanostructured
arrangements should be developed by each practitioner in the field.

To develop such intuition for light-matter interactions in complex photonic
bandgap or plasmonic structures, to design nontrivial devices and to explore
new phenomena, efficient numerical modeling is the key. For an impression of
typical basic problems faced in nanophotonics and computational electromag-
netics today, we describe in the following introductory sections two examples:
light trapping in photonic-crystal cavities and propagation through metal grat-
ings. Then we formulate equations to be solved and sketch the ways we follow
to do that cleverly, using the same ideas that underpin the recent rise of trans-
formation optics. Formulating the aim and outline of this thesis closes the
introduction.



2 Introduction

1.1 Tailored light-matter interactions: photonic
crystals

1.1.1 Photonic-crystal-based resonators

In the coming decade in physics great effort will probably be devoted, among
other things, to improving quantum storage and teleportation, and the devel-
opment of quantum computer. This would require increased level of control
over quantum behavior of light. In experiments, quantum states are easily
destroyed by decoherence induced by surroundings. To make use of quantum
processes one should avoid this influence, or use specifically designed environ-
ment to modify the process considered. This is the case when an atom or
a quantum dot — nanosized emitter in active material — is located inside a
medium exhibiting modified density of electromagnetic states, i.e., a photonic
crystal.

As a popular definition goes, photonic crystal is a structured medium that
can block light within a range of frequencies called photonic band gap [41].
Main advantages of dielectric photonic crystal components over, for instance,
their plasmonic analogues are low-loss operation and low-cost production. Pho-
tonic crystal based structures — beam splitters, cavities, slow light and logic
devices — allow for a lot of diverse operations with light. Fundamental char-
acteristic of photonic crystal that regulates quantum dot spontaneous emission
lifetime is the local density of states, i.e. density of electromagnetic modes in
a particular point in the structure. Changing photonic crystal geometry and
quantum dot position placed inside the crystal can dramatically alter sponta-
neous emission rate. In fact, prospects to modify the density of states gave
major motivation to investigate photonic crystals back in the years of their
inception, and still they generate large interest from the fundamental cavity
quantum electrodynamics perspectives [42–44].

A defect in photonic crystal gives rise to new modes with discrete frequencies
inside the band gap and acts as a cavity capable of trapping radiation due to
multiple reflections from the rest of the photonic crystal. A quality factor of a
cavity mode is defined as 2π times the ratio of the cycle-averaged total energy
of the cavity to the energy loss per cycle [45–47]:

Q = 2π
1
T

∫
T

∫
V
w d3rdt

−
∫
T

∫
V

∂w
∂t d3rdt

(1.1)

where w = 1
4 (E · D∗ + B · H∗) is the period-averaged energy density of elec-

tromagnetic field, V the volume of the cavity, T the period of field oscillations,
and minus in the denominator corresponds to the energy loss. Assume the
energy density decays exponentially,

w(r, t) = w0(r)e
−ω0t

ξ (1.2)
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where ω0 is the angular frequency of electromagnetic wave. Substituting this
to Eq. (1.1) gives ξ = Q. This solution does not depend on which part of
the cavity, V , we use to calculate the Q-factor. The electromagnetic field
components of a single cavity mode are given by the usual solution of Maxwell’s
equations, the harmonic wave of frequency ω0 with the exponential multiplier
standing for the losses:

A(r, t) = A(r)e−
ω0t
2Q e−iω0t (1.3)

Formula (1.3) is valid only for one mode being excited, when the field evolu-
tion can be described as single-exponential. Squared absolute value of Fourier
decomposition of exponentially decaying harmonic signal, |A(r, ω)|2, gives a
package of monochromatic waves spread near the resonance frequency ω0 with
the half-width δω = ω0

Q as shown in Appendix 1. Thus the Q-factor can be

defined from |A(ω)|2 averaged over the area,

Q =
ω0

∆ω
. (1.4)

When we deal with a high-Q cavity, energy decays very slowly in it and only
part of the total decay time is used for FFT. Frequency spectrum fitting to
lorentzian is commonly done to reconstruct discretized signal correctly.

The dissipation of power described by the denominator of (1.1) can be
rewritten in a more convenient way with use of the conservation law∫

V

∂w

∂t
dv = −

∮
Γ

S · n ds (1.5)

where S = 1
2E × H∗ is the Poynting vector, Γ is the surface surrounding the

volume V and having the unit normal vector n. So the quality factor is

Q =
ω0

∫
T

∫
V
w d3rdt∫

T

∮
Γ
S · nd2rdt

. (1.6)

For cavities formed by objects with dimensions comparable with the wave-
length of light it is often difficult to define precise physical dimensions of the
cavity, and it is possible only when the mode is excited. Indeed, resonance phe-
nomena in nanoscale structures are often characterized by very intensive fields
behind the borders of the objects formally shaping the resonator by itself. As a
measure of light localization in the cavity it is convenient to use mode volume
defined in quantum mechanics as

V =

∫
ϵ(r)|E(r)|2 d3r

max[ϵ(r)|E(r)|2]
(1.7)

where ϵ(r) is the dielectric permittivity and E(r) the electric field, the integra-
tion assumed to be carried out trough the whole space. In the finite-difference
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implementation the integral is replaced by summation over the computational
domain.

Photonic crystals (PhC’s) are currently considered as a perspective platform
to host low mode volume cavities with high quality factors. A defect can be
formed in a photonic crystal by breaking a perfect symmetry of the structure
either by removing or shifting basic constitutive units or by local modification
of refractive index. The defect acts as a cavity capable of storing energy during
time proportional to the Q-factor. For a quantum dot placed inside a defect in a
photonic crystal as in Fig. 1.1a, the radiation rate is directly connected with the
quality factor of the microresonator. This gives an explicit way to enhance the
quantum dot radiative lifetime by increasing the Q-factor. Another important
parameter is mode volume V . Radiative emission lifetime of an ideal emitter
placed inside a cavity is given via Purcell’s factor [48]:

Fp =
3Q(λ/n)3

4π2V
. (1.8)

Photonic-crystal-based cavities exhibit very high ratios Q/V [49, 50] and
thus they are attractive for use as passive optical components in the rapidly
developing area of cavity quantum electrodynamics [51,52]. Astonishing quan-
tum phenomena are possible to observe with this kind of cavities, such as
the enhancement of luminescence, alternation of emitter lifetime, Rabi oscil-
lations, single-photon emission, and the enhancement of slow down factor in
electromagnetically induced transparency. A variety of high-Q, low-V cavity
designs were proposed based on structural modifications in photonic crystal
matrices [53–56]. Basically, for a photonic crystal featuring full 3D band gap, a
defect in it should give the Q-factor approaching infinity, i.e., light can be kept
inside the resonator infinitely long. However, fabrication of photonic crystals
with full 3D band gap, e.g., inverted opals and woodpile structures and defects
in them is quite complicated.

That is why a standard way to create a cavity is to use 2D photonic crystal
platform, mostly silicon or GaAs slabs with perforation. Position of holes in a
slab is manually defined, giving thus flexibility in the design and optimization of
cavities and other photonic components. The main channel for loosing radiation
from a free-standing membrane cavity is through coupling to radiative modes.
In the plane of the slab photonic crystal acts as a distributed mirror strongly
holding radiation, thus in-plane leakage of radiation from photonic crystal is
typically small. By separating the energy flow into in-plane (||) and out-of-
plane (⊥) parts, we can write [57]:

1

Q
=

1

Q||
+

1

Q⊥
, (1.9)

where Q is the total Q-factor, Q|| quantifies losses only in the plane of the slab,
while Q⊥ stands for the out-of-plane losses. Knowing that Q|| is very large we
immediately see that the total Q-factor is mainly governed by Q⊥. In the out-
of-plane direction light is primarily confined by total internal reflection, thus
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(a) (b)

Figure 1.1: (a) Two coupled identical nanobeam cavities. (b) Even mode in
coupled nanobeams.

the magnitude of k⊥ vector should be as small as possible to reduce losses.
In-plane mirror imperfections and parasitic leakage by coupling of the cavity
radiation to vacuum modes are not clearly separated one from another and
can be closely connected for some modes. Distribution of k|| for a specific
mode can be obtained through spatial Fourier transformation of a given mode
field component. The usual approach employed for optimization of cavities is
through some guess for the design that would give k||-vectors mostly lying far
enough from the light cone.

Thus if some modes are to be confined at the nanoscale to achieve high
Q, this should be done gently without abrupt changes in the structure geom-
etry or refraction index because otherwise undesirable leakage will appear. In
this sense the best designs are given by utilizing the mode-matching rule [58]
when the holes pattern changes gradually going from the cavity center towards
the mirror part. Waveguide-like [59] and nanobeam cavities [60] having simple
arrangement of field maxima and minima along a straight line allow applica-
tion of such mode matching approach and actually they give the highest of
reported Q-factors. For modes of more complicated symmetries, for instance,
for the hexapole mode in a one-hole-missing membrane [61], this approach is
not readily applicable since the mode by itself can be easily destroyed and
it disappears completely by a moderate geometry modification, especially if
symmetry breaks even slightly.

Nanobeam cavity designed by mode-matching approach gains intensive in-
terest [62]. It exhibits a set of highly desirable characteristics: high mode
quality factor Q, low mode volume V (less than the cubic wavelength of light)
and the smallest footprint size among other high-Q cavities; this stimulates
intensive investigations of nanobeam-related acousto-optic and optomechanic
interactions [63, 64]. Tiny size of nanobeam cavities makes them also very
promising for densely integrated photonic circuits.

One of the challenging tasks in cavity design remains the shaping of the
far field radiated from the cavity to form a spot, which is necessary if this
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cavity is to be used to make a laser. High-intensity emission to the far field
is achieved by perturbing cavity design in order to create significant coupling
to radiation modes. Recently periodic modification of hole radii in the mirror
part was proposed as a stable way to extract radiation from the cavity [65].
Unfortunately, such solutions completely destroy high Q-factor desirable for
lasing; a special design where all leakage of radiation goes into a single space
channel is highly needed. Although active research is being carried out in
this direction [66–69] the question whether it is possible to create a 2D-based
photonic crystal cavity which simultaneously has high Q and is capable of
highly collimated emission along specified direction is waiting for an answer.

Of particular interest are ensembles of cavities [70] with quantum dots
placed inside, Fig. 1.1a. Three-dimensional description of such systems is not
yet a routine task, but it is very important for fundamental investigations of
light-matter interactions [71–73]. Coupling between resonators is an impor-
tant feature that allows to shift operation wavelengths. Figure 1.1b shows
one of the super-modes showing up when two cavities are brought together.
This ‘even’ mode has the wavelength significantly different from a single-cavity
eigenwavelength. Several cavities in close proximity to each other cannot be
considered independently: their interaction should be taken into account as it
can alter substantially the operation of these cavities on a densely integrated
chip. Avoiding of parasitic coupling is crucial for photonic integrated circuits
and in optic network design. On the other hand, there are many applications
where strong and controllable coupling [74] is required: for example, in order
to create low-threshold lasers [75], to observe Fano line shapes [76], to de-
sign field concentrators for detection of molecules [77], to create flat passband
for slow light [78, 79], holographic storage [80], nonlinearities [81]. Formally,
consideration of coupled cavities is directly paralleled with mode hybridiza-
tion in molecules, that is why coupled resonators are often called ‘photonic
molecules’ [82, 83].

1.1.2 Calculation of Q-factor with finite-difference meth-
ods

Investigation of light behavior in photonic crystals of finite size in two or three
dimension relies heavily on numerical computation methods. In fact, direct nu-
merical methods attained rapid development in line with rise of nanophotonics
and in particular with the development of the concept of photonic crystal.
Multi-surface photonic crystal structures are difficult to describe even approx-
imately using analytical considerations. One of the most challenging computa-
tional tasks is evaluation of the Q-factor of a resonator. High Q implies large,
multi-period-extended photonic mirror capable of holding radiation for a long
time avoiding the losses through coupling to radiative leaky modes. Traditional
way here is to use time-domain modeling to simulate these spatially extended
structures, with the subsequent extraction of Q by analyzing the ring-down
of electromagnetic field components; such simulations can take considerable
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time up to several days per single run for high-Q three-dimensional resonator.
Of course, for this type of problem we even do not mention the possibility of
thorough convergence studies; only a few papers report such investigations [84].
Many approaches are suggested to minimize time consumption of Q-factor eval-
uation by transient analysis [85,86] but systematic comparative studies of these
various approaches are still lacking and this complicates the choice of a suitable
one for a particular resonator considered.

Transition to the frequency domain analysis for cavity eigenmodes is very
natural; it greatly reduces computation time and no post-processing is needed
to determine the Q-factor. At the same time reliable frequency-domain solvers
to find the Q-factor of a resonator are scarcely reported, probably because
of large memory consumption inherent to many algorithms for computing the
eigenvalues of the finite-difference matrix. This work is intended partly to ad-
dress this issue by showing that the finite-difference frequency-domain (FDFD)
method is capable of calculating high Q factors of membrane resonators even
on a personal laptop if special care is paid to the physical issues of problem
set-up, such as solution-adapted continuous grid density variation (of lower res-
olution in photonic crystal mirror part, for example; see Fig. 1.1b where the
field decays rapidly from the nanobeam cavity center), exploiting the symme-
tries of a resonator to reduce computational domain, and squeezing the free
space around a membrane.

1.2 Light at nanoscale: metallic nanostructures

1.2.1 Phenomenological description of metal

For metals containing free electrons of density ρ the expression for ‘effective’ ϵ
can be constructed with use of relation for current J generated by these free
electrons when external electric field is applied:

J = σE, (1.10)

σ being the conductivity of metal. Supposing time-harmonic excitation such
that ∂t → −iω, we can write:

J =
∂P

∂t
= −iωP (1.11)

Combining (1.10) and (1.11) gives

P = i
σ

ω
E (1.12)

so that the effective permittivity of metal in this model can be introduced is

ϵ∗ = ϵ+ i
σ

ϵ0ω
(1.13)
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(a) (b)

Figure 1.2: (a) Plasma model for metal. (b) Field singularities at the corners
of a rectangular slit (shown schematically with white dashed lines) of width
10 nm in a gold grating of periodicity P = 1000 nm in the air, calculated with
the FDFD method. Incident light of wavelength 1015 nm is p-polarized so that
surface plasmon polaritons are excited close to the Rayleigh-Wood anomaly.
Z-axis shows the intensity of the field. The field is enhanced near the edges
and inside the slit. Note that the peak singularities in the picture actually has
the same weight, some asymmetry is due to inadequate color interpolation.

In this way polarization P induced by the incident field can be incorporated
into material parameters. Thus by redefining the dielectric function Maxwell’s
equations can be written in a source-free form for metals if there are no external
charges and polarization now includes both intrinsic and external-field-induced
terms. For phenomenological description of metal, frequency-dependent con-
ductivity σ = σ(ω) is normally assumed. The easiest way to derive dispersive
permittivity from simple physical considerations is to approximate the metal
by the model of free-electron gas contained in a positively charged ion lattice.
Knowing that Maxwell’s equations allow the existence of longitudinal electro-
magnetic mode in the bulk piece of metal under the condition that permittivity
turns to zero, one can suggest that this resonance phenomenon is the main ef-
fect contributing to the frequency dependence of material parameters of free
electron gas. Supposing that the whole electronic cloud can move with re-
spect to the lattice and the distance between their ‘centers of charge’ is x, see
Fig. 1.2a, the equation of motion of the whole electronic cloud with concentra-
tion of electrons n, mass and charge of a single electron m and e, and damping
coefficient of electron motion γ is

nmẍ+ nmγẋ = −neE. (1.14)
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For harmonic electromagnetic field E(t) = E0 exp(−iωt) this gives the displace-
ment law and hence the polarization as

P = −nex = − ne2

m(ω2 + iγω)
E (1.15)

Inserting this into the expression for electric displacement vector we arrive at
the Drude model for metal permittivity:

ϵ = ϵ∞ −
ω2
p

ω(ω + iγ)
(1.16)

Here ωp = ne2

ϵ0m
is plasma frequency at which in the lossless model (γ = 0)

electronic gas suspended in the air (ϵ∞ = 1) responds to incident radiation
by excitation of a bulk plasmon, so that ϵ = 0. In general the term ϵ∞ can
also be frequency-dependent and then additional terms described by Lorentzian
functions appear to take into account the interband transitions. In this thesis
we will mostly deal with pure noble metals at low frequencies that are very well
described by simple Drude model, but one should remember that with the same
easiness arbitrary dispersion can actually be handled by the frequency-domain
method.

1.2.2 Nanostructured metals in optics

Metal-containing nanostructures exhibit amazing physical phenomena due to
inherent property of metal to react to electromagnetic radiation through the
induction of electron currents which are bound within metallic parts of the
nanostructure. This can significantly change the properties of the system under
the condition of resonance excitation. Electromagnetic cloaking, resolution un-
der diffraction limit, negative refraction, extremely high local density of states
are only part of the most cited phenomena obtained with the use of metal-
containing structures. The most amazing feature of interaction of light with
metals is the existence of plasmon polaritons — coupled resonance excitations
of light and electrons close to the metal surface. Two main types of resonance-
like effects are possible to observe in metallic structures [87]: resonances origi-
nating mainly from the geometry of the structure like Fabry-Perot conditions
or Rayleigh-Wood anomalies (Fig. 1.3) and resonances by matching conditions
between permittivity function of the metal and of the host matrix like Mie
resonances, i.e. localized plasmons or propagating surface plasmon polaritons.
Of course, for many realistic complicated structures it is difficult and some-
times not possible to distinguish between the two mechanisms as both of them
simultaneously contribute to the process of light transmission and scattering,
and geometrical parameters of the structure regulates contribution from each
of the mechanisms. For instance, although Fabry-Perot and Rayleigh-Wood
phenomena show up in dielectric structures, in metals their appearance is also
associated usually with excitation of surface plasmons [88–90]. Of course, here
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Figure 1.3: Transmission spectrum of the gold grating of period P , thickness h
and width of the air opening w under illumination by p-polarized light, calcu-
lated with the FDFD method. Note that the gold behaves very much like the
PEC in this wavelength range, and the Rayleigh-Wood resonances are quite
accurately given by the rule P/n, where n is positive integer.

we are discussing Fabry-Perot ‘nanoscale’ resonances, e.g. those appearing in
structures having one of the dimensions with size on the order of one wavelength
or less. For example, slits in metal films of height h can give resonances at con-
dition kh+ ϕ = π where ϕ is the phase of reflection and k is the wave number
of whatever mode is propagating back and forth inside the slit, and could, e.g.,
be the wave number of a gap plasmon polariton as in Ref. [90]. Because of the
reflection phase in the resonance condition, Fabry-Perot transmission peaks are
observed even for thin films [90].

Localized plasmons

Physical explanation of the existence of localized plasmons is that at certain
conditions the electrons in metal behave like plasma. For a bulk piece of
metal, plasma-like behavior occurs at ϵmetal = 0 when the longitudinal solution
of Maxwell’s equations exists and leads to the emergence of bulk plasmons,
whereas for small pieces of metals, for example small spheres, this transfers
to condition of zero denominators in the Mie scattering coefficients giving the
Fröhlich condition [91]:

Re(ϵmetal(ω)) = −2 ϵhost (1.17)
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where ϵmetal stands for the metal permittivity and ϵhost for the dielectric func-
tion of the host medium.

More than a hundred of years from the discovery of Mie, his analytic theory
for light scattering and transmission by a spherical particle is a reference point
in various fields of research. Nowadays metal nanoobjects get much attention
in photovoltaics due to high absorption at resonance [92], while closely placed
nanoparticles arranged in special manner can lead to unique features like extra-
high field enhancements and negative refraction due to magnetic resonances.

