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Dynamical performance for science-mode
stationkeeping with an external occulter

Dan Sirbu1, Christian Vad Karsten1,2, and N. Jeremy Kasdin1

1Department of Mechanical and Aerospace Engineering, Princeton University

2DTU Space, Technical University of Denmark

ABSTRACT

An external occulter flown in precise formation with a telescope is being considered for high-contrast direct
imaging of exoplanets as a viable mission scenario. In this paper, the dynamics about the Sun-Earth L2 region for
an occulter-telescope constellation are considered in conjunction with fourth-body and solar radiation pressure
acting as disturbing forces. An optimal observation window is defined in terms of both thrust required and
the Sun-constellation geometry. By simulation, the effects of the stellar latitude and distance, the spacecraft
separation, the magnitude of the disturbing forces, and on-off versus continuous thrusting are quantified on the
thrusting profile needed to maintain precise alignment.

Keywords: Stationkeeping, External Occulter, High Contrast Imaging, Circularly Restricted Three Body Prob-
lem

1. INTRODUCTION

Since the 1992 discovery of the first extrasolar planet via pulsar timing,1 many new discoveries followed and
quickly a new field of interest developed. To date, more than 450 extrasolar planets have been confirmed, but
none have been characterized as terrestrial and most have been found by indirect methods, principally by radial-
velocity measurements of the stellar wobble under the gravitational effect of the exoplanet. For the search and
characterization of Earth-like exoplanets, a direct imaging method that is able to resolve a dim exoplanet in
orbit to its much brighter host star has become a priority for the next decade.

Among the most promising methods for direct imaging is the use of external occulters, which are specially
shaped opaque screens, that are flown in alignment with a telescope tens of thousands of kilometers along its
line-of-sight to a target star. The occulter blocks out most of the light from a bright star before it reaches the
telescope, only allowing light from the dim objects nearby the star to enter the telescope and thereby achieving
the high-contrast needed for direct imaging. The special shape of the petals accounts for diffraction effects.
Lyman Spitzer first2 proposed the idea of using occulters for finding extrasolar planets in 1962 and Simmons3, 4

proposed using a shaped-pupil approach to replace an apodized occulter by a particular shape. Cash5 suggested
a specific apodization function of the more general approach6 and replacing it by a starshaped occulter modeled
on the shaped-pupil approaches.7 Vanderbei et al.8 developed optimal occulter apodizations that minimize the
occulter distances and size while achieving the desired contrast over wide spectral bands.

This paper presents our validation of the full dynamic model of the occulter telescope constellation about
the Sun-Earth L2 point. Through simulation the effects of certain design variables such as spacecraft separation,
choice of target stars and thrusters are quantified. We use THEIA (Telescope for Habitable Exoplanets and
Interstellar/Intergalactic Astronomy) as the reference mission profile. THEIA is a recently proposed external-
occulter flagship-class mission. The current THEIA design calls for usage of a 4 m telescope and a single 40
m petal-shaped occulter operating at two different separations of 35,000 and 50,000 km corresponding to two
wavelength bands to achieve the needed contrast to fully characterize a target planet. Recently a probe-class
mission concept, dubbed O3 (Occulting Ozone Observatory), which uses a smaller telescope of 1.1 m and a 30
m occulter, has been proposed based on the same concepts as THEIA. From a stationkeeping perspective, both
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missions are to be located at the Sun-Earth L2 point. For THEIA, the heavy telescope is to be placed in a
ballistic halo orbit and the occulter is to be actively controlled for alignment while in science mode, while for
O3 active control is performed on the lighter telescope which is then placed in alignment with the occulter now
occupying the ballistic halo orbit trajectory.

The paper is organized as follows. Section 2 introduces the three-body dynamical model that governs the
equations of motion of the spacecraft in the Sun-Earth dominated gravity field. Next, the kinematics of motion
for the occulter-telescope constellation are considered in Section 3 and it is shown that the open-loop control law
that maintains the desired alignment consists of a gravity gradient portion and a parallax correction term. The
kinematics can be used to analytically generate the desired trajectory of the occulter and telescope constellation,
as discussed in Section 4. In Section 5 disturbances are added to the model whereupon a brief technical discussion
introduces mission-specifics for THEIA and O3 that are then used in simulations presented in Section 6. Lastly,
Section 7 re-capitulates the main simulation results and trends in mission parameter choices before discussing
future work.