To describe the ensemble of nanoparticles, multiple scattering theories are
usually employed where single scattering event is described in the quasi-static
approximation [93]. In this approximation only the first order dipole mode is
considered in Mie theory decomposition. When separate particles are small
and their dilution is of low concentration the quasi-static approximation works
perfectly, but for higher concentrations this approximation fails. The reason
for this is unusual response of nanoobjects under illumination by evanescent
waves, large amount of which is present in the near field of a resonating sphere
for example. It was shown that evanescent radiation incident upon a simple
sphere can efficiently excite higher order electric and magnetic multipoles [94]
which leads to their scattering cross section many times enhanced compared
to plane wave excitation and thus higher-order terms in Mie decomposition
cannot be neglected. In a densely packed ensemble of particles they shine on
each other not only by transversal scattered waves but also by evanescent waves,
so analytical multiple-scattering theories cannot describe correctly all spectral
features of the sample. Thus direct numerical methods to solve Maxwell’s
equations need to be employed in the case of aggregates of spherical resonators,
although rigorous analytic solution is available for each single sphere.

Surface plasmon polaritons

We consider localized plasmons which are resonant excitations of metal nano-
objects, i.e. standing wave pattern is formed inside plasmon nanoparticles and
these standing waves do not transfer energy. At metal-dielectric interface it is
possible to excite surface plasmon polariton (SPP) that can propagate along the
plane separating the two media. In the direction perpendicular to the surface,
SPP has exponentially decaying tails. Dispersion relation for SPP propagating
at the interface between two half-spaces is:

kspp = k0

√
ϵ1ϵ2

ϵ1 + ϵ2
(1.18)

Here kspp is the propagation constant of SPP, k0 is the wave vector in vacuum,
ϵ1 and ϵ2 are permittivities of metal and dielectric. Thus in contrast to localized
plasmons, propagating SPPs can exist in wide range of frequencies. SPPs are
launched by evanescent coupling through a waveguide or a prism, or another
option is to introduce a corrugation to the flat surface, see Fig. 1.2 displaying
strong diffraction of light near sharp metallic edges. It was suggested that



12 Introduction

0

500

1000

1500

2000
−400 −300 −200 −100 0 100 200 300 400

S/|S|
y,

 n
m

x, nm

Figure 1.4: Distribution of the Poynting vector S directions for the same struc-
ture and incident wavelength as in Fig. 1.2b. Only lower semi-space with light
outgoing from a tiny 10-nm-wide aperture in the gold slab that is marked with
blue is shown.

periodic perforation of metal surface or film with period P can excite SPPs
due to momentum matching [95]:

kspp = k|| ±
2πn

P
(1.19)

where kspp is the surface plasmon wave vector, k|| is the wave vector of inci-
dent wave in the plane of the grating, n is integer. A feature that distinguishes
SPP-based structures over dielectric nanostructured elements is a significant
reduction in size of channels along which a signal can propagate, and accord-
ingly the size of interconnects and other components made for plasmonic waves
is reduced essentially as well. The main drawback of propagating SPPs used as
operational signals is high loss inherent to metal, especially at telecom and op-
tical frequencies. Hybrid modes formed by coupling plasmonic with refractive-
index-guided modes in dielectrics are proposed to increase propagation length
of SPPs [96–98].

In this very common example of utilization of metals in optics — grat-
ings — semi-analytical methods of field decomposition in the plane-wave basis,
for example, are widely used. However, these methods may suffer from slow
convergence with respect to the number of terms in a series representing peri-
odic quantities on a grating of non-smooth profile, and they anyway use some
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absorbing boundary conditions similar to those used in real-space methods; of-
ten, real-space numerical simulation has to be performed to confirm the results
of these semi-analytical mode decomposition approaches [99].

Figure 1.2b shows how well the field singularities can be described if non-
uniform mesh is introduced to better resolve high-intensive fields near the metal
edges. Evanescent waves close to these hot spots in metals are very intensive
and can spread far enough in space, so the computational domain should be
extended accordingly to let these evanescent tails decay sufficiently. This is
not the only reason why metallic structures require thick air buffer: see the
energy flow behind metal grating illuminated with p-polarized light in Fig. 1.4
which is characteristic also for off-resonance condition [100, 101]. To calculate
transmission by grating correctly, at least some field vortices should fall inside
the computational domain — otherwise numerical accuracy degrades very fast.
This motivates the application of free-space squeezing for metallic structures
no matter whether the structure is on or off resonance.

By now we have discussed two examples: aggregates of metallic spheres and
gratings, where application of some analytic considerations is possible. It was
shown [99] that these semi-analytical approaches sometimes cannot catch all
the features inherent to metal-dielectric structures and some help from direct
brute force methods is required. A huge variety of plasmonic structures, in
particular those emerging within new fascinating directions in optics such as
invisibility or negative refraction, have such complicated shapes that it would
not be possible to explore them at a sufficient level at all if not the usage of
direct numerical methods.

1.3 Electromagnetics from computational per-
spective

1.3.1 Maxwell’s equations and transformation optics

The equations that are known for more than a century and still form the basis
for much of the current progress in nanophotonics are Maxwell’s equations:

∇×E = −∂tB, ∇ ·B = 0 (1.20a)

∇×H = ∂tD+ J, ∇ ·D = ρ (1.20b)

where E and B are the electric and magnetic ‘force vectors’ while D and H
are the electric and magnetic ‘flux vectors,’ ρ and J denote charge and current
densities. The richness of solutions to Maxwell’s equations owes itself to a great
variety of natural and artificial materials and structure geometries giving rise
to various forms of the constitutive relations between excitation fields E, B
and inductions D, H; in many cases they can be written as simply as

D = ϵ0E+P = ϵ0ϵE (1.21a)

B = µ0µH. (1.21b)
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Figure 1.5: Covariance of Maxwell’s equations applied to optimize devices in
optics and for creation of non-uniform meshes in computational electromagnet-
ics. (a) and (b) are after [102].

Here ϵ0 and µ0 are the electric permittivity and magnetic permeability of
vacuum, ϵ is the relative permittivity of medium considered. The intrinsic
medium polarization P is related to the electric field through the susceptibility
χ, P = ϵ0χE, and the relative permittivity is thus ϵ = 1 + χ.

A great deal of activity in optics in the last years exploits the transfor-
mation invariance of Maxwell’s equations, i.e., the property to look the same
in different coordinate systems [103]; even a specific term, transformation op-
tics [11,104,105], was coined to represent this new fascinating area of research.
When going from one coordinate frame to another linked according to a differ-
entiable law, all the transformation properties are enclosed in the permittivity,
permeability and electric and magnetic field transformation laws while the form
of Maxwell’s equations preserves unchanged. The x to x′ mapping (spanning
over all coordinates is supposed here) gives the jacobian

[J ] =
∂x′

∂x
= [J(x′)], (1.22)
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and material parameters in the primed system are:

[ϵ′] = |det J |−1[J ] [ϵ] [J ]T (1.23a)

[µ′] = |det J |−1[J ] [µ] [J ]T (1.23b)

Here we suppose that knowing the analytical dependence x = x(x′) material
properties can be redefined in primed system, for example, dielectric function
is written as ϵ → ϵ(x(x′)) = ϵ(x′). The form of transformation rules for electric
and magnetic fields is one and the same: if for simplicity the field is denoted
as F, in the primed space it will take the value

F′ = [J−1] F (1.24)

This formula means that, for example, when a new, primed system is three
times ‘stretched’ in one direction, x′

i = 3xi and hence J = J i′

i = 3, the
field components pointing along the ith direction are three times ‘stretched’
in the x′ coordinate frame. This opens a new way to manipulate fields through
a fairly simple mathematical tool. The field can be easily stretched [106],
squeezed [102, 107], screwed [102, 105] and pushed out from some place [9] at
the price of complicated artificial ϵ and µ. Starting from electromagnetic wave
in free space the desirable field distribution can be sculptured by choosing ap-
propriate curvilinear system of coordinates, permittivity and permeability of
the designed component are given by equations (1.23). These permittivity and
permeability are to be used in real space devices to deform the fields in the same
way as nonuniform system of coordinates modifies orthogonal grid in cartesian
frame.

As an example we can consider the design of a waveguide bend as shown in
Fig. 1.5a,b. Light travelling trough the waveguide from Fig. 1.5b with material
properties derived via transformation approach will not experience leakage of
radiation at the bend in contrast to waveguide with somehow otherwise chosen
ϵ and µ profiles. In fact, both sides of Fig. 1.5 correspond to Maxwell’s equa-
tions written in free space with the only difference that they are described by
two different ways with coordinate transformation method applied to transfer
from left to right. Thus transformation optics not only suggests the recipes
to shape fields but also to create absolutely lossless devices. Of course after
using approximations to simplify anisotropic ϵ and assigning µ the unity value,
unwanted scattering is added and the losses appears [8–10]. But still the device
might preserve its main functionality, besides there are some tricks to overcome
too complicated material parameters. For example, if coordinate transforma-
tion is applied in a plane and only p-polarization (with electric field vector lying
in that plane) is of interest, µ is not changed if the determinant of the jacobian
is unity [11,102].

1.3.2 Application to the finite-difference methods

The key observation for efficient numerical electromagnetics modeling is that
Maxwell’s equations have a Cartesian form with respect to arbitrary coordinate
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Figure 1.6: Sample of a two-dimensional finite-difference grid with a subgrid-
ding region introduced on the right.

system and for arbitrary medium because they do not involve metric quantities
at all, in their naturally invariant form. Figure 1.5 illustrates how the transfor-
mation invariance can be used for the design of optical components (top part)
and in computational electromagnetics (bottom part). In the case of numerics
we swap the order of operations when applying the coordinate transformation
method. It is illustrated at the bottom part, where now we go from right to
left. The invariance of Maxwell’s equations helps in several important areas in
numerical modeling:

The first is nonuniform gridding. Various approaches were proposed to
locally improve the meshing as, for example, shown in Fig. 1.6 where the dis-
cretization changes in a stepwise manner between the coarse grid region and the
subgridding region. This approach is justified for some time-domain algorithms
since the time step in the region of coarse discretization can be kept large to re-
duce computation time drastically, but the time coupling of the coarse and the
fine grids is a nontrivial problem [108–111] and noticeable artificial reflection
of electromagnetic wave propagating along the numerical grid may occur [85].
In the frequency domain, if no special care is taken of the fine-to-coarse grid
interface, the convergence rate of a numerical scheme deteriorates on the grid
with jumps in sampling and thus, abrupt variation of discretization should be
avoided in favor of gradually varying mesh density.

When building such physically nonuniform grid of varying density to bet-
ter resolve fine features of the structure, the form-invariance of the governing
differential equations allows to work with one and the same, ‘logically Carte-
sian’ code for equidistant orthogonal meshes while hiding the complexity of
grid geometry into the covariantly transformed permittivity and permeability
tensors (1.23). If smooth analytic function is used to create non-equidistant
mesh, it assures the impedance matched transformation leading to the absence
of reflection in the region of transition to the finer mesh.

Another important application of curvilinear grids (and hence the form-
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Figure 1.7: An example of employment of transformation optics approach to
introduce stretched mesh and for squeezing of free space.

invariant formulation of Maxwell’s equations) is modeling material objects with
curved surfaces, when it is reasonable to transfer from Cartesian frame to the
curvilinear system of coordinates such that the coordinate surfaces follow actual
material boundaries of the structure. Thus, sinusoidally patterned gratings and
bend waveguides like in Fig. 1.5b can be ‘straightened’ in appropriate coordi-
nates what in turn helps to avoid stair-casing in describing curved boundaries.

Third, by transferring to curvilinear system of coordinates some objects
can be described with lesser degrees of freedom, i.e. the dimensionality of the
problem can be reduced [112]. In these non-Cartesian systems of coordinates,
e.g. spherical or cylindrical or helical, there is no need to use new expres-
sions for the curl and div operators modified because of transfer to curvilinear
coordinates, but instead the invariant form of Maxwell’s equations with mate-
rial parameters evaluated via (1.23). This makes it possible to use standard
rectangular-grid-based 2D numerical codes for VECSELs, discs and spirals.

The fourth application is use of various nonlinear mapping functions be-
tween real and computational spaces in order to map the infinite open space
onto the finite computational domain. This helps to mitigate the problem
of open boundaries inherent to most problems in photonics. The perfectly
matched layers (PMLs) were originally designed to absorb only oscillating elec-
tromagnetic waves while evanescent waves can be even intensified inside PMLs.
Constructing the PMLs far from the resonating object and then squeezing
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the PML-to-resonator distance [113] prevents perturbing the solution by the
evanescent field tails originating from hot spots in nanostructured objects, for
example, near sharp metal edges.

Thus we see that computational methods can benefit a lot from using the in-
variance of Maxwell’s equations, and below in this thesis we use this invariance
for free-space squeezing and nonuniform mesh construction.

1.4 The aim and outline of this thesis

The importance of efficient simulation tools for the design of nanophotonic de-
vices is reflected by the rapid growth of the market of commercial software prod-
ucts for photonics in the last decade; moreover, widespread became the prac-
tice of using commercial black-box software for photonics simulations published
even in the most highly ranked journals like Nature. Extensive benchmarks for
both commercial and in-house developed software for numerical photonics and
plasmonics are being published [115–117]; interestingly, the finite-difference
frequency-domain (FDFD) method is not even listed in such benchmark com-

Figure 1.8: Table highlighting the performance of time- and frequency-domain
methods in different problems in nanophotonics, from [114].
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parisons.
In this thesis we simulate fairly complicated photonic and plasmonic struc-

tures for which we find the FDFD method the best choice. In particular, we
consider the eigenmodes in PhC membrane based and nanobeam resonators,
and light propagation through subwavelength metallic gratings whose period
to slit width ratio reaches 104 and more. From Fig. 1.8 with a table comparing
the time- versus frequency-domain methods published in a recent review [114]
it is clear that such structures are advantageous to be simulated in the fre-
quency domain. The structured FDFD method is chosen as the simplest and,
potentially, most efficient one.

Maxwell’s equations in their discretized form can be viewed not as some
approximated version of continuous formulation but as a self-consistent and
rigorous way to describe optics in condensed matter. Indeed, Maxwell’s equa-
tions written for small volume (termed computational cell in the context of the
finite-difference modeling) can be interpreted as the integral equations [118];
moreover, the placement of components on the staggered Yee grid corresponds
to the geometric nature of oscillating electromagnetic waves. Thus the main
origin of numerical errors in direct methods lies not in the discretization of the
structure but rather in other approximations such as the substitution of open
space with the PMLs and treatment of object boundaries with staircasing or
dielectric index averaging approximations.

After sketching the FDTD formulation and its use in finding the eigenfre-
quency and Q-factor of a photonic-crystal membrane resonator in Chapter 2,
we formulate the FDFD method in its two versions, one for the eigenmode
analysis and another one for monochromatic wave propagation modeling, in
Chapter 3. Two examples of application of the FDFD method to the eigen-
mode analysis in photonic-crystal resonators follow in Chapter 4: a photonic-
crystal membrane based cavity and an elongated nanobeam PhC cavity. Then
in Chapter 5 the coupling of two and more cavities is analyzed; and in Chapter 6
the FDFD method is applied to modeling light propagation and enhancement
in extremely-sub-wavelength metal gratings in a broad frequency range.

As regards numerical aspects of modeling, our emphasis is on the choice of
reasonable computational domain size and buffer layer width, use of squeeze
transform layers in combination with PMLs to mimic infinite open space, and
construction of grids of varying density to better resolve small features in the
nanostructured materials. These issues, especially the construction (and place-
ment) of absorbing boundaries, are not yet completely settled in the electro-
magnetic modeling community, which is indicated, for example, by the absence
of the option to use absorbing boundaries in the eigenmode solver modules
of such popular commercial software products as CST Microwave Studio or
Comsol Multiphysics.





Chapter 2

Finite-difference
time-domain method for
resonators

Possessing all-embracing universality, time-domain analysis has firmly entered
computational electromagnetics and rightfully holds the first place by quantity
of diverse modeling tasks that they can solve. Commercialized finite-difference
time-domain (FDTD) and transient finite-element method are everyday tools
in hands of experimentalists demanding multiple routine calculations of device
operation under fabrication constraints and imperfections. So there is no sur-
prise that before passing to the FDFD algorithm we start by getting acquainted
with its time-domain counterpart — the FDTD method — that already became
a standard tool in nanophotonics.

One of the main advantages of transient algorithms is the possibility to
simulate large structures (Fig. 1.8). Moreover, parallelization of the FDTD
simulations has already become a well-established procedure for modeling of
gigantic numerical problems. As for frequency-domain methods, parallelization
is also possible here, however, it is not that well established and thus simulation
of large models is not a strong point here. As another essential advantage we
can mention obtaining a spectral response from the structure in the whole range
of frequencies during a single run with excitation by a broadband pulse.

In addition, the FDTD algorithm has many extensions starting from in-
clusion of nonlinearity and to modeling coupled Maxwell-Bloch equations. To
describe an ensemble of active quantum dots or nonlinear medium in nanos-
tructured environment an additional polarization term for the active material is
usually included into the FDTD-discretized Maxwell-Ampere equation to take
into account multiple reemission and reabsorption of light by quantum dots
or nonlinear enhancement. Practically, similar polarization term is introduced
also to describe metal dispersion in time-domain approaches.
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Figure 2.1: (a) Unit Yee cell with spatial positions of electric and magnetic field
components. (b) Location of the perfect electric or magnetic conductor walls
(PEC and PMC, respectlively) at the outer boundaries of the computational
domain.

2.1 Formulation of the FDTD method

2.1.1 Spatial discretization

The FDTD algorithm is based on discretization of Maxwell’s curl equations
in real space and tracing of the source field distribution in time [119]. We
discretize the object according to the Yee mesh [120], Fig. 2.1a, and construct
three different permittivity and three permeability arrays for each field com-
ponent as their meshes are shifted spatially. Then we introduce six arrays for
electromagnetic field components and use the initial values in these arrays and
some given source field distribution (in space and time) to calculate the field
evolution as governed by Maxwell’s equations.

The source-free Maxwell’s equations can be written as

∇f ×E = −µ∂tH, ∇f · µH = 0 (2.1a)

∇b ×H = ϵ ∂tE, ∇b · ϵE = 0 (2.1b)

where subscripts f and b near the operators are introduced to point out their
different action on a staggered Yee mesh [120], Fig.2.1a, which can be illustrated
for differential of some vector component A along the x-direction:

∆fA = A(x+∆x)−A(x) (2.2a)

∆bA = A(x)−A(x−∆x) (2.2b)

The subscript f means that the curl and div operators are constructed on the
basis of the forward finite difference scheme, the subscript b implies usage of
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the backward finite differences. Each of forward or backward differences 2.2
by themselves imply first-order accurate scheme if their result is assigned to
one of the side points. However, on the staggered Yee mesh these differentials
∆f,bA are used to define dual-mesh field components positioned in the points in
between the given mesh nodes. Thus in fact our scheme is a central-difference
scheme giving second-order convergence.

Let’s define now the differential operators if our vector fields are represented
by three-dimensional arrays on Yee mesh. For example, 3D forward F...n... and
backward B...n... derivatives acting along nth direction (corresponding to x, y
or z axis) with a step ∆hn on some field component A:

(FnA)...in... =
1

∆hn
(A...in+1... −A...in...) (2.3a)

(BnA)...in... =
1

∆hn
(A...in... −A...in−1...) (2.3b)

This operators are analogous to the MatLab based function diff. With this
definition of difference matrices we can easily obtain the boundary condition
on the borders of the computational domain as depicted in Fig. 2.1b.

As on staggered Yee grid the divergence equations in Eq. (2.1) are automat-
ically fulfilled [119] we are now interested only in constructing of curl operators
with use of already defined differential operators. For example, (∇f ×E)x com-
ponent can be written as FyEz−FzEy what proportional to the time derivative
of magnetic field Hx.

2.1.2 Time stepping

Having defined space derivatives we can pass to writing update equations for
field evolution in time (described by the superscript j):
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(ByH
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If a source is defined at some place in the computational domain, prop-
agation of light from this source in time and space can be obtained starting
from Eq. (2.4a–c) by inserting some initial values of fields corresponding to this
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source. Then electric field at the next time step might be evaluated straight-
forwardly and if inserted to Eq. (2.4d–f) magnetic field components in the
next time step can also be found. This time staggered calculation of electric
and magnetic field components is often called leapfrogging. Proceeding the
time cycle gives evolution of fields in time and space which was searched for.
It could be shown that the necessary condition for the stability of the time-
stepping algorithm is the Courant criterium relating the Yee cell size and the
time step [119]:

∆t <
1

c
√
1/∆x2 + 1/∆y2 + 1/∆z2

(2.5)

2.2 Q-factor evaluation with the FDTD method

2.2.1 Excitation of single resonance in the time domain

To find all the modes for the given cavity when no preliminary information
about resonance frequencies exists, a broad-band excitation pulse is launched
in the system. In the case of multiple resonance excitation we see characteristic
modulation of the electromagnetic field with time caused by superposition of
the modes oscillation. For a 2D holey PhC slab with the cavity formed by
omitting one hole (Fig. 2.2a) the evolution of the electric field is shown in
Fig. 2.2b. The shape of field envelope is evidently due to superposition of
several resonances giving the characteristic beating.

In Fig. 2.3 two fast Fourier transforms (FFT) are compared: the one in-
cluding excitation pulse, the other one made from the field decay after turning
off the source. From the first spectrum we are not able to predict the number
of resonances and their wavelengths, while from Fig. 2.3b we can define two
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Figure 2.2: (a) One-missing-hole 2D-PhC microcavity. Dipole source polarized
in perpendicular z direction is in the middle, two detectors shown as arrows.
Lattice constant a = 254nm, air holes radius r = 0.3a, n = 3.6. Square grid
discretization is 10 nm. (b) Field evolution in the case of broad-band excitation
recorded on the right vertical detector in Fig. 2.2a.
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Figure 2.3: (a) Wavelength dependence of the field on two detectors, when FFT
was made for the whole time (excitation + decay). (b) Wavelength dependence
of the field on two detectors, when FFT was made only for field decay (after
turning off the source). (c) Snapshot of Ez (left) andHx (right) field component
in a one-missing-hole membrane from Fig. 2.2a.

resonance wavelengths corresponding to two cavity modes. If excitation pulse
is included into FFT then normalization of obtained cavity spectrum to FFT
of the source should be made to extract the Q-factor and resonance wavelength
of the mode correctly.

The duration, polarization and position of the source can play an important
role in the excitation of a single resonance. To excite only one mode at λ =
1.28µm, we need to tune the source bandwidth so narrow as to do not overlap
with the second resonance at λ = 1.5µm. With use of modulation theorem [121]
we can approximately estimate the position of resonances if excitation signal
is modulated. In Fig. 2.3c the distribution of the fields was detected at a
some moment in time after turning off the source. Besides appropriate choice
of excitation pulse, much care should be taken to assure the computational
domain is large enough. Our simulations of low-Q photonic crystal membrane
cavities (Q around 100–200) using the FDTD-based Crystal Wave solver [85]
gave stable results when the air cladding above the resonator was of about one
wavelength wide.

The capabilities of the FDTD method to calculate high Q-factors are re-
flected in its wide usage for designing photonic crystal based cavities [53–56,
122, 123]. In these works featuring resonators with the highest reported Q-
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factors, the Q extraction methods are based on the simplest approaches: the
lorentzian fit after the FFT, tracing of electromagnetic field components ring
down, sometimes together with direct definition of Q through Eq. 1.6. Know-
ing the resonance frequency ω0, the Q-factor can be defined with just one
electromagnetic field oscillation period being traced. However, this ultra-fast
procedure is usually accompanied by other methods of extraction which re-
quire vigourous postprocessing additionally to long execution time [56,124,125].
Thus in a proposed huge variety of cavity designs based on structural modifica-
tions in photonic crystals many alternative state-of-the art methods to calculate
Q [55, 126, 126–129] are left unexploited at all. The possible reason for that
is a lack of comparison of different extraction methods with almost no cross-
references between articles developing alternative techniques what complicates
the choice of most suitable approach for the user.

2.2.2 Sphere benchmark: field components or energy den-
sity?

In spherical coordinates, it is possible to investigate free oscillations of the
electromagnetic field in the sphere analytically. The quality factor is extracted
from the imaginary part of resonance frequency. It depends on the dimension-
less parameter ω0a/c (see §9.22 in [130]), where ω0 is the angular resonance
frequency, a the radius of the sphere and c the vacuum speed of light. Consider
the dipole mode TE101 for the sphere of refractive index nsphere = 6 embedded
in air. Its analytical Q-factor is Q = 43.17 at ω0a/c = 0.512 [131]. The reso-
nant wavelength for the radius a = 0.16 µm is λ = 1.963 µm; it is used as a

(a) (b)

Figure 2.4: (a) Positions of a current source (close to the center) and detectors
(d1–d5) in the nanosphere of radius a = 0.16µm and refractive index n = 6 in
air. Dimensions of the computational domain are (0.8µm)3, the grid resolution
is 5 nm, PMLs width is 8 grid points. (b) Snapshot of electric field in the
dielectric nanosphere after turning off the source.
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Figure 2.5: Analysis of field evolution in the case of the dipole mode excitation
in the sphere from Fig. 2.4a. (a) Evolution of the Ex field component with
positive and negative envelopes. (b) Oscillating and period-averaged energy
densities.
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central wavelength of a narrow-band signal to excite the sphere. The source is
positioned in close proximity to the center of the sphere and five point detec-
tors are located at different points inside and outside the sphere as shown in
Fig. 2.4a. We made the FDTD calculations with use of the commercial package
Crystal Wave [85]. By plotting the Ex-field distribution (Fig. 2.4b we see that
it is indeed a dipole mode.

According to Eq. (1.1) the Q-factor of a mode characterizes the cavity when
there is no any influence from a source. Therefore, excitation pulses of finite
duration are used. The field decay is analyzed to findQ and ω0 after the pulse is
switched off [132]. Q and ω0 are obtained from the evolution of electromagnetic
field components: a lorentzian fit to the squared absolute value of the Fourier
transformation A(ω) = FT [A(t)], and an exponential fit to the envelope of A(t)
formed by the minima or maxima points of an oscillating electromagnetic field,
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Figure 2.6: Top six graphs for each of the electromagnetic field components
illustrate a Q-factor error given by the three methods: black bars– the expo-
nential fit to the envelope of the field formed by maxima points in the time
domain, grey–the same but with the minima points, white–the lorentzian fit in
the frequency domain. Bottom left: wavelength error from the lorentzian fit in
the frequency domain to all six field components. Bottom right: Q-factor error
from the exponential fit to the period-averaged energy density U and Poynting
vector P . Numbers on horizontal axis in all figures correspond to five different
detectors.
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Fig. 2.5a. Here A(t) designates any of the field components, which in the FDTD
calculations are normally kept as real values. The oscillating energy density
w evaluated directly through computed field components is a time-oscillating
function. In order to get an exponential decay and to define the Q-factor it is
period-averaged as shown in Fig. 2.5b.

Comparing time periods of signals straightforwardly from Fig. 2.5a and
Fig. 2.5b, we can find that evolution of energy density is described by the
FDTD algorithm with better maintenance of periodicity (counted directly in
time steps) than for a single electromagnetic component: if for energy density
inaccuracy in period comprises no more than one time step, for some field
components it might reach several time steps. Thus energy density calculation
balance simulation errors given by all field components in such a natural way
that they are reduced compared to a simple averaging procedure.

The diagram in Fig. 2.6 shows relative Q-factor and resonance wavelength
errors given by different methods. While fitting in the time domain as shown
in Fig. 2.5, the angular frequency ω0 was taken equal to its analytical value,
so no additional error is introduced by inaccuracy in ω0. Nevertheless, single
electric or magnetic field components give unstable Q-factor with unexpectedly
high relative errors in some cases, while the energy density fitting has an error
below 0.8%. So we conclude that the most accurate and robust way to define
quality factor is via the exponential fit to the time-averaged energy density.
In this case there is no need to collect information through the whole domain
and it is enough to use only one point detector, placed arbitrarily inside or
outside the sphere. In the case of multiple resonances, the period-averaged
energy density will not be a single-exponential function anymore and we are
forced to return to the analysis of single field components. This should be done
with care; averaging of calculated results for Q-factor over the whole domain
and for all field components is recommended.

2.3 Transfer to the frequency domain: motiva-
tion

Among numerical tools to determine cavity mode characteristics, one of the
most widely used is the finite-difference time-domain (FDTD) method. In
this chapter we compared the most robust extraction methods for analytical
example of a sphere. It was shown that the obtained Q-factor values differ
significantly from one extraction method to another and the electromagnetic
field component being analyzed. The reliability of the single field component
extraction method is put under doubt, and energy density analysis is found
to be clearly advantageous. Yet many extraction methods rely on the analysis
of single field components and some authors report severe problems with the
FDTD technique for finding resonances with Q higher than 103 [133]. Going
a bit ahead in Table 2.1 we list FDTD computational domain and cycle pa-
rameters together with some extraction methods, and compare them with the
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Time domain Frequency domain

Post-processing ring-down of fields;
Harminv; Lorentzian
fit; energy loss per
cycle; Pade approx-
imation; Prony’s
algorithm; pencil-of-
function method

not needed

Adjacent eigenmodes mixed naturally separated
Air buffer layers thick moderate
Memory usage moderate high
Typical run time day hour

Table 2.1: Table comparing extraction methods, computational and user ef-
forts for defining resonator characteristics with the time- and frequency-domain
finite-difference algorithms.

features of the frequency-domain simulation tools. We see strong motivation to
develop the frequency-domain counterparts of FDTD approaches what is done
in the next chapters of the thesis. For the user of the numerical method a great
advantage of the frequency domain technique over the time domain analogues
is elimination of postprocessing steps in some tasks, e.g., no need to go through
the analysis of time-domain signals to extract the Q-factor of a cavity mode,
besides in many tasks the run time is greatly reduced as well. And if we are
interested in field distribution in the structure illuminated by the plane wave of
certain frequency, frequency-domain method is also the tool of natural choice.



Chapter 3

Finite-difference
frequency-domain method

As an alternative to the time-domain modeling, we employ the 3D finite-
difference frequency-domain (FDFD) method with the perfectly matched lay-
ers (PMLs) and free space squeezing. The algorithm can be formulated with
ease for solution of a multitude of problems, for example, those involving ar-
bitrarily dispersive materials and periodic media or modeling transmitted and
reflected electromagnetic fields in the presence of monochromatic light sources.
The quality factor and resonance frequency in the frequency domain appear
straightforwardly, require no post-processing and do not depend on a choice of
a specific fitting procedure. A typical FDFD run takes minutes while an FDTD
simulation runs up to several hours for a comparable system and hardware.
The FDFD technique applied to a particular system manipulates entire arrays
representing electromagnetic field components and material permittivity and
permeability on a structured grid, thus it is not so cumbersome and dependent
on the mesh generation subroutines as the finite-element method [134].

From the early 1980’s, three-dimensional finite-difference and finite-integral
techniques in the frequency domain were applied to modeling of closed cavities
and metal structures [135–140]. Today 3D frequency-domain method is used
widely in microwave cavity analysis [114, 141, 142] and, to a lesser extent, in
photonic bandgap computations where Bloch-periodic boundary eigenproblem
is solved [143, 144]. Analysis of open photonic resonators with the 3D FDFD
method was problematic, in contrast to photonic band calculations, for two
main reasons: first, much larger, i.e., multiple-lattice-constant pieces of PhC
matrices must be considered; second, nontrivial absorbing boundaries like the
perfectly matched layers placed at sufficient distance from the modeled res-
onator are to be used instead of simple Bloch-periodic walls. These issues are
specifically addressed when formulating and using the FDFD method in the
current and subsequent chapters.
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3.1 Two variations

3.1.1 Monochromatic wave transmission analysis

Maxwell’s curl equations (1.20a) for the fields E, H can be written in the
frequency domain, after substituting ∂t = −iω, as

∇×E = iωµH, (3.1a)

∇×H = −iωϵE+ J, (3.1b)

where J is the amplitude of electric current playing the role of a source for
harmonic (monohromatic) light of frequency ω. These equations can be viewed
as a linear system which, at a given excitation J and frequency parameter ω,
can be solved to obtain the ‘joint’ vector (E,H)T :[

∇× −iωµ
iωϵ ∇×

] [
E
H

]
=

[
0
J

]
. (3.2)

Yet it would be better to reduce this system by combining the two equations
from (3.1a) to arrive at(

µ−1∇× ϵ−1∇×−ω2I
)
H = S. (3.3)

with the source term S = µ−1∇×ϵ−1J on the right hand side. To excite a plane
wave, we can specify the amplitude of excitation current J along some plane in
the computational domain, with Bloch-periodic boundaries in the directions of
that plane.

For better numerical performance of some linear algebra algorithms it would
be advantageous to have the system matrix symmetrized; this can be actually
done easily by scaling the coordinates so that H̃ =

√
µH, S̃ =

√
µS, and(√

µ−1 ∇× ϵ−1∇×
√
µ−1 − ω2I

)
H̃ = S̃. (3.4)

To solve (3.4) directly, one can factorize the equation matrix

M =
√
µ−1 ∇× ϵ−1∇×

√
µ−1 − ω2I. (3.5)

After (3.4) being solved for the normalized magnetic field H̃, one can easily
restore all the electromagnetic fields and other quantities, for example, the
Poynting vector in order to calculate reflection and transmission energy coeffi-
cients.

3.1.2 Eigenmode analysis

Omitting the current source term in Maxwell’s curl equations (3.1a) we have

∇×E = iωµH (3.6a)

∇×H = −iωϵE. (3.6b)
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Again, already at this stage this Maxwell’s system can be seen as an eigenprob-
lem in ω and the ‘joint’ field (E,H)T :[

0 1
−iϵ∇×

1
iµ∇× 0

] [
E
H

]
= ω

[
E
H

]
. (3.7)

This is not a good setting for further numerical solving however, because al-
though the eigenmatrix in (3.7) is certainly very sparse, its dimensionality can
be halved by combining (3.6a) and (3.6b) into the system of second-order dif-
ferential equations, for example

µ−1∇× ϵ−1∇×H = ω2H. (3.8)

This can be further symmetrized upon the substitution H̃ ≡ √
µH:√

µ−1 ∇× ϵ−1∇×
√
µ−1 H̃ = ω2H̃. (3.9)

Although the eigenmatrix in (3.9) differs from M (3.5), if we resort to the
shift-and-invert method to solve the eigenproblem (3.9) iteratively for only a
few frequencies around some target frequency ωtgt then we need, again, the
recipe to calculate M\H repeatedly during the iteration process. The way
which is robust and fast (but memory consuming) is to factorize M = LU —
that is, to do exactly the same step which we can employ for solving (3.4) in
the monochromatic wave propagation modeling.

Due to the presence of the PMLs the eigenmatrix Θ =
√

µ−1 ∇× ϵ−1∇×√
µ−1 in (3.9) is complex nonhermitian even if the constitutive materials are

non-absorptive. Such nonhermitian problem leads to complex eigenfrequencies
ω = ω′ + iω′′ with their real parts giving the resonance frequencies and the
imaginary parts directly connected to the Q-factors:

ω0 = ω′, Q =
ω′

2ω′′ . (3.10)

For a sufficiently good resonator we always have ω′ ≫ ω′′, so that in numerical
modeling, comparable absolute errors in ω′ and ω′′, δω′ ≈ δω′′, lead to much
higher relative errors in the Q-factor values: δω′/ω′ ≪ δω′′/ω′′. This is exactly
what we will see in the numeric examples below. Furthermore, the Q-factor
is more sensitive to the PML parameters (their placement, absorption profile,
etc.) as it arises entirely due to the introduction of artificial imaginary parts
in ϵ and µ within the PMLs, while for the eigenwavelength the PMLs can be
seen as just a perturbation.

Additional complication arises through the frequency dependence of mate-
rial tensors ϵ and/or µ and hence the eigenmatrix Θ. When resonator contains
metal components or any other materials whose dispersion should accurately
be taken into account, one can start with some guess ω0 for the eigenfrequency
and attempt repetitive solving of the linearized eigenproblem with Θ = Θ(ω0)
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for the eigenfrequency ω1, then with Θ = Θ(ω1) for ω2 etc., until a convergence
criterion |ωi − ωi−1| < ∆ω is met. But, unlike material dispersion, the PML
dispersion is a mathematical artifact inessential to the user of a numerical tool
and, due to certain robustness of PML performance with respect to the val-
ues of PML conductivity, the PML dispersion can be ignored in the frequency
domain by putting Θ = Θ(ω0) in the eigenproblem. If this ω0 used to define
the PML maximum conductivity is not too far from the exact eigenfrequency,
one can expect that an error introduced by non-optimal PML conductivity is
negligible.

3.2 Discretization matters

3.2.1 Discretization of computational domain interior

In the discretized form Eq. (3.9) reads

ω2

 H̃x

H̃y

H̃z

 =
√

µ−1

 0 −Fz Fy

Fz 0 −Fx

−Fy Fx 0

 ϵ−1

×

 0 −Bz By

Bz 0 −Bx

−By Bx 0

√
µ−1

 H̃x

H̃y

H̃z


(3.11)

where H̃x,y,z are column-vectors of length ntot each, ntot = nxnynz is the
total number of grid nodes in the domain. It is assumed that µ is represented
by a diagonal matrix (which is not always true for ϵ upon its polarization-
sensitive averaging at material boundaries, see Ref. [145]) so that µ−1 can
be split in its square roots trivially in order to get symmetrized eigenmatrix
Θ =

√
µ−1 ∇× ϵ−1∇×

√
µ−1. We define 1D forward difference matrix fnx of

size nx × nx acting along x on the electric field component normal to x, for
example Ey:

fnx


E1

y
...

Enx−1
y

Enx
y

 =
1

∆x


−1 1

. . .
. . .

−1 1
−1




E1
y
...

Enx−1
y

Enx
y

 (3.12)

with ∆x being the grid step (which is constant in computational space but may
vary in physical coordinates). The matrices Fx,y,z of the size ntot × ntot are:

Fx = Inz ⊗ Iny ⊗ fnx ,

Fy = Inz ⊗ fny ⊗ Inx ,

Fz = fnz ⊗ Iny ⊗ Inx ,

(3.13)
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where Inj is the unit diagonal matrix of the size nj × nj , ⊗ is the Kronecker
product. Backward-difference matrices Bx,y,z are equal to the negative Fx,y,z

transposed. Thus, the final size of the eigenvalue matrix Θ is 3ntot×3ntot. The
combination of forward and backward differentials acting on the Yee-staggered
electric and magnetic fields allows second-order-accurate discretization of (3.9),
at least locally. Numerical accuracy of the FDFD solution for various Cartesian
discretization meshes was analyzed by Smith [146,147]; in particular, different
offsets in location of field components within the primary cell were discussed
with conclusion that the most accurate is the classical Yee staggering [120]. Be-
sides, Smith showed that the deviation of numerically determined wavenumbers
from analytic ones is small only far below the Nuiquist wavenumbers. That is,
the roughest sampling should be at least λ/10 to get reliable simulation results.

The chosen arrangement of electric and magnetic field components assumes
placing of the perfect magnetic conductor (PMC) boundary at the beginning
and the perfect electric conductor (PEC) boundary at the end of each of the
domain extensions, as shown in Fig. 3.1. This is very convenient in modeling
open symmetric systems: by centering such system in an appropriate corner of
computational domain, we cut the system by a combination of the PMC and
PEC planes according to the expected mode symmetry while covering three
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Figure 3.1: xy-cut of the Yee mesh with locations of the Ey nodes shown
relative to the computational domain boundaries (depicted with bold black
lines). The meshes for other components are obtained through linear shifts by
half cell steps along the different coordinate axes.
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remaining domain walls with absorbing boundary layers.
Figure 3.1 is a guide for understanding how the field component grids are

located inside the computational domain with respect to each other and the
domain boundaries. We see that the gray frame representing the starting
and ending planes of the nonzero Ey components grid has dimensions that
do not coincide with the real domain size but are smaller. Shifts of this gray
frame with Ey pixels by half or whole grid step size along different axes give
meshes for all other field components with the same total number of nodes in
the result. Note that Maxwell’s equations are local, i.e. they connect only
the neighboring electric and magnetic field components; hence to reduce the
bandwidth of the eigenmatrix it can be defined such that the field compo-
nents are arranged as [Ex111 , Ey111 , Ez111 , Ex211 , Ey211 , Ez211 , . . . ]

T instead of
[Ex111 , Ex211 , . . . , Ey111Ey211 , . . . , Ez111 , Ez211 , . . . ]

T . The former case leads to a
significant decrease of the matrix bandwidth and, hence, to much lesser memory
requirements when performing LU factorization.