2. CIRCULARLY RESTRICTED THREE BODY MODEL

The Sun-Earth L2 point is an unstable equilibrium point which provides several advantages for mission trajectory
design, including relatively benign dynamical disturbances, low contamination from Earth’s radiation, and good
coverage from Earth for communication. Because of this, most of the occulter-class imaging missions that have
been proposed (for example, THEIA, NWO, and O3) consider orbits about the L2 point. The well-known
Circularly Restricted Three Body (CRTBP) model9 is useful for describing the motion of a spacecraft around
the L2 point. The assumptions are that the mass of the spacecraft is negligible compared to the two primaries
(Earth and Sun in this case), thus not affecting their motion, and that the two primaries’ motion is planar
and circular. The details of the CRTBP model and the derivation of the relative equations of motion of the
occulter with respect to the telescope are described elsewhere.10 For brevity only the equations of motion and
basic definitions are reproduced below. First, an inertial frame is considered with its origin at the barycentre
of the Sun and Earth primaries and which has two base unit vectors in the plane of the ecliptic and a third
perpendicular and out of the ecliptic. The equations of motion for the telescope are considered in a corotating
frame whose origin is also the barycentre, has a unit base vector pointing from the Sun to the Earth, a third unit
vector outside of the ecliptic, and the remaining unit base is perpendicular to both. For numerical reasons it is
best to use canonical units, wherein a canonical distance unit corresponds to 1 AU and a canonical time unit
is equal to the mean anomaly chosen such that mean angular motion of the primaries is unity in the rotating
frame. μ is a massless parameter such that μ = µE

µH+µE
where μE is the combined Earth-Moon mass and μH is

the Solar mass. Then the equations of motion for the telescope are given by:

ẍT = xT + 2ẏT − 1 − μ
∥
∥rT/H

∥
∥

3 (xT + μ) − μ
∥
∥rT/E

∥
∥

3 (xT + μ − 1) + wTx + uTx (1)

ÿT = yT − 2ẋT − 1 − μ
∥
∥rT/H

∥
∥

3 y − μ
∥
∥rT/E

∥
∥

3 yT + wTy + uTy (2)

z̈T = − 1 − μ
∥
∥rT/H

∥
∥

3 zT − μ
∥
∥rT/E

∥
∥

3 zT + wTz + uTz (3)

where rT = [xT , yT , zT ] denotes the telescope position in the synodic frame,
IdrT

dt = [ẋT , ẏT , żT ] is the inertial
velocity of the telescope expressed as components in the synodic frame, wT = [wTx, wTy, wTz ] the total disturbing
acceleration acting on the telescope, and uT = [uTx, uTy, uTz] the total thrust acceleration acting on the telescope.
The position from the Sun to the telescope is given by rT/H and from the Earth to the telescope rT/E . The
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equations of motion for the occulter relative to the telescope are:

ẍr = xr + 2ẏr + (1 − μ)

(

xT + μ
∥
∥rT/H

∥
∥

3 − xT + xr + μ
∥
∥rO/H

∥
∥

3

)

+ μ

(

xT − 1 + μ
∥
∥rT/E

∥
∥

3 − xT + xr − 1 + μ
∥
∥rO/E

∥
∥

3

)

+ wrx + urx (4)

ÿr = yr − 2ẋr + (1 − μ)

(

yT
∥
∥rT/H

∥
∥

3 − yT + yr
∥
∥rO/H

∥
∥

3

)

+ μ

(

yT
∥
∥rT/E

∥
∥

3 − yT + yr
∥
∥rO/E

∥
∥

3

)

+ wry + ury (5)

z̈r = (1 − μ)

(

zT
∥
∥rT/H

∥
∥

3 − zT + zr
∥
∥rO/H

∥
∥

3

)

+ μ

(

zT
∥
∥rT/E

∥
∥

3 − zT + zr
∥
∥rO/E

∥
∥

3

)

+ wrz + urz (6)

where rr = [xr , yr, zr] denotes the position of the occulter relative to the telescope,
Idrr

dt = [ẋr, ẏr, żr] the inertial
velocity of the occulter relative position, wr = [wrx, wry, wrz ] the differential disturbing acceleration acting on
the occulter with respect to the telescope, and ur = [urx, ury, urz] the differential thrust acceleration acting on
the occulter with respect to the telescope.