In Appendix B we compare the FDFD and FEM efficiencies for solution
of Helmholtz equation for rectangular 2D PEC cavity. The sampling and size
of the cavity were kept the same for both methods. In general, the FDFD
technique has performance comparable with the FEM method what makes
much simpler FDFD structured formulation perspective. Of course, this is just
an initial estimation and detailed comparison is needed for more complicated
geometries and boundary settings.

Non-equidistant mesh

Non-equidistant grid can be introduced if transformation function f(xcomp)
from computational xcomp to physical xphys coordinates is known:

xphys = f(xcomp) (3.14)

Discretization of the domain is first done in computational coordinates to
obtain strictly equidistant mesh and then physical mesh nodes are calculated.
Physical mesh is defined in any orthogonal system of coordinates, i.e. carte-
sian, spherical, cylindrical, etc. An example of algorithm to incorporate non-
equidistant physical grid within the logically cartesian code may look like:

1. Find domain size in computational coordinates, xend
comp, by solving Eq. 3.14

for xcomp: x
end
comp = f−1(xend

phys)

2. Discretize the domain in computational coordinates with equidistant grid
and find the corresponding physical mesh node coordinates through Eq. 3.14

3. In physical non-equidistant orthogonal coordinates do the permittivity
averaging at material boundaries

4. Using the jacobian [J ] =
∂xcomp

∂xphys
= 1

f ′(xcomp)
and Eq. 1.23 (with substitu-

tion x′ → xcomp, x → xphys) compute ϵcomp and µcomp
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Figure 3.2: Execution time of three major FDFD algorithm blocks: (i) genera-
tion of ϵ and µ arrays representing material distribution within the domain and,
if necessary, PMLs and STLs; (ii) assembling sparse eigenmatrix to be solved;
(iii) solving the eigenmatrix with Matlab’s eigs function. Simulations were per-
formed on a 16 Gb station for the dipole mode in the spherical resonator from
Section 2.2.2.

5. After the FDFD run, physical field components Fphys are found as Fphys =
[J ]Fcomp

Notice that f(xcomp) is usually a nonlinear function and deriving explicit
analytic expression for the inverse, f−1(xphys) = xcomp, is often impossible.
Thus in the first stage listed above, to find xphys from the given xcomp, tran-
scendental Eq. 3.14 is typically solved. This might be computationally and time
demanding and it is preferable to do it only for a few nodes, not the whole mesh.
This is also the reason why we start by specifying analytic form of f(xcomp)
but not f−1(xphys) because in the latter case transcendental equation should
be solved for all mesh nodes to calculate physical coordinates.

Time consumption

Time consumption given by discretization and simulation of a square domain on
a 16Gb machine is shown in Fig. 3.2 on the example of the dipole mode in the
spherical resonator (exact parameters can be found in Section 2.2.2). Generat-
ing permittivity and permeability arrays and construction of a total eigenvalue
matrix normally takes seconds or minutes at most. The eigenmatrix assem-
bly time is linear with ntot = nxnynz while the ϵ array generation time scales

in 3D as linear measure squared, n
2/3
tot , because its major overhead is treating
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grid cells crossed by material boundaries. We pass the assembled eigenmatrix
to the Matlab function eigs which provides an interface to the Fortran-based
ARPACK [148] library for solving sparse eigenvalue problems iteratively; how-
ever, we use direct LU factorization at the shift-and-invert step. This is much
more memory-consuming but also more reliable and universal than iterative
algebraic methods which require very careful and problem-dependent precon-
ditioning. The solution time and the maximal resolution for the given memory
limit depend strongly on the structure of the eigenmatrix. Thus, elongated
cavities give eigenmatrices with much smaller bandwidth and hence essentially
larger maximal total number of grid nodes ntot than structures requiring a cu-
bic domain. Characteristic run time in 3D modeling is about an hour or two if
you are close to the memory limit on a 16Gb machine.

3.2.2 Boundary conditions and domain reduction

Zero boundaries

The chosen arrangement of electric and magnetic field components assumes
placing of the perfect magnetic conductor (PMC) boundary at the beginning
and the perfect electric conductor (PEC) boundary at the end of each of the do-
main extensions, as shown in Fig. 3.1. Expressions for the elementary forward
and backward differentials:

f =
1

∆h


−1 1

. . .

−1 1
−1

 , b =
1

∆h


1
−1 1

. . .

−1 1

 (3.15)

show that we get zero values at the interfaces of the computational domain
for some field components. For example, the last row in the matrix fnx gives
differential of the electric field at the end point proportional to 0−Enx

y implying
the y-directed electric field component vanishes at the nx+1 point. Thus in all
Yee-mesh cells located at the nx +1 plane we have a perfect electric conductor
(PEC) boundary with nullified tangential components Ey = 0, Ez = 0. If we
are going to consider this PEC boundary as a plane of symmetry then at the x =
nx+1 plane the tangential electric and normal magnetic components have zero
values; all the rest normal electric and tangential magnetic components preserve
the same values as at the x = nx plane, being symmetrically reflected at the
PEC-boundary. For the virtual x = nx+2 plane we have negative reflection for
all antisymmetric components, and positive reflection for the symmetric ones.

From Eqs. (3.12) we see that the forward curl operator ∇e acting on the
electric field leads to absence of its tangential components at the top borders of
the domain, that is the upper and the most right planes in Fig. 2.1b, Fig. 3.1.
Corresponding PEC boundary condition planes are shown schematically in the
figure. The curl operator ∇h acting on magnetic field is composed from back-
ward differences matrices Vx,y,z. The latter nullify magnetic tangential compo-
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nents at the bottom plane interfaces passing through the origin of the domain,
i.e. most left and bottom borders, see Fig. 2.1b and Fig. 3.1. The perfect
magnetic conductor (PMC) boundary conditions are also depicted there. This
automatical fulfilment of boundary conditions without additional changes in
eigenmatrix is very convenient also for memory savings as we in general do not
take into account nodes lying at the edges of the domain.

The position of PEC and PMC planes are directly connected with our for-
mulation of finite-differences matrices and it is important that numbering of
all arrays should start from the bottom left corner and finish in the top right
corner. This rule should be followed while discretizing structure to get ϵ and µ
profiles.

Domain reduction with PEC and PMC planes
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Figure 3.3: Boundary conditions arising from reduction of the domain showed
in xy-cut. Arrows in the corners indicate points to start indexing.

Most of the optical systems used as resonators have symmetrical form, there-
fore it is computationally favorable to discretize not a whole domain but only
its part thus increasing maximum possible resolution at least twice. The alter-
nating boundary conditions surrounding the domain in Fig. 3.1 turn out to be
very convenient, when we want to exploit planes of symmetry. Indeed, we do
not need to put any additional efforts to implement PEC or PMC conditions
in the code. Just by discretization different pieces of symmetric systems while
covering remaining domain walls with absorbing boundary layers, we can con-
sider optical structures with various number of mirror-symmetrical planes and
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solve the eigenvalue problem for modes with diverse symmetries.

If an origin of coordinates coincides with the center of symmetry of a res-
onator the easiest way to make domain reduction within the same code is to
consider only positive or negative half-axe for each coordinate thus allowing
PEC or PMC planes to cut away unnecessary symmetric parts of the struc-
ture. It is illustrated in Fig. 3.3 on the example of x− y plane passing through
the center of computational domain. Thus, for objects with three perpendicu-
lar planes of symmetry we specify only one of the eight coordinate octants to
be sampled and simulated.

Periodic boundaries

Treatment of structures with periodicity is one of the essential advantageous of
the frequency domain technique. Bloch periodicity along some axis x: H(x +
P ) = eikxPH(x), where kx is the wave vector, can be incorporated into 1D
differential by substituting zeros in Eq. 3.15:

f =
1

∆h


−1 1

. . .

−1 1

eikP −1

 , b =
1

∆h


1 −e−ikP

−1 1
. . .

−1 1

 ,

(3.16)
Note, that for periodic boundaries discretization scheme in Fig. 3.1 is not suit-
able. In particular, the boundaries of computational domain should coincide
with mesh nodes for one of the field components to enforce strictly periodic
boundary conditions, i.e. half Yee cell offset is not required.

Open boundaries

Construction of efficient absorbing boundaries for modeling open photonic sys-
tems is not a trivial task. Profound research was done on optimizing the
PMLs — their thickness, conductivity profile, and frequency dispersion — for
better absorption of oscillatory waves. In many real-life simulations however,
one deals routinely with an admixture of evanescent field spreading from a pho-
tonic structure; it is this evanescent field that prevents PMLs be constructed
starting immediately from the boundaries of the structure. This is bad news
since increased computation domain size amounts to increased computer mem-
ory consumption, especially in 3D modeling. To squeeze the buffer physical
space into the interval [a0, b] (where a0 is the most extended point of the mod-
eled object and b the computational domain boundary) most efficiently, we
combine standard PMLs with free space mapping, so that the wavelength-
dependent buffer “stretch function” in x (and similarly y and z) direction is

s(xcomp, λ) = ζ(xcomp)− iσmax(λ) η(xcomp). (3.17)
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Figure 3.4: Examples of the mapping function xphys = xphys(xcomp) compared
to the identity line xphys = xcomp (plotted in bold).

Here ζ(xcomp) = ∂xcomp/∂xphys is the derivative of the chosen real space
squeezing function; the normalized maximum conductivity

σmax(λ) = R
p+ 1

4π

λ

b− a1
, (3.18)

where the PML starts from the coordinate xcomp = a1 > a0, the logarithmic
damping R by an idealized (continuous) PML can be taken equal to 20, and λ
is the wavelength; the conductivity profile function η(xcomp) is zero everywhere
except inside the PML, a1 < |xcomp| < b:

η(xcomp) =

(
|xcomp| − a1

b− a1

)p

, (3.19)

where p is the PML conductivity profile order, 2 being a common choice.
We found that the choice of a space squeezing function (see Fig. 3.4 for a
few examples) does matter in real life simulations; we stick to the xphys =
xcomp/(1− xcomp) function which allows to represent on a give computational
coordinate interval [0, xcomp] a considerably wider physical interval [0, xphys]:
for example, 0.5comp translates to 1.0phys, which means that if the PMLs cover
half of the squeezed free space buffer in computational space, the actual “phys-
ical” distance between the PMLs and the modeled object is double that. More
precisely, our mapping function is xphys = xcomp on |xcomp| < a0 while on
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a0 < |xcomp| < b

xphys =
xcomp

|xcomp|

[
a0 + (b− a0)

|xcomp| − a0
b− |xcomp|

]
(3.20)

and thus in (3.17) we put

ζ(xcomp) =
(b− |xcomp|)2

(b− a0)2
(3.21)

for a0 < |xcomp| < b and 1 otherwise. A steeper mapping function might be
not a good option however, since upon discretization with equidistant steps in
the computational domain space, the physical coordinates rapidly become too
poorly sampled to represent outcoming oscillatory waves adequately.

3.3 Modeling of a sphere

3.3.1 Adjusting parameters

In this Section 3.3.1 we will consider the same dipole mode in the sphere as
in Section 2.2.2. To find an optimal width of the PMLs as well as to estimate
the minimal admissible sphere-to-PMLs distance, we analyzed how the relative
errors in Q and λ change with variation of these parameters.

Sensitivity to the PML width

Fig. 3.5 shows the FDFD algorithm convergence in the case of a very small
sphere-to-PMLs distance of 4 grid points. Surprisingly but even at the both
PMLs and spehere-to-PMLs lengths as small as 4 grid cells we get admissible
mistake of 4% only. higher Q bigger air distance should be chosen for correct
modeling.

In Fig. 3.5 for all considered resolutions the relative error in Q is less than
0.5% starting from the PMLs of at least 5 grid points in thickness. So 5 grid
points is a threshold value, after which accuracy of Q calculation becomes
much better for the dipole mode in the sphere. The thinner PMLs do not
absorb outgoing radiation efficiently.

The insert in Fig. 3.5 represents precision of the resonance wavelength cal-
culation with the air layer as thin as 4 grid cells. Refinement of the grid greatly
minimizes the relative λ error, while the PMLs extension reveals no significant
improvement. Similar figures plotted for the air increment (from 4 to 8 voxels
also nearly does not change the dependencies depicted in Fig. 3.5: the axis
range for λ error remains the same, bounded by the maximum value of 0.3%.
An interesting conclusion arises here. For this example of a sphere, precision of
the resonance wavelength calculation depends mostly on sampling, hence the
domain size should be kept reasonably small to lessen the λ error due to good
discretization.
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Figure 3.5: The relative Q and λ error with increase of the PMLs width for
various cubic grid step size ∆ listed in the legend in nm. Simulations are done
for the dipole mode in the sphere from Section 2.2.2 with the sphere-to-PMLs
distance being 4 grid points everywhere.
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various samplings ∆ in nm. Simulations are done for the dipole mode in the
sphere from Section 2.2.2 with the PML width being 8 grid cells everywhere.
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Sensitivity to the sphere-to-PML distance

An attempt to look at the problem from another angle is to vary the sphere-to-
PML distance while keeping the PML width fixed. As an example we plot here
Fig. 3.6 where PMLs are 8-cell thick. All curves are slowly varying functions
without any threshold.

As it should be expected from previous discussion, starting from 5-cell thick
PMLs, an error for all considered resolutions is lowered, what is reflected in
Table 3.1. The second row represents the approximate λ-error spread given
by six samplings. For PMLs thicker than 5 cells, the upper bound error does
not exceed the positive value of 0.3%. In other words, for rough resolution the
relative error almost does not minimize with the air or PMLs prolongation.

An approach to the analytic Q from the opposite, negative relative errors
side, is much faster and corresponds to the smallest voxel size. This reduction
of the negative error absolute value is reflected in the second row of Table 3.1
characterizing FDFD performance for different PML sizes. Thus, overall, the Q
error diminishes due to three factors: resolution improvement and enlargement
of the number of grid cells for both the air and PMLs regions. The slopes of
curves in Figs. 3.5 and 3.6 are very similar, so the best way to plot convergence
curve is to fix domain size in physical units and improve resolution.

A virtual independence of λ error on the PML width looks pretty much as
in insert in Fig. 3.5, so all conclusions here remain the same. This behavior —
when the accuracy of the eigenwavelength evaluation depends primarily on
object sampling with no change while lengthening buffer layer — will be also
noticed in the analysis of other cavities.

Adjusting parameters: Optimal domain size

PMLs size,
grid cells 4 5 6 8 10
Q error
range, % -4.5÷0.5 -0.5÷0.3 -0.5÷0.3 -0.2÷0.3 -0.1÷0.3
cell size
giving 0
Q er., nm 30 25 25÷20 20 16

Table 3.1: From analysis of Figs. similar to Fig. 3.6 with other PML width.

The analysis of Figs. 3.5 and 3.6 shows that for the different configurations
of a computational domain, that is, the air and PMLs thicknesses and the
resolution, we get either positive or negative error in Q. This behavior agrees
with oscillating type of convergence usually obtained in Q, λ vs discretization
plots. The last row in Table 3.1 gives the cell size providing the smallest Q
error for the given PML buffers. With decrease of the grid cell size more cells
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Figure 3.7: (Color online) Electric and magnetic vector field distributions of
the TE101 (“TE1”) mode in an octant of the sphere (above), and z = 0 cuts of
the Ex and Hz components restored over the extended domain (below).

should be added to PMLs, what means keeping the domain size the same in
physical units.

We conclude that there exists an optimal minimal computational domain
size for intermediate resolutions going above which does not improve simulation
result essentially anymore. Thus there is no sense to choose too big domain,
a favor should better be given to improvement of discretization at the domain
size fixed around the optimal value.

3.3.2 Convergence studies

For the sphere of relatively high refractive index n =
√
ϵ = 6 in the air [145]

we consider two lowest TE modes, a dipole one (we label it as TE1) having the
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Figure 3.8: Relative errors in λ (above) and Q (below) for the TE1 and TE2

modes of a sphere of radius a, centered in the corner of a cubic computational
domain of size 1.5a or 2.0a, thus giving the squeezed-space buffers of 0.5a or
1.0a, in computational coordinates. Half of each buffer layer is covered with
the PML. The sphere is discretized uniformly: ∆x = ∆y = ∆z.
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eigenwavelength λ1 = 12.270 896 a and the quality factor Q1 = 43.168 603, and
the next one (TE2) with a comparable quality factor Q2 = 35.1927 but nearly
twice smaller eigenwavelength λ2 = 6.082 110 a. The boundary conditions cor-
responding to the symmetry of these modes are: one PMC and two PEC planes
dissecting the sphere. The dipole mode is sketched in Fig. 3.7: the dominant
components are Ex, Ey and Hz, which corresponds to the TE polarization of
this mode. We see that the electric field forms a toroid near the sphere border
and the magnetic field flows round this toroid having its maximum at the very
center of the resonator.

The convergence of numerically computed λ and Q to their analytic values
is shown in Fig. 3.8. All the curves demonstrate second order convergence rate
in ∆x. In Ref. [145] it is shown that polarization sensitive averaging which is
used in our calculations helps preserving second order accuracy of the FDFD
algorithm what is not always true if simple staircasing is employed instead.
As expected from ω′/ω′′ ≈ 86 or 70 for the modes considered, the relative
errors in λ are an order of magnitude lower than the relative Q-factor errors —
note the difference in the y-scales in the upper and lower plots in the figure.
From the upper plot we see that the λ1 values (black and gray curves) are
largely insensitive to varying buffer thickness; this is what we generally observe
for any modes and structures calculated with the FDFD method. At a grid
resolution of 10 voxels per a (∆x/a = 0.1) the relative λ1 error stays within
0.25% accuracy, while the λ2 error is just below 1%. The reason is that the
resolution of 10 voxels per a amounts to the impressive 120 voxels per λ1 while
it translates to around 60 voxels per λ2. With the second-order method, this
ratio of 120/60=2 would account for the four-times poorer results in both Q2

and λ2 numerical values than those we have for Q1 and λ1.
From the lower plot in Fig. 3.8 we can see the effect of the computational

domain size on the Q-factor accuracy. Note that the widths of squeezed-space
buffer layers are given in computational coordinates, which are translated to
the physical coordinates via Eq. (3.20) with a0 = a and b = 1.5a or 2a: thus,
the sphere-to-PML distance with the narrower (0.5acomp) buffer is 0.25acomp =
0.5aphys, and with the wider (1.0acomp) buffer it is 0.5acomp = 1.0aphys. The
difference between the two Q1 curves in the plot is huge: the narrower buffer is
clearly inadequate for the TE1 mode Q-factor simulations, while the 1.0aphys
sphere-to-PML distance is a good choice for the TE1 mode in a sense that
further increasing this distance gives only marginal improvement to the Q1

accuracy, and the sphere-to-PML distance in excess of 2.0aphys makes no sense.
For the TE2 mode the Q2 curve is already smooth for the sphere-to-PML
distance of 0.5aphys (for which it is plotted) yet a safer choice appears to be
1.0aphys. Thus for both modes, the safe buffer size equals λ/n. By modeling
spheres of other refractive indices we found that this λ/n rule holds quite
generally for this geometry; in the following Chapter we will see that this
rule is also helpful in modeling of an entirely different, PhC membrane based
resonator.





Chapter 4

Ultra-high-Q nanophotonic
resonators

In Chapter 2 we illustrated some complications of the FDTD method in treat-
ment of photonic resonators: its long computational time in some approaches,
the need of postprocessing to extract the Q-factor, and finally, the necessity
of single-mode excitation for the most reliable determination of the Q-factor
through the analysis of energy density. In this chapter the FDFD method is
used to handle nanophotonic cavities: a photonic-crystal (PhC) membrane-
based resonator and an elongated PhC nanobeam cavity.

Dielectric nanobeams can serve as waveguides in integrated photonic struc-
tures offering the benefits of strong light localization. A photonic crystal
nanobeam cavity created by perforating the waveguide with a row of holes
reaches a Q-factor comparable to that of a photonic crystal membrane res-
onator while being much more compact and easier in fabrication [62]. Even
for a nanobeam cavity in a low refractive index material like SiO2, fairly high
Q-factors of several thousands were measured experimentally [149]. Recently,
all-optical logical switching [150] and quantum dot laser [60] have been demon-
strated in nanobeam cavities.

The FDFD method is only at a very initial stage of employment for open
resonator simulations, but it holds big promise owing to its convenience for
optimization of the cavities in 2D and 3D; treatment of several spectrally close
resonances within single run with finding all the mode parameters: field maps,
wavelengths, Q-factors; possibility to analyze degenerate modes. In this chapter
the accent is put on the practical aspects of the FDFD modeling of open PhC
resonators. The important issues discussed are the minimal widths of the PMLs
and squeezed-space buffer layers, and the use of non-equidistant meshes. It is
shown that the method can give stable estimates of the Q-factor of membrane
nanophotonic resonator on a personal laptop within ten minutes in 3D.
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4.1 PhC membrane cavity

4.1.1 Equidistant mesh and arctanh squeezing function

Here we take a high-Q PhC membrane cavity as a simulation object. Hot spots
of fields in high-Q resonators usually imply the presence of intensive evanescent
fields. Squeeze-transform layers (STLs) are applied in all our simulations to
compress the evanescent tails spreading from a PhC cavity to the air. The
STLs, covering all the air and PMLs, together with symmetry domain reduc-
tion, help to partly mitigate the problem of numerically large eigenmatrix. An
optimal size of these buffer STLs including the PMLs is around 1a, where a
is the PhC lattice constant. At the beginning let take hyperbolic arctangent
atanh(x) for the STLs from Fig. 3.4. For this most placid stretching function
the PMLs are chosen to cover 1/3 of the whole buffer what gives smoother Q
convergence curves than, for example, 1/2-wide PMLs. The typical for a PhC
numerous interfaces between dielectric and air holes are again treated with the
polarization-sensitive dielectric tensor averaging [145].

Consider a high-Q PhC membrane cavity shown in Fig. 4.1a: in a slab of
refractive index n = 3.4, thickness h = 0.5a, with the hexagonal array of air
holes of diameter 0.7a (a is the lattice constant), a defect is formed by excluding

Figure 4.1: (a) A PhC membrane cavity. (b) The Hz field distribution of the
hexapole mode. (c) The Hz field distribution of the quadrupole mode.
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one central hole and shifting the six holes next to it by 0.1a from the center
while shrinking their diameters by 0.2a. The hexapole mode in this membrane
cavity was reported having the quality factor Q = 1.68 ·105 and the wavelength
λ = 3.1756 a [151]. Figure 4.1b represents standing wave pattern of this mode.
For actual computations the structure can be cut though its center by the PEC
wall at x = 0, and the PMC planes at y = 0 and z = 0, so that an octant of
what is shown in Fig. 4.1 has to be modeled.

From Fig. 4.2 we find that our calculations are consistent with the FDTD
results [151], the discrepancy in λ being around 1%. The Q values lie between
1 · 105 to 2 · 105, Fig. 4.3. For these plots cubic mesh for rough resolutions
(∆z > 0.7a) was used. Finer resolutions along z were attained by gradual
stretching of grid cells, so that at the smallest ∆z the grid along z becomes
three times denser than in x and y, ∆x and ∆y being approximately equal.
The convergence for both Q and λ has an oscillating character and the PMLs of
about 1/3 of these STLs demonstrate good performance. We also point out to
a crucial role of the polarization sensitive dielectric tensor averaging in correct
calculation of λ for the PhC membrane cavity.

4.1.2 Non-equidistant mesh and x/(1− x) squeezing

To resolve mode features better in the area of field hot spots while avoiding
extra-fine sampling in low-intensity region, physically nonuniform mesh can be
introduced. To retain mesh orthogonality, each direction should be resampled
independently. We use the tanh function that allows building of plateaus of
different but roughly equidistant meshing, connected through transition region
with faster variation of sampling. With the ratio s between grid steps on
the two plateaus, the width w and the center c of the transition region, the
nonuniform grid step ∆x′(x) as a function of grid coordinate x is defined via

∆x′

∆x
= s+

s− 1

2

[
tanh

(
x− c

w

)
− tanh

(
x+ c

w

)]
. (4.1)

At x = 0 we have ∆x′ ≃ ∆x, provided sufficiently narrow width w and suffi-
ciently distant c. Physically nononuniform coordinates of grid nodes are

x′ =

∫ x

0

∆x′

∆x
dx = sx+

s− 1

2
w ln

[
cosh

(
x−c
w

)
cosh

(
x+c
w

)] . (4.2)

The black curves in Fig. 4.4 are plotted for stretch ratio s = 2 in Eq. (4.1),
i.e. the mesh is nearly twice coarser at the outskirts than in the center; the
gray curves are for s = 3. Two sets of transition region parameters are consid-
ered: w = 2a, c = 5a giving relatively slow transfer to a sparser mesh (solid
curves); and w = 4a/3, c = 4a with a faster jump to a coarser gridding (dotted
curves) so that larger membrane area is covered with a rough mesh. Note that
the grid metric information can be transferred to ϵ and µ via the standard
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plot) of the hexapole mode versus computational grid step, calculated with
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ideology of generally covariant electrodynamics, hence we can still use simple
matrices (3.12),(3.13) for logically equidistant grid.

In Fig. 4.5 we see how λ and Q depend on the grid step size in the case
of physically uniform grid (∆x = ∆y = ∆z everywhere within the membrane)
compared to the grids stretched in x and y such that at the center ∆x′ and
∆y′ equal ∆z but towards periphery they gradually increase as in Fig. 4.4.
The values obtained are consistent with the FDTD results [151], provided the
grid step is smaller than 0.1a (thus the PMLs comprise 5 or more grid steps).
Prominently, smooth non-equidistant discretization gives results very similar to
those obtained on the uniform grid while the reduction in the total number of
grid nodes ntot is almost twofold for the s4 stretch. Thus, applying S4 function
in x and y with ∆z = 0.1a gives the total number of grid nodes ntot ≈ 3.0 ·104,
the eigenwavelength λ = 3.163a and the quality factor Q = 1.77 · 105; and
the run time on a laptop with 4Gb of RAM and 2.2GHz CPU frequency is
ten minutes. A slightly different function with c = 3a gives ntot ≈ 2.3 · 104,
λ = 3.164a and Q = 1.59 · 105 in a two minutes run time.

In all these calculations we used a-thick squeezed-space buffer layer (half
of which is covered by the PML) in z direction, in line with the proposed
λ/n rule. To see how sensitive to the z-buffer thickness the results are, we
chose a wider and a smaller domain and calculated the eigenwavelength (upper
plot in Fig. 4.6) and Q-factor convergence (lower plot in Fig. 4.6) of the same
hexapole mode and of the quadrupole mode reported having λ = 3.1456a and
Q = 45 000 [151]. While λ curves are seen to be little affected by changing the
domain size, there is a striking contrast between the Q curves of the hexapole
mode calculated with 1.2a and 0.8a buffers, the latter giving clearly erroneous
results. The quadrupole mode Q-factor is also problematic to define correctly
at low resolution when using the 0.8a buffers. On the other hand, if the buffer
layers are thick enough, an order-of-magnitude accuracy in Q is achieved al-
ready at a very rough resolution of 8 grid points per a. Thus, as in the previous
example of a sphere, the eigenwavelength accuracy is primarily limited here by
the grid step while the Q-factor is mostly affected by the overall thickness of
buffer layers no matter what the actual grid cell size is. Note that a-wide
squeezed space buffers is a reasonable choice also for other modes of interest
in this membrane, and generally for most PhC resonators who typically have
band gaps with the defect modes around λ = na.

4.2 Nanobeam cavity

4.2.1 2D modeling: high-Q design

At the beginning we tailor nanobeam cavity design in 2D to get high Q for
the TE-mode. Fig. 4.7 shows basic nanobeam sketch used to consider various
cavity designs: a nanowire of refractive index 3.4 is suspended in air and has
20 holes in its half. Fig. 4.7 also illustrates an example of sampling mesh with
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a9 d8 d1a2 a d

t/2t/2

s

Figure 4.7: Part of nanobeam quarter with Hz component mesh location, x-
direction is pointing along the nanobeam perforation, y-direction is along the
nanobeam width.

Design 1 Design 2 Design 3

Mirror: hole
diameters d = 0.54a d = 0.6a d = 0.55a

Defect: number
of holes n = 1 . . . 9 n = 1 . . . 9 n = 1 . . . 9

Defect: hole
diameter dn = d

10
√
n

dn = 0.6an dn = d− 0.012na

Defect: lattice an = dn

0.6 r1 = 1
0.843a , r2 = 1

a an = dn

0.6
constant

a1 = 0.8a an = 1

r1+
r2−r1

9 n

Table 4.1: Different designs of the nanobeam cavity sketched in Fig. 4.7.

the half or whole grid step offset from computational domain boundaries in
accordance with Fig. 3.3. In the reflecting part the lattice constant is a and
the hole diameters are d, total width of a nanobeam t = 1a. In the defect
region the modified hole diameters are dn and the modified lattice constants
are dn, where n numbers a segment in the defect part of the cavity.

Intuitive variation of the defect region parameters — holes radii dn and
lattice constant an — in order to maximize Q-factor led us to the following
conclusions. First of all, when both parameters are constant but differ from
those in the reflecting part, the Q-factor can approach 105. Second, if one
of the parameters slowly decreases in the defect region towards the center, Q
rises to 106 ÷ 107. Third, only if both an and bn gradually decrease from the
periphery to the center of the of the cavity, Q reaches the highest value around
108 ÷ 109 in 2D. In 3D it is usually one to two orders of magnitude less.
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Figure 4.8: 2D (a) Q and (b) λ convergence for the third design from Table 4.1.
Buffer layers are 1a-wide with arctanh free-space squeezing, covered on 1/3 by
the PMLs, x-PMLs comprising 3 grid cells, ∆x=∆y.
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Figure 4.9: 2D simulations with ∆x = ∆y, free-space squeezing is done with
the hyperbolic arctangent function, buffer layers are covered on 1/3 by the
PMLs, x-PMLs comprising 3 grid cells. (a) Q-factor and (b)-(d) λ convergence
for the three designs in the region of fine resolutions with estimation of spread
δ shown in the legend. Buffer layers are 1a-wide. (e) Eigenwavelength and (f)
Q-factor evolution for the third design with the domain size increase (i.e. with
increase of the distance s shown in Fig. 4.7); two grid cell sizes considered are
as shown in the legend.
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Having established that an and dn should vary somehow we investigated sev-
eral ways to that. Following the mode-matching approach to high-Q nanobeam
cavities [65,152] perforation should consist of two regions: a long periodic part
acting as a Bragg reflector and a chirped, mode matched defect region. Sev-
eral laws to tailor the nanobeam design have been compared. Among them
are 1/ 10

√
n multiplier to decrease both an and dn (design 1); cavity formation

similar to [62] when hole diameter and lattice constant vary linearly in the re-
ciprocal space (design 2); and linear decrement of an and dn towards the middle
of nanobeam [65]. With all mentioned designs we were able to rise the Q-factor
to the order of 108 simply by playing with parameters. Table 4.1 summarize
details of different nanobeam cavity designs. For the first and third designs
we start by defining modified hole diameter dn and modified segment size an
is calculated afterwards. For the design three calculation of modified lattice
constant an precedes evaluation of the defect hole diameters.

In Fig. 4.8 an example of the Q and λ convergence curves for the design
three is plotted starting from a quite coarse resolution, while Fig. 4.9a–d allows
to do more detailed comparison between different designs in the region of fine
resolutions. Special attention to this is required because the convergence of
the nanobeam cavity is worst than for the membrane resonators, which is seen
already in 2D simulations, Fig. 4.9a. Indeed, 1D PhC basis for the nanobeam
cavity somewhat less reflecting than 2D stop band utilized in the membrane
resonators. It leads to less Q stability when fabricated nanobeam design or its
finite difference description has imperfections.

All of the designs from Table 4.1 have similar Q-factor values, Fig. 4.9a,
the design three revealing faster convergence than others. In Fig. 4.9b–d the
resonance wavelength convergence is plotted for the three designs in the same
∆x range as in Fig. 4.9a. To estimate the convergence rate, relative spread
∆λ of convergence curves around a central wavelength λ0 can be introduced:
δ = ∆λ

λ0
100%. The design three has δ one order less than the designs one and

two even at rougher resolutions. Thus we came to the modification according to
the linear law as better converging numerically. The design three will be used
in all further nanobeam cavity simulations with hope that better numerical
stability can lead also to better potential stability with respect to the design
perturbations.

Figure 4.9e,f elucidates the influence of the domain size on Q and λ calcula-
tion. A distance s from the nanobeam frontier to the end of the computational
domain, see Fig. 4.7, is increased incrementally by adding more grid cells. Red
lines correspond to the grid cell of a/12 which clearly gives strongly overesti-
mated resonance wavelength in Fig. 4.9e because of too rough discretization.
Refining of the sampling (to 58 points per lattice constant a) significantly min-
imizes the relative error in λ-evaluation and most interestingly, this error stays
the same irrespective of the actual domain size so that even for as small buffer as
15·a/58≃0.26a correct λ-calculation takes place. It means that eigenwavelength
computation is not that sensitive to the buffer layers extension as to the choice
of good sampling, what is in agreement with the sphere considerations before.
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Figure 4.10: (a) 3D field patterns of the TE mode in the nanobeam cavity of
the height 0.7a. (b) Resonance wavelength λ and Q-factor dependence on the
nanobeam height h. The grid cell is cubic, arctanh-buffer layers are of a size
along both y and z-directions, a/3 distance goes for the PMLs, x-PMLs are 3
cells wide.

Minimal optimal domain size when Q-factor calculation saturates and does not
improve anymore with the domain size prolongation shows up in Fig. 4.9f. This
minimal domain size, that is already enough for the most accurate Q evaluation
at the given meshing, can be estimated as ∼ 12 · a/12 = 58 · a/58 = 1a. Thus
for the nanophotonic cavity we see the direct analogy of the FDFD method
performance observed before for the simple spherical resonator.

4.2.2 3D modeling

Nanobeam height variation

In the 3D modeling a defect region in the nanobeam cavity is perforated ac-
cording to the design three from Table 4.1. Fig. 4.10 shows dropping of the
resonance wavelength of the TE-mode in the nanobeam cavity with the reduc-
tion of its height h along the third z-direction. Decreasing of the nanobeam
height also greatly minimizes mode volume, so that for the height h = 0.5a
it is equal to 0.86 (λ/n)3. We use these nanobeam height in the following
convergence studies and for the modeling of the coupled cavity structures.

Equidistant mesh, arctanh squeezing function

Figure 4.11 demonstrate the Q and λ convergence for the two domain sizes
when buffer squeezing function is arctangent based and thus relatively flat, i.e.
the grid step is just slowly increased in physical space behind the nanobeam
border. This relatively weak and slow squeezing requires long enough distance
left from the nanobeam frontier to the PML start. Thus the PMLs occupying
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Figure 4.11: (a) The resonance wavelength and (b) the Q-factor versus grid
cell size for the two STL widths. The PMLs width in x direction is 3 grid cells.
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third part of the buffer is an optimal choice here. The Yee cell is cubic here in
the whole range of voxel sizes.

The resonance wavelength calculation has uncertainty less than 1%. Eval-
uation of the resonance wavelength can be improved by using, for example,
Hz mesh aligned with respect to the flat nanobeam surfaces. In this case the
averaging procedure does not depend on the finite number of subpixels used
to make polarization-sensitive averaging and finite-difference description of the
permittivity become better what should improve also simulation results. In-
deed, when Hz mesh nodes coincide with the slab-air interface (square points
in Fig. 4.11a, better stability for the λ calculation is achieved, although less
sampling points might be plugged into the mesh-aligned convergence curve.
Q-values given by the aligned mesh seems to lie on the nonaligned mesh con-
vergence curve close to the average value of λ oscillations.

There is no visible difference between the non-aligned and aligned Q-factor
values, Fig. 4.11b. In general, precision of the Q computation does not depend
significantly on a particular grid step and on the averaging procedure used to
find finite-difference array for permittivity. Thus this is reasonable result that
aligning of the mesh does not influence the Q-evaluation. The Q convergence
is not that good for both meshes, what is related to 1D-like structure for the
nanobeam cavity.

Non-equidistant mesh, x/(1− x) squeezing

Now we consider the steepest squeezing function from Fig. 3.4, which allows
to start the PMLs in the computational space closer than at 2a/3 distance
from the nanobeam surface for the buffer size being 1a. The PML size of half
the buffer should improve simulation results because the nanobeam-to-PMLs
distance stays of the same size in physical space as it was with the arctan-
gent function before. From Fig. 4.12a we see that the results for λ attain
improvement compared to those in Fig. 4.11, the relative uncertainty in λ is
reduced more than twice. The Q-factor evaluation is so unstable that both
Fig. 4.11b and Fig. 4.12b show similar convergence behavior. We can remind
here that low accuracy of the Q-factor evaluation reflects high sensitivity of
the Q-factors of 1D photonic-crystal-based structures to imperfections in their
finite-difference description. Small perturbations in wavevectors caused by im-
perfections strongly effect the efficiency of coupling with leaky modes lying
inside the light cone. Due to the 1D nanobeam geometry this perturbations
are more pronounced than in the case of 2D photonic crystals resonators. This
leads to considerable variations in the nanobeam cavity Q-factor, whereas res-
onance wavelengths remain stable. Nevertheless, the obtained Q-factor values
give a reliable order-of-magnitude estimate. The nonuniform mesh (blue curves
in Fig. 4.12) applied along x-direction, ∆y being equal ∆z, greatly reduces
memory requirements and computational time while preserving convergence
properties similar to uniform mesh for both λ and Q.
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Figure 4.12: (a) The resonance wavelength and (b) Q-factor versus grid step
for uniform (∆x=∆y=∆z) and nonuniform S3 x-mesh from 4.4. Buffer size
along y and z directions is 1a-wide with 1/2 occupied by the PMLs, the PMLs
width in x-direction being 3 grid cells.



Chapter 5

Coupled nanobeam cavities

Optical elements based on a coupled system possess rich functionality ow-
ing to additional degrees of freedom given by varying displacement of cavi-
ties and efficient frequency tuning. Change of coupling strength of the res-
onators with their rearrangement addresses the issue of parasitic interaction
between components which is so important for integrated photonics. Side-
coupled nanobeams [77,152,153] offer new possibilities for shaping optical fields
at nanoscale, which is potentially beneficial for various applications including
trapping and manipulation of particles [154], sensing and optical switching
through optomechanical interactions with suspended nanobeams [63, 64]. Re-
alization of flexible control over the mode coupling in arrays of nanocavities
will also contribute to the development of on-chip quantum-optical interferom-
eters [71] and quantum computers [155].

Spectral position of the supermodes formed in two cavities placed side by
side can be analyzed with the FDTD technique. The problem is that if several
modes are traced in the time domain within a single run, the accuracy of the
Q-factor determination may degrade, and extraction of the separate mode field
profiles requires Fourier transformation of field evolution stored for some space
volume and time interval. If the two modes are degenerate, separating them
one from the other with the FDTD method is even less trivial, especially if at
the degeneracy point the coupled structure does not have a plane of symmetry
allowing to split the two modes by the appropriate domain reduction. On the
contrary, the FDFD technique grants an opportunity to get straightforwardly,
in one run, the pictures of several modes, their eigenvalues and quality factors.
Even when the modes in the coupled cavities are degenerate, we get an idea
how they may look like — though the picture becomes now ambiguous. In this
Chapter 5 the FDFD technique is used to analyze single and coupled photonic
crystal nanobeam cavities.
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5.1 Two coupled nanobeams

We suggested and show numerically that longitudinal shift in nanobeam cavi-
ties significantly alters coupling efficiency between multiple closely packed res-
onators. Whereas the concept of longitudinal offset between cavities has been
previously developed for dielectric rod arrays at microwave frequencies [156]
and micro-scale ring resonators at optical wavelengths [79], we demonstrate
here new possibilities for light control at nanoscale. In particular, we show
that for particular values of the longitudinal shift, the cavity modes become
degenerate irrespective of the transverse shift between nanobeams.