3. OPEN-LOOP CONTROL

In the following an open-loop control scheme based on the kinematics of the telescope and occulter will be
introduced. Figure 1 is a simple planar schematic of the telescope and occulter relative to the star and barycenter.
It is seen that the directional unit vector from the telescope to the star can be found from:

H

B

T

O

S

rS/O

rS/B

rO/T

rO/B
rS/T

rT/B
E

x̂

ŷ ex
ey

Figure 1. Schematic motion of the telescope (T) and Occulter (O) around the Sun(H)-Earth(E)-Moon Barycenter (B).
The occulter is located a distance R from the telescope on the line-of-sight to the star (S)

rT/B + rS/T = rS/B (7)
rS/T = rS/B − rT/O (8)

r̂S/T =
rS/B − rT/O

‖rS/B − rT/B‖ . (9)

It should be noted that rS/B can be computed by conversion to ecliptic coordinates from equatorial coordinates
provided by an astrometric catalogue (e.g., Hipparcos and Tycho). The occulter is located at a set separation R
from the telescope along the line-of-sight to the star:

rO/T = Rr̂S/T (10)
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The position of the occulter can then be expressed as:

rO/B = rT/B + rO/T = rT/B + Rr̂S/T . (11)

The velocity of the occulter in the inertial frame (I) is then given by:

IvO/B = IvT/B + R
Idr̂S/T

dt
. (12)

The acceleration of the occulter follows. From Newton’s Second Law, the occulter’s inertial acceleration is found
from the total external force acting on the occulter due to the Sun and the Earth, FO, and the control acceleration
uC applied from the occulter’s thrusters :

IaO/B = IaT/B + R
Id2r̂S/T

dt2
= FO/mO + uC/mO. (13)

Thus, the control acceleration uC applied to the occulter needed to maintain the desired orbit can be found:

uC = mO

(

FT /mT − FO/mO + R
Id2r̂S/T

dt2

)

(14)

= mO

⎛

⎜
⎜
⎜
⎜
⎝

(

μ
rO/E

‖rO/E‖3
+ (1 − μ)

rO/H

‖rO/H‖3

)

︸ ︷︷ ︸

FO/mO

−
(

μ
rT/E

‖rT/E‖3
+ (1 − μ)

rT/H

‖rT/H‖3

)

︸ ︷︷ ︸

FT /mT

+R
Id2r̂S/T

dt2

⎞

⎟
⎟
⎟
⎟
⎠

. (15)

It can be seen from the above that alignment can be perfectly maintained by a control acceleration that is the
summation of the gravity gradient given by the separation between the occulter and telescope μ

rT/E

‖rT/E‖3 + (1 −
μ) rT/H

‖rT/H‖3 and a parallax correction term R
Id2r̂S/T

dt2 .

4. TRAJECTORY GENERATION AND PARALLAX CORRECTION

The desired trajectory of the occulter can be found analytically for all time depending on the position and
velocity of the telescope. For the desired position of the occulter the previous formulation is invoked:

rO/B = rT/B + Rr̂S/T . (16)

For the desired velocity of the occulter it holds that:

IvO/B = IvT/B + R
Idr̂S/T

dt
(17)

where the derivative term
Idr̂S/T

dt can be found analytically along each of its component directions:

vxS/T =
vyTB (xSB − xTB) (ySB − yTB) − vxTB

(

(ySB − yTB) 2 + (zSB − zTB) 2
)

+ vzTB (xSB − xTB) (zSB − zTB)
((xSB − xTB) 2 + (ySB − yTB) 2 + (zSB − zTB) 2) 3/2

(18)

vyS/T =
(ySB − yTB) (vxTB (xSB − xTB) + vzTB (zSB − zTB)) − vyTB

(

(xSB − xTB) 2 + (zSB − zTB) 2
)

((xSB − xTB) 2 + (ySB − yTB) 2 + (zSB − zTB) 2) 3/2
(19)

vzS/T =
−vzTB

(

(xSB − xTB) 2 + (ySB − yTB) 2
)

+ (vxTB (xSB − xTB) + vyTB (ySB − yTB)) (zSB − zTB)
((xSB − xTB) 2 + (ySB − yTB) 2 + (zSB − zTB) 2) 3/2

(20)

This is a particularly useful result as it can be used to predict the insertion velocity of the occulter into science-
mode, and together with the position defines the reference orbit of the occulter. In a similar way an analytical
formulation can be found for the parallax acceleration term, but nevertheless is negligibly small for all stars
being considered compared to the other disturbances (we show this carefully in Figure 8).
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5. DISTURBANCE MODEL