When two identical cavities are positioned parallel to each other, their
modes undergo hybridization. Supermodes possess symmetric or anti-symmetric
profiles [153] and shift in frequency up and down from the former level. We will
refer to this splitting as frequency detuning. The frequency detuning between
the supermodes normally increases as the cavities are brought closer, and such
sensitivity to separation can lead to pronounced optomechanical phenomena.
This may have various applications, including mechanically-induced frequency
conversion for optical waves [123]. Analogous effects of modes splitting occur
in coupled periodic waveguides, where several channels can enrich the band
structure of a single mode waveguide in a controllable way, e.g. in slow light
modes positioning at the band edge on demand.

5.1.1 2D analysis of field profiles

First we analyze two side-coupled nanobeam cavities as in Fig. 5.1a where the
right half of the structure is shown (the left half is symmetric). The individual
identical nanobeams has design 3 from Table 4.1. This gives a linearly chirped
array, while other designs are also possible; the general mode properties are
usually similar for different chirp functions. The resonance wavelength of such
single nanobeam in 2D is λ = 3.9964a, Q = 1.5·108, Fig 4.8. Two parameters
describe the position of the second nanobeam cavity relative to the first one:
the transverse separation p and the longitudinal shift s, Fig. 5.1a.

To make the computational work efficient all modeling is done at the be-
ginning for 2D nanobeam geometries with main emphasis on field patterns
redistribution as coupled resonators are rearranged. As we are interested in
coupling effects between two nanobeam resonators when they are shifted lon-
gitudinally and transversally with respect to each other, we need to perform
a new computational cycle each time the structure is modified by a small dis-
placement. In the 2D case the execution time is several minutes even for huge
resolutions such as ntot = 6 · 105 grid nodes available with a 8Gb station.

Mode profiles in Fig. 5.1b, s = 0, shows formation of the symmetric and an-
tisymmetric cavity modes when two nanobeam resonators are brought together.
Magnetic field hot spots coincide with the location of holes. At the separation
p = 1.5a we see only electric field in the air gap between the nanobeams. When
one of the nanobeams is subjected to a longitudinal shift the system loses its



5.1 Two coupled nanobeams 67

a9 d8 d1a2

p

s

a

(a)

x

y

a d a d

Figure 5.1: (a) Two nanobeams, each of width t = a, refractive index n = 3.4
and drilled with 20 holes in each half, separated one from another by p and
shifted longitudinally by s. (b) Field profiles for modes (labeled mode 1 and 2)
in coupled cavities with zero, s = 0.3a and s = 0.4a longitudinal shifts when
separation p = 1.5a, for each shift mode one being positioned at the top while
mode two takes the bottom position.
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Figure 5.2: (a) Detuning of the mode one and mode two vs the longitudi-
nal shift. Transverse separation between nanobeam axes is p = 1.5a. (b)-(f)
Resonance wavelengths and Q-factors of eigenmodes in side-coupled nanobeam
cavities vs. their transverse separation p. Results are presented for four dif-
ferent shifts: (b) s = 0.0a; (c) 0.3a; (d) 0.4a; (e) 0.5a, (f) 0.6a as indicated by
labels. Separation of 1.0a and less corresponds to a single dielectric beam with
two rows of holes.
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symmetry and modes cannot be specified anymore as symmetric and antisym-
metric. We will refer to notation mode 1 and mode 2 to call transformations
of even and odd modes respectively with gradual shift starting from zero.

At zero longitudinal shift Ex component of mode 1 and Ey component of
mode 2 has a node plane passing through the middle of the air gap between
the nanobeams (y = 0). For applications requiring high field intensities it
would be preferable to avoid these zero-valued fields. It turns out that as
nanobeams are gradually shifted from s = 0 the node planes for both of these
modes components are substituted by a plane with high field intensities, see
Fig. 5.1b for s = 0.3a. At the same moment other electric field components
(Ey for mode 1 and Ex for mode 2) still preserve quite high field values. Thus,
small longitudinal shift helps in removing areas of zero fields in the air gap and
makes electric field intensity more uniform through the gap between the two
nanobeams. The field uniformity in shifted nanobeams can be further improved
by moving nanobeams closer transversally.

From Fig. 5.2a it is evident that modes experience degeneracy at around
0.4a shift. At the greater shifts eigenwavelength difference again grow up form-
ing a periodic dependence of frequency detuning on the shift s. We also trace
the effect of the transverse cavity separation p on the resonant wavelengths and
Q-factors for different longitudinal shifts s. Results are presented in Figs. 5.2b–
f. Almost exact degeneracy is observed at s = 0.4a for all transverse separa-
tions, Fig. 5.2d: the two principle eigenmodes are resolved in the FDFD nu-
merical simulations with their frequency detuning being much smaller than for
the other shifts.

Away from degeneracy point, each mode profile should support the 180◦

symmetry of the photonic structure around a central point (x = y = 0) between
two cavities, and specifically the magnetic field components should satisfy the
relations Hz(x; y; z) = pHz(−x;−y; z), where p = +1 or p = −1 for the
two fundamental modes of couple cavities [157]. These symmetries are visible
for mode profiles shown in Fig. 5.1b and Fig. 5.3c,d. However we note that
exactly at the degeneracy point, the field profiles of the eigenmodes are defined
with certain ambiguity and do not have to satisfy the rotational symmetry,
since any linear combination of two eigenmodes is an eigenmode as well. As
shift starts approaching 0.4a we see that field intensity in the air gap and in
one of the nanobeams falls down, Fig. 5.1b for s = 0.4a. The connection
between the modes weakens. As the result modes settle mostly in one or
another nanobeam, Fig. 5.5b, bottom panel. At the degeneracy point field
profiles of the eigenmodes are defined with certain ambiguity, since a linear
combination of two given eigenmodes is an eigenmode as well. And we see this
in the numerical experiment: alongside with field profiles as in Fig. 5.5b we
often obtained the mode fields concentrated only in one nanobeam indicating
weak coupling between the resonators. In more complicated structures, where
cavities are tuned by infiltration, similar effects of anticrossing were registered
experimentally [82] (there is always some perturbation present, which, strictly
speaking, removes the degeneracy, thus in fact both terms — mode degeneracy



70 Coupled nanobeam cavities

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

p / a

|∆
 λ

| /
 a

 

 

shift 0 a
shift 0.1 a
shift 0.3 a
shift 0.4 a
shift 0.5 a
shift 0.6 a

1.6 1.8 2 2.2 2.4 2.6
10

−4

10
−3

10
−2

10
−1

p / a

|∆
 λ

|

s = 0

(a) (b)

(c)

(d)

Figure 5.3: (a) Increase of eigenwavelength difference with shortening of
transversal separation p between the nanobeams, different shifts are printed in
the legend. (b) |∆λ| in logarithmic scale for nonshifted nanobeams. (d) Evo-
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1.05a. (c) Hz field distribution in two connected nanobeams with p = 0.9a at
s = 0, s = 0.3a and s = 0.4a shifts.

and anticrossing — can mean the same here).
In Fig. 5.3a the eigenwavelength difference is plotted showing the highest

values for non-shifted resonators and significantly smaller |∆λ| for non-zero
shifts. Due to symmetric positioning of 0.3a and 0.5a shift values around the
degeneracy point, the wavelength difference given by these shifts are equal to
each other for nanobeams separated by p > 1.1a. When nanobeams are far
enough transversally and coupling strength is small, |∆λ| depends on s by
order law seen in Fig. 5.3b. In Fig. 5.3b for illustration purpose the spectral
splitting for non-shifted nanobeams is plotted in a logarithmic y-scale; the other
nonzero shifts, except for the degeneracy point, also give similar straight lines
in the |∆λ|-log scale if separation p is big enough to correspond to the weak
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coupling regime.
When the resonators are moved transversally closer so that separation be-

tween them decreases, the interaction between the nanobeams intensifies, and
all fields, including magnetic one, spread through the air gap. The picture of
the mode profiles alters compared to p = 1.5a, see Fig. 5.3c,d. Eigenmode fields
extend over the whole cavity even when the hole positions in upper and lower
cavities are effectively shifted in the out-of-phase configuration, i.e. s = 0.4a.
In Fig. 5.3c the evolution of mode 1 at small shift 0.1a is shown when closing
the air gap. Drastic changes occur with the mode 1 profile when connecting the
nanobeams: yet very intensive field at p = 1.11a is strongly pushed out from
the cavity center at p = 1.05a. Thus for nonlinear applications special care
should be paid to the extremely thin slots between the nanobeams. Fig. 5.3d
collects field patterns for both modes at different shifts when air-dielectric in-
terfaces are absent and we actually have one cavity consisting of two chirped
arrays. In Fig. 5.3d the mode 1 has quite complicated field distribution at
s = 0.3a, however becoming symmetric to the mode 2 field profile at the de-
generacy s = 0.4a. Note that although field maps in stitched nanobeams are
really complex they are all 180◦ rotation symmetric relative to the center point
between the nanobeams.

5.1.2 3D Q and λ dependence on the longitudinal shift

In 3D we consider the same nanobeam design from Fig. 5.1a and discuss
more the development of the Q and λ curves with the rearrangement of the
nanobeams. The 3D Q-factor of a single nanobeam cavity is around 4 ·106 and
the operating wavelength λ = 3.21a for the TE mode, Fig. 4.12. To achieve
fine sampling in 3D problems symmetry domain reduction is applied were it
is possible to satisfy memory requirements. The system of two nanobeam res-
onators with a longitudinal shift loses plane-reflection symmetry and the whole
domain should be considered so benefits of stretched meshes is fully used here.
Discretization in the cavity center is set to 0.05a − 0.1a with sparser mesh
in the rest of the structure. 3D Q-factor computations are done on a 48Gb
station with the maximum execution time approaching 2 hours per single run.
Correct averaging is an important issue in 3D simulation where that fine res-
olution as in 2D cannot be achieved. As p → 1 a unit Yee cell might contain
two boundaries from two closely spaced nanobeams and the averaging should
be done only once taking into account both boundaries simultaneously.

Moving nanobeams closer to each other leads to stronger coupling and pro-
nounced increase of the eigenwavelength difference between the doublet of su-
permodes, see Fig. 5.4a. At p = a the system is changed abruptly as the gap
between the two nanobeams disappears, so the structure consists now of a sin-
gle high-dielectric bar with two parallel rows of holes in it. That explains a
characteristic peak in the wavelength dependence of the mode eigenfrequency
plotted in Fig. 5.4a. Mode 1 (even) has higher wavelength than mode 2 (odd)
for the whole range of separations p as can be easily seen from a simple per-



72 Coupled nanobeam cavities

0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.8

3

3.2

3.4

3.6

3.8

4
λ 

/ a

p / a

 

 

0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Q

mode 1
mode 2

(a)

0 0.2 0.4 0.6 0.8 1

3.22

3.23

3.24

3.25

3.26

3.27

λ 
/ a

s / a
 

 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Q

mode 1
mode 2, p=1.2a
mode 1
mode 2, p=1.5a

(b)

Figure 5.4: Tuning of resonance wavelengths of coupled modes by (a) changing
separation between non-shifted (s = 0) nanobeams; (b) changing the longitu-
dinal shift s for two separations (p = 1.2a and p = 1.5a as indicated by labels).
Right axis shows the 3D Q-factor values.



5.1 Two coupled nanobeams 73

mode one mode two

(b) s = 0.4a

(c) s = 0.6a

(d) s = 0.8a

(a) s = 0.2a

Figure 5.5: Magnetic field Hz of even and odd modes in coupled nanobeams
for p = 1.2a at different longitudinal shifts.

3.1

3.2

3.3

3.4

λ 
/ a

 

 

3.2

3.3

3.4

λ 
/ a

mode  one
mode two

0.6 0.8 1 1.2 1.4 1.6 1.8 2
3

3.2

3.4

λ 
/ a

p / a

s = 0.2a

s = 0.4a

s = 0.6a

(a)

(b)

(c)

Figure 5.6: Splitting of resonance wavelengths of even and odd modes versus
separation p for (a) s = 0.2a; (b) s = 0.4a; (c) s = 0.6a.



74 Coupled nanobeam cavities

turbation theory [158]. When the gap between nanobeams is closed and the
y-dimension is further reduced, the effective refractive index of the system and
hence the eigenwavelengths are also decreased [41]. Remarkably, when varying
the separation no significant variation in the Q-factor is seen. The Q-factor
value is close to 106 for both even and odd modes, see Fig. 5.4a.

Now we analyze the effect of the longitudinal shift s. In Fig. 5.4b the
wavelengths and Q-factors of the fundamental eigenmodes vs. shift s for sep-
arations p = 1.2a and p = 1.5a are plotted. As the shift starts growing from
zero, mode detuning is reduced and, independent on separation p, the modes
become degenerate at around s ≃ 0.4a what is in contrast to resonators with
unmodified lattice constant [156] where the degeneracy shift was exactly 0.5a
independent on rod radii variation. Thus this is primarily variation of lattice
constant that is responsible for the specific value of the degeneracy shift. Note
that 0.4a ≃ 0.5a6, i.e. the shift at degeneracy point is approximately equal to
half the average lattice constant in the cavity region.

In Fig. 5.5b for s = 0.4a we plot another picture at the degeneracy com-
pared to Fig. 5.1b with the magnetic field nodes in one nanobeam opposing field
lobes in another. These degenerate modes can be schematically sketched with
diagrams in Fig. 5.5b. Standing wave profiles with slow spatial decay from the
center of the cavity towards the periphery allow neglecting low-intensity outer
regions and then central parts of the patterns are identical upon reflection,
making the occurrence of the degeneracy point (geometrically, central parts of
the defect regions for the two modes also satisfy reflection-symmetry if chirped
hole diameters approximated to be the same in the middle). Had mode pro-
files less gradual changes in the succession of field minima and maxima along
the nanobeams (as shown by bold circles and squares in the diagrams), the
formation of the degeneracy would be hardly possible.

For the shifts larger than s = 0.4a the mode detuning is increased, reaching
a maximum at around s ≃ 0.8a where eigenwavelength difference approaches
the same value as at s = 0. The revival of coupling at s ≃ 0.8a is again due to
the gradually chirped nanobeam design and field profiles extended along the
nanobeams. Thus mode detuning depends on the shift almost periodically, and
the cavity modes 1 and 2 are adiabatically transformed as the parameter s is
varied from 0 to a, see Fig. 5.5d where it is shown that mode 1 and 2 exchange
their parity going from s = 0 to s = 0.8. Most important, the Q-factor values
remain of the same order of magnitude as for a single cavity.

In Fig. 5.6 we compare the eigenmodes wavelength dependencies on separa-
tion p for three longitudinal shifts s = 0.2a, 0.4a, 0.6a. The upper panel shows
the reduced spectral detuning of the modes for the intermediate shift s = 0.2a.
The plot in Fig. 5.6b shows that for non-overlapping nanobeams the modes are
almost exactly degenerate at s = 0.4a for any transverse separation p. After
the degeneracy point, at s = 0.6a modes 1 and 2 swap their wavelengths.

By comparing Fig. 5.2 against Figs. 5.4 and 5.6 we see that 2D and 3D
simulations give essentially similar dependencies for λ andQ on the longitudinal
shift s and transversal separation p of the cavities, indicating the possibility to
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design coupled nanobeam cavity systems in 2D successfully. This is because the
physics of coupling of dielectric nanobeam cavities is relatively simpler than,
for example, the coupling of metallic split-ring resonators where essentially
three-dimensional interplay of magnetic and electric excitations is important.

5.2 Three coupled nanobeams

In multiple side-coupled nanobeam cavities the modes can also be tuned by lon-
gitudinal shifts with the degeneracy observed at certain shift. Degeneration of
modes in structures containing many elements amounts to the absence of para-
sitic coupling between the neighboring units. Instead of increasing the distance
between optical components usually used to minimize cross-talk, longitudinal
shift can be proposed to create dense photonic integrated circuit. Moreover, by
appropriate choice of transversal separation the degeneracy wavelength of cou-
pled nanobeams (up to three resonators in our tests) can be tuned to a single
nanobeam resonance wavelength. This potentially allows adjacent waveguiding
components, all together, and each separately, to operate at the same wave-
length. For example, compact single-wavelength switch matrix can be created
on the basis of a nanobeam-switcher with nonlinearity [150]. Another field
of application is building an array of nanobeam cavities to form a quantum
optical network where many identical resonators should be placed closely one
to another on a chip [155]. Additionally, by controlling the mode coupling it
becomes possible to tailor the optical field across an array of multiple nanocav-
ities for applications in particle trapping [154] and tailored optomechanical
interactions [63,64].

5.2.1 Weak coupling regime

We did 2D simulations (letting the nanocavities be infinitely high) to catch ba-
sic features of mode tunability. For three side-coupled nanobeam cavities their
relative alignment can be characterized by separations p2, p3 and longitudinal
shifts s2, s3 of the second and third cavities. As an example we consider equally
spaced (p2 = p3 = p) nanobeam cavities, only the middle one being shifted:
s2 = s, s3 = 0. The dependence of mode wavelength detuning (relative to a
single cavity) on the shift s is given in Fig. 5.7a for p = 2.3a. We observe
behavior similar to the case of two nanobeams. Specifically, all three modes
become degenerate at s ≃ 0.4a; by varying p we can control the wavelength of
the degenerate modes, and it coincides with the wavelength of a single cavity,
Fig. 5.7a. Mode profiles for non-shifted system (s = 0) are shown in Fig. 5.7b.
Note that mode 3 is localized at the outer cavities, so its wavelength is not
sensitive to the middle cavity shift as observed in Fig. 5.7a. There is a nice
mechanical analogy with modes of three weakly coupled pendulums: in mode 1,
all three pendulums are swinging in phase; in mode 2, two outward pendulums
move forward while the middle one moves backward; in mode 3, the central
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Figure 5.7: Modes in three side-coupled nanobeam cavities with transversal
displacement between the neighboring nanobeams being equal to 2.3a. The
middle nanowire is longitudinally shifted, the other two being kept stationary.
(a) Spectral detuning of the three modes from the single nanobeam cavity
wavelength λ = 3.9965a. Right y-axis—theQ-factor of the three coupled modes
(for an isolated nanobeam cavity, Q = 1.5 · 108). Hz profiles for the modes in
the three (b) unshifted and shifted by (c) 0.41a nanobeams.

pendulum is at rest and two others are moving oppositely.

At the degeneracy point (s ≃ 0.4a) the eigenmode profiles can be primarily
localized at individual cavities, see Fig. 5.7c. In Fig. 5.7c the mode profiles at
s = 0.41a reveal complete vanishing of field in neighboring nanobeams whereas
for two coupled nanobeams shift of s = 0.4a was more likeable to be called the
exact degeneracy shift value. In fact, it is quite difficult to detect precise value
of the degeneracy as it requires extremely fine step in s and long simulation
times; besides, accuracy of computation is also limited by the finite-difference
description. However small deviations from the exact degeneracy does not



5.2 Three coupled nanobeams 77

change field mapping significantly as solutions to Maxwell’s equations are all
smooth functions.

Wavelength detuning is much less pronounced at p = 2.3a than at p = 1.5a,
p = 1.2a considered previously. The reason to choose the separation p =
2.3a is that coupling between the nanobeams is already weak and the energy
splitting becomes symmetric relative to the initial energy level as follows from
the standard perturbation approach. And the degeneracy wavelength of an
array of nanobeams is the same as the isolated nanobeam eigenwavelength
(this is not true for the case of strong coupling at p = 1.5a).

Although we are in the weak coupling regime, spectral splitting correspond-
ing to p = 2.3a is about 0.2%, which for telecom wavelength 1.5µm amounts
to 3 nm spread in wavelength. A comparable shift in resonance wavelength
is induced by inclusion of nonlinearity in the nanobeam; this allows cavity
operation as a switcher totally transmitting or suppressing the signal depend-
ing on turning on/off the nonlinearity [150]. Thus 0.2% energy difference for
multiple nanobems placed at p = 2.3a on a photonic integrated chip intro-
duces parasitic coupling hindering single-wavelength operation. The distance
1.3a between nanobeam edges (corresponding to p = 2.3a) is not that large in
terms of interaction between the cavities.