The two primary disturbing forces in the L2 microgravity environment are the fourth-body effects of the Moon
and the Solar radiation pressure. The effect of the Moon on the telescope and occulter is modeled as a periodic
disturbing force that corresponds to the rotation of the Moon about the Earth assuming that is in plane and
with a constant periodicity of approximately 27.3 days. This represents a slight simplification but agrees very
well when a comparison is made to the force exerted by the Moon in a full four-body model:

FT/M = −μ
μM

μE

rT/M

‖rT/M‖3
mT (21)

FO/M = −μ
μM

μE

rO/M

‖rO/M‖3
mO. (22)

Where in the above μM and μE represent the Moon mass and combined Earth-Moon mass respectively. Hence
the differential acceleration due to Lunar disturbance on the occulter with respect to the telescope is:

dO =
FT/M

mT
− FO/M

mO
= −μ

μM

μE

(
rT/M

‖rT/M‖3
− rO/M

‖rO/M‖3

)

(23)

where, for example for rT/M = rE/B − [RM cos(ωM t); RM sin(ωM t); 0] and ωM is the rotation frequency of the
Moon about the Earth in a year.

The solar radiation pressure is modeled as a simplified disturbing force on the telescope and occulter respec-
tively in accordance with McInner et al.11 For the telescope this disturbance is given by:

wT =
−βrT/H

‖rT/H‖3
(24)

where β is a coefficient depending on the spacecraft coefficient of reflectivity, incident surface area, and fluctua-
tions in the solar flux. Here it is assumed the coefficient is constant thus assuming no variations in surface area
and solar flux from the initial point. As in the model for the MAXIM Pathfinder12 a coefficient of β = 5× 10−8

m/s2 is assumed for the telescope. For simplicity, it is assumed that the occulter has a coefficient which is 40
times larger than that of the telescope based on a worst-case relative area differences and alignment to the Sun,
hence βO = 40βT , and hence the relative disturbing effect on the occulter is wr = wO − wT

6. SIMULATION AND RESULTS

The THEIA occulter system is expected to have an approximate maximum mass of 6,000 kg and consists
of a spacecraft and a 40 m occulter located at 35,000 or 50,000 km away. It accommodates a redundant
system of NASA Evolutionary Xenon Thrusters (NEXT) and has solar power enough to fire two thrusters at
a time with a maximum thrusting power of 6.9 kW each, a maximum thrust of 236 mN and an ISP of 4190.
However, these thrusters are used primarily for slewing as during stationkeeping they produce a bright plume
that could potentially contaminate observations. Hence, the occulter spacecraft is also equipped with a set of
on/off hydrazine thrusters that must control transverse position to within 0.75 m during observations.13 During
science-mode stationkeeping burn times a shutter is used to avoid light contamination from the plume. During
observation periods the line-of-sight of the occulter and telescope is held on target and constrained to lie between
45 and 90 degrees from the Sun line. This is to avoid stellar leak or reflections off the occulter into the telescope.14

Figure 2 shows the results a simulation for THEIA with a 50,000 km separation over one year (roughly two
periods of the Halo orbit) using a variable order Adams-Bashforth-Moulton integrator with 10 minute time steps.
The right hand figure shows the total thrust required to maintain alignment for a selection of eight traget stars.
All simulations started at the vernal equinox (March 21st) and the telescope follows a Halo orbit around L2
with synodic starting coordinates as in Sirbu et al.10 The halo orbit of the telescope is approximately stable
over a year so no stationkeeping is applied on the telescope other than to correct the lunar and solar radiation
disturbances. For the remainder of the paper, all simulations were performed using Epsilon Eridani as the target
star.
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Figure 2. (left) Halo Orbit in the synodic frame over a period of 180 days. (middle) Line-of-sight from the telescope and
occulter towards Epsilon Eridani in section of a halo orbit in the inertial frame. (right)Total thrust profile for different
stars over the course of one year.
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Figure 3. Effect of Lunar and Solar radiation pressure disturbances on the thrust profile along ex, ey, and ez (the three
synodic components).

6.1 Optimal Observation Window

To determine an optimal observation window that minimizes thrust on the occulter to keep it aligned, the
thrust profile is computed for a full year, and an 8-hour observation window around the point of lowest thrust
is considered to be the optimal window. One other consideration is that the geometry of the telescope-occulter
constellation with respect to the Sun must be such that the Sun does not glare on the telescope either directly
or through reflections off the occulter. For example, for THEIA this means that the allowable angle θ between
the vectors rO/T and rH/T must be constrained to be 45◦ ≤ θ ≤ 90◦ such that it matches the sunshade installed
on the telescope. Outside of this allowable region, a keep-out zone is defined; for θ > 45◦ the Sun is behind the
occulter and in front of the telescope and so observations are impossible; for 90◦ < θ ≤ 180◦ the Sun is behind
the telescope and its reflection off the occulter would likely cause significant glare.

6.2 Effect of Disturbance

The directional effect of the disturbances due to the Moon’s gravitational field and the Solar radiation pressure
is shown in Figure 3 and the total force and acceleration in Figure 4. The moon cycles are clearly seen and the
disturbing forces have a significant effect on the overall thrusting level and cannot be ignored. However, the
effects of Solar radiation are orders of magnitude smaller than the effect of the Moon and, hence, a simple model
as proposed for Solar radiation pressure is appropriate.

6.3 Effect of Separation Distance

Ideally, the separation distance between the external occulter and the telescope would be increased to the
maximum possible extent allowing for the inner working angle to be minimized and thus increase the observability
of the habitable zone for faraway Solar Systems. However, this requirement must be balanced by the larger thrust
needed for stationkeeping at large separation distances between the occulter and telescope. There are several
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Figure 5. Thrust profile along ex, ey, and ez for different separation distances of the occulter and telescope constellation.

important considerations associated with increased thrust due to large separations. The thrusting required to
maintain alignment must be within the physical limits of the onboard thrusters and the amount of onboard
fuel. For continuous thrusters this requirement means that a stationkeeping window can be found over which
the required thrusting profile is achievable (including a contingency). For on-off (chemical) thrusters, a realistic
thrusting profile translates to more complicated considerations such as the number and length of cycles required
to maintain the desired sub-metre alignment accuracy as well as the amount of fuel consumption. For a discussion
of the cycle limitations associated with chemical thrusters, see Section 6.6. In the simulations shown in Figure
4 and Figure 5 the continuous-thrusting profile is considered for several separation distances, with 50,000 km
as the separation proposed for THEIA.14 It is seen that the total thrust is proportional to the square of the
separation distance as expected.

6.4 Seasonal Effects

Another effect upon the thrusting required to maintain the occulter in alignment with the telescope are seasonal
effects, which in this case is the variation of the alignment halo orbit with respect to the inertial frame. The
observable periods for the telescope-occulter system is dependent on the relative position of the Sun, target star,
and position of the telescope on the Halo orbit. Hence over a mission lifetime less thrust intensive observation
windows can be chosen since the period of a Halo orbit does not necessarily match with the revolution of the
Earth. This effect is seen in Figure 6. For Epsilon Eridani this gives a ratio in total acceleration levels for
stationkeeping during observations between worst and best windows of around 3.
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Figure 6. Total thrust profile for halo orbits starting at different times of the year. Upper left corner is March 21st and
each increment is 30 days. The bolded sections correspond to observable periods due to favourable Sun angle.
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Figure 7. (left) The occulter is being kept in alignment with the telescope for an entire year and the reported stationkeeping
budget is the average over five different starting times separated by 2 month increments. The results are summarized for
all target stars and plotted as a function of stellar declination. (right) The optimal corresponding observation window for
all target stars as a function of stellar declination is reported as an averaged minimum thrust.
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Figure 8. (left) Parallax correction thrust corresponding to HIP 71681, at a distance of 1.3 parsecs, and (right) HIP 30711,
at a distance of 29.8 parsecs.

6.5 Effect of Star Position

The candidate star list for THEIA and O3 includes approximately 2300 stars within 30 parsecs from our Solar
system. The target star list can be reduced to fewer than 131 stars by applying several filtering criteria including
restricting the list to main sequence candidates, single stars (no binaries), observable habitable zone, and Δmag <
26 (for more details on selection of a dynamical target list see15 on DRM construction ). Of interest in this
investigation is the effect of stellar declination on the occulter thrust profile and the corresponding observable
windows of the star. The minimum thrust associated with the observable windows for different star declinations is
shown in Figure 7; also plotted is the corresponding stationkeeping budget and whereas this shows an increase for
stars nearer the ecliptic this is not necessarily matched by the occurrence of thrust minima. Different continuous
thrust profiles are shown for 10 stars in Figure 2. The distance to the star only affects stationkeeping in the
sense that for nearer stars the parallax correction is more significant; however, as shown in Figure 8, the thrust
required to correct for parallax motion is negligible even for the closest stars in the target list.