If we further suppose the core of nanobeam cavity is nonlinear (e.g. taking
into account refractive index increase due to nonlinearity), then the degenerate
modes in the array of nonlinear cavities can be also tuned to a single resonator
wavelength by p variation. A single-wavelength operating switching array can
be build on the basis of such nanobeam cavities that will work equally well for
single- or multiple-channel excitation applied. (In the case of the single-cavity
nonlinear operation based on 0.03% change in refractive index, the frequency
shift due to presence of neighboring ‘passive’ nanobeams is estimated to be
around a negligible 2 · 10−4%).

We have verified that mode degeneracy also occurs in four side-to-side cou-
pled nanobeam cavities. Thus we expect mode degeneracy in multiple side-
coupled cavities when they have staggered longitudinal shifts, such that neigh-
boring nanowires are shifted longitudinally by s ≃ 0.4a. We also expect that
the Q-factor in multi-cavity structure should remain of the same order of mag-
nitude as that of a single nanocavity.

5.2.2 Strong coupling regime

Strong coupling regime is investigated by doing 3D simulations with symmetry
planes being enforced through the domain reduction. For the three nanobeams
dependence of mode detuning on a shift s of a middle nanobeam is given in
Fig. 5.8a for p = 1.2a. Here three modes become degenerate at s ≃ 0.4a with
wavelength λ ≃ 3.235a bigger than the isolated 3D nanobeam eigenwavelength
3.21a. 3D Q-factors for three coupled cavities are found to remain of the same
order as the longitudinal shift is varied, see Fig. 5.8a.

Mode profiles for non-shifted system (s = 0) are shown in Fig. 5.8b. When
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Figure 5.8: Modes in three side-coupled nanobeam cavities. The middle
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nanobeams. (c) Hz profiles of the degenerate modes at s = 0.4a.

symmetry planes are enforced the eigenmode profiles at the degeneracy point
(s ≃ 0.4a) look as in Fig. 5.8c. In general, in the degeneracy point we
present the results of our numerical calculations based on the direct solution
of Maxwell’s equations and without taking linear combinations with data ob-
tained. Our calculations for two and three nanobeams gave two variants of
field maps at the degeneracy: 180◦ rotational (2 resonators) or reflection (3 res-
onators) symmetrical pictures, and profiles with field localization at individual
resonators. Simulations enforcing PEC/PMC planes for the three nanobemas
give degenerate modes strictly reflection-symmetrical; however we can guess
that these pictures do not help in understanding physical reality better than
do profiles with field localization in individual nanobeams implying complete
vanishing of interaction between the cavities. And it is that characteristic
degeneracy profile with field extinction in one of the cavities that is clearly
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predominant in all 2D and 3D simulations for all range of separations and that
should be more expectable in the experiments than other linear combination
of the degenerate mode profiles.

In summary, we have shown that a longitudinal shift between side-coupled
nanocavities enables flexible control of eigenmodes including the realization of
exact degeneracy, a feature impossible in non-shifted resonators. The qual-
ity factor of coupled nanobeam cavities stays close to that of a single cavity,
indicating good practical prospects for such structures.





Chapter 6

Metallic gratings

Metals exhibit a plethora of optical phenomena associated with their rich dis-
persion properties, and are widely used in the range from visible to GHz fre-
quencies. Incorporating frequency-dependent permittivity for numerical mod-
eling in the time domain is not trivial: auxiliary variables are to be introduced
to account for dispersion, making transient-wave simulation of metals more
complicated and memory-consuming compared to modeling of dielectric ma-
terials. Besides, time domain methods are bound to analytical description of
material parameters while real-life metal permittivity might deviate signifi-
cantly from that given by Drude or Drude-Lorentz expressions, so that using
tabulated dispersion values becomes desirable. Finally, modeling inclined light
incidence on periodic structures (gratings) is not straightforward in the time
domain, and many nontrivial tricks have been proposed to work around that
difficulty [119]. On the contrary, in the frequency domain no complications
arise with introduction of metal dispersion, so the code preserves its same form
for all types of media, and no difficulties occur for plane waves impinging on
periodic structure at an arbitrary angle.

Metal-dielectric composites are intensively investigated in the optical do-
main, and many methods are adapted to consider various metallic geometries:
from strictly analytical through hybrid semi-analytical to fully numerical finite-
difference solutions. At the technologically important THz frequencies nanos-
tructured metals started to gain attention only recently. At extremely long
wavelengths, frequency domain methods are expected to perform better than
their time domain counterparts, Fig. 1.8, and in this section an emphasis is on a
numerically challenging task of simulating field enhancement in single and mul-
tiple (periodic) slits in thin subwavelength films when the ratio of the grating
period to the slit width reaches extremely high values of 104. In this chapter we
calculate energy transmission, reflection and absorption of gold slabs without
or with perforation. At low frequencies the permittivity of gold can be defined
by Eq. (1.16) with ϵ∞ = 1, plasma frequency ωp = 1.37×104 THz and γ = 40.7
THz [159].
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6.1 Planar metallic slab at THz frequencies

6.1.1 Analytic solution
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Figure 6.1: (a) Amplitude and phase of reflection at a single gold-dielectric
interface; (b) reflectance, (c) transmittance and (d) absorption of gold slabs of
different thickness h placed freely in the air.

Let us consider a plane subwavelength film in the THz range. Transmission,
reflection and absorption of metal slab can be found through standard Fresnel’s
formulas with the complex permittivity of metal. The amplitude coefficient of
reflection from a single interface at normal incidence is

r =
n1 − n2

n1 + n2
, (6.1)

where n1,2 are the refractive indices of two media. From Eq. (6.1) we see
that no matter from which side radiation is incident upon the boundary, the
amplitude of reflected wave is the same but the phase is inverted (−1 = eiπ). In
a symmetric metal-dielectric sandwich, we have equal amplitudes of reflection
from both interfaces. Figure 6.1a shows that at low frequencies single metal-
dielectric interface has very high amplitude of reflection and phase shift about π
in the whole range from 10−2 up to 102 THz. Due to this half-period phase shift,
electric field vector has the same amplitude but opposite sign upon reflection;
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thus boundary conditions at the frontier of PEC and dielectric are satisfied
strictly so that the radiation virtually does not enter the PEC-like metal.

We see no significant variation in reflectivity with frequency for subwave-
length 20–100 nm slabs in Fig. 6.1b what is in line with Fig. 6.1a where coef-
ficient of reflection at a single metal-dielectric interface is almost constant in
the whole range of frequencies. No sign of interference effects is expected with
increasing film thickness above 100 nm: they will be strongly suppressed due
to such a high imaginary part of refractive index at low frequencies [160].

Even for very thin 20-nm-thick films reflectance stays very high while trans-
mittance is suppressed, Fig. 6.1b,c. Taking into account that h = 20nm is
deeply below the skin depth which is about 300–800 nm at THz (and increases
very fast approaching ω → 0), metal behavior similar to PEC having infinite
conductivity and total reflectance irrespective of slab width is clearly seen.
Utilization of skin depth at low frequencies to estimate tunneling through thin
films in the same way as it is usually done at visible should be done with
care. Thickness of the film should be deeply below the skin depth, just a few
nanometers, for any noticeable transmission to be observed at THz.

In the visible part of spectrum the effect that very thin layers of metal can be
more absorptive than bulk pieces is well known for metal-coated nanoparticles,
which are intensively used in photovoltaics as providing higher absorbance than
solid metal ellipsoids [92]. It turns out that not only in condition of plasmon
excitation small quantities of metal can more intensively absorb radiation than
bulk metal pieces: the absorption increase with reduction of slab thickness is
seen in Fig. 6.1d.

Let’s summarize our discussion. Huge real and imaginary parts of metal
permittivity at low frequencies make perfect electric conductor description of
metal nearly an ideal approximation. At THz frequencies a negligible part
of radiation impinging on the metal penetrates inside. A small portion of
THz wave energy passed inside the metal decays spatially slow due to skin
depth increased by several times at low frequencies compared to the visible.
It amounts to lower absorption per unit length experienced by non-uniform
THz wave inside the metal whereas at higher frequencies significant amount
of radiation tunnels effectively through the subwavelength films and can be
absorbed at a higher rate. Thus at THz frequencies a 20–100 nm thick gold film
becomes non-transparent and reflects most of radiation incident on it whereas,
for example, 20 nm film under visible illumination can transmit up to 50% of
light. Metal is indispensable material for THz range in this sense because, for
example, VO2 films of the same thickness experience only a 20% change in
their transmission after dramatic change of refractive index from 1 to 10000
due to phase transition [161]. The ability of metal to effectively govern long-
wavelength radiation on the length scale of nanometers with low absorption is
of good use when we are interested in strong field concentration in air gaps in
metals without sacrificing transmission.
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6.1.2 FDFD testing
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Figure 6.2: Relative error in transmission and reflection coefficients for electro-
magnetic radiation incident normally on the 20-nm-thick metal slab, plotted
for different vertical dimensions (see the legend) of the computational domain.

Now proceed to testing of the FDFD numerical solution on the analyti-
cal problem of metallic membrane suspended in air. Figure 6.2 demonstrates
the broadband accurate performance of our implementation, in particular the
PMLs.

6.2 Single slit

Aperture films and metallic gratings have a long story of investigation in op-
tics with well-known applications as color selective filters, photodetectors, col-
limators, for surface enhanced Raman scattering and fluorescence, detection of
refractive index, etc. [99] Metallic nanostructures having micro- to nanometer-
sized constitutive elements also have potential in lower frequencies, and homog-
enizable metal-dielectric composites with negative or any other desired index of
refraction is not the only option here. For example, recently it was shown that a
nanometer-wide single slit in a thin gold film provides strong nonresonant field
enhancement at THz frequencies [159]. Metallic slabs featuring nanometer-
sized perforation can be used both at visible and THz parts of spectrum what
opens new prospects for these structures to be used as fast all-optical com-
ponents where electromagnetic wave in one frequency range acts as a control
pulse governing information signal from the other part of spectrum.
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Transmission through single slits in metallic films can be strongly enhanced
due to resonance effects, like cavity resonances [89,90,162–164] when thickness
of metal film or slit width satisfy Fabry-Perot conditions. One of important
aspects of these resonance effects is strong light concentration in air slits [89]
that might be directly used for nonlinear applications [25]. Specially designed
charge and current reservoirs can be employed for further increase of field in-
tensities [165] where field enhancement up to 60 were achieved in the visible
part of spectrum.

At THz frequencies [166] where metal behaves as PEC, enhancement due
to cavity resonance effects was reported to reach the value of 430 [167]. Sur-
prisingly high field enhancements of about 103 and higher are accumulated
inside slits [159] in the regime when they act as tiny capacitors at low frequen-
cies [168]. This regime is of particular interest in the rest of this Chapter 6.
Due to capacitor model it is easier to find some laws for enhancement whereas
dependencies for transmittance that does not have direct analogue in statics is
somewhat more complicated to establish so the main issue is enhancement law
for a single and periodic slit.

The p-polarized (i.e., electric field lies in the xy plane in the insert in
Fig. 6.3) fundamental mode in the slit exists in the whole range of frequen-
cies and thus field enhancement is possible at THz frequencies, whereas s-
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Figure 6.3: Enhancement in an isolated slit cut in slabs of different thickness
taking values from 10 to 100 nm. The insert shows the geometry of the problem:
single slit of width w in a gold slab of thickness h illuminated by p-polarized
plane wave of frequency f . The center of coordinates lies in the center of the
slit.
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polarization has cut-off wavelength and at low frequencies light do not pass
through the slit [99]. Here and later by enhancement we will understand the
amplitude of electric field averaged over the central line of the slit (if the slit is
symmetric and the film is sandwiched symmetrically, then only Ex component
contributes to the enhancement thus defined) and normalized to the amplitude
E0 of incident radiation:

enhancement =
⟨Ex⟩slit |y=0

E0
=

∫
w
Ex |y=0 dx

wE0
(6.2)

This averaged Ex amplitude does not necessarily coincide with the field value
in the very center of the slit, the difference being bigger for wider slits.

6.2.1 1/f law for enhancement

We start from an isolated slit and investigate the dependence of enhancement
on the slit width w and frequency f , and we compare this with the behavior of
multiple slits later in this chapter. In Refs. [159,168] it was shown theoretically
and experimentally that single slit exhibits the 1/f law for the field enhance-
ment. This rule follows from a capacitor model in which field enhancement is
directly proportional to the total charge accumulated on the slit edges. Thus
1/f is immediately obtained as with wavelength λ growing, the larger part of
metal is involved in gathering electrons near slit edges.

The question that now we are interested in is how good the capacitor model
and the 1/f law is, and how the enhancement depends on slab thickness and slit
width in some reasonable bounds, i.e. before entering the regime of pronounced
resonance behavior. We are also concerned with numerical method at hand:
how high the enhancement can go while moving towards lower frequencies.

Figure 6.3 shows excellent fulfilment of 1/f law in a broad range of fre-
quencies; achievement of extremely high enhancements of 108 deeply below
THz range, that is at MHz frequencies; and independence of the enhancement
on slab thickness. In the paper [168] the authors observe some dropping of
enhancement with increase of the slab width, however their enhancement is
defined as a field in the center of quite large slit of 200 nm width at fixed
wavelength what might explain these discrepancies in calculations.

In Fig. 6.3 at shorter wavelengths we can notice a slight spread in the
development of the 1/f curves for slabs of various heights. At higher frequencies
possible stronger deviation from 1/f law is related to shifting towards region of
faster electromagnetic wave oscillations: static capacitor approximation breaks
because slit dimensions become comparable to the wavelength. Thus at the
frequency above 102 THz some influence of slab thickness on the enhancement
might take place.

We established that enhancement is almost independent on film thickness
when it is much less then the wavelength of light, and that capacitor model
together with the FDFD method apparently have no limits in calculating very
large field intensities in extra-narrow slits at low frequencies.
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6.2.2 Enhancement dependence on the slit width

Field and charge accumulation can have 1/w dependence on the slit width
by analogy with statics [168]. In Fig. 6.4 λ- and w-dependent enhancement
is traced for several fixed slit widths. The slope of straight lines in log-log
scale indicates nearly direct proportionality between the enhancement and the
dimensionless parameter λ/w at sufficiently large ratios λ to w while for λ/w <
100 the deviation from simple proportionality becomes more pronounced. Thus
only in the regime when the parameters of the slit are deeply subwavelength
we can talk about slit as a capacitor. More detailed inspection through curve
fitting for λ/w > 104 reveal that an order to which λ/w should be raised to
give a law for the enhancement is about 0.93, i.e. very close to unity. And it
appears that electrostatic approximation is not valid already for λ approaching
hundreds of w when movement away from a straight line in Fig. 6.4 becomes
visible by eye.
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Figure 6.4: The dependence of enhancement on λ/w for a single slit in the 20-
nm-thick gold slab. Each line is obtained by varying λ at some fixed slit width
w so that 23 curves in total are plotted for a set of 23 slit width (taking values
between 2.9 · 103 nm to 10 nm). For all the curves the incident wavelength λ is
changed from 2.9 ·1010 nm to 2.9 ·103 nm corresponding to the frequency range
between 10−5 to 102 THz.



88 Metallic gratings

Simulation details

For simulations of an isolated slit the buffer layers along the y-direction start
right after the slab boundary and are squeezed with the x/(1 − x) function,
Fig. 3.4, to computational size of 2–3µm, to include more vortices of electro-
magnetic field around the slab, Fig. 1.4. One third of the total size of the
squeeze transform layers is covered by PMLs. The same buffers are used also
for the x-direction where squeezing layers include metallic plates and squeezing
starts right after the slit edges. Grid steps near the slit are around 0.1–0.4 nm,
being gradually stretched to reach 20 times of that for the rest of the structure,
Fig. 6.5.

6.3 Periodic slits in metal film

Under condition of resonance excitation the transmission of light through per-
forated slab can be strongly prohibited [19] or, vice versa, enhanced, the former
feature underpinning a well-known extraordinary optical transmission (EOT)
phenomenon [95]. It turns out that for the lossless model of metal, for ex-
ample the PEC model, by cutting neighboring slits around a single slit the
transmission increases with increasing the number of slits, and infinite periodic
structure can exhibit total transmission [88].
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Figure 6.5: Refinement of the mesh near the metal-slit boundaries.
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(a) (b)

Figure 6.6: (a) Periodic grating of period P formed in gold film of thickness
h = 20nm by perforating slits of width w. (b) Metal grating placed into static
electric field; only top semi-space is shown, with external filed E0 = Einf being
unperturbed at infinity.

For a non-resonant case intuitive considerations let us assume that if the
light is tunneled through a single slit at a certain wavelength, adding more slits
might lead to higher transmittance. But what will be with the field enhance-
ment in the slits? Will periodic structure be able to achieve the same extremely
high intensities in its slits as an isolated slit does? From the capacitor model
for a single slit we can estimate that the period P required to provide one of
the slits in a periodic structure with charges to give the same capacitance as an
isolated slit should be about or bigger than the wavelength of light [167]. But
exactly at P = λ we have a condition for Fano resonance, which is already out
of our interest. Thus we can expect that at λ < P condition the enhancement
in the periodic structure will not exceed an isolated slit value.

In this section we consider the field enhancement in lamellar metallic grat-
ings in the wavelength range when λ ≫ h and λ > P and investigate the appli-
cability of electrostatic approximation to propagating electromagnetic waves.
Static model gives us a simple rule for electric field inside a slit as a ratio of
grating period to slit width, P/w, relative to the amplitude of incident wave.
It turns out that this rule can be satisfied quite generally for periodically per-
forated metal films starting from zero up to THz frequencies unless the grating
period or film thickness becomes close to the wavelength of light, i.e. we step
in the regime where resonance effects appear. In general, evolution of curves in
the plots throughout this Chapter 6 is traced up till the first Rayleigh-Wood
anomaly, i.e. till λ = P . Applicability of static model also implies total energy
transfer from upper to lower half-space and thus total transmission not avail-
able in single apertures. Adding of periodic openings to metal membrane can
drastically change its transmission from zero to one, what can be utilized for
switching [161].

By doing numerical simulation we explore field enhancements up to 104 in
a 10 nm air gap in periodic structures in 0–0.1THz range. The combination of
controllable field concentration given by simple law together with total trans-
mission, both available in a broad range of frequencies, paves the way for usage
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of metallic gratings for improvement of THz sources, detectors and sensors,
as wavelength-independent polarizers and essentially for molecular absorption
spectroscopy [169,170].

6.3.1 10-nm-wide slit in gratings of different periods

Electrostatic model

As we are interested in translation of electrostatic solution to our case of tran-
sient incident fields, the width of the slab is chosen to be quite thin, i.e.
h = 20nm everywhere in the Section 6.3. The geometry of a periodic grat-
ing is shown in Fig. 6.6a, whereas Fig. 6.6b illustrates static variant of the
problem: metallic grating placed into the infinite homogeneous electric field.
Let us consider this static version first. Knowing that work done by electric
forces to move a test charge along closed contour in a potential field gives zero
we can use this to find field in the slit by integrating along the red line in
Fig. 6.6b. Periodicity requires that the field on the two red lines perpendicular
to the slab spaced by P has the same vector values, what nullifies total con-
tribution of the forces along these lines. From the rest two lines, one passing
through the middle of the slab, the other one along the homogeneous field at
infinity, the enhancement is derived as:

PE0 − w ⟨Ex⟩slit = 0 (6.3a)

⟨Ex⟩slit =
P

w
E0 (6.3b)

Thus enhancement in periodic structures depends on the period of the grating
and the size of the opening while slab thickness does not play any role in
quasistatic regime. Recalling now about single slit that can be considered in
Fig. 6.6b with a limiting case P → ∞ we find out that independence of single
slit enhancement on the height of the slab h is a reasonable and quite expected
behavior.

Flat enhancement

Concluding the static model, we expect to have some regime where transmit-
tance will be unity and enhancement will obey Eq. (6.3) as follows from the
static limit. Let see how this agrees with the precise numerical calculations. In
Fig. 6.7 the enhancement and transmittance are plotted for gratings of varying
period P = (2 : 1 : 10) · 101:1:4 when slit width is fixed to 10 nm. Fig. 6.7a
shows that there exist broad frequency range for each of considered periods
where static model conclusions work perfectly well. Enhancement equality to
P/w is fulfilled with high precision for any P/w from 2 up to extreme 104.