6.6 On/off Thrusters

So far a continuous thrust profile has been considered for stationkeeping of the occulter; however the telescope
imaging the target planet may be detrimentally affected by the always-on bright plumes produced by an ion
thruster. To mitigate this effect for imaging, two solutions have been proposed: first, performing stationkeeping
on the telescope (refer to the O3 discussion in Section 6.7) or using a bang-bang control scheme based on chemical
thrusters that provide large thrusts over shorter durations. For this second approach, the science camera stops
imaging while a burn is being applied on the occulter thrusters and is subsequently allowed to image while
the occulter is drifting. To investigate the feasibility of a bang-bang approach, a thrusting profile is realized
as illustrated in Figure 9 from the previously computed ideal continuous-thrusting profiles. The key thruster
parameters are the thrust level and the burn time and, depending on the drift associated with the dynamical
region, affect performance including maximum drift amount and time spent drifting. The length of each cycle
is determined by the burn time and is bounded above by the maximum admissible drift which is a function of
the lateral tolerance of the occulter alignment.13 Table 1 summarizes simulations using three different thrusters
and the effect of the burn time during an eight-hour optimal observation window. It should be noted that a
different thrust profile will arise for each different thrust direction but for the imaging condition listed above all
burns must be matched together – thus the thrust profile for the highest drift component will dictate lengths of
all cycles.
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Table 1. Summary of simulation results using chemical thrusting in the ez direction. For thrusters of strengths 1N, 2N,
and 5N, different burn times are chosen to quantify the drifting behaviour of the occulter. For lower burn times, more
cycles are needed and this corresponds to a smaller overall drift while for shorter burn times cycles are more infrequent
but a larger drift is present. This corresponds to a trade-off between lateral misalignment and an imaging cycle (time
that science camera can be kept on).

thrust
time to drift max # cycles

thrust (ton) period (toff) drift in 8 hours
(s) (s) (m)

1 N
1 53.01 0.002 543
10 417.27 0.18 69
30 1492.14 1.76 19

2 N
0.1 121.09 0.01 237
1 468.43 0.19 61
5 1359.77 1.13 21

5 N
0.5 123.59 0.01 233
1 246.29 0.05 116
10 1232.35 1.27 23

tcycle

ton/2
toff

time

th
ru
st

ton/2

O
time

d
ri
ft

O

Figure 9. (left) Cycle schematic for the on/off thrusting profile. right) Corresponding drift for two on/off thrusting cycles
after a burn is applied resulting in a maximum displacement against the drift and eventual return with the drift – longer
drift periods correspond to longer periods when the camera can be turned on.

6.7 Comparison of O3 and THEIA

A major difference between THEIA and O3 is the constellation of the spacecraft. For THEIA the telescope is
placed on a ballistic Halo orbit around L2 and the occulter is on the line-of-sight 50,000 km in the direction of the
star. For O3 the setup is reversed and the occulter is kept at a Halo orbit around L2 with the telescope placed on
the line-of-sight approximately 40,000 km in the direction away from the star. This means that stationkeeping
will be done on the telescope rather than on the occulter during observations. The difference in accelerations
can be seen in Figure 10 as well as the thrust, assuming a wet mass of the O3 telescope of 3,000 kg (see16 for
additional details) and a wet mass of the THEIA occulter of 6,000 kg.

7. CONCLUSION

This paper presented a complete model and demonstrated the dynamical feasibility of a typical external occulter
formation flying mission such as THEIA or O3. While assuming perfect control, the model can be used to study
the thrust profiles for targets and conditions. In particular, we examined the variation in thrust over a year
for changes in spacecraft separation, fourth-body and solar radiation pressure disturbing forces. The effects of
using chemical thrusters on the occulter were also outlined and simulation results show the trade-off between
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Figure 10. Comparison of thrust levels left) and acceleration levels (right) for THEIA and O3

increasing drift-time and minimizing lateral displacement. Lastly, the thrusting profiles for two different mission
architectures, O3 and THEIA, were compared.

With a validated model in place, our next steps are to study realistic closed loop control algorithms. We
plan to investigate both feedback only and feedforward controllers incorporating realistic navigational errors
from the DSN, various time scales and bandwidths within the controller, and precise sensing models of the
relative alignment. Various control architectures are being examined including optimal estimators to fuse the
navigational and relative position information. A parallel laboratory effort at Princeton is validating the sensing
scheme using a subscale version of the occulter system.
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