Threshold frequency for exiting flat enhancement region is connected with
reaching λ = P condition. Quick dropping of enhancement curves near their
ends in Fig. 6.7a signalizes about entering the region of asymmetric Fano res-
onance shape. For example, the period corresponding to the enhancement 10
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Figure 6.7: (a) Field enhancement and (b) transmittance of a 10-nm-wide slits
cut in a 20-nm-thick film versus frequency for different grating periods P . The
enhancements in quasi-static limit are chosen to be ⟨Ex⟩slit /E0 = (2 : 1 :
10) · 101:1:3, the corresponding period of grating is P = w ⟨Ex⟩slit /E0.
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is P = 10 · w = 100 nm what gives Rayleigh-Wood condition λ = P translat-
ing to fR−W ∼ 103 THz and approximately one frequency order, from 102 to
103 THz, takes for the enhancement to vanish completely. From Fig. 6.7b we
notice that threshold condition for transmittance is more severe, i.e. transmis-
sion dropping starts two frequency orders before the Rayleigh-Wood condition.
In another example with very large enhancement of 2·103, fR−W ∼ 101 THz
and again roughly one order less, i.e. at 1THz, enhancement plateau regime
breaks, the transmittance starting decreasing at a much smaller frequency of
10−1 THz.

Thus by appropriate choice of geometry parameters the region with some
desired enhancement and transmittance of unity can be selected. In such a
zone with flat enhancement, THz pulses of short duration can be fully trans-
mitted with all their spectral constituents experiencing the same enhancement
in the near field of the gratings. As regards extremely high enhancements,
for that periodic structures require very long periods and narrow slits. For
many applications demanding strong field, like change of refractive index due
to nonlinearity, high transmission is inessential and can be sacrificed in favor
of extended frequency range of high field intensities.

Comparison with a single-slit film

The question which system, an isolated slit or a periodic grating, can propose
higher field concentrations is addressed by plotting enhancement curve for a
single slit of width w = 10nm with a red line in Fig. 6.7a. As it was expected,
at a fixed frequency periodic structure in general cannot accumulate bigger
charge and stronger field than an isolated slit. We see an amazing correlation
in behavior of the two systems: an envelope formed by enhancements in periodic
structures almost coincide with single slit curve. It appears that for periodic
structure we have two regimes of operation: λ ≪ P is in deep electrostatic
approximation with total transmission and flat enhancement zone obeying P/w
ratio when all slits work cooperatively; if λ → P cooperative action of slits
splits and each slit interacts with light rather as a separate scatterer so that
the enhancement in multiple slits follows the curve for isolated-slit structure.
In fact even in the second regime we can anticipate that periodic grating can
still preserve some coherent interaction between neighboring slits as envelope
in blue color in Fig. 6.7a lies slightly higher then the red line.

In general, at a fixed incident wavelength, single or periodic apertures with
a given opening width give the same highest possible enhancement and addition
of more perforations with certain periodicity to a single slit can improve only
total transmission.

Threshold frequency

In general, the frequency f0 at which zone of flat enhancement ends can be
approximately found from intersection of P/w horizontal with (λ/w)0.93÷1 line
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describing a single slit. This gives very weak dependence of f0 on w while the
period of the grating P essentially determines the size of enhancement plateau
along the frequency axis. Because we keep slit width fixed and the period varied
in a broad range of values, f0 strongly differs from curve to curve in Fig. 6.7a. If
the period is close to P0 ≃ c/f0 the enhancement in the grating becomes equal
to the enhancement given by a single slit and scanning towards frequencies
below f0 keeps field intensity in the grating on the same level, however further
reducing the distance between neighboring slits below P0 leads to decreasing
of enhancement.

Field maps

(a) (b)

(c) (d)

Figure 6.8: Field (a) Ex, (b) Ey, (c) modulus of Hz components and (d)
modulus of Poyting vector S nearby the 10-nm-wide slit in gold grating of
period 1µm at f = 10−2 THz. Bounds for color maps are chosen so to show
better peculiarities of field distribution.

In Fig. 6.8 spatial distributions of field components and Poynting vector
characteristic for plateau zone are plotted. The Ex component (Fig. 6.8a) is
strongly enhanced inside the slit with maximal amplitude reaching 200 near
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the slit sharp edges. The Ey component (Fig. 6.8b) has a node at x = 0 plane
and antisymmetric field distribution around the node plane with strong con-
centration at metal corners. From intensity maps for electric components and
Poyting vector it is seen that radiation couples inside the slit mainly through
metallic corners. Thus the wave upon incidence on the slit passes through quite
essential spatial transformations in the near field of the slit before being fully
transmitted to the far field zone.

By looking at the Hz component (Fig. 6.8c) we see that magnetic field al-
most does not participate in electromagnetic field shaping process; its unit value
through all the domain means that Sx = Ey ·Hz ≃ Ey and Sy = −Ex ·Hz ≃
−Ex thus intensity maps for Poynting vector components look similar to the
electric field distributions. As seen from Fig. 6.8d, the Sy component prevails
in total energy flow so that |S| looks very similar to Ex field distribution.

Simulation details

For periodic gratings in the same way as for a single slit, stretching of the finite-
difference mesh reaches a ratio of 20 in most of simulations. When calculating
extra-narrow slits, e.g. w = 10nm considered in this section, integration of
the field along the air gap was substituted by a point value of the field in the
very center of the aperture. This is fully justified as the field along central
line appears to be highly uniform in narrow slits, however grid points lying at
the slit edges with zero Ex amplitude should not be included into the integral.
Avoiding inclusion of such points while integrating is difficult to automate as
just a few points come on the aperture.

As in the case of FDFD application to PhC resonators where calculation of
Q and λ gave the best convergence on computational domains organized in two
different ways, i.e. in the first case for better quality factor accuracy, larger
domain is used even if resolution is coarse and in the second case for eigenwave-
length calculations, good sampling is more important than actual domain size;
for metal gratings similar different approaches can be used for calculations of
transmission and enhancement. As pointed out in introduction, vortices and
evanescent tails of electromagnetic field spread far away around the grating,
thus correct reconstruction of energy flow and correct simulation of transmis-
sion relies heavily on big enough computational domain. In our transmittance
calculations the air buffer superposed with space squeezing were taken around
2 to 10 µm, the biggest size being utilized for extremely high enhancements
generating strong evanescent fields. At the same moment calculations of en-
hancement are based on fine discretization and the domain can be reduced
further down to 1.5µm in favor of sub-nanometer grid step in the region of
metal-dielectric frontiers and hot spots of electromagnetic energy.
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Figure 6.9: (a) Enhancement and (b) transmittance in gratings from Fig. 6.6a
with unchangeable periodicity 20µm but with alternation of slit width accord-
ing to the following approximate set of numbers: [400 200 100 67 50 40 33 29
25 22 20] which correspondingly give enhancements [50 100:100:1000] within
the plateau zone.
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6.3.2 Changing slit width when the period is fixed

In previous Section 6.3.1 we considered extra-narrow slit and going further we
would like to know whether the same flat enhancement behavior holds for wider
apertures. Let us now fix gold grating period P = 20µm and scan over different
aperture widths; because P is always kept constant Rayleigh-Wood anomaly is
expected at the same frequency for different slit widths. Fig. 6.9 demonstrates
that electrostatic approximation with enhancement given by P/w again works
very well for broad range of slit widths, besides our additional calculations
revealed that even for very wide apertures with w = 10µm the enhancement
factor of 2 is stably obtained. As in previous Fig. 6.7, here for narrow slits the
end of enhancement plateau appears roughly one frequency order before the
λ = P condition, with transmission falling down one more order earlier.

Threshold frequency

For strong field focusing, slit width should preferably be chosen quite small
with the period reaching dozens or hundreds of µm what additionally weakens
the dependence of f0 on w as compared to its dependence on P . In Fig. 6.9
threshold frequency only slightly changes from curve to curve, especially for
smallest widths, in contrast to Fig. 6.7 which gives an argument for prevailing
influence of P on threshold frequency. Thus if higher enhancement is required
without significant reduction of plateau size, it should be better done through
decrease of aperture size but not the period increase.
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Figure 6.10: Profiles of electric field component Ex, all giving enhancements of
100, as calculated by averaging inside the slit along the y = 0 line. Parameters
of different gratings giving the same enhancement are shown in the legend.
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Figure 6.11: Detalization of several curves from Fig. 6.9a with linear scale (a)
and logarithmic scale (b) for the enhancement, lines with circles correspond to
the isolated slit and are plotted for the comparison.

Field profiles for different slit width

To know the distribution of Ex field component along the middle line of the
aperture, Fig. 6.10 compares three slit widths providing the same enhancement
of one hundred calculated via Eq. 6.3. Only in the case of extremely narrow
10-nm-wide slit we see really uniform field, while opening of aperture leads to
dropping of field amplitude well below the value of 100 in the central region
of the slit. Thus small apertures are advantageous not only as effective energy
concentrators but also for creation of uniform field.

Comparison with a single-slit film

In Fig. 6.7 the alignment of envelopes given by single and coupled slits of
different periods were obtained. In Fig. 6.11 we have a closer look at the
transition region from the flat enhancement to the Rayleigh-Wood anomaly. At
first glance on Fig. 6.11a, similar behavior of the two systems can be suggested;
however when plotted in log-log scale, different laws for the enhancement clearly
show up. Though passing in close proximity to each other, the enhancement
curves for isolated and periodic slits are governed by essentially different laws.
The enhancement in grating is higher in transition frequency region what can
be explained by some constructive interaction of coupled slits with each other.

Discussion

The results shown in this chapter for aperture films can be reproduced by
employing the PEC model for metal instead of gold. Because of no dispersion
in the PEC permittivity model and because we are interested in comparing
isolated and coupled slit systems, use of w-normalized λ, h, P and a figure
similar to Fig. 6.7 would be enough for complete analysis. However, both
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Figs. 6.9 and 6.7 are useful for illustrative purpose so real units were preferred
to dimensionless ones in our analysis.

As it was mentioned, s-polarized incident wave has cutoff wavelength and
at low frequencies its transmission is strongly suppressed. However, additional
cuts perpendicular to the slit can drastically change s-wave transmission [171]
what makes current research also relevant for polarization other than p. Thus,
the enhancement induced by s-polarized light might also be possible when
metal film is perforated in a special way.

Additionally to the static model used to explain flat enhancement, we do
not completely exclude the possibility that some plasmonic effects contribute
to the enhancement in slits of metal gratings at long wavelengths. Although
Zenneck waves, i.e. SPPs at f → 0, are difficult to excite and detect exper-
imentally [172], SPPs dispersion relation lies in close proximity to the light
line at low frequencies, and coupling of incident radiation with electron exci-
tation in perforated films is possible. Also, PEC model was shown to emulate
plasmonic behavior: surface bound modes [99] or in other terminology spoof
plasmons [173] were shown to contribute to the EOT phenomena in perforated
PEC films. Because metal at long wavelengths can be described as nothing but
dispersionless perfect conductor, condition for excitation of some surface bound
modes is the same in the wide range of frequencies giving flat enhancement.
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Conclusion

This thesis presents the development of the finite-difference frequency-domain
(FDFD) method for rigorous numerical modeling of three-dimensional nanopho-
tonic structures. Simulation examples presented include the eigenfrequency and
the Q-factor analysis of a very-high-Q photonic-crystal membrane cavity, a sin-
gle and coupled nanobeam resonators, and modeling of light passing through
ultra-narrow slits in subwavelength metal films. Of physical significance are
the following results:

(A) Coupled modes of two nanobeam cavities placed side-by-side appear to
have pronounced frequency dependence on their positioning (the longitudinal
shift and transversal separation), while the Q-factor of the coupled modes pre-
serves the same order of magnitude as that of a single nanobeam. Frequency
detuning of coupled modes depends nontrivially on the longitudinal shift of
cavities, in particular the modes become degenerate for a certain shift. At
this shift of about half the averaged lattice constant in the defect region, the
magnetic field nodes in one nanobeam oppose the field lobes in the other. The
degeneracy occurs for a broad range of separations between two or multiple
side-coupled cavities.

(B) Lamellar metal gratings in extremely subwavelength regime exhibit to-
tal transmission of incident p-polarized radiation and strong electric field en-
hancement in the nanometer sized slits. With very high accuracy the enhance-
ment equals the ratio of the grating period to the slit width, independent of the
wavelength and of metal thickness if they are smaller than the wavelength of
incident light. The frequency range of flat enhancement is limited by the first-
order Rayleigh-Wood anomaly condition. With the period approaching but
not equal to the incident wavelength, enhancement in slits of periodic gratings
becomes close to that exhibited by an isolated slit.

For getting reliable Q-factors of nanophotonic resonators or transmission
characteristics of metal-dielectric gratings, we addressed the minimum thick-
ness of free space buffer layers; the possibility to further squeeze those buffer
layers onto a tighter computational domain; and the nonuniform meshing
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within the structure. We found that:
(I) For a given eigenmode in an open cavity a reasonable estimate for the

optimal cavity-to-PML distance (in physical space) is λ/n — the ratio between
the (expected) wavelength λ of that eigenmode and the refractive index contrast
n between cavity material and the surrounding medium. This λ/n rule-of-
thumb is convenient to use for automated construction of absorbing buffer
layers in the finite-difference or finite-element based software.

(II) To further squeeze the cavity-to-PML distance in the computational
domain, the xcomp = xphys/(1 + xphys) mapping can be used. With the PMLs
covering one half of the squeezed-space buffer layer (the cavity-to-PML distance
in physical coordinates thus being equal to the total squeezed-space buffer size
in the computational space) and comprising at least 5 grid cell sublayers, this
gives robust and efficient absorbing buffers for the finite-difference simulations.

(III) Building an orthogonal, nonuniform grid of continuously varying den-
sity retains stable convergence for both λ and Q-factor in the eigenmode cal-
culations, and reliable transmission and reflection coefficients when modeling
extremely subwavelength metal gratings while saving computer memory and
calculation time a lot. Grids with the ratios in the step size reaching 1:10 and
more were investigated.

Applying these findings to real-life modeling leads to considerable com-
putation time and memory savings. For example, squeezing the outer free
space reduces the computational domain size, roughly, twofold along each of
the squeezed coordinates. For metal-dielectric structures, nonuniform grid is
essential to describe material interfaces, especially sharp metal edges and field
singularities around them, more precisely. For ultra-high-Q photonic-crystal
cavities, at a quite coarse sampling of 30 pixels per λ in the region of high field
intensity, the error in the eigenwavelength is well below 0.5% and the Q-factor
order of magnitude can easily be obtained on a laptop computer with 4Gb of
RAM and 2.2GHz CPU frequency in about 5 to 10 minutes.



Appendix A

Fourier transformation

A.1 Continuous Fourier transformation

Let us start from the continuous Fourier transformation (FT). Frequency spec-
trum of a mode in a fixed point is given by the Fourier transformation of a
time-dependent signal:

A(ω) =

∫ +∞

0

A0e
−ω0t

2Q e−iω0te−iωtdt =

∫ +∞

0

y(t)dt (A.1)

For a signal represented by a complex value we will get well known lorentzian.
However, if the signal is written as purely real then its FT differs from lorentzian.
In Table A.1 there are examples of FT of different signals: complex and real
(with different starting phase φ0) according to [174]. In Fig. A.1 we check the
difference in normalized on maximum FT of these signals and find that it is
insignificant was expected. However note, that there are still small difference
in position of peaks for |fcos|2 and |fsin|2. Besides, lorentzian fitting by least
square procedures in MatLab (lsqcurvefit) and Mathematica (FindFit, Nonlin-
earFit) is very dependent and sensitive to number of points involved and guess

function FT
yexp(t < 0) = 0
yexp(t > 0) = eiω0te−at fexp(ω) =

1
i(ω−ω0)+a

ycos(t < 0) = 0

ycos(t > 0) = cos(ω0t)e
−at fcos(ω) =

a(a2+ω2+ω2
0)−iω(a2+ω2−ω2

0)

(a2+ω2
0−ω2)2+4a2ω2

ysin(t < 0) = 0
ysin(t > 0) = sin(ω0t)e

−at fsin(ω) =
ω0

(a2+ω2
0−ω2)+i2aω

Table A.1: Fourier transformation of some signals [174].
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Figure A.1: Normalized to the maximum squared absolute values of functions
in the right column of table A.1.

parameters to make fit. This simple consideration supports the fact that it is
common to talk about approximate value of the Q-factor.

A.2 Discrete Fourier transformation

The discrete Fourier transformation (DFT) is defined as follows:

f(ωk) =
N−1∑
n=0

y(tn)e
−iωktn , k = 0, 1, 2, ..., N − 1 (A.2)

where y(tn) discretized with step ∆t, total signal length in time domain is N∆t,
f(ωn) - signal in the frequency domain after DFT of signal, step in frequency
2π/Nδt. Then frequency points are defined as

ωk = k
2π

Nδt
, k = 0, 1, 2, ..., N − 1 (A.3)

In Mathematica Eq. A.3 can be used to find resonance frequency, while in
Matlab frequency sampling is shifted on one step backwards, i.e. DFT and
inverse DFT are initially summed starting from unity in Eq. A.2. Then the
frequency points in Matlab are:

ωk = (k − 1)
2π

Nδt
, k = 1, 2, ..., N (A.4)



Appendix B

Fabry-Perot resonator:
FEM versus FDFD
performance

The eigenwavelength of a rectangular metallic cavity of the lateral size a and b
can be written as:

λ =
2√

(ma )
2 + (nb )

2
(B.1)

FEM is a direct competitor of the FDFD technique. We compare results of
the 2D in-house Fortran-based FEM and Matlab-based FDFD methods in Ta-
ble B.1 for a = b = 10 where a quarter of the cavity (of size 5×5) is discretized
with quite rough resolution of 19×19 rectangular cells in both cases, Fig. B.1a.
The iterative procedure to find eigenvalues is home-made with maximal num-
ber of iteration being fixed to 500; the iteration cycle finishes before reaching
500 loops if norma of the eigenvalues difference between current and previous
iteration is less or equal to the residual 10−12.

From the Table B.1 we see that convergence rate (i.e. maximal number of
iterations) for both methods are similar. The FDFD mistake for the first fun-
damental modes is found to be twice larger than that for the FEM calculations,
however for modes of higher orders FDFD and FEM performance become sim-
ilar. The home-made formulation of the FEM gives discrepancy between the
eigenvalues of the degenerate modes (commercial software Ansoft [175] does
not have this problem; in general it gives relative errors comparable with our
home-made FEM realization) while the FDFD degenerate eigenvalues coincide
with accuracy up to 5th digit. FEM-solution time is longer because of ne-
cessity of many-loops cycles to operate with each element when doing matrix
multiplication to solve generalized eigenvalue problem.
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(a)

[19x19]

elements

[19x19]

Yee cells

(l,m) analytic

λ

FEM/

error %

iterations/

residual

FDFD/

error %

iterations/

residual

1 (1,1) 14.1421 14.1447 18 14.1460 18

0.0179 4.7*10-13 0.0270 5.3*10-13

2 (1,3) 6.3246 6.3158 500 6.3386 45

-0.1381 1.6*10-12 0.2220 6.2*10-13

3 (3,1) 6.3246 6.3099 79 6.3386 101

-0.2325 1.0*10-12 0.2220 6.9*10-13

4 (3,3) 4.7140 4.7044 75 4.7255 78

-0.2056 6.9*10-13 0.2437 7.2*10-13

5 (1,5) 3.9223 3.8996 500 3.9480 94

-0.5804 6.1*10-12 0.6538 9.7*10-13

6 (5,1) 3.9223 3.8957 169 3.9480 213

-0.6777 8.5*10-13 0.6538 9.4*10-13

(b)

Figure B.1: (a) Field for the first (left) and degenerate second (middle) and
third (right) modes in a quarter of the metallic cavity. (b) Table comparing res-
onance wavelength and relative errors given by the FEM and FDFD approaches
as well as total number of iterations and residuals at the last iteration.
